Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.
Baskaran, Arvind; Ratsch, Christian; Smereka, Peter
2015-12-01
Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic
Liu, Guanlin; Leng, Qiang; Lian, Jiawei; Guo, Hengyu; Yi, Xi; Hu, Chenguo
2015-01-21
Great attention has been paid to nanogenerators that harvest energy from ambient environments lately. In order to give considerable output current, most nanogenerators require high-velocity motion that in most cases can hardly be provided in our daily life. Here we report a notepad-like triboelectric generator (NTEG), which uses simple notepad-like structure to generate elastic deformation so as to turn a low-velocity kinetic energy into high-velocity kinetic energy through the conversion of elastic potential energy. Therefore, the NTEG can achieve high current output under low-velocity motion, which completely distinguishes it from tribogenerators previously reported. The factors that may affect the output performance are explored, including the number of slices, active length of slice, press speed, and vertical displacement. In addition, the working mechanism is systematically studied, indicating that the efficiency of the generator can be greatly enhanced by interconversion between kinetic energy and elastic potential energy. The short-circuit current, the open-circuit voltage, and power density are 205 μA and 470 V and 9.86 W/m(2), respectively, which is powerful enough to light up hundreds of light-emitting diodes (LEDs) and charge a commercial capacitor. Besides, NTEGs have been successfully applied to a self-powered door monitor. PMID:25564956
Ho, T.; Rabitz, H.
1989-02-01
Elastic differential cross sections in atomic crossed beam experiments contain detailed information about the underlying interatomic potentials. The functional sensitivity density of the cross sections with respect to the potential deltasigma(theta)/deltaV(R) reveals such information and has been implemented in an iterative inversion procedure, analogous to that of the Newton--Raphson technique. The stability of the inversion is achieved with the use of the regularization method of Tikhonov and Miller. It is shown that given a set of well resolved and noise-free differential cross section data within a limited angular range and given a reasonable starting reference potential, the recovered potential accurately resembles the desired one in the important region, i.e., the region to which the scattering data are sensitive. The region of importance depends upon the collision energy relative to the well depth of the potential under study; usually a higher collision energy penetrates deeper into the repulsive part of the potential and thus accordingly yields a more accurate potential in that part. The inversion procedure produces also a quality function indicating the well determined radial region. Moreover, the extracted potential is quite independent of the functional form of the reference potential in contrast to curve fitting approaches. As illustrations, the model inert gas systems He--Ne and Ne--Ar have been considered. For collision energies within an order of magnitude of the associated potential well depth, the attractive part of the potential can be determined to high precision provided that scattering data at small enough angles are available.
Sukhomlinov, Sergey V; Müser, Martin H
2016-10-01
We demonstrate that the embedded-atom method and related potentials predict many dimensionless properties of simple metals to depend predominantly on a single coefficient μ, which typically lies between 0.3 and 0.45. Among other relations presented in this work, we find that [Formula: see text], [Formula: see text], and [Formula: see text] hold within 25% accuracy and also find a linear dependence of the melting temperature on μ. The used variables are cohesive energy E c, coordination number Z, vacancy energy E v, and bulk modulus B, while G is the average of ordinary and tetragonal shear modulus. We provide analytical arguments for these findings, which are obeyed reasonably well by several metals. PMID:27465401
Elastic lattice in a random potential
Chudnovsky, E.M.; Dickman, R.
1998-02-01
Using Monte Carlo simulations, we study the properties of an elastic triangular lattice subject to a random background potential. As the cooling rate is reduced, we observe a rather sudden crossover between two different glass phases, with exponential decay of translational correlations, the other with power-law decay. Contrary to predictions derived for continuum models, no evidence of a crossover in the mean-square displacement B(r) from the quadratic growth at small r to the logarithmic growth at large r is found. {copyright} {ital 1998} {ital The American Physical Society}
Elastic energy release in great earthquakes and eruptions
NASA Astrophysics Data System (ADS)
Gudmundsson, Agust
2014-05-01
The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed) elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy) associated with magma chamber rupture and contraction (shrinkage) during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1) the strain energy stored in the volcano/fault zone before rupture, and (2) the external applied load (force, pressure, stress, displacement) on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU) during an eruption is directly proportional to the excess pressure (pe) in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc) of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3), the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago) and largest single (effusive) Colombia River basalt lava flows (15-16 million years ago), both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.
Elastic form factors at higher CEBAF energies
Petratos, G.G.
1994-04-01
The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.
An excitation potential imaging condition for elastic reverse time migration
NASA Astrophysics Data System (ADS)
Gu, Bingluo; Liu, Youshan; Li, Zhiyuan; Ma, Xiaona; Liang, Guanghe
2014-09-01
Elastic reverse time migration (ERTM) has been demonstrated to be more accurate than scalar RTM. However, low efficiency (large storage and heavy calculated amount) and strong artifacts caused by the crosstalk between different wave modes are the two primary barriers to the application of the ERTM during the processing of real data. The scalar (P) and vector (S) potentials of the elastic wavefield and the arrival times corresponding to the first energy extremum of the wavefield are saved at each grid point during the forward modeling of the source wavefield. The angle-dependent reflection coefficient images are subsequently obtained by dividing the scalar and vector potentials of the backward extrapolated receiver wavefield by the saved scalar and vector potentials at the grid points that satisfy the image time at each time step, respectively. The proposed imaging condition does not need to store the snapshots of the source wavefield, while it can considerably improve the computational efficiency and decrease the amount of storage and Input/Output manipulation (compared with the cross-correlation imaging condition) in addition to suppressing the crosstalk between compressive and shear wave modes. Compared with the excitation time imaging condition, the proposed imaging condition reduces the energy loss caused by the opposite polarity of the horizontal component at opposite sides of the source in stacked images. Numerical tests with synthetic data of the Sigsbee2a model have demonstrated that this imaging condition is a cost-effective and practical imaging condition for use in prestack ERTM.
Elastic model for dinucleosome structure and energy
NASA Astrophysics Data System (ADS)
Fatemi, Hashem; Khodabandeh, Fatemeh; Mohammad-Rafiee, Farshid
2016-04-01
The equilibrium structure of a dinucleosome is studied using an elastic model that takes into account the force and torque balance conditions. Using the proper boundary conditions, it is found that the conformational energy of the problem does not depend on the length of the linker DNA. In addition it is shown that the two histone octamers are almost perpendicular to each other, and the linker DNA in short lengths is almost straight. These findings could shed some light on the role of DNA elasticity in the chromatin structure.
Elastic energy of polyhedral bilayer vesicles
Haselwandter, Christoph A.; Phillips, Rob
2011-01-01
In recent experiments the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron. PMID:21797397
Expression for the granular elastic energy.
Jiang, Yimin; Zheng, Hepeng; Peng, Zheng; Fu, Liping; Song, Shixiong; Sun, Qicheng; Mayer, Michael; Liu, Mario
2012-05-01
Granular solid hydrodynamics (GSH) is a broad-ranged continual mechanical description of granular media capable of accounting for static stress distributions, yield phenomena, propagation and damping of elastic waves, the critical state, shear band, and fast dense flow. An important input of GSH is an expression for the elastic energy needed to deform the grains. The original expression, though useful and simple, has some drawbacks. Therefore a slightly more complicated expression is proposed here that eliminates three of them: (1) The maximal angle at which an inclined layer of grains remains stable is increased from 26^{∘} to the more realistic value of 30^{∘}. (2) Depending on direction and polarization, transverse elastic waves are known to propagate at slightly different velocities. The old expression neglects these differences, the new one successfully reproduces them. (3) Most importantly, the old expression contains only the Drucker-Prager yield surface. The new one contains in addition those named after Coulomb, Lade-Duncan, and Matsuoka-Nakai-realizing each, and interpolating between them, by shifting a single scalar parameter. PMID:23004747
Velocity-dependent optical potential for neutron elastic scattering from 1 p -shell nuclei
NASA Astrophysics Data System (ADS)
Ghabar, I. N.; Jaghoub, M. I.
2015-06-01
Background: The conventional optical model is quite successful in describing the nucleon elastic scattering data from medium and heavy nuclei. However, its success in describing the light 1 p -shell nuclei is somewhat limited. The velocity-dependent optical potential resulted in a significant improvement in describing the elastic angular distributions for light nuclei in the low energy region. Purpose: To extend the formalism of the velocity-dependent potential to higher energies, and to assess its importance in describing neutron elastic scattering data from light 1 p -shell nuclei at high energies. Method: We fit the angular distribution data for neutron elastic scattering from 12C and 16O using (i) the velocity-dependent optical potential and (ii) the conventional optical potential. The results of the two models are then compared. At low energies, we compare our angular distribution fits with the fits of other works that exist in the literature. Furthermore, the total integrated cross sections in addition to the analyzing power are calculated using the velocity-dependent optical potential and compared to the experimental data. Results: The velocity-dependent potential resulted in significant improvements in describing the angular distributions particularly in the large-angle scattering region and for certain energy ranges. This model is important where the experimental data show structural effects from nuclear surface deformations, which are important in light nuclei. Furthermore, the calculated total elastic cross sections and analyzing power are in good agreement with the experimental data. Conclusions: The velocity-dependent potential gives rise to surface-peaked real terms in the optical model. Such terms account, at least partly, for the structural effects seen in the angular distribution data. The energy range over which the surface terms are needed is found to depend on the target nucleus. Other works that have introduced real surface terms in the optical
Elastic epsilon/sup + -/-He scattering with the use of the model-potential method
Khan, P.; Datta, S.K.; Bhattacharyya, D.; Ghosh, A.S.
1984-06-01
A model-potential method has been used to evaluate the elastic e/sup + -/-He scattering at the low-incident energies. The potential contains one parameter to include the effect of short-range correlation. The results for the elastic e/sup + -/-He scattering have been obtained using the same parameter. Two model exchange potentials, one for s wave and the other for higher partial waves, have been employed. The present results are in good agreement with the measured values and refined theoretical predictions.
Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities
NASA Astrophysics Data System (ADS)
Baylin-Stern, Adam C.
This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.
Optical model potential for deuteron elastic scattering with 1 p -shell nuclei
NASA Astrophysics Data System (ADS)
Zhang, Y.; Pang, D. Y.; Lou, J. L.
2016-07-01
A set of global optical potential parameters, DA1p, for deuterons with the 1 p -shell nuclei is obtained by simultaneously fitting 67 sets of experimental data of deuteron elastic scattering from 6Li, 9Be, 10B, 11B, 12C, 13C, 14N, 16O, and 18O with incident energies between 5.25 and 170 MeV. DA1p improves the description of the deuteron elastic scattering from the 1 p -shell nuclei with respect to the existing systematic deuteron potentials and can give satisfactory reproduction of the experimental data with radiative nuclei such as 9Li, 10Be, 14C, and 14O.
Potentials for the α- 40,44,48Ca elastic scattering
NASA Astrophysics Data System (ADS)
Abdullah, M. N. A.; Idris, A. B.; Tariq, A. S. B.; Islam, M. S.; Das, S. K.; Uddin, M. A.; Mondal, A. S.; Basak, A. K.; Reichstein, I.; Sen Gupta, H. M.; Malik, F. B.
2005-10-01
The differential cross sections for the elastic scattering of α particles by 40,44,48Ca, over a wide range of incident energies, have been analyzed using a deep as well as shallow non-monotonic optical potential and compared with those using a squared Woods-Saxon (SWS) potential. The shallow non-monotonic potential exhibits a volume integral for the real part, characteristic of a molecular potential. The parameters of the SWS potential have also been obtained for α- 48Ca scattering. The parameters of the shallow non-monotonic potential calculated from the energy-density-formalism provide a satisfactory description of the elastic scattering data. The non-monotonic potentials, both deep and shallow, are found to yield consistently a lower value of the radius parameter of the real potential for 48Ca than that for 40Ca, in conformity with the observed magnitudes of the root-mean-square radii for the two nuclei. Both the potentials indicate that the semi-magic 44Ca behaves differently from the doubly-magic 40,48Ca, in agreement with the findings from the folding potentials. The dispersion effect arising from the causality principle has been investigated for the shallow non-monotonic α- 40Ca potential and is found to play a rather minor role in describing the elastic scattering data.
The role of elastic energy storage and recovery in downhill and uphill running.
Snyder, Kristine L; Kram, Rodger; Gottschall, Jinger S
2012-07-01
In level running, humans and other animals store and recover elastic energy during each step. What role does elastic energy play during downhill and uphill running? We measured the fluctuations of the mechanical energy of the center of mass (CoM) of 15 human participants running at 3 m s(-1) on the level, downhill and uphill on a force-measuring treadmill mounted at 3, 6 and 9 deg. In level running, nearly symmetrical decreases and increases of the combined gravitational potential and kinetic (GPE+KE) energy of the CoM indicated equal possible elastic energy storage and recovery. However, asymmetrical fluctuations during hill running indicate reduced maximum possible elastic energy storage and return. We analyzed mechanical energy generation and dissipation during level and hill running by quantifying the anatomically estimated elastic energy storage (AEEE) in the arch and Achilles' tendon using peak ground reaction forces and anatomical characteristics. AEEE did not change with grade. At shallow downhill grades, the body must generate mechanical energy, though it dissipates more than it generates. At steeper downhill grades, little to no energy generation is required and only mechanical energy dissipation must occur. The downhill grade at which mechanical energy must no longer be generated occurs at approximately -9 deg, near the metabolically optimal running grade. At shallow uphill grades, mechanical energy must be generated to raise the CoM, and at steeper grades, additional energy must be generated to offset reduced elastic energy storage and return. PMID:22675189
Low-energy elastic differential scattering of He/++/ by He.
NASA Technical Reports Server (NTRS)
Lam, S. K.; Doverspike, L. D.; Champion, R. L.
1973-01-01
Experimental results are developed for the relative elastic differential scattering of He(++) by He for collision energies in the range 4 equal to or less than E equal to or less than 75 eV. In the analysis of the data, semiclassical considerations are utilized, assuming that the dynamics of the scattering is governed solely by the B and E states of He2(++). It is shown that existing ab initio calculations for the intermolecular potentials predict differential cross sections which are not in particularly good agreement with the experimental data.
np elastic scattering analyzing power characteristics at intermediate energies
Abegg, R.; Ahmad, M.; Bandyopadhyay, D.; Birchall, J.; Cairns, E.B.; Chantziantoniou, K.; Coombes, G.H.; Davis, C.A.; Davison, N.E.; Delheij, P.P.J.; Green, P.W.; Greeniaus, L.G.; Gubler, H.P.; Healey, D.C.; Lapointe, C.; Lee, W.P.; McDonald, W.J.; Miller, C.A.; Moss, G.A.; Page, S.A.; Plattner, G.R.; Poffenberger, P.R.; Ramsay, W.D.; Rodning, N.L.; Roy, G.; Soukup, J.; Svenne, J.P.; Tkachuk, R.R.; van Oers, W.T.H.; Wait, G.D.; Watson, J.W.; Ye, Y.; Zhang, Y.P. University of Manitoba, Department of Physics, Winnipeg, Manitoba, Canada R3T 2N2 University of Alberta, Department of Physics, Edmonton, Alberta, Canada T6G 2N5 University of Basel, Institute of Physics, CH-4000 Basel, Switzerland Kent State University, Department of Physics, Kent, Ohio 44242)
1989-11-01
Recent measurements of charge symmetry breaking in the {ital np} system at 477 MeV, and of {ital A}{sub 00{ital nn}} for {ital np} elastic scattering at 220, 325, and 425 MeV also yield accurate analyzing power data. These data allow the energy dependence of the analyzing power zero-crossing angle and the slope of the analyzing power at the zero-crossing angle to be determined. The incident neutron energies span a region where the zero-crossing angle is strongly energy dependent ({ital E}{sub {ital n}}{lt}250 MeV) to where it is almost independent of energy ({ital E}{sub {ital n}}{gt}350 MeV). The results are compared to current phase-shift analysis predictions, recently published data, and the predictions of the Bonn and Paris potentials.
Energy in elastic fiber embedded in elastic matrix containing incident SH wave
NASA Technical Reports Server (NTRS)
Williams, James H., Jr.; Nagem, Raymond J.
1989-01-01
A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.
Double folding cluster potential for {sup 12}C+{sup 12}C elastic scattering
Hassanain, M. A.; Ibraheem, Awad A.; Farid, M. El-Azab
2008-03-15
Using the alpha ({alpha})-cluster structure of {sup 12}C nucleus, two versions of the {sup 12}C+{sup 12}C real double folded optical potentials have been generated based upon effective {alpha}-{alpha},{alpha}-nucleon (N) and N-N interactions. The obtained potentials, in conjunction with shallow phenomenological Woods-Saxon imaginary parts, successfully reproduce the elastic scattering differential cross section for 12 sets of data over the broad energy range 70-360 MeV. No renormalization of the real folded potentials is required to fit the data. The energy dependence of the extracted real and imaginary volume integrals and total reaction cross section is investigated.
Virtual coupling potential for elastic scattering of 10,11Be on proton and carbon targets
NASA Astrophysics Data System (ADS)
Lapoux, V.; Alamanos, N.; Auger, F.; Blumenfeld, Y.; Casandjian, J.-M.; Chartier, M.; Cortina-Gil, M. D.; Fékou-Youmbi, V.; Gillibert, A.; Cormick, M. Mac; Maréchal, F.; Marie, F.; Mittig, W.; de Oliveira Santos, F.; Orr, N. A.; Ostrowski, A. N.; Ottini-Hustache, S.; Roussel-Chomaz, P.; Scarpaci, J.-A.; Sida, J.-L.; Suomijärvi, T.; Winfield, J. S.
2008-01-01
The 10,11Be(p, p) and (12C, 12C) reactions were analyzed to determine the influence of the weak binding energies of exotic nuclei on their interaction potential. The elastic cross sections were measured at GANIL in inverse kinematics using radioactive 10,11Be beams produced at energies of 39.1A and 38.4 A MeV. The elastic proton scattering data were analyzed within the framework of the microscopic Jeukenne-Lejeune-Mahaux (JLM) nucleon-nucleus potential. The angular distributions are found to be best reproduced by reducing the real part of the microscopic optical potential, as a consequence of the coupling to the continuum. These effects modify deeply the elastic potential. Including the Virtual Coupling Potential (VCP), we show the ability of the general optical potentials to reproduce the data for scattering of unstable nuclei, using realistic densities. Finally, the concepts needed to develop a more general and microscopic approach of the VCP are discussed.
Low energy electron elastic reflection from solid surfaces
NASA Astrophysics Data System (ADS)
Starý, Vladimír.; Zemek, Josef
2004-09-01
Using our Monte-Carlo (MC) code, we calculated the ratio of the coefficients of elastic reflection of electrons from Si, SiO 2 and Au to those of Cu and Al in the electron energy range 0.2-1.0 and 1.5 keV (Au-Cu), respectively. The electron scattering was simulated by a single scattering model. For the MC calculations, we compared the elastic differential cross-sections calculated using a static field approximation with relativistic partial wave analysis on either the Thomas-Fermi-Dirac potential of free atoms (TFD model) or the Hartree-Fock-Wigner-Seitz (muffin-tin) potential of atoms in the solid state (HFWS model). The MC data were compared with the experimental values. For both models, reasonably good agreement for Si-Cu and SiO 2-Cu systems was found. In the Au-Cu system, better agreement was achieved using the TFD model. The addition of C in a surface interaction layer of 2-5 nm improves the agreement between simulated and experimental values for the Si-Al and Si-SiO 2 systems.
Low energy elastic electron scattering from CF3Br molecules.
Hargreaves, L R; Brunton, J R; Maddern, T M; Brunger, M J
2015-03-28
CF3Br is a potentially valuable precursor molecule for generating beams of gas phase Br radicals suitable for electron collisions studies. However, the utility of CF3Br for this purpose depends critically on the availability of sound scattering cross sections to allow the contribution of the precursor to be isolated within the total scattering signal. To this end, here we present elastic differential cross section (DCS) measurements for CF3Br at incident energies between 15 and 50 eV. Comparison of these DCSs to those from the only other available experimental study [Sunohara et al., J. Phys. B: At., Mol. Opt. Phys. 36, 1843 (2003)] and a Schwinger multichannel with pseudo potentials (SMCPPs) calculation [Bettega et al., J. Phys. B: At., Mol. Opt. Phys. 36, 1263 (2003)] shows generally a very good accord. Integral elastic and momentum transfer cross sections, derived from our DCSs, are also found to be in quite good agreement with the SMCPP results. PMID:25833582
Measuring liquid crystal elastic constants with free energy perturbations.
Joshi, Abhijeet A; Whitmer, Jonathan K; Guzmán, Orlando; Abbott, Nicholas L; de Pablo, Juan J
2014-02-14
A first principles method is proposed to calculate the Frank elastic constants of nematic liquid crystals. These include the constants corresponding to standard splay, twist and bend deformations, and an often-ignored surface-like contribution known as saddle-splay. The proposed approach is implemented on the widely studied Gay-Berne (3, 5, 2, 1) model [J. G. Gay and B. J. Berne, J. Chem. Phys., 1981, 74, 3316], and the effects of temperature and system size on the elastic constants are examined in the nematic phase. The results of simulations for splay, twist, and bend elastic constants are consistent with those from previous literature reports. The method is subsequently applied to the saddle-splay elastic constant k24 which is found to exist at the limits of the Ericksen inequalities governing positive definite free energy. Finally, extensions of the method are discussed that present a new paradigm for in silico measurements of elastic constants. PMID:24837037
Elastic Hadron Scattering on Li Isotopes at Intermediate Energies
Zhusupov, M.A.; Imambekov, O.; Ibraeva, E.T.
2005-01-01
The elastic scattering of hadrons (protons, charged pions, and positively charged kaons) on {sup 6,7,8}Li nuclei is analyzed on the basis of Glauber-Sitenko diffraction theory. A few nuclear-wave-function versions found within two- and three-particle potential cluster models are used in the calculations. It is shown that the application of these wave functions in diffraction theory makes it possible to describe adequately the experimental differential cross sections and analyzing powers in hadron scattering at intermediate energies. In this study, particular attention is given to a comparison of the scattering of different particles on the same target nucleus, as well as to a comparison of scattering of particles of the same sort on different target nuclei.
Optimization of directional elastic energy propagation
NASA Astrophysics Data System (ADS)
Andreassen, Erik; Chang, Hannah R.; Ruzzene, Massimo; Jensen, Jakob Søndergaard
2016-09-01
The aim of this paper is to demonstrate how topology optimization can be used to design a periodically perforated plate, in order to obtain a tailored anisotropic group velocity profile. The main method is demonstrated on both low and high frequency bending wave propagation in an aluminum plate, but is general in the sense that it could be used to design periodic structures with frequency dependent group velocity profiles for any kind of elastic wave propagation. With the proposed method the resulting design is manufacturable. Measurements on an optimized design compare excellently with the numerical results.
Interference effect in elastic parton energy loss in a finitemedium
Wang, Xin-Nian
2005-04-18
Similar to the radiative parton energy loss due to gluonbremsstrahlung, elastic energy loss of a parton undergoing multiplescattering in a finite medium is demonstrated to be sensitive tointerference effect. The interference between amplitudes of elasticscattering via a gluon exchange and that of gluon radiation reduces theeffective elastic energy loss in a finite medium and gives rise to anon-trivial length dependence. The reduction is most significant for apropagation length L<4/\\pi T in a medium with a temperature T. Thoughthe finite size effect is not significant for the average partonpropagation in the most central heavy-ion collisions, it will affect thecentrality dependence of its effect on jet quenching.
Calculations of {sup 8}He+p elastic cross sections using a microscopic optical potential
Lukyanov, V. K.; Zemlyanaya, E. V.; Lukyanov, K. V.; Kadrev, D. N.; Antonov, A. N.; Gaidarov, M. K.; Massen, S. E.
2009-08-15
An approach to calculate microscopic optical potential with the real part obtained by a folding procedure and with the imaginary part inherent in the high-energy approximation is applied to study the {sup 8}He+p elastic-scattering data at energies of tens of MeV/nucleon. The neutron and proton density distributions obtained in different models for {sup 8}He are used in the calculations of the differential cross sections. The role of the spin-orbit potential is studied. Comparison of the calculations with the available experimental data on the elastic-scattering differential cross sections at beam energies of 15.7, 26.25, 32, 66, and 73 MeV/nucleon is performed. The problem of the ambiguities of the depths of each component of the optical potential is considered by means of the imposed physical criterion related to the known behavior of the volume integrals as functions of the incident energy. It is shown also that the role of the surface absorption is rather important, in particular for the lowest incident energies (e.g., 15.7 and 26.25 MeV/nucleon)
High energy parton-parton elastic scattering in QCD
Tang, W.K.
1993-08-01
We show that the high energy limit of quark-quark, or gluon-gluon, elastic scattering is calculable in terms of the BFKL pomeron when {minus}t {much_gt} {Lambda}{sub QCD}{sup 2}. Surprisingly, this on-shell amplitudes does not have infrared divergences in the high energy limit.
Quasi-elastic nuclear scattering at high energies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1992-01-01
The quasi-elastic scattering of two nuclei is considered in the high-energy optical model. Energy loss and momentum transfer spectra for projectile ions are evaluated in terms of an inelastic multiple-scattering series corresponding to multiple knockout of target nucleons. The leading-order correction to the coherent projectile approximation is evaluated. Calculations are compared with experiments.
Allred, Clark L.; Yuan Xianglong; Hobbs, Linn W.; Bazant, Martin Z.
2004-10-01
The elastic constants of a wide range of models of defected crystalline and amorphous silicon are calculated, using the environment-dependent interatomic potential (EDIP). The defected crystalline simulation cells contain randomly generated defect distributions. An extensive characterization of point defects is performed, including structure, energy and influence on elastic constants. Three important conclusions are drawn. (1) Defects have independent effects on the elastic constants of silicon up to (at least) a defect concentration of 0.3%. (2) The linear effect of Frenkel pairs on the <110> Young's modulus of silicon is -1653 GPa per defect fraction. (3) 17 different point defect types cause a very similar decrease in the <110> Young's modulus: -(0.28{+-}0.05)% when calculated in isolation using a 1728-atom cell. These principles will be very useful for predicting the effect of radiation damage on the elastic modulus of silicon in the typical case in which point-defect concentrations can be estimated, but the exact distribution and species of defects is unknown. We also study amorphous samples generated in quenching the liquid with EDIP, including an ideal structure of perfect fourfold coordination, samples with threefold and fivefold coordinated defects, one with a nanovoid, and one with an amorphous inclusion in a crystalline matrix. In the last case, a useful finding is that the change in the Young's modulus is simply related to the volume fraction of amorphous material, as has also been observed by experiment.
Intermediate energy proton-deuteron elastic scattering
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1973-01-01
A fully symmetrized multiple scattering series is considered for the description of proton-deuteron elastic scattering. An off-shell continuation of the experimentally known twobody amplitudes that retains the exchange symmeteries required for the calculation is presented. The one boson exchange terms of the two body amplitudes are evaluated exactly in this off-shell prescription. The first two terms of the multiple scattering series are calculated explicitly whereas multiple scattering effects are obtained as minimum variance estimates from the 146-MeV data of Postma and Wilson. The multiple scattering corrections indeed consist of low order partial waves as suggested by Sloan based on model studies with separable interactions. The Hamada-Johnston wave function is shown consistent with the data for internucleon distances greater than about 0.84 fm.
A Microscopic Optical Potential Approach to {sup 6,8}He+p Elastic Scattering
Lukyanov, V. K.; Zemlyanaya, E. V.; Lukyanov, K. V.; Kadrev, D. N.; Antonov, A. N.; Gaidarov, M. K.; Massen, S. E.
2009-08-26
A microscopic approach to calculate the optical potential (OP) with the real part obtained by a folding procedure and with the imaginary part inherent in the high-energy approximation (HEA) is applied to study the {sup 6,8}He+p elastic scattering data at energies of tens of MeV/N. The OP's and the cross sections are calculated using different models for the neutron and proton densities of {sup 6,8}He. The role of the spin-orbit (SO) potential and effects of the energy and density dependence of the effective NN forces are studied. Comparison of the calculations with the available experimental data on the elastic scattering differential cross sections at beam energies <100 MeV/N is performed and conclusions on the role of the aforesaid effects are made. It is shown that the present approach, which uses only parameters that renormalize the depths of the OP, can be applied along with other methods like that from the microscopic g-matrix description of the complex proton optical potential.
Becker, Nils B.; Wolff, Lars; Everaers, Ralf
2006-01-01
Essential biological processes require that proteins bind to a set of specific DNA sites with tuned relative affinities. We focus on the indirect readout mechanism and discuss its theoretical description in relation to the present understanding of DNA elasticity on the rigid base pair level. Combining existing parametrizations of elastic potentials for DNA, we derive elastic free energies directly related to competitive binding experiments, and propose a computationally inexpensive local marker for elastically optimized subsequences in protein–DNA co-crystals. We test our approach in an application to the bacteriophage 434 repressor. In agreement with known results we find that indirect readout dominates at the central, non-contacted bases of the binding site. Elastic optimization involves all deformation modes and is mainly due to the adapted equilibrium structure of the operator, while sequence-dependent elasticity plays a minor role. These qualitative observations are robust with respect to current parametrization uncertainties. Predictions for relative affinities mediated by indirect readout depend sensitively on the chosen parametrization. Their quantitative comparison with experimental data allows for a critical evaluation of DNA elastic potentials and of the correspondence between crystal and solution structures. The software written for the presented analysis is included as Supplementary Data. PMID:17038333
NASA Astrophysics Data System (ADS)
Jablonski, A.; Salvat, F.; Powell, C. J.
2004-06-01
We have analyzed differential cross sections (DCSs) for the elastic scattering of electrons by neutral atoms that have been derived from two commonly used atomic potentials: the Thomas-Fermi-Dirac (TFD) potential and the Dirac-Hartree-Fock (DHF) potential. DCSs from the latter potential are believed to be more accurate. We compared DCSs for six atoms (H, Al, Ni, Ag, Au, and Cm) at four energies (100, 500, 1000, and 10 000 eV) from two databases issued by the National Institute of Standards and Technology in which DCSs had been obtained from the TFD and DHF potentials. While the DCSs from the two potentials had similar shapes and magnitudes, there can be pronounced deviations (up to 70%) for small scattering angles for Al, Ag, Au, and Cm. In addition, there were differences of up to 400% at scattering angles for which there were deep minima in the DCSs; at other angles, the differences were typically less than 20%. The DCS differences decreased with increasing electron energy. DCSs calculated from the two potentials were compared with measured DCSs for six atoms (He, Ne, Ar, Kr, Xe, and Hg) at energies between 50 eV and 3 keV. For Ar, the atom for which experimental data are available over the largest energy range there is good agreement between the measured DCSs and those calculated from the TFD and DHF potentials at 2 and 3 keV, but the experimental DCSs agree better with the DCSs from the DHF potential at lower energies. A similar trend is found for the other atoms. At energies less than about 1 keV, there are increasing differences between the measured DCSs and the DCSs calculated from the DHF potential. These differences were attributed to the neglect of absorption and polarizability effects in the calculations. We compare transport cross sections for H, Al, Ni, Ag, Au, and Cm obtained from the DCSs for each potential. For energies between 200 eV and 1 keV, the largest differences are about 20% (for H, Au, and Cm); at higher energies, the differences are
Elastic scattering of electrons from CO2 in the intermediate energy range
NASA Astrophysics Data System (ADS)
Iga, I.; Nogueira, J. C.; Mu-Tao, L.
1984-03-01
Ratios of elastic differential cross sections of CO2 to those of N2 have been measured at electron impact energies of 500, 800 and 1000 eV in the angular range of 5 deg to 120 deg, using a crossed electron-beam-molecular-beam geometry and the relative flow technique. These ratios have been multiplied by previously known N2 elastic differential cross sections to obtain elastic differential cross sections for CO2. At 500 eV, experimental results agree quite well with the absolute values of Bromberg (1974). Comparison has also been made with the theoretical results obtained in the renormalized multicenter potential model approach of Botelho et al. (1983) and shows an agreement within 20 percent in the entire angular range. The elastic integral and momentum transfer cross sections have also been determined from the differential cross sections.
High precision elastic α scattering on the even-odd 115In nucleus at low energies
NASA Astrophysics Data System (ADS)
Kiss, G. G.; Szücs, T.; Mohr, P.; Fülöp, Zs; Gyürky, Gy; Halász, Z.; Soha, R. F.; Somorjai, E.; Ornelas, A.; Galaviz, D.; Yalçın, C.; Güray, R. T.; Özkan, N.
2016-01-01
Elastic alpha scattering cross sections on the even-odd 115In nucleus have been measured at energies Elab. = 16.15 MeV and 19.50 MeV. The high precision experimental data are used to derive the parameters of a local a nucleus optical potential.
Energy distribution in disordered elastic networks
NASA Astrophysics Data System (ADS)
Plaza, Gustavo R.
2010-09-01
Disordered networks are found in many natural and artificial materials, from gels or cytoskeletal structures to metallic foams or bones. Here, the energy distribution in this type of networks is modeled, taking into account the orientation of the struts. A correlation between the orientation and the energy per unit volume is found and described as a function of the connectivity in the network and the relative bending stiffness of the struts. If one or both parameters have relatively large values, the struts aligned in the loading direction present the highest values of energy. On the contrary, if these have relatively small values, the highest values of energy can be reached in the struts oriented transversally. This result allows explaining in a simple way remodeling processes in biological materials, for example, the remodeling of trabecular bone and the reorganization in the cytoskeleton. Additionally, the correlation between the orientation, the affinity, and the bending-stretching ratio in the network is discussed.
Measurements of radiated elastic wave energy from dynamic tensile cracks
NASA Technical Reports Server (NTRS)
Boler, Frances M.
1990-01-01
The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.
Singular path-independent energy integrals for elastic bodies with thin elastic inclusions
NASA Astrophysics Data System (ADS)
Shcherbakov, V. V.
2016-06-01
An equilibrium problem for a two-dimensional homogeneous linear elastic body containing a thin elastic inclusion and an interfacial crack is considered. The thin inclusion is modeled within the framework of Euler-Bernoulli beam theory. An explicit formula for the first derivative of the energy functional with respect to the crack perturbation along the interface is presented. It is shown that the formulas for the derivative associated with translation and self-similar expansion of the crack are represented as path-independent integrals along smooth contour surrounding one or both crack tips. These path-independent integrals consist of regular and singular terms and are analogs of the well-known Eshelby-Cherepanov-Rice J-integral and Knowles-Sternberg M-integral.
Elastic and total cross sections for simple biomolecules in the intermediate energy range
NASA Astrophysics Data System (ADS)
Gupta, Dhanoj; Naghma, Rahla; Antony, Bobby
2015-09-01
The elastic and total cross sections for formaldehyde, acetaldehyde, acetone, 2-butanone and formamide are calculated using the spherical complex optical potential formalism in the intermediate energy range from 50 eV to 10 keV. These cross sections find application to various fields like radiation damage and biological sciences. The present results are compared with the available experimental and theoretical data and are found to give excellent agreement. The elastic cross sections reported for most of the targets in the present energy range are done for the first time. The energy dependence of the contribution of ionization and elastic cross section with respect to the total cross section and the correlation of total cross section with polarizability of the molecules are also studied.
Elastic and total cross sections for simple biomolecules in the intermediate energy range
Gupta, Dhanoj; Naghma, Rahla; Antony, Bobby
2015-09-15
The elastic and total cross sections for formaldehyde, acetaldehyde, acetone, 2-butanone and formamide are calculated using the spherical complex optical potential formalism in the intermediate energy range from 50 eV to 10 keV. These cross sections find application to various fields like radiation damage and biological sciences. The present results are compared with the available experimental and theoretical data and are found to give excellent agreement. The elastic cross sections reported for most of the targets in the present energy range are done for the first time. The energy dependence of the contribution of ionization and elastic cross section with respect to the total cross section and the correlation of total cross section with polarizability of the molecules are also studied.
Gravitational potential as a source of earthquake energy
Barrows, L.; Langer, C.J.
1981-01-01
Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this "gravitational tectonics stress" must have formerly existed as gravitational potential energy contained in the stress-causing density structure. According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event. An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip. ?? 1981.
Elastic positron-cadmium scattering at low energies
Bromley, M. W. J.; Mitroy, J.
2010-05-15
The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.
Elastic energy of proteins and the stages of protein folding
NASA Astrophysics Data System (ADS)
Lei, J.; Huang, K.
2009-12-01
We propose a universal elastic energy for proteins, which depends only on the radius of gyration Rg and the residue number N. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The elastic energy gives rise to scaling relations of the form Rg~Nν in different regions. It shows three folding stages characterized by the progression with exponents ν=3/5, 3/7, 2/5, which we identify as the unfolded stage, pre-globule, and molten globule, respectively. The pre-globule goes over to the molten globule via a break in behavior akin to a first-order phase transition, which is initiated by a sudden acceleration of hydrogen bonding.
Low-Energy Elastic Electron Scattering by Atomic Oxygen
NASA Technical Reports Server (NTRS)
Zatsarinny O.; Bartschat, K.; Tayal, S. S.
2006-01-01
The B-spline R-matrix method is employed to investigate the low-energy elastic electron scattering by atomic oxygen. Flexible non-orthogonal sets of radial functions are used to construct the target description and to represent the scattering functions. A detailed investigation regarding the dependence of the predicted partial and total cross sections on the scattering model and the accuracy of the target description is presented. The predicted angle-integrated elastic cross sections are in good agreement with experiment, whereas significant discrepancies are found in the angle-differential elastic cross sections near the forward direction. .The near-threshold results are found to strongly depend on the treatment of inner-core short-range correlation effects in the target description, as well as on a proper account of the target polarizability. A sharp increase in the elastic cross sections below 1 eV found in some earlier calculations is judged to be an artifact of an unbalanced description of correlation in the N-electron target structure and the (N+l)-electron-collision problems.
Low-Energy Electron Elastic Cross Sections for Lanthanide Atoms
NASA Astrophysics Data System (ADS)
Felfli, Z.; Msezane, A. Z.; Sokolovski, D.
2009-05-01
Dramatically sharp resonances characterize the near-threshold electron elastic scattering total cross sections for the lanthanide atoms, whose energy positions are identified with the binding energies (BEs) of the negative ions formed during the collisions as Regge resonances. The recently developed Regge-pole methodology which naturally embodies the crucial electron correlation effects together with a Thomas-Fermi type potential incorporating the vital core-polarization interaction are used for the calculations[1]. The extracted BEs of the lanthanide negative ions vary from 0.016 eV for Tm^- to 0.631 eV for Pr^-. All the negative ions of the lanthanides can be classified as weakly bound (BEs < 1.0 eV), while only three are tenuously bound (BEs < 0.1 eV) [2]. Ramsauer-Townsend minima, shape resonances and the Wigner threshold behavior for these lanthanides are also determined. Extracted EAs for La and the open d- and f- sub-shell Ce atoms agree excellently with the measured data [3, 4] while for Nd and Eu the agreement with calculated values [5] is outstanding. [1] D. Sokolovski et al, Phys. Rev. A76, 012705 (2007) [2] Z. Felfli et al, Phys. Rev. A 79, At Press (2009) [3] A. M. Covington et al, J. Phys. B 31, L855 (1998) [4] C.W. Walter et al, Phys. Rev. A 76, 052702 (2007) [5] S.M. O'Malley and D.R. Beck, Phys. Rev. A78, 012510 (2008) Supported by U.S. DOE, Division of Chemical Sciences.
Energy distribution of elastically scattered electrons from double layer samples
NASA Astrophysics Data System (ADS)
Tőkési, K.; Varga, D.
2016-02-01
We present a theoretical description of the spectra of electrons elastically scattered from thin double layered Au-C samples. The analysis is based on the Monte Carlo simulation of the recoil and Doppler effects in reflection and transmission geometries of the scattering at a fixed angle of 44.3 ° and a primary energy of 40 keV. The relativistic correction is taken into account. Besides the experimentally measurable energy distributions the simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). Furthermore, we present detailed analytical calculations for the main parameters of the single scattering, taking into account both the ideal scattering geometry, i.e. infinitesimally small angular range, and the effect of the real, finite angular range used in the measurements. We show our results for intensity ratios, peak shifts and broadenings for four cases of measurement geometries and layer thicknesses. While in the peak intensity ratios of gold and carbon for transmission geometries were found to be in good agreement with the results of the single scattering model, especially large deviations were obtained in reflection geometries. The separation of the peaks, depending on the geometry and the thickness, generally smaller, and the peak width generally larger than it can be expected from the nominal values of the primary energy, scattering angle, and mean kinetic energy of the atoms. We also show that the peaks are asymmetric even for the case of the single scattering due to the finite solid angle. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with recent measurements.
Ahmad, I.; Alvi, M.A.
1983-12-01
We propose a semiphenomenological method of analysis for intermediate energy ..cap alpha..-nucleus elastic scattering experiments and demonstrate its usefulness by analyzing available elastic ..cap alpha..-nucleus scattering data at 1.37 GeV.
Breakup and Elastic Scattering in the {sup 9}Be + {sup 144}Sm system at near barrier energies
Paes, B.; Garcia, V. N.; Lubian, J.; Gomes, P. R. S.; Padron, I.
2010-05-21
Breakup and elastic scattering in the Be + {sup 144}Sm system, at near barrier energies, are investigated. We calculate theoretically the non-capture breakup cross section by performing coupled reaction channel calculations. The energy dependence of the optical potential does not show the usual threshold anomaly found in tightly bound systems.
Nonperturbative QCD and elastic processes at CEBAF energies
Radyushkin, A.V. |
1994-04-01
The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.
Elastic proton-deuteron scattering at intermediate energies
Ramazani-Moghaddam-Arani, A.; Amir-Ahmadi, H. R.; Biegun, A.; Eslami-Kalantari, M.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Mardanpour, H.; Messchendorp, J. G.; Moeini, H.; Shende, S. V.; Bacher, A. D.; Bailey, C. D.; Stephenson, E. J.; Gasparic, I.; Kistryn, St.; Sworst, R.; Kozela, A.; Micherdzinska, A. M.; Stephan, E.
2008-07-15
Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental database for this reaction is large, but contains a large discrepancy between data sets for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This article reviews the background of this problem and presents new data taken at Kernfysisch Versneller Instituute (KVI). Differential cross sections and analyzing powers for the {sup 2}H(p-vector,d)p and {sup 1}H(d-vector,d)p reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The differential cross-section data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.
Elastic scattering of low-energy electrons from toluene
NASA Astrophysics Data System (ADS)
Sakaamini, Ahmad; Hargreaves, L. R.; Khakoo, M. A.; Pastega, D. F.; Bettega, M. H. F.
2016-04-01
Theoretical and normalized experimental differential, momentum transfer, and integral cross sections for vibrationally elastic scattering of low-energy electrons from toluene (C6H5C H3 ) are presented. The differential cross sections are measured at incident energies from 1 to 20 eV and scattering angles from 15° to 130°. The calculated cross sections are obtained using the Schwinger multichannel method with pseudopotentials in the static-exchange plus polarization approximation. Comparisons are made between the present theory and measurements with earlier available measurements. In general, the agreement between the theory and the experiment is very good. We also discuss the resonance spectra of toluene, where we find three π* shape resonances whose locations agree well with the experiment. In addition, we compare the cross sections of toluene and benzene, since the former can be considered as a benzene derivative by the substitution of a hydrogen in benzene by a C H3 group in toluene.
NASA Astrophysics Data System (ADS)
Yu, N.; Zhang, H. Q.; Jia, H. M.; Zhang, S. T.; Ruan, M.; Yang, F.; Wu, Z. D.; Xu, X. X.; Bai, C. L.
2010-07-01
The elastic scattering angular distributions of the weakly bound 9Be projectile from 208Pb and 209Bi have been measured for 14 beam energies near the threshold from 37 to 50 MeV. The parameters of the optical potential are extracted by means of phenomenological optical model analysis with PTOLEMY. Both of the systems show unusual potential behavior in the vicinity of the Coulomb barrier that the strength of the imaginary (absorptive) part of the potential is increasing (rather than decreasing) with decreasing energy, which is quite different from the results of some previous reports. This unusual threshold phenomenon indicates that the breakup channel is strongly coupled with the elastic channel and has obvious effects on the optical potential. The analyses also show that high precision elastic scattering angular distributions, especially those below the Coulomb barrier, are very important for extracting correct threshold behavior of the optical potential.
NASA Astrophysics Data System (ADS)
Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen
2016-06-01
Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered as the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C11, C12, and C44, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.
Elastic scattering of {sup 9}Li on {sup 208}Pb at energies around the Coulomb barrier
Cubero, M.; Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Lay, J. A.; Moro, A. M.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Alcorta, M.; Borge, M. J. G.; Tengblad, O.; Buchmann, L.; Shotter, A.; Walden, P.; Diget, D. G.; Fulton, B.; Fynbo, H. O. U.; Galaviz, D.; Gomez-Camacho, J.; Mukha, I.
2011-10-28
We have studied the dynamical effects of the halo structure of {sup 11}Li on the scattering on heavy targets at energies around the Coulomb barrier. This experiment was performed at ISAC-II at TRIUMF with a world record in production of the post-accelerated {sup 11}Li beam. As part of this study we report here on the first measurement of the elastic cross section of the core nucleus, i.e. {sup 9}Li on {sup 208}Pb, at energies around the Coulomb barrier. A preliminary optical model analysis has been performed in order to extract a global optical potential to describe the measured angular distributions.
Low-energy elastic electron scattering from furan
Khakoo, M. A.; Muse, J.; Ralphs, K.; Costa, R. F.; Bettega, M. H. F.; Lima, M. A. P.
2010-06-15
We report normalized experimental and theoretical differential cross sections for elastic electron scattering by C{sub 4}H{sub 4}O (furan) molecules from a collaborative project between several Brazilian theoretical groups and an experimental group at California State Fullerton, USA. The measurements are obtained by using the relative flow method with helium as the standard gas and a thin aperture target gas collimating source. The relative flow method is applied without the restriction imposed by the relative flow pressure condition on helium and the unknown gas. The experimental data were taken at incident electron energies of 1, 1.5, 1.73, 2, 2.7, 3, 5, 7, 10, 20, 30, and 50 eV and covered the angular range between 10 deg. and 130 deg. The measurements verify observed {pi}* shape resonances at 1.65{+-}0.05eV and 3.10{+-}0.05 eV scattering energies, in good agreement with the transmission electron data of Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004)]. Furthermore, the present results also indicated both resonances dominantly in the d-wave channel. The differential cross sections are integrated in the standard way to obtain integral elastic cross sections and momentum transfer cross sections. The calculations employed the Schwinger multichannel method with pseudopotentials and were performed in the static-exchange and in the static-exchange plus polarization approximations. The calculated integral and momentum transfer cross sections clearly revealed the presence of two shape resonances located at 1.95 and 3.56 eV and ascribed to the B{sub 1} and A{sub 2} symmetries of the C{sub 2v} point group, respectively, in very good agreement with the experimental findings. Overall agreement between theory and experiment regarding the differential, momentum transfer, and integral cross sections is very good, especially for energies below 10 eV.
NASA Astrophysics Data System (ADS)
Ziegenhain, Gerolf; Hartmaier, Alexander; Urbassek, Herbert M.
2009-09-01
Molecular-dynamics simulation can give atomistic information on the processes occurring in nanoindentation experiments. In particular, the nucleation of dislocation loops, their growth, interaction and motion can be studied. We investigate how realistic the interatomic potentials underlying the simulations have to be in order to describe these complex processes. Specifically we investigate nanoindentation into a Cu single crystal. We compare simulations based on a realistic many-body interaction potential of the embedded-atom-method type with two simple pair potentials, a Lennard-Jones and a Morse potential. We find that qualitatively many aspects of nanoindentation are fairly well reproduced by the simple pair potentials: elastic regime, critical stress and indentation depth for yielding, dependence on the crystal orientation, and even the level of the hardness. The quantitative deficits of the pair potential predictions can be traced back: (i) to the fact that the pair potentials are unable in principle to model the elastic anisotropy of cubic crystals and (ii) as the major drawback of pair potentials we identify the gross underestimation of the stable stacking fault energy. As a consequence these potentials predict the formation of too large dislocation loops, the too rapid expansion of partials, too little cross slip and in consequence a severe overestimation of work hardening.
Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies
Bisplinghoff, J.; Daniel, R.; Diehl, O.; Engelhardt, H.; Ernst, J.; Eversheim, P.; Gro-Hardt, R.; Heider, S.; Heine, A.; Hinterberger, F.; Jahn, R.; Jeske, M.; Lahr, U.; Maschuw, R.; Mayer-Kuckuk, T.; Mosel, F.; Rohdje, H.; Rosendaal, D.; Ro, U.; Scheid, H.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Trelle, H.; Wiedmann, W.; Ziegler, R.; Albers, D.; Bollmann, R.; Bueer, K.; Dohrmann, F.; Gasthuber, M.; Greiff, J.; Gro, A.; Igelbrink, M.; Langkau, R.; Lindlein, J.; Mueller, M.; Muenstermann, M.; Schirm, N.; Scobel, W.; Wellinghausen, A.; Woller, K.; Cloth, P.; Gebel, R.; Maier, R.; Prasuhn, D.; von Rossen, P.; Sterzenbach, G.
1997-03-01
Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta p{sub p} (energies T{sub p}) from 1100 to 3300MeV/c (500 to 2500MeV) in the angular range 35{degree}{le}{Theta}{sub c.m.}{le}90{degree} with a detector providing {Delta}{Theta}{sub c.m.}{approx}1.4{degree} resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH{sub 2} fiber target, taking particular care to monitor luminosity as a function of T{sub p}. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found. {copyright} {ital 1997} {ital The American Physical Society}
Effect of Surface Elasticity on the Piezoelectric Potential of a Bent ZnO Nanowire
NASA Astrophysics Data System (ADS)
Yao, Haiyan; Yun, Guohong; Bai, Narsu; Li, Jiangang
2012-07-01
The influence of surface elasticity on the piezoelectric potential distribution of a deformed ZnO nanowire is investigated by the effective Young's modulus based upon elastic and piezoelectric theory. When the nanowire in radius 25 nm subjects to an lateral applied force 5 nN, the maximum piezoelectric potential of the nanowire we derived is about 13.8 mV, which approaches much more closely to the experiment measurement value (˜10 mV) [Z. L. Wang and J. H. Song: Science 312 (2006) 242]. Moreover, a comprehensive analysis of maximum piezoelectric potential between the cases with and without the effect of surface elasticity is analyzed. The results show that the values of piezoelectric potential generated in ZnO nanowires are decreased due to the surface stiffening. From the theoretical analysis, the effect of surface elasticity has a significant impact on the piezoelectric potential for a bent ZnO nanowire, actually it reduces the gap between theoretical estimation and experiment measurements.
Mukherjee, A.; Hinde, D. J.; Dasgupta, M.; Newton, J. O.; Butt, R. D.; Hagino, K.
2007-04-15
A precise fusion excitation function has been measured for the {sup 12}C+{sup 208}Pb reaction at energies around the barrier, allowing the fusion barrier distribution to be extracted. The fusion cross sections at high energies differ significantly from existing fusion data. Coupled reaction channels calculations have been carried out with the code FRESCO. A bare potential previously claimed to uniquely describe a wide range of {sup 12}C+{sup 208}Pb near-barrier reaction channels failed to reproduce the new fusion data. The nuclear potential diffuseness of 0.95 fm which fits the fusion excitation function over a broad energy range fails to reproduce the elastic scattering. A diffuseness of 0.55 fm reproduces the fusion barrier distribution and elastic scattering data, but significantly overpredicts the fusion cross sections at high energies. This may be due to physical processes not included in the calculations. To constrain calculations, it is desirable to have precisely measured fusion cross sections, especially at energies around the barrier.
Rotationally elastic total cross sections for NH3 on electron impact over a wide energy range
NASA Astrophysics Data System (ADS)
Vinodkumar, Minaxi; Limbachiya, Chetan; Antony, Bobby
2011-10-01
Electron molecule collisions are important over incident energy from very low (0.01 eV) to intermediate and high energies (10 keV). We present rotationally elastic total cross sections for electron scattering for NH3 from 0.01 eV to 2 keV using two different theoretical formalisms. We use Quantemol-N formalism for calculating total cross sections up to threshold of the target and the Spherical Optical Complex Potential (SCOP) method for calculating total cross sections beyond threshold up to 2 keV. Electron molecule collisions are important over incident energy from very low (0.01 eV) to intermediate and high energies (10 keV). We present rotationally elastic total cross sections for electron scattering for NH3 from 0.01 eV to 2 keV using two different theoretical formalisms. We use Quantemol-N formalism for calculating total cross sections up to threshold of the target and the Spherical Optical Complex Potential (SCOP) method for calculating total cross sections beyond threshold up to 2 keV. MVK and BA thank DST, CGL thanks UGC new Delhi.
Alaska's renewable energy potential.
Not Available
2009-02-01
This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.
Scattering with absorptive interaction: Energy-dependent potentials
NASA Astrophysics Data System (ADS)
Cassing, W.; Stingl, M.; Weiguny, A.
1983-05-01
The energy dependence and analytic structure of the effective interaction for elastic scattering of composite particles are investigated using Feshbach's projection technique. A generalized Levinson theorem is established for complex, nonlocal, and energy-dependent interactions. The analytical results are illustrated by means of Argand diagrams for a solvable model and the effect of energy averaging is discussed. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive, energy-dependent potentials, Levinson theorem.
Elastic energy loss and longitudinal straggling of a hard jet
Majumder, A.
2009-09-15
The elastic energy loss encountered by jets produced in deep-inelastic scattering (DIS) off a large nucleus is studied in the collinear limit. In close analogy to the case of (nonradiative) transverse momentum broadening, which is dependent on the medium transport coefficient q, a class of medium enhanced higher twist operators which contribute to the nonradiative loss of the forward light-cone momentum of the jet (q{sup -}) are identified and the leading correction in the limit of asymptotically high q{sup -} is isolated. Based on these operator products, a new transport coefficient e is motivated which quantifies the energy loss per unit length encountered by the hard jet. These operator products are then computed, explicitly, in the case of a similar hard jet traversing a deconfined quark-gluon plasma (QGP) in the hard-thermal-loop (HTL) approximation. This is followed by an evaluation of subleading contributions which are suppressed by the inverse light-cone momentum q{sup -}, which yields the longitudinal 'straggling', i.e., a slight change in light cone momentum due to the Brownian propagation through a medium with a fluctuating color field.
NASA Astrophysics Data System (ADS)
Oh, Ju-Won; Alkhalifah, Tariq
2016-07-01
Multi-parameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multi component sensors, the potential for tradeoff between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22 and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23 and C12 suffer from strong trade-offs with C55, C44 and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.
NASA Astrophysics Data System (ADS)
Oh, Ju-Won; Alkhalifah, Tariq
2016-09-01
Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22, and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23, and C12 suffer from strong trade-offs with C55, C44, and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.
Low-energy electron elastic scattering cross sections for excited Au and Pt atoms
NASA Astrophysics Data System (ADS)
Felfli, Zineb; Eure, Amanda R.; Msezane, Alfred Z.; Sokolovski, Dmitri
2010-05-01
Electron elastic total cross sections (TCSs) and differential cross sections (DCSs) in both impact energy and scattering angle for the excited Au and Pt atoms are calculated in the electron impact energy range 0 ⩽ E ⩽ 4.0 eV. The cross sections are found to be characterized by very sharp long-lived resonances whose positions are identified with the binding energies of the excited anions formed during the collisions. The recent novel Regge-pole methodology wherein is embedded through the Mulholland formula the electron-electron correlations is used together with a Thomas-Fermi type potential incorporating the crucial core-polarization interaction for the calculations of the TCSs. The DCSs are evaluated using a partial wave expansion. The Ramsauer-Townsend minima, the shape resonances and the binding energies of the excited Au - and Pt - anions are extracted from the cross sections, while the critical minima are determined from the DCSs.
NASA Astrophysics Data System (ADS)
Farin, Maxime; Mangeney, Anne; Rosny, Julien de; Toussaint, Renaud; Sainte-Marie, Jacques; Shapiro, Nikolaï M.
2016-02-01
Estimating the energy lost in elastic waves during an impact is an important problem in seismology and in industry. We propose three complementary methods to estimate the elastic energy radiated by bead impacts on thin plates and thick blocks from the generated vibration. The first two methods are based on the direct wave front and are shown to be equivalent. The third method makes use of the diffuse regime. These methods are tested for laboratory experiments of impacts and are shown to give the same results, with error bars of 40 percent and 300 percent for impacts on a smooth plate and on a rough block, respectively. We show that these methods are relevant to establish the energy budget of an impact. On plates of glass and PMMA, the radiated elastic energy increases from 2 percent to almost 100 percent of the total energy lost as the bead diameter approaches the plate thickness. The rest of the lost energy is dissipated by viscoelasticity. For beads larger than the plate thickness, plastic deformation occurs and reduces the amount of energy radiated in the form of elastic waves. On a concrete block, the energy dissipation during the impact is principally inelastic because only 0.2-2 percent of the energy lost by the bead is transported by elastic waves. The radiated elastic energy estimated with the presented methods is quantitatively validated by Hertz's model of elastic impact.
NASA Technical Reports Server (NTRS)
Malu, M.; Tien, J. K.
1975-01-01
The effect of elastic modulus and the temperature dependence of elastic modulus on creep activation energies for an oxide dispersion strengthened nickel-base superalloy are investigated. This superalloy is commercially known as Inconel Alloy MA 753, strengthened both by gamma-prime precipitates and by yttria particles. It is shown that at intermediate temperatures, say below 1500 F, where elastic modulus is weakly dependent on temperature, the modulus correction term to creep activation energy is small. Accordingly, modulus corrections are insignificant for the superalloy considered, which shows high apparent creep activation energies at this temperature. On the contrary, at very high temperatures, the elastic modulus correction term can be significant, thus reducing the creep activation energy to that of vacancy self-diffusion. In order to obtain high-temperature creep resistance, a high-value elastic modulus with a weak dependence on temperature is required.
Phenomenological optical potential analysis of proton-carbon elastic scattering at 200 MeV
NASA Technical Reports Server (NTRS)
Bidasaria, H. B.; Townsend, L. W.
1982-01-01
Differential cross sections for 200 MeV protons elastically scattered from C-12 were analyzed utilizing a local, complex, spin-dependent optical potential with a harmonic well radial dependence. Analyses were performed using the WKB and eikonal approximations. For the latter, first-order corrections to he phase shifts were incorporated to account for the spin-orbit contribution. Large disagreement between theory and experiment was observed when the usual Thomas form for the spin-orbit potential was utilized. Substantial improvement was obtained by allowing the parameters in the central and spin-orbit potential terms to vary independently.
The effect of breakup of 6Li on elastic scattering and fusion with 28Si at near barrier energies
NASA Astrophysics Data System (ADS)
Sinha, Mandira; Roy, Subinit; Basu, P.; Majumdar, H.
2016-01-01
Elastic scattering angular distributions for 6Li+28Si system were measured at Elab = 16, 21MeV and analyzed along with the existing data from the previous measurements in the energy range of Elab = 7.5 - 27MeV. The measured cross-sections and the existing data, forming a set of angular distributions over a range of E/Vb = 0.9 - 3.23, were analyzed using the phenomenological optical model potential (OMP). Three different sets of potential parameters were used. The energy dependence of the real and the imaginary potential strengths were, subsequently, extracted at the radius of sensitivity (Rav) for the system. Continuum Discretized Coupled Channel (CDCC) calculation was performed to explore the contribution of projectile break-up (BU) on the observed energy dependence of the effective potential for elastic scattering of 6Li from 28Si. The energy variation of the strength of the real potential with continuum coupling was found to agree with the energy dependence of the same extracted from the (OMP) analysis at energies around the barrier. But the behavior of the imaginary strength appeared to be different. The calculated fusion cross-sections, including the effect of BU, clearly overestimated the measured fusion excitation function data in the below and near barrier energies but compared well with the data at higher energies.
Biaxial load effects on the crack border elastic strain energy and strain energy rate
NASA Technical Reports Server (NTRS)
Eftis, J.; Subramonian, N.; Liebowitz, H.
1977-01-01
The validity of the singular solution (first term of a series representation) is investigated for the crack tip stress and displacement field in an infinite sheet with a flat line crack with biaxial loads applied to the outer boundaries. It is shown that if one retains the second contribution to the series approximations for stress and displacement in the calculation of the local elastic strain energy density and elastic strain energy rate in the crack border region, both these quantities have significant biaxial load dependency. The value of the J-integral does not depend on the presence of the second term of the series expansion for stress and displacement. Thus J(I) is insensitive to the presence of loads applied parallel to the plane of the crack.
Partial-wave analysis for elastic p{sup 13}C scattering at astrophysical energies
Dubovichenko, S. B.
2012-03-15
A standard partial-wave analysis was performed on the basis of known measurements of differential cross sections for elastic p{sup 13}C scattering at energies in the range 250-750 keV. This analysis revealed that, in the energy range being considered, it is sufficient to take into account the {sup 3}S{sub 1} wave alone. A potential for the triplet {sup 3}S{sub 1}-wave state of the p{sup 13}C system in the region of the J{sup p}T = 1{sup -1} resonance at 0.55 MeV was constructed on the basis of the phase shifts obtained from the aforementioned partial-wave analysis.
Curve crossing for low-energy elastic scattering of He/+/ by Ne.
NASA Technical Reports Server (NTRS)
Bobbio, S. M.; Doverspike, L. D.; Champion, R. L.
1973-01-01
The perturbation seen in the experimental differential elastic-scattering cross section for the 40-eV He/+/ + Ne system has been attributed to a single crossing of two intermolecular potential-energy curves. A new theoretical treatment of the curve-crossing problem, namely, that of Delos and Thorson, is employed to obtain the crossing probabilities and phases associated with the crossing. These are determined by utilizing ab initio potentials involved in the crossing and are further used in a partial-wave calculation of the cross section, which is compared with our experiment. The origin of the oscillatory structure observed in the differential cross section is discussed in semiclassical terms by defining the problem in terms of two pseudo-deflection-functions. A rainbow effect is shown to be related to a particular feature (a maximum rather than a minimum) of these deflection functions.
Parton-parton elastic scattering and rapidity gaps at SSC and LHC energies
Duca, V.D.
1993-08-01
The theory of the perturbative pomeron, due to Lipatov and collaborators, is used to compute the probability of observing parton-parton elastic scattering and rapidity gaps between jets in hadron collisions at SSC and LHC energies.
Parton-parton elastic scattering and rapidity gaps at Tevatron energies
Del Duca, V.; Tang, Wai-Keung
1993-08-01
The theory of the perturbative pomeron, due to Lipatov and collaborators, is used to compute the probability of observing parton-parton elastic scattering and rapidity gaps between jets in hadron collisions at Tevatron energies.
Asgari, Meisam
2015-09-01
An expression for the elastic free-energy density of a wormlike micelle is derived taking into account interactions between its constituent molecules. The resulting expression is quadratic in the curvature and torsion of the centerline of micelle and thus resembles free-energy density functions for polymer chains and helical filaments such as DNA. The model is applied on a wormlike micelle in the shape of a circular arc, open or closed. Conditions under which linear chains in dilute systems transform into toroidal rings are analyzed. Two concrete anisotropic soft-core interaction potentials are used to calculate the elastic moduli present in the derived model, in terms of the density of the molecules and their dimensions. Expressions for the persistence length of the wormlike micelle are found based on the flexural rigidities so obtained. Similar to previous observations, our results indicate that the persistence length of a wormlike micelle increases as the aspect ratio of its constituent molecules increases. A detailed application of the model on wormlike micelles of toroidal geometry, along with employing statistical-thermodynamical concepts of self-assembly is performed, and the results are found to be well consistent with the literature. Steps to obtain the material parameters through possible experiments are discussed. PMID:26362658
Low energy elastic electron scattering from CF{sub 3}Br molecules
Hargreaves, L. R.; Brunton, J. R.; Maddern, T. M.; Brunger, M. J.
2015-03-28
CF{sub 3}Br is a potentially valuable precursor molecule for generating beams of gas phase Br radicals suitable for electron collisions studies. However, the utility of CF{sub 3}Br for this purpose depends critically on the availability of sound scattering cross sections to allow the contribution of the precursor to be isolated within the total scattering signal. To this end, here we present elastic differential cross section (DCS) measurements for CF{sub 3}Br at incident energies between 15 and 50 eV. Comparison of these DCSs to those from the only other available experimental study [Sunohara et al., J. Phys. B: At., Mol. Opt. Phys. 36, 1843 (2003)] and a Schwinger multichannel with pseudo potentials (SMCPPs) calculation [Bettega et al., J. Phys. B: At., Mol. Opt. Phys. 36, 1263 (2003)] shows generally a very good accord. Integral elastic and momentum transfer cross sections, derived from our DCSs, are also found to be in quite good agreement with the SMCPP results.
Nicoli, M. P.; Haas, F.; Freeman, R. M.; Szilner, S.; Basrak, Z.; Morsad, A.; Satchler, G. R.; Brandan, M. E.
2000-03-01
Detailed measurements of the elastic scattering of {sup 16}O ions from {sup 12}C have been carried out at seven energies from 62 to 124 MeV, at center-of-mass angles from about 10 degree sign to about 145 degree sign . A coherent optical model analysis of these data has been performed using both the Woods-Saxon and the folding-model potentials. The extracted results are consistent with analyses of data at higher energies for this and similar light heavy-ion systems. Some model-independent spline forms for the real potentials were also investigated. (c) 2000 The American Physical Society.
The cross-bridge spring: can cool muscles store elastic energy?
George, N T; Irving, T C; Williams, C D; Daniel, T L
2013-06-01
Muscles not only generate force. They may act as springs, providing energy storage to drive locomotion. Although extensible myofilaments are implicated as sites of energy storage, we show that intramuscular temperature gradients may enable molecular motors (cross-bridges) to store elastic strain energy. By using time-resolved small-angle x-ray diffraction paired with in situ measurements of mechanical energy exchange in flight muscles of Manduca sexta, we produced high-speed movies of x-ray equatorial reflections, indicating cross-bridge association with myofilaments. A temperature gradient within the flight muscle leads to lower cross-bridge cycling in the cooler regions. Those cross-bridges could elastically return energy at the extrema of muscle lengthening and shortening, helping drive cyclic wing motions. These results suggest that cross-bridges can perform functions other than contraction, acting as molecular links for elastic energy storage. PMID:23618763
Contribution to the theory of tidal oscillations of an elastic earth. External tidal potential
NASA Technical Reports Server (NTRS)
Musen, P.
1974-01-01
The differential equations of the tidal oscillations of the earth were established under the assumption that the interior of the earth is laterally inhomogeneous. The theory was developed using vectorial and dyadic symbolism to shorten the exposition and to reduce the differential equations to a symmetric form convenient for programming and for numerical integration. The formation of tidal buldges on the surfaces of discontinuity and the changes in the internal density produce small periodic variations in the exterior geopotential which are reflected in the motion of artificial satellites. The analoques of Love elastic parameters in the expansion of exterior tidal potential reflect the asymmetric and inhomogeneous structure of the interior of the earth.
Multiscale design of coarse-grained elastic network-based potentials for the μ opioid receptor.
Fossépré, Mathieu; Leherte, Laurence; Laaksonen, Aatto; Vercauteren, Daniel P
2016-09-01
Despite progress in computer modeling, most biological processes are still out of reach when using all-atom (AA) models. Coarse-grained (CG) models allow classical molecular dynamics (MD) simulations to be accelerated. Although simplification of spatial resolution at different levels is often investigated, simplification of the CG potential in itself has been less common. CG potentials are often similar to AA potentials. In this work, we consider the design and reliability of purely mechanical CG models of the μ opioid receptor (μOR), a G protein-coupled receptor (GPCR). In this sense, CG force fields (FF) consist of a set of holonomic constraints guided by an elastic network model (ENM). Even though ENMs are used widely to perform normal mode analysis (NMA), they are not often implemented as a single FF in the context of MD simulations. In this work, various ENM-like potentials were investigated by varying their force constant schemes and connectivity patterns. A method was established to systematically parameterize ENM-like potentials at different spatial resolutions by using AA data. To do so, new descriptors were introduced. The choice of conformation descriptors that also include flexibility information is important for a reliable parameterization of ENMs with different degrees of sensitivity. Hence, ENM-like potentials, with specific parameters, can be sufficient to accurately reproduce AA MD simulations of μOR at highly coarse-grained resolutions. Therefore, the essence of the flexibility properties of μOR can be captured with simple models at different CG spatial resolutions, opening the way to mechanical approaches to understanding GPCR functions. Graphical Abstract All atom structure, residue interaction network and coarse-grained elastic network models of the μ opioid receptor (μOR). PMID:27566318
Variation of the energy release rate as a crack approaches and passes through an elastic inclusion
NASA Technical Reports Server (NTRS)
Li, Rongshun; Chudnovsky, A.
1993-01-01
The variation of the energy release rate (ERP) at the tip of a crack penetrating an elastic inclusion is analyzed using an approach involving modeling the random array of microcracks or other defects by an elastic inclusion with effective elastic properties. Computations are carried out using a finite element procedure. The eight-noded isoparametric serendipity element with the shift of the midpoint to the quarter-point is used to simulate the singularity at the crack tip, and the crack growth is accommodated by implementing a mesh regeneration technique. The ERP values were calculated for various crack tip positions which simulate the process of the crack approaching and penetrating the inclusion.
Price Elasticities for Energy Use in Buildings of the United States
2014-01-01
Energy demand tends to be responsive to changes in energy prices, a concept in economics known as price elasticity. Generally, an increase in a fuel price causes users to use less of that fuel or switch to a different fuel. The extent to which each of these changes takes place is of high importance to stakeholders in the energy sector and especially in energy planning. The purpose of this analysis is to determine fuel-price elasticities in stationary structures, particularly in the residential and commercial sectors.
El-Azab Farid, M.
2006-12-15
Analysis of the differential cross sections for {sup 4}He +{sup 4}He elastic scattering is performed within the framework of the double-folding optical model. Two appropriate effective nucleon-nucleon interactions are employed to generate the {alpha}-{alpha} folded real potentials. The obtained potentials in conjunction with phenomenological Woods-Saxon (WS) derivative imaginary potentials are used to investigate six sets of the elastic scattering data through the energy range 100-280 MeV. Successful reproduction of the data is obtained by both considered interactions. In addition, real phenomenological potentials expressed in a squared WS form are successfully used to reproduce these data.
Sun, Qicheng; Jin, Feng; Wang, Guangqian; Song, Shixiong; Zhang, Guohua
2015-01-01
Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour. PMID:25951049
The curvature elastic-energy function of the lipid-water cubic mesophase
NASA Astrophysics Data System (ADS)
Chung, Hesson; Caffrey, Martin
1994-03-01
CELL and lipid membranes are able to bend, as manifested during membrane fusion and the formation of non-lamellar lyotropic mesopbases in water. But there is an energy cost to bending of lipid layers, called the curvature elastic energy. Although the functional form of this energy is known1, a complete quantitative knowledge of the curvature elastic energy, which is central to predicting the relative stability of the large number of phases that lipid membranes can adopt, has been lacking. Here we use X-ray synchrotron diffraction measurements of the variation of lattice parameter with pressure and temperature for the periodic Ia3d (Q230) cubic phase of hydrated monoolein to calculate the complete curvature elastic-energy function for the lipid cubic mesophase. This allows us to predict the stabilities of different cubic and lamellar phases for this system as a function of composition.
NASA Astrophysics Data System (ADS)
Tőkési, K.; Varga, D.; Berényi, Z.
2015-07-01
We present results of theoretical and experimental studies of the spectra of electrons backscattered elastically from polyethylene in the primary energy range between 1 and 5 keV. The experiments were performed using a high energy resolution electron spectroscopy. The theoretical interpretation is based on a Monte Carlo simulation of the recoil and Doppler effects. The separation between the carbon and hydrogen peak in the energy distributions is shown as a function of the primary electron energy. The simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). We show our results for intensity ratios, peak shifts and broadenings. We also present detailed analytical calculations for the main parameters of a single scattering. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with our measurements.
Konow, Nicolai; Roberts, Thomas J.
2015-01-01
During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a ‘shock-absorber’ mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle–tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5–1.5 m centre-of-mass elevation). Negative work by the LG muscle–tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length–tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. PMID:25716796
Results on neutrino-electron elastic scattering at AGS energies
Lanou, R.E.
1984-02-26
In an experiment designed to study elastic scattering of nu/sub ..mu../ (and anti nu/sub ..mu../) from electrons and protons via the weak neutral current, we have recently completed several extensive data taking runs. Results for the cross section of nu/sub ..mu../ + e/sup -/ ..-->.. nu/sub ..mu../ + e/sup -/ are presented based upon the first third of the available sample. Preliminary analysis of anti nu/sub ..mu../ + e/sup -/ ..-->.. anti nu/sub ..mu../ + e/sup -/ is in progress and evidence for the signal is presented.
Renewable energy potential in Colombia
NASA Astrophysics Data System (ADS)
Correa Guzman, Jose Luis
2008-12-01
Renewable energy flows are very large in comparison with humankind's use of energy. In principle, all our energy needs, both now and into the future, can be met by energy from renewable sources. After many years trying to develop the alternative energy potential of Colombia, a major effort is principally being made since 2000 to explore and assess the renewable resources of the entire country. Until 2000, the availability of conventional energy sources in Colombia prevented renewable energy exploration from reaching a higher level. However, the extreme energy crisis of 1992 - 1993 alerted the authorities and the community to the necessity for exploring alternative energy sources. This energy study is a general approach to the current and future renewable energy scenario of Colombia. It was prepared in response to the increased interest around the world and in particular in Colombia to develop its non-fossil energy prospective. It, therefore, represents a working document giving an initial impression of the possible scale of the main renewables sources as a response to the concern about energy security and fossil fuel dependence problems. The assumptions made and calculations reported may therefore be subject to revision as more information becomes available. The aim of this dissertation is not only to improve the public understanding and discussion of renewable energy matters in Colombia but also to stimulate the development and application of renewable energy, wherever they have prospects of economic viability and environmental acceptability. To achieve such goal this paper reviews several renewable technologies, their availability, contribution and feasibility in Colombia.
NASA Astrophysics Data System (ADS)
Zagatto, V. A. B.; Oliveira, J. R. B.; Gasques, L. R.; Alcántara-Núñez, J. A.; Duarte, J. G.; Aguiar, V. P.; Medina, N. H.; Seale, W. A.; Pires, K. C. C.; Freitas, A.; Lubian, J.; Shorto, J. M. B.; Genezini, F. A.; Rossi, E. S., Jr.
2016-06-01
The reaction of 7Li+120Sn has been measured at bombarding energies of 21, 24 and 27 MeV. The {2}+\\to {0}+ γ -ray transition in 120Sn was observed and the angular distribution for the 2+ excited state was obtained. Coupled channels and coupled-reaction channels calculations, including the dynamical polarization potential due to the projectile break-up, obtained from continuum discretized coupled channel calculations, were performed. The comparison between the existing experimental elastic angular distribution with the coupled-reaction channels calculations indicates that the 1n stripping transfer is the most intense channel to be coupled and the 2n stripping reaction occurs sequentially rather than directly, however, further data must be analyzed to confirm this indication. The experimental elastic and inelastic scattering data were well described by the calculations, but some discrepancies in these channels may indicate the need for corrections to the nuclear potential and/or the necessity to incorporate further channels.
Theoretical modeling for neutron elastic scattering angular distribution in the fast energy range
Kawano, Toshihiko
2010-12-07
One of the major issues of neutron scattering modeling in the fast energy range is the contribution of compound elastic and inelastic scattering to the total scattering process. The compound component may become large at very low energies where the angular distribution becomes 90-degree symmetric in the center-of-mass system. Together with the shape elastic component, the elastic scattering gives slightly forward-peaked angular distributions in the fast energy range. This anisotropic angular distribution gives high sensitivities to many important nuclear reactor characteristics, such as criticality and neutron shielding. In this talk we describe how the anisotropic angular distributions are calculated within the statistical model framework, including the case where strongly coupled channels exist, by combining the coupled-channels theory with the Hauser-Feshbach model. This unique capability extension will have significant advantages in understanding the neutron scattering process for deformed nuclei, like uranium or plutonium, on which advanced nuclear energy applications center.
Effect of coupled channels on the energy dependence of phenomenological optical potential parameters
NASA Astrophysics Data System (ADS)
Al-Rayashi, W. S.; Jaghoub, M. I.
2016-06-01
The phenomenological optical potential parameters are known to vary with incident energy due to sources of nonlocalities in the nucleon-nucleus elastic scattering process. Here we investigate the effect of one source, which is coupling the ground-state elastic channel to collective inelastic excitations on the energy dependence of the optical potential parameters. For incident energies in the range 10-70 MeV, we considered elastic and inelastic nucleon scattering from light, medium, and heavy nuclei ranging from 6Li to 208Pb. The potential parameters were first determined by fitting the elastic angular distributions only. Then we included coupling to collective excitation channels and determined the potential parameters that reproduced the elastic and inelastic angular distribution data simultaneously. Our results show that coupling to inelastic excitations reduces the energy variations of the potential parameters compared to that of the elastic scattering case. In particular, the our best fit values for the real part of the spin-orbit term are highly stable as a function of energy. The values of the surface imaginary term are not only more stable but are also reduced compared to the elastic case. The reduction is a direct consequence of the channel coupling accounting explicitly for part of the flux removed from the elastic channel. In the fitting process we also searched for the best fit values of the deformation parameters. Our values compare well with the corresponding ones obtained in previous works. Finally, we used our best fit values for the potential and deformation parameters to theoretically predict the total elastic, total cross section, and polarization data. The predicted values are in very good agreement with the experimental data.
Addressing preservation of elastic contrast in energy-filtered transmission electron microscopy.
Brown, H G; D'Alfonso, A J; Forbes, B D; Allen, L J
2016-01-01
Energy-filtered transmission electron microscopy (EFTEM) images with resolutions of the order of an Ångström can be obtained using modern microscopes corrected for chromatic aberration. However, the delocalized nature of the transition potentials for atomic ionization often confounds direct interpretation of EFTEM images, leading to what is known as "preservation of elastic contrast". In this paper we demonstrate how more interpretable images might be obtained by scanning with a focused coherent probe and incoherently averaging the energy-filtered images over probe position. We dub this new imaging technique energy-filtered imaging scanning transmission electron microscopy (EFISTEM). We develop a theoretical framework for EFISTEM and show that it is in fact equivalent to precession EFTEM, where the plane wave illumination is precessed through a range of tilts spanning the same range of angles as the probe forming aperture in EFISTEM. It is demonstrated that EFISTEM delivers similar results to scanning transmission electron microscopy with an electron energy-loss spectrometer but has the advantage that it is immune to coherent aberrations and spatial incoherence of the probe and is also more resilient to scan distortions. PMID:26476801
The role of elastic energy in activities with high force and power requirements: a brief review.
Wilson, Jacob M; Flanagan, Eamonn P
2008-09-01
The purpose of this article is to provide strength and conditioning practitioners with an understanding of the role of elastic energy in activities with high force and power requirements. Specifically, the article covers 1) the nature of elasticity and its application to human participants, 2) the role of elastic energy in activities requiring a stretch-shorten cycle such as the vertical jump, 3) the role of muscular stiffness in athletic performance, 4) the control of muscular stiffness through feedforward and feedback mechanisms, and 5) factors affecting muscular stiffness. Finally, practical applications are provided. In this section, it is suggested that the storage and reuse of elastic energy is optimized at relatively higher levels of stiffness. Because stiffness decreases as fatigue ensues as well as with stretching before an event, the article emphasizes the need for proper preparation phases in a periodized cycle and the avoidance of long static stretches before high-force activities. The importance of teaching athletes to transition from eccentric to concentric movements with minimal time delays is also proposed due to the finding that time delays appear to decrease the reuse of elastic energy. In addition to teaching within the criterion tasks, evidence is provided that minimizing transitions in plyometric training, a technique demonstrated to increase musculotendinous stiffness, can optimize power output in explosive movements. Finally, evidence is provided that training and teaching programs designed to optimize muscular stiffness may protect athletes against sports-related injuries. PMID:18714212
cap alpha. /sup 4/He elastic scattering at high energies
Usmani, A.A.; Ahmad, I.; Usmani, Q.N.
1989-03-01
Differential cross sections for ..cap alpha.. /sup 4/He elastic scattering have been calculated at incident ..cap alpha..-particle momenta of 4.32, 5.07, and 7.0 GeV/c within the framework of Glauber multiple scattering theory. The full Glauber amplitude has been calculated using the Monte Carlo method for evaluating multidimensional integrals. We found that, in general, the more realistic double-Gaussian model for the density brings theory closer to experiment as compared to the generally used single-Gaussian model in some momentum transfer regions. Our results with the double-Gaussian model and an acceptable set of NN parameters are in fairly good agreement with the experimental data at 4.32 and 5.07 GeV/c.
Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings
Donegan, Sean; Rolett, Anthony
2013-12-31
Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) eld distributions as well as the grain scale eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.
The elastic free energy of a tandem modular protein under force.
Valle-Orero, Jessica; Eckels, Edward C; Stirnemann, Guillaume; Popa, Ionel; Berkovich, Ronen; Fernandez, Julio M
2015-05-01
Recent studies have provided a theoretical framework for including entropic elasticity in the free energy landscape of proteins under mechanical force. Accounting for entropic elasticity using polymer physics models has helped explain the hopping behavior seen in single molecule experiments in the low force regime. Here, we expand on the construction of the free energy of a single protein domain under force proposed by Berkovich et al. to provide a free energy landscape for N tandem domains along a continuous polypeptide. Calculation of the free energy of individual domains followed by their concatenation provides a continuous free energy landscape whose curvature is dominated by the worm-like chain at forces below 20 pN. We have validated our free energy model using Brownian dynamics and reproduce key features of protein folding. This free energy model can predict the effects of changes in the elastic properties of a multidomain protein as a consequence of biological modifications such as phosphorylation or the formation of disulfide bonds. This work lays the foundations for the modeling of tissue elasticity, which is largely determined by the properties of tandem polyproteins. PMID:25796331
Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1992-01-01
In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the
Ab initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
NASA Astrophysics Data System (ADS)
Kessler, J. A.; Evans, J. P.; Schmitt, D. R.; Shervais, J. W.
2013-12-01
The western Snake River Plain is a region of high crustal heat flow and has the potential for commercial geothermal energy development. High-temperature crystalline reservoirs commonly have connected fracture networks and other discontinuities that provide the primary fluid storage and permeability (Type I fractures). A borehole was drilled during the DOE/ICDP Snake River Scientific Drilling Program near Mountain Home, Idaho to a depth of ~1,800 m (6,000 ft) with 85 - 90% slimhole core recovery to assess the potential for geothermal energy development. A high-temperature artesian flow zone was encountered in basalt at a depth of 1,745 m (5,726 ft) in the MH-2 borehole with fluid temperatures above 140°C (240°F). Analysis of geomechanical behavior of rocks requires an understanding of basic physical and elastic properties under dynamic in-situ stress conditions. Here we conduct unconfined uniaxial compressive stress experiments on core samples to measure static elastic properties and compressive strength over a ~305 m (1,000 ft) interval of the borehole above and including the geothermal reservoir. Acoustic velocities are measured under pressure and temperature scenarios to calculate dynamic elastic properties and describe the anisotropy of elastic moduli and compressive strength. Dynamic elastic properties are calculated from dipole sonic borehole log data and compare the results to the previous dynamic and static interpretations. The comparison demonstrates that the calculation of dynamic elastic properties from borehole data is an effective method to interpret and describe mechanical stratigraphy and elastic properties in the case that core is not available for analysis in this area. Natural fractures, induced fractures, and breakouts are mapped in acoustic televiewer data. Fracture density is calculated and compared to lithological and mechanical stratigraphy, defined by the physical properties, elastic properties, and strength measurements. The stratigraphic
Nucleation rate of critical droplets on an elastic string in a {phi}{sup 6} potential
Kerr, W.C.; Graham, A.J.
2004-12-01
We obtain the nucleation rate of critical droplets for an elastic string moving in a {phi}{sup 6} local potential and subject to noise and damping forces. The critical droplet is a bound soliton-antisoliton pair that carries a section of the string out of the metastable central minimum into one of the stable side minima. The frequencies of small oscillations about the critical droplet are obtained from a Heun equation. We solve the Fokker-Planck equation for the phase-space probability density by projecting it onto the eigenfunction basis obtained from the Heun equation. We employ Farkas' 'flux-overpopulation' method to obtain boundary conditions for solving the Fokker-Planck equation; these restrict the validity of our solution to the moderate to heavy damping regime. We present results for the rate as a function of temperature, well depth, and damping.
California Industrial Energy Efficiency Potential
Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike
2005-06-01
This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.
NASA Astrophysics Data System (ADS)
Luo, S. S.; Grugan, P. D.; Walker, B. C.
2015-03-01
Using a relativistic adaptation of a three-step recollision model we calculate photoelectron energy spectra for ionization with elastic scattering in ultrastrong laser fields up to 24 a.u. (2 ×1019 W/cm 2) . Hydrogenlike and noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering beyond 6 ×1016 W/cm 2 when the laser Lorentz deflection of the photoelectron exceeds its wave-function spread. A relativistic rescattering enhancement occurs at 2 ×1018 W/cm 2, commensurate with the relativistic motion of a classical electron in a single field cycle. The noble gas results are compared with available experiments. The theory approach is well suited to modeling scattering in the ultrastrong intensity regime that lies between traditional strong fields and extreme relativistic interactions.
Bolaños, Jorge A.; Longstreth, David J.
1984-01-01
Pressure volume curves for Alternanthera philoxeroides (Mart.) Griseb. (alligator weed) grown in 0 to 400 millimolar NaCl were used to determine water potential (Ψ), osmotic potential (ψs), turgor potential (ψp) and the bulk elastic modulus (ε) of shoots at different tissue water contents. Values of ψs decreased with increasing salinity and tissue Ψ was always lower than rhizosphere Ψ. The relationship between ψp and tissue water content changed because ε increased with salinity. As a result, salt-stressed plants had larger ranges of positive turgor but smaller ranges of tissue water content over which ψp was positive. To our knowledge, this is the first report of such a salinity effect on ε in higher plants. These increases in ε with salinity provided a mechanism by which a large difference between plant Ψ and rhizosphere Ψ, the driving force for water uptake, could be produced with relatively little water loss by the plant. A time-course study of response after salinization to 400 millimolar NaCl showed Ψ was constant within 1 day, ψs and ψp continued to change for 2 to 4 days, and ε continued to change for 4 to 12 days. Changes in ε modified the capacity of alligator weed to maintain a positive water balance and consideration of such changes in other species of higher plants should improve our understanding of salt stress. PMID:16663611
The potential of renewable energy
Not Available
1990-03-01
On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.
High energy proton-proton elastic scattering at the Large Hadron Collider and nucleon structure
NASA Astrophysics Data System (ADS)
Luddy, Richard Joseph
To gain insight into the structure of the nucleon, we pursue the development of the phenomenological model of Islam et al. (IIFS model) for high energy elastic pp and p¯p scattering. We determine the energy dependence of the parameters of the IIFS model using the available elastic differential cross section data from SPS Collider and Tevatron and the known asymptotic behavior of sigmatot (s) and rho(s) from dispersion relation calculations and more recent analyses of Cudell et al. (COMPETE Collaboration). Next, we incorporate a high energy elastic valence quark-quark scattering amplitude into the model based on BFKL pomeron to describe small impact parameter (large | t|) pp collisions. Finally, we predict the pp elastic differential cross section at the unprecedented c.m. energy of s = 14.0 TeV at the Large Hadron Collider (LHC). This prediction assumes crucial significance---because of an approved experiment at LHC: TOTal and Elastic Measurement (TOTEM). The TOTEM group plans to measure pp elastic dsigma/dt at 14.0 TeV all the way from momentum transfer |t| = 0 to |t| ≃ 10 GeV 2. Their measurement will stringently test not only the diffraction and o-exchange descriptions of the original IIFS model, but also the additional valence quark-quark scattering contribution that we find to be dominant for large |t|. Successful quantitative verification of the predicted dsigma/dt will mean that our picture of the nucleon with an outer cloud of qq¯ condensed ground state, an inner core of topological baryonic charge, and a still smaller core of massless valence quarks provides a realistic description of nucleon structure.
Importance of the energy-dependent geometry in the 16O+ 16O optical model potential
NASA Astrophysics Data System (ADS)
Pantis, G.; Ioannidis, K.; Poirier, P.
1985-08-01
Optical model potentials with various forms of energy-dependent geometry have been considered for the description of 16O+ 16O elastic scattering. It is shown that the variation with energy of the imaginary radius leads to a reasonable fit of the cross-section data, throughout the energy range.
Spin correlation parameter and analyzing power in n - p elastic scattering at intermediate energies
Bandyopadhyay, D. ); Abegg, R.; Ahmad, M.; Birchall, J.; Chantziantoniou, K.; Davis, C.A.; Davison, N.E.; Delheij, P.P.J.; Green, P.W.; Greeniaus, L.G.; Healey, D.C.; Lapointe, C.; McDonald, W.J.; Miller, C.A.; Moss, G.A.; Page, S.A.; Ramsay, W.D.; Rodning, N.L.; Roy, G.; van Oers, W.T.H.; Wait, G.D.; Watson, J.W.; Ye, Y.
1989-12-01
In order to improve existing {ital I}=0 phase shift solutions, the spin correlation parameter {ital A}{sub {ital NN}} and the analyzing powers {ital A}{sub 0{ital N}} and {ital A}{sub {ital N}0} have been measured in {ital n}-{ital p} elastic scattering over an angular range of 50{degree}--150{degree} (c.m.) at three neutron energies (220, 325, and 425 MeV) to an absolute accuracy of {plus minus}0.03. The data have a profound effect on various phase parameters, particularly the {sup 1}P{sub 1}, {sup 3}D{sub 2}, and {epsilon}{sub 1} phase parameters which in some cases change by almost a degree. With the exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also, the analyzing power data ({ital A}{sub 0{ital N}} and {ital A}{sub {ital N}0}) measured at 477 MeV in a different experiment over a limited angular range (60{degree}--80{degree} (c.m.)) are reported here.
Mass calibration of the energy axis in ToF-E elastic recoil detection analysis
NASA Astrophysics Data System (ADS)
Meersschaut, J.; Laricchiuta, G.; Sajavaara, T.; Vandervorst, W.
2016-03-01
We report on procedures that we have developed to mass-calibrate the energy axis of ToF-E histograms in elastic recoil detection analysis. The obtained calibration parameters allow one to transform the ToF-E histogram into a calibrated ToF-M histogram.
Structure of elastic p-p scattering at low and high energies
NASA Astrophysics Data System (ADS)
Arash, Firooz; Moravcsick, Michael J.; Goldstein, Gary R.
1985-02-01
It is observed that p-p elastic scattering at 90° between 0.3 and 1.0 GeV is described by planar-transverse amplitude of which two are equal in magnitude and one is about three times larger in magnitude. This feature, extrapolated to much higher energies, is used to predict p-p polarization quantities, in part by itself, in part in combination with the extension of another, previously observed feature of planar-transverse amplitudes. Comparison with existing data is favorable. Predictions are then made for other, yet unmeasured but readily measurable polarization quantities for p-p elastic scattering.
Energy dissipation in heavy systems: the transition from quasi-elastic to deep-inelastic scattering
Rehm, K.E.; van den Berg, A.; Kolata, J.J.; Kovar, D.G.; Kutschera, W.; Rosner, G.; Stephans, G.S.F.; Yntema, J.L.; Lee, L.L.
1984-01-01
The interaction of medium mass projectiles (A = 28 - 64) with /sup 208/Pb has been studied using a split-pole spectrograph which allows single mass and charge identification. The reaction process in all systems studied so far is dominated by quasi-elastic neutron transfer reactions, especially at incident energies in the vicinity of the Coulomb barrier. In addition to the quasi-elastic component deep inelastic contributions are present in all reaction channels. The good mass and charge separation allows to generate Wilczynski plots for individual channels; for the system /sup 48/Ti + /sup 208/Pb we observe that the transition between the quasi-elastic and deep-inelastic reactions occurs around Q = -(30 to 35) MeV.
Elastic Scattering Of {sup 6,7}Li+{sup 80}Se At Near And Above Barrier Energies
Fimiani, L.; Marti, G. V.; Capurro, O. A.; Barbara, E. de; Testoni, J. E.; Zalazar, L.; Arazi, A.; Cardona, M. A.; Carnelli, P.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Fernandez Niello, J. O.
2010-08-04
In this work we propose to study the elastic scattering of the weakly bound projectiles {sup 6,7}Li on an intermediate mass target {sup 80}Se. From the experimental results presented here, precise angular distributions at energies below, around and above the nominal Coulomb barriers of the systems were obtained. The final goal of our work is to determine the characteristic parameters of the optical potential and use them to address the question of whether the usual threshold anomaly or the breakup threshold anomaly are present or not in these systems.
Wu, Tai Tsun.
1990-01-01
This is a brief review of the progress in the understanding, during the past twenty years, of hadronic elastic scattering near the forward direction at high energies. On the basis of quantum gauge field theories, the Pomeron is found to be a branch cut above 1. Using the physical picture that this result implies, phenomenology for proton-proton and antiproton-proton elastic scattering is constructed. Two noteworthy features are that, at high energies, both the total cross section and the ratio of the integrated elastic cross section to the total cross section to the total cross section are increasing functions of the center-of-mass energy. Detailed predictions are given for the elastic differential cross sections, Coulomb interference and the ratios of the real to imaginary parts of the forward amplitudes. These predictions have been extensively and accurately confirmed by experiments, and have also been given both for future experiments on existing accelerators and for experiments on future accelerators. 14 refs., 2 figs.
Wu, Tai Tsun
1990-12-31
This is a brief review of the progress in the understanding, during the past twenty years, of hadronic elastic scattering near the forward direction at high energies. On the basis of quantum gauge field theories, the Pomeron is found to be a branch cut above 1. Using the physical picture that this result implies, phenomenology for proton-proton and antiproton-proton elastic scattering is constructed. Two noteworthy features are that, at high energies, both the total cross section and the ratio of the integrated elastic cross section to the total cross section to the total cross section are increasing functions of the center-of-mass energy. Detailed predictions are given for the elastic differential cross sections, Coulomb interference and the ratios of the real to imaginary parts of the forward amplitudes. These predictions have been extensively and accurately confirmed by experiments, and have also been given both for future experiments on existing accelerators and for experiments on future accelerators. 14 refs., 2 figs.
NASA Astrophysics Data System (ADS)
Henann, David; Wang, Yuhao
Surface energy is an important factor in the deformation of fluids but is typically a minimal or negligible effect in solids. However, when a solid is soft and its characteristic dimension is small, forces due to surface energy can become important and induce significant elastic deformation. The interplay between surface energy and elasticity can lead to interesting elasto-capillary phenomena. We have developed a finite-element formulation for problems involving these effects in both 2D and 3D settings and will demonstrate the simulation capability by examining two elasto-capillary problems. (1) The Rayleigh-Plateau instability in an elastic material - In a fluid, this instability causes fluid jets to break up into droplets; however, as shown in recent experiments (Mora et al., PRL, 2010), break-up is prohibited in an elastic material, resulting in a stable undulatory configuration. (2) The effect of fluid-filled droplet inclusions on a soft solid - When the matrix material is stiff, the presence of fluid-filled inclusions leads to a more compliant composite material; however, recent experiments (Style, et al., Nature Physics, 2014) have shown that when the matrix material is more compliant, the presence of droplets leads to stiffening. In this talk, we will show that our simulation capability predicts all experimentally observed phenomena and provides a straightforward route for describing nonlinear aspects of elasto-capillarity, which are difficult to address via analytics.
GPDs of the nucleons and elastic scattering at high energies
NASA Astrophysics Data System (ADS)
Selyugin, O. V.
2012-07-01
Taking into account the electromagnetic and gravitational form factors, calculated from a new set of t-dependent GPDs, a new model is built. The real part of the hadronic amplitude is determined only through complex s. In the framework of this model the quantitative description of all existing experimental data at 52.8 ≤sqrt{s} ≤ 1960 GeV, including the Coulomb range and large momentum transfers (0.0008≤| t|≤9.75 GeV2), is obtained with only three fitting high energy parameters. The comparison with the preliminary data of the TOTEM Collaboration at an energy of 7 TeV is made.
Bolanos, J.A.; Longstreth, D.J.
1984-06-01
Pressure volume curves for Alternanthera philoxeroides (Mart.) Grixeb. (alligator weed) grown in 0 to 400 millimolar NaCl were used to determine water potential (PSI), osmotic potential (psi/sub s/), turgor potential (psi/sub p/) and the bulk elastic modulus (element of) of shoots at different tissue water contents. Values of psi decreased with increasing salinity and tissue PSI was always lower than rhizosphere PSI. The relationship between psi/sub p/ and tissue water content changed because element of increased with salinity. As a results, salt-stressed plants had larger ranges of positive turgor but smaller ranges of tissue water content over which psi/sub p/ was positive. To our knowledge, this is the first report of such a salinity effect on element of in higher plants. These increases in element of with salinity provided a mechanism by which a large difference between plant PSI and rhizosphere PSI, the driving force for water uptake, could be produced with relatively little water loss by the plant. A time-course study of response after salinization to 400 millimolar NaCl showed PSI was constant with 1 day, psi/sub s/ and psi/sub p/ continued to change for 2 to 4 days, and element of continued to change for 4 to 12 days. Changes in element of modified the capacity of alligator weed to maintain a positive water balance and consideration of such changes in other species of higher plants should improve our understanding of salt stress. 24 references, 6 figures.
Li, Z. P.; Hillhouse, G. C.; Meng, J.
2008-07-15
We present the first study to examine the validity of the relativistic impulse approximation (RIA) for describing elastic proton-nucleus scattering at incident laboratory kinetic energies lower than 200 MeV. For simplicity we choose a {sup 208}Pb target, which is a spin-saturated spherical nucleus for which reliable nuclear structure models exist. Microscopic scalar and vector optical potentials are generated by folding invariant scalar and vector scattering nucleon-nucleon (NN) amplitudes, based on our recently developed relativistic meson-exchange model, with Lorentz scalar and vector densities resulting from the accurately calibrated PK1 relativistic mean field model of nuclear structure. It is seen that phenomenological Pauli blocking (PB) effects and density-dependent corrections to {sigma}N and {omega}N meson-nucleon coupling constants modify the RIA microscopic scalar and vector optical potentials so as to provide a consistent and quantitative description of all elastic scattering observables, namely, total reaction cross sections, differential cross sections, analyzing powers and spin rotation functions. In particular, the effect of PB becomes more significant at energies lower than 200 MeV, whereas phenomenological density-dependent corrections to the NN interaction also play an increasingly important role at energies lower than 100 MeV.
Non-resonant elastic scattering of low-energy photons by atomic sodium confined in quantum plasmas
Ghosh, Avijit Ray, Debasis
2015-03-15
The non-resonant elastic scattering of low-energy photons by the bound valence electron in the ground state 3s of atomic sodium confined in quantum plasmas is investigated theoretically. The incident photon energy is assumed to be much smaller than the 3s-3p excitation energy. The alkali atom sodium is first formulated as an effective one-electron problem in which the attractive interaction between the valence electron and the atomic ion core is simulated by a spherically symmetric model potential. The Shukla-Eliasson oscillatory exponential cosine screened-Coulomb potential model is then used to mimic the effective two-body (valence-core) interaction within quantum plasmas. Non-relativistic calculations performed within the electric dipole approximation indicate that the non-resonant elastic photon scattering cross-section undergoes a dramatic growth by several orders of magnitude as the quantum wave number increases. A qualitative explanation of this phenomenon is presented. In the absence of the oscillatory cosine screening term, a similar growth is observed at larger values of the quantum wave number. Our computed relevant atomic data are in very good agreement with the experimental as well as the previous theoretical data for the zero-screening (free atom) case, and with the very limited, accurate theoretical results available for the case of exponential screened-Coulomb two-body interaction, without the cosine screening term.
Ni, Yilu; Tang, Zhurong; Cao, Wanxu; Lin, Hai; Fan, Yujiang; Guo, Likun; Zhang, Xingdong
2015-03-01
Natural polysaccharides are extensively investigated as cell scaffold materials for cellular adhesion, proliferation, and differentiation due to their excellent biocompatibility, biodegradability, and biofunctions. However, their application is often severely limited by their mechanical behavior. In this study, a tough and elastic hydrogel scaffold was prepared with hyaluronic acid (HA) and chondroitin sulfate (CS). HA and CS were conjugated with tyramine (TA) and the degree of substitution (DS) was 10.7% and 11.3%, respectively, as calculated by (1)H NMR spectra. The hydrogel was prepared by mixing HA-TA and CS-TA in presence of H2O2 and HRP. The sectional morphology of hydrogels was observed by SEM, static and dynamic mechanical properties were analyzed by Shimadzu electromechanical testing machine and dynamic mechanical thermal analyzer Q800. All samples showed good ability to recover their appearances after deformation, the storage modulus (E') of hydrogels became higher as the testing frequency went up. Hydrogels also showed fatigue resistance to cyclic compression. Mesenchymal stem cells encapsulated in hydrogels showed good cell viability as detected by CLSM. This study suggests that the hydrogels have both good mechanical properties and biocompatibility, and may serve as model systems to explore mechanisms of deformation and energy dissipation or find some applications in tissue engineering. PMID:25445680
Elastic Scattering of Low-Energy Electrons byTetrahydrofuran
Trevisan, Cynthia S.; Orel, Ann E.; Rescigno, Thomas N.
2006-05-09
We present the results of ab initio calculations for elasticelectron scattering by tetrahydrofuran (THF) using the complex Kohnvariational method. We carried out fixed-nuclei calculations at theequilibrium geometry of the target molecule for incident electronenergies up to 20 eV. The calculated momentum transfer cross sectionsclearly reveal the presence of broad shape resonance behavior in the 8-10eV energy range, in agreement with recent experiments. The calculateddifferential cross sections at 20 eV, which include the effects of thelong-range electron-dipole interaction, are alsofound to be in agreementwith the most recent experimental findings.
Magneto-elastic artificial neurons with extremely low energy dissipation
NASA Astrophysics Data System (ADS)
Biswas, Ayan K.; Al-Rashid, Md Mamun; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo
2015-03-01
We present a detailed analysis of artificial step transfer function neurons and binary weight synapses implemented with magneto-tunneling junctions whose soft layers are magnetostrictive nanomagnets switched with voltage generated mechanical strain. These devices are more energy-efficient than CMOS-based neurons or so-called spin neurons that are based on magnets switched with spin-polarized current. We studied their switching dynamics using stochastic Landau-Lifshitz-Gilbert simulations for two different geometries (elliptical and cylindrical) of the magnetostrictive nanomagnet. Our study revealed that while the step transition (firing) of the magnetic neuron is always very sharp at 0 K, the threshold is significantly broadened at room temperature, regardless of geometry and regardless of whether the magnet is switched with strain or spin-polarized current. While this could preclude some applications, the extreme energy-efficiency of these neurons makes them nearly ideal for use in certain types of neuromorphic computation. This work is supported by the NSF under grant ECCS-1124714 and CCF-1216614.
Elastic electron scattering in krypton in the energy range from 5 to 10 eV
Linert, Ireneusz; Mielewska, Brygida; Zubek, Mariusz; King, George C.
2010-01-15
Differential cross sections for elastic electron scattering in krypton have been measured at the energies of 5,7.5, and 10 eV over the scattering angle range from 30 deg. to 180 deg. The measurements for backward scattering employed the magnetic angle-changing technique. These differential cross sections have been integrated to yield the elastic integral and momentum transfer cross sections at the above energies. These new results are compared with the most recent measurements and calculations of the respective cross sections in krypton. The dependence of the differential cross sections on atomic polarizability of the heavier rare gas atoms argon, krypton, and xenon has also been investigated over the electron energy range 5-30 eV and for forward, backward, and intermediate scattering angles.
Elastic scattering of positrons on mercury: A negative-energy Dirac-Fock treatment
Sienkiewicz, J.E.; Baylis, W.E. )
1991-02-01
In a new extension of the Dirac-Fock method, calculations have been performed on the 80 electrons of mercury (in 22 {ital nlj} orbitals) plus one continuum electron of negative energy less than {minus}{ital mc}{sup 2}. The asymptotic form of the numerical wave function of the negative-energy electron determines the phase shifts for the elastic scattering of positrons on Hg. The self-consistent-field calculations include the usual exchange interaction between electrons. The exchange between the bound Hg electrons and the negative-energy continuum electron represents the positron-electron annihilation-creation process. Such effects are usually computed in quantum electrodynamics to some order of approximation in a perturbation expansion. We believe ours is the first Dirac-Fock calculation of this effect, but we find its influence on the elastic positron scattering to be negligible.
Application of the pair torque interaction potential to simulate the elastic behavior of SLMoS2
NASA Astrophysics Data System (ADS)
Berinskii, I. E.; Panchenko, A. Yu; Podolskaya, E. A.
2016-05-01
This paper is devoted to the application of the pair torque interaction potential for the simulation of the elastic behavior of a promising two-dimensional material: single layer molybdenium disulphide (SLMoS2). It is demonstrated that both Mo-Mo and S-S interactions can be regarded as pair force interactions with sufficient accuracy. Using both experimental and calculated numerically elastic moduli, and also the phonon spectrum available in the literature, the parameters of the Morse potential are determined for Mo-Mo and S-S bonds, and the parameters of the pair torque potential are obtained for the Mo-S bond. As a result, a combination of force and torque pair potentials is proposed, which allows for the correct modelling of SLMoS2 mechanical behavior.
Bauchy, M.
2014-07-14
We study a calcium aluminosilicate glass of composition (SiO{sub 2}){sub 0.60}(Al{sub 2}O{sub 3}){sub 0.10}(CaO){sub 0.30} by means of molecular dynamics. To this end, we conduct parallel simulations, following a consistent methodology, but using three different potentials. Structural and elastic properties are analyzed and compared to available experimental data. This allows assessing the respective abilities of the potentials to produce a realistic glass. We report that, although all these potentials offer a reasonable glass structure, featuring tricluster oxygen atoms, their respective vibrational and elastic predictions differ. This allows us to draw some general conclusions about the crucial role, or otherwise, of the interaction potential in silicate systems.
Stored energy in metallic glasses due to strains within the elastic limit
NASA Astrophysics Data System (ADS)
Greer, A. L.; Sun, Y. H.
2016-06-01
Room temperature loading of metallic glasses, at stresses below the macroscopic yield stress, raises their enthalpy and causes creep. Thermal cycling of metallic glasses between room temperature and 77 K also raises their enthalpy. In both cases, the enthalpy increases are comparable to those induced by heavy plastic deformation, but, as we show, the origins must be quite different. For plastic deformation, the enthalpy increase is a fraction (<10%) of the work done (WD) (and, in this sense, the behaviour is similar to that of conventional polycrystalline metals and alloys). In contrast, the room temperature creep and the thermal cycling involve small strains well within the elastic limit; in these cases, the enthalpy increase in the glass exceeds the WD, by as much as three orders of magnitude. We argue that the increased enthalpy can arise only from an endothermic disordering process drawing heat from the surroundings. We examine the mechanisms of this process. The increased enthalpy ('stored energy') is a measure of rejuvenation and appears as an exothermic heat of relaxation on heating the glass. The profile of this heat release (the 'relaxation spectrum') is analysed for several metallic glasses subjected to various treatments. Thus, the effects of the small-strain processing (creep and thermal cycling) can be better understood, and we can explore the potential for improving properties, in particular the plasticity, of metallic glasses. Metallic glasses can exhibit a wide range of enthalpy at a given temperature, and small-strain processing may assist in accessing this for practical purposes.
NASA Astrophysics Data System (ADS)
Msezane, A. Z.; Eure, A.; Felfli, Z.; Sokolovski, D.
2009-11-01
The recent Regge-pole methodology has been benchmarked [1] on the accurately measured binding energies of the excited Ge= and Sn= anions [2] through the binding energies (BEs) extracted from the Regge-pole calculated elastic total cross sections (TCSs). Here the methodology is applied together with a Thomas-Fermi type potential that incorporates the vital core polarization interaction to investigate the possibility of forming excited Au= and Pt= anions in low-energy electron elastic collisions with Au and Pt atoms. From the positions of the characteristic extremely narrow resonances in the total cross sections, we extract the binding energies of the excited Au= and Pt= anions formed as Regge resonances during the collisions. The angular life of the complexes thus formed is used to differentiate the stable excited bound states of the anions from the shape resonances [3]. The BEs for the excited Au= and Pt= anions are found to be 0.475eVand 0.543eV, respectively, challenging both theory and experiment to verify. [1] A. Msezane et al, Phys. Rev. A, Submitted (2009) [2] M. Scheer et al, Phys. Rev. A 58, 2844 (1998) [3] Z. Felfli et al, Phys. Rev. A 79, 012714 (2009)
Incorporating elastic and plastic work rates into energy balance for long-term tectonic modeling
NASA Astrophysics Data System (ADS)
Ahamed, M. S.; Choi, E.
2014-12-01
Deformation-related energy budget is usually considered in the simplest form or even completely omitted from the energy balance equation. We derive an energy balance equation that accounts not only for heat energy but also for elastic and plastic work. Such a general description of the energy balance principle will be useful for modeling complicated interactions between geodynamic processes such as thermoelastisity, thermoplasticity and mechanical consequences of metamorphism. Following the theory of large deformation plasticity, we start from the assumption that Gibbs free energy (g) is a function of temperature (T), the second Piola-Kirchhoff stress (S), density (ρ) and internal variables (qj, j=1…n). In this formulation, new terms are derived, which are related to the energy dissipated through plastic work and the elastically stored energy that are not seen in the usual form of the energy balance equation used in geodynamics. We then simplify the generic equation to one involving more familiar quantities such as Cauchy stress and material density assuming that the small deformation formulation holds for our applications. The simplified evolution equation for temperature is implemented in DyanEarthSol3D, an unstructured finite element solver for long-term tectonic deformation. We calculate each of the newly derived terms separately in simple settings and compare the numerical results with a corresponding analytic solution. We also present the effects of the new energy balance on the evolution of a large offset normal fault.
Elastic scattering at 7 TeV and high-energy cross section for cosmic ray studies
NASA Astrophysics Data System (ADS)
Wibig, T.
2012-08-01
The recent measurements of the elastic cross section by the TOTEM Collaboration together with the first estimations of the inelastic cross sections by other LHC detectors are used to test the simplest version of the geometrical model of the proton-proton scattering. We show that the description found for lower energy data, with the modest adjustment of the model parameter extrapolation, could be, in principle, used to describe the LHC measurement and to predict the cross sections in very high energy cosmic ray domain. However, the shape of the first elastic dip in the elastic differential scattering cross section suggests that the ratio of the real to the imaginary part of the elastic amplitude falls rather fast and the analysis of the elastic cross-section fraction suggests that the geometrical picture and scaling of the proton-proton collision should be modified when entering the ultrahigh-energy domain.
An energy absorbing far-field boundary condition for the elastic wave equation
Petersson, N A; Sjogreen, B
2008-07-15
The authors present an energy absorbing non-reflecting boundary condition of Clayton-Engquist type for the elastic wave equation together with a discretization which is stable for any ratio of compressional to shear wave speed. They prove stability for a second order accurate finite-difference discretization of the elastic wave equation in three space dimensions together with a discretization of the proposed non-reflecting boundary condition. The stability proof is based on a discrete energy estimate and is valid for heterogeneous materials. The proof includes all six boundaries of the computational domain where special discretizations are needed at the edges and corners. The stability proof holds also when a free surface boundary condition is imposed on some sides of the computational domain.
Low-energy electron elastic scattering from Mn, Cu, Zn, Ni, Ag, and Cd atoms
Felfli, Z.; Msezane, A. Z.; Sokolovski, D.
2011-05-15
Electron elastic total cross sections (TCSs) for ground and excited Mn, Cu, Zn, Ni, Ag, and Cd atoms have been investigated in the electron-impact energy range 0 {<=}E{<=} 1 eV. The near-threshold TCSs for both the ground and excited states of these atoms are found to be characterized by Ramsauer-Townsend minima, shape resonances, and extremely sharp resonances corresponding to the formation of stable bound negative ions. The recently developed Regge-pole methodology where the crucial electron-electron correlations are embedded is employed for the calculations. From close scrutiny of the imaginary parts of the complex angular momenta, we conclude that these atoms form stable weakly bound ground and excited negative ions as Regge resonances through slow electron collisions. The extracted electron binding energies from the elastic TCSs of these atoms are contrasted with the available experimental and theoretical values.
Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.
2015-06-16
A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.
NASA Astrophysics Data System (ADS)
Deur, Alexandre
1999-10-01
The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.
Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.
2015-06-16
A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO_{3} systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.
Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets
NASA Astrophysics Data System (ADS)
Gemmer, John; Sharon, Eran; Shearman, Toby; Venkataramani, Shankar C.
2016-04-01
The edges of torn plastic sheets and growing leaves often display hierarchical buckling patterns. We show that this complex morphology i) emerges even in zero strain configurations, and ii) is driven by a competition between the two principal curvatures, rather than between bending and stretching. We identify the key role of branch point (or “monkey saddle”) singularities in generating complex wrinkling patterns in isometric immersions, and show how they arise naturally from minimizing the elastic energy.
Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage.
Peng, Qing; De, Suvranu
2013-11-28
The structural and mechanical properties of graphene-like honeycomb monolayer structures of MoS2 (g-MoS2) under various large strains are investigated using density functional theory (DFT). g-MoS2 is mechanically stable and can sustain extra large strains: the ultimate strains are 0.24, 0.37, and 0.26 for armchair, zigzag, and biaxial deformation, respectively. The in-plane stiffness is as high as 120 N m(-1) (184 GPa equivalently). The third, fourth, and fifth order elastic constants are indispensable for accurate modeling of the mechanical properties under strains larger than 0.04, 0.07, and 0.13 respectively. The second order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure while the Poisson ratio monotonically decreases with increasing pressure. With the prominent mechanical properties including large ultimate strains and in-plane stiffness, g-MoS2 is a promising candidate of elastic energy storage for clean energy. It possesses a theoretical energy storage capacity as high as 8.8 MJ L(-1) and 1.7 MJ kg(-1), or 476 W h kg(-1), larger than a Li-ion battery and is environmentally friendly. PMID:24126736
Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage
NASA Astrophysics Data System (ADS)
Peng, Qing; de, Suvranu
2014-03-01
The structural and mechanical properties of graphene-like honeycomb monolayer structures of MoS2(g-MoS2) under various large strains are investigated using density functional theory (DFT). g-MoS2 is mechanically stable and can sustain extra large strains: the ultimate strains are 0.24, 0.37, and 0.26 for armchair, zigzag, and biaxial deformation, respectively. The in-plane stiffness is as high as 120 N/m (184 GPa equivalently). The third, fourth, and fifth order elastic constants are indispensable for accurate modeling of the mechanical properties under strains larger than 0.04, 0.07, and 0.13 respectively. The second order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure while the Poisson ratio monotonically decreases with increasing pressure. With the prominent mechanical properties including large ultimate strains and in-plane stiffness, g-MoS2 is a promising candidate of elastic energy storage for clean energy. It possesses a theoretical energy storage capacity as high as 8.8 MJ/L and 1.7 MJ/kg, or 476 Wh/kg, larger than a Li-ion battery and is environmentally friendly. Financial support from the Defence Threat Reduction Agency (DTRA) Grant # BRBAA08-C-2-0130 and.
Elastic scattering of 17O+208Pb at energies near the Coulomb barrier
NASA Astrophysics Data System (ADS)
Torresi, D.; Strano, E.; Mazzocco, M.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Nicoletto, M.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Toniolo, N.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Jeong, S.; Kim, Y. H.; Lay, J. A.; Miyatake, H.; Pakou, A.; Sgouros, O.; Soukeras, V.; Stroe, L.; Vitturi, A.; Watanabe, Y.; Zerva, K.
2016-05-01
Within the frame of the commissioning of a new experimental apparatus EXPADES we undertook the measurement of the elastic scattering angular distribution for the system 17O+208Pb at energy around the Coulomb barrier. The reaction dynamics induced by loosely bound Radioactive Ion Beams is currently being extensively studied [4]. In particular the study of the elastic scattering process allows to obtain direct information on the total reaction cross section of the exotic nuclei. In order to understand the effect of the low binding energy on the reaction mechanism it is important to compare radioactive weakly bound nuclei with stable strongly-bound nuclei. In this framework the study of the 17O+208Pb elastic scattering can be considered to be complementary to a previous measurement of the total reaction cross section for the system 17F+208Pb at energies of 86, 90.4 MeV [5, 6]. The data will be compared with those obtained for the neighboring systems 16,18O+208Pb and others available in literature.
Pole structure from energy-dependent and single-energy fits to GWU-SAID π N elastic scattering data
NASA Astrophysics Data System (ADS)
Švarc, Alfred; Hadžimehmedović, Mirza; Osmanović, Hedim; Stahov, Jugoslav; Workman, Ron L.
2015-01-01
The pole structure of the current George Washington University (GWU-SAID) partial-wave analysis of elastic π N scattering and η N production data is studied. Pole positions and residues are extracted from both the energy-dependent and single-energy fits, using two different methods. For the energy-dependent fits, both contour integration and a Laurent + Pietarinen approach are used. In the case of single-energy fits, the Laurent+Pietarinen approach is used. Errors are estimated and the two sets of results are compared to other fits to data.
Ab Initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Synergy of elastic and inelastic energy loss on ion track formation in SrTiO₃.
Weber, William J; Zarkadoula, Eva; Pakarinen, Olli H; Sachan, Ritesh; Chisholm, Matthew F; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen
2015-01-01
While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO₃), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties. PMID:25578009
Elastic scattering for the system {sup 6}Li+p at near barrier energies with MAGNEX
Soukeras, V.; Pakou, A.; Sgouros, O.; Cappuzzello, F.; Bondi, M.; Nicolosi, D.; Acosta, L.; Marquinez-Duran, G.; Martel, I.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; Di Pietro, A.; Fernández-García, J. P.; Figuera, P.; Fisichella, M.; Alamanos, N.; De Napoli, M.; Foti, A.; and others
2015-02-24
Elastic scattering measurements have been performed for the {sup 6}Li+p system in inverse kinematics at the energies of 16, 20, 25 and 29 MeV. The heavy ejectile was detected by the large acceptance MAGNEX spectrometer at the Laboratori Nazionali del Sud (LNS) in Catania, in the angular range between ∼2{sup 0} and 12{sup 0} in the laboratory system, giving us the possibility to span almost a full angular range in the center of mass system. Results will be presented and discussed for one of the energies.
NASA Astrophysics Data System (ADS)
Takaoka, Masanori; Yokoyama, Naoto
2015-01-01
The real-space dynamics and the nonlinear interactions among Fourier modes in elastic wave turbulence are investigated by simulating the Foppl-von Karman equation. We find that the bundle structures of ridges appear intermittently in the time evolution of the stretching energy field. The time-evolution of the nonlinearity indicates the existence of active and moderate phases in turbulent state. Conditional sampling analysis reveals that the bundle structure, which is the embodiment of the strong nonlinear interactions among modes, induces the energy supply from an external force to the system.
Low-energy photodetachment of Ga- and elastic electron scattering from neutral Ga
NASA Astrophysics Data System (ADS)
Wang, Kedong; Zatsarinny, Oleg; Bartschat, Klaus
2016-08-01
We present a comprehensive study of the photodetachment of the negative gallium ion and elastic electron scattering from neutral Ga for photon and electron energies ranging from threshold to 12 eV. The calculations are carried out with the B -spline R -matrix method. A multiconfiguration Hartree-Fock method with nonorthogonal term-dependent orbitals is employed to generate accurate initial- and final-state wave functions. The close-coupling expansions include the 4 s 24 p n l (k l ) bound and continuum states of Ga and the 4 s -excited autoionizing states 4 s 4 p2 . The calculated photodetachment and elastic cross sections exhibit prominent resonance features. In order to clarify the origin of these resonances, the contributions of the major ionization channels to the partial cross sections are analyzed in detail.
K--Nucleus Elastic Scattering at IntermediateEnergies in the Isobar-Doorway Model
NASA Astrophysics Data System (ADS)
Toyama, F. M.
1983-11-01
The differential cross sections for the K--nucleus elastic scattering at about PK = 800 MeV/c are calculated in the phenomenological isobar-doorway model. The many-body corrections on Y* resonances in nuclei are represented by the resonance energy shift Δ E and width-modification factor β. The parametrizations given by Gopal et al. are used for the resonance amplitudes. The effects of Δ E and β on the cross sections are investigated in detail. The results are compared with the available experimental data for the K- elastic scattering on 12C and 40Ca at PK = 800 MeV/c. The calculated cross sections are in good agreement with the data. However, the cross sections are not very sensitive to Δ E and β.
Geothermal Energy: Tapping the Potential
ERIC Educational Resources Information Center
Johnson, Bill
2008-01-01
Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…
Energy functions for rubber from microscopic potentials
NASA Astrophysics Data System (ADS)
Johal, A. S.; Dunstan, D. J.
2007-04-01
The finite deformation theory of rubber and related materials is based on energy functions that describe the macroscopic response of these materials under deformation. Energy functions and elastic constants are here derived from a simple microscopic (ball-and-spring) model. Exact uniaxial force-extension relationships are given for Hooke's Law and for the thermodynamic entropy-based microscopic model using the Gaussian and the inverse Langevin statistical approximations. Methods are given for finding the energy functions as expansions of tensor invariants of deformation, with exact solutions for functions that can be expressed as expansions in even powers of the extension. Comparison with experiment shows good agreement with the neo-Hookean energy function and we show how this derives directly from the simple Gaussian statistical model with a small modification.
Radius exponent in elastic and rigid arterial models optimized by the least energy principle
Nakamura, Yoshihiro; Awa, Shoichi
2014-01-01
Abstract It was analyzed in normal physiological arteries whether the least energy principle would suffice to account for the radius exponent x. The mammalian arterial system was modeled as two types, the elastic or the rigid, to which Bernoulli's and Hagen‐Poiseuille's equations were applied, respectively. We minimized the total energy function E, which was defined as the sum of kinetic, pressure, metabolic and thermal energies, and loss of each per unit time in a single artery transporting viscous incompressible blood. Assuming a scaling exponent α between the vessel radius (r) and length (l) to be 1.0, x resulted in 2.33 in the elastic model. The rigid model provided a continuously changing x from 2.33 to 3.0, which corresponded to Uylings’ and Murray's theories, respectively, through a function combining Reynolds number with a proportional coefficient of the l − r relationship. These results were expanded to an asymmetric arterial fractal tree with the blood flow preservation rule. While x in the optimal elastic model accounted for around 2.3 in proximal systemic (r >1 mm) and whole pulmonary arteries (r ≥0.004 mm), optimal x in the rigid model explained 2.7 in elastic‐muscular (0.1 < r ≤1 mm) and 3.0 in peripheral resistive systemic arteries (0.004 ≤ r ≤0.1 mm), in agreement with data obtained from angiographic, cast‐morphometric, and in vivo experimental studies in the literature. The least energy principle on the total energy basis provides an alternate concept of optimality relating to mammalian arterial fractal dimensions under α = 1.0. PMID:24744905
Nonlinear elastic effects on the energy flux deviation of ultrasonic waves in gr/ep composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1992-01-01
The effects of nonlinear elasticity on energy flux deviation in undirectional gr/ep composites are examined. The shift in the flux deviation is modeled using acoustoelasticity theory and the second- and third-order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress are considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3), while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1). For both conditions, the change in the energy flux deviation angle from the condition of zero applied stress is computed over the range of propagation directions of 0 to 60 deg from the fiber axis at two-degree intervals. A positive flux deviation angle implies the energy deviates away from the fiber direction toward the x1 axis, while a negative deviation means that the energy deviates toward the fibers. Over this range of fiber orientation angles, the energy of the quasi-longitudinal and pure mode transverse waves deviates toward the fibers, while that of the quasi-transverse mode deviates away from the fibers.
Kawano, Toshihiko; Talou, Patrick
2012-09-18
The statistical theories - the Hauser-Feshbach model with the width fluctuation correction - play a central role in studying nuclear reactions in the fast energy region, hence the statistical model codes are essential for the nuclear data evaluations nowadays. In this paper, we revisit issues regarding the statistical model calculations in the fast energy range, such as the inclusion of the direct channels, and the energy averaged cross sections using different statistical assumptions. Although they have been discussed for a long time, we need more precise quantitative investigations to understand uncertainties coming from the models deficiencies in the fast energy range. For example, the partition of compound formation cross section into the elastic and inelastic channels depends on the elastic enhancement factor calculated from the statistical models. In addition, unitarity of S-matrix constrains this partition when the direct reactions are involved. Practically some simple assumptions, which many nuclear reaction model codes adopt, may work reasonably for the nuclear data evaluations. However, the uncertainties on the evaluated cross sections cannot go lower than the model uncertainty itself. We perform numerical simulations by generating the resonances using the R-matrix theory, and compare the energy (ensemble) averaged cross sections with the statistical theories, such as the theories of Moldauer, HRTW (Hofmann, Richert, Tepel, and Weidenmueller), KKM (Kawai-Kerman-McVoy), and GOE (Gaussian orthogonal ensemble).
Potential of renewable and alternative energy sources
NASA Astrophysics Data System (ADS)
Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.
2015-11-01
The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.
Potential energy of a dinuclear system
Adamyan, G.G.; Antonenko, N.V.; Jolos, R.V.; Ivanova, S.P.; Mel`nikova, O.I.
1994-11-01
An effective method for calculating the potential energy of a dinuclear system is proposed. Analytic expressions for calculating the nuclear part of the nucleus-nucleus potential in the double-folding form are obtained. A relationship between this potential and the proximity potential is found. Effects of deformation and mutual orientation of nuclei on the interaction potential are studied. It follows from a comparison of calculated potential energies with nuclear binding energies that excited states of some nuclei can be treated as dinuclear or trinuclear systems. 27 refs., 7 figs.
Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal
NASA Astrophysics Data System (ADS)
Tian, Yao; Gray, Mason J.; Ji, Huiwen; Cava, R. J.; Burch, Kenneth S.
2016-06-01
Cr2Ge2Te6 has been of interest for decades, as it is one of only a few naturally forming ferromagnetic semiconductors. Recently, this material has been revisited due to its potential as a two-dimensional semiconducting ferromagnet and a substrate to induce anomalous quantum Hall states in topological insulators. However, many relevant properties of Cr2Ge2Te6 still remain poorly understood, especially the spin-phonon coupling crucial to spintronic, multiferrioc, thermal conductivity, magnetic proximity and the establishment of long range order on the nanoscale. We explore the interplay between the lattice and magnetism through high resolution micro-Raman scattering measurements over the temperature range from 10 to 325 K. Strong spin-phonon coupling effects are confirmed from multiple aspects: two low energy modes splits in the ferromagnetic phase, magnetic quasielastic scattering in the paramagnetic phase, the phonon energies of three modes show clear upturn below T C, and the phonon linewidths change dramatically below T C as well. Our results provide the first demonstration of spin-phonon coupling in a potential two-dimensional atomic crystal.
Menti, C; Henriques, J A P; Missell, F P; Roesch-Ely, M
2016-07-01
This work describes the design and development process of an immunosensor. The creation of such devices goes through various steps, which complement each other, and choosing an efficient immobilization method that binds to a specific target is essential to achieve satisfactory diagnostic results. In this perspective, the emphasis here is on developing biosensors based on binding antigens/antibodies on particular surfaces of magneto-elastic sensors. Different aspects leading to the improvement of these sensors, such as the antibody structure, the chemical functionalization of the surface, and cross-linking antibody reticulation were summarized and discussed. This paper deals with the progress of magneto-elastic immunosensors to detect bacterial pathogens and associated toxins. Biologically modified surface characterization methods are further considered. Thus, research opportunities and trends of future development in these areas are finally discussed. PMID:27245676
Al-Mutairi, N.H.; Eltony, M.N.
1995-12-31
This paper estimates the demand for energy in Kuwait for the period 1965-1989 using two econometric models: a cointegration and error correction model (ECM) and a simultaneous-equation model (SEM). The results obtained from both models are similar. It is found that the energy demand is inelastic with respect to price in the short and long run, and while it is elastic in the long run, the energy demand is inelastic with respect to income in the short run. Both models` validation shows that the ECM performed better in replicating the past than the simultaneous model, suggesting the need to use the ECM to identify future prospects for energy demand in Kuwait.
Analysis of Elastic Scattering of 8He+208Pb System at around the Coulomb Barrier Energies
NASA Astrophysics Data System (ADS)
Direkci, M.; Kucuk, Y.; Boztosun, I.
2015-04-01
The elastic scattering angular distribution of 8He+208Pb system is investigated at Elab = 22.0 MeV within the framework of Optical Model by using phenomenological and microscopic potentials. For the phenomenological Optical Model calculations, both real and imaginary parts of the complex nuclear potential have been chosen to have the Wood-Saxon shape. In the microscopic Optical Model calculations, we have used double folding procedure to calculate the real part of optical potential for different kinds of density distributions of 8He. A comparative study of this system has been conducted for the fist time by using phenomenological and microscopic potentials. It is observed that large imaginary radius value due to the existence of long-range absorption mechanism acting at large distances provides a very good agreement between theoretical results and experimental data with small χ2/N values.
Exam Question Exchange: Potential Energy Surfaces.
ERIC Educational Resources Information Center
Alexander, John J., Ed.
1988-01-01
Presents three examination questions, graded in difficulty, that explore the topic of potential energy surfaces using a diagrammatic approach. Provides and discusses acceptable solutions including diagrams. (CW)
Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma
Dzhumagulova, K. N. Shalenov, E. O.; Ramazanov, T. S.
2015-08-15
Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.
The capacity of the human iliotibial band to store elastic energy during running.
Eng, Carolyn M; Arnold, Allison S; Lieberman, Daniel E; Biewener, Andrew A
2015-09-18
The human iliotibial band (ITB) is a poorly understood fascial structure that may contribute to energy savings during locomotion. This study evaluated the capacity of the ITB to store and release elastic energy during running, at speeds ranging from 2-5m/s, using a model that characterizes the three-dimensional musculoskeletal geometry of the human lower limb and the force-length properties of the ITB, tensor fascia lata (TFL), and gluteus maximus (GMax). The model was based on detailed analyses of muscle architecture, dissections of 3-D anatomy, and measurements of the muscles' moment arms about the hip and knee in five cadaveric specimens. The model was used, in combination with measured joint kinematics and published EMG recordings, to estimate the forces and corresponding strains in the ITB during running. We found that forces generated by TFL and GMax during running stretch the ITB substantially, resulting in energy storage. Anterior and posterior regions of the ITB muscle-tendon units (MTUs) show distinct length change patterns, in part due to different moment arms at the hip and knee. The posterior ITB MTU likely stores more energy than the anterior ITB MTU because it transmits larger muscle forces. We estimate that the ITB stores about 1J of energy per stride during slow running and 7J during fast running, which represents approximately 14% of the energy stored in the Achilles tendon at a comparable speed. This previously unrecognized mechanism for storing elastic energy may be an adaptation to increase human locomotor economy. PMID:26162548
Energy scavenging from acousto-elastic metamaterial using local resonance phenomenon
NASA Astrophysics Data System (ADS)
Ahmed, Riaz U.; Adiba, Afifa; Banerjee, Sourav
2015-04-01
This article presents the possibility of energy scavenging (ES) utilizing the physics of acousto-elastic metamaterial (AEMM) and use them in a dual mode (Acoustic Filter and Energy Harvester), simultaneously. Concurrent wave filtering and energy harvesting mechanism is previously presented using local resonance phenomenon in phononic crystal, however energy harvesting capabilities of AEMM is not reported extensively. Traditionally acoustic metamaterials are used in filtering acoustic waves by trapping or guiding the acoustic energy, whereas this work presents that the trapped dynamic energy inside the soft constituent (matrix) of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell model, we asserted that at lower acoustic frequencies maximum power in the micro Watts (~36μW) range can be generated, which is significantly higher than the existing harvesters of same kind. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. In this work we propose sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a broadband energy scavenger (ES) with multi-cell model is designed with varying geometrical properties.
NASA Astrophysics Data System (ADS)
Gómez Camacho, A.; Gomes, P. R. S.; Lubian, J.; Padrón, I.
2008-05-01
A simultaneous optical model calculation of elastic scattering, complete fusion, and breakup cross sections for energies around the Coulomb barrier is presented for reactions involving the weakly bound projectile Be9 on the medium size target Sm144. In the calculations, the nuclear polarization potential U is split into a volume part UF, which is responsible for fusion reactions, and a surface part UDR, which accounts for direct reactions. A simultaneous χ2 analysis of elastic and complete fusion data shows that the extracted optical potential parameters of the real VF and imaginary WF parts of UF and the corresponding parts VDR and WDR of UDR satisfy separately the dispersion relation. Energy-dependent forms for the fusion and direct reaction potentials indicate that, at the strong absorption radius, the direct reaction potentials dominate over the fusion potentials. Moreover, the imaginary direct reaction potential results in a rather smooth function of E around the barrier energy. These findings show that the threshold anomaly, usually present in reactions with tightly bound projectiles, is not exhibited for the system Be9+Sm144. Within this formalism, the effect of breakup reactions on complete fusion is studied by turning on and off the potentials responsible for breakup reactions.
Nguyen, Ba Nghiep; Paquette, Joshua
2010-08-01
Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright © Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.
Zarkevich, Nikolai A.; Johnson, Duane D.
2015-01-09
The nudged-elastic band (NEB) method is modified with concomitant two climbing images (C2-NEB) to find a transition state (TS) in complex energy landscapes, such as those with a serpentine minimal energy path (MEP). If a single climbing image (C1-NEB) successfully finds the TS, then C2-NEB finds it too. Improved stability of C2-NEB makes it suitable for more complex cases, where C1-NEB misses the TS because the MEP and NEB directions near the saddle point are different. Generally, C2-NEB not only finds the TS, but guarantees, by construction, that the climbing images approach it from the opposite sides along the MEP. In addition, C2-NEB provides an accuracy estimate from the three images: the highest-energy one and its climbing neighbors. C2-NEB is suitable for fixed-cell NEB and the generalized solid-state NEB.
Zarkevich, Nikolai A.; Johnson, Duane D.
2015-01-09
The nudged-elastic band (NEB) method is modified with concomitant two climbing images (C2-NEB) to find a transition state (TS) in complex energy landscapes, such as those with a serpentine minimal energy path (MEP). If a single climbing image (C1-NEB) successfully finds the TS, then C2-NEB finds it too. Improved stability of C2-NEB makes it suitable for more complex cases, where C1-NEB misses the TS because the MEP and NEB directions near the saddle point are different. Generally, C2-NEB not only finds the TS, but guarantees, by construction, that the climbing images approach it from the opposite sides along the MEP.more » In addition, C2-NEB provides an accuracy estimate from the three images: the highest-energy one and its climbing neighbors. C2-NEB is suitable for fixed-cell NEB and the generalized solid-state NEB.« less
Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting
NASA Astrophysics Data System (ADS)
Tol, S.; Degertekin, F. L.; Erturk, A.
2016-08-01
We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.
Shear effects on energy dissipation from an elastic beam on a rigid foundation
Brink, Adam Ray; Quinn, D. Dane
2015-10-20
This paper describes the energy dissipation arising from microslip for an elastic shell incorporating shear and longitudinal deformation resting on a rough-rigid foundation. This phenomenon is investigated using finite element (FE) analysis and nonlinear geometrically exact shell theory. Both approaches illustrate the effect of shear within the shell and observe a reduction in the energy dissipated from microslip as compared to a similar system neglecting shear deformation. In particular, it is found that the shear deformation allows for load to be transmitted beyond the region of slip so that the entire interface contributes to the load carrying capability of themore » shell. The energy dissipation resulting from the shell model is shown to agree well with that arising from the FE model, and this representation can be used as a basis for reduced order models that capture the microslip phenomenon.« less
Shear effects on energy dissipation from an elastic beam on a rigid foundation
Brink, Adam Ray; Quinn, D. Dane
2015-10-20
This paper describes the energy dissipation arising from microslip for an elastic shell incorporating shear and longitudinal deformation resting on a rough-rigid foundation. This phenomenon is investigated using finite element (FE) analysis and nonlinear geometrically exact shell theory. Both approaches illustrate the effect of shear within the shell and observe a reduction in the energy dissipated from microslip as compared to a similar system neglecting shear deformation. In particular, it is found that the shear deformation allows for load to be transmitted beyond the region of slip so that the entire interface contributes to the load carrying capability of the shell. The energy dissipation resulting from the shell model is shown to agree well with that arising from the FE model, and this representation can be used as a basis for reduced order models that capture the microslip phenomenon.
Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial
NASA Astrophysics Data System (ADS)
Ahmed, Riaz U.; Banerjee, Sourav
2014-11-01
This letter presents the possibility of energy scavenging (ES) utilizing the physics of acousto-elastic metamaterial (AEMM) at low frequencies (<˜3KHz). It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester), simultaneously. AEMM's are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix) of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ˜3 KHz), maximum power in the micro Watts (˜35µW) range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (˜30nW) power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES) with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ˜10µW - ˜90µW) between 0.2 KHz and 1.5 KHz acoustic frequencies.
Elastic energy in locomotion: Spring-mass vs. poly-articulated models.
Moretto, Pierre; Villeger, David; Costes, Antony; Watier, Bruno
2016-07-01
The human is often modeled as a Poly-Articulated Model (PAM) with rigid segments while some authors use a Spring Mass Model (SMM) for modeling locomotion. These two models are considered independent, and the objective of this study was to link them in order to enlighten the origin of the elasticity in locomotion. Using the characteristics of the two models, a theoretical relationship demonstrates that the variation of elastic energy of the SMM equals the variation of the internal kinetic energy minus internal forces work of the PAM. This theoretical relationship was experimentally investigated among 19 healthy participants walking and running on a treadmill. The results showed that the equality is verified except during the double support phase at 0.56ms(-1), at high walking speeds (1.67 and 2.22ms(-1)) or during the aerial phase of running. The formal relationship showed that the global stiffness of the SMM is directly related to the work of the internal forces of the PAM, and thus, to the characteristics of the musculoskeletal system. It also showed the relevance of taking into account the participation of each joint in the global stiffness. Finally, the coordination of internal forces work to produce a global stiffness may be considered as a new criterion of movement optimization for clinical purposes or motion planning for humanoid robots. PMID:27285478
Water Holding as Determinant for the Elastically Stored Energy in Protein-Based Gels.
Pouvreau, Laurice; van Wijlen, Emke; Klok, Jan; Urbonaite, Vaida; Munialo, Claire D; de Jongh, Harmen H J
2016-04-01
To evaluate the importance of the water holding capacity for the elastically stored energy of protein gels, a range of gels were created from proteins from different origin (plant: pea and soy proteins, and animal: whey, blood plasma, egg white proteins, and ovalbumin) varying in network morphology set by the protein concentration, pH, ionic strength, or the presence of specific ions. The results showed that the observed positive and linear relation between water holding (WH) and elastically stored energy (RE) is generic for globular protein gels studied. The slopes of this relation are comparable for all globular protein gels (except for soy protein gels) whereas the intercept is close to 0 for most of the systems except for ovalbumin and egg white gels. The slope and intercept obtained allows one to predict the impact of tuning WH, by gel morphology or network stiffness, on the mechanical deformation of the protein-based gel. Addition of charged polysaccharides to a protein system leads to a deviation from the linear relation between WH and RE and this deviation coincides with a change in phase behavior. PMID:26894687
Elastic cross sections for low-energy electron collisions with tetrahydropyran
NASA Astrophysics Data System (ADS)
Souza Barbosa, Alessandra; Bettega, Márcio H. F.
2016-02-01
We report on calculated elastic cross sections for low-energy electron collisions with the cyclic ether tetrahydropyran (C5H10O). The calculations were carried out with the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange-polarization approximation for energies up to 20 eV. Our cross sections are compared with previous results obtained for cyclohexane and 1,4-dioxane, since the three molecules present similar structures. The calculated differential cross sections for these three molecules present similarities, except at low scattering angles, where the differential cross sections of tetrahydropyran present a sharp increase due to the permanent dipole moment of the molecule. The similarities observed in the cross sections reveal that the molecular geometry plays an important role in the description of scattering process. We also compared our calculated elastic integral cross section for tetrahydropyran with experimental total cross sections data available in the literature and found a good qualitative agreement between both results. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Elastic cross sections for low-energy electron collisions with tetrahydropyran
NASA Astrophysics Data System (ADS)
Barbosa, Alessandra Souza; Bettega, Márcio H. F.
2016-02-01
We report on calculated elastic cross sections for low-energy electron collisions with the cyclic ether tetrahydropyran (C5H10O). The calculations were carried out with the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange-polarization approximation for energies up to 20 eV. Our cross sections are compared with previous results obtained for cyclohexane and 1,4-dioxane, since the three molecules present similar structures. The calculated differential cross sections for these three molecules present similarities, except at low scattering angles, where the differential cross sections of tetrahydropyran present a sharp increase due to the permanent dipole moment of the molecule. The similarities observed in the cross sections reveal that the molecular geometry plays an important role in the description of scattering process. We also compared our calculated elastic integral cross section for tetrahydropyran with experimental total cross sections data available in the literature and found a good qualitative agreement between both results.
Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra
NASA Astrophysics Data System (ADS)
Tosaki, Mitsuo; Rauhala, Eero
2015-10-01
Backscattering spectra for 4He ions incident on carbon allotropes have been measured in the energy range from 4.30 to 4.95 MeV in steps of 50-100 keV at scattering angles of 106° and 170°. We used three carbon allotropes: graphite, diamond and amorphous carbon. For all these allotropes, we can observe the sharp (4He, 12C) elastic nuclear resonance at the He ion energy of 4.265 MeV in the backscattering spectra. By varying the incident He energy, we have systematically analyzed the profiles of the resonance peaks to study the energy-loss processes: stopping cross-sections and energy-loss straggling around the interesting region of the stopping maximum at about 500 keV. We focus on the resonance profiles and investigate an allotropic effect concerning the energy-loss. Furthermore, an energy bunching effect on the straggling is presented and the mechanism is discussed.
Energy potential of modern landfills
Bogner, J.E.
1990-01-01
Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.
Geothermal Energy Potential in Western United States
ERIC Educational Resources Information Center
Pryde, Philip R.
1977-01-01
Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)
Lai, Adrian; Schache, Anthony G; Lin, Yi-Chung; Pandy, Marcus G
2014-09-01
The human ankle plantar-flexors, the soleus and gastrocnemius, utilize tendon elastic strain energy to reduce muscle fiber work and optimize contractile conditions during running. However, studies to date have considered only slow to moderate running speeds up to 5 m s(-1). Little is known about how the human ankle plantar-flexors utilize tendon elastic strain energy as running speed is advanced towards maximum sprinting. We used data obtained from gait experiments in conjunction with musculoskeletal modeling and optimization techniques to calculate muscle-tendon unit (MTU) work, tendon elastic strain energy and muscle fiber work for the ankle plantar-flexors as participants ran at five discrete steady-state speeds ranging from jogging (~2 m s(-1)) to sprinting (≥8 m s(-1)). As running speed progressed from jogging to sprinting, the contribution of tendon elastic strain energy to the positive work generated by the MTU increased from 53% to 74% for the soleus and from 62% to 75% for the gastrocnemius. This increase was facilitated by greater muscle activation and the relatively isometric behavior of the soleus and gastrocnemius muscle fibers. Both of these characteristics enhanced tendon stretch and recoil, which contributed to the bulk of the change in MTU length. Our results suggest that as steady-state running speed is advanced towards maximum sprinting, the human ankle plantar-flexors continue to prioritize the storage and recovery of tendon elastic strain energy over muscle fiber work. PMID:24948642
Sub-wavelength energy trapping of elastic waves in a metamaterial.
Colombi, Andrea; Roux, Philippe; Rupin, Matthieu
2014-08-01
Deep sub-wavelength focusing has been demonstrated for locally resonant metamaterials using electromagnetic and acoustic waves. The elastic equivalents of such objects are made of sub-wavelength resonating beams fixed to a two-dimensional plate, as presented here. Independent of a random or regular arrangement of the resonators, the metamaterial shows large bandgaps that are independent of the incident wave direction. Numerical simulations demonstrate that the insertion of a defect in the layout, as a shorter resonator, creates strong amplification of the wave-field on the defect. This energy trapping, which is localized on a spatial scale that is much smaller than the wavelength in the two-dimensional plate, leads to a >1 factor in terms of the local density of energy. PMID:25096146
NASA Astrophysics Data System (ADS)
Saleem, Mohammed; Morlot, Sandrine; Hohendahl, Annika; Manzi, John; Lenz, Martin; Roux, Aurélien
2015-02-01
In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy.
Cross sections for elastic electron scattering by tetramethylsilane in the intermediate-energy range
Sugohara, R. T.; Lee, M.-T.; Iga, I.; Souza, G. L. C. de; Homem, M. G. P.
2011-12-15
Organosilicon compounds are of current interest due to the numerous applications of these species in industries. Some of these applications require the knowledge of electron collision cross sections, which are scarce for such compounds. In this work, we report absolute values of differential, integral, and momentum-transfer cross sections for elastic electron scattering by tetramethylsilane (TMS) measured in the 100-1000 eV energy range. The relative-flow technique is used to normalize our data. In addition, the independent-atom-model (IAM) and the additivity rule (AR), widely used to model electron collisions with light hydrocarbons, are also applied for e{sup -}-TMS interaction. The comparison of our measured results of cross sections and the calculated data shows good agreement, particularly near the higher-end of incident energies.
Saleem, Mohammed; Morlot, Sandrine; Hohendahl, Annika; Manzi, John; Lenz, Martin; Roux, Aurélien
2015-01-01
In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy. PMID:25695735
Saleem, Mohammed; Morlot, Sandrine; Hohendahl, Annika; Manzi, John; Lenz, Martin; Roux, Aurélien
2015-01-01
In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy. PMID:25695735
NASA Astrophysics Data System (ADS)
Xiao, Si; Wang, He-Ling; Liu, Bin; Hwang, Keh-Chih
2015-11-01
The J-integral based criterion is widely used in elastic-plastic fracture mechanics. However, it is not rigorously applicable when plastic unloading appears during crack propagation. One difficulty is that the energy density with plastic unloading in the J-integral cannot be defined unambiguously. In this paper, we alternatively start from the analysis on the power balance, and propose a surface-forming energy release rate (ERR), which represents the energy available for separating the crack surfaces during the crack propagation and excludes the loading-mode-dependent plastic dissipation. Therefore the surface-forming ERR based fracture criterion has wider applicability, including elastic-plastic crack propagation problems. Several formulae are derived for calculating the surface-forming ERR. From the most concise formula, it is interesting to note that the surface-forming ERR can be computed using only the stress and deformation of the current moment, and the definition of the energy density or work density is avoided. When an infinitesimal contour is chosen, the expression can be further simplified. For any fracture behaviors, the surface-forming ERR is proven to be path-independent, and the path-independence of its constituent term, so-called Js-integral, is also investigated. The physical meanings and applicability of the proposed surface-forming ERR, traditional ERR, Js-integral and J-integral are compared and discussed. Besides, we give an interpretation of Rice paradox by comparing the cohesive fracture model and the surface-forming ERR based fracture criterion.
Wave Energy Potential in the Latvian EEZ
NASA Astrophysics Data System (ADS)
Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.
2016-06-01
The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.
Exploring elasticity and energy dissipation in mussel-inspired hydrogel transient networks
NASA Astrophysics Data System (ADS)
Grindy, Scott; Learsch, Robert; Holten-Andersen, Niels
Dynamic, reversible crosslinks have been shown to specifically control the mechanical properties of a wide variety of mechanically tough and resilient biomaterials. We have shown that reversible histidine-metal ion interactions, known to contribute to the strong mechanical properties and self-healing nature of mussel byssal threads, can be used to control and engineer the temporally-hierarchical mechanical properties of model hydrogels orthogonally from the spatial structure of the material. Here, we explore the scaling relationships in our model networks to further inform our abilities to control the relative elasticity and energy dissipation on hierarchical timescales. Scaling arguments suggest that the elasticity is dominated by long-range entanglements, while the dissipation is controlled by the exchange kinetics of the transient crosslinks. Further, we show that by using UV light, we can further control the viscoelastic properties of our mussel-inspired hydrogels in situ. This process opens the door for creating biocompatible hydrogel materials with arbitrary spatial control over their viscoelastic mechanical properties. Overall, we show that by understanding the interplay between bio-inspired dynamic crosslinks and soft matter physics allows us to rationally design high-strength hydrogels for specific states of dynamic loading.
Investigation of the interwire energy transfer of elastic guided waves inside prestressed cables.
Treyssède, Fabien
2016-07-01
Elastic guided waves are of interest for the non-destructive evaluation of cables. Cables are most often multi-wire structures, and understanding wave propagation requires numerical models accounting for the helical geometry of individual wires, the interwire contact mechanisms and the effects of prestress. In this paper, a modal approach based on a so-called semi-analytical finite element method and taking advantage of a biorthogonality relation is proposed in order to calculate the forced response under excitation of a cable, multi-wired, twisted, and prestressed. The main goal of this paper is to investigate how the energy transfers from a given wire, directly excited, to the other wires in order to identify some localization of energy inside the active wire as the waves propagate along the waveguide. The power flow of the excited field is theoretically derived and an energy transfer parameter is proposed to evaluate the level of energy localization inside a given wire. Numerical results obtained for different polarizations of excitation, central and peripheral, highlight how the energy may localize, spread, or strongly change in the cross-section as waves travel along the axis. In particular, a compressional mode localized inside the central wire is found, with little dispersion and significant excitability. PMID:27475173
NASA Astrophysics Data System (ADS)
Xu, H.; Wittmer, J. P.; Polińska, P.; Baschnagel, J.
2012-10-01
The truncation of a pair potential at a distance rc is well known to imply, in general, an impulsive correction to the pressure and other moments of the first derivatives of the potential. That, depending on rc, the truncation may also be of relevance to higher derivatives is shown theoretically for the Born contributions to the elastic moduli obtained using the stress-fluctuation formalism in d dimensions. Focusing on isotropic liquids for which the shear modulus G must vanish by construction, the predicted corrections are tested numerically for binary mixtures and polydisperse Lennard-Jones beads in, respectively, d=3 and 2 dimensions. Both models being glass formers, we comment briefly on the temperature (T) dependence of the (corrected) shear modulus G(T) around the glass transition temperature Tg.
Zhang, Jiayong; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang
2016-09-01
A free-end adaptive nudged elastic band (FEA-NEB) method is presented for finding transition states on minimum energy paths, where the energy barrier is very narrow compared to the whole paths. The previously proposed free-end nudged elastic band method may suffer from convergence problems because of the kinks arising on the elastic band if the initial elastic band is far from the minimum energy path and weak springs are adopted. We analyze the origin of the formation of kinks and present an improved free-end algorithm to avoid the convergence problem. Moreover, by coupling the improved free-end algorithm and an adaptive strategy, we develop a FEA-NEB method to accurately locate the transition state with the elastic band cut off repeatedly and the density of images near the transition state increased. Several representative numerical examples, including the dislocation nucleation in a penta-twinned nanowire, the twin boundary migration under a shear stress, and the cross-slip of screw dislocation in face-centered cubic metals, are investigated by using the FEA-NEB method. Numerical results demonstrate both the stability and efficiency of the proposed method. PMID:27608986
NASA Astrophysics Data System (ADS)
Zenkour, Ashraf M.; Abbas, Ibrahim A.
2015-12-01
The electro-magneto-thermo-elastic analysis problem of an infinite functionally graded (FG) hollow cylinder is studied in the context of Green-Naghdi's (G-N) generalized thermoelasticity theory (without energy dissipation). Material properties are assumed to be graded in the radial direction according to a novel power-law distribution in terms of the volume fractions of the metal and ceramic constituents. The inner surface of the FG cylinder is pure metal whereas the outer surface is pure ceramic. The equations of motion and the heat-conduction equation are used to derive the governing second-order differential equations. A finite element scheme is presented for the numerical purpose. The system of differential equations is solved numerically and some plots for displacement, radial and electromagnetic stresses, and temperature are presented. The radial displacement, mechanical stresses and temperature as well as the electromagnetic stress are all investigated along the radial direction of the infinite cylinder.
Fully microscopic description of elastic and inelastic scattering at intermediate incident energies
NASA Astrophysics Data System (ADS)
Minomo, Kosho; Kohno, Michio; Toyokawa, Masakazu; Yahiro, Masanobu; Ogata, Kazuyuki
2016-06-01
We aim for fully microscopic understanding of many-body nuclear reactions starting from two- and three-nucleon forces based on chiral effective field theory (Ch-EFT). We first construct a g-matrix with the nuclear forces based on Ch-EFT using Brueckner-Hartree-Fock theory, in which the three-nucleon force effects are represented through the density dependence of the g-matrix. Then, the folding model and microscopic coupled-channels method with the g-matrix are applied to nucleon-nucleus and nucleus-nucleus scattering at intermediate incident energies. This new microscopic framework well describes the elastic and inelastic cross sections with no ad-hoc parameters. In addition, the three-nucleon force and coupled-channels effects on many-body nuclear reactions are clarified.
Elastic proton scattering at intermediate energies as a probe of the He,86 nuclear matter densities
NASA Astrophysics Data System (ADS)
Chung, Le Xuan; Kiselev, Oleg A.; Khoa, Dao T.; Egelhof, Peter
2015-09-01
The Glauber model analysis of the elastic He,86+p scattering data at energies around 700 MeV/nucleon, measured in two separate experiments at GSI-Darmstadt, has been carried out using several phenomenological parametrizations of the nuclear matter density. By taking into account the new data points measured at high-momentum transfer, the nuclear matter radii of ,8He6 have been accurately determined from the Glauber model analysis of the data, with the spin-orbital interaction explicitly taken into account. The well-known geometry for the core and dineutron halo has been used with the new parametrizations of the 6He density to extract the detailed information on the structure of 6He in terms of the core and dineutron halo radii. An enhanced sensitivity of the data measured at high-momentum transfer to the core part of the 6,8He densities has been found.
Elastic scattering of low-energy electrons by 1,4-dioxane
Barbosa, Alessandra Souza; Bettega, Márcio H. F.
2014-05-14
We report calculated cross sections for elastic collisions of low-energy-electrons with 1,4-dioxane. Our calculations employed the Schwinger multichannel method with pseudopotentials and were carried out in the static-exchange and static-exchange plus polarization approximations for energies up to 30 eV. Our results show the presence of three shape resonances belonging to the B{sub u}, A{sub u}, and B{sub g} symmetries and located at 7.0 eV, 8.4 eV, and 9.8 eV, respectively. We also report the presence of a Ramsauer-Townsend minimum located at around 0.05 eV. We compare our calculated cross sections with experimental data and R-matrix and independent atom model along with the additivity rule corrected by using screening coefficients theoretical results for 1,4-dioxane obtained by Palihawadana et al. [J. Chem. Phys. 139, 014308 (2013)]. The agreement between the present and the R-matrix theoretical calculations of Palihawadana et al. is relatively good at energies below 10 eV. Our calculated differential cross sections agree well with the experimental data, showing only some discrepancies at higher energies.
Elastic scattering of low-energy electrons by 1,4-dioxane
NASA Astrophysics Data System (ADS)
Barbosa, Alessandra Souza; Bettega, Márcio H. F.
2014-05-01
We report calculated cross sections for elastic collisions of low-energy-electrons with 1,4-dioxane. Our calculations employed the Schwinger multichannel method with pseudopotentials and were carried out in the static-exchange and static-exchange plus polarization approximations for energies up to 30 eV. Our results show the presence of three shape resonances belonging to the Bu, Au, and Bg symmetries and located at 7.0 eV, 8.4 eV, and 9.8 eV, respectively. We also report the presence of a Ramsauer-Townsend minimum located at around 0.05 eV. We compare our calculated cross sections with experimental data and R-matrix and independent atom model along with the additivity rule corrected by using screening coefficients theoretical results for 1,4-dioxane obtained by Palihawadana et al. [J. Chem. Phys. 139, 014308 (2013)]. The agreement between the present and the R-matrix theoretical calculations of Palihawadana et al. is relatively good at energies below 10 eV. Our calculated differential cross sections agree well with the experimental data, showing only some discrepancies at higher energies.
Wind energy in China: Estimating the potential
NASA Astrophysics Data System (ADS)
Yuan, Jiahai
2016-07-01
Persistent and significant curtailment has cast concern over the prospects of wind power in China. A comprehensive assessment of the production of energy from wind has identified grid-integrated wind generation potential at 11.9–14% of China's projected energy demand by 2030.
Potential of energy production from conserved forages
Technology Transfer Automated Retrieval System (TEKTRAN)
Forages have a potential role in meeting the demand for energy. Perennial forages are attractive for various reasons. One, both the monetary and energy cost of planting is spread over many years. Two, we already have the equipment for harvesting, storing and transporting this source of biomass. Thre...
Theoretical studies of potential energy surfaces
Harding, L.B.
1995-07-01
MRCI (configuration interaction) calculations were used to examine possible pathways for the O{sub 2} + CCH reaction. The H{sub 2} + CN potential surface was examined. An initial survey was made of the HCl + CN potential energy surface at a low level of theory.
NASA Astrophysics Data System (ADS)
Gomes, P. R. S.; Lubian, J.; Canto, L. F.; Otomar, D. R.; Junior, D. R. Mendes; de Faria, P. N.; Linares, R.; Sigaud, L.; Rangel, J.; Ferreira, J. L.; Ferioli, E.; Paes, B.; Cardozo, E. N.; Cortes, M. R.; Ermamatov, M. J.; Lotti, P.; Hussein, M. S.
2016-03-01
We present a brief review of the reaction mechanisms involved in collisions of weakly bound projectiles with tightly bound targets, at near-barrier energies. We discuss systematic behaviors of the data, with emphasis in fusion, breakup, nucleon transfer and elastic scattering. The dependence of the breakup cross section on the charge and mass of the target is discussed, and the influence of the breakup channel on complete fusion is investigated. For this purpose, we compare reduced fusion cross sections with a benchmark universal curve. The behaviors observed in the comparisons are explained in terms of polarization potentials and of nucleon transfer followed by breakup. The influence of the breakup process on elastic scattering is also discussed. Some apparent contradictions between results of different authors are explained and some perspectives of the field are presented.
Economic Energy Savings Potential in Federal Buildings
Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.
2000-09-04
The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.
McCarty, K.F. )
1999-09-01
We address whether the elastic strain-energy theory (minimizing the Gibbs energy of a stressed crystal) of McKenzie and co-workers [D. R. McKenzie and M. M. M. Bilek, J. Vac. Sci. Technol. A [bold 16], 2733 (1998)] adequately explains the preferred orientation observed in carbon and BN films. In the formalism, the Gibbs energy of the cubic materials diamond and cubic boron includes the strain that occurs when the phases form, through specific structural transformations, from graphitic precursors. This treatment violates the requirement of thermodynamics that the Gibbs energy be a path-independent, state function. If the cubic phases are treated using the same (path-independent) formalism applied to the graphitic materials, the crystallographic orientation of lowest Gibbs energy is not that observed experimentally. For graphitic (hexagonal) carbon and BN, an elastic strain approach seems inappropriate because the compressive stresses in energetically deposited films are orders of magnitude higher than the elastic limit of the materials. Furthermore, using the known elastic constants of either ordered or disordered graphitic materials, the theory does not predict the orientation observed by experiment. [copyright] [ital 1999 American Vacuum Society.
3D printed elastic honeycombs with graded density for tailorable energy absorption
NASA Astrophysics Data System (ADS)
Bates, Simon R. G.; Farrow, Ian R.; Trask, Richard S.
2016-04-01
This work describes the development and experimental analysis of hyperelastic honeycombs with graded densities, for the purpose of energy absorption. Hexagonal arrays are manufactured from thermoplastic polyurethane (TPU) via fused filament fabrication (FFF) 3D printing and the density graded by varying cell wall thickness though the structures. Manufactured samples are subject to static compression tests and their energy absorbing potential analysed via the formation of energy absorption diagrams. It is shown that by grading the density through the structure, the energy absorption profile of these structures can be manipulated such that a wide range of compression energies can be efficiently absorbed.
Ferruzzi, J; Bersi, M R; Uman, S; Yanagisawa, H; Humphrey, J D
2015-03-01
Central artery stiffness has emerged over the past 15 years as a clinically significant indicator of cardiovascular function and initiator of disease. Loss of elastic fiber integrity is one of the primary contributors to increased arterial stiffening in aging, hypertension, and related conditions. Elastic fibers consist of an elastin core and multiple glycoproteins; hence defects in any of these constituents can adversely affect arterial wall mechanics. In this paper, we focus on mechanical consequences of the loss of fibulin-5, an elastin-associated glycoprotein involved in elastogenesis. Specifically, we compared the biaxial mechanical properties of five central arteries-the ascending thoracic aorta, descending thoracic aorta, suprarenal abdominal aorta, infrarenal abdominal aorta, and common carotid artery-from male and female wild-type and fibulin-5 deficient mice. Results revealed that, independent of sex, all five regions in the fibulin-5 deficient mice manifested a marked increase in structural stiffness but also a marked decrease in elastic energy storage and typically an increase in energy dissipation, with all differences being most dramatic in the ascending and abdominal aortas. Given that the primary function of large arteries is to store elastic energy during systole and to use this energy during diastole to work on the blood, fibulin-5 deficiency results in a widespread diminishment of central artery function that can have significant effects on hemodynamics and cardiac function. PMID:25532020
On the Elastic Energy Density of Constrained Q-Tensor Models for Biaxial Nematics
NASA Astrophysics Data System (ADS)
Mucci, Domenico; Nicolodi, Lorenzo
2012-12-01
Within the Landau-de Gennes theory, the order parameter describing a biaxial nematic liquid crystal assigns a symmetric traceless 3 × 3 matrix Q with three distinct eigenvalues to every point of the region Ω occupied by the system. In the constrained case of matrices Q with constant eigenvalues, the order parameter space is diffeomorphic to the eightfold quotient {{S}^3/{H}} of the 3-sphere {{S}^3}, where {{H}} is the quaternion group, and a configuration of a biaxial nematic liquid crystal is described by a map from Ω to {{S}^3/{H}}. We express the (simplest form of the) Landau-de Gennes elastic free-energy density as a density defined on maps {q: Ω to {S}^3}, whose functional dependence is restricted by the requirements that (1) it is well defined on the class of configuration maps from Ω to {{S}^3/{H}} (residual symmetry) and (2) it is independent of arbitrary superposed rigid rotations (frame indifference). As an application of this representation, we then discuss some properties of the corresponding energy functional, including coercivity, lower semicontinuity and strong density of smooth maps. Other invariance properties are also considered. In the discussion, we take advantage of the identification of {{S}^3} with the Lie group of unit quaternions {Sp(1) \\cong SU(2)} and of the relations between quaternions and rotations in {{R}^3} and {{R}^4}.
Chernodub, M N; Lundgren, Martin; Niemi, Antti J
2011-01-01
We present a numerical Monte Carlo analysis of the phase structure in a continuous spin Ising chain that describes chiral homopolymers. We find that depending on the value of the Metropolis temperature, the model displays the three known nontrivial phases of polymers: At low temperatures the model is in a collapsed phase, at medium temperatures it is in a random walk phase, and at high temperatures it enters the self-avoiding random walk phase. By investigating the temperature dependence of the specific energy we confirm that the transition between the collapsed phase and the random walk phase is a phase transition, while the random walk phase and self-avoiding random walk phase are separated from each other by a crossover transition. We propose that the model can be applied to characterize the statistical properties of protein folding. For this we compare the predictions of the model to a phenomenological elastic energy formula, proposed by J. Lei and K. Huang [e-print arXiv:1002.5013; Europhys. Lett. 88, 68004 (2009)] to describe folded proteins. PMID:21405680
NASA Astrophysics Data System (ADS)
Chernodub, M. N.; Lundgren, Martin; Niemi, Antti J.
2011-01-01
We present a numerical Monte Carlo analysis of the phase structure in a continuous spin Ising chain that describes chiral homopolymers. We find that depending on the value of the Metropolis temperature, the model displays the three known nontrivial phases of polymers: At low temperatures the model is in a collapsed phase, at medium temperatures it is in a random walk phase, and at high temperatures it enters the self-avoiding random walk phase. By investigating the temperature dependence of the specific energy we confirm that the transition between the collapsed phase and the random walk phase is a phase transition, while the random walk phase and self-avoiding random walk phase are separated from each other by a crossover transition. We propose that the model can be applied to characterize the statistical properties of protein folding. For this we compare the predictions of the model to a phenomenological elastic energy formula, proposed by J. Lei and K. Huang [e-print arXiv:1002.5013; Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/88/68004 88, 68004 (2009)] to describe folded proteins.
Low-energy elastic electron scattering from isobutanol and related alkyl amines
NASA Astrophysics Data System (ADS)
Fedus, Kamil; Navarro, C.; Hargreaves, L. R.; Khakoo, M. A.; Silva, F. M.; Bettega, M. H. F.; Winstead, C.; McKoy, V.
2014-09-01
Normalized experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from isobutanol (C4H9OH ) are presented. The differential cross sections are measured at incident energies from 1 to 100 eV and scattering angles from 5∘ to 130∘. These cross sections are compared to earlier experimental and theoretical results for isobutanol and n-butanol, as well as to results for smaller alcohols and for alkanes. Further comparisons are made with calculated cross sections for isobutylamine (C4H9NH2) and for smaller amines, including ethylamine (C2H5NH2), dimethylamine (CH3NHCH3), the two C3H7NH2 isomers n-propylamine and isopropylamine, and ethylene diamine (NH2C2H4NH2). The calculated cross sections are obtained using the Schwinger multichannel method. The comparisons illuminate the role of molecular structure in determining the angular distribution of resonantly scattered electrons.
Silicone-based elastic composites able to generate energy on micromechanical impulse
NASA Astrophysics Data System (ADS)
Racles, Carmen; Ignat, Mircea; Bele, Adrian; Dascalu, Mihaela; Lipcinski, Daniel; Cazacu, Maria
2016-08-01
Elastic composites were prepared based on a polydimethylsiloxane-α,ω-diol (M w = 139 000 g mol‑1), different α,ω-bis(trimethylsiloxy)poly(methylcyanopropyl-methylhexyl-methylhydro)siloxanes as the polar group component and TEOS as a cross-linking agent and silica generator. The resulting materials consisted of polar–nonpolar interconnected networks as matrices which had 7.4 or 9.5 wt% in situ generated silica and contained up to 2.74 wt% CN groups. The films formed were tested for electromechanical response to a micromechanical impulse. It was found that their performance was proportional to their electromechanical sensitivity (β = ε‧/Y, where ε‧ is the dielectric permittivity and Y is Young’s modulus); thus it can be adjusted by their composition, via tailoring the dielectric and mechanical properties. The generated voltage peak-to-peak measured was between 3.75 and 12.3 V mm‑1. The best result for the tested materials (i.e. harvested energy of 460 nJ or energy density of 4.6 μJ cm‑3, as a response to a micro-impulse of 0.017 kg m s‑1) was obtained for a film having ε‧ = 3.6 and Y = 0.19 MPa.
Potential energy function for the hydroperoxyl radical
Lemon, W.J.; Hase, W.L.
1987-03-12
A switching function formalism is used to derive an analytic potential energy surface for the O + OH in equilibrium HO/sub 2/ in equilibrium H + O/sub 2/ reactive system. Both experimental and ab initio data are used to derive parameters for the potential energy surface. Trajectory calculations for highly excited HO/sub 2/ are performed on this surface. From these trajectories quasi-periodic eigentrajectories are found for vibrational levels near the HO/sub 2/ dissociation threshold with small amounts of quanta in the OH stretch mode and large amounts of quanta in the OO stretch mode.
Geothermal energy and its potential. [Utah
Berge, C.W.
1980-06-01
A brief review of geothermal energy and its potential as a future energy source is presented. The type of geothermal systems and their geologic occurrence is discussed, and the Phillips Petroleum Company's exploration and drilling programs in the Roosevelt Hot Springs area in parts of Iron, Beaver, and Millard Counties, Utah are detailed. A section on the rock behavior and mechanical properties of rocks in the Roosevelt Hot Springs area is included. (JMT)
Biomass resource potential using energy crops
Wright, L.L.; Cushman, J.H.; Martin, S.A.
1993-09-01
Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.
Potential reduction of DSN uplink energy cost
NASA Technical Reports Server (NTRS)
Dolinsky, S.; Degroot, N. F.
1982-01-01
DSN Earth stations typically transmit more power than that required to meet minimum specifications for uplink performance. Energy and cost savings that could result from matching the uplink power to the amount required for specified performance are studied. The Galileo mission was selected as a case study. Although substantial reduction in transmitted energy is possible, potential savings in source energy (oil or electricity) savings are much less. This is because of the rising inefficiency in power conversion and radio frequency power generation that accompanies reduced power output.
Potential energy studies on silane dimers
NASA Astrophysics Data System (ADS)
Mahlanen, Riina; Pakkanen, Tapani A.
2011-04-01
Intermolecular interactions and parameters for use in MD studies of large molecule systems have earlier been determined for hydrocarbons, carbon tetrahalides and sulfur. The paper reports a model representing nonbonding interactions between silane molecules, which were examined in the same way as hydrocarbons in an earlier (neopentane, isopropane, propane, and ethane) study. Intermolecular potentials were determined for 11 combinations of silane compound pairs (silane SiH 4, disilane Si 2H 6, trisilane Si 3H 8, isotetrasilane Si 4H 10 and neopentasilane Si 5H 12) with MP2/aug(df)-6-311G ∗ab initio calculations. The most stable dimer configurations were identified. With use of the modified Morse potential model to represent the interactions, 276 new potential energy surfaces were generated for silane dimers. Separate and generic pair potentials were calculated for the silanes. The pair potentials can be used in MD studies of silanes.
NASA Astrophysics Data System (ADS)
Agrawal, P. M.; Raff, L. M.
1981-09-01
The effect of potential surface topography upon elastic and inelastic scattering has been investigated using the infinite-order sudden approximation (IOSA) to compute total differential and integral cross sections, state-to-state cross sections, and the relaxation rates of depleted levels in the (He, CO2) and (3He, CO2) rigid rotor systems on six different potential energy surfaces that include three surfaces obtained from electrom-gas type calculations, two ab initio SCF surfaces, and one surface (KPK) obtained by empirical fitting to the measured total differential cross section. It is found that the total elastic, inelastic, and differential cross sections are very sensitive to the long-range attractive terms in the potential, and the differential cross sections are also found to be significantly dependent upon the topography of the repulsive regions of the surface. Consequently, differential cross sections are very sensitive probes of surface topography and should be the data of choice for purpose of empirical adjustment of a surface. In contrast, the relaxation rates of a depleted rotational level are found to be insensitive to the details of the surface. In addition, the relaxation rate and total inelastic cross section out of state j are found to be almost independent of the particular j state involved. Consideration of the microscopic details leading to these results suggests that similar behavior will be observed in other systems that are nearly classical with closely spaced energy levels. Of the surfaces investigated, the KPK surface gives results that are in closest agreement with experiment. The electron-gas and SCF surfaces, when augmented by a van der Waals attractive term, give similar results which are almost as good as those obtained on the empirically adjusted KPK surface. This suggests that a reasonable surface for a closed-shell system can be obtained by either procedure. The IOSA results for the relaxation rates and total inelastic cross
NASA Astrophysics Data System (ADS)
Reutov, V. F.; Dmitriev, S. N.; Sokhatskii, A. S.; Zaluzhnyi, A. G.
2016-01-01
We analyze the effect of irradiation by heavy ions on the formation of blisters on the silicon surface preliminarily ion-doped with hydrogen. An attempt is made at differentiating inelastic and elastic processes of interaction between ions and Si atoms using bombardment of the sample with high-energy charged particles through a bent absorbing filter by varying the radiation doses and the energy of bombarding Xe ions. It is found that irrespective of specific ionization energy losses of heavy ions, the blister formation is completely suppressed in the zone of the inelastic interaction during postradiation annealing. Conversely, stimulated development of hydrogen porosity takes place at the same time in the zone of elastic interaction, which is manifested in the form of blisters and flaking.
Potential energy savings from aquifer thermal energy storage
Anderson, M.R.; Weijo, R.O.
1988-07-01
Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.
Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo
Roach, Neil T.; Venkadesan, Madhusudhan; Rainbow, Michael J.; Lieberman, Daniel E.
2013-01-01
Although some primates, including chimpanzees, throw objects occasionally1,2, only humans regularly throw projectiles with high speed and great accuracy. Darwin noted that humans’ unique throwing abilities, made possible when bipedalism emancipated the arms, enabled foragers to effectively hunt using projectiles3. However, there has been little consideration of the evolution of throwing in the years since Darwin made his observations, in part because of a lack of evidence on when, how, and why hominins evolved the ability to generate high-speed throws4-8. Here, we show using experimental studies of throwers that human throwing capabilities largely result from several derived anatomical features that enable elastic energy storage and release at the shoulder. These features first appear together approximately two million years ago in the species Homo erectus. Given archaeological evidence that suggests hunting activity intensified around this time9, we conclude that selection for throwing in order to hunt likely played an important role in the evolution of the human genus. PMID:23803849
Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo.
Roach, Neil T; Venkadesan, Madhusudhan; Rainbow, Michael J; Lieberman, Daniel E
2013-06-27
Some primates, including chimpanzees, throw objects occasionally, but only humans regularly throw projectiles with high speed and accuracy. Darwin noted that the unique throwing abilities of humans, which were made possible when bipedalism emancipated the arms, enabled foragers to hunt effectively using projectiles. However, there has been little consideration of the evolution of throwing in the years since Darwin made his observations, in part because of a lack of evidence of when, how and why hominins evolved the ability to generate high-speed throws. Here we use experimental studies of humans throwing projectiles to show that our throwing capabilities largely result from several derived anatomical features that enable elastic energy storage and release at the shoulder. These features first appear together approximately 2 million years ago in the species Homo erectus. Taking into consideration archaeological evidence suggesting that hunting activity intensified around this time, we conclude that selection for throwing as a means to hunt probably had an important role in the evolution of the genus Homo. PMID:23803849
NASA Astrophysics Data System (ADS)
Bencherif, K.; Yakoubi, A.; Della, N.; Miloud Abid, O.; Khachai, H.; Ahmed, R.; Khenata, R.; Bin Omran, S.; Gupta, S. K.; Murtaza, G.
2016-07-01
Semi-Heusler materials are intensively investigated due to their potential use in diverse applications, such as in spintronics and green energy applications. In this work, we employ the density functional theory to calculate the structural, electronic, elastic, thermal and optical properties of the VRuSb, NbRuSb and TaRuSb semi-Heusler compounds. The calculated results for the lattice constants, bulk moduli and their corresponding pressure derivative values are in fairly good agreement with previous works. In addition, besides the local density approximation, the modified Becke-Johnson exchange potential is also used to improve the value of the band gaps. The bonding nature reveals a mixture of covalent and ionic bonding character of the VRuSb, NbRuSb and TaRuSb compounds. Furthermore, the elastic constants ( C ij) and the related elastic moduli confirm their stability in the cubic phase and demonstrate their ductile nature. We also analyze the influence of the pressure and temperature on the primitive cell volume, heat capacity, volume expansion coefficient, and Debye temperature of the semi-Heusler compounds. Additionally, we investigate the optical properties, such as the complex dielectric function, refractive index, reflectivity, and the energy loss function.
NASA Astrophysics Data System (ADS)
Bencherif, K.; Yakoubi, A.; Della, N.; Miloud Abid, O.; Khachai, H.; Ahmed, R.; Khenata, R.; Bin Omran, S.; Gupta, S. K.; Murtaza, G.
2016-04-01
Semi-Heusler materials are intensively investigated due to their potential use in diverse applications, such as in spintronics and green energy applications. In this work, we employ the density functional theory to calculate the structural, electronic, elastic, thermal and optical properties of the VRuSb, NbRuSb and TaRuSb semi-Heusler compounds. The calculated results for the lattice constants, bulk moduli and their corresponding pressure derivative values are in fairly good agreement with previous works. In addition, besides the local density approximation, the modified Becke-Johnson exchange potential is also used to improve the value of the band gaps. The bonding nature reveals a mixture of covalent and ionic bonding character of the VRuSb, NbRuSb and TaRuSb compounds. Furthermore, the elastic constants (C ij) and the related elastic moduli confirm their stability in the cubic phase and demonstrate their ductile nature. We also analyze the influence of the pressure and temperature on the primitive cell volume, heat capacity, volume expansion coefficient, and Debye temperature of the semi-Heusler compounds. Additionally, we investigate the optical properties, such as the complex dielectric function, refractive index, reflectivity, and the energy loss function.
Gils, H.J.; Friedman, E.; Rebel, H.; Buschmann, J.; Zagromski, S.; Klewe-Nebenius, H.; Neumann, B.; Pesl, R.; Bechtold, G.
1980-04-01
Differential cross sections for elastic scattering of 104 MeV ..cap alpha.. particles from /sup 40,42,44,48/Ca have been measured with high angular accuracy over a wide angular range. Optical model analysis based on a Fourier-Bessel description of the real potential reveals isotopic differences which, in particular for /sup 48/Ca, indicate a small neutron skin.
How well do we understand quasi-elastic reactions at energies close to the barrier
Rehm, K.E.
1988-01-01
In collisions between too heavy nuclei a wide spectrum of different reaction modes is observed covering the range from simple processes like elastic scattering to complicated multistep transfers and fusion. On the theoretical side heavy ion reactions are usually analyzed using models that were developed first for light ion induced reactions: the optical model for elastic scattering and the DWBA for more inelastic processes like transfer and inelastic scattering. Some of the assumptions going into these approximations, however, are not valid for heavy ion induced reactions. The region between fusion and quasi-elastic reactions is not well understood theoretically. This region is associated with deep inelastic collisions, which are complex multiparticle reactions involving transfer of several protons and neutrons. In this paper, the author discusses to what extent experiments in the field of quasi-elastic scattering are understood within the framework of various theoretical models and in what areas more work is needed.
Potential energy hypersurface and molecular flexibility
NASA Astrophysics Data System (ADS)
Koča, Jaroslav
1993-02-01
The molecular flexibility phenomenon is discussed from the conformational potential energy(hyper) surface (PES) point of view. Flexibility is considered as a product of three terms: thermodynamic, kinetic and geometrical. Several expressions characterizing absolute and relative molecular flexibility are introduced, depending on a subspace studied of the entire conformational space, energy level E of PES as well as absolute temperature. Results obtained by programs DAISY, CICADA and PANIC in conjunction with molecular mechanics program MMX for flexibility analysis of isopentane, 2,2-dimethylpentane and isohexane molecules are introduced.
Free energy perturbation method for measuring elastic constants of liquid crystals
NASA Astrophysics Data System (ADS)
Joshi, Abhijeet
There is considerable interest in designing liquid crystals capable of yielding specific morphological responses in confined environments, including capillaries and droplets. The morphology of a liquid crystal is largely dictated by the elastic constants, which are difficult to measure and are only available for a handful of substances. In this work, a first-principles based method is proposed to calculate the Frank elastic constants of nematic liquid crystals directly from atomistic models. These include the standard splay, twist and bend deformations, and the often-ignored but important saddle-splay constant. The proposed method is validated using a well-studied Gay-Berne(3,5,2,1) model; we examine the effects of temperature and system size on the elastic constants in the nematic and smectic phases. We find that our measurements of splay, twist, and bend elastic constants are consistent with previous estimates for the nematic phase. We further outline the implementation of our approach for the saddle-splay elastic constant, and find it to have a value at the limits of the Ericksen inequalities. We then proceed to report results for the elastic constants commonly known liquid crystals namely 4-pentyl-4'-cynobiphenyl (5CB) using atomistic model, and show that the values predicted by our approach are consistent with a subset of the available but limited experimental literature.
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1994-01-01
Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1990-01-01
The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.
NASA Astrophysics Data System (ADS)
Lagogianni, A. E.; Krausser, J.; Evenson, Z.; Samwer, K.; Zaccone, A.
2016-08-01
An analytical framework is proposed to describe the elasticity, viscosity and fragility of metallic glasses in relation to their atomic-level structure and the effective interatomic interaction. The bottom-up approach starts with forming an effective Ashcroft–Born–Mayer interatomic potential based on Boltzmann inversion of the radial distribution function g (r) and on fitting the short-range part of g (r) by means of a simple power-law approximation. The power exponent λ represents a global repulsion steepness parameter. A scaling relation between atomic connectivity and packing fraction Z∼ {φ1+λ} is derived. This relation is then implemented in a lattice-dynamical model for the high-frequency shear modulus where the attractive anharmonic part of the effective interaction is taken into account through the thermal expansion coefficient which maps the ϕ-dependence into a T-dependence. The shear modulus as a function of temperature calculated in this way is then used within the cooperative shear model of the glass transition to yield the viscosity of the supercooled melt as a double-exponential function of T across the entire Angell plot. The model, which has only one adjustable parameter (the characteristic atomic volume for high-frequency cage deformation) is tested against new experimental data of ZrCu alloys and provides an excellent one-parameter description of the viscosity down to the glass transition temperature.
NASA Astrophysics Data System (ADS)
You, Taehoon; Kim, Yunsung; Kim, Jina; Lee, Jaehong; Jung, Byungwook; Moon, Jungtak; Choe, Heeman
2009-03-01
Despite being expensive and time consuming, board-level drop testing has been widely used to assess the drop or impact resistance of the solder joints in handheld microelectronic devices, such as cellphones and personal digital assistants (PDAs). In this study, a new test method, which is much simpler and quicker, is proposed. The method involves evaluating the elastic strain energy and relating it to the impact resistance of the solder joint by considering the Young’s modulus of the bulk solder and the fracture stress of the solder joint during a ball pull test at high strain rates. The results show that solder joints can be ranked in order of descending elastic strain energy as follows: Sn-37Pb, Sn-1Ag-0.5Cu, Sn-3Ag-0.5Cu, and Sn-4Ag-0.5Cu. This order is consistent with the actual drop performances of the samples.
Potential Energy Curves of Hydrogen Fluoride
NASA Technical Reports Server (NTRS)
Fallon, Robert J.; Vanderslice, Joseph T.; Mason, Edward A.
1960-01-01
Potential energy curves for the X(sup 1)sigma+ and V(sup 1)sigma+ states of HF and DF have been calculated by the Rydberg-Klein-Rees method. The results calculated from the different sets of data for HF and DF are found to be in very good agreement. The theoretical results of Karo are compared to the experimental results obtained here.
Energy Savings Potential of Radiative Cooling Technologies
Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas
2015-11-30
Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.
Convective Available Potential Energy of World Ocean
NASA Astrophysics Data System (ADS)
Su, Z.; Ingersoll, A. P.; Thompson, A. F.
2012-12-01
Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open
Tol, Paul J.J.; Hogervorst, Wim; Vassen, Wim
2004-07-01
The kinetic theory of evaporative cooling developed by Luiten et al. [Phys. Rev. A 53, 381 (1996)] is extended to include the dependence of the elastic scattering cross section on collision energy. We introduce a simple approximation by which the transition range between the low-temperature limit and the unitarity limit is described as well. Applying the modified theory to our measurements on evaporative cooling of metastable helium, we find a scattering length a=10(5) nm.
Anderson, E. K.; Boadle, R. A.; Machacek, J. R.; Makochekanwa, C.; Sullivan, J. P.; Chiari, L.; Buckman, S. J.; Brunger, M. J.; Garcia, G.; Blanco, F.; Ingolfsson, O.
2014-07-21
Measurements of the grand total and total positronium formation cross sections for positron scattering from uracil have been performed for energies between 1 and 180 eV, using a trap-based beam apparatus. Angular, quasi-elastic differential cross section measurements at 1, 3, 5, 10, and 20 eV are also presented and discussed. These measurements are compared to existing experimental results and theoretical calculations, including our own calculations using a variant of the independent atom approach.
The Wind Energy Potential of Iceland
NASA Astrophysics Data System (ADS)
Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik
2014-05-01
While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road
Potential energy surfaces of Polonium isotopes
NASA Astrophysics Data System (ADS)
Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.
2015-11-01
The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.
Non-contacting transfer of elastic energy into explosive simulants for dynamic property estimation
Greeney, Nathan S.; Strovink, Kurt M.; Scales, John A.; Jessop, Andrew M.; Stuart Bolton, J.; Watson, Christopher C.; Adams, Douglas E.
2014-05-21
Non-contacting acoustical methods can be used to extract various material properties of liquid or solid samples without disturbing the sample. These methods are useful even in the lab since they do not involve coupling anything to the sample, which might change its properties. A forteriori, when dealing with potentially dangerous materials, non-contacting methods may be the only safe solutions to mechanical characterization. Here, we show examples of using laser ultrasound to remotely insonify and monitor the elastic properties of several granular explosive simulants. The relatively short near-infrared laser pulse length (a few hundred nanoseconds) provides a broad-band thermoelastic source of ultrasound; we intentionally stay in the thermoelastic regime to avoid damaging the material. Then, we use a scanning laser Doppler vibrometer to measure the ultrasonic response of the sample. LDV technology is well established and very sensitive at ultrasonic frequencies; atomic level motions can be measured with modest averaging. The resulting impulse response of the explosive simulant can be analyzed to determine decay rates and wave speeds, with stiffer samples showing faster wave speeds and lower decay rates. On the other hand, at the low-frequency end of the acoustic spectrum, we use an electronically phased array to couple into a freely suspended sample's normal modes. This allows us to gently heat up the sample (3 °C in just under 5 min, as shown with a thermal IR camera). In addition to the practical interest in making the sample more chemically visible through heat, these two measurements (low-frequency resonant excitation vs high-frequency wave propagation) bracket the frequency range of acoustic non-destructive evaluation methods available.
Elastic scattering of {sup 16}O+{sup 16}O at energies E/A between 5 and 8 MeV
Nicoli, M. P.; Haas, F.; Freeman, R. M.; Aissaoui, N.; Beck, C.; Elanique, A.; Nouicer, R.; Morsad, A.; Szilner, S.; Basrak, Z.
1999-12-01
The elastic scattering of {sup 16}O+{sup 16}O has been measured at nine energies between E{sub lab}=75 and 124 MeV. The data cover up to 100 degree sign in the c.m. and can be described in terms of phenomenological and folding model potentials which reproduce the main features observed. In agreement with studies at higher energies in this and similar systems, refractive effects are present in the angular distributions at all energies. In particular, the passage of Airy minima through 90 degree sign at E{sub c.m.}=40, 47.5, and 62 MeV explains the deep minima observed in the excitation function. The real part of the optical potential is found to vary very little with energy over the studied interval, but the imaginary part shows a rapid change in its shape at incident energy about 90 MeV. Nonetheless, the energy dependence of the volume integral of the real and imaginary parts is in agreement with dispersion relation predictions. (c) 1999 The American Physical Society.
Coda wave interferometry and the equilibration of energy in elastic media.
Snieder, Roel
2002-10-01
Multiple-scattered waves usually are not useful for creating deterministic images of the interior of elastic media. However, in many applications, one is not so much interested in making a deterministic image as in detecting changes in the medium. Cases in point are volcano monitoring and measuring the change in hydrocarbon reservoirs during enhanced recovery operations. Coda wave interferometry is a technique wherein changes in multiple-scattered waves are used as a diagnostic for minute changes in the medium. This technique was developed previously for scalar waves; however, the application of this technique in geophysics, nondestructive testing, and other applications where elastic waves are used, requires the extension of the existing formulation of coda wave interferometry to include conversions between P and S waves. Here, a simple model for the equilibration between P and S waves incorporates into the theory of coda wave interferometry the mode conversions that are inherent to multiply scattered elastic waves. PMID:12443357
Synergy of elastic and inelastic energy loss on ion track formation in SrTiO_{3}
Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; Sachan, Ritesh; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen
2015-01-12
While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO_{3}), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.
Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3
Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; Sachan, Ritesh; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen
2015-01-12
While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontiummore » titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.« less
So, W.Y.; Hong, S.W.; Kim, B.T.; Udagawa, T.
2005-12-15
Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous {chi}{sup 2} analyses are performed for elastic scattering, DR, and fusion cross section data for the {sup 9}Be+{sup 208}Pb system at near-Coulomb-barrier energies. Similar {chi}{sup 2} analyses are also performed by taking into account only the elastic scattering and fusion data as was previously done by the present authors, and the results are compared with those of the full analysis including the DR cross section data as well. We find that the analyses using only elastic scattering and fusion data can produce very consistent and reliable predictions of cross sections, particularly when the DR cross section data are incomplete. Discussions are also given on the results obtained from similar analyses made earlier for the {sup 9}Be+{sup 209}Bi system.
The wind energy potential of western Greece
Katsoulis, B.D.; Metaxas, D.A. )
1992-12-01
In this study wind data were used to determine the monthly and annual variations of the wind at 13 meterological stations in western Greece. An analysis of the available wind data for the Ionian Sea islands and the western coasts of Greece is carried out to ascertain its potential for wind energy development. The effect of the limited number of daily observations available on the accuracy of the mean wind speed and annual wind energy estimates is ascertained. The wind speed and direction distributions are represented with Weibull functions. Besides, a mass-consistent numerical mesoscale model was used to give an overview of the wind prospecting and siting problem, and an example of its use for Corfu (Kerkira), an island in the Ionian Sea, is given. The comparison of the accuracy of the stimulation results versus measured wind at an available site is quite encouraging even though it cannot be conclusive since only one station is available.
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Levin, Eugene
1993-01-01
A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.
Theoretical studies of potential energy surfaces.
Harding, L. B.
2006-01-01
The goal of this program is to calculate accurate potential energy surfaces for both reactive and nonreactive systems. To do this the electronic Schroedinger equation must be solved. Our approach starts with multiconfiguration self-consistent field (MCSCF) reference wave functions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Dynamical electron correlation effects are included via multireference, singles and doubles configuration interaction (MRCI) calculations. With this approach, we are able to provide chemically useful predictions of the energetics for many systems. A second aspect of this program is the development of techniques to fit multi-dimensional potential surfaces to convenient, global, analytic functions that can then be used in dynamics calculations.
The Effect of VMoS3 Point Defect on the Elastic Properties of Monolayer MoS2 with REBO Potentials
NASA Astrophysics Data System (ADS)
Li, Minglin; Wan, Yaling; Tu, Liping; Yang, Yingchao; Lou, Jun
2016-03-01
Structural defects in monolayer molybdenum disulfide (MoS2) have significant influence on the electric, optical, thermal, chemical, and mechanical properties of the material. Among all the types of structural defects of the chemical vapor phase-grown monolayer MoS2, the VMoS3 point defect (a vacancy complex of Mo and three nearby S atoms) is another type of defect preferentially generated by the extended electron irradiation. Here, using the classical molecular dynamics simulation with reactive empirical bond-order (REBO) potential, we first investigate the effect of VMoS3 point defects on the elastic properties of monolayer MoS2 sheets. Under the constrained uniaxial tensile test, the elastic properties of monolayer MoS2 sheets containing VMoS3 vacancies with defect fraction varying from 0.01 to 0.1 are obtained based on the plane anisotropic constitutive relations of the material. It is found that the increase of VMoS3 vacancy concentration leads to the noticeable decrease in the elastic modulus but has a slight effect on Poisson's ratio. The maximum decrease of the elastic modulus is up to 25 %. Increasing the ambient temperature from 10 K to 500 K has trivial influences on the elastic modulus and Poisson's ratio for the monolayer MoS2 without defect and with 5 % VMoS3 vacancies. However, an anomalous parabolic relationship between the elastic modulus and the temperature is found in the monolayer MoS2 containing 0.1 % VMoS3 vacancy, bringing a crucial and fundamental issue to the application of monolayer MoS2 with defects.
The Effect of VMoS3 Point Defect on the Elastic Properties of Monolayer MoS2 with REBO Potentials.
Li, Minglin; Wan, Yaling; Tu, Liping; Yang, Yingchao; Lou, Jun
2016-12-01
Structural defects in monolayer molybdenum disulfide (MoS2) have significant influence on the electric, optical, thermal, chemical, and mechanical properties of the material. Among all the types of structural defects of the chemical vapor phase-grown monolayer MoS2, the VMoS3 point defect (a vacancy complex of Mo and three nearby S atoms) is another type of defect preferentially generated by the extended electron irradiation. Here, using the classical molecular dynamics simulation with reactive empirical bond-order (REBO) potential, we first investigate the effect of VMoS3 point defects on the elastic properties of monolayer MoS2 sheets. Under the constrained uniaxial tensile test, the elastic properties of monolayer MoS2 sheets containing VMoS3 vacancies with defect fraction varying from 0.01 to 0.1 are obtained based on the plane anisotropic constitutive relations of the material. It is found that the increase of VMoS3 vacancy concentration leads to the noticeable decrease in the elastic modulus but has a slight effect on Poisson's ratio. The maximum decrease of the elastic modulus is up to 25 %. Increasing the ambient temperature from 10 K to 500 K has trivial influences on the elastic modulus and Poisson's ratio for the monolayer MoS2 without defect and with 5 % VMoS3 vacancies. However, an anomalous parabolic relationship between the elastic modulus and the temperature is found in the monolayer MoS2 containing 0.1 % VMoS3 vacancy, bringing a crucial and fundamental issue to the application of monolayer MoS2 with defects. PMID:27000023
Theoretical studies of potential energy surfaces
Harding, L.B.
1993-12-01
The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.
Elster, C.; Gloeckle, W.
1997-03-01
Transition potentials for elastic p-d scattering and the coupled processes p+{sup 3}He {r_arrow} p+{sup 3}He and n+{sup 3}He {r_arrow} d+d are derived in the Faddeev-Yakubovsky framework with special emphasis on leading order terms, which are expected to be valid at intermediate energies. In addition, equations for the fragmentations {sup 3}He(p,ppp)n and {sup 3}He(p,pp)d are derived within the same framework. Again leading order terms for intermediate energies are considered. {copyright} {ital 1997} {ital The American Physical Society}
NASA Technical Reports Server (NTRS)
Srivastava, S. K.; Trajmar, S.; Chutjian, A.; Williams, W.
1976-01-01
A recently developed technique has been used to measure the ratios of elastic differential electron scattering cross sections (DCS) for SF6 and UF6 to those of He at electron impact energies of 5, 10, 15, 20, 30, 40, 50, 60, and 75 eV and at scattering angles of 20 to 135 deg. In order to obtain the absolute values of DCS from these ratios, He DCS of McConkey and Preston have been employed in the 20 to 90 deg range. At angles in the 90 to 135 deg range the recently determined cross sections of Srivastava and Trajmar have been utilized. From these DCS, elastic integral and momentum transfer cross sections have been obtained.
Elastic internal flywheel gimbal
Rabenhorst, D.W.
1981-01-13
An elastic joint mounting and rotatably coupling a rotary inertial energy storage device or flywheel, to a shaft, the present gimbal structure reduces vibration and shock while allowing precession of the flywheel without the need for external gimbal mounts. The present elastic joint usually takes the form of an annular elastic member either integrally formed into the flywheel as a centermost segment thereof or attached to the flywheel or flywheel hub member at the center thereof, the rotary shaft then being mounted centrally to the elastic member.
Huang, Yunpeng; Lai, Feili; Zhang, Longsheng; Lu, Hengyi; Miao, Yue-E; Liu, Tianxi
2016-01-01
Three-dimensional (3D) all-carbon nanofibrous aerogels with good structural stability and elasticity are highly desirable in flexible energy storage/conversion devices. Hence, an efficient surface-induced co-assembly strategy is reported for the novel design and reconstruction of electrospun nanofibers into graphene/carbon nanofiber (CNF) composite aerogels (GCA) with hierarchical structures utilizing graphene flakes as cross-linkers. The as-obtained GCA monoliths possess interconnected macropores and integrated conductive networks, which exhibit high elasticity and great structural robustness. Benefitting from the largely increased surface area and charge-transfer efficiency derived from the multi-form firm interconnections (including pillaring, bridging and jointing) between graphene flakes and CNF ribs, GCA not only reveals prominent capacitive performance as supercapacitor electrode, but also shows excellent hydrogen evolution reaction activity in both acidic and alkaline solutions as a 3D template for decoration of few-layered MoSe2 nanosheets, holding great potentials for energy-related applications. PMID:27511271
Huang, Yunpeng; Lai, Feili; Zhang, Longsheng; Lu, Hengyi; Miao, Yue-E; Liu, Tianxi
2016-01-01
Three-dimensional (3D) all-carbon nanofibrous aerogels with good structural stability and elasticity are highly desirable in flexible energy storage/conversion devices. Hence, an efficient surface-induced co-assembly strategy is reported for the novel design and reconstruction of electrospun nanofibers into graphene/carbon nanofiber (CNF) composite aerogels (GCA) with hierarchical structures utilizing graphene flakes as cross-linkers. The as-obtained GCA monoliths possess interconnected macropores and integrated conductive networks, which exhibit high elasticity and great structural robustness. Benefitting from the largely increased surface area and charge-transfer efficiency derived from the multi-form firm interconnections (including pillaring, bridging and jointing) between graphene flakes and CNF ribs, GCA not only reveals prominent capacitive performance as supercapacitor electrode, but also shows excellent hydrogen evolution reaction activity in both acidic and alkaline solutions as a 3D template for decoration of few-layered MoSe2 nanosheets, holding great potentials for energy-related applications. PMID:27511271
Single-collision approximation for p{sup 3}-He elastic scattering at low energy
Abusini, M.
2009-06-15
A theoretical approach to studying four-body reactions of p{sup 3}-He elastic scattering that takes consistently into account the single-collision mechanism is reported. The theoretical results obtained by this method were compared with experimental data, and the agreement is found to be quite satisfactory.
Elastic pp Scattering at LHC Energies in Various Multi-Pomeron Exchange Models
NASA Astrophysics Data System (ADS)
Novikov, Ivan; Shabelski, Yuli
2012-10-01
We consider the data for elastic pp scattering in the framework of Regge theory in various models of multiple Pomeron exchanges: quasi-eikonal approach and two-channel approach. The results of the model calculations are compared with the experimental data presented by the TOTEM collaboration.
Assessment of wind energy potential in Poland
NASA Astrophysics Data System (ADS)
Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej
2014-05-01
The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.
Energy potential of sugarcane and sweet sorghum
Elawad, S.H.; Gascho, G.J.; Shih, S.F.
1980-01-01
The potential of sugarcane and sweet sorghum as raw materials for the production of ethanol and petrochemical substitutes is discussed. Both crops belong to the grass family and are classified as C/sub 4/ malateformers which have the highest rate of photosynthesis among terrestrial plants. Large amounts of biomass are required to supply a significant fraction of US energy consumption. Biomass production could be substantially increased by including tops and leaves, adopting narrow row spacing and improving cultural practices. This presents challenges for cultivating, harvesting, and hauling the biomass to processing centers. Large plants and heavy capital investment are essential for energy production. Ethanol and ammonia are the most promising candidates of a biomass program. If sugarcane were to be used for biomass production, breeding programs should be directed for more fermentable sugars and fiber. Energy research on sweet sorghum should be done with syrup varieties. Sweet sorghum needs to be incorporated with other crops because of its short growing season. The disposal of stillage from an extensive ethanol industry may pose environmental problems.
Induced Seismicity Potential of Energy Technologies
NASA Astrophysics Data System (ADS)
Hitzman, Murray
2013-03-01
Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.
Coulomb suppression in the low-energy p-p elastic scattering via the Trojan Horse Method
Tumino, A.; Spitaleri, C.; Rapisarda, G. G.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A.; Campajola, L.; Elekes, Z.; Fueloep, Zs.; Gyuerky, G.; Kiss, G. G.; Somorjai, E.; Gialanella, L.
2010-11-24
We present here an important test of the main feature of the Trojan Horse Method (THM), namely the suppression of Coulomb effects in the entrance channel due to off-energy-shell effects. This is done by measuring the THM p-p elastic scattering via the p+d{yields}p+p+n reaction at 4.7 and 5 MeV, corresponding to a p-p relative energy ranging from 80 to 670 keV. In contrast to the on-energy-shell (OES) case, the extracted p-p cross section does not exhibit the Coulomb-nuclear interference minimum due to the suppression of the Coulomb amplitude. This is confirmed by the half-off-energy shell (HOES) calculations and strengthened by the agreement with the calculated OES nuclear cross sections.
Ashley-Ross, Miriam A; Perlman, Benjamin M; Gibb, Alice C; Long, John H
2014-02-01
Despite having no obvious anatomical modifications to facilitate movement over land, numerous small fishes from divergent teleost lineages make brief, voluntary terrestrial forays to escape poor aquatic conditions or to pursue terrestrial prey. Once stranded, these fishes produce a coordinated and effective "tail-flip" jumping behavior, wherein lateral flexion of the axial body into a C-shape, followed by contralateral flexion of the body axis, propels the fish into a ballistic flight-path that covers a distance of multiple body lengths. We ask: how do anatomical structures that evolved in one habitat generate effective movement in a novel habitat? Within this context, we hypothesized that the mechanical properties of the axial skeleton play a critical role in producing effective overland movement, and that tail-flip jumping species demonstrate enhanced elastic energy storage through increased body flexural stiffness or increased body curvature, relative to non-jumping species. To test this hypothesis, we derived a model to predict elastic recoil work from the morphology of the vertebral (neural and hemal) spines. From ground reaction force (GRF) measurements and high-speed video, we calculated elastic recoil work, flexural stiffness, and apparent material stiffness of the body for Micropterus salmoides (a non-jumper) and Kryptolebias marmoratus (adept tail-flip jumper). The model predicted no difference between the two species in work stored by the vertebral spines, and GRF data showed that they produce the same magnitude of mass-specific elastic recoil work. Surprisingly, non-jumper M. salmoides has a stiffer body than tail-flip jumper K. marmoratus. Many tail-flip jumping species possess enlarged, fused hypural bones that support the caudal peduncle, which suggests that the localized structures, rather than the entire axial skeleton, may explain differences in terrestrial performance. PMID:24388492
Certification and the potential energy landscape
Mehta, Dhagash; Hauenstein, Jonathan D.; Wales, David J.
2014-06-14
Typically, there is no guarantee that a numerical approximation obtained using standard nonlinear equation solvers is indeed an actual solution, meaning that it lies in the quadratic convergence basin. Instead, it may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the corresponding stationary point when further optimization is attempted. In some cases, these non-solutions could be misleading. Proving that a numerical approximation will quadratically converge to a stationary point is termed certification. In this report, we provide details of how Smale's α-theory can be used to certify numerically obtained stationary points of a potential energy landscape, providing a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed.
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1988-01-01
The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.
The Wind Energy Potential of Kurdistan, Iran.
Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad
2014-01-01
In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042
The Wind Energy Potential of Kurdistan, Iran
Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad
2014-01-01
In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042
Energy resource potential of natural gas hydrates
Collett, T.S.
2002-01-01
The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.
Molecular Multipole Potential Energy Functions for Water.
Tan, Ming-Liang; Tran, Kelly N; Pickard, Frank C; Simmonett, Andrew C; Brooks, Bernard R; Ichiye, Toshiko
2016-03-01
Water is the most common liquid on this planet, with many unique properties that make it essential for life as we know it. These properties must arise from features in the charge distribution of a water molecule, so it is essential to capture these features in potential energy functions for water to reproduce its liquid state properties in computer simulations. Recently, models that utilize a multipole expansion located on a single site in the water molecule, or "molecular multipole models", have been shown to rival and even surpass site models with up to five sites in reproducing both the electrostatic potential around a molecule and a variety of liquid state properties in simulations. However, despite decades of work using multipoles, confusion still remains about how to truncate the multipole expansions efficiently and accurately. This is particularly important when using molecular multipole expansions to describe water molecules in the liquid state, where the short-range interactions must be accurate, because the higher order multipoles of a water molecule are large. Here, truncation schemes designed for a recent efficient algorithm for multipoles in molecular dynamics simulations are assessed for how well they reproduce results for a simple three-site model of water when the multipole moments and Lennard-Jones parameters of that model are used. In addition, the multipole analysis indicates that site models that do not account for out-of-plane electron density overestimate the stability of a non-hydrogen-bonded conformation, leading to serious consequences for the simulated liquid. PMID:26562223
Yoshida, Yuki; Maruta, Akihiro; Ishii, Kenji; Akiyama, Yuji; Yoshida, Tsuyoshi; Suzuki, Naoki; Koguchi, Kazuumi; Nakagawa, Junichi; Mizuochi, Takashi; Kitayama, Ken-ichi
2013-05-20
This paper proposes a novel bandwidth-elastic and energy-efficient passive optical network (PON) based on the coherent interleaved frequency division multiple access (IFDMA) scheme. We experimentally demonstrate the coherent IFDMA-PON uplink transmission up-to 30 Gbps over a 30 km standard single-mode fiber with 2 × optical network units (ONUs). A low-complexity digital carrier synchronization technique enables multiple access of the ONUs on the basis of 78.1 MHz narrow band orthogonal subcarriers without any guard-bands. PMID:23736447
The {sup 6}He Optical Potential at energies around the Coulomb barrier
Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Moro, A. M.
2010-04-26
We present an Optical Model (OM) study of {sup 6}He on {sup 208}Pb elastic scattering data, measured at laboratory energies around the Coulomb barrier (E{sub lab} = 14, 16, 18, 22, and 27 MeV)[1]. For the projectile-target bare interaction, we use the microscopic Sao Paulo Potential (SPP). This bare interaction is supplemented with a Coulomb Dipole Polarization (CDP) potential, as well as a diffuse complex Woods-Saxon potential. Four-body Continuum-Discretized-Coupled-Channels (CDCC) calculations have been performed in order to support the optical model analysis. We have also studied the alpha channel, which is the dominant reaction process. In the analysis of this channel, we compare the angular and energy distributions of the alpha particles measured at 22 MeV, with Distorted Wave Born Approximation (DWBA) calculations.
The 6He Optical Potential at energies around the Coulomb barrier
NASA Astrophysics Data System (ADS)
Fernández-García, J. P.; Rodríguez-Gallardo, M.; Alvarez, M. A. G.; Moro, A. M.
2010-04-01
We present an Optical Model (OM) study of 6He on 208Pb elastic scattering data, measured at laboratory energies around the Coulomb barrier (Elab = 14, 16, 18, 22, and 27 MeV) [1]. For the projectile-target bare interaction, we use the microscopic São Paulo Potential (SPP). This bare interaction is supplemented with a Coulomb Dipole Polarization (CDP) potential, as well as a diffuse complex Woods-Saxon potential. Four-body Continuum-Discretized-Coupled-Channels (CDCC) calculations have been performed in order to support the optical model analysis. We have also studied the α channel, which is the dominant reaction process. In the analysis of this channel, we compare the angular and energy distributions of the α particles measured at 22 MeV, with Distorted Wave Born Approximation (DWBA) calculations.
NASA Astrophysics Data System (ADS)
Gómez Camacho, A.; Yu, N.; Zhang, H. Q.; Gomes, P. R. S.; Jia, H. M.; Lubian, J.; Lin, C. J.
2015-04-01
We analyze the energy dependence of the interacting optical potential, at near barrier energies, for two systems involving the weakly bound projectile 9Be and the heavy 208Pb and 209Bi targets, by the simultaneous fit of elastic scattering angular distributions and fusion excitation functions. The approach used consists of dividing the optical potential into two parts. A short-range potential VF+i WF that is responsible for fusion, and a superficial potential VDR+i WDR for direct reactions. It is found, for both systems studied, that the fusion imaginary potential WF presents the usual threshold anomaly (TA) observed in tightly bound systems, whereas the direct reaction imaginary potential WDR shows a breakup threshold anomaly (BTA) behavior. Both potentials satisfy the dispersion relation. The direct reaction polarization potential predominates over the fusion potential and so a net overall behavior is found to follow the BTA phenomenon.
An ab initio method for locating potential energy minima
Bock, Nicolas; Peery, Travis; Venneri, Giulia; Chisolm, Eric; Wallace, Duane; Lizarraga, Raquel; Holmstrom, Erik
2009-01-01
We study the potential energy landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the potential energy. We show that this procedure reveals the underlying potential energy surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying potential energy surface, but needs to be corrected for thermodynamic weighting factors.
ASSESSMENT OF ENERGY RECOVERY POTENTIAL OF INDUSTRIAL COMBUSTION EQUIPMENT
An assessment was conducted to evaluate the waste heat content and energy recovery potential of flue gases from 30 industrial combustion devices. Pollution controls on nine of the devices were evaluated to estimate energy requirements and particulate reduction; energy requirement...
Elastic and inelastic scattering of 16O and 18O ions from 64Zn at energies near the Coulomb barrier
NASA Astrophysics Data System (ADS)
Salém-Vasconcelos, S.; Takagui, E. M.; Bechara, M. J.; Koide, K.; Dietzsch, O.; Bairrio Nuevo, A., Jr.; Takai, H.
1994-08-01
Coulomb-nuclear interference effects were investigated in the inelastic scattering of 16O and 18O by 64Zn. Measurements of elastic and inelastic angular distributions of 18O were performed at a laboratory energy of 49 MeV, over the angular range from θlab~30° to 85°. The excitation functions of 16O and 18O ions were measured at incident energies between 29 and 46 MeV at θlab=174°. The experimental angular distributions show structures which are more pronounced for projectile excitation than for target excitation. The interference minimum for the excitation of the 18O first 2+ state was found to be shifted towards forward angles by approximately 5° (c.m.) with respect to the distorted-wave Born approximation calculations and by approximately 3.5° (c.m.) with respect to the coupled-channels calculations. A pronounced Coulomb-nuclear interference minimum was seen in the excitation of 64Zn(2+) state by inelastic scattering of 16O projectiles, whereas no pronounced minimum was observed in target excitation by 18O projectiles. The elastic scattering data were analyzed with the optical model. The inelastic differential cross sections for the excitation of the first 2+ states in the target and in the 18O projectile were analyzed using the distorted-wave Born approximation and also the coupled-channels approach with collective form factors.
Transportation Energy Use and Conservation Potential
ERIC Educational Resources Information Center
Hirst, Eric
1973-01-01
Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)
Determination of Multidimensional Intermolecular Potential Energy Surfaces
NASA Astrophysics Data System (ADS)
Cohen, Ronald Carl
High resolution spectroscopy of the low frequency van der Waals vibrations (also referred to as Vibration -Rotation-Tunneling (VRT) spectroscopy) in weakly bound complexes provides the means to probe intermolecular forces with unprecedented detail and precision. We present an overview of the experimental information on intermolecular forces and intermolecular dynamics which has been obtained by far infrared VRT spectroscopy of 18 complexes. We then turn to a detailed examination of the Ar-H_2O complex, a simple prototype for the study of intermolecular forces. The measurement and analysis of 9 VRT bands is described. These data are first used to obtain a qualitative description of the intermolecular potential energy surface (IPS). A new simple and efficient method for calculating the eigenvalues of the multidimensional intermolecular dynamics on the IPS has been developed. This algorithm (an adaptation of the Collocation Method) was then used in a direct fit to obtain an accurate and detailed description of the intermolecular forces acting within the Ar-H_2O complex.
NASA Astrophysics Data System (ADS)
Wang, Xiaoqiang; Ju, Lili; Du, Qiang
2016-07-01
The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.
NASA Astrophysics Data System (ADS)
Sarkar, Abhishek; Schlüter, Jörg
2013-11-01
We present a numerical study of the turbulent kinetic energy budget in the wake of cylinders undergoing Vortex-Induced Vibration (VIV). We show three-dimensional Large Eddy Simulations (LES) of an elastically mounted circular cylinder in the synchronization regime at Reynolds number of Re=8000. The Immersed Boundary Method (IBM) is used to account for the presence of the cylinder. The flow field in the wake is decomposed using the triple decomposition splitting the flow variables in mean, coherent and stochastic components. The energy transfer between these scales of motions are then studied and the results of the free oscillation are compared to those of a forced oscillation. The turbulent kinetic energy budget shows that the maximum amplitude of VIV is defined by the ability of the mean flow to feed energy to the coherent structures in the wake. At amplitudes above this maximum amplitude, the energy of the coherent structures needs to be fed additionally by small scale, stochastic energy in form of backscatter to sustain its motion. Furthermore, we demonstrate that the maximum amplitude of the VIV is defined by the integral length scale of the turbulence in the wake.
Mathie, E.L.; Smith, G.R.; Boschitz, E.T.; Meyer, M.; Vogler, F.; Daum, M.; Mango, S.; Konter, J.A.
1983-12-01
The ..pi..-d elastic differential cross-section and the vector analyzing power have been measured between CTHETA/sub c.m./ = 95/sup 0/ and 165/sup 0/ at incident pion energies between 117 and 151 MeV. Both observables show a smooth behavior as a function of angle and energy.
NASA Technical Reports Server (NTRS)
Greene, E. F.; Hall, R. B.; Mason, E. A.
1975-01-01
The energy threshold behavior of elastic rainbow scattering near the transition to orbiting is derived. Analysis of the energy dependence of the rainbow angle shows that the full range from high energies down to orbiting can be fitted with two parameters. Thus, measurements of the rainbow angle can give essentially only two pieces of information about the potential. For potentials of common shapes, such measurements are sensitive to regions of the potential just beyond the minimum and give information about the shape of the potential in this range. However, neither a minimum nor a point of inflection in the potential is necessary for rainbow scattering.
Potential contribution of the wastewater sector to energy supply.
Heubeck, S; de Vos, R M; Craggs, R
2011-01-01
The biological treatment of wastewater could yield high energy fuels such as methane and alcohols, however most conventional treatment systems do not recover this energy potential. with a simple model of the energy yields of various wastewater treatment technologies it is possible to demonstrate how minor shifts in technology selection can lead the industry from being identified as predominantly energy intensive, to being recognised as a source of energy resources. The future potential energy yield is estimated by applying energy yield factors to alternative use scenarios of the same wastewater loads. The method for identifying the energy potential of wastewater was demonstrated for the New Zealand wastewater sector, but can equally be applied to other countries or regions. The model suggests that by using technologies that maximise the recovery of energy from wastewater, the potential energy yield from this sector would be substantially increased (six fold for New Zealand). PMID:21866779
Static task of von Mises planar truss analyzed using the potential energy
NASA Astrophysics Data System (ADS)
Kalina, Martin
2013-10-01
A Von Mises planar truss subjected to vertical static load at its top joint is studied. The mathematical concept of large displacement elastic analysis of the von Mises truss targeted for computers is described. The model geometry is described using finite mass points. Formulae for the evaluation of displacements of mass points and rotation of segments were derived with the help of geometrical and physical conditions. Formulae for the determination of potential energy of the system are listed. Deformation of the structure is evaluated by seeking the minimal potential energy. The step-by-step increment method combined with Newton-Raphson method is used. The mathematical solution described in the article enables the modelling of Mises truss using a finite amount of segments. The described solution is suitable for load-deflection curve computation of a limit load model. The equilibrium stability problem of von Mises truss is discussed in connection with the random effects of imperfections.
Spin Correlation Parameter Cyy of p + 3He Elastic Backward Scattering at Intermediate Energy
NASA Astrophysics Data System (ADS)
Shimizu, Y.; Hatanaka, K.; Adachi, T.; Itoh, K. F. K.; Kawabata, T.; Kudoh, T.; Ohira, H. M. H.; Okamura, H.; Sagara, K.; Sasamoto, Y. S. Y.; Yoshida, Y. S. H. P.; Suda, K.; Tomiyama, Y. T. A. T. M.; Uesaka, M. U. T.; Wakasa, T.; Wakui, T.
2005-08-01
It is possible to use nucleon-nucleus scattering as a probe of the spin structure of nuclei, since target related observables are extremely sensitive to small spin-dependent parts of the target wave function. In addition, one can gain information about the nucleon-nucleus reaction mechanism, the spin dependence of the nucleon-nucleon interaction in the nuclear medium, and off-shell behavior of the nucleon-nucleon amplitudes. For 3He(p,3He)p elastic backward scattering (EBS), only a small amount of data exists for the differential cross-section and none exists for spin-dependent observables. We have developed a spin-exchange polarised 3He target and measured the spin correlation parameter Cyy at 200, 300, and 400 MeV.
Spin Correlation Parameter Cyy of p + 3He Elastic Backward Scattering at Intermediate Energy
NASA Astrophysics Data System (ADS)
Shimizu, Y.; Hatanaka, K.; Kobushkin, A. P.; Adachi, T.; Fujita, K.; Itoh, K.; Kawabata, T.; Kudoh, T.; Matsubara, H.; Ohira, H.; Okamura, H.; Sagara, K.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Yoshida, H. P.; Suda, K.; Tameshige, Y.; Tamii, A.; Tomiyama, M.; Uchida, M.; Uesaka, T.; Wakasa, T.; Wakui, T.
2007-01-01
It is possible to use nucleon-nucleus scattering as a probe of the spin structure of the nuclei since target related observables are extremely sensitive to spin dependent parts of the target wave function. In addition, one can gain information about the nucleon-nucleus reaction mechanism, the spin dependent nucleon-nucleon interaction in the nuclear medium, and off-shell behavior of the nucleon-nucleon amplitudes. For 3He(p,3He)p elastic backward scattering, only small amount of data points exist for the differential cross section and no data exist for spin dependent observables. We developed a spin exchange type polarized 3He target and measured the spin correlation parameter Cyy at 200, 300, and 400 MeV.
NASA Astrophysics Data System (ADS)
Wimmer, K.; Bazin, D.; Gade, A.; Tostevin, J. A.; Baugher, T.; Chajecki, Z.; Coupland, D.; Famiano, M. A.; Ghosh, T. K.; Grinyer, G. F.; Hodges, R.; Howard, M. E.; Kilburn, M.; Lynch, W. G.; Manning, B.; Meierbachtol, K.; Quarterman, P.; Ratkiewicz, A.; Sanetullaev, A.; Stroberg, S. R.; Tsang, M. B.; Weisshaar, D.; Winkelbauer, J.; Winkler, R.; Youngs, M.
2012-05-01
The two-proton removal reaction from 28Mg projectiles has been studied at 93 MeV/u. First coincidence measurements of the heavy 26Ne projectile residues, the removed protons, and other light charged particles enabled the relative cross sections from each of the three possible elastic and inelastic proton removal mechanisms to be determined. These more final-state-exclusive measurements are key for further interrogation of these reaction mechanisms and use of the reaction channel for quantitative spectroscopy of very neutron-rich nuclei. The relative and absolute yields of the three contributing mechanisms are compared to reaction model expectations based on the use of eikonal dynamics and sd-shell-model structure amplitudes.
Mechanism of Resilin Elasticity
Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.
2012-01-01
Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127
Thorpe, Chavaunne T.; Godinho, Marta S.C.; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R.C.
2015-01-01
While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury. PMID:25958330
Simulation of 12C+12C elastic scattering at high energy by using the Monte Carlo method
NASA Astrophysics Data System (ADS)
Guo, Chen-Lei; Zhang, Gao-Long; Tanihata, I.; Le, Xiao-Yun
2012-03-01
The Monte Carlo method is used to simulate the 12C+12C reaction process. Taking into account the size of the incident 12C beam spot and the thickness of the 12C target, the distributions of scattered 12C on the MWPC and the CsI detectors at a detective distance have been simulated. In order to separate elastic scattering from the inelastic scattering with 4.4 MeV excited energy, we set several variables: the kinetic energy of incident 12C, the thickness of the 12C target, the ratio of the excited state, the wire spacing of the MWPC, the energy resolution of the CsI detector and the time resolution of the plastic scintillator. From the simulation results, the preliminary establishment of the experiment system can be determined to be that the beam size of the incident 12C is phi5 mm, the incident kinetic energy is 200-400 A MeV, the target thickness is 2 mm, the ratio of the excited state is 20%, the flight distance of scattered 12C is 3 m, the energy resolution of the CsI detectors is 1%, the time resolution of the plastic scintillator is 0.5%, and the size of the CsI detectors is 7 cm×7 cm, and we need at least 16 CsI detectors to cover a 0° to 5° angular distribution.
Thorpe, Chavaunne T; Godinho, Marta S C; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C
2015-12-01
While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury. PMID:25958330
Third-order elastic constants of the alloy Fe 72Pt 28
NASA Astrophysics Data System (ADS)
Vinu, T. P.; Menon, C. S.
2004-09-01
The complete sets of second- and third-order elastic constants of the cubic Fe72Pt28 have been obtained using the strain energy density derived from interactions up to three nearest neighbours of each atom in the unit cell. The finite strain elasticity theory has been used to get the strain energy density of Fe72Pt28. The strain energy density is compared with the strain-dependent lattice energy density obtained from the continuum model approximation and the expressions for the second- and third-order elastic constants of Fe72Pt28 are given. The second-order potential parameter is deduced from the measured second-order elastic constants of Fe72Pt28 and the third-order potential parameter is estimated from the Lennard-Jones inter-atomic potential for Fe72Pt28. The inter-lattice displacements; the three independent second-order elastic constants and the six independent third-order elastic constants of Fe72Pt28 are also determined. The second-order elastic constants are compared with the experimental elastic constants of Fe72Pt28. We also study the effect of pressure on the second-order elastic constants of Fe72Pt28.
Design guidance for elastic followup
Naugle, F.V.
1983-01-01
The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed.
HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS
PARSA,Z.
2000-04-07
In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.
Energy in America: Progress and Potential.
ERIC Educational Resources Information Center
American Petroleum Inst., Washington, DC.
An overview of America's energy situation is presented with emphasis on recent progress, the risk of depending upon foreign oil, and policy choices. Section one reviews the energy problems of the 1970s, issues of the 1980s, concerns for the future, and choices that if made today could alleviate future problems. Section two examines past problems,…
The Potential Energy of an Autoencoder.
Kamyshanska, Hanna; Memisevic, Roland
2015-06-01
Autoencoders are popular feature learning models, that are conceptually simple, easy to train and allow for efficient inference. Recent work has shown how certain autoencoders can be associated with an energy landscape, akin to negative log-probability in a probabilistic model, which measures how well the autoencoder can represent regions in the input space. The energy landscape has been commonly inferred heuristically, by using a training criterion that relates the autoencoder to a probabilistic model such as a Restricted Boltzmann Machine (RBM). In this paper we show how most common autoencoders are naturally associated with an energy function, independent of the training procedure, and that the energy landscape can be inferred analytically by integrating the reconstruction function of the autoencoder. For autoencoders with sigmoid hidden units, the energy function is identical to the free energy of an RBM, which helps shed light onto the relationship between these two types of model. We also show that the autoencoder energy function allows us to explain common regularization procedures, such as contractive training, from the perspective of dynamical systems. As a practical application of the energy function, a generative classifier based on class-specific autoencoders is presented. PMID:26357347
Energy conservation potential of surface modification technologies
Le, H.K.; Horne, D.M.; Silberglitt, R.S.
1985-09-01
This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.
Alvi, M. A.; Arafah, M. R.; Madani, J. H.; Ahmad, I.
2009-02-15
Recent neutron elastic scattering differential cross section data for {sup 12}C, {sup 40}Ca, and {sup 208}Pb at several energies from 65 to 225 MeV have been analyzed using Glauber multiple scattering model, suitably modified to enlarge angular range of validity. The center of mass and Pauli pair correlations have been considered. The effect of the phase variation of the NN scattering amplitude on the calculated cross sections has been studied. A medium modification of the 'elementary' NN interaction is also considered. The neutron differential cross sections have been calculated using the phenomenological and the recently proposed semiphenomenological neutron and proton target densities so as to check the validity of the semiphenomenological density model. We found that our method of analysis gives a very good description of the experimental data.
Zorko, A; Kokalj, J; Komelj, M; Adamopoulos, O; Luetkens, H; Arčon, D; Lappas, A
2015-01-01
Inhomogeneity in the ground state is an intriguing, emergent phenomenon in magnetism. Recently, it has been observed in the magnetostructural channel of the geometrically frustrated α-NaMnO2, for the first time in the absence of active charge degrees of freedom. Here we report an in-depth numerical and local-probe experimental study of the isostructural sister compound CuMnO2 that emphasizes and provides an explanation for the crucial differences between the two systems. The experimentally verified, much more homogeneous, ground state of the stoichiometric CuMnO2 is attributed to the reduced magnetoelastic competition between the counteracting magnetic-exchange and elastic-energy contributions. The comparison of the two systems additionally highlights the role of disorder and allows the understanding of the puzzling phenomenon of phase separation in uniform antiferromagnets. PMID:25786810
NASA Astrophysics Data System (ADS)
Xu, Hai-Bo; Zheng, Na
2015-07-01
A version of Geant4 has been developed to treat high-energy proton radiography. This article presents the results of calculations simulating the effects of nuclear elastic scattering for various test step wedges. Comparisons with experimental data are also presented. The traditional expressions of the transmission should be correct if the angle distribution of the scattering is Gaussian multiple Coulomb scattering. The mean free path (which depends on the collimator angle) and the radiation length are treated as empirical parameters, according to transmission as a function of thickness obtained by simulations. The results can be used in density reconstruction, which depends on the transmission expressions. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)
NASA Astrophysics Data System (ADS)
Grabovsky, Yury; Kohn, Robert V.
1995-06-01
For modeling coherent phase transformations, and for applications to structural optimization, it is of interest to identify microstructures with minimal energy or maximal stiffness. The existence of a particularly simple microstructure with extremal elastic behavior, in the context of two-phase composites made from isotropic components in two space dimensions, has previously been shown. This "Vigdergauz microstructure" consists of a periodic array of appropriately shaped inclusions. We provide an alternative discussion of this microstructure and its properties. Our treatment includes an explicit formula for the shape of the inclusion, and an analysis of various limits. We also discuss the significance of this microstructure (i) for minimizing the maximum stress in a composite, and (ii) as a large volume fraction analog of Michell trusses in the theory of structural optimization.
Zorko, A.; Kokalj, J.; Komelj, M.; Adamopoulos, O.; Luetkens, H.; Arčon, D.; Lappas, A.
2015-01-01
Inhomogeneity in the ground state is an intriguing, emergent phenomenon in magnetism. Recently, it has been observed in the magnetostructural channel of the geometrically frustrated α-NaMnO2, for the first time in the absence of active charge degrees of freedom. Here we report an in-depth numerical and local-probe experimental study of the isostructural sister compound CuMnO2 that emphasizes and provides an explanation for the crucial differences between the two systems. The experimentally verified, much more homogeneous, ground state of the stoichiometric CuMnO2 is attributed to the reduced magnetoelastic competition between the counteracting magnetic-exchange and elastic-energy contributions. The comparison of the two systems additionally highlights the role of disorder and allows the understanding of the puzzling phenomenon of phase separation in uniform antiferromagnets. PMID:25786810
Semari, F.; Khenata, R.; Rabah, M.; Bouhemadou, A.; Bin Omran, S.; Reshak, Ali H.; Rached, D.
2010-12-15
The structural, elastic, electronic, and optical properties of cubic spinel MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} compounds have been calculated using a full relativistic version of the full-potential linearized-augmented plane wave with the mixed basis FP/APW+lo method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism is also applied to optimize the corresponding potential for band structure calculations. The ground state properties, including the lattice constants, the internal parameter, the bulk modulus, and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. Using the total energy-strain technique, we have determined the full set of first-order elastic constants C{sub ij} and their pressure dependence, which have not been calculated or measured yet. The shear modulus, Young's modulus, and Poisson's ratio are calculated for polycrystalline XIn{sub 2}S{sub 4} aggregates. The Debye temperature is estimated from the average sound velocity. Electronic band structures show a direct band gap ({Gamma}-{Gamma}) for MgIn{sub 2}S{sub 4} and an indirect band gap (K-{Gamma}) for CdIn{sub 2}S{sub 4}. The calculated band gaps with EVGGA show a significant improvement over the GGA. The optical constants, including the dielectric function {epsilon}({omega}), the refractive index n({omega}), the reflectivity R({omega}), and the energy loss function L({omega}) were calculated for radiation up to 30 eV. -- Graphical abstract: Calculated total and partial densities of states for MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4}
Stretching the inflaton potential with kinetic energy
Lidsey, James E.
2007-08-15
Inflation near a maximum of the potential is studied when nonlocal derivative operators are included in the inflaton Lagrangian. Such terms can impose additional sources of friction on the field. For an arbitrary spacetime geometry, these effects can be quantified in terms of a local field theory with a potential whose curvature around the turning point is strongly suppressed. This implies that a prolonged phase of slow-roll inflation can be achieved with potentials that are otherwise too steep to drive quasiexponential expansion. We illustrate this mechanism within the context of p-adic string theory.
NASA Astrophysics Data System (ADS)
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-05-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and
NASA Astrophysics Data System (ADS)
Mahmood, Tahir; Kanapathipillai, Sangarapillai; Chowdhury, Mahiuddin
2013-06-01
This paper demonstrates the application of a new multiaxial creep damage model developed by authors using stress traixiality to predict the failure time of a component made of 0.5%Cr-0.5%Mo-0.25%V low alloy steel. The model employs strain energy density and assumes that the uniaxial strain energy density of a component can be easily calculated and can be converted to multi-axial strain energy density by multiplying it to a function of stress trixiality which is a ratio of mean stress to equivalent stress. For comparison, an elastic-creep and elastic-plastic-creep finite element analysis (FEA) is performed to get multi-axial strain energy density of the component which is compared with the calculated strain energy density for both cases. The verification and application of the model are demonstrated by applying it to thin tube for which the experimental data are available. The predicted failure times by the model are compared with the experimental results. The results show that the proposed model is capable of predicting failure times of the component made of the above-mentioned material with an accuracy of 4.0%.
Nanoscale elastic properties of montmorillonite upon water adsorption.
Ebrahimi, Davoud; Pellenq, Roland J-M; Whittle, Andrew J
2012-12-11
Smectites are an important group of clay minerals that experience swelling upon water adsorption. This paper uses molecular dynamics with the CLAYFF force field to simulate isothermal isobaric water adsorption of interlayer Wyoming Na-montmorillonite, a member of the smectite group. Nanoscale elastic properties of the clay-interlayer water system are calculated from the potential energy of the model system. The transverse isotropic symmetry of the elastic constant matrix was assessed by calculating Euclidean and Riemannian distance metrics. Simulated elastic constants of the clay mineral are compared with available results from acoustic and nanoindentation measurements. PMID:23181550
Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration
none,
2009-09-01
This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.
Potential Energy Sources Pose Mining Problem
ERIC Educational Resources Information Center
Chemical and Engineering News, 1974
1974-01-01
Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)
Low-energy elastic and inelastic scattering of electrons from SO2 using the R -matrix method
NASA Astrophysics Data System (ADS)
Gupta, Monika; Baluja, K. L.
2006-04-01
R -matrix method is used to calculate elastic differential, integral, and momentum transfer cross sections for electron- SO2 collision. The electron-impact excitation cross sections for first seven low-lying electronic excited states of SO2 molecule from the ground state of SO2 molecule have been calculated for the first time. Sixteen low-lying electronic states of SO2 molecule are included in the close coupling expansion of the wave function of the entire scattering system, which have vertical excitation energies up to 10.51eV . Configuration-interaction (CI) wave functions are used to calculate these excitation energies. In our CI model, we keep the core 14 electrons frozen in doubly occupied molecular orbitals 1a1 , 2a1 , 3a1 , 4a1 , 1b1 , 1b2 , 2b2 and the remaining 18 electrons span the relevant active space: 5a1 , 6a1 , 7a1 , 8a1 , 9a1 , 2b1 , 3b1 , 3b2 , 4b2 , 5b2 , 6b2 , and 1a2 . Our calculated dipole moment of the ground state of SO2 at its equilibrium geometry is 0.79a.u. , which is in reasonable agreement with the corresponding experimental value 0.64a.u. Our calculations detect one bound SO2- state (B12) at the equilibrium geometry of SO2 molecule. Both shape as well as core-excited shape resonances have been identified in the present work and are correlated with the experimental results on dissociative electron attachment study. A detailed analysis of resonances is provided. Cross sections are reported for the electron impact energy range 0-15eV . All cross section calculations are performed in the fixed-nuclei approximation at the experimental equilibrium geometry of the ground state of SO2 molecule. We have also investigated dependence of resonances on the geometry of SO2 molecule to probe the possible pathways for dissociation of resulting negative ion upon electron attachment. We have excellent agreement of differential, elastic integral, and momentum transfer cross sections calculated in the 16-state R -matrix approximation with the available
Energy savings potential from energy-conserving irrigation systems
Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.
1982-11-01
This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.
Analysis of energy dissipation and deposition in elastic bodies impacting at hypervelocities
NASA Technical Reports Server (NTRS)
Medina, David F.; Allahdadi, Firooz A.
1992-01-01
A series of impact problems were analyzed using the Eulerian hydrocode CTH. The objective was to quantify the amount of energy dissipated locally by a projectile-infinite plate impact. A series of six impact problems were formulated such that the mass and speed of each projectile were varied in order to allow for increasing speed with constant kinetic energy. The properties and dimensions of the plate were the same for each projectile impact. The resulting response of the plate was analyzed for global Kinetic Energy, global momentum, and local maximum shear stress. The percentage of energy dissipated by the various hypervelocity impact phenomena appears as a relative change of shear stress at a point away from the impact in the plate.
Potential production of energy cane for fuel in the Caribbean
Samuels, G.
1984-12-01
Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.
Wang, Wangchen; Yang, Lin; Huang, Huey W.
2007-01-01
Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy for lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature. PMID:17259270
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-01-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. PMID:25932597
Regional Differences in the Price-Elasticity of Demand for Energy
Bernstein, M. A.; Griffin, J.
2006-02-01
At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.
NASA Astrophysics Data System (ADS)
Rojas-Gómez, O. A.; Romero-Enrique, J. M.
2012-10-01
In this paper we present a generalization of Berreman's model for the elastic contribution to the surface free-energy density of a nematic liquid crystal in presence of a sawtooth substrate which favors homeotropic anchoring as a function of the wave number of the surface structure q, the tilt angle α, and the surface anchoring strength w. In addition to the previously reported nonanalytic contribution proportional to -qlnq, due to the nucleation of disclination lines at the wedge bottoms and apexes of the substrate, the next-to-leading contribution is proportional to q for a given substrate roughness, in agreement with Berreman's predictions. We characterize this term, finding that it has two contributions: the deviations of the nematic director field with respect to a reference field corresponding to the isolated disclination lines and their associated core free energies. Comparison with the results obtained from the Landau-de Gennes model shows that our model is quite accurate in the limit wL>1, when strong anchoring conditions are effectively achieved.
Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska
Hiester, T.R.
1980-06-01
This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.
Brittle fracture in a periodic structure with internal potential energy
Mishuris, Gennady S.; Slepyan, Leonid I.
2014-01-01
We consider a brittle fracture taking account of self-equilibrated distributed stresses existing at microlevel in the absence of external forces. To determine how the latter can affect the crack equilibrium and growth, a model of a structured linearly elastic body is introduced, consisting of two equal symmetrically arranged layers (or half-planes) connected by an interface as a prospective crack path. The interface comprises a discrete set of elastic bonds. In the initial state, the bonds are assumed to be stressed in such a way that tensile and compressive forces of the same value alternate. In the general considerations, the layers are assumed to be of an unspecified periodic structure, where such self-equilibrated stresses may also exist. A two-line chain and a lattice are examined as the specified structure. We consider the states of the body-with-a-crack under such microlevel stresses (MS) and under a combined action of the remote forces and MS. Analytical solutions to the considered problems are presented based on the introduction of a selective discrete transform. We demonstrate that MS can increase as well as decrease the crack resistance depending on the internal energy level. We also discuss different scenarios of the crack growth. PMID:24808756
Turbine under Gulf Stream: Potential energy source
Venezia, W.A.; Holt, J.
1995-09-01
Turbine under the Gulf Stream (TUGS) is a project to design, build, and deploy the prototypes necessary to demonstrate the economic and technical feasibility of generating electric power from the Gulf Stream. The project is based in part on new generator designs and emerging materials technologies. Its successful completion would demonstrate the technology and produce prototype turbines that can be mass produced and sold with service support. Past research and experimentation indicates that energy can be generated from the Gulf Stream. Problems exist such as fluctuations in the current`s axis and inconsistency. Above all, the ocean is a difficult environment in which to work. Therefore, the question is not whether or not a generator can be put in the ocean to generate electricity, but rather can it be done in an economically and environmentally sound way and still be practical?
Baram, J.; Avissar, J.; Gefen, Y.; Rosen, M.
1980-05-01
The objective of this paper is to present experimental evidence concerning the acoustic energy evolved during the heating and cooling phase changes in Au-47.5 at.% Cd polycrystals. The results are examined from the point of view of the stored elastic strain energy during the martensite formation, and the frictional work that is dissipated by the movement of martensite interfaces in either direction, upon heating and cooling.
Theoretical study of the elastic breakup of weakly bound nuclei at near-barrier energies
NASA Astrophysics Data System (ADS)
Otomar, D. R.; Gomes, P. R. S.; Lubian, J.; Canto, L. F.; Hussein, M. S.
2015-12-01
We have performed continuum discretized coupled channel (CDCC) calculations for collisions of 7Li projectiles on 59Co,144Sm, and 208Pb targets at near-barrier energies, to assess the importance of the Coulomb and the nuclear couplings in the breakup of 7Li, as well as the Coulomb-nuclear interference. We have also investigated scaling laws, expressing the dependence of the cross sections on the charge and the mass of the target. This work is complementary to that previously reported by us on the breakup of 6Li. Here we explore the similarities and differences between the results for the two lithium isotopes. The relevance of the Coulomb dipole and quadrupole strengths at low energy for the two-cluster projectile is investigated in detail.
Experimental study of quasi-elastic scattering of ultracold neutrons
NASA Astrophysics Data System (ADS)
Steyerl, A.; Yerozolimsky, B. G.; Serebrov, A. P.; Geltenbort, P.; Achiwa, N.; Pokotilovski, Yu. N.; Kwon, O.; Lasakov, M. S.; Krasnoshchokova, I. A.; Vasilyev, A. V.
2002-08-01
Ultracold neutrons (UCN) are lost from traps if they are quasi-elastically scattered from the wall with an energy gain sufficient to exceed the Fermi potential for the wall. Possible mechanisms of a quasi-elastic energy transfer are, for instance, scattering from hydrogen diffusing in an impurity surface layer or on surface waves at a liquid wall. Using two different experimental methods at the UCN source of the Institut Laue-Langevin we have investigated both the energy-gain and the energy-loss side of quasi-elastic UCN scattering on Fomblin grease coated walls. For Fomblin oil and similar new types of oil we report up-scattering data as a function of temperature and energy transfer. These low-temperature oils may be used in an improved measurement of the neutron lifetime, which requires extremely low wall reflection losses.
Periodic discrete energy for long-range potentials
NASA Astrophysics Data System (ADS)
Hardin, D. P.; Saff, E. B.; Simanek, B.
2014-12-01
We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.
NASA Astrophysics Data System (ADS)
Moraru, Gheorghe; Mursa, Condrat
2006-12-01
In this book we present the basic concepts of the theory of elasticity: stress and deformation states (plane and three-dimensional) and generalized Hooke's law. We present a number of problems which have applications in strength analysis. The book includes a synthesis of the theory of elasticity and modern methods of applied mathematics. This book is designed for students, post graduate students and specialists in strength analysis. the book contains a number of appendixes which includes: elements of matrix-calculation, concepts of tensorial calculation, the Fourier transform, the notion of improper integrals,singular and hypersingular integrals, generalized functions, the Dirac Delta function
Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining
Sabine Brueske, Caroline Kramer, Aaron Fisher
2015-06-01
Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.
Sabine Brueske, Caroline Kramer, Aaron Fisher
2015-06-01
Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.
Energy Consumption and Renewable Energy Development Potential on Indian Lands
2000-01-01
Includes information on the electricity use and needs of Indian households and tribes, the comparative electricity rates that Indian households are paying, and the potential for renewable resources development of Indian lands.
NASA Astrophysics Data System (ADS)
Maridi, H. M.; Farag, M. Y. H.; Esmael, E. H.
2016-01-01
The proton elastic scattering off the 9,10,11,12Be isotopes at a wide energy range from 3 to 200 MeV/nucleon is analyzed using the optical model with the partial-wave expansion method. The microscopic optical potential (OP) is taken within the single-folding model. The density- and isospin-dependent M3YParis nucleon-nucleon (NN) interaction is used for the real part and the NN-scattering amplitude of the highenergy approximation for the imaginary one. The cross-section data are reproduced well at energies up to 100 MeV/nucleon by use of the partial-wave expansion. For higher energies, the eikonal approximation is successfully used. The volume integrals of the OP parts have systematic energy dependencies and they can be parameterized as functions of energy. From these parametrization, an energy-dependent OP can be obtained.
Exploring wind energy potential off the California coast
NASA Astrophysics Data System (ADS)
Jiang, Qingfang; Doyle, James D.; Haack, Tracy; Dvorak, Michael J.; Archer, Cristina L.; Jacobson, Mark Z.
2008-10-01
Wind energy represents the nearest term cost-effective renewable energy source. While efforts have been made to assess wind energy potential over land around the world, offshore wind energy resources are largely unexplored, in part because these regions have relatively sparse wind observations. In this study, the wind energy potential offshore of the California coast is evaluated using a well-tested high-resolution numerical model dataset. We found that along the coastline, the low-level winds exhibit strong spatial variation and are characterized by alternating windspeed maxima and minima near coastal promontories associated with the interaction between the marine boundary layer and coastal topography. Further analysis highlights the enormous and reliable wind energy development potential in these persistent offshore windspeed maxima.
Assessing the Potential for Renewable Energy on Public Lands
Not Available
2003-02-01
This report represents an initial activity of the Bureau of Land Managements (BLM) proposed National Energy Policy Implementation Plan: identify and evaluate renewable energy resources on federal lands and any limitations on accessing them. Ultimately, BLM will prioritize land-use planning activities to increase industrys development of renewable energy resources. These resources include solar, biomass, geothermal, water, and wind energy. To accomplish this, BLM and the Department of Energys National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of renewable energy resources on BLM lands in the western United States. The objective of this collaboration was to identify BLM planning units in the western states with the highest potential for private-sector development of renewable resources. The assessment resulted in the following findings: (1) 63 BLM planning units in nine western states have high potential for one or more renewable energy technologies; and (2) 20 BLM planning units in seven western states have high potential for power production from three or more renewable energy sources. This assessment report provides BLM with information needed to prioritize land-use planning activities on the basis of potential for the development of energy from renewable resources.
New approach to calculating the potential energy of colliding nuclei
Kurmanov, R. S.; Kosenko, G. I.
2014-12-15
The differential method proposed by the present authors earlier for the reduction of volume integrals in calculating the potential energy of a compound nucleus is generalized to the case of two interacting nuclei. The Coulomb interaction energy is obtained for the cases of a sharp and a diffuse boundary of nuclei, while the nuclear interaction energy is found only for nuclei with a sharp boundary, the finiteness of the nuclear-force range being taken into account. The present method of calculations permits reducing the time it takes to compute the potential energy at least by two orders of magnitude.
A Frontier orbital energy approach to redox potentials
NASA Astrophysics Data System (ADS)
Conradie, Jeanet
2015-09-01
The prediction of the oxidation and reduction potentials of molecules is important in many research areas. A review of relationships obtained between frontier orbital energies (eV), the calculated ionization potentials (IP in eV), or adiabatic electron affinities (EA in eV) with the experimental oxidation and reduction potentials is presented, for selected series of β- diketones, rhodium-β-diketonato complexes, as well as metal-tris-β-diketonato complexes, with the metal Fe or Mn. The good linear relationships obtained for related series of complexes show that the oxidation and reduction potentials of these complexes can be predicted by their DFT-calculated energies.
Low energy pion-pion elastic scattering in the Sakai-Sugimoto model
Parthasarathy, R.; Viswanathan, K. S.
2008-06-01
We have considered the holographic large N{sub c} QCD model proposed by Sakai and Sugimoto and evaluated the non-Abelian DBI-action on the D8-brane up to ({alpha}{sup '}){sup 4} terms. Restricting to the pion sector, these corrections give rise to four derivative contact terms for the pion field. We derive the Weinberg's phenemenological Lagrangian. The coefficients of the four derivative terms are determined in terms of g{sub YM}{sup 2}. The low energy pion-pion scattering amplitudes are evaluated. Numerical results are presented with the choice of M{sub KK}=0.94 GeV and N{sub c}=11. The results are compared with the amplitudes calculated using the experimental phase shifts. The agreement with the experimental data is found to be satisfactory.
Xie, Li; Liu, Haiyan; Yang, Weitao
2004-05-01
Optimization of reaction paths for enzymatic systems is a challenging problem because such systems have a very large number of degrees of freedom and many of these degrees are flexible. To meet this challenge, an efficient, robust and general approach is presented based on the well-known nudged elastic band reaction path optimization method with the following extensions: (1) soft spectator degrees of freedom are excluded from path definitions by using only inter-atomic distances corresponding to forming/breaking bonds in a reaction; (2) a general transformation of the distances is defined to treat multistep reactions without knowing the partitioning of steps in advance; (3) a multistage strategy, in which path optimizations are carried out for reference systems with gradually decreasing rigidity, is developed to maximize the opportunity of obtaining continuously changing environments along the path. We demonstrate the applicability of the approach using the acylation reaction of type A beta-lactamase as an example. The reaction mechanism investigated involves four elementary reaction steps, eight forming/breaking bonds. We obtained a continuous minimum energy path without any assumption on reaction coordinates, or on the possible sequence or the concertedness of chemical events. We expect our approach to have general applicability in the modeling of enzymatic reactions with quantum mechanical/molecular mechanical models. PMID:15267723
Re-examining Potential for Geothermal Energy in United States
NASA Astrophysics Data System (ADS)
Showstack, Randy
New technological initiatives, along with potential policy and economic incentives, could help to bring about a resurgence in geothermal energy development in the United States, said several experts at a 22 May forum in Washington, D.C. The forum was sponsored by the House and Senate Renewable Energy and Energy Efficiency Caucuses, the Sustainable Energy Coalition, and the Environmental and Energy Study Institute. Among these initiatives is an ambitious program of the U.S. Department of Energy to expand existing geothermal energy fields and potentially create new fields through ``enhanced geothermal systems.'' In addition, a program of the Bush administration encourages geothermal development on some public lands, and current legislation would provide tax credits and other incentives for geothermal development.
Biomass energy: the scale of the potential resource.
Field, Christopher B; Campbell, J Elliott; Lobell, David B
2008-02-01
Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change. PMID:18215439
Spontaneous dissipation of elastic energy by self-localizing thermal runaway.
Braeck, S; Podladchikov, Y Y; Medvedev, S
2009-10-01
Thermal runaway instability induced by material softening due to shear heating represents a potential mechanism for mechanical failure of viscoelastic solids. In this work we present a model based on a continuum formulation of a viscoelastic material with Arrhenius dependence of viscosity on temperature and investigate the behavior of the thermal runaway phenomenon by analytical and numerical methods. Approximate analytical descriptions of the problem reveal that onset of thermal runaway instability is controlled by only two dimensionless combinations of physical parameters. Numerical simulations of the model independently verify these analytical results and allow a quantitative examination of the complete time evolutions of the shear stress and the spatial distributions of temperature and displacement during runaway instability. Thus we find that thermal runaway processes may well develop under nonadiabatic conditions. Moreover, nonadiabaticity of the unstable runaway mode leads to continuous and extreme localization of the strain and temperature profiles in space, demonstrating that the thermal runaway process can cause shear banding. Examples of time evolutions of the spatial distribution of the shear displacement between the interior of the shear band and the essentially nondeforming material outside are presented. Finally, a simple relation between evolution of shear stress, displacement, shear-band width, and temperature rise during runaway instability is given. PMID:19905388
Potential energy landscapes of elemental and heterogeneous chalcogen clusters
Mauro, John C.; Loucks, Roger J.; Balakrishnan, Jitendra; Varshneya, Arun K.
2006-02-15
We describe the potential energy landscapes of elemental S{sub 8}, Se{sub 8}, and Te{sub 8} clusters using disconnectivity graphs. Inherent structures include both ring and chain configurations, with rings especially dominant in Se{sub 8}. We also map the potential energy landscapes of heterogeneous Se{sub n}(S,Te){sub 8-n} clusters, which offer insights into the structure of heterogeneous chalcogen glasses.
Teaching Potential Energy Functions and Stability with Slap Bracelets
NASA Astrophysics Data System (ADS)
Van Hook, Stephen J.
2005-10-01
The slap bracelet, an inexpensive child's toy, makes it easy to engage students in hands-on exploration of potential energy curves as well as of stable, unstable, and meta-stable states. Rather than just observing the teacher performing a demonstration, the students can manipulate the equipment themselves and make their own observations, which are then pooled to focus a class discussion on potential energy functions and stability.
NASA Astrophysics Data System (ADS)
Nagode, Marko; Šeruga, Domen
An approach is presented that enables the calculation of elastic strain energy in linear and nonlinear elastic solids during arbitrary thermomechanical load cycles. The approach uses the simple fact that the variation of both strain and complementary energies always forms a rectangular shape in stress-strain space, hence integration is no longer required to calculate the energy. Furthermore, the approach considers the mean stress effect so that predictions of fatigue damage are more realistically representative of real-life experimental observations. By doing so, a parameter has been proposed to adjust the mean stress effect. This parameter α is based on the well-known Smith-Watson-Topper energy criterion, but allows consideration of other arbitrary mean stress effects, e.g. the Bergmann type criterion. The approach has then been incorporated into a numerical method which can be applied to uniaxial and multiaxial, proportional and non-proportional loadings to predict fatigue damage. The end result of the method is the cyclic evolution of accumulated damage. Numerical examples show how the method presented in this paper could be applied to a nonlinear elastic material.
Potential production of energy cane for fuel in the Caribbean
Samuels, G.
1984-08-01
Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.
Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G; Sakamoto, Fernanda H; Gilchrest, Barbara A; Anderson, R Rox; Langer, Robert
2016-08-01
We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings. PMID:27159017
NASA Astrophysics Data System (ADS)
Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert
2016-08-01
We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.
The Department of Defense energy vulnerabilities: Potential problems and observations
NASA Astrophysics Data System (ADS)
Freiwald, D. A.; Berger, M. E.; Roach, J. F.
1982-08-01
The Department of Defense is almost entirely dependent on civilian energy supplies to meet its needs in both peacetime and periods of heightened conflict. There are a number of potential vulnerabilities to the continual and timely supply of energy to both the civilian and military sectors. These include denial of the energy resources themselves, disruption of critical transportation networks, destruction of storage facilities, and interruption of electrical power. This report briefly reviews the present situation for provision of energy from the civilian sector to the military. General vulnerabilities of the existing energy supply system are identified, along with the potential for armed aggression (including terrorist and sabotage activities) against the energy network. Conclusions and some tentative observations are made as to a proper response to the existing vulnerabilities.
DoD energy vulnerabilities: potential problems and observations
Freiwald, D A; Berger, M E; Roach, J F
1982-08-01
The Department of Defense is almost entirely dependent on civilian energy supplies to meet its needs in both peacetime and periods of heightened conflict. There are a number of potential vulnerabilities to the continual and timely supply of energy to both the civilian and military sectors. These include denial of the energy resources themselves, disruption of critical transportation networks, destruction of storage facilities, and interruption of electrical power. This report briefly reviews the present situation for provision of energy from the civilian sector to the military. General vulnerabilities of the existing energy supply system are identified, along with the potential for armed aggression (including terrorist and sabotage activities) against the energy network. Conclusions and some tentative observations are made as to a proper response to the existing vulnerabilities.
Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands
Doris, E.; Lopez, A.; Beckley, D.
2013-02-01
This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.
Potential geothermal energy applications for Idaho Elks Rehabilitation Hospital
Austin, J.C.
1981-11-01
Several potential applications of geothermal energy for the Idaho Elks Rehabilitation Hospital are outlined. A brief background on the resource and distribution system, is provided; which hospital heating systems should be considered for potential geothermal retrofit is discussed; and technical and economic feasibility are addressed.
Fusion at deep subbarrier energies: potential inversion revisited
Hagino, K.; Rowley, N.
2009-03-04
For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the {sup 16}O+{sup 144}Sm and {sup 16}O+{sup 208}Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.
Saint Paul Energy Park: the potential for district heating
Lee, C.; Kron, R.; Davis, H.
1980-03-01
The results of ANL's study of the energy and economic aspects of using district heating in the St. Paul Energy Park are summarized. The Energy Park is a 6 million ft/sup 2/ residential, commercial office, and light industrial complex to be built in the midway area of St. Paul, Minnesota. Space heating and cooling design loads for the park were calculated assuming that the ASHRAE's 90-75 energy-conserving construction standards would be used in constructing the park's buildings. Based in part on this assumption, ANL estimated the costs and energy use characteristics of six possible energy system options for supplying Energy Park's space heating, space cooling, and domestic hot water heating needs. The results indicate that in today's economy, a central heating and cooling plant with natural gas boilers and electrically driven centrifugal chillers with thermal storage has good potential for energy and economic savings and clearly merits further consideration.
Investigating Energy-Saving Potentials in the Cloud
Lee, Da-Sheng
2014-01-01
Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405
Investigating energy-saving potentials in the cloud.
Lee, Da-Sheng
2014-01-01
Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405
Coupled channel effect in elastic scattering and fusion for 6,7Li+28Si
NASA Astrophysics Data System (ADS)
Sinha, Mandira; Roy, Subinit; Basu, P.; Majumdar, H.; Santra, S.; Parkar, V. V.; Golda, K. S.; Kailas, S.
2011-10-01
The fusion excitation and elastic angular distribution were measured for 6,7Li+28Si from below to above Coulomb barrier (≤ 3Vb) energies. The barrier distribution derived from the fusion data was found to be broad and asymmetric at the sub-barrier region, compared to 1D BPM estimation. Effect of rotational coupling on fusion was found to be not so dominant. Phenomenological optical potential parameters, with surface and volume type imaginary potentials, were obtained from f tting of elastic scattering data and energy dependence of real and imaginary surface strengths were investigated around the barrier. CDCC calculations considering only breakup of projectile were performed for 6,7Li+28Si with the elastic scattering data, using the code FRESCO. The effects of breakup of projectile on elastic cross section do not agree with the energy dependence of real and imaginary strength with volume type imaginary potential around the barrier.
Kappa distribution in the presence of a potential energy
NASA Astrophysics Data System (ADS)
Livadiotis, George
2015-02-01
The present paper develops the theory and formulations of the kappa distributions that describe particle systems characterized by a nonzero potential energy. As yet, kappa distributions were used for the statistical description of the velocity or kinetic energy of particles but not of the potential energy. With the results provided here, it is straightforward to use the developed kappa distributions to describe any particle population of space plasmas subject to a nonnegligible potential energy. Starting from the kappa distribution of the Hamiltonian function, we develop the distributions that describe either the complete phase space or the marginal spaces of positions and velocities. The study shows, among others: (a) The kappa distributions of velocities that describe space plasmas can be vastly different from the standard formulation of the kappa distribution, because of the presence of a potential energy; the correct formulation should be given by the marginal kappa distribution of velocities by integrating the distribution of the Hamiltonian over the potential energy. (b) The long-standing problem of the divergence of the Boltzmannian exponential distribution for bounded radial potentials is solved using kappa distributions of negative kappa index. (c) Anisotropic distributions of velocities can exist in the presence of a velocity-dependent potential. (d) A variety of applications, including derivations/verifications of the following: (i) the Jeans', the most frequent, and the maximum radii in spherical/linear gravitational potentials; (ii) the Virial theorem for power law potentials; (iii) the generalized barometric formula, (iv) the plasma density profiles in Saturnian magnetosphere, and (v) the average electron magnetic moment in Earth's magnetotail.
Separable representation of energy-dependent optical potentials
NASA Astrophysics Data System (ADS)
Hlophe, L.; Elster, Ch.
2016-03-01
Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.
Communication: Separable potential energy surfaces from multiplicative artificial neural networks
Koch, Werner Zhang, Dong H.
2014-07-14
We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.
Framework for State-Level Renewable Energy Market Potential Studies
Kreycik, C.; Vimmerstedt, L.; Doris, E.
2010-01-01
State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.
NASA Astrophysics Data System (ADS)
Shodja, H. M.; Tehranchi, A.
2010-05-01
The usual continuum theories are inadequate in predicting the mechanical behavior of solids in the presence of small defects and stress concentrators; it is well known that such continuum methods are unable to detect the change of the size of the inhomogeneities and defects. For these reasons various augmented continuum theories and strain gradient theories have been proposed in the literature. The major difficulty in implication of these theories lies in the lack of information about the additional material constants which appear in such theories. For fcc metals, for the calculation of the associated characteristic lengths which arise in first strain gradient theory, an atomistic approach based on the Sutton-Chen interatomic potential function is proposed. For the validity of the computed characteristic lengths, the phenomenon of the size effect pertinent to a nano-sized circular void within an fcc (111) plane is examined via both first strain gradient theory and lattice statics. Comparison of the results explains the physical ramifications of the characteristic lengths in improving the usual continuum results. Moreover, by reconsideration of the Kelvin problem it is shown that a commonly employed variant of the first strain gradient theory is only valid for a few fcc metals.
Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy
NASA Astrophysics Data System (ADS)
Kostrobij, P. P.; Markovych, B. M.
2015-08-01
A general expression for the thermodynamic potential of the model of semi-infinite jellium is obtained. By using this expression, the surface energy for the infinite barrier model is calculated. The behavior of the surface energy and of the chemical potential as functions of the Wigner-Seitz radius and the influence of the Coulomb interaction between electrons on the calculated values is studied. It is shown that taking into account the Coulomb interaction between electrons leads to growth of the surface energy. The surface energy is positive in the entire area of the Wigner-Seitz radius. It is shown that taking into account the Coulomb interaction between electrons leads to a decrease of the chemical potential.
Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs
Webber, Carrie A.; Brown, Richard E.
1998-06-19
In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)
Solar energy in California industry - Applications, characteristics and potential
NASA Technical Reports Server (NTRS)
Barbieri, R. H.; Pivirotto, D. S.
1978-01-01
Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.
Scenarios of energy demand and efficiency potential for Bulgaria
Tzvetanov, P.; Ruicheva, M.; Denisiev, M.
1996-12-31
The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.
Zhang, Bao; Arola, Dwayne D; Roys, Steve; Gullapalli, Rao P
2011-08-01
The use of magnetic resonance (MR) imaging in conjunction with an endorectal coil is currently the clinical standard for the diagnosis of prostate cancer because of the increased sensitivity and specificity of this approach. However, imaging in this manner provides images and spectra of the prostate in the deformed state because of the insertion of the endorectal coil. Such deformation may lead to uncertainties in the localization of prostate cancer during therapy. We propose a novel 3-D elastic registration procedure that is based on the minimization of a physically motivated strain energy function that requires the identification of similar features (points, curves, or surfaces) in the source and target images. The Gauss-Seidel method was used in the numerical implementation of the registration algorithm. The registration procedure was validated on synthetic digital images, MR images from prostate phantom, and MR images obtained on patients. The registration error, assessed by averaging the displacement of a fiducial landmark in the target to its corresponding point in the registered image, was 0.2 ± 0.1 pixels on synthetic images. On the prostate phantom and patient data, the registration errors were 1.0 ± 0.6 pixels (0.6 ± 0.4 mm) and 1.8 ± 0.7 pixels (1.1 ± 0.4 mm), respectively. Registration also improved image similarity (normalized cross-correlation) from 0.72 ± 0.10 to 0.96 ± 0.03 on patient data. Registration results on digital images, phantom, and prostate data in vivo demonstrate that the registration procedure can be used to significantly improve both the accuracy of localized therapies such as brachytherapy or external beam therapy and can be valuable in the longitudinal follow-up of patients after therapy. PMID:20552248
Calculation of molecular free energies in classical potentials
NASA Astrophysics Data System (ADS)
Farhi, Asaf; Singh, Bipin
2016-02-01
Free energies of molecules can be calculated by quantum chemistry computations or by normal mode classical calculations. However, the first can be computationally impractical for large molecules and the second is based on the assumption of harmonic dynamics. We present a novel, accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms which depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non-interacting systems, the free energy associated with these atoms is analytically or numerically calculated. This two-step calculation can be applied to calculate free energies of molecules or free energy difference between (possibly large) molecules in a general environment. We demonstrate the method in free energy calculations for methanethiol and butane molecules in vacuum and solvent. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations.
Potential for energy conservation in the glass industry
Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.
1986-06-01
While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.
Manning, Gerald S.
2015-09-14
We give a contemporary and direct derivation of a classical, but insufficiently familiar, result in the theory of linear elasticity—a representation for the energy of a stressed elastic rod with central axis that intrinsically takes the shape of a general space curve. We show that the geometric torsion of the space curve, while playing a crucial role in the bending energy, is physically unrelated to the elastic twist. We prove that the twist energy vanishes in the lowest-energy states of a rod subject to constraints that do not restrict the twist. The stretching and contraction energies of a free helical spring are computed. There are local high-energy minima. We show the possibility of using the spring to model the chirality of DNA. We then compare our results with an available atomic level energy simulation that was performed on DNA unconstrained in the same sense as the free spring. We find some possible reflections of springlike behavior in the mechanics of DNA, but, unsurprisingly, the base pairs lend a material substance to the core of DNA that a spring does not capture.
Electron-Hydrogen Elastic Scattering
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
2004-01-01
Scattering by single-electron systems is always of interest because the wave function of the target is known exactly. Various approximations have been employed to take into account distortion produced in the target. Among them are the method of polarized orbitals and the close coupling approximation. Recently, e-H and e-He+ S-wave scattering in the elastic region has been studied using the Feshbach projection operator formalism. In this approach, the usual Hartree-Fock and exchange potentials are augmented by an optical potential and the resulting phase shifts have rigorous lower bounds. Now this method is being applied to the e-H P-wave scattering in the elastic region. The number of terms in the Hylleraas-type wave function for the 1,3 P phase shifts is 84 and the resulting phase shifts (preliminary) are given. The results have been given up to five digits because to that accuracy they are rigorous lower bounds. They are in general agreement with the variational (VAR) results of Armstead, and those obtained from the intermediate energy R-matrix method (RM) of Scholz et al., and the finite element method (FEM) of Botero and Shertzer. The later two methods do not provide any bounds on phase shifts.
Split kinetic energy method for quantum systems with competing potentials
Mineo, H.; Chao, Sheng D.
2012-09-15
For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into 'unperturbed' and 'perturbed' terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double {delta}-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: Black-Right-Pointing-Pointer A new basis set expansion method is proposed. Black-Right-Pointing-Pointer Split kinetic energy method is proposed to solve quantum eigenvalue problems. Black-Right-Pointing-Pointer Significant improvement has been obtained in converging to exact results. Black-Right-Pointing-Pointer Extension of such methods is promising and discussed.
The HCO{sup +}–H{sub 2} van der Waals interaction: Potential energy and scattering
Massó, H.; Wiesenfeld, L.
2014-11-14
We compute the rigid-body, four-dimensional interaction potential between HCO{sup +} and H{sub 2}. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO{sup +} and para-/ortho-H{sub 2}. Results are compared with similar earlier computations with He or isotropic para-H{sub 2} as the projectile. Computations agree with earlier pressure broadening measurements.
Optimizing potential energy functions for maximal intrinsic hyperpolarizability
Zhou Juefei; Szafruga, Urszula B.; Kuzyk, Mark G.; Watkins, David S.
2007-11-15
We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized potentials, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized potential energy functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpolarizability to be dominated by only two excited states and (2) the energy ratio between the two dominant states. All optimized potentials are found to obey the three-level ansatz to within about 1%. Many of these potential energy functions may be implementable in multiple quantum well structures. The subset of potentials with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability {beta}{sub xxx}{sup int} than higher-dimensional systems.
Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials
Yu, Yuguo; Hill, Adam P.; McCormick, David A.
2012-01-01
The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855
Wind energy potential analysis in Al-Fattaih-Darnah
NASA Astrophysics Data System (ADS)
Tjahjana, Dominicus Danardono Dwi Prija; Salem, Abdelkarim Ali; Himawanto, Dwi Aries
2016-03-01
In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth's surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.
Saturation wind power potential and its implications for wind energy.
Jacobson, Mark Z; Archer, Cristina L
2012-09-25
Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353
Communication: Fitting potential energy surfaces with fundamental invariant neural network.
Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H
2016-08-21
A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations. PMID:27544080
Saturation wind power potential and its implications for wind energy
Jacobson, Mark Z.; Archer, Cristina L.
2012-01-01
Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353
Jain, A.; Weatherford, C.A. ); Thompson, D.G.; McNaughten, P. )
1989-12-01
We have investigated the polarization effects in very-low-energy (below 1 eV) electron- CH{sub 4} collisions in an exact-exchange treatment. The two models of the parameter-free polarization potential are employed; one, the {ital V}{sub pol}{sup JT} potential, introduced by Jain and Thompson (J. Phys. B 15, L631 (1982)), is based on an approximate polarized-orbital method, and two, the correlation-polarization potential {ital V}{sub pol}{sup CP}, first proposed by O'Connel and Lane (Phys. Rev. A 27, 1893 (1983)), is given as a simple analytic form in terms of the charge density of the target. In this rather very low-energy region, the polarization effects play a decisive role, particularly in creating structure in the differential cross section (DCS) and producing the Ramsauer-Townsend minimum in the total cross section. Our DCS at 0.2, 0.4, and 0.6 eV are compared with recent measurements. We found that a local parameter-free approximation for the polarization potential is quite successful if it is determined under the polarized-orbital-type technique rather than based on the correlation-polarization approach.
A'Amar, O M; Liou, L; Rodriguez-Diaz, E; De las Morenas, A; Bigio, I J
2013-09-01
The false-negative rate of ultrasound-guided sextant prostate biopsy has been estimated to be as high as 35 %. A significant percentage (10-35 %) of these prostate cancers diagnosed at a second or later attempt are high grade and, therefore, potentially lethal. We discuss the feasibility for performing optically guided biopsy using elastic scattering spectroscopy (ESS) to reduce sampling errors and improve sensitivity. ESS measurements were performed on 42 prostate glands ex vivo and correlated with standard histopathological assessment. Sliced glands were examined with wavelength ranges of 330-760 nm. The ESS portable system used a new fiber-optic probe with integrated cutting tool, designed specifically for ex vivo pathology applications. ESS spectra were grouped by diagnosis from standard histopathological procedure and then classified using linear support vector machine. Preliminary data are encouraging. ESS data showed strong spectral trends correlating with the histopathological assignments. The classification results showed a sensitivity of 0.83 and specificity of 0.87 for distinguishing dysplastic prostatic tissue from benign prostatic tissue. Similar results were obtained for distinguishing dysplastic prostatic tissue from prostatitis with a sensitivity and specificity of 0.80 and 0.88, respectively. The negative predictive values obtained with ESS are better than those obtained with transrectal ultrasound (TRUS)-guided core-needle biopsy. PMID:23247663
NASA Astrophysics Data System (ADS)
Main, Ian G.; O'Brien, Gareth; Henderson, Jeremy R.
2000-03-01
We investigate the relationship between the size distribution of earthquake rupture area and the underlying elastic potential energy distribution in a cellular automaton model for earthquake dynamics. The frequency-rupture area distribution has the form n(S) ˜Sτ exp (-S/So) and the system potential energy distribution from the elastic Hamiltonian has the form n(E) ˜Ev exp (-E/θ), both gamma distributions. Here n(S) reduces to the Gutenberg-Richter frequency-magnitude law, with slope b ˜τ, in the limit that the correlation length ξ, related to the characteristic source size So, tends to infinity. The form of the energy distribution is consistent with a statistical mechanical model with l degrees of freedom, where v = (l-2)/2 and θ is proportional to the mean energy per site ? . We examine the effect of the local energy conservation factor β and the degree of material heterogeneity (quenched disorder) on the distribution parameters, which vary systematically with the controlling variables. The inferred correlation length increases systematically with increasing material homogeneity and with increasing β. The thermal parameter θ varies systematically between the leaf springs and the connecting springs, and is proportional to ? as predicted. For heterogeneous faults, τ ˜1 stays relatively constant, consistent with field observation, and S0 increases with increasing β or decreasing heterogeneity. In contrast, smooth faults produce a systematic decrease in τ with respect to β and So remains relatively constant. For high β approximately log-periodic quanta emerge spontaneously from the dynamics in the form of modulations on the energy distribution. The output energy for both types of fault shows a transition from strongly quasi-periodic temporal fluctuations for strong dissipation, to more chaotic fluctuations for more conservative models. Only strongly heterogeneous faults show the small fluctuations in energy strictly required by models of self
Potential function and dissociation energy of alkali halide
NASA Astrophysics Data System (ADS)
Srivastava, Abhay P.; Pandey, Anjani K.; Pandey, Brijesh K.
2016-05-01
Dissociation energy of some alkali halides have been calculated by using different interaction potential function such as Born-Mayer, Varshani-Shukla and L5 potential model. The theoretical calculation is compared with experimental values. The Result shows that the values of dissociation energy as calculated by using different potential models have an equal amount of deviation with experimental values. The above said deviation with experimental values can be explained by consideration of rotational-vibrational coupling between the constituents of molecules in the limelight of molecular spectroscopy. Findings of present work suggest that the existing potential model need to be reviewed in view of the correction factors solely depending on the rotational, vibrational and electronic coupling between the constituents of molecules.
An adaptive interpolation scheme for molecular potential energy surfaces.
Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa
2016-08-28
The calculation of potential energy surfaces for quantum dynamics can be a time consuming task-especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version. PMID:27586901
Finding reaction paths using the potential energy as reaction coordinate.
Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria
2008-03-14
The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Caratheodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Caratheodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point. PMID:18345872
Finding reaction paths using the potential energy as reaction coordinate
NASA Astrophysics Data System (ADS)
Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria
2008-03-01
The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Carathéodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Carathéodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.
Potential structural material problems in a hydrogen energy system
NASA Technical Reports Server (NTRS)
Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, W. B.; Howard, F. S.; Swisher, J. H.
1976-01-01
Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - have been identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described. An awareness of probable shortages of strategic materials has been maintained in these suggested programs.
Reference pressure changes and available potential energy in isobaric coordinates
NASA Technical Reports Server (NTRS)
Robertson, F. R.
1985-01-01
A formulation of the available potential energy (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of energy via boundary processes with the surrounding environment.
Potential structural material problems in a hydrogen energy system
NASA Technical Reports Server (NTRS)
Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.
1975-01-01
Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.
Renewable energy technologies adoption in Kazakhstan: potentials, barriers and solutions
NASA Astrophysics Data System (ADS)
Karatayev, Marat; Marazza, Diego; Contin, Andrea
2015-04-01
The growth in environmental pollution alongside an increasing demand for electricity in Kazakhstan calls for a higher level of renewable energy penetration into national power systems. Kazakhstan has great potential for renewable energies from wind, solar, hydro and biomass resources that can be exploited for electricity production. In 2013, the Kazakhstani Ministry of Energy initiated a new power development plan, which aims to bring the share of renewable energy to 3% by 2020 rising to 30% by 2030 and 50% by 2050. The current contribution of renewable energy resources in the national electricity mix, however, is less than 1%. As a developing country, Kazakhstan has faced a number of barriers to increase renewable energy use, which have to be analysed and translated into a comprehensive renewable energy policy framework. This study presents an overview of the current conditions of renewable energy development in Kazakhstan. Secondly, it identifies and describes the main barriers that prevent diffusion of renewable energy technologies in Kazakhstan. Finally, the paper provides solutions to overcome specific barriers in order to successfully develop a renewable energy technology sector in Kazakhstan.
Energy savings potential in air conditioners and chiller systems
Kaya, Durmus; Alidrisi, Hisham
2014-01-22
In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.
LHC Physics Potential vs. Energy: Considerations for the 2011 Run
Quigg, Chris; /Fermilab /CERN
2011-02-01
Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I quantify the advantage of increasing the beam energy from 3.5 TeV to 4 TeV. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u {bar d}, qq, and gq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes. This note extends the analysis presented in Ref. [1]. Full-size figures are available as pdf files at lutece.fnal.gov/PartonLum11/.
Energy savings potential in air conditioners and chiller systems
Kaya, Durmus; Alidrisi, Hisham
2014-01-22
In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less
NASA Astrophysics Data System (ADS)
Akcabay, Deniz Tolga; Young, Yin Lu
2012-05-01
Electroactive polymers such as piezoelectric elements are able to generate electric potential differences from induced mechanical deformations. They can be used to build devices to harvest ambient energy from natural flow-induced deformations, e.g., as flapping flags subject to flowing wind or artificial seaweed subject to waves or underwater currents. The objectives of this study are to (1) investigate the transient hydroelastic response and energy harvesting potential of flexible piezoelectric beams fluttering in incompressible, viscous flow, and (2) identify critical non-dimensional parameters that govern the response of piezoelectric beams fluttering in viscous flow. The fluid-structure interaction response is simulated using an immersed boundary approach coupled with a finite volume solver for incompressible, viscous flow. The effects of large beam deformation, membrane tension, and coupled electromechanical responses are all considered. Validation studies are shown for the motion of a flexible filament in uniform flow, and for a piezoelectric beam subject to base vibration. The predicted flutter velocities and frequencies also compared well with published experimental and numerical data over a range of Reynolds numbers for varying fluid and solid combinations. The results showed that for a heavy beam in a light fluid (i.e., high βρ regime), flutter incepts at a lower critical speed with a lower reduced frequency than for a light beam in a heavy fluid (i.e., low βρ regime). In the high βρ regime, flutter develops at the second mode and is only realized when the fluid inertial forces are in balance with the solid elastic restoring forces, which leads to large amplitude oscillations and complex wake patterns; the flutter speed is practically independent of the Reynolds number (Re) and solid to fluid mass ratio (βρ), because the response is dominated by the solid inertial forces. In the low βρ regime, fluid inertial forces dominate, flutter develops at
Pseudo-Casimir stresses and elasticity of a confined elastomer film.
Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf
2016-05-11
Investigations of the elastic behavior of bulk elastomers have traditionally proceeded on the basis of classical rubber elasticity, which regards chains as thermally fluctuating but disregards the thermal fluctuations of the cross-links. Herein, we consider an incompressible and flat elastomer film of an axisymmetric shape confined between two large hard co-planar substrates, with the axis of the film perpendicular to the substrates. We address the impact that thermal fluctuations of the cross-links have on the free energy of elastic deformation of the system, subject to the requirement that the fluctuating elastomer cannot detach from the substrates. We examine the behavior of the deformation free energy for one case where a rigid pinning boundary condition is applied to a class of elastic fluctuations at the confining surfaces, and another case where the same elastic fluctuations are subjected to soft "gluing" potentials. We find that there can be significant departures (both quantitative and qualitative) from the prediction of classical rubber elasticity theory when elastic fluctuations are included. Finally, we compare the character of the attractive part of the elastic fluctuation-induced, or pseudo-Casimir, stress with the standard thermal Casimir stress in confined but non-elastomeric systems, finding the same power law decay behavior when a rigid pinning boundary condition is applied; for the case of the gluing potential, we find that the leading order correction to the attractive part of the fluctuation stress decays inversely with the inter-substrate separation. PMID:27079513
Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces
NASA Astrophysics Data System (ADS)
Heaps, Charles W.; Mazziotti, David A.
2016-04-01
Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.
Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.
Heaps, Charles W; Mazziotti, David A
2016-04-28
Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant. PMID:27131532
NASA Astrophysics Data System (ADS)
Whitlow, H. J.; Zhang, Y.; Wang, Y.; Winzell, T.; Simic, N.; Ahlberg, E.; Limbäck, M.; Wikmark, G.
2000-03-01
The trend towards increased fuel burn-up and higher operating temperatures in order to achieve more economic operation of nuclear power plants places demands on a better understanding of oxidative corrosion of Zircaloy (Zry) fuel rod cladding. As part of a programme to study these processes we have applied time-of-flight-energy elastic recoil detection (ToF-E ERD), electrochemical impedance measurements and scanning electron microscopy to quantitatively characterise thin-oxide films corresponding to the pre-transition oxidation regime. Oxide films of different nominal thickness in the 9-300 nm range were grown on a series of rolled Zr and Zry-2 plates by anodisation in dilute H 2SO 4 with applied voltages. The dielectric thickness of the oxide layer was determined from the electrochemical impedance measurements and the surface topography characterised by scanning electron microscopy. ToF-E ERD with a 60 MeV 127I 11+ ion beam was used to determine the oxygen content and chemical composition of the oxide layer. In the Zr samples, the oxygen content (O atom cm -2) that was determined by ERD was closely similar to the O content derived from impedance measurements from the dielectric film. The absolute agreement was well within the uncertainty associated with the stopping powers. Moreover, the measured composition of the thick oxide layers corresponded to ZrO 2 for the films thicker than 65 nm where the oxide layer was resolved in the ERD depth profile. Zry-2 samples exhibited a similar behaviour for small thickness ( ⩽130 nm) but had an enhanced O content at larger thicknesses that could be associated either with enhanced rough surface topography or porous oxide formation that was correlated with the presence of Second Phase Particles (SPP) in Zry-2. The concentration of SPP elements (Fe, Cr, Ni) in relation to Zr was the same in the outer 9×10 17 atom cm -2 of oxide as in the same thickness of metal. The results also revealed the presence of about 1 at.% 32S in the
Potentials and policy implications of energy and material efficiency improvement
Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis
1997-01-01
There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.
Teaching Field Concept and Potential Energy at A-Level.
ERIC Educational Resources Information Center
Poon, C. H.
1986-01-01
Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the potential energy in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)
High energy scattering of Dirac particles on smooth potentials
NASA Astrophysics Data System (ADS)
Han, Nguyen Suan; Dung, Le Anh; Xuan, Nguyen Nhu; Thang, Vu Toan
2016-08-01
The derivation of the Glauber type representation for the high energy scattering amplitude of particles of spin 1/2 is given within the framework of the Dirac equation in the Foldy-Wouthuysen (FW) representation and two-component formalism. The differential cross-sections on the Yukawa and Gaussian potentials are also considered and discussed.
Unified Technical Concepts. Module 7: Potential and Kinetic Energy.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…
Global Potential of Energy Efficiency Standards and Labeling Programs
McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane
2008-06-15
This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under
Understanding Potential Climate Variability Impacts on the Offshore Energy Industry
NASA Astrophysics Data System (ADS)
Stear, J.
2014-12-01
Climate variability may have important implications for the offshore energy industry. Scenarios of increased storm activity and changes in sea level could require the retrofit of existing offshore platforms and coastal infrastructure, the decommissioning of facilities for which upgrade or relocation is not economically viable, and the development of new methods and equipment which are removed from or less sensitive to environmental loads. Over the past years the energy industry has been actively involved in collaborative research efforts with government and academia to identify the potential changes in the offshore operating environment, and corresponding risk implications. This presentation will review several of these efforts, and for several of the hypothetical climate variation scenarios, review the potential impacts on and possible mitigations for offshore and coastal energy infrastructure and operations.
Contrastive studies of potential energy functions of some diatomic molecules
NASA Astrophysics Data System (ADS)
Abdallah, Hassan H.; Abdullah, Hewa Y.
2016-03-01
It was proposed that iron hydride, FeH, would be formed only on grains at the clouds through the reaction of the adsorbed H atoms or H2 molecules with the adsorbed Fe atoms on the grains. The importance of FeH in Astrophysics presents an additional motivation to study its energetic, spectroscopic constants and Potential Energy Curves. The structural optimization for ground state of FeH was calculated by different theoretical methods, namely, Hartree-Fock (HF), the density functional theory (DFT), B3LYP, MP2 method and QCISD(T) methods and compared with available data from the literature. The single ionized forms, cation and anion, were also obtained at the same level of calculations. Charges, dipole moment, geometrical parameters, molecular orbital energies and spectroscopic parameters were calculated and reported. In addition, the molecular ionization potential, electron affinity and dissociation energy were investigated.
Three-dimensional potential energy surface of Ar–CO
Sumiyoshi, Yoshihiro; Endo, Yasuki
2015-01-14
A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.
Global interior eddy available potential energy diagnosed from Argo floats
NASA Astrophysics Data System (ADS)
Roullet, Guillaume; Capet, Xavier; Maze, Guillaume
2014-03-01
By combining all Argo profiles for the period 2002 to present, a cumulative density function is constructed on a 3-D grid of the global ocean. This function quantifies the statistics of isopycnals: time-averaged density, root-mean square of isopycnal displacement, and eddy available potential energy (EAPE). EAPE is the analogue of the eddy kinetic energy, but for the potential energy reservoir. Because it is essentially tied to the spatial structure and magnitude of mesoscale activity, EAPE is an important quantity that should be useful to evaluate eddy resolving/permitting model turbulence and circulation. Among other striking features are the turbulent behavior of Pacific and southern Atlantic Tsuchiya jets and subsurface EAPE maxima in some parts of the ocean, particularly in the Southern Ocean.
Heterobarrier for converting hot-phonon energy to electric potential
NASA Astrophysics Data System (ADS)
Shin, Seungha; Melnick, Corey; Kaviany, Massoud
2013-02-01
We show that hot phonons emitted in energy conversion or resistive processes can be converted to electric potential in heterobarrier structures. Using phonon and electron interaction kinetics and self-consistent ensemble Monte Carlo, we find the favorable conditions for unassisted absorption of hot phonons and design graded heterobarriers for their direct conversion into electric energy. Tandem barriers with nearly optical-phonon height allow for substantial potential gain without current loss. We find that 19% of hot phonons can be harvested with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, thus enhancing the overall energy conversion efficiency and reducing waste heat.
Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa
Cowlin, S. C.; Heimiller, D.; Bilello, D.; Renne, D.
2008-01-01
This analysis explores the technical potential of photovoltaics (PV) or concentrating solar power (CSP) to address energy poverty in Africa through a geographic information system (GIS) screening of solar resource data developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).
Ge, Jianlong; Fan, Gang; Si, Yang; He, Jianxin; Kim, Hak-Yong; Ding, Bin; Al-Deyab, Salem S; El-Newehy, Mohamed; Yu, Jianyong
2016-01-28
Flexible membranes created from porous carbon nanofibers (CNFs) hold great promise in the next generation wearable energy storage devices, but challenges still remain due to the poor mechanical properties of porous carbon nanofibers. Here, we report a facile strategy to fabricate elastic and hierarchical porous CNF membranes with NiFe2O4 nanocrystals embedded via multicomponent electrospinning and nano-doping methods. Benefiting from the scattering effect of NiFe2O4 nanocrystals and graphitized carbon layers for the condensed stress, the resultant CNF membranes exhibit an enhanced elasticity with a bending radius <12 μm, rapid recovery from the deformations, and a superior softness. Quantitative pore size distribution and fractal analysis reveal that the CNFs possessed tunable porous structures with a high surface area of 493 m(2) g(-1) and a pore volume of 0.31 cm(3) g(-1). Benefiting from the robust mechanical stability, hierarchical porous structures and good electrochemical properties, the NiFe2O4 doped CNF membranes demonstrate a high electrical capacitance of 343 F g(-1), and good reversibility with a cycling efficiency of 97.4% even after 10,000 cycles. The successful synthesis of elastic porous CNF membranes also provided a versatile platform for the design and development of functional CNF based materials for various applications. PMID:26731700
NASA Astrophysics Data System (ADS)
Pastega, D. F.; Lange, E.; Ameixa, J.; Barbosa, A. S.; Blanco, F.; García, G.; Bettega, M. H. F.; Limão-Vieira, P.; Ferreira da Silva, F.
2016-03-01
We report elastic differential cross sections (DCSs) for electron interactions with acetone, C3H6O . The incident electron energy range was 7.0-50 eV, and the scattered electron angular range for the differential measurements varied from 10° to 120°. The calculated cross sections were obtained with two different methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP), and the independent-atom method with screening-corrected additivity rule (IAM-SCAR). The present elastic DCSs have been found to agree well with the results of IAM-SCAR calculations above 20 eV, and also with the SMC calculations below 30 eV. Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. Comparison with previous DCSs shows good agreement albeit the present data is extended down to lower electron impact energies. We find a low-lying π* shape resonance located at 2.6 eV, in agreement with recent results on electron collisions with acetone [M. G. P. Homem et al., Phys. Rev. A 92, 032711 (2015), 10.1103/PhysRevA.92.032711]. The presence of a σ* resonance is also discussed.
High elastic modulus polymer electrolytes
Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel
2013-10-22
A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.
U.S. Building-Sector Energy Efficiency Potential
Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter
2008-09-30
This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).
Hopf solitons and elastic rods
Harland, Derek; Sutcliffe, Paul; Speight, Martin
2011-03-15
Hopf solitons in the Skyrme-Faddeev model are stringlike topological solitons classified by the integer-valued Hopf charge. In this paper we introduce an approximate description of Hopf solitons in terms of elastic rods. The general form of the elastic rod energy is derived from the field theory energy and is found to be an extension of the classical Kirchhoff rod energy. Using a minimal extension of the Kirchhoff energy, it is shown that a simple elastic rod model can reproduce many of the qualitative features of Hopf solitons in the Skyrme-Faddeev model. Features that are captured by the model include the buckling of the charge three solution, the formation of links at charges five and six, and the minimal energy trefoil knot at charge seven.
An exploration of the ozone dimer potential energy surface
Azofra, Luis Miguel; Alkorta, Ibon; Scheiner, Steve
2014-06-28
The (O{sub 3}){sub 2} dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O{sub 3} monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm{sup −1}. In addition to the five minima, 11 higher-order stationary points are identified.
An exploration of the ozone dimer potential energy surface
NASA Astrophysics Data System (ADS)
Azofra, Luis Miguel; Alkorta, Ibon; Scheiner, Steve
2014-06-01
The (O3)2 dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O3 monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm-1. In addition to the five minima, 11 higher-order stationary points are identified.
An exploration of the ozone dimer potential energy surface.
Azofra, Luis Miguel; Alkorta, Ibon; Scheiner, Steve
2014-06-28
The (O3)2 dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O3 monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm(-1). In addition to the five minima, 11 higher-order stationary points are identified. PMID:24985642
NASA Astrophysics Data System (ADS)
Martynov, E.
2013-06-01
The model of elastic scattering amplitudes dominated by the triple (at t=0) Pomeron pole suggested earlier is modified to confront to existing experimental data on pp and p¯p total and differential cross sections at s≥19GeV and |t|≤14.2GeV2 including the newest TOTEM data. Predictions for the future TOTEM measurements at 13 and 14 TeV are given.
Residential energy efficiency: Progress since 1973 and future potential
NASA Astrophysics Data System (ADS)
Rosenfeld, Arthur H.
1985-11-01
Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.
Potential for luminosity improvement for low-energy RHIC operation
Fedotov A. V.
2012-05-20
At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.
Evaluation of global onshore wind energy potential and generation costs.
Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon
2012-07-17
In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power. PMID:22715929
NASA Astrophysics Data System (ADS)
Carnelli, P. F. F.; Abriola, D.; Arazi, A.; Capurro, O. A.; Cardona, M. A.; Fernández Niello, J. O.; Figueira, J. M.; Fimiani, L.; Grinberg, P.; Hojman, D.; Martí, G. V.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.
2010-08-01
We have measured elastic excitation functions for the 7Li+27Al system, in an energy range close to its Coulomb barrier (Elab = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly α particles), a telescope-detector was used for atomic-number identification. Identical measurements for the 6Li+27Al system are planned for the near future.
Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Abriola, D.; Capurro, O. A.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Fernandez Niello, J. O.
2010-08-04
We have measured elastic excitation functions for the {sup 7}Li+{sup 27}Al system, in an energy range close to its Coulomb barrier (E{sub lab} = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly {alpha} particles), a telescope-detector was used for atomic-number identification. Identical measurements for the {sup 6}Li+{sup 27}Al system are planned for the near future.
Exact energy spectrum for models with equally spaced point potentials
NASA Astrophysics Data System (ADS)
Caudrelier, V.; Crampé, N.
2006-03-01
We describe a non-perturbative method for computing the energy band structures of one-dimensional models with general point potentials sitting at equally spaced sites. This is done thanks to a Bethe ansatz approach and the method is applicable even when periodicity is broken, that is when Bloch's theorem is not valid any more. We derive the general equation governing the energy spectrum and illustrate its use in various situations. In particular, we get exact results for boundary effects. We also study non-perturbatively the effects of impurities in such systems. Finally, we discuss the possibility of including interactions between the particles of these systems.
Bifurcations on Potential Energy Surfaces of Organic Reactions
Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Çelebi-Ölçüm, Nihan; Houk, K. N.
2009-01-01
A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening energy minimum. For such systems, the shape of the potential energy surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions. PMID:18767086
Quintom dark energy models with nearly flat potentials
Setare, M. R.; Saridakis, E. N.
2009-02-15
We examine quintom dark energy models, produced by the combined consideration of a canonical and a phantom field, with nearly flat potentials and dark energy equation-of-state parameter w{sub DE} close to -1. We find that all such models converge to a single expression for w{sub DE}(z), depending only on the initial field values and their derivatives. We show that this quintom paradigm allows for a description of the transition through -1 in the near cosmological past. In addition, we provide the necessary conditions for the determination of the direction of the -1 crossing.
A global potential energy surface for ArH2
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.
1992-01-01
We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.
NASA Astrophysics Data System (ADS)
Wang, Yongjia; Guo, Chenchen; Li, Qingfeng; Li, Zhuxia; Su, Jun; Zhang, Hongfei
2016-08-01
We considered three different nucleon-nucleon (NN) elastic differential cross sections: the Cugnon et al. parameterized differential cross section [Nucl. Instrum. Methods Phys. Res., Sect. B 111, 215 (1996), 10.1016/0168-583X(95)01384-9], the differential cross section derived from the collision term of the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation proposed by Mao et al. [Z. Phys. A 347, 173 (1994), 10.1007/BF01292373], and the isotropic differential cross section within the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model. By doing so, we investigated the influence of the differential elastic NN cross section on various observables (e.g., nuclear stopping, both the rapidity and transverse-velocity dependence of the directed and elliptic flows) in Au+Au collisions at beam energies 150, 250, 400, and 800 MeV /nucleon . By comparing calculations with those three differential cross sections, we found that the nuclear stopping power and the directed and elliptic flows are affected to some extent by the differential cross sections, and the impact of differential cross section on those observables becomes more visible as the beam energy increases. The effect on the elliptic flow difference v2n-v2H and ratio v2n/v2H of neutrons versus hydrogen isotopes (Z =1 ), which have been used as sensitive observables for probing nuclear symmetry energy at high densities, is weak.
The Potential For Energy Efficiency In The State of Iowa
Hadley, SW
2001-12-05
The purpose of this study was to do an initial estimate of the potential for energy savings in the state of Iowa. Several methods for determining savings were examined, including existing programs, surveys, savings calculators, and economic simulation. Each method has advantages and disadvantages, trading off between detail of information, accuracy of results, and scope. This paper concentrated on using economic simulation (the NEMS model (EIA 2000a)) to determine market potential for energy savings for the residential and commercial sectors. The results of surveys were used to calculate the economic potential for savings in the industrial sector. The NEMS model is used by the Energy Information Administration to calculate twenty-year projections of energy use for every region of the country. The results of the Annual Energy Outlook 2000 were used as the Base case (EIA 1999a). Two alternative cases were created to simulate energy savings policies. Voluntary, market-related programs were simulated by lowering the effective discount rates that end-users use when making decisions on equipment purchases. Standards programs in the residential sector were simulated by eliminating the availability of low efficiency equipment in future years. The parameters for these programs were based on the Moderate scenario from the DOE Clean Energy Futures study (Interlaboratory Working Group 2000), which assumed increased concern by society on energy efficiency but not to the point of fiscal policies such as taxes or direct subsidies. The study only considered a subset of the various programs, policies, and technologies that could reduce energy use. The major end-uses in the residential sector affected by the policies were space cooling (20% savings by 2020) and water heating (14% savings by 2020.) Figure S-1 shows the space cooling savings when voluntary programs and minimum efficiency standards were implemented. Refrigerators, freezers, and clothes dryers saw slight improvements
Systematic CDCC calculations for 11Be + p elastic scattering
NASA Astrophysics Data System (ADS)
Chen, Jie; Lou, JianLing; Pang, DanYang; Ye, YanLin
2016-03-01
Continuum discretised coupled-channels (CDCC) method with a 10Be(0+) + n two-body cluster model is applied to systematically analyze the elastic scattering of the halo nucleus 11Be from the proton target at various incident energies below 100 MeV/nucleon. Using the renormalized 10Be- p potential deduced from the 10Be + p elastic scattering data, the differential cross sections of 11Be + p scattering are well reproduced by the CDCC calculations without any further adjustment parameters, demonstrating the applicability of this approach for describing the scattering of exotic nuclei based on the scattering of the less exotic core nuclei.
Computed rotational rainbows from realistic potential energy surfaces
Gianturco, F.A.; Palma, A.
1985-08-01
The quantal IOS approximation in here employed to study interference structures in the rotationally inelastic, state-to-state differential cross sections for polar diatomic targets (LiH, FH, and CO) interacting with He atoms. Quite realistic expressions are used to describe the relevant potential energy surfaces (PES) which were taken from previous works that tested them against accurate experimental findings for total and partial differential cross sections. Specific features like short-range anisotropy and well depth, long-range attractive regions and overall range of action for each potential employed are analyzed and discussed in relation to their influence on rotational rainbows appearance and on the possible observation of cross section extrema in rotational energy distributions.
Geothermal Energy Potential of Turkey: Inferred from the Aeromagnetic data
NASA Astrophysics Data System (ADS)
Ates, Abdullah; Bilim, Funda; Buyuksarac, Aydin; Bektas, Ozcan
2010-05-01
Geothermal energy potential of Turkey is well known. There are lots of hot springs with over 30° C water temperatures. However, the significance of these geothermal energy potential of Turkey is not adequately understood. We believe that the main reason for this; is the lack of exploration methods and tools in a wide area as large as Turkey. We exploited a well known physical property of rocks to estimate the geothermal energy potential. Physically, substances lose their magnetization above a temperature known as the Curie that is the 580° C for magnetite. Properties of the Curie temperature have been exploited to observe the bottom depth of the magnetization. That is the depth where the heat reaches to 580° C. In another word, there is no magnetization below this depth. In normal crust this depth is about 22-24 km. Thus, investigation of the bottom depth of magnetization by using aeromagnetic anomalies can lead to information that if there are any anomalous regions well above the normal crust. The aeromagnetic anomalies of whole of Turkey were surveyed by the Mineral Research and Exploration (MTA) of Turkey. The survey was completed during late 1980's. Five kilometers grid data were available and used for regional exploration purposes. Exploration of the geothermal energy potential of Turkey was done from west to east in the similar way to search for shallow high temperature regions. These are from west to east; i.) Western Turkey: Two major shallow depth regions were determined at the west of Kutahya and the north-east of Denizli. The Curie Point Depths (CPDs) were calculated as about 7 km and about 9 km in Kutahya and Denizli, respectively. Also, high heat flow values and crustal thinning (about 32 km from gravity anomalies of western Turkey) were calculated for western Turkey. ii.) Central Turkey: A CPD depth of 8 km was calculated. This gives us a temperature gradient of 0.073° C/m. Geothermal energy potential was studied using water chemistry and isotopic
The potential impact of hydrogen energy use on the atmosphere
NASA Astrophysics Data System (ADS)
van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.
2009-04-01
Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T
NASA Astrophysics Data System (ADS)
Signorini, C.; Mazzocco, M.; Molini, P.; Pierroutsakou, D.; Boiano, C.; Manea, C.; Strano, E.; Torresi, D.; Di Meo, P.; Nicoletto, M.; Boiano, A.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; La Commara, M.; Parascandolo, C.; Parascandolo, L.; Sandoli, M.; Soramel, F.; Stroe, L.; Toniolo, N.; Veronese, F.
2013-03-01
The quasi elastic scattering of a 17O projectile from a 58Ni target has been studied at beam energies ranging from 42.5 to 55.0 MeV in 2.5 MeV steps. The total reaction cross sections were derived from the measured angular distributions by using an optical model fit within the coupled-channel code FRESCO. These cross sections are very similar to those measured for 17F (loosely bound by 0.6 MeV), mirror nucleus of 17O (tightly bound by 4.14 MeV). This outcome points out that, in this energy range, the small binding energy of the 17F valence proton has negligible influence onto the reactivity of such a loosely bound projectile, contrary to simple expectations, and to what observed for other loosely bound nuclei. The reaction dynamics seems to be influenced mainly by the Coulomb interaction which is similar for both mirror projectiles.
Theoretical characterization of the potential energy surface for NH + NO
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1993-01-01
The potential energy surface for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculation to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics.
Electronic structure, molecular bonding and potential energy surfaces
Ruedenberg, K.
1993-12-01
By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.
MCSCF potential energy surface for photodissociation of formaldehyde
NASA Technical Reports Server (NTRS)
Jaffe, R. L.; Morokuma, K.
1976-01-01
The ground state potential energy surface for the dissociation of formaldehyde (H2CO to H2 and CO) is calculated with the ab initio MCSCF method with an extended (4-31G) basis set. The location, barrier height, and force constants of the transition state are determined, and the normal coordinate analysis is carried out. The calculated barrier height is 4.5 eV. Based on the calculated quantities, the detailed mechanism of the photochemical dissociation is discussed.
Electromagnetic potentials basis for energy density and power flux
NASA Astrophysics Data System (ADS)
Puthoff, H. E.
2016-09-01
In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress–energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.
Molecular potential energy surfaces for interstellar chemistry and fusion applications
NASA Astrophysics Data System (ADS)
Braams, Bastiaan J.; Huang, Xinchuan; Jin, Zhong; Xie, Zhen; Zhang, Xiubin; Bowman, Joel M.; Sharma, Amit Raj; Scheider, Ralf
2006-04-01
In the Born-Oppenheimer approximation the electronic Schr"odinger equation is solved given the nuclear positions as parameters, and this defines the potential energy surface. We have used computational invariant theory and the MAGMA computer algebra system as an aid to develop representations for the potential energy and dipole moment surfaces that are fully invariant under permutations of like nuclei, extending an approach that for 3-body and 4-body systems has a long history, e.g. [J. N. Murrell et al. Molecular Potential Energy Functions, Wiley, 1984]. A many-body (cluster) expansion is used to describe reaction complexes. The methods have been applied in an almost routine way for systems of up to 7 nuclei, including several molecules that are of interest for interstellar chemistry and for the issue of hydrocarbon breakdown in fusion edge plasma: H5^+, CH5, CH5^+, C2H3^+, and their fragments, with C2H5^+ on the way. The mathematical and computional methods and the hydrocarbon applications will be presented.
Assessment of Tidal Stream Energy Potential for the United States
NASA Astrophysics Data System (ADS)
Haas, K. A.; Defne, Z.; Jiang, L.; Fritz, H. M.
2010-12-01
Tidal streams are high velocity sea currents created by periodic horizontal movement of the tides, often magnified by local topographical features such as headlands, inlets to inland lagoons, and straits. Tidal stream energy extraction is derived from the kinetic energy of the moving flow; analogous to the way a wind turbine operates in air, and as such differs from tidal barrages, which relies on providing a head of water for energy extraction. With the constantly increasing effort in promoting alternative energy, tidal streams have become promising energy sources due to their continuous, predictable and concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. A methodology for creating a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology has been developed. The tidal flows are simulated using the Regional Ocean Modeling System (ROMS). The model is calibrated and validated using observations and tidal predictions. The calibration includes adjustments to model parameters such as bottom friction coefficient, changed land/water masks, or increased grid resolutions. A systematic validation process has been developed after defining various parameters to quantify the validation results. In order to determine the total tidal stream power resource, a common method frequently proposed is to estimate it as a fraction of the total kinetic energy flux passing through a vertical section; however, this now has been shown to generally underestimate the total available resource. The total tidal energy flux includes not just the kinetic energy but also the energy flux due to the work done by the pressure force associated with the tidal motion on the water column as well
Mashreq Arab interconnected power system potential for economic energy trading
Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.
1994-12-01
The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study.
Data Network Equipment Energy Use and Savings Potential in Buildings
Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.
2010-06-09
Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.
Vinodkumar, Minaxi; Bhutadia, Harshad; Antony, Bobby; Mason, Nigel
2011-11-15
This paper reports computational results of the total cross sections for electron impact on H{sub 2}CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy ({approx}15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.
Market potential for optical fiber sensors in the energy sector
NASA Astrophysics Data System (ADS)
Bosselmann, T.
2007-07-01
For a long time electric power was taken as a natural unlimited resource. With globalisation the demand for energy has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable energy sources are gaining importance resulting in recent boom of wind energy plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers potentials for fibre optic sensor application.
The Potential of Renewable Energy Sources in Latvia
NASA Astrophysics Data System (ADS)
Sakipova, S.; Jakovics, A.; Gendelis, S.
2016-02-01
The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.
Potential energy surface of triplet N2O2
NASA Astrophysics Data System (ADS)
Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G.
2016-01-01
We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.
Potential energy surface of triplet N2O2.
Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G
2016-01-14
We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances. PMID:26772574
Positron elastic scattering from alkaline earth targets
NASA Astrophysics Data System (ADS)
Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.
2016-07-01
A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y
Anderson, Daniel M; Benson, James D; Kearsley, Anthony J
2014-12-01
Mathematical modeling plays an enormously important role in understanding the behavior of cells, tissues, and organs undergoing cryopreservation. Uses of these models range from explanation of phenomena, exploration of potential theories of damage or success, development of equipment, and refinement of optimal cryopreservation/cryoablation strategies. Over the last half century there has been a considerable amount of work in bio-heat and mass-transport, and these models and theories have been readily and repeatedly applied to cryobiology with much success. However, there are significant gaps between experimental and theoretical results that suggest missing links in models. One source for these potential gaps is that cryobiology is at the intersection of several very challenging aspects of transport theory: it couples multi-component, moving boundary, multiphase solutions that interact through a semipermeable elastic membrane with multicomponent solutions in a second time-varying domain, during a two-hundred Kelvin temperature change with multi-molar concentration gradients and multi-atmosphere pressure changes. In order to better identify potential sources of error, and to point to future directions in modeling and experimental research, we present a three part series to build from first principles a theory of coupled heat and mass transport in cryobiological systems accounting for all of these effects. The hope of this series is that by presenting and justifying all steps, conclusions may be made about the importance of key assumptions, perhaps pointing to areas of future research or model development, but importantly, lending weight to standard simplification arguments that are often made in heat and mass transport. In this first part, we review concentration variable relationships, their impact on choices for Gibbs energy models, and their impact on chemical potentials. PMID:25240602
GIS Assessment of Wind Energy Potential in California and Florida
NASA Astrophysics Data System (ADS)
Snow, R. K.; Snow, M. M.
2008-05-01
Energy efficiency coupled with renewable energy technologies can provide most of the U.S. carbon emissions reductions needed to contain atmospheric carbon concentrations at 450-500 parts per million, considered by many to be a tipping point in mitigating climate change. Among the leaders in the alternative energy sector is wind power, which is now one of the largest sources of new power generation in the U.S. creating jobs and revenue for rural communities while powering our economy with an emissions-free source of energy. In 2006, wind turbines capable of generating more than 2,400 megawatts of electricity were installed in the U.S. and by 2007 this number had risen to 3,000 megawatts. The U.S. generated 31 billion kilowatt-hours of wind power in 2007, which is enough electricity to power the equivalent of nearly 3 million average homes. It is estimated that generating the same amount of electricity would require burning 16 million tons of coal or 50 million barrels of oil. This study examines the wind power potential of sites near populated areas in Florida and California to determine the practicability of installing wind turbines at these locations. A GIS was developed in order to conduct a spatial analysis of these sites based on mean annual wind speed measured in meters per second and wind power density ratings measured in watts per square meter. The analysis indicates that coastal areas of Cocoa Beach, Key West, Hollywood, and West Palm Beach, respectively, possess the greatest potential for wind energy in Florida with mean annual wind speeds of 4.9 m/s and average wind power density ratings of 171 w/m2 peaking at Cocoa Beach followed by wind speeds of 4.64 m/s and wind power ratings of 115 w/m2 at Key West. California wind energy potential is even greater than that of Florida with Fairfield exhibiting mean annual wind speeds of 5.9 m/s and average wind power density ratings of 327 w/m2 followed by the Mojave and Palmdale areas with mean annual wind speeds of
NASA Astrophysics Data System (ADS)
Ernst, Stefan; Düser, Monika G.; Zarrabi, Nawid; Börsch, Michael
2012-01-01
Catalytic activities of enzymes are associated with elastic conformational changes of the protein backbone. Förster-type resonance energy transfer, commonly referred to as FRET, is required in order to observe the dynamics of relative movements within the protein. Förster-type resonance energy transfer between two specifically attached fluorophores provides a ruler with subnanometer resolution between 3 and 8 nm, submillisecond time resolution for time trajectories of conformational changes, and single-molecule sensitivity to overcome the need for synchronization of various conformations. FOF1-ATP synthase is a rotary molecular machine which catalyzes the formation of adenosine triphosphate (ATP). The Escherichia coli enzyme comprises a proton driven 10 stepped rotary FO motor connected to a 3-stepped F1 motor, where ATP is synthesized. This mismatch of step sizes will result in elastic deformations within the rotor parts. We present a new single-molecule FRET approach to observe both rotary motors simultaneously in a single FOF1-ATP synthase at work. We labeled this enzyme with three fluorophores, specifically at the stator part and at the two rotors. Duty cycle-optimized with alternating laser excitation, referred to as DCO-ALEX, allowed to control enzyme activity and to unravel associated transient twisting within the rotors of a single enzyme during ATP hydrolysis and ATP synthesis. Monte Carlo simulations revealed that the rotor twisting is larger than 36 deg.
NASA Astrophysics Data System (ADS)
Orchini, A.; Mazzino, A.; Guerrero, J.; Festa, R.; Boragno, C.
2013-09-01
Linear stability analysis of an elastically anchored flat plate in a uniform flow is investigated both analytically and numerically. The analytical formulation explicitly takes into account the effect of the wake on the plate by means of Theodorsen's theory. Three different parameters non-trivially rule the observed dynamics: mass density ratio between plate and fluid, spring elastic constant, and distance between the plate center of mass and the spring anchor point on the plate. We found relationships between these parameters which rule the transition between stable equilibrium and fluttering. The shape of the resulting marginal curve has been successfully verified by high Reynolds number numerical simulations. Finally, the limiting case corresponding to a simply supported rigid rod is also analyzed and the resulting flapping instability traced back to a simple resonance condition. Our findings are of interest in applications related to energy harvesting by fluid-structure interaction, a problem that has recently attracted a great deal of attention. The main aim in that context is to identify the optimal physical/geometrical system configuration leading to large sustained motion, which is the source of energy one aims to extract.
Onshore wind energy potential over Iberia: present and future projections
NASA Astrophysics Data System (ADS)
Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.
2014-05-01
Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).
Elastic constants of a Laves phase compound: C15 NbCr{sub 2}
Ormeci, A. |; Chu, F.; Wills, J.M.; Chen, S.P.; Albers, R.C.; Thoma, D.J.; Mitchell, T.E.
1997-04-01
The single-crystal elastic constants of C15 NbCr{sub 2} have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropic elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson`s ratio and the direction dependence of Young`s modulus.
Gravitational potential energy of the earth - A spherical harmonic approach
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1979-01-01
A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic expansion agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the crust and mantle of -2.77 x 10 to the 29th ergs, an order of magnitude below McKenzie's (1966) estimate. McKenzie's result stems from mathematical error. Our figure is almost identical with Kaula's (1963) estimate of the minimum shear strain energy in the mantle, a not unexpected result on the basis of the virial theorem. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the 20th P is found by assuming that the total geothermal flux is due to viscous dissipation of energy. This number is almost six orders of magnitude below MacDonald's (1966) estimate of the viscosity and removes his objection to convection. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at 1% efficiency, then the viscosity is 10 to the 22nd P, a number preferred by Cathles (1975) and Peltier and Andrew (1976) as the viscosity of the mantle.
Elastic Stability of Concentric Tube Robots Subject to External Loads.
Ha, Junhyoung; Park, Frank C; Dupont, Pierre E
2016-06-01
Concentric tube robots, which are comprised of precurved elastic tubes that are concentrically arranged, are being developed for many medical interventions. The shape of the robot is determined by the rotation and translation of the tubes relative to each other, and also by any external forces applied by the environment. As the tubes rotate and translate relative to each other, elastic potential energy caused by tube bending and twisting can accumulate; if a configuration is not locally elastically stable, then a dangerous snapping motion may occur as energy is suddenly released. External loads on the robot also influence elastic stability. In this paper, we provide a second-order sufficient condition, and also a separate necessary condition, for elastic stability. Using methods of optimal control theory, we show that these conditions apply to general concentric tube robot designs subject to arbitrary conservative external loads. They can be used to assess the stability of candidate robot configurations. Our results are validated via comparison with other known stability criteria, and their utility is demonstrated by an application to stable path planning. PMID:26441407
Crumpling of an Elastic Ring in Two Dimensions
NASA Astrophysics Data System (ADS)
Vanhuss, Carter; Cheng, Shengfeng
We use molecular dynamics simulations to study the crumpling of an elastic ring (i.e., a circular elastic line) in two dimensions. The crumpling is triggered by reducing the radius of a circular repulsive wall that is used to confine the ring. The ring is modeled as a bead-spring chain. A harmonic potential describing the bonds between neighboring beads is parameterized to reproduce the Young's modulus of the elastic line in the continuum limit. A modified harmonic angle interaction is used to capture the bending of the elastic line including situations where the line is locally stretched or compressed. We have confirmed that the bead-spring model has the correct continuum limit by comparing results on rings made of different numbers of beads but with parameters derived from the same elastic line. With the computational model, we study the morphological transition of the ring and the local distribution of the bond and bending energies as the ring is compressed at various rates, forced to crumple, and finally confined into a dense-packed structure. We find that the crumpling transition signals a sharp energy transfer from the compression to the bending mode. We further explore the possibility of defining an effective temperature for such crumpled systems.
Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.
Potential for energy conservation in the cement industry
Garrett-Price, B.A.
1985-02-01
This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.
Intermolecular potential energy surface and thermophysical properties of ethylene oxide
Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert; Bich, Eckard
2014-10-28
A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.
Intermolecular potential energy surface and thermophysical properties of ethylene oxide.
Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard
2014-10-28
A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide. PMID:25362314
Theoretical studies of potential energy surfaces and computational methods.
Shepard, R.
2006-01-01
This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces (PES) involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. Most of our work focuses on general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of molecular geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.
Potential environmental effects of energy conservation measures in northwest industries
Baechler, M C; Gygi, K F; Hendrickson, P L
1992-01-01
The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.
Potential impacts of nanotechnology on energy transmission applications and needs.
Elcock, D.; Environmental Science Division
2007-11-30
The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.
Theoretical studies of potential energy surfaces and computational methods
Shepard, R.
1993-12-01
This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.
NASA Astrophysics Data System (ADS)
Ge, Jianlong; Fan, Gang; Si, Yang; He, Jianxin; Kim, Hak-Yong; Ding, Bin; Al-Deyab, Salem S.; El-Newehy, Mohamed; Yu, Jianyong
2016-01-01
Flexible membranes created from porous carbon nanofibers (CNFs) hold great promise in the next generation wearable energy storage devices, but challenges still remain due to the poor mechanical properties of porous carbon nanofibers. Here, we report a facile strategy to fabricate elastic and hierarchical porous CNF membranes with NiFe2O4 nanocrystals embedded via multicomponent electrospinning and nano-doping methods. Benefiting from the scattering effect of NiFe2O4 nanocrystals and graphitized carbon layers for the condensed stress, the resultant CNF membranes exhibit an enhanced elasticity with a bending radius <12 μm, rapid recovery from the deformations, and a superior softness. Quantitative pore size distribution and fractal analysis reveal that the CNFs possessed tunable porous structures with a high surface area of 493 m2 g-1 and a pore volume of 0.31 cm3 g-1. Benefiting from the robust mechanical stability, hierarchical porous structures and good electrochemical properties, the NiFe2O4 doped CNF membranes demonstrate a high electrical capacitance of 343 F g-1, and good reversibility with a cycling efficiency of 97.4% even after 10 000 cycles. The successful synthesis of elastic porous CNF membranes also provided a versatile platform for the design and development of functional CNF based materials for various applications.Flexible membranes created from porous carbon nanofibers (CNFs) hold great promise in the next generation wearable energy storage devices, but challenges still remain due to the poor mechanical properties of porous carbon nanofibers. Here, we report a facile strategy to fabricate elastic and hierarchical porous CNF membranes with NiFe2O4 nanocrystals embedded via multicomponent electrospinning and nano-doping methods. Benefiting from the scattering effect of NiFe2O4 nanocrystals and graphitized carbon layers for the condensed stress, the resultant CNF membranes exhibit an enhanced elasticity with a bending radius <12 μm, rapid recovery
Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials
Hassaneen, Kh.S.A.; Abo-Elsebaa, H.M.; Sultan, E.A.; Mansour, H.M.M.
2011-03-15
Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.
Energy Conservation Simplified
ERIC Educational Resources Information Center
Hecht, Eugene
2008-01-01
The standard formulation of energy conservation involves the subsidiary ideas of kinetic energy ("KE"), work ("W"), thermal energy, internal energy, and a half-dozen different kinds of potential energy ("PE"): elastic, chemical, nuclear, gravitational, and so forth. These quantities came to be recognized during the centuries over which the…
Potential for energy savings in old and new auto engines
NASA Astrophysics Data System (ADS)
Reitz, John R.
1985-11-01
This paper disucsses the potential for energy savings in the transportation sector through the use of both improved and entirely new automotive engines. Although spark-ignition and diesel internal combustion engines will remain the dominant choices for passenger-car use throughout the rest of this century, improved versions of these engines (lean-burn, low-friction spark-ignition and adiabatic, low-friction diesel engines) could, in the long term, provide a 20-30 percent improvement in fuel economy over what is currently available. The use of new materials, and modifications to both vehicle structure and vehicle transmissions may yield further improvements. Over a longer time frame, the introduction of the high-temperature gas-turbine engine and the use of new synfuels may provide further opportunities for energy conservation.
Ab initio potential energy surface and rovibrational states of HBO
NASA Astrophysics Data System (ADS)
Ha, Tae-Kyu; Makarewicz, Jan
1999-01-01
The potential energy surface describing the large-amplitude motion of H around the BO core in the HBO molecule has been determined from ab initio calculations. This surface has been sampled by a set of 170 grid points from a two-dimensional space defined by the stretching and the bending coordinates of the H nucleus. At each grid point, the BO bond length has been optimized using the second-order Møller-Plesset perturbation theory with the basis set aug-cc-pVTZ. The surface has a local minimum for the linear as well as the bent configuration of HBO. A low energy barrier to the linear configuration BOH causes a large-amplitude motion and a strong rovibrational interaction in the molecule. Its rovibrational dynamics is different from the dynamics in bent or quasilinear triatomic molecules.
Finite field-energy and interparticle potential in logarithmic electrodynamics
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Helayël-Neto, José
2014-03-01
We pursue an investigation of logarithmic electrodynamics, for which the field energy of a point-like charge is finite, as happens in the case of the usual Born-Infeld electrodynamics. We also show that, contrary to the latter, logarithmic electrodynamics exhibits the feature of birefringence. Next, we analyze the lowest-order modifications for both logarithmic electrodynamics and for its non-commutative version, within the framework of the gauge-invariant path-dependent variables formalism. The calculation shows a long-range correction (-type) to the Coulomb potential for logarithmic electrodynamics. Interestingly enough, for its non-commutative version, the interaction energy is ultraviolet finite. We highlight the role played by the new quantum of length in our analysis.
Stabilized quasi-Newton optimization of noisy potential energy surfaces
NASA Astrophysics Data System (ADS)
Schaefer, Bastian; Ghasemi, S. Alireza; Roy, Shantanu; Goedecker, Stefan; Goedecker Group Team
Optimizations of atomic positions belong to the most frequently performed tasks in electronic structure calculations. Many simulations like global minimum searches or the identification of chemical reaction pathways can require the computation of hundreds or thousands of minimizations or saddle points. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. In this talk a recently published technique that allows to obtain significant curvature information of noisy potential energy surfaces is presented. This technique was used to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. With the help of benchmarks both the minimizer and the saddle finding approach were demonstrated to be superior to comparable existing methods.
Calorific evaluation and energy potential of grape pomace
NASA Astrophysics Data System (ADS)
Burg, Patrik; Ludín, David; Rutkowski, Kazimierz; Krakowiak-Bal, Anna; Trávníček, Petr; Zemánek, Pavel; Turan, Jan; Višacki, Vladimir
2016-04-01
This article deals with energetic evaluation and potential of pomace - a waste product originating during production of grape wine. Calorimetric analysis of 19 grapevine varieties was performed in 2013 and 2014. The aim was to specify their combustible limit and the gross calorific value. The evaluations were performed on pristine pomace, pomace without seeds, and only on seeds themselves. The results obtained imply that pomace is an interesting energetic resource with a gross calorific value of 16.07-18.97 MJ kg-1. Lower calorific values were detected in pomace after seed separation ie 14.60-17.75 MJ kg-1; on the contrary, seeds alone had the highest calorific values of 19.78-21.13 MJ kg-1. It can be assumed from the results of energetic evaluation of pomace in Czech Republic conditions that, by purposeful and efficient usage of pomace, 6.4 GWh of electric energy and 28 GWh of thermal energy can be generated.
Assessing geothermal energy potential in upstate New York. Final report
Hodge, D.S.
1996-08-01
The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.
Potential energy surfaces and reaction dynamics of polyatomic molecules
Chang, Yan-Tyng.
1991-11-01
A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.
Dark Energy:. the Absolute Electric Potential of the Universe
NASA Astrophysics Data System (ADS)
Jiménez, Jose Beltrán; Maroto, Antonio L.
Is there an absolute cosmic electric potential? The recent discovery of the accelerated expansion of the universe could be indicating that this is certainly the case. In this essay we show that the consistency of the covariant and gauge-invariant theory of electromagnetism is truly questionable when considered on cosmological scales. Out of the four components of the electromagnetic field, Maxwell's theory contains only two physical degrees of freedom. However, in the presence of gravity, one of the "unphysical" states cannot be consistently eliminated, thus becoming real. This third polarization state is completely decoupled from charged matter, but can be excited gravitationally, thus breaking gauge invariance. On large scales the new state can be seen as a homogeneous cosmic electric potential, whose energy density behaves as a cosmological constant.
Global Expression for Representing Diatomic Potential-Energy Curves
NASA Technical Reports Server (NTRS)
Ferrante, John; Schlosser, Herbert; Smith, John R.
1991-01-01
A three-parameter expression that gives an accurate fit to diatomic potential curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-energy relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the potential curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.
Potential energy curves and collision integrals of air components
NASA Technical Reports Server (NTRS)
Partridge, Harry; Stallcop, James R.; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances with an emphasis on the accuracy that is obtainable. Results for interactions, e.g. N+N, N+O, O+O, and H+N2 will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.
Terahertz absorption spectra and potential energy distribution of liquid crystals.
Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng
2016-01-15
In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072
Freezing of Energy of a Soliton in an External Potential
NASA Astrophysics Data System (ADS)
Bambusi, D.; Maspero, A.
2016-05-01
In this paper we study the dynamics of a soliton in the generalized NLS with a small external potential ɛV of Schwartz class. We prove that there exists an effective mechanical system describing the dynamics of the soliton and that, for any positive integer r, the energy of such a mechanical system is almost conserved up to times of order ɛ - r . In the rotational invariant case we deduce that the true orbit of the soliton remains close to the mechanical one up to times of order ɛ - r .
Isospin dependence of {sup 6}He+p optical potential and the symmetry energy
Khoa, Dao T.; Hoang Sy Than
2005-04-01
A consistent folding analysis of the elastic p({sup 6}He,{sup 6}He)p scattering and charge exchange p({sup 6}He,{sup 6}Li{sup *})n reaction data measured at E{sub lab}=41.6A MeV has been performed within the coupled channels formalism. We have used the isovector coupling to link the isospin dependence of {sup 6}He+p optical potential to the cross section of p({sup 6}He,{sup 6}Li{sup *})n reaction exciting the 0{sup +} isobaric analog state (IAS) at 3.563 MeV in {sup 6}Li. Based on these results and the Hartree-Fock calculation of asymmetric nuclear matter using the same isospin-dependent effective nucleon-nucleon interaction, we were able to confirm that the most realistic value of the symmetry energy E{sub sym} is around 31 MeV. Our analysis has also shown that the measured charge exchange p({sup 6}He,{sup 6}Li{sup *})n data are quite sensitive to the halo tail of the {sup 6}He density used in the folding calculation and the IAS of {sup 6}Li is likely to have a halo structure similar to that established for the ground state of {sup 6}He.
NASA Astrophysics Data System (ADS)
Niiyama, Tomoaki; Okushima, Teruaki; Ikeda, Kensuke S.; Shimizu, Yasushi
2016-06-01
Size dependence of vacancy migration energy in ionic nano particles is investigated by analysis of potential energy surfaces in potassium chloride clusters. Numerical methods are used to find almost all local minima and transition states for vacancy migration in clusters of different sizes, and reveal characteristic features of energy surface structure. It is shown that migration energy is significantly lower near a cluster surface than near a cluster core, and the mean first-passage time for migration of a vacancy decreases with cluster size. These results are consistent with observations of high diffusion rates in small clusters.
Proton-proton elastic scattering at the LHC energy of \\chem{\\sqrt{s} = 7\\,TeV}
NASA Astrophysics Data System (ADS)
TOTEM Collaboration; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F. S.; Calicchio, M.; Catanesi, M. G.; Covault, C.; Csanád, M.; Csörgö, T.; Deile, M.; Dimovasili, E.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Janda, M.; Kašpar, J.; Kopal, J.; Kundrát, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Rodríguez, F. Lucas; Macrí, M.; Magaletti, L.; Magazzù, G.; Mercadante, A.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Noschis, E.; Novák, T.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Perrot, A.-L.; Palazzi, P.; Pedreschi, E.; Petäjäjärvi, J.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vitek, M.; Welti, J.; Whitmore, J.
2011-08-01
Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at \\sqrt{s} = 7\\,TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (σbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of \\delta t = 0.1\\,\\rm{GeV} \\sqrt{\\vert t\\vert } . In this letter, first results of the differential cross-section are presented covering a |t|-range from 0.36 to 2.5 GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6 ± 0.5stat ± 0.4syst) GeV-2, followed by a significant diffractive minimum at |t| = (0.53 ± 0.01stat ± 0.01syst) GeV2. For |t|-values larger than ~1.5 GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8 ± 0.3stat ± 0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Burch, J. L.
1981-01-01
The relationship between auroral electron energy flux and the inferred accelerating potential drop for accelerated Maxwellian distributions is investigated on the basis of Atmospheric Explorer D spectral measurements. An analytical approximation for the total downward energy flux carried by an isotropic Maxwellian electron population accelerated by a field-aligned electrostatic potential drop is derived which is valid for values of the electron energy/characteristic accelerated Maxwellian distribution energy which are less than the difference between the ratio of the magnetic field strengths at the altitude of observation and the altitude of potential drop, and unity. Data from the Low Energy Electron Experiment on board AE D obtained on both the dayside and the nightside during periods of significant inverted-V type electron precipitation shows that the 455 energy spectra considered, 160 of them, obtained between 60 and 85 deg invariant latitude, could be fit to accelerated Maxwellian distributions. The 160 Maxwellian spectra are then shown to be in agreement with the predictions of the accelerated Maxwellian model. Finally, analysis of individual spectra suggests that the altitude of the inferred potential drop is at a maximum near the center of the inverted-V structures.
Steam systems in industry: Energy use and energy efficiency improvement potentials
Einstein, Dan; Worrell, Ernst; Khrushch, Marta
2001-07-22
Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.
Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan
2011-06-01
To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant. PMID:21507625
An Ab Initio Based Potential Energy Surface for Water
NASA Technical Reports Server (NTRS)
Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)
1996-01-01
We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.
Colloidal particles driven across periodic optical-potential-energy landscapes
NASA Astrophysics Data System (ADS)
Juniper, Michael P. N.; Straube, Arthur V.; Aarts, Dirk G. A. L.; Dullens, Roel P. A.
2016-01-01
We study the motion of colloidal particles driven by a constant force over a periodic optical potential energy landscape. First, the average particle velocity is found as a function of the driving velocity and the wavelength of the optical potential energy landscape. The relationship between average particle velocity and driving velocity is found to be well described by a theoretical model treating the landscape as sinusoidal, but only at small trap spacings. At larger trap spacings, a nonsinusoidal model for the landscape must be used. Subsequently, the critical velocity required for a particle to move across the landscape is determined as a function of the wavelength of the landscape. Finally, the velocity of a particle driven at a velocity far exceeding the critical driving velocity is examined. Both of these results are again well described by the two theoretical routes for small and large trap spacings, respectively. Brownian motion is found to have a significant effect on the critical driving velocity but a negligible effect when the driving velocity is high.
Computer simulations of glasses: the potential energy landscape
NASA Astrophysics Data System (ADS)
Raza, Zamaan; Alling, Björn; Abrikosov, Igor A.
2015-07-01
We review the current state of research on glasses, discussing the theoretical background and computational models employed to describe them. This article focuses on the use of the potential energy landscape (PEL) paradigm to account for the phenomenology of glassy systems, and the way in which it can be applied in simulations and the interpretation of their results. This article provides a broad overview of the rich phenomenology of glasses, followed by a summary of the theoretical frameworks developed to describe this phenomonology. We discuss the background of the PEL in detail, the onerous task of how to generate computer models of glasses, various methods of analysing numerical simulations, and the literature on the most commonly used model systems. Finally, we tackle the problem of how to distinguish a good glass former from a good crystal former from an analysis of the PEL. In summarising the state of the potential energy landscape picture, we develop the foundations for new theoretical methods that allow the ab initio prediction of the glass-forming ability of new materials by analysis of the PEL.
Computer simulations of glasses: the potential energy landscape.
Raza, Zamaan; Alling, Björn; Abrikosov, Igor A
2015-07-29
We review the current state of research on glasses, discussing the theoretical background and computational models employed to describe them. This article focuses on the use of the potential energy landscape (PEL) paradigm to account for the phenomenology of glassy systems, and the way in which it can be applied in simulations and the interpretation of their results. This article provides a broad overview of the rich phenomenology of glasses, followed by a summary of the theoretical frameworks developed to describe this phenomonology. We discuss the background of the PEL in detail, the onerous task of how to generate computer models of glasses, various methods of analysing numerical simulations, and the literature on the most commonly used model systems. Finally, we tackle the problem of how to distinguish a good glass former from a good crystal former from an analysis of the PEL. In summarising the state of the potential energy landscape picture, we develop the foundations for new theoretical methods that allow the ab initio prediction of the glass-forming ability of new materials by analysis of the PEL. PMID:26139691
Microscopically derived potential energy surfaces from mostly structural considerations
NASA Astrophysics Data System (ADS)
Ermamatov, M. J.; Hess, Peter O.
2016-08-01
A simple procedure to estimate the quadrupole Potential-Energy-Surface (PES) is presented, using mainly structural information, namely the content of the shell model space and the Pauli exclusion principle. Further microscopic properties are implicitly contained through the use of results from the Möller and Nix tables or experimental information. A mapping to the geometric potential is performed yielding the PES. The General Collective Model is used in order to obtain an estimate on the spectrum and quadrupole transitions, adjusting only the mass parameter. First, we test the conjecture on known nuclei, deriving the PES and compare them to known data. We will see that the PES approximates very well the structure expected. Having acquired a certain confidence, we predict the PES of several chain of isotopes of heavy and super-heavy nuclei and at the end we investigate the structure of nuclei in the supposed island of stability. One of the main points to show is that simple assumptions can provide already important information on the structure of nuclei outside known regions and that spectra and electromagnetic transitions can be estimated without using involved calculations and assumptions. The procedure does not allow to calculate binding energies. The method presented can be viewed as a starting point for further improvements.
Complex potential and bottomonium suppression at LHC energy
NASA Astrophysics Data System (ADS)
Kakade, Uttam; Patra, Binoy Krishna; Thakur, Lata
2015-03-01
We have studied the thermal suppression of the bottomonium states in relativistic heavy-ion collision at LHC energies as function of centrality, rapidity, transverse momentum. First, we address the effects of the nonperturbative confining force and the momentum anisotropy together on heavy quark potential at finite temperature, which are resolved by correcting both the perturbative and nonperturbative terms of the potential at T = 0 in a weakly-anisotropic medium, not its perturbative term alone as usually done in the literature. Second, we model the expansion of medium by the Bjorken hydrodynamics in the presence of both shear and bulk viscosity, followed by an additional pre-equilibrium anisotropic evolution. Finally, we couple them together to quantify the yields of bottomonium production in nucleus-nucleus collisions at LHC energies and found a better agreement with the CMS data. Our estimate of the inclusive ϒ(1S) production indirectly constrains both the uncertainties in isotropization time and the shear-to-entropy density ratio and favors the values as 0.3 fm/c and 0.3 (perturbative result), respectively.
NASA Astrophysics Data System (ADS)
Srinivasa, A. R.; Reddy, J. N.
2013-03-01
The aim of this paper is to develop the governing equations for a fully constrained finitely deforming hyperelastic Cosserat continuum where the directors are constrained to rotate with the body rotation. This is the generalization of small deformation couple stress theories and would be useful for developing mathematical models for an elastic material with embedded stiff short fibers or inclusions (e.g., materials with carbon nanotubes or nematic elastomers, cellular materials with oriented hard phases, open cell foams, and other similar materials), that account for certain longer range interactions. The theory is developed as a limiting case of a regular Cosserat elastic material where the directors are allowed to rotate freely by considering the case of a high "rotational mismatch energy". The theory is developed using the formalism of Lagrangian mechanics, with the static case being based on Castigliano's first theorem. By considering the stretch U and the rotation R as additional independent variables and using the polar decomposition theorem as an additional constraint equation, we obtain the governing and as well as the boundary conditions for finite deformations. The resulting equations are further specialized for plane strain and axisymmetric finite deformations, deformations of beams and plates with small strain and moderate rotation, and for small deformation theories. We also show that the boundary conditions for this theory involve "surface tension" like terms due to the higher gradients in the strain energy function. For beams and plates, the rotational gradient dependent strain energy does not require additional variables (unlike Cosserat theories) and additional differential equations; nor do they raise the order of the differential equations, thus allowing us to include a material length scale dependent response at no extra "computational cost" even for finite deformation beam/plate theories
The Nonlinear Spring and Energy Conservation.
ERIC Educational Resources Information Center
Sherfinski, John
1989-01-01
Describes an air track experiment demonstrating the transfer of mechanical energy from elastic potential to kinetic. Discusses four methods for calculating energy stored in the spring. Included are pictures, typical data, and graphs. (YP)
Beste, Ariana; Harrison, Robert J; Yanai, Takeshi
2006-01-01
Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (c.f., thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory (DFT) and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a non-geometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as constraining the orbitals to be orthogonal.
NASA Astrophysics Data System (ADS)
Beste, A.; Harrison, R. J.; Yanai, T.
2006-08-01
Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.
NASA Astrophysics Data System (ADS)
Gautam, Manjeet Singh
2015-01-01
In the present work, the fusion of symmetric and asymmetric projectile-target combinations are deeply analyzed within the framework of energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel code CCFULL. The neutron transfer channels and the inelastic surface excitations of collision partners are dominating mode of couplings and the coupling of relative motion of colliding nuclei to such relevant internal degrees of freedom produces a significant fusion enhancement at sub-barrier energies. It is quite interesting that the effects of dominant intrinsic degrees of freedom such as multi-phonon vibrational states, neutron transfer channels and proton transfer channels can be simulated by introducing the energy dependence in the nucleus-nucleus potential (EDWSP model). In the EDWSP model calculations, a wide range of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm, which is much larger than a value (a = 0.65 fm) extracted from the elastic scattering data, is needed to reproduce sub-barrier fusion data. However, such diffuseness anomaly, which might be an artifact of some dynamical effects, has been resolved by trajectory fluctuation dissipation (TFD) model wherein the resulting nucleus-nucleus potential possesses normal diffuseness parameter.
Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials
Toroker, Maytal; Carter, Emily A.
2013-02-21
First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.
Potential contribution of wind energy to climate change mitigation
NASA Astrophysics Data System (ADS)
Barthelmie, R. J.; Pryor, S. C.
2014-08-01
It is still possible to limit greenhouse gas emissions to avoid the 2 °C warming threshold for dangerous climate change. Here we explore the potential role of expanded wind energy deployment in climate change mitigation efforts. At present, most turbines are located in extra-tropical Asia, Europe and North America, where climate projections indicate continuity of the abundant wind resource during this century. Scenarios from international agencies indicate that this virtually carbon-free source could supply 10-31% of electricity worldwide by 2050 (refs , ). Using these projections within Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) climate forcing scenarios, we show that dependent on the precise RCP followed, pursuing a moderate wind energy deployment plan by 2050 delays crossing the 2 °C warming threshold by 1-6 years. Using more aggressive wind turbine deployment strategies delays 2 °C warming by 3-10 years, or in the case of RCP4.5 avoids passing this threshold altogether. To maximize these climate benefits, deployment of non-fossil electricity generation must be coupled with reduced energy use.
Gravitational potential energy of the earth: A spherical harmonic approach
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1977-01-01
A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic equation agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the mantle and crust of -2.77 x 10 to the twenty-ninth power ergs, an order of magnitude. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the twentieth power poises is found by assuming the total geothermal flux is due to viscous dissipation. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at one per cent efficiency, then the viscosity is ten to the twenty second power poises, a number preferred by some as the viscosity of the mantle.
Plenkiewicz, B.; Plenkiewicz, P.; Jay-Gerin, J.
1986-04-15
It has been found recently from the analysis of low-energy electron-transmission experiments that the scattering mean free path lambda of excess hot electrons in solid xenon films oscillates with energy. We show in this paper that in these experiments lambda is predominantly controlled by the combined effect of both acoustical-phonon scattering and scattering by neutral point defects, and that its energy dependence is entirely caused by the changes in electron effective mass with energy.
Bytautas, L.; Ruedenberg, K.
2008-06-06
A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.
Bytautas, Laimutis; Ruedenberg, Klaus
2008-06-01
A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion. PMID:18537423
Gagne, Douglas; Haase, Scott; Oakleaf, Brett; Hurlbut, David; Akar, Sertac; Wall, Anna; Turchi, Craig; Pienkos, Philip; Melius, Jennifer; Melaina, Marc
2015-11-01
This report summarizes the potential for renewable energy development in the Salton Sea region, as well as the potential for revenues from this development to contribute financially to Salton Sea restoration costs. It considers solar, geothermal, biofuels or nutraceutical production from algae pond cultivation, desalination using renewable energy, and mineral recovery from geothermal fluids.
A new local theory of available potential energy for quantifying energy pathways in the oceans
NASA Astrophysics Data System (ADS)
Tailleux, Remi
2013-04-01
Lorenz's theory of available potential energy (APE) has recently received much attention in the context of ocean energetics, for it is increasingly realized to be a key tool for clarifying the relative importance of the surface buoyancy fluxes in powering the ocean circulation, a controversial issue over the past 15 years or so. So far, however, most recent approaches have been restricted to global APE budgets, often for idealized equations of state, which is arguably of limited interest to understand the precise nature of the energy pathways in the oceans. Here, we will present a local extension of the theory of available potential energy, which is developed for the primitive equations that form the basis of most current general ocean circulation models, and which is valid for an arbitrary nonlinear equation of state. Another advantage of the new theory is that it does not require the reference state underlying Lorenz's APE theory to be necessarily the state of minimum potential energy obtained in an adiabatic re-arrangement of the fluid parcels, and hence does not suffer from traditional difficulties pertaining to how to do the sorting of the fluid parcels. The main result of this work is the ability in some instances to link local conversion of APE into kinetic energy directly to the local production of APE by surface fluxes. The framework is also shown to be useful to provide an energy-based characterization of oceanic water masses.
NASA Astrophysics Data System (ADS)
Han, Zhibin; Hao, Wanli; Wang, Chunjie; Shi, Liqun
2016-05-01
The elastic recoil cross section for D(4He, D) 4He was determined at a recoil angle of 30° over an incident helium energy range from 2.6 to 7.4 MeV. A thin solid target Ta/TiDx/Si used for cross section measurement was prepared by direct current magnetron sputtering, and it was so stable to ion beam bombardment that nearly no deuterium loss (less than 0.2%) exists over the whole experiment. A relative determination method is adopted in this measurement. It can avoid the error from the beam dose and the solid angle of the detectors and it is also free to direct measurement of D content in the film. The total uncertainty in the cross section determination is less than 5%.