Science.gov

Sample records for elastic wavefields computed

  1. Visualization of elastic wavefields computed with a finite difference code

    SciTech Connect

    Larsen, S.; Harris, D.

    1994-11-15

    The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.

  2. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  3. Modeling and Processing of Continuous 3D Elastic Wavefield Data

    NASA Astrophysics Data System (ADS)

    Milkereit, B.; Bohlen, T.

    2001-12-01

    Continuous seismic wavefields are excited by earthquake clustering, induced seismicity in reservoirs, and mining. In hydrocarbon reservoirs, for example, pore pressure changes and fluid flow (mass transfer) will cause incremental deviatoric stresses sufficient to trigger and sustain seismic activity. Here we address three aspects of seismic wavefields in three-dimensional heterogeneous media triggered by distributed sources in space and time: forward modeling, multichannel data processing, and source location imaging. A power law distribution of seismic sources (such as the Gutenberg-Richter law) is used for the modeling of viscoelastic/elastic wave propagation through a realistic earth model. 3D modeling provides new insight in the interaction of multi-source wavefields and the role of scale-dependend elastic model parameters on transmitted and reflected/back-scattered wavefields. There exists a strong correlation between the spatial properties of the compressional, shear wave and density perturbations and the lateral correlation length of the resulting reflected or transmitted seismic wavefields. Modeling is based on the implementation of 3D elastic/viscoelastic FD codes on massive parallel and/or distributed computing resources using MPI (message passing interface). For parallelization, large grid 3D earth models are decomposed into subvolume processing elements whereby each processing element is updating the wavefield within its portion of the grid. Processing of continuous seismic wavefields excited by multiple distributed sources is based on a combination of crosscorrelated or slowness-transformed array data and Kirchhoff or reverse time migration for source location or source volume imaging. The appearance of slowness in both migration and array data processing suggests the possibility of combining them into a single process. In order to place further constraints on the migration, the directivity properties of 3-component receiver arrays can be included in

  4. ELASTIC-WAVEFIELD SEISMIC STRATIGRAPHY: A NEW SEISMIC IMAGING TECHNOLOGY

    SciTech Connect

    Bob A. Hardage

    2004-05-06

    The focus of elastic-wavefield seismic stratigraphy research shifted from onshore prospects to marine environments during this report period. Four-component ocean-bottom-cable (4-C OBC) seismic data acquired in water depths of 2400 to 2500 feet across Green Canyon Block 237 in the Gulf of Mexico were processed and analyzed. The P-P and P-SV images of strata immediately below the seafloor exhibit amazing differences in P-P and P-SV seismic facies. These data may be one of the classic examples of the basic concepts of elastic-wavefield seismic stratigraphy.

  5. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    SciTech Connect

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

    2006-07-31

    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  6. Efficient elastic reverse-time migration for the decomposed P-wavefield using stress tensor in the time domain

    NASA Astrophysics Data System (ADS)

    Ha, Jiho; Shin, Sungryul; Shin, Changsoo; Chung, Wookeen

    2015-05-01

    Because complex mixed waves are typically generated in elastic media, wavefield decomposition is required for such media to obtain migration images accurately. In isotropic media, this is achieved according to the Helmholtz decomposition theorem; in particular, the divergence operator is commonly applied to P-wavefield decomposition. In this study, two types of elastic reverse-time migration algorithms are proposed for decomposition of the P-wavefield without requiring the divergence operator. The first algorithm involves formulation of the stress tensor by spatially differentiated displacement according to the stress-strain relationship and is utilized to construct an imaging condition for the decomposed P-wavefield. We demonstrate this approach through numerical testing. The second algorithm allows us to obtain emphasized interfaces through the application of the absolute value function to decomposed wavefield in imaging condition. Because reverse-time migration can be defined by a zero-lag cross-correlation relationship between the partial-derivative wavefield and the observed wavefield data, we derive the virtual source to construct the partial-derivative wavefield based on a 2D staggered-grid finite-difference modeling method in the time domain. The explicitly computed partial-derivative wavefield from virtual sources with the stress tensor is in agreement with the partial-derivative wavefield directly computed from residual by between with and without a perturbation point in the subsurface. Moreover, the back-propagation technique is used to enhance the computational efficiency. To validate our two types of imaging conditions, numerical tests are conducted. The migration images created according to our imaging conditions can represent the subsurface structure accurately. Thus, we can confirm the feasibility of obtaining migration images of the decomposed P-wavefield without requiring the application of the divergence operator.

  7. Wavefield separation and polarity reversal correction in elastic reverse time migration

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Ma, Xiaona; Fu, Chao; Liang, Guanghe

    2016-04-01

    In elastic reverse time migration (RTM), one of the problems that are often encountered is the cross-talk between P- and S-wavefields. A useful processing technique to reduce the cross-talk is separating the P- and S-wavefields by using divergence and curl operators before applying an elastic imaging condition. However, the separated wavefields lose their physical meaning because their phase and amplitude are changed. In this paper, we modify the divergence and curl operators to give the separated wavefields a clear physical meaning: the separated wavefield is the first derivative of the input wavefield with respect to time. Another problem often encountered is polarity reversals in PS and SP images, which can cause destructive interference in the final stacked image and thus destroy the migrated events. In this paper we also develop a procedure for polarity reversal correction based on the polarization vectors of the P- and S-wavefields in the common-shot domain. The correction factor is first calculated at every imaging point during the wavefield reconstruction and is then multiplied by the PS and SP images at each time step when an elastic imaging condition is applied. Numerical examples with synthetic data have shown that the modified wavefield separation method is correct, and the procedure of polarity reversal correction is effective for a complex model.

  8. Pre-stack full wavefield inversion for elastic parameters of TI media

    NASA Astrophysics Data System (ADS)

    Zhang, Meigen; Huang, Zhongyu; Li, Xiaofan; Wang, Miaoyue; Xu, Guangyin

    2006-03-01

    Pre-stack full wavefield inversion for the elastic parameters of transversely isotropical media is implemented. The Jacobian matrix is derived directly with the finite element method, just like the full wavefield forward modelling. An absorbing boundary scheme combining Liao's transparent boundary condition with Sarma's attenuation boundary condition is applied to the forward modelling and Jacobian calculation. The input data are the complete ground-recorded wavefields containing full kinematic and dynamic information for the seismic waves. Inversion with such data is desirable as it should improve the accuracy of the estimated parameters and also reduce data pre-processing, such as wavefield identification and separation. A scheme called energy grading inversion is presented to deal with the instability caused by the large energy difference between different arrivals in the input data. With this method, parameters in the shallow areas, which mainly affect wave patterns with strong energy, converge before those of deeper media. Thus, the number of unknowns in each inversion step is reduced, and the stability and reliability of the inversion process is greatly improved. As a result, the scheme is helpful to reduce the non-uniqueness in the inversion. Two synthetic examples show that the inversion system is reliable and accurate even though initial models deviate significantly from the actual models. Also, the system can accurately invert for transversely isotropic model parameters even with the introduction of strong random noise.

  9. Implementation of elastic reverse-time migration using wavefield separation in the frequency domain

    NASA Astrophysics Data System (ADS)

    Chung, Wookeen; Pyun, Sukjoon; Bae, Ho Seuk; Shin, Changsoo; Marfurt, Kurt J.

    2012-06-01

    Considerable effort has been devoted to the migration of multicomponent data in elastic media with wavefield separation techniques being the most successful. Most of this work has been carried out in the time domain. In this paper, we formulate a multicomponent migration technique in the frequency domain. Reverse-time migration can be viewed as the zero-lag cross-correlation between virtual source and back-propagated wavefields. Cross-correlating the Helmholtz decomposed wavefields rather than directly correlating the vector displacement fields results in sharper, more interpretable images, contaminated by fewer crosstalk artefacts. The end products are separate P and S wave (and if desired, PS and SP) migration images. We test our migration algorithm on synthetic seismic data generated using the SEG/EAGE salt-dome, Overthrust and Marmousi-2 models. We correctly image the location and shape of the target zone for oil exploration using these data sets. Furthermore, we demonstrate that our new migration technique provides good images even when the initial velocity model is only approximate.

  10. Wavefield imaging using the energy norm

    NASA Astrophysics Data System (ADS)

    Rocha, Daniel Carvalho, Junior

    For various wavefield types, one can formulate a measurement of the mechanical energy that satisfies conservation laws. Based on this formulation, one can derive an energy norm that is applicable to wavefield imaging. Extending the concept of the norm to an inner product, one can compare two related wavefields. Therefore, an imaging condition can be defined as the inner product between the source and receiver wavefields at every spatial location. In this regard, the imaging condition based on the energy inner product accounts for wavefield directionality in space and time, overcoming some problems present in the conventional imaging condition. I exploit the wavefield directionality information from the energy imaging condition to attenuate unwanted events in reverse time migrated (RTM) images. For acoustic wavefields, these unwanted events are characterized by the collinearity of the source and receiver raypaths, and they are described as RTM backscattering artifacts. For elastic wavefields, these events are characterized by the fact that source and receiver displacement fields have the same polarization and wave propagation directions. In both acoustic and elastic cases, one can to attenuate these artifacts and produce high quality images. Another application that uses the wavefield directionality is to enhance the full waveform inversion (FWI) gradient for acoustic wavefields. By enhancing wave events that are collinear and suppressing all other wave events, I am able to compute gradients that are more suitable for the inversion process. Numerical experiments show the efficacy of these applications for synthetic models that emulate the complexity of subsurface structures found in exploration seismology, such as salt bodies, diffractors, dipping layers and faults.

  11. Source Stacking for Numerical Wavefield Computations - Application to Global Scale Seismic Mantle Tomography

    NASA Astrophysics Data System (ADS)

    MacLean, L. S.; Romanowicz, B. A.; French, S.

    2015-12-01

    Seismic wavefield computations using the Spectral Element Method are now regularly used to recover tomographic images of the upper mantle and crust at the local, regional, and global scales (e.g. Fichtner et al., GJI, 2009; Tape et al., Science 2010; Lekic and Romanowicz, GJI, 2011; French and Romanowicz, GJI, 2014). However, the heaviness of the computations remains a challenge, and contributes to limiting the resolution of the produced images. Using source stacking, as suggested by Capdeville et al. (GJI,2005), can considerably speed up the process by reducing the wavefield computations to only one per each set of N sources. This method was demonstrated through synthetic tests on low frequency datasets, and therefore should work for global mantle tomography. However, the large amplitudes of surface waves dominates the stacked seismograms and these cases can no longer be separated by windowing in the time domain. We have developed a processing approach that helps address this issue and demonstrate its usefulness through a series of synthetic tests performed at long periods (T >60 s) on toy upper mantle models. The summed synthetics are computed using the CSEM code (Capdeville et al., 2002). As for the inverse part of the procedure, we use a quasi-Newton method, computing Frechet derivatives and Hessian using normal mode perturbation theory.

  12. The scattering potential of partial derivative wavefields in 3D elastic orthorhombic media: An inversion prospective

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Alkhalifah, Tariq

    2016-07-01

    Multi-parameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multi component sensors, the potential for tradeoff between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22 and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23 and C12 suffer from strong trade-offs with C55, C44 and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.

  13. The scattering potential of partial derivative wavefields in 3-D elastic orthorhombic media: an inversion prospective

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Alkhalifah, Tariq

    2016-09-01

    Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22, and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23, and C12 suffer from strong trade-offs with C55, C44, and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.

  14. Source-independent full wavefield converted-phase elastic migration velocity analysis

    NASA Astrophysics Data System (ADS)

    Shabelansky, A. H.; Malcolm, A. E.; Fehler, M. C.; Shang, X.; Rodi, W. L.

    2015-02-01

    Converted phase (CP) elastic seismic signals are comparable in amplitude to the primary signals recorded at large offsets and have the potential to be used in seismic imaging and velocity analysis. We present an approach for CP elastic wave equation velocity analysis that does not use source information and is applicable to surface-seismic, microseismic, teleseismic and vertical seismic profile (VSP) studies. Our approach is based on the cross-correlation between reflected or transmitted PP and CP PS (and/or SS and CP PS) waves propagated backward in time, and is formulated as an optimization problem with a differential semblance criterion objective function for the simultaneous update of both P- and S-wave velocity models. The merit of this approach is that it is fully data-driven, uses full waveform information, and requires only one elastic backward propagation to form an image rather than the two (one forward and one backward) propagations needed for standard reverse-time migration. Moreover, as the method does not require forward propagation, it does not suffer from migration operator source aliasing when a small number of shots are used. We present a derivation of the method and test it with a synthetic model and field micro-seismic data.

  15. EXPLORING FOR SUBTLE MISSION CANYON STRATIGRAPHIC TRAPS WITH ELASTIC WAVEFIELD SEISMIC TECHNOLOGY

    SciTech Connect

    John Beecherl

    2004-02-01

    The 9C3D seismic data that will form the principal data base needed for this research program have been successfully acquired. The seismic field data exhibit a good signal-to-noise (S/N) ratio for all elastic-wave modes. Thus the major hurdle of acquiring optimal-quality 9-C seismic data has been cleared. The stratigraphic oil-reservoir target that will be the imaging objective of the seismic data-processing effort is described in this report to indicate the challenge that now confronts the data-processing phase of the project.

  16. Regional seismic wavefield computation on a 3-D heterogeneous Earth model by means of coupled traveling wave synthesis

    USGS Publications Warehouse

    Pollitz, F.F.

    2002-01-01

    I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.

  17. Anisotropic Shear Velocity Models of the North American Upper Mantle Based on Waveform Inversion and Numerical Wavefield Computations.

    NASA Astrophysics Data System (ADS)

    Pierre, C.

    2015-12-01

    The Earthscope TA deployment across the continental United-State (US) has reached its eastern part, providing the opportunity for high-resolution 3D seismic velocity imaging of both lithosphere and asthenosphere across the entire north-American continent (NA). Previously (Yuan et al., 2014), we presented a 3D radially anisotropic shear wave (Vs) model of North America (NA) lithospheric mantle based on full waveform tomography, combining teleseismic and regional distance data sampling the NA. Regional wavefield computations were performed numerically, using a regional Spectral Element code (RegSEM, Cupillard et al., 2012), while teleseismic computations were performed approximately, using non-linear asymptotic coupling theory (NACT, Li and Romanowicz, 1995). For both datasets, the inversion was performed iteratively, using a Gauss-Newton scheme, with kernels computed using either NACT or the surface wave, path average approximation (PAVA), depending on the source-station distance. We here present a new radially anisotropic lithospheric/asthenospheric model of Vs for NA based entirely on SEM-based numerical waveforms from an augmented dataset of 155 regional events and 70 teleseismic events. The forward wavefield computations are performed using RegSEM down to 40s, starting from our most recent whole mantle 3D radially anisotropic Vs model (SEMUCB-wm1, French and Romanowicz, 2014). To model teleseismic wavefields within our regional computational domain, we developed a new modeling technique which allows us to replace a distant source by virtual sources at the boundary of the computational domain (Masson et al., 2014). Computing virtual sources requires one global simulation per teleseismic events.We then compare two models obtained: one using NACT/PAVA kernels as in our previous work, and another using hybrid kernels, where the Hessian is computed using NACT/PAVA, but the gradient is computed numerically from the adjoint wavefield, providing more accurate kernels

  18. Finite-difference modelling of wavefield constituents

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan O. A.; van Manen, Dirk-Jan; Schmelzbach, Cedric; Van Renterghem, Cederic; Amundsen, Lasse

    2015-11-01

    The finite-difference method is among the most popular methods for modelling seismic wave propagation. Although the method has enjoyed huge success for its ability to produce full wavefield seismograms in complex models, it has one major limitation which is of critical importance for many modelling applications; to naturally output up- and downgoing and P- and S-wave constituents of synthesized seismograms. In this paper, we show how such wavefield constituents can be isolated in finite-difference-computed synthetics in complex models with high numerical precision by means of a simple algorithm. The description focuses on up- and downgoing and P- and S-wave separation of data generated using an isotropic elastic finite-difference modelling method. However, the same principles can also be applied to acoustic, electromagnetic and other wave equations.

  19. Anisotropic Shear Velocity Models of the North American Upper Mantle Based on Waveform Inversion and Numerical Wavefield Computations.

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Masson, Y.; Romanowicz, B. A.; French, S. W.; Yuan, H.

    2014-12-01

    The Earthscope TA deployment across the continental US now has reached the eastern part of the United States, providing the opportunity for high-resolution 3D seismic velocity imaging of both lithosphere and asthenosphere across the entire north-American continent (NA). Previously (Yuan et al., 2014), we presented a 3D radially anisotropic shear wave model of North America (NA) lithospheric mantle based on full waveform tomography, combining teleseismic and regional distance data sampling the NA. Regional wavefield computations were performed numerically, using a regional Spectral Element code (RegSEM, Cupillard et al., 2012), while teleseismic computations were performed approximately, using non-linear asymptotic coupling theory (NACT, Li and Romanowicz, 1995). For both datasets, the inversion was performed iteratively, using a Gauss-Newton scheme, with kernels computed using either NACT or the surface wave, path average approximation (PAVA), depending on the source-station distance. Building upon our previous work, we here present a new radially anisotropic lithospheric/asthenospheric model of shear velocity for North America based entirely on regional waveforms from an augmented dataset of ~150 events contained and observed inside the study region, with forward wavefield computations performed using RegSEM down to 40s, starting from our most recent whole mantle 3D radially anisotropic shear velocity model (SEMUCB-wm1, French and Romanowicz, 2014). Several iterations of inversion are performed using a Gauss-Newton scheme. We present and compare two models obtained, on the one hand, using NACT/PAVA kernels as in our previous work, and on the other, using hybrid kernels, where the Hessian is computed using NACT/PAVA, but the gradient is computed numerically from the adjoint wavefield, providing more accurate kernels while preserving the fast convergence properties of the Gauss-Newton inversion scheme. We also present an update to our azimuthally anisotropic shear

  20. A General-applications Direct Global Matrix Algorithm for Rapid Seismo-acoustic Wavefield Computations

    NASA Technical Reports Server (NTRS)

    Schmidt, H.; Tango, G. J.; Werby, M. F.

    1985-01-01

    A new matrix method for rapid wave propagation modeling in generalized stratified media, which has recently been applied to numerical simulations in diverse areas of underwater acoustics, solid earth seismology, and nondestructive ultrasonic scattering is explained and illustrated. A portion of recent efforts jointly undertaken at NATOSACLANT and NORDA Numerical Modeling groups in developing, implementing, and testing a new fast general-applications wave propagation algorithm, SAFARI, formulated at SACLANT is summarized. The present general-applications SAFARI program uses a Direct Global Matrix Approach to multilayer Green's function calculation. A rapid and unconditionally stable solution is readily obtained via simple Gaussian ellimination on the resulting sparsely banded block system, precisely analogous to that arising in the Finite Element Method. The resulting gains in accuracy and computational speed allow consideration of much larger multilayered air/ocean/Earth/engineering material media models, for many more source-receiver configurations than previously possible. The validity and versatility of the SAFARI-DGM method is demonstrated by reviewing three practical examples of engineering interest, drawn from ocean acoustics, engineering seismology and ultrasonic scattering.

  1. Computing 3-D wavefields in mantle circulations models to test hypotheses on the origin of lower mantle heterogeneity under Africa directly against seismic observations

    NASA Astrophysics Data System (ADS)

    Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust

    2015-04-01

    Of particular interest for the tectonic evolution of the Atlantic region is the influence of lower mantle structure under Africa on flow in the upper mantle beneath the ocean basin. Along with its Pacific counterpart, the large African anomaly in the lowermost mantle with strongly reduced seismic velocities has received considerable attention in seismological and geodynamic studies. Several seismological observations are typically taken as an indication that these two anomalies are being caused by large-scale compositional variations and that they are piles of material with higher density than normal mantle rock. This would imply negative buoyancy in the lowermost mantle under Africa, which has important implications for the flow at shallower depth and inferences on the processes that led to the formation of the Atlantic Ocean basin. However, a large number of recent studies argue for a strong thermal gradient across the core-mantle boundary that might provide an alternative explanation for the lower mantle anomaly through the resulting large lateral temperature variations. Recently, we developed a new joint forward modeling approach to test such geodynamic hypotheses directly against the seismic observations: Seismic heterogeneity is predicted by converting the temperature field of a high-resolution 3-D mantle circulation model into seismic velocities using thermodynamic models of mantle mineralogy. 3-D global wave propagation in the synthetic elastic structures is then simulated using a spectral element method. Being based on forward modelling only, this approach allows us to generate synthetic wavefields and seismograms independently of seismic observations. The statistics of observed long-period body wave traveltime variations show a markedly different behaviour for P- and S-waves: the standard deviation of P-wave delay times stays almost constant with ray turning depth, while that of the S-wave delay times increases strongly throughout the mantle. In an

  2. Wavefield Compression for Full-Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Boehm, Christian; Fichtner, Andreas; de la Puente, Josep; Hanzich, Mauricio

    2015-04-01

    We present compression techniques tailored to iterative nonlinear minimization methods that significantly reduce the memory requirements to store the forward wavefield for the computation of sensitivity kernels. Full-waveform inversion on 3d data sets requires massive computing and memory capabilities. Adjoint techniques offer a powerful tool to compute the first and second derivatives. However, due to the asynchronous nature of forward and adjoint simulations, a severe bottleneck is introduced by the necessity to access both wavefields simultaneously when computing sensitivity kernels. There exist two opposing strategies to deal with this challenge. On the one hand, conventional approaches save the whole forward wavefield to the disk, which yields a significant I/O overhead and might require several terabytes of storage capacity per seismic event. On the other hand, checkpointing techniques allow to trade an almost arbitrary amount of memory requirements for a - potentially large - number of additional forward simulations. We propose an alternative approach that strikes a balance between memory requirements and the need for additional computations. Here, we aim at compressing the forward wavefield in such a way that (1) the I/O overhead is reduced substantially without the need for additional simulations, (2) the costs for compressing/decompressing the wavefield are negligible, and (3) the approximate derivatives resulting from the compressed forward wavefield do not affect the rate of convergence of a Newton-type minimization method. To this end, we apply an adaptive re-quantization of the displacement field that uses dynamically adjusted floating-point accuracies - i.e., a locally varying number of bits - to store the data. Furthermore, the spectral element functions are adaptively downsampled to a lower polynomial degree. In addition, a sliding-window cubic spline re-interpolates the temporal snapshots to recover a smooth signal. Moreover, a preprocessing step

  3. Going to high frequency for full waveform inversion of teleseismic wavefields based upon a SEM-DSM hybrid method and massive High-Performance Computing

    NASA Astrophysics Data System (ADS)

    Komatitsch, Dimitri; Monteiller, Vadim; Chevrot, Sébastien; Wang, Yi; Durochat, Clément

    2015-04-01

    We present a method for high-resolution imaging of lithospheric structures based on full waveform inversion of teleseismic wavefields. We model the propagation of seismic waves using our recently developed Direct Solution Method (DSM) / Spectral-Element Method (SEM) hybrid technique, which allows us to simulate the propagation of short period teleseismic waves through a regional 3-D model. We implement an iterative quasi-Newton method based upon the L-BFGS algorithm, with a gradient of the misfit function computed with the adjoint-state method. Compared to gradient or conjugate-gradient methods, the L-BFGS algorithm finds solutions that better explain the observed waveforms, and at a much faster convergence rate. We illustrate the potential of this method on a synthetic test case that consists in a crustal model with a crustal discontinuity at 25 km depth and a sharp Moho jump. This simple model contains short and long wavelength heterogeneities along both the lateral and vertical dimensions. In order to do that successfully we resort to high-performance computing on supercomputing clusters using an improved version of our SPECFEM3D open-source software package, which exhibits excellent scalability on parallel machines.

  4. True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain

    NASA Astrophysics Data System (ADS)

    Du, Qi-Zhen; Zhang, Ming-Qiang; Chen, Xiao-Ran; Gong, Xu-Fei; Guo, Cheng-Feng

    2014-12-01

    Wavefield separation of multicomponent seismic data to image subsurface structures can be realized in either the space domain or the wavenumber domain. However, as the particle velocity components used in the wavenumber-domain wavefield separation are not defined at the same grid point with the staggered-grid finite-difference method for elastic wavefield simulation, we propose the wavenumber-domain interpolation method to estimate the required values at the common grid points prior to the wavenumber-domain true-amplitude wavefield separation. Moreover, numerical experiments show that the wavenumber-domain interpolation method has high interpolation accuracy and the trueamplitude wavefield separation method shows good amplitude preservation. The application of the proposed methodology to elastic reverse-time migration can obtain good amplitudepreserved images even in the case of some velocity error.

  5. Guided wavefield reconstruction from sparse measurements

    NASA Astrophysics Data System (ADS)

    Mesnil, Olivier; Ruzzene, Massimo

    2016-02-01

    Guided wave measurements are at the basis of several Non-Destructive Evaluation (NDE) techniques. Although sparse measurements of guided wave obtained using piezoelectric sensors can efficiently detect and locate defects, extensive informa-tion on the shape and subsurface location of defects can be extracted from full-field measurements acquired by Laser Doppler Vibrometers (LDV). Wavefield acquisition from LDVs is generally a slow operation due to the fact that the wave propagation to record must be repeated for each point measurement and the initial conditions must be reached between each measurement. In this research, a Sparse Wavefield Reconstruction (SWR) process using Compressed Sensing is developed. The goal of this technique is to reduce the number of point measurements needed to apply NDE techniques by at least one order of magnitude by extrapolating the knowledge of a few randomly chosen measured pixels over an over-sampled grid. To achieve this, the Lamb wave propagation equation is used to formulate a basis of shape functions in which the wavefield has a sparse representation, in order to comply with the Compressed Sensing requirements and use l1-minimization solvers. The main assumption of this reconstruction process is that every material point of the studied area is a potential source. The Compressed Sensing matrix is defined as being the contribution that would have been received at a measurement location from each possible source, using the dispersion relations of the specimen computed using a Semi-Analytical Finite Element technique. The measurements are then processed through an l1-minimizer to find a minimum corresponding to the set of active sources and their corresponding excitation functions. This minimum represents the best combination of the parameters of the model matching the sparse measurements. Wavefields are then reconstructed using the propagation equation. The set of active sources found by minimization contains all the wave

  6. Prestack elastic generalized-screen migration for multicomponent data

    NASA Astrophysics Data System (ADS)

    Kim, Byoung Yeop; Seol, Soon Jee; Lee, Ho-Young; Byun, Joongmoo

    2016-03-01

    An efficient prestack depth migration method based on the elastic one-way wave equation was developed using an improved elastic generalized-screen propagator, which effectively describes the behavior of elastic waves with mode conversion at the interfaces and efficiently computes wave propagation in media with lateral velocity variations. The elastic propagator presented in this study was improved from the elastic generalized-screen propagator. Several terms of the vertical slowness right symbol with orders are corrected from the original formulation, and the vertical slowness operator in the propagator was expanded up to the 2nd order which yields a more accurate approximation. In each screen propagation step, the multicomponent wavefields are automatically separated into the P and S wavefields by the P-S decomposition operator included in the elastic generalized-screen propagator. This process facilitates the imaging of the P and S waves separately without any additional P and S separation process after the wavefield extrapolation. Impulse response tests of the improved elastic generalized-screen propagator in a uniform-property medium proved that propagation accuracy increases with order, even when large medium perturbations are assigned. Migration tests using the developed algorithm on a simple layered model and two complex models (the SEG/EAGE salt and elastic Marmousi-2 model) demonstrated the functional advantages and capabilities of the algorithm compared with elastic migration using the scalar wave equation.

  7. Explicit Fourier wavefield operators

    NASA Astrophysics Data System (ADS)

    Ferguson, R. J.; Margrave, G. F.

    2006-04-01

    Explicit wavefield extrapolators are based on direct analytic mathematical formulae that express the output as an extrapolation operator acting on the input, while implicit methods usually require the calculation of the numerical inverse of a matrix to obtain the output. Typically, explicit methods are faster than implicit methods, and they often give more insight into the physics of the wave propagation, but they often suffer from instability. Four different explicit extrapolators based on Fourier theory are presented and analysed. They are: PS (ordinary phase shift), GPSPI (generalized phase shift plus interpolation), NSPS (non-stationary phase shift) and SNPS (symmetric non-stationary phase shift). A formal proof is given that NSPS in a direction orthogonal to the velocity gradient is the mathematical adjoint process to GPSPI in the opposite direction. This motivates the construction of SNPS that combines NSPS and GPSPI in a symmetric fashion. This symmetry (under interchange of input and output lateral coordinates) is required by reciprocity arguments. PS and SNPS are symmetric while NSPS and GPSPI are not. A numerical stability study using SVD (singular value decomposition) shows that all of these extrapolators can become unstable for strong lateral velocity gradients. Unstable operators allow amplitudes to grow non-physically in a recursion. Stability is enhanced by introducing a small (~3 per cent) imaginary component to the velocities. This causes a numerical attenuation that tends to stabilize the operators but does not address the cause of the instability. For the velocity model studied (a very challenging case) GPSPI and NSPS have exactly the same instability while SNPS is always more stable. Instability manifests in a complicated way as a function of extrapolation step size, frequency, velocity gradient, and strength of numerical attenuation. The SNPS operator can be stabilized over a wide range of conditions with considerably less attenuation than is

  8. An excitation potential imaging condition for elastic reverse time migration

    NASA Astrophysics Data System (ADS)

    Gu, Bingluo; Liu, Youshan; Li, Zhiyuan; Ma, Xiaona; Liang, Guanghe

    2014-09-01

    Elastic reverse time migration (ERTM) has been demonstrated to be more accurate than scalar RTM. However, low efficiency (large storage and heavy calculated amount) and strong artifacts caused by the crosstalk between different wave modes are the two primary barriers to the application of the ERTM during the processing of real data. The scalar (P) and vector (S) potentials of the elastic wavefield and the arrival times corresponding to the first energy extremum of the wavefield are saved at each grid point during the forward modeling of the source wavefield. The angle-dependent reflection coefficient images are subsequently obtained by dividing the scalar and vector potentials of the backward extrapolated receiver wavefield by the saved scalar and vector potentials at the grid points that satisfy the image time at each time step, respectively. The proposed imaging condition does not need to store the snapshots of the source wavefield, while it can considerably improve the computational efficiency and decrease the amount of storage and Input/Output manipulation (compared with the cross-correlation imaging condition) in addition to suppressing the crosstalk between compressive and shear wave modes. Compared with the excitation time imaging condition, the proposed imaging condition reduces the energy loss caused by the opposite polarity of the horizontal component at opposite sides of the source in stacked images. Numerical tests with synthetic data of the Sigsbee2a model have demonstrated that this imaging condition is a cost-effective and practical imaging condition for use in prestack ERTM.

  9. An Expert Fitness Diagnosis System Based on Elastic Cloud Computing

    PubMed Central

    Tseng, Kevin C.; Wu, Chia-Chuan

    2014-01-01

    This paper presents an expert diagnosis system based on cloud computing. It classifies a user's fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user's physiological data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service. PMID:24723842

  10. Angle-domain imaging condition for elastic reverse time migration

    NASA Astrophysics Data System (ADS)

    Yan, R.; Xie, X.; Wu, R.

    2010-12-01

    In exploration seismology, elastic reverse time migration (RTM) has spurred much interest in recent years because of the increased imaging challenges posed by complex subsurface targets and affordable computer resources such as Linux clusters. Elastic RTM reconstructs the source wavefields forward in time and receiver wavefields backward in time by finite difference method. It then applies an imaging condition that evaluates the match between source and receiver wavefields. To construct the image which describes the physical property of the medium, we prefer to separate the wavefields into P and S modes, and implement the imaging condition as cross-correlation of pure wave mode rather than of Cartesian component of the displacement wavefields. However, simple cross-correlation can cause some image problems which impede the further seismic interpretation. For example, PP image is contaminated by strong artifacts resulted from unwanted cross-correlation between diving wave, turning wave or back-scattered wave and their time-reversed counterpart; PS image suffers from polarization problem due to the polarity reversal of converted S-wave. We found it necessary to apply certain intrinsic properties (e.g., the wave propagation directions and particle motion information) in reconstructed wavefields in order to solve the problems exhibited in elastic RTM image. This paper presents a procedure to decompose the source and receiver wavefields into local plane waves in pure P and S modes. We generate the partial PP and PS images in angle domain by cross-correlating any combination of decomposed plane wave component, and then formulate an imaging condition as a product of an angle-domain operator and the partial images. The new angle-domain imaging condition substantially reduces the artifacts in the PP image and produces the PS image with correct polarizations. Synthetic examples demonstrate that the imaging condition works very well on producing clean and consistent image

  11. Computational aspects of dispersive computational continua for elastic heterogeneous media

    NASA Astrophysics Data System (ADS)

    Fafalis, Dimitrios; Fish, Jacob

    2015-12-01

    The present manuscript focusses on computational aspects of dispersive computational continua (C^2) formulation previously introduced by the authors. The dispersive C^2 formulation is a multiscale approach that showed strikingly accurate dispersion curves. However, the seemingly theoretical advantage may be inconsequential due to tremendous computational cost involved. Unlike classical dispersive methods pioneered more than a half a century ago where the unit cell is quasi-static and provides effective mechanical and dispersive properties to the coarse-scale problem, the dispersive C^2 gives rise to transient problems at all scales and for all microphases involved. An efficient block time-integration scheme is proposed that takes advantage of the fact that the transient unit cell problems are not coupled to each other, but rather to a single coarse-scale finite element they are positioned in. We show that the computational cost of the method is comparable to the classical dispersive methods for short load durations.

  12. Wavefield tomography using extended images

    NASA Astrophysics Data System (ADS)

    Yang, Tongning

    Estimating an accurate velocity model is crucial for seismic imaging to obtain a good understanding of the subsurface structure. The objective of this thesis is to investigate methods of velocity analysis by optimizing seismic images. A conventional seismic image is obtained by zero-lag crosscorrelation of wavefields extrapolated from a source wavelet and recorded data on the surface using a velocity model. The velocity model provides the kinematic information needed by the imaging algorithm to position the reflectors at correct locations and to focus the image. In complex geology, wave-equation migration is a powerful tool for accurately imaging the earth's interior; the quality of the output image, however, depends on the accuracy of the velocity model. Given such a dependency between the image and model, analyzing the velocity information from the image is still not intuitive and often ambiguous. If the nonzero space- and time-lags information are preserved in the crosscorrelation, the output are image hypercube defined as extended images. Compared to the conventional image, the extended images provide a straightforward way to analyze the image quality and to characterize the velocity model accuracy. Understanding the reflection moveout is the key to developing velocity model building methods using extended images. In the extended image space, reflections form coherent objects which depend on space (lags) and time (lags). These objects resemble cones which ideally have their apex at zero space and time lags. The symmetry axis of the cone lies along the time-lag axis. The apex of the cone is located at zero lags only if the velocity model is accurate. This corresponds to the situation when reflection energy focuses at origin in both the space- and time-lag common-image gathers (the slices at zero time and space lags, respectively). When the velocity model is inaccurate, the cone shifts along the time-lag axis. This results in residual moveout in space-lag gathers

  13. Simplified computational methods for elastic and elastic-plastic fracture problems

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.

    1992-01-01

    An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.

  14. Simultaneous source wavefield separation by signal apparition

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan O. A.; Amundsen, Lasse; Pedersen, Åsmund Sjøen

    2016-06-01

    A new method for discrete sampling of signals is presented with specific applications to the reconstruction of recorded interfering wavefields from two or more sources excited simultaneously at discrete positions along lines. By utilizing a periodic sequence of source signatures along one of the source lines, the corresponding wavefield becomes separately visible in a part of the spectral domain where it can be isolated, processed, and subtracted from the interfering wavefields. As a result, interfering wavefields from multiple sources recorded at a single location can be fully separated from each other. The concept is referred to as signal apparition which we suggest refers to "the act of becoming visible". It may find applications in a wide range of disciplines relying on wave experimentation such as acoustic, seismic, and electromagnetic imaging of the Earth's interior for instance to significantly enhance resolution of sub-surface images.

  15. Passive imaging in nondiffuse acoustic wavefields.

    PubMed

    Mulargia, Francesco; Castellaro, Silvia

    2008-05-30

    A main property of diffuse acoustic wavefields is that, taken any two points, each of them can be seen as the source of waves and the other as the recording station. This property is shown to follow simply from array azimuthal selectivity and Huygens principle in a locally isotropic wavefield. Without time reversal, this property holds approximately also in anisotropic azimuthally uniform wavefields, implying much looser constraints for undistorted passive imaging than those required by a diffuse field. A notable example is the seismic noise field, which is generally nondiffuse, but is found to be compatible with a finite aperture anisotropic uniform wavefield. The theoretical predictions were confirmed by an experiment on seismic noise in the mainland of Venice, Italy. PMID:18518643

  16. Passive Imaging in Nondiffuse Acoustic Wavefields

    SciTech Connect

    Mulargia, Francesco; Castellaro, Silvia

    2008-05-30

    A main property of diffuse acoustic wavefields is that, taken any two points, each of them can be seen as the source of waves and the other as the recording station. This property is shown to follow simply from array azimuthal selectivity and Huygens principle in a locally isotropic wavefield. Without time reversal, this property holds approximately also in anisotropic azimuthally uniform wavefields, implying much looser constraints for undistorted passive imaging than those required by a diffuse field. A notable example is the seismic noise field, which is generally nondiffuse, but is found to be compatible with a finite aperture anisotropic uniform wavefield. The theoretical predictions were confirmed by an experiment on seismic noise in the mainland of Venice, Italy.

  17. Signal apparition for simultaneous source wavefield separation

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan O. A.; Amundsen, Lasse; Pedersen, Åsmund Sjøen

    2016-08-01

    A new method for discrete sampling of signals is presented with specific applications to the reconstruction of recorded interfering wavefields from two or more sources excited simultaneously at discrete positions along lines. By utilizing a periodic sequence of source signatures along one of the source lines, the corresponding wavefield becomes separately visible in a part of the spectral domain where it can be isolated, processed and subtracted from the interfering wavefields. As a result, interfering wavefields from multiple sources recorded at a single location can be fully separated from each other. The concept is referred to as signal apparition which we suggest refers to `the act of becoming visible'. It may find applications in a wide range of disciplines relying on wave experimentation, such as acoustic, seismic and electromagnetic imaging of the Earth's interior for instance to significantly enhance resolution of subsurface images.

  18. Computational Model of Three Dimensional Elastic Wing Driven by Muscles

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane; Cowen, Nathaniel; Peskin, Charles S.; Childress, Stephen W.

    2003-11-01

    The flapping wing motion observed in nature results from couplings of muscles, flexible wing structures, and unsteady flows. Previously we have studied the unsteady flows and forces of a rigid two dimensional wing undergoing prescribed motion similar to kinematics observed in insects, as a means of understanding basic unsteady aerodynamic mechanisms. In this talk, we describe our recent progress in constructing a more realistic model insect, which consists of a pair of elastic wings immersed in fluids, and is driven by periodically contracting 'muscles'. A natural computational framework for such a system is the immersed boundary method, which is used here. We present simulations of flapping flight at Reynolds number 10^2, in the same range as that of fruitflies and butterflies.

  19. Seismic wavefield propagation in 2D anisotropic media: Ray theory versus wave-equation simulation

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Hu, Guang-yi; Zhang, Yan-teng; Li, Zhong-sheng

    2014-05-01

    Despite the ray theory that is based on the high frequency assumption of the elastic wave-equation, the ray theory and the wave-equation simulation methods should be mutually proof of each other and hence jointly developed, but in fact parallel independent progressively. For this reason, in this paper we try an alternative way to mutually verify and test the computational accuracy and the solution correctness of both the ray theory (the multistage irregular shortest-path method) and the wave-equation simulation method (both the staggered finite difference method and the pseudo-spectral method) in anisotropic VTI and TTI media. Through the analysis and comparison of wavefield snapshot, common source gather profile and synthetic seismogram, it is able not only to verify the accuracy and correctness of each of the methods at least for kinematic features, but also to thoroughly understand the kinematic and dynamic features of the wave propagation in anisotropic media. The results show that both the staggered finite difference method and the pseudo-spectral method are able to yield the same results even for complex anisotropic media (such as a fault model); the multistage irregular shortest-path method is capable of predicting similar kinematic features as the wave-equation simulation method does, which can be used to mutually test each other for methodology accuracy and solution correctness. In addition, with the aid of the ray tracing results, it is easy to identify the multi-phases (or multiples) in the wavefield snapshot, common source point gather seismic section and synthetic seismogram predicted by the wave-equation simulation method, which is a key issue for later seismic application.

  20. Wavefield tomography in three dimensions: application to field data in the absence of a realistic starting model

    NASA Astrophysics Data System (ADS)

    Warner, Michael; Shah, Nikhil; Guasch, Lluís.; Umpleby, Adrian; Stekl, Ivan; Morgan, Joanna

    2010-05-01

    Wavefield tomography (AKA full waveform inversion) is a method of inverting geophysical field data that seeks to find a quantitative model of physical properties in the subsurface that can be used to generate synthetic data that match field data "wiggle-for-wiggle". It is most often applied to active-source seismic data, but it can also be applied to passive seismic data and to controlled-source electro-magnetic data. The method has significantly higher spatial resolution and fidelity than can be achieved using conventional imaging methods. The first practical methods were developed in 2D, mostly in the frequency domain. Here we report recent algorithmic developments which, coupled with hardware advances, make these methods tractable in three dimensions. We have implemented finite-difference computer codes for 3D acoustic and elastic wavefield tomography by explicit time-stepping in the time-domain, and for visco-acoustic tomography by iterative solution of the implicit matrix equations in the frequency-domain. Unlike the situation in two dimensions, where frequency-domain methods have proven to be far more efficient, in three dimensions both methods require approximately similar computational resource, and have largely complementary properties in terms of their effectiveness. We have applied these methods to a variety of synthetic and real-world problems taken from petroleum, mining and academic field datasets with a variety of 3D acquisition geometries and target depths. These include conventional marine multi-streamer acquisition, multi-azimuth marine OBC, high-resolution land surveys, and deep-ocean single-streamer acquisition. In each case, wavefield tomography was able to obtain a high-resolution high-fidelity velocity model of the heterogeneous overburden, and consequently to improve subsequent depth imaging of an underlying target. One of the serious practical limitations on the wider applicability of wavefield tomography is the necessity to have low

  1. The seismic noise wavefield is not diffuse.

    PubMed

    Mulargia, Francesco

    2012-04-01

    Passive seismology is burgeoning under the apparent theoretical support of diffuse acoustics. However, basic physical arguments suggest that this theory may not be applicable to seismic noise. A procedure is developed to establish the applicability of the diffuse field paradigm to a wavefield, based on testing the latter for azimuthal isotropy and spatial homogeneity. This procedure is then applied to the seismic noise recorded at 65 sites covering a wide variety of environmental and subsoil conditions. Considering the instantaneous oscillation vector measured at single triaxial stations, the hypothesis of azimuthal isotropy is rejected in all cases with high confidence, which makes the spatial homogeneity test unnecessary and leads directly to conclude that the seismic noise wavefield is not diffuse. However, such a conclusion has no practical effect on passive imaging, which is also possible in non-diffuse wavefields. PMID:22501063

  2. Using quasiphotons to compute wave fields in an elastic medium

    SciTech Connect

    Kachalov, A.P.

    1987-07-10

    Quasiphoton solutions are constructed for longitudinal and transversal waves in an elastic medium. The quasiphotons are then applied to determine the fields of nonstationary high-frequency point sources in a medium with parameters dependent on two Euclidean coordinates.

  3. Computation of graphene elastic moduli at low temperature

    SciTech Connect

    Zubko, I. Yu. Kochurov, V. I.

    2015-10-27

    Finding the values of parameters for the simplest Mie’s family potentials is performed in order to estimate elastic moduli of graphene monolayers using lattice statics approach. The coincidence criterion of the experimentally determined Poisson’s ratio with the estimated value is taken in order to select dimensionless power parameters of the Mie-type potential. It allowed obtaining more precise estimation of elastic properties in comparison with variety of other potentials for carbon atoms in graphene monolayer.

  4. Imaging and characterization of a subhorizontal non-welded interface from point source elastic scattering response

    NASA Astrophysics Data System (ADS)

    Minato, Shohei; Ghose, Ranajit

    2014-05-01

    The inverse scattering of seismic waves can reveal the spatial distribution of the elastic compliances along a non-welded interface, such as a fracture surface. The spatial heterogeneity along the surface of a fracture is a key determinant for fracture-associated hydraulic properties. In this paper, we demonstrate that the inverse scattering solution can be successfully applied to the point source response of a subhorizontal fracture. In the scale of seismic exploration, it is more appropriate to consider spherical waves from a point source than plane waves. Further, from only the P-wave point source response it is possible to estimate both normal and tangential fracture compliances. The synthetic seismic wavefield due to a P-wave point source in a 2-D elastic medium was computed using a time-domain finite difference approach. On this spherical wave data set, the correct estimation of the position and dip of the non-welded interface was possible through reverse-time migration followed by least-square fitting of the maximum amplitude of the P-P reflection. In order to estimate the heterogeneity along the non-welded interface, we first extract the elastic wavefield at the interface position. The extrapolated wavefield is then rotated such that the horizontal axis aligns along the fracture plane. Next, using this extrapolated and rotated wavefield, we solve the linear-slip boundary condition to obtain the distribution of normal and tangential compliances. Our result shows that the estimates of normal compliance are very accurate around the dominant frequency of the incident seismic wavefield. At lower frequencies, the estimated compliance distribution is less accurate and rather smooth due to the presence of evanescent waves. Extracting the distribution of the tangential compliance requires a larger stabilization factor. For a correct estimation of the tangential compliance, one needs S-wave sources or multiple sources providing more grazing angles to avoid the shadow

  5. Using Amazon's Elastic Compute Cloud to dynamically scale CMS computational resources

    NASA Astrophysics Data System (ADS)

    Evans, D.; Fisk, I.; Holzman, B.; Melo, A.; Metson, S.; Pordes, R.; Sheldon, P.; Tiradani, A.

    2011-12-01

    Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely "on-demand" as limits and caps on usage are imposed. Our trial workflows allow us to make a cost comparison between EC2 resources and dedicated CMS resources at a University, and conclude that it is most cost effective to purchase dedicated resources for the "base-line" needs of experiments such as CMS. However, if the ability to use cloud computing resources is built into an experiment's software framework before demand requires their use, cloud computing resources make sense for bursting during times when spikes in usage are required.

  6. Computing elastic moduli on 3-D X-ray computed tomography image stacks

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.; Kushch, V. I.

    2015-03-01

    A numerical task of current interest is to compute the effective elastic properties of a random composite material by operating on a 3D digital image of its microstructure obtained via X-ray computed tomography (CT). The 3-D image is usually sub-sampled since an X-ray CT image is typically of order 10003 voxels or larger, which is considered to be a very large finite element problem. Two main questions for the validity of any such study are then: can the sub-sample size be made sufficiently large to capture enough of the important details of the random microstructure so that the computed moduli can be thought of as accurate, and what boundary conditions should be chosen for these sub-samples? This paper contributes to the answer of both questions by studying a simulated X-ray CT cylindrical microstructure with three phases, cut from a random model system with known elastic properties. A new hybrid numerical method is introduced, which makes use of finite element solutions coupled with exact solutions for elastic moduli of square arrays of parallel cylindrical fibers. The new method allows, in principle, all of the microstructural data to be used when the X-ray CT image is in the form of a cylinder, which is often the case. Appendix A describes a similar algorithm for spherical sub-samples, which may be of use when examining the mechanical properties of particles. Cubic sub-samples are also taken from this simulated X-ray CT structure to investigate the effect of two different kinds of boundary conditions: forced periodic and fixed displacements. It is found that using forced periodic displacements on the non-geometrically periodic cubic sub-samples always gave more accurate results than using fixed displacements, although with about the same precision. The larger the cubic sub-sample, the more accurate and precise was the elastic computation, and using the complete cylindrical sample with the new method gave still more accurate and precise results. Fortran 90

  7. Inter-station coda wavefield studies using a novel icequake database on Erebus volcano

    NASA Astrophysics Data System (ADS)

    Chaput, J. A.; Campillo, M.; Roux, P.; Aster, R. C.

    2013-12-01

    Recent theoretical advances pertaining to the properties of multiply scattered wavefields have yielded a plethora of numerical and controlled source studies aiming to better understand what information may be derived from these otherwise chaotic signals. Practically, multiply scattered wavefields are difficult to compare to numerically derived models due to a combination of source paucity/directionality and array density limitations, particularly in passive seismology scenarios. Furthermore, in situations where data quantities are abundant, such as for ambient noise correlations, it remains very difficult to recover pseudo-Green's function symmetry in the ballistic components of the wavefield, let alone in the coda of the correlations. In this study, we use a large network of short period and broadband instruments on Erebus volcano to show that actual Green's function recovery is indeed possible in some cases. We make use of a large database of small impulsive icequakes distributed randomly on the summit plateau and, using fundamental theoretical properties of equipartitioned wavefields and interstation icequake coda correlations, are able to directly derive notoriously difficult quantities such as the bulk elastic mean free path for the volcano, demonstrations of correlation coda symmetry and its dependence on the number of icequakes used, and a theoretically predicted coherent backscattering amplification factor associated with weak localization. We furthermore show that stable equipartition and H^2/V^2 ratios may be consistently observed for icequake coda, and we perform simple depth inversions of these frequency dependent quantities to compare with known structures.

  8. Computation of vibration mode elastic-rigid and effective weight coefficients from finite-element computer program output

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1991-01-01

    Post-processing algorithms are given to compute the vibratory elastic-rigid coupling matrices and the modal contributions to the rigid-body mass matrices and to the effective modal inertias and masses. Recomputation of the elastic-rigid coupling matrices for a change in origin is also described. A computational example is included. The algorithms can all be executed by using standard finite-element program eigenvalue analysis output with no changes to existing code or source programs.

  9. Efficient strategies and imaging conditions for elastic prestack reverse-time migration of reflection seismic data

    NASA Astrophysics Data System (ADS)

    Nguyen, Bao D.

    Imaging with prestack reverse-time migration (RTM) is typically approached via a zero-lag crosscorrelation between source and receiver wavefields, which imposes unnecessarily stringent requirements for computational resources and disk storage. The imaging principle for reflectivity is analyzed and we demonstrate that a single maximal energy arrival event is often sufficient for migration imaging. Methods to alleviate the cost of crosscorrelation imaging are proposed and categorized into reconstructive and non-reconstructive schemes. Source wavefield reconstruction treats the source extrapolation as a method of providing the auxiliary conditions for an initial-boundary value problem. A first-pass (forward-time) extrapolation for the source wavefield identifies the boundary and/or initial values necessary to uniquely reconstruct it using a second (reverse-time) backward propagation. Mixed value, or hybrid, reconstruction is proposed as the most accurate alternative to storing the source wavefield time history. Reconstructing the source wavefield reduces storage costs by up to two orders of magnitude without an appreciable loss of image quality. Boundary value and initial value reconstruction methods are extended from acoustic to elastic RTM. Non-reconstructive approaches deviate from the conventional imaging paradigm, as only the most salient information required for imaging is kept. A maximal energy arrival event (termed the `excitation amplitude') imaging condition is explored as the direct analog for the theoretical reflection coefficient for acoustic isotropic media, and extended for elastic RTM. Sparse crosscorrelation is proposed as an equivalent method to standard crosscorrelation where the migrated image is now represented with a minimized data set. Time-binning is dynamic sorting algorithm with linear time complexity proposed for use with both excitation amplitude and sparse crosscorrelation approches to further expedite imaging. These parsimonious imaging

  10. Reconstruction of 2D seismic wavefield from Long-Period Seismogram and Short-Period Seismogram Envelope by Seismic Gradiometry applied to the Hi-net Array

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-04-01

    The high-sensitive seismograph network (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km all over the Japanese archipelago. Although it is equipped with short-period seismometers, we also can observe long-period seismic wave up to 100 s in periods for significantly large earthquakes. In this case, we may treat long-period seismic waves as a 2D wavefield with station separations shorter than wavelength rather than individual traces at stations. In this study, we attempt to reconstruct 2D wavefield and obtain its propagation properties from seismic gradiometry (SG) method. The SG estimates the wave amplitude and its spatial derivative coefficients from discrete station record by the Taylor series approximation with an inverse problem. By using spatial derivatives in horizontal directions, we can obtain properties of propagating wave packet such as the arrival direction, slowness, geometrical spreading and radiation pattern. In addition, by using spatial derivatives together with free-surface boundary condition, we may decompose the vector elastic 2D wavefield estimated by the SG into divergence and rotation components. First, we applied the seismic gradiometry to a synthetic long-period (20-50 s) seismogram dataset computed by numerical simulation in realistic 3D medium at the Hi-net station layout as a feasibility test. We confirmed that the wave amplitude and its spatial derivatives are very well reproduced with average correlation coefficients higher than 0.99 in this period range. Applications to a real large earthquakes show that the amplitude and phase of the wavefield are well reconstructed with additional information of arrival direction and its slowness. The reconstructed wavefield contained a clear contrast in slowness between body and surface waves, regional non-great-circle-path wave propagation which may be attributed to scattering. Slowness

  11. Modeling scattering from azimuthally symmetric bathymetric features using wavefield superposition.

    PubMed

    Fawcett, John A

    2007-12-01

    In this paper, an approach for modeling the scattering from azimuthally symmetric bathymetric features is described. These features are useful models for small mounds and indentations on the seafloor at high frequencies and seamounts, shoals, and basins at low frequencies. A bathymetric feature can be considered as a compact closed region, with the same sound speed and density as one of the surrounding media. Using this approach, a number of numerical methods appropriate for a partially buried target or facet problem can be applied. This paper considers the use of wavefield superposition and because of the azimuthal symmetry, the three-dimensional solution to the scattering problem can be expressed as a Fourier sum of solutions to a set of two-dimensional scattering problems. In the case where the surrounding two half spaces have only a density contrast, a semianalytic coupled mode solution is derived. This provides a benchmark solution to scattering from a class of penetrable hemispherical bosses or indentations. The details and problems of the numerical implementation of the wavefield superposition method are described. Example computations using the method for a simple scattering feature on a seabed are presented for a wide band of frequencies. PMID:18247740

  12. Multiscale simulation of 2D elastic wave propagation

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zheng, Hui

    2016-06-01

    In this paper, we develop the multiscale method for simulation of elastic wave propagation. Based on the first-order velocity-stress hyperbolic form of 2D elastic wave equation, the particle velocities are solved first ona coarse grid by the finite volume method. Then the stress tensor is solved by using the multiscale basis functions which can represent the fine-scale variation of the wavefield on the coarse grid. The basis functions are computed by solving a local problem with the finite element method. The theoretical formulae and description of the multiscale method for elastic wave equation are given in more detail. The numerical computations for an inhomogeneous model with random scatter are completed. The results show the effectiveness of the multiscale method.

  13. Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics

    NASA Astrophysics Data System (ADS)

    Arnoux, A.; Batou, A.; Soize, C.; Gagliardini, L.

    2013-08-01

    This paper is devoted to the construction of a stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics. We are particularly interested in automotive vehicles which are made up of stiff parts and flexible components. This type of structure is characterized by the fact that it exhibits, in the low frequency range, not only the classical global elastic modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes. To solve this difficult problem, an innovative method has recently been proposed for constructing a reduced order computational dynamical model adapted to this particular situation for the low frequency range. Then a new adapted generalized eigenvalue problem is introduced and allows a global vector basis to be constructed for the global displacements space. This method requires to decompose the domain of the structure into sub-domains. Such a decomposition is carried out using the Fast Marching Method. This global vector basis is then used to construct the reduced order computational model. Since there are model uncertainties induced by modeling errors in the computational model, the nonparametric probabilistic approach of uncertainties is used and implemented in the reduced order computational model. The methodology is applied to a complex computational model of an automotive vehicle.

  14. Adaptive finite difference for seismic wavefield modelling in acoustic media.

    PubMed

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme. PMID:27491333

  15. Adaptive finite difference for seismic wavefield modelling in acoustic media

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-08-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme.

  16. Adaptive finite difference for seismic wavefield modelling in acoustic media

    PubMed Central

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme. PMID:27491333

  17. Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.

  18. Computing forces on interface elements exerted by dislocations in an elastically anisotropic crystalline material

    NASA Astrophysics Data System (ADS)

    Liu, B.; Arsenlis, A.; Aubry, S.

    2016-06-01

    Driven by the growing interest in numerical simulations of dislocation–interface interactions in general crystalline materials with elastic anisotropy, we develop algorithms for the integration of interface tractions needed to couple dislocation dynamics with a finite element or boundary element solver. The dislocation stress fields in elastically anisotropic media are made analytically accessible through the spherical harmonics expansion of the derivative of Green’s function, and analytical expressions for the forces on interface elements are derived by analytically integrating the spherical harmonics series recursively. Compared with numerical integration by Gaussian quadrature, the newly developed analytical algorithm for interface traction integration is highly beneficial in terms of both computation precision and speed.

  19. Numerical Modeling of Ocean Acoustic Wavefields

    NASA Astrophysics Data System (ADS)

    Tappert, Frederick

    1997-08-01

    The U.S. Navy requires real-time ``acoustic performance prediction'' models in order to optimize sonar tactics in naval combat situations. The need for numerical models that solve the acoustic wave equation in realistic ocean environments is being met by a collaborative effort between university researchers, industrial contractors, and navy laboratory workers. This paper discusses one particularly successful numerical model, called the PE/SSF model, that was originally developed by the author. Here PE stands for Parabolic Equation, a good approximation to the elliptic Helmholtz equation; and SSF stands for the Split-Step Fourier algorithm, a highly efficient marching algorithm for solving parabolic type equations. These techniques are analyzed, and examples are displayed of ocean acoustic wavefields generated by the PE/SSF model.

  20. Isolation of ultrasonic scattering by wavefield baseline subtraction

    NASA Astrophysics Data System (ADS)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2016-03-01

    Wavefield imaging generally refers to the measurement of signals over a two-dimensional rectilinear grid that originate from a spatially fixed source. Subtraction of such wavefields is investigated as a means of separating scattered signals from the total wavefield; that is, baseline wavefield data acquired from a defect-free specimen are subtracted from analogous data acquired after introduction of a defect. The wavefields considered here are generated by a 5 MHz angle-beam probe and measured over an area of the accessible specimen surface using a laser vibrometer. The primary challenge in isolating the scattered waves is imperfect temporal and spatial alignment of the two wavefields. Two methods for aligning the wavefields in space and time prior to performing baseline subtraction are presented and their efficacy is evaluated using data acquired before and after introducing notches that originate from a through-hole. Although perfect baseline subtraction is not achieved, the improvement in performance after alignment using either method allows for scattered waves from small defects to be separated and visualized, even when their amplitudes are much smaller than those of the incident waves.

  1. Elastic Cloud Computing Infrastructures in the Open Cirrus Testbed Implemented via Eucalyptus

    NASA Astrophysics Data System (ADS)

    Baun, Christian; Kunze, Marcel

    Cloud computing realizes the advantages and overcomes some restrictionsof the grid computing paradigm. Elastic infrastructures can easily be createdand managed by cloud users. In order to accelerate the research ondata center management and cloud services the OpenCirrusTM researchtestbed has been started by HP, Intel and Yahoo!. Although commercialcloud offerings are proprietary, Open Source solutions exist in the field ofIaaS with Eucalyptus, PaaS with AppScale and at the applications layerwith Hadoop MapReduce. This paper examines the I/O performance ofcloud computing infrastructures implemented with Eucalyptus in contrastto Amazon S3.

  2. Computer program for investigating effects of nonlinear suspension-system elastic properties on parachute inflation loads and motions

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1972-01-01

    A computer program is presented by which the effects of nonlinear suspension-system elastic characteristics on parachute inflation loads and motions can be investigated. A mathematical elastic model of suspension-system geometry is coupled to the planar equations of motion of a general vehicle and canopy. Canopy geometry and aerodynamic drag characteristics and suspension-system elastic properties are tabular inputs. The equations of motion are numerically integrated by use of an equivalent fifth-order Runge-Kutta technique.

  3. Numerical Resolution of Seismic Wavefield Simulations in Southern California

    NASA Astrophysics Data System (ADS)

    Tape, C.; Casarotti, E.

    2014-12-01

    Seismic wavefield simulations can provide accurate solutions to the wave equation, even for three-dimensional seismic velocity models with topography, basin structures, anisotropy, attenuation, and other complexities. But how accurate are these numerical solutions? In many cases the effect of numerical dispersion on the synthetic seismograms looks quite similar to the effects of structural complexities. Therefore it is important to know the numerical resolution of the synthetic seismograms, that is, the minimum period that provides a quantifiably numerically accurate solution to the wave equation. Numerical resolution can be discussed in terms of a combined mesh and velocity model, or in terms of an individual source-station path within the same mesh and velocity model. Here we discuss two approaches for quantifying the numerical resolution. In the first approach we estimate the minimum resolvable period of each element within the finite element mesh. This calculation, performed within SPECFEM3D, requires no wavefield simulations and is based only on the size of each element and the minimum velocity within each element. The calculation produces a volumetric field that shows the estimated minimum resolvable period within each element of the (generally unstructured) mesh. In the second approach we choose a set of earthquakes to be used within a tomographic inversion. For each earthquake we compute one simulation using a fine discretization of gridpoints on the finite-element mesh and another simulation using a coarse discretization. We filter both sets of seismograms over a range of periods and then quantify the waveform differences. The minimum resolvable period (or numerical resolution) is identified by the minimum period for which the synthetic seismogram from the coarse-mesh and fine-mesh simulations is quantifiably the same. This calculation provides a path-specific minimum resolvable period that can be used to guide the choice of measurement filtering for a

  4. Computing dislocation stress fields in anisotropic elastic media using fast multipole expansions

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Barnett, D. M.; Fitzgerald, S. P.; Cai, Wei

    2012-06-01

    The calculation of stress fields due to dislocations and hence the forces they exert on each other is the most time consuming step in dislocation dynamics (DD) simulations. The fast multipole method (FMM) can reduce the computational cost at each simulation step from { O}(N^2) to { O}(N) for an ensemble of N dislocation segments. However, FMM has not yet been applied to three-dimensional DD simulations which take into account anisotropic elasticity. We demonstrate a systematic procedure to establish this capability by first obtaining the derivatives of the elastic Green's function to arbitrary order for a medium of general anisotropy. We then compute the stress field of a dislocation loop using multipole expansions based on these derivatives, and analyze the dependence of numerical errors on the expansion order. This method can be implemented in large scale DD simulations when the consideration of elastic anisotropy is necessary, for example the technologically important cases of iron and ferritic steels at high temperatures.

  5. Computation of Temperature-Dependent Legendre Moments of a Double-Differential Elastic Cross Section

    SciTech Connect

    Arbanas, Goran; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L; Becker, B.; Dagan, R

    2011-01-01

    A general expression for temperature-dependent Legendre moments of a double-differential elastic scattering cross section was derived by Ouisloumen and Sanchez [Nucl. Sci. Eng. 107, 189-200 (1991)]. Attempts to compute this expression are hindered by the three-fold nested integral, limiting their practical application to just the zeroth Legendre moment of an isotropic scattering. It is shown that the two innermost integrals could be evaluated analytically to all orders of Legendre moments, and for anisotropic scattering, by a recursive application of the integration by parts method. For this method to work, the anisotropic angular distribution in the center of mass is expressed as an expansion in Legendre polynomials. The first several Legendre moments of elastic scattering of neutrons on U-238 are computed at T=1000 K at incoming energy 6.5 eV for isotropic scattering in the center of mass frame. Legendre moments of the anisotropic angular distribution given via Blatt-Biedenharn coefficients are computed at ~1 keV. The results are in agreement with those computed by the Monte Carlo method.

  6. A computational framework for polyconvex large strain elasticity for geometrically exact beam theory

    NASA Astrophysics Data System (ADS)

    Ortigosa, Rogelio; Gil, Antonio J.; Bonet, Javier; Hesch, Christian

    2016-02-01

    In this paper, a new computational framework is presented for the analysis of nonlinear beam finite elements subjected to large strains. Specifically, the methodology recently introduced in Bonet et al. (Comput Methods Appl Mech Eng 283:1061-1094, 2015) in the context of three dimensional polyconvex elasticity is extended to the geometrically exact beam model of Simo (Comput Methods Appl Mech Eng 49:55-70, 1985), the starting point of so many other finite element beam type formulations. This new variational framework can be viewed as a continuum degenerate formulation which, moreover, is enhanced by three key novelties. First, in order to facilitate the implementation of the sophisticated polyconvex constitutive laws particularly associated with beams undergoing large strains, a novel tensor cross product algebra by Bonet et al. (Comput Methods Appl Mech Eng 283:1061-1094, 2015) is adopted, leading to an elegant and physically meaningful representation of an otherwise complex computational framework. Second, the paper shows how the novel algebra facilitates the re-expression of any invariant of the deformation gradient, its cofactor and its determinant in terms of the classical beam strain measures. The latter being very useful whenever a classical beam implementation is preferred. This is particularised for the case of a Mooney-Rivlin model although the technique can be straightforwardly generalised to other more complex isotropic and anisotropic polyconvex models. Third, the connection between the two most accepted restrictions for the definition of constitutive models in three dimensional elasticity and beams is shown, bridging the gap between the continuum and its degenerate beam description. This is carried out via a novel insightful representation of the tangent operator.

  7. Local guided wavefield analysis for characterization of delaminations in composites

    NASA Astrophysics Data System (ADS)

    Rogge, M. D.; Leckey, C. A. C.

    2013-01-01

    Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspection techniques are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure. Alternatively, a noncontact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially-dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Finally, experimental wavefield data obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage is analyzed and wavenumber is measured to an accuracy of 8.5% in the region of shallow delaminations.

  8. Elasticity and phase stability of pyrope garnet from ab initio computation

    NASA Astrophysics Data System (ADS)

    Kawai, Kenji; Tsuchiya, Taku

    2015-03-01

    We study the high-pressure stability and elastic properties of Mg3Al2Si3O12 pyrope garnet using the density functional first principles computation method. Pyrope garnet is found to dissociate into an assemblage of MgSiO3 Mg-perovskite (Pv) and Al2O3 corundum (Cor) solid solutions at ∼19.7 GPa at static conditions. Then, this assemblage undergoes a phase transition to pyropic (Al-bearing) Pv at ∼65 GPa. The enthalpy of an assemblage of MgAl2O4 calcium ferrite (CF), MgPv, and stishovite (St) is less stable than that of MgPv plus Cor. A continuous reaction in the MgSiO3-Al2O3 system suggested by this study is consistent with previous experimental and computational studies but not with a recently modeled phase diagram. This implies that the formation of pyropic Pv could not cause any seismic scatterers in the mid-lower mantle. The investigated anisotropy of elastic velocities further indicates that pyrope garnet is a very isotropic mineral. Our results suggest that seismological anisotropy inferred in the upper mantle could not be due to garnet.

  9. Three-dimensional full-wavefield seismic tomography on field data (Invited)

    NASA Astrophysics Data System (ADS)

    Warner, M.; Umpleby, A.; Stekl, I.; Guasch, L.

    2010-12-01

    In contrast to conventional seismic tomography, where we minimise the mismatch between observed and calculated seismic travel times, in full-wavefield tomography we seek a model that is able to match the entire observed wavefield, wiggle-for-wiggle. Wavefield tomography has a long history, but it is only recently that advances in algorithms and in hardware have made the technique feasible on realistic-sized datasets in three dimensions. With sponsorship from the petroleum industry, we have developed full 3D codes for anisotropic acoustic, and isotropic elastic, wavefield tomography in the time-domain, and for visco-acoustic tomography in the frequency domain. In both domains, we solve the wave equation using finite differences on a regular mesh; we use explicit time-stepping in the time domain, and use an implicit iterative solver in the frequency domain. The codes are parallelised to run on a cluster of multi-core nodes, and they are able to deal with large irregular 3D datasets efficiently. We report here the results of applying these codes to a 3D ocean-bottom seismic dataset acquired over the Tommeliten oil field in the North Sea. The field data are composed of 1920 four-component ocean-bottom receivers, recording about 30,000 air-gun sources over an area of 12 x 9 km. A low-velocity, high-attenuation gas cloud is located at a depth of 1 to 2 km; this gas cloud partially obscures the geology of the underlying oil field. There is significant anisotropy within the section; vertical and horizontal p-wave velocities can differ by more than 15%. Wavefield tomography is successful in imaging the complex velocity structure in 3D within this gas cloud with a lateral resolution of about 25 m. This resolution is much better than that obtained using reflection travel-time tomography or migration velocity analysis. Subsequent pre-stack reverse-time depth migration of the underlying reflection data demonstrates that the recovered velocity structure is real. It is necessary

  10. GPU computing with OpenCL to model 2D elastic wave propagation: exploring memory usage

    NASA Astrophysics Data System (ADS)

    Iturrarán-Viveros, Ursula; Molero-Armenta, Miguel

    2015-01-01

    Graphics processing units (GPUs) have become increasingly powerful in recent years. Programs exploring the advantages of this architecture could achieve large performance gains and this is the aim of new initiatives in high performance computing. The objective of this work is to develop an efficient tool to model 2D elastic wave propagation on parallel computing devices. To this end, we implement the elastodynamic finite integration technique, using the industry open standard open computing language (OpenCL) for cross-platform, parallel programming of modern processors, and an open-source toolkit called [Py]OpenCL. The code written with [Py]OpenCL can run on a wide variety of platforms; it can be used on AMD or NVIDIA GPUs as well as classical multicore CPUs, adapting to the underlying architecture. Our main contribution is its implementation with local and global memory and the performance analysis using five different computing devices (including Kepler, one of the fastest and most efficient high performance computing technologies) with various operating systems.

  11. Signal and image processing algorithm performance in a virtual and elastic computing environment

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly W.; Robertson, James

    2013-05-01

    The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.

  12. Impact Induced Delamination Detection and Quantification With Guided Wavefield Analysis

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu; Seebo, Jeffrey P.

    2015-01-01

    This paper studies impact induced delamination detection and quantification by using guided wavefield data and spatial wavenumber imaging. The complex geometry impact-like delamination is created through a quasi-static indentation on a CFRP plate. To detect and quantify the impact delamination in the CFRP plate, PZT-SLDV sensing and spatial wavenumber imaging are performed. In the PZT-SLDV sensing, the guided waves are generated from the PZT, and the high spatial resolution guided wavefields are measured by the SLDV. The guided wavefield data acquired from the PZT-SLDV sensing represent guided wave propagation in the composite laminate and include guided wave interaction with the delamination damage. The measured guided wavefields are analyzed through the spatial wavenumber imaging method, which generates an image containing the dominant local wavenumber at each spatial location. The spatial wavenumber imaging result for the simple single layer Teflon insert delamination provided quantitative information on delamination damage size and location. The location of delamination damage is indicated by the area with larger wavenumbers in the spatial wavenumber image. The impact-like delamination results only partially agreed with the damage size and shape. The results also demonstrated the dependence on excitation frequency. Future work will further investigate the accuracy of the wavenumber imaging method for real composite damage and the dependence on frequency of excitation.

  13. Local Guided Wavefield Analysis for Characterization of Delaminations in Composites

    NASA Technical Reports Server (NTRS)

    Rogge, Matthew D.; Campbell Leckey, Cara A.

    2012-01-01

    Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspection techniques are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure. Alternatively, a noncontact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially-dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Finally, experimental wavefield data obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage is analyzed and wavenumber is measured to an accuracy of 8.5% in the region of shallow delaminations. Keywords: Ultrasonic wavefield imaging, Windowed Fourier transforms, Guided waves, Structural health monitoring, Nondestructive evaluation

  14. Seismic interferometry by multidimensional deconvolution without wavefield separation

    NASA Astrophysics Data System (ADS)

    Ravasi, Matteo; Meles, Giovanni; Curtis, Andrew; Rawlinson, Zara; Yikuo, Liu

    2015-07-01

    Seismic interferometry comprises a suite of methods to redatum recorded wavefields to those that would have been recorded if different sources (so-called virtual sources) had been activated. Seismic interferometry by cross-correlation has been formulated using either two-way (for full wavefields) or one-way (for directionally decomposed wavefields) representation theorems. To obtain improved Green's function estimates, the cross-correlation result can be deconvolved by a quantity that identifies the smearing of the virtual source in space and time, the so-called point-spread function. This type of interferometry, known as interferometry by multidimensional deconvolution (MDD), has so far been applied only to one-way directionally decomposed fields, requiring accurate wavefield decomposition from dual (e.g. pressure and velocity) recordings. Here we propose a form of interferometry by multidimensional deconvolution that uses full wavefields with two-way representations, and simultaneously invert for pressure and (normal) velocity Green's functions, rather than only velocity responses as for its one-way counterpart. Tests on synthetic data show that two-way MDD improves on results of interferometry by cross-correlation, and generally produces estimates of similar quality to those obtained by one-way MDD, suggesting that the preliminary decomposition into up- and downgoing components of the pressure field is not required if pressure and velocity data are jointly used in the deconvolution. We also show that constraints on the directionality of the Green's functions sought can be added directly into the MDD inversion process to further improve two-way multidimensional deconvolution. Finally, as a by-product of having pressure and particle velocity measurements, we adapt one- and two-way representation theorems to convert any particle velocity receiver into its corresponding virtual dipole/gradient source by means of MDD. Thus data recorded from standard monopolar (e

  15. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    PubMed

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. PMID:24123969

  16. AxiSEM and instaseis: Fast simulation of global wavefields across the frequency band

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, T.; van Driel, M.; Krischer, L.; Stähler, S. C.; Hosseini, K.; Leng, K.

    2015-12-01

    We present our seismic modeling methods AxiSEM and instaseis. These methods exploit recent developments in high-performance computing and suitable numerical methods for seismic wave propagation, while operating efficiently across the vast observable frequency spectrum of global waves in sparse yet realistic structures. AxiSEM (www.axisem.info and geodynamics.org) relies upon axisymmetric (including spherically symmetric) models, thereby satisfying a large fraction of observable data. The benefit of this method lies in the resultant dimensional collapse to two numerical dimensions, whereby the third azimuthal dimension is tackled analytically. For high-frequency wave propagation, this leads to 3-4 orders of magnitude speedup in computational cost compared to 3D domain discretizations. AxiSEM is highly scalable and accommodates efficient implementations of viscoelasticity and anisotropy. We will present benchmarks, data comparisons, a diverse range of applications from inner-core anisotropy to noise modeling and lowermost mantle structures, and wavefields for sensitivity kernels. We also touch upon ongoing efforts for linking computational cost to structural complexity in the vein of Occam's razor, eventually allowing for an adaptive rendition of 1D, 2D and 3D structures at optimally low computational cost, as well as 1D/3D hybrid approaches. Instaseis (www.instaseis.net) is a methodology to extract full, broadband and accurate waveforms instantaneously from wavefield databases computed with AxiSEM. This "once-and-for-all solution" relies on reciprocity and requires only two AxiSEM simulations to construct the databases, while allowing for arbitrary parameter changes (e.g. source, processing, structure) instantaneously with modest computational cost and storage requirements. The instaseis python package is integrated with ObsPy, contains a graphical user interface, and can be used for source inversion, noise simulations, finite-fault modeling, waveform tomography

  17. Quantitative comparison between simulations of seismic wave propagation in heterogeneous poro-elastic media and equivalent visco-elastic solids for marine-type environments

    NASA Astrophysics Data System (ADS)

    Sidler, Rolf; Rubino, J. Germán; Holliger, Klaus

    2013-04-01

    There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes an important seismic attenuation mechanism in porous rocks. As a consequence, centimetre-scale perturbations of the rock physical properties should be taken into account for seismic modelling whenever detailed and accurate responses of specific target structures are desired, which is, however, computationally prohibitive. A convenient way to circumvent this problem is to use an upscaling procedure to replace each of the heterogeneous porous media composing the geological model by corresponding equivalent visco-elastic solids and to solve the visco-elastic equations of motion for the inferred equivalent model. While the overall qualitative validity of this procedure is well established, there are as of yet no quantitative analyses regarding the equivalence of the seismograms resulting from the original poro-elastic and the corresponding upscaled visco-elastic models. To address this issue, we compare poro-elastic and visco-elastic solutions for a range of marine-type models of increasing complexity. We found that despite the identical dispersion and attenuation behaviour of the heterogeneous poro-elastic and the equivalent visco-elastic media, the seismograms may differ substantially due to diverging boundary conditions, where there exist additional options for the poro-elastic case. In particular, we observe that at the fluid/porous-solid interface, the poro- and visco-elastic seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an important result which has potentially far-reaching implications for wave-equation-based algorithms in exploration geophysics involving fluid/porous-solid interfaces, such as, for example, wavefield decomposition.

  18. Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu

    2014-01-01

    Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.

  19. Polarity-consistent excitation amplitude imaging condition for elastic reverse time migration

    NASA Astrophysics Data System (ADS)

    Du, Qizhen; Zhang, Mingqiang; Gong, Xufei; Chen, Xiaoran

    2015-02-01

    Imaging conditions can not only affect the computational efficiency and storage cost of reverse time migration (RTM) but determine the quality of the final migrated images. This paper extends the idea of the well amplitude-preserved and highly-efficient excitation amplitude imaging condition from acoustic RTM to elastic RTM. For elastic RTM, the maximum amplitude of the separated P-wave and the corresponding image time of each grid point are saved during the forward modeling of the source wavefield and then PP and PS images are obtained by dividing the separated P- and S-waves of the backward-propagated receiver wavefield by the precomputed P-waves at each grid point that satisfies the image time. However, polarity reversals of the PS image will cause destructive interference when the stacked image is needed. In order to solve this problem, we propose the polarity-consistent excitation amplitude imaging condition by combining the excitation amplitude imaging condition with a shot-domain polarity reversal correction method. Then we provide the detailed realization process of this imaging condition in elastic RTM. By utilizing the relatively stable and well amplitude-preserved source-normalized cross-correlation imaging condition as a comparison, we testify to the feasibility and validity of the proposed imaging condition in the aspects of amplitude preservation property, imaging capability of complex structures, storage cost and computational efficiency. Considering the balance between the efficiency and image quality, the polarity-consistent excitation amplitude imaging condition can be a good choice for elastic RTM.

  20. Computation of elastic properties of 3D digital cores from the Longmaxi shale

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hui; Fu, Li-Yun; Zhang, Yan; Jin, Wei-Jun

    2016-06-01

    The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.

  1. Challenges in the separation and analysis of scattered waves in angle-beam wavefield data

    SciTech Connect

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2015-03-31

    The measurement of ultrasonic signals on a 2-D rectilinear grid resulting from a fixed source, referred to as wavefield imaging, is a powerful tool for visualizing wave propagation and scattering. Wavefield imaging provides a more complete picture of wave propagation than conventional single-point measurements, but creates more challenges for analysis. This work considers the development of wavefield-based methods for analyzing angle-beam wave propagation and scattering in plates. Methods of analysis focus on the separation of scattered waves from the total wavefield with the eventual goal of quantitative scatterer characterization in a laboratory environment. Two methods for wave separation are considered: frequency-wavenumber filtering and wavefield baseline subtraction. Frequency-wavenumber filtering is applied to wavefield data that are finely sampled in both space and time, whereas baseline subtraction is a technique that has typically been applied to individual signals recorded from fixed transducers rather than to full wavefield data. Baseline subtraction of wavefields, particularly for the frequency range considered here, is sensitive to both specimen alignment and temperature variations, whereas frequency-wavenumber methods are limited in their ability to separate waves traveling in the same direction. Results are shown for both methods with a focus on investigating and overcoming the challenges to full wavefield baseline subtraction.

  2. Direct and Inverse Problems in Statistical Wavefields

    SciTech Connect

    Wolf, Emil

    2002-09-01

    In this report account is presented of research carried out during the period September 1, 1999-August 31, 2002 under the sponsorship of the Department of Energy, grant DE-FG02-90ER14119. The research covered several areas of modern optical physics, particularly propagation of partially coherent light and its interaction with deterministic and with random media, spectroscopy with partially coherent light, polarization properties of statistical wave fields, effects of moving diffusers on coherence and on the spectra of light transmitted and scattered by them, reciprocity inequalities involving spatial and angular correlations of partially coherent beams, spreading of partially coherent beams in-random media, inverse source problems, computed and diffraction tomography and partially coherent solitons. We have discovered a new phenomenon in an emerging field of physical optics, known as singular optics; specifically we found that the spectrum of light changes drastically in the neighborhood of points where the intensity has zero value and where, consequently, the phase becomes singular, We noted some potential applications of this phenomenon. The results of our investigations were reported in 39 publications. They are listed on pages 3 to 5. Summaries of these publications are given on pages 6-13. Scientists who have participated in this research are listed on page 14.

  3. Computational fluid dynamics modeling of airflow inside lungs using heterogenous anisotropic lung tissue elastic properties.

    PubMed

    Ilegbusi, Olusegun; Li, Ziang; Min, Yugang; Meeks, Sanford; Kupelian, Patrick; Santhanam, Anand P

    2012-01-01

    The aim of this paper is to model the airflow inside lungs during breathing and its fluid-structure interaction with the lung tissues and the lung tumor using subject-specific elastic properties. The fluid-structure interaction technique simultaneously simulates flow within the airway and anisotropic deformation of the lung lobes. The three-dimensional (3D) lung geometry is reconstructed from the end-expiration 3D CT scan datasets of humans with lung cancer. The lung is modeled as a poro-elastic medium with anisotropic elastic property (non-linear Young's modulus) obtained from inverse lung elastography of 4D CT scans for the same patients. The predicted results include the 3D anisotropic lung deformation along with the airflow pattern inside the lungs. The effect is also presented of anisotropic elasticity on both the spatio-temporal volumetric lung displacement and the regional lung hysteresis. PMID:22356987

  4. Imaging of offset VSP data with an elastic iterative migration scheme

    SciTech Connect

    Mittet, R.; Hokstad, K.; Helgesen, J.; Canadas, G.

    1997-03-01

    VSP data are usually acquired in order to obtain high-resolution images of complex structures in reservoirs and near boreholes. The authors present an elastic iterative migration scheme which has few limitations regarding the complexity of the geology, and where the macromodel for both P- and S-wave velocities is automatically improved and updated at each iteration. They avoid wavefield separation (up/down and P/S) and the simplifying assumptions of small dips underlying most such methods. The migration scheme is based on elastic inversion theory. The wavefield extrapolation is based on a high-order, coarse-grid, finite-difference solution to the elastic two-way wave equation. At each iteration, the macromodel is updated using a gradient method, in which the gradient is computed by correlation of forward-modelled fields with back-propagated residual fields. The first iteration of the migration scheme is equivalent to elastic reverse-time migration with an imaging condition similar to Claerbout`s principle. Both P- and S-wave reflections contribute to the images. In numerical examples with both synthetic and real offset VSP data, they find that increasing the number of iterations improves the image quality. Images based on both P- and S-wave energy give more near-well information and higher spatial resolution than images on only acoustic energy. In the real data example the authors show that the iterative migration scheme can image a relatively complex geological structure. A fault and a small graben intersecting the well can be identified.

  5. Frequency-domain elastic full-waveform multiscale inversion method based on dual-level parallelism

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Li, Zhen-Chun; Zhang, Kai; Zhang, Xuan

    2015-12-01

    The complexity of an elastic wavefield increases the nonlinearity of inversion. To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multiscale strategy based on the simultaneous use of frequency groups and layer stripping method based on damped wave field improves the stability of inversion. A dual-level parallel algorithm is then used to decrease the computational cost and improve practicability. The seismic wave modeling of a single frequency and inversion in a frequency group are computed in parallel by multiple nodes based on multifrontal massively parallel sparse direct solver and MPI. Numerical tests using an overthrust model show that the proposed inversion algorithm can effectively improve the stability and accuracy of inversion by selecting the appropriate inversion frequency and damping factor in lowfrequency seismic data.

  6. Frequency-wavenumber domain analysis of guided wavefields.

    PubMed

    Michaels, Thomas E; Michaels, Jennifer E; Ruzzene, Massimo

    2011-05-01

    Full wavefield measurements obtained with either an air-coupled transducer mounted on a scanning stage or a scanning laser vibrometer can be combined with effective signal and imaging processing algorithms to support characterization of guided waves as well as detection, localization and quantification of structural damage. These wavefield images contain a wealth of information that clearly shows details of guided waves as they propagate outward from the source, reflect from specimen boundaries, and scatter from discontinuities within the structure. The analysis of weaker scattered waves is facilitated by the removal of source waves and the separation of wave modes, which is effectively achieved via frequency-wavenumber domain filtering in conjunction with the subsequent analysis of the resulting residual signals. Incident wave removal highlights the presence and the location of weak scatterers, while the separation of individual guided wave modes allows the characterization of their separate contribution to the scattered field and the evaluation of mode conversion phenomena. The effectiveness of these methods is demonstrated through their application to detection of a delamination in a composite plate and detection of a crack emanating from a hole. PMID:21190706

  7. Three Dimensional Inverse Modelling of Full-Waveform Elastic Seismic Survey in LAPLACE_FOURIER Domain Laplace-Fourier Domain

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2013-12-01

    Full Waveform Inversion (FWI) is a promising seismic imaging method which aims to compute quantitative estimates of the subsurface parameters (bulk wave velocity, shear wave velocity, rock density) from local measurements of the seismic wavefield. It based on a modeling of wave propagation from controlled seismic sources and consists in minimizing iteratively the difference between the predicted wavefields at the receivers and the recorded data. This amounts to solving a strongly nonlinear large-scale inverse problem. We have formulated a 3D inverse solution for the elastic wave problem in Laplace-Fourier domain using the non-linear conjugate gradient methods. FWI in the Laplace-Fourier domain has seen considerable interest over the last several years as an effective approach to imaging seismic data, where conventional FWI schemes have difficulties in converging to acceptable solutions. Finite difference methods, employing staggered grids are used to compute predicted data and objective functional gradients. Typically three forward modeling applications per frequency are required to produce the model update at each iteration. Because the solution's realism and complexity are still limited by the speed and memory of serial processors the code has been implemented on a massive parallel computing platform where hundreds to thousands of processors operate on the problem simultaneously. The inversion scheme is tested by inverting data produced with a forward modelling code for a few models.

  8. Rapid acquisition of high resolution full wave-field borehole seismic data

    SciTech Connect

    Sleefe, G.E.; Harding, R.S. Jr.; Fairborn, J.W.; Paulsson, B.N.P.

    1993-04-01

    An essential requirement for both Vertical Seismic Profiling (VSP) and Cross-Hole Seismic Profiling (CHSP) is the rapid acquisition of high resolution borehole seismic data. Additionally, full wave-field recording using three-component receivers enables the use of both transmitted and reflected elastic wave events in the resulting seismic images of the subsurface. To this end, an advanced three- component multi-station borehole seismic receiver system has been designed and developed by Sandia National Laboratory (SNL) and OYO Geospace. The system requires data from multiple three-component wall-locking accelerometer packages and telemeters digital data to the surface in real-time. Due to the multiplicity of measurement stations and the real-time data link, acquisition time for the borehole seismic survey is significantly reduced. The system was tested at the Chevron La Habra Test Site using Chevron`s clamped axial borehole vibrator as the seismic source. Several source and receiver fans were acquired using a four-station version of the advanced system. For comparison purposes, an equivalent data set was acquired using a standard analog wall-locking geophone receiver. The test data indicate several enhancements provided by the multi-station receiver relative to the standard, drastically improved signal-to-noise ratio, increased signal bandwidth, the detection of multiple reflectors, and a true 4:1 reduction in survey time.

  9. Traction force microscopy on soft elastic substrates: A guide to recent computational advances.

    PubMed

    Schwarz, Ulrich S; Soiné, Jérôme R D

    2015-11-01

    The measurement of cellular traction forces on soft elastic substrates has become a standard tool for many labs working on mechanobiology. Here we review the basic principles and different variants of this approach. In general, the extraction of the substrate displacement field from image data and the reconstruction procedure for the forces are closely linked to each other and limited by the presence of experimental noise. We discuss different strategies to reconstruct cellular forces as they follow from the foundations of elasticity theory, including two- versus three-dimensional, inverse versus direct and linear versus non-linear approaches. We also discuss how biophysical models can improve force reconstruction and comment on practical issues like substrate preparation, image processing and the availability of software for traction force microscopy. This article is part of a Special Issue entitled: Mechanobiology. PMID:26026889

  10. A remark on the computation of shear-horizontal and torsional modes in elastic waveguides.

    PubMed

    Gravenkamp, Hauke

    2016-07-01

    When modeling the propagation of elastic guided waves in plates or cylinders, Finite Element based numerical methods such as the Scaled Boundary Finite Element Method (SBFEM) or the Semi-Analytical Finite Element (SAFE) Method lead to an eigenvalue problem to be solved at each frequency. For the particular case of shear horizontal modes in a homogeneous plate or torsional modes in a homogeneous cylinder, the problem can be drastically simplified. The eigenvalues become simple functions of the frequency, while the eigenvectors are constant. The current contribution discusses how this behavior is represented in the numerical formulation and derives the expressions for the eigenvalues and eigenvectors as well as the dynamic stiffness matrix of infinite elastic waveguides. PMID:27014855

  11. A fourth order accurate finite difference scheme for the computation of elastic waves

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Jordan, K. E.; Lemesurier, B. J.; Turkel, E.

    1986-01-01

    A finite difference for elastic waves is introduced. The model is based on the first order system of equations for the velocities and stresses. The differencing is fourth order accurate on the spatial derivatives and second order accurate in time. The model is tested on a series of examples including the Lamb problem, scattering from plane interf aces and scattering from a fluid-elastic interface. The scheme is shown to be effective for these problems. The accuracy and stability is insensitive to the Poisson ratio. For the class of problems considered here it is found that the fourth order scheme requires for two-thirds to one-half the resolution of a typical second order scheme to give comparable accuracy.

  12. Analytical and Computational Study of One-Dimensional Impact of Graded Elastic Solids

    NASA Astrophysics Data System (ADS)

    Scheidler, Mike; Gazonas, George

    2002-07-01

    Some of the recent efforts to improve the ballistic performance of lightweight armors utilize functionally graded materials to provide a continuous transition in properties between dissimilar materials. It has been conjectured that the elimination of abrupt acoustic impedance changes may result in beneficial stress wave attenuation. We examine this issue for some idealized one-dimensional problems in which all materials are linear elastic. Exact solutions are compared with DYNA3D simulations of the same problems.

  13. A study of self-propelled elastic cylindrical micro-swimmers using modeling and computation

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Čanić, Sunčica; Quaini, Annalisa; Pan, Tsorng-Whay

    2016-06-01

    We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube's elastic membrane walls producing a traveling wave in the form of a "step-function" traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical applications such as drug delivery. The influence of several non-dimensional design parameters on the velocity of the swimmer is investigated, including the swimmer aspect ratio, and the amplitude of the traveling wave relative to the swimmer radius. An immersed boundary method based on a finite element method approach is successfully combined with an elastic spring network model to simulate the two-way fluid-structure interaction coupling between the elastic cylindrical tube and the flow of a 3D viscous, incompressible fluid. To gain a deeper insight into the influence of various parameters on the swimmer speed, a reduced 1D fluid-structure interaction model was derived and validated. It was found that fast swimmers are those with large tube aspect ratios, and with the amplitude of the traveling wave which is roughly 50% of the reference swimmer radius. It was shown that the speed of our "optimal swimmer" is around 1.5 swimmer lengths per second, which is at the top of the class of all currently manufactured micro-swimmers swimming in low Reynolds number flows (Re =10-6), reported in [11].

  14. Uniform asymptotic formula for the Aharonov Bohm wavefield

    NASA Astrophysics Data System (ADS)

    Hannay, J. H.

    2016-06-01

    A uniform asymptotic formula for the Aharonov–Bohm wavefield (that of a plane quantum wave scattered by a thin straight solenoid) far away from the solenoid is obtained in a direct way. Actually quite good accuracy is achieved even down to one wavelength away. The error is numerically of order radius^(‑3/2) for all values of polar angle, including directly forwards. Several previous formulas, uniform and otherwise, for the far field limit exist in the literature. All contain the essential ingredient: the Fresnel integral (complex error function), but ordinarily the error in these formulas is of order radius^(‑1/2) in the forwards direction where the Fresnel contribution is most important.

  15. Multicomponent wavefield characterization with a novel scanning laser interferometer.

    PubMed

    Blum, Thomas E; van Wijk, Kasper; Pouet, Bruno; Wartelle, Alexis

    2010-07-01

    The in-plane component of the wavefield provides valuable information about media properties from seismology to nondestructive testing. A new compact scanning laser ultrasonic interferometer collects light scattered away from the angle of incidence to provide the absolute ultrasonic displacement for both the out-of-plane and an in-plane components. This new system is tested by measuring the radial and vertical polarization of a Rayleigh wave in an aluminum half-space. The estimated amplitude ratio of the horizontal and vertical displacement agrees well with the theoretical value. The phase difference exhibits a small bias between the two components due to a slightly different frequency response between the two processing channels of the prototype electronic circuitry. PMID:20687699

  16. Multicomponent wavefield characterization with a novel scanning laser interferometer

    SciTech Connect

    Blum, Thomas E.; Wijk, Kasper van; Pouet, Bruno; Wartelle, Alexis

    2010-07-15

    The in-plane component of the wavefield provides valuable information about media properties from seismology to nondestructive testing. A new compact scanning laser ultrasonic interferometer collects light scattered away from the angle of incidence to provide the absolute ultrasonic displacement for both the out-of-plane and an in-plane components. This new system is tested by measuring the radial and vertical polarization of a Rayleigh wave in an aluminum half-space. The estimated amplitude ratio of the horizontal and vertical displacement agrees well with the theoretical value. The phase difference exhibits a small bias between the two components due to a slightly different frequency response between the two processing channels of the prototype electronic circuitry.

  17. Elasticity and geometry: a computational model of the Heineke-Mikulicz strictureplasty.

    PubMed

    Tsamis, Alkiviadis; Pocivavsek, Luka; Vorp, David A

    2014-11-01

    Crohn's disease is a challenging inflammatory process with a propensity for focal gastro-intestinal tract inflammation and stricture. Surgically, Crohn's is often treated with resection. However, a subtype of diffuse disease with multiple strictures is treated by strictureplasty procedures in hope of avoiding short-gut syndrome. Prior work by Pocivavsek et al. defined the geometry of a Heineke-Mikulicz strictureplasty. Here, we bring this analysis one step closer to clinical and biological relevance by calculating the mechanical stresses and strains that the strictureplasty deformation generates on a model intestinal wall. The small bowel is simulated as a linearly elastic isotropic deformable cylindrical shell using finite element modeling. Data show a divergence in elastic response between the anti-mesenteric and mesenteric halves. The anti-mesenteric surface shows a bending dominated elastic response that correlates with the prior purely geometric analysis. However, the mesenteric half is not a neutral bystander during strictureplasty formation, as geometric arguments predict. Strong in-plane stretching strains develop in a rim around the image of the transverse closure, which may impact local perfusion and serve as sites of disease recurrence. Lastly, nearly all the deformation energy is stored in the central vertex stitch, placing this part at highest risk of dehiscence. This study enhances our understanding of mechanical response in complex nonlinear cylindrical geometries like the surgically manipulated intestinal tract. The developed framework serves as a platform for future addition of more complex clinically relevant parameters to our model, including real tissue properties, anisotropy, blood supply modeling, and patient deriver anatomic factors. PMID:24671519

  18. Analytical and Computational Study of One-Dimensional Impact of Graded Elastic Materials

    NASA Astrophysics Data System (ADS)

    Scheidler, Mike; Gazonas, George

    2001-06-01

    Traditional armor designs consist of discrete layers of homogeneous materials with different properties. Some recent efforts to improve the ballistic performance of lightweight armors involve replacing several or all of these layers by a monolithic material with continuous property variations. The stress waves generated by ballistic impact in these functionally graded materials tend to be much more complex than in the corresponding layered materials. This fact has led us to examine whether existing hydrocodes can capture the complex wave structures in graded materials and, in particular, whether these codes can accurately predict the peak stresses that may lead to material failure. In this paper we report on the initial phase of this program. We consider the one-dimensional impact of a homogeneous projectile on a graded target, with or without a homogeneous backing plate. All materials are assumed to be linear elastic. Smooth gradings in the density and the elastic modulus are chosen for which exact analytical solutions (including multiple reflections) can be derived using Laplace transforms. These exact solutions are compared with DYNA3D simulations of the same problems. The effects artificial viscosity, nodal spacing (i.e., mesh grading), and number of elements on the DYNA3D solutions are examined.

  19. 3D elastic full waveform inversion: case study from a land seismic survey

    NASA Astrophysics Data System (ADS)

    Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon

    2016-04-01

    Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.

  20. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture

    PubMed Central

    Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.

    2011-01-01

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194

  1. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture.

    PubMed

    Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S

    2012-01-10

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194

  2. Scattered Wavefield Within the San Andreas Fault System, California

    NASA Astrophysics Data System (ADS)

    Taira, T.; Silver, P. G.; Niu, F.; Nadeau, R. M.

    2004-12-01

    Since transient aseismic deformation at seismogenic depth is one of the key phenomena related to earthquake occurrence, it is important to estimate the physical characteristics of such stress/strain transients within the deeper structure of the fault zone. Analysis of coda (scattered) waves has the potential for identifying such transients because the scattered wavefield is attributed mainly to small-scale heterogeneity that is likely formed by these transient events. In addition, the sampling area of scattered waves is concentrated within the fault zone, compared to the area sampled by direct waves. We have begun a program to map the spatial distribution of fault-zone scatterers and their time dependence within two regions of San Andreas Fault system: the Hayward Fault and the Parkfield segment of the San Andreas Fault. In order to most reliably evaluate the scattered wavefields, we limited our analysis to records from borehole seismographs recorded by the Hayward Fault Network (HFN) and the High-Resolution Seismic Network (HRSN) in each area. For the Hayward fault, we mapped the spatial distribution of scatterers by analysis of the S-wave coda amplification factor (CAF) in a manner similar to Taira and Yomogida (2003). CAF is defined as the amplitude ratio of coda waves among different stations after corrections for source, station, and overall propagation effects (e.g., coda Q). This parameter allows for a statistical characterization of the distribution of scatterers. The station effect for each station and the coda Q averaged over all the seismograms in this area were estimated by the coda-normalization and maximum likelihood methods, respectively, using five regional earthquakes (epicentral distance > 50 km). We evaluated the CAF value of each source-station pair for the transverse-component, using 294 seismograms for 39 local earthquakes (epicentral distance < 50 km) recorded by 14 stations of the HFN. A map of CAF values for stations near the Hayward Fault

  3. IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Frassetto, A.

    2014-12-01

    The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We

  4. EXPLORING FOR SUBTLE MISSION CANYON STRATIGRAPHIC TRAPS WITH ELASTIC WAVEFIELD SEISMIC TECHNOLOGY

    SciTech Connect

    John Beecherl

    2003-10-01

    A source-receiver geometry was designed for a 9C3D seismic survey in Montrail County, North Dakota, that will involve the largest number of active 3-component stations (1,800 to 2,100) ever attempted in an onshore U.S. multicomponent seismic survey. To achieve the data-acquisition objectives, 3-component geophone strings will be provided by the Bureau of Economic Geology, Dawson Geophysical, and Vecta Technology. Data acquisition will commence in late October 2003. The general objective of this study is to demonstrate the value of multicomponent seismic technology for exploring for subtle oolitic-bank reservoirs in the Mission Canyon Formation of the Williston Basin. The work tasks done during this report period concentrated on developing an optimal design for the seismic survey. This first semiannual report defines the geographical location and geometrical shape of the survey and documents the key acquisition parameters that will be implemented to yield high-fold, high-resolution 9-component seismic data.

  5. Computer simulation of model cohesive powders: Plastic consolidation, structural changes, and elasticity under isotropic loads

    NASA Astrophysics Data System (ADS)

    Gilabert, F. A.; Roux, J.-N.; Castellanos, A.

    2008-09-01

    The quasistatic behavior of a simple two-dimensional model of a cohesive powder under isotropic loads is investigated by discrete element simulations. We ignore contact plasticity and focus on the effect of geometry and collective rearrangements on the material behavior. The loose packing states, as assembled and characterized in a previous numerical study [Gilabert, Roux, and Castellanos, Phys. Rev. E 75, 011303 (2007)], are observed, under growing confining pressure P , to undergo important structural changes, while solid fraction Φ irreversibly increases (typically, from 0.4-0.5 to 0.75-0.8). The system state goes through three stages, with different forms of the plastic consolidation curve, i.e., Φ as a function of the growing reduced pressure P*=Pa/F0 , defined with adhesion force F0 and grain diameter a . In the low-confinement regime (I), the system undergoes negligible plastic compaction, and its structure is influenced by the assembling process. In regime II the material state is independent of initial conditions, and the void ratio varies linearly with lnP [i.e., Δ(1/Φ)=λΔ(lnP*) ], as described in the engineering literature. Plasticity index λ is reduced in the presence of a small rolling resistance (RR). In the last stage of compaction (III), Φ approaches an asymptotic, maximum solid fraction Φmax , as a power law Φmax-Φ∝(P*)-α , with α≃1 , and properties of cohesionless granular packs are gradually retrieved. Under consolidation, while the range ξ of fractal density correlations decreases, force patterns reorganize from self-balanced clusters to force chains, with correlative evolutions of force distributions, and elastic moduli increase by a large amount. Plastic deformation events correspond to very small changes in the network topology, while the denser regions tend to move like rigid bodies. Elastic properties are dominated by the bending of thin junctions in loose systems. For growing RR those tend to form particle chains, the

  6. Toward global waveform tomography of the whole mantle using SEM: Efficient simulation of the global wavefield using a homogenized crust

    NASA Astrophysics Data System (ADS)

    French, S. W.; Lekic, V.; Romanowicz, B. A.

    2010-12-01

    As global waveform-modeling schemes rooted in perturbation theory are supplanted by fully numerical alternatives, such as the Spectral Element Method (e.g. SEM: Komatitsch and Tromp, 2002), the improved wavefield accuracy for complex 3D structures also carries increased computational cost. Lekic and Romanowicz (2010) inverted waveforms of fundamental and higher mode surface waves for a radially anisotropic upper-mantle Vs model using SEM (SEMum). The SEM computations were made feasible by an appropriate choice of cutoff period (T≥ 60 s.), as well as the implementation of a homogenized anisotropic crustal layer based on fitting of short period group velocity dispersion curves. These choices allowed for an efficient SEM mesh undeformed by true Moho topography. Further, instead of homogenization of a possibly biased a priori crustal model, Lekic and Romanowicz jointly inverted for the crustal layer, constrained by surface wave group velocity dispersion maps for T≥ 25 s. We are currently developing a radially anisotropic Vs model of the whole mantle using SEM, following an approach broadly similar to that employed in SEMum. Extension of this methodology to imaging of lower-mantle structure requires the inclusion of a body wave dataset, and thus shorter-period modeling of the global wavefield (T≥ 32 s.). While this period range dictates finer sampling of our SEM mesh, reduced computational cost is still possible through the crustal homogenization scheme. Here, we first discuss the development of an analogous homogenized crustal model and its validity for both the fundamental and higher mode surface wave and the body wave datasets. We focus on maintaining a simplified Moho topography, thus obviating expensive deformation of the SEM mesh, while accurately treating valuable surface-reflected body wave phases (ex: multiple ScS). Second, we discuss implications of treating the crust in this manner for the overall inversion methodology. In particular, we intend to

  7. [A computer-controlled flexing test for determining the elastic parameters of highly flexible orthodontic wires].

    PubMed

    Plietsch, R; Bourauel, C; Drescher, D; Nellen, B

    1994-04-01

    Metals are the most commonly used materials in the construction of orthodontic appliances designed for the correction of malocclusions. Knowledge of the force systems at work is a prerequisite for judging the functionality of these appliances. The elasticity parameters (Young's E-moduli, strain limits) of the alloys employed can be drawn upon to calculate numerically forces and torsional moments. Both tensile tests and bending experiments are used to determine the E-moduli and strain limits of standard steel and highly flexible NiTi wires frequently used in orthodontics. However, parameters obtained by tensile tests are less suited for studying the mechanical properties of orthodontic appliances. Since bending deformation prevails, bending experiments should be preferred method for ascertaining the relevant parameters. This study, therefore, presents a new experimental method for testing the bend ability of highly flexible materials and the determination of the underlying material parameters. A comparison of calculated force systems with direct measurements revealed that bending parameters lead to an appropriate description of forces and moments generated during clinical treatment, whereas calculations based on tensile test parameters differ substantially. The bending test proposed here is, thus, a suitable means for dependably predicting the force systems produced by an orthodontic appliance and the test therefore can contribute to an accurate design of new types of therapeutic devices. PMID:8194813

  8. Towards Monitoring-as-a-service for Scientific Computing Cloud applications using the ElasticSearch ecosystem

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Guarise, A.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    The INFN computing centre in Torino hosts a private Cloud, which is managed with the OpenNebula cloud controller. The infrastructure offers Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) services to different scientific computing applications. The main stakeholders of the facility are a grid Tier-2 site for the ALICE collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2 site for the BESIII collaboration, plus an increasing number of other small tenants. The dynamic allocation of resources to tenants is partially automated. This feature requires detailed monitoring and accounting of the resource usage. We set up a monitoring framework to inspect the site activities both in terms of IaaS and applications running on the hosted virtual instances. For this purpose we used the ElasticSearch, Logstash and Kibana (ELK) stack. The infrastructure relies on a MySQL database back-end for data preservation and to ensure flexibility to choose a different monitoring solution if needed. The heterogeneous accounting information is transferred from the database to the ElasticSearch engine via a custom Logstash plugin. Each use-case is indexed separately in ElasticSearch and we setup a set of Kibana dashboards with pre-defined queries in order to monitor the relevant information in each case. For the IaaS metering, we developed sensors for the OpenNebula API. The IaaS level information gathered through the API is sent to the MySQL database through an ad-hoc developed RESTful web service. Moreover, we have developed a billing system for our private Cloud, which relies on the RabbitMQ message queue for asynchronous communication to the database and on the ELK stack for its graphical interface. The Italian Grid accounting framework is also migrating to a similar set-up. Concerning the application level, we used the Root plugin TProofMonSenderSQL to collect accounting data from the interactive analysis facility. The BESIII

  9. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  10. Application Of The Time-Frequency Polarization Analysis Of The Wavefield For Seismic Noise Array Processing

    NASA Astrophysics Data System (ADS)

    Galiana-Merino, J. J.; Rosa-Cintas, S.; Rosa-Herranz, J. L.; Molina-Palacios, S.; Martinez-Espla, J. J.

    2011-12-01

    Microzonation studies using ambient noise measurements constitute an extended and useful procedure for determine the local soil characteristics and its response due to an earthquake. Several methods exist for analyzing the noise measurements, being the most popular the horizontal-to-vertical spectral ratio (H/V) and the array techniques, i.e. the frequency-wavenumber (F-K) transform. Many works exist about this topic and it stills being an ongoing debate about ambient noise composition, whether body or surface waves constitute most of it, showing the importance of identifying the different kinds of waves presents in a seismic record. In this work we utilize a new method of time-frequency polarization analysis, based on the stationary wavelet packet transform, to investigate how the polarization characteristics of the wavefield influence in the application of ambient noise techniques. The signals are divided in different bands, according to their reciprocal ellipticity values and then the H/V method and the F-K array analysis are computed for each band. The qualitative and quantitative comparison between the original curve and the obtained for the analyzed intervals provide information about the signals composition, showing that the major components of the seismic noise present reciprocal ellipticity values lower than 0.5. The efficient application of the studied techniques by using just the main a part of the entire signal, [0 - 0.5], is also evaluated, showing favorable results.

  11. Ceramic and polymeric dental onlays evaluated by photo-elasticity, optical coherence tomography, and micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda; Topala, Florin; Ionita, Ciprian; Negru, Radu; Fabriky, Mihai; Marcauteanu, Corina; Bradu, Adrian; Dobre, George; Marsavina, Liviu; Rominu, Mihai; Podoleanu, Adrian

    2011-10-01

    Dental onlays are restorations used to repair rear teeth that have a mild to moderate amount of decay. They can also be used to restore teeth that are cracked or fractured if the damage is not severe enough to require a dental crown. The use of onlays requires less tooth reduction than does the use of metal fillings. This allows dentists to conserve more of a patient's natural tooth structure in the treatment process. The aims of this study are to evaluate the biomechanical comportment of the dental onlays, by using the 3D photo elasticity method and to investigate the integrity of the structures and their fitting to the dental support. For this optical coherence tomography and micro-computed tomography were employed. Both methods were used to investigate 37 dental onlays, 17 integral polymeric and 20 integral ceramic. The results permit to observe materials defects inside the ceramic or polymeric onlays situate in the biomechanically tensioned areas that could lead to fracture of the prosthetic structure. Marginal fitting problems of the onlays related to the teeth preparations were presented in order to observe the possibility of secondary cavities. The resulted images from the optical coherence tomography were verified by the micro-computed tomography. In conclusion, the optical coherence tomography can be used as a clinical method in order to evaluate the integrity of the dental ceramic and polymeric onlays and to investigate the quality of the marginal fitting to the teeth preparations.

  12. VFLOW2D - A Vorte-Based Code for Computing Flow Over Elastically Supported Tubes and Tube Arrays

    SciTech Connect

    WOLFE,WALTER P.; STRICKLAND,JAMES H.; HOMICZ,GREGORY F.; GOSSLER,ALBERT A.

    2000-10-11

    A numerical flow model is developed to simulate two-dimensional fluid flow past immersed, elastically supported tube arrays. This work is motivated by the objective of predicting forces and motion associated with both deep-water drilling and production risers in the oil industry. This work has other engineering applications including simulation of flow past tubular heat exchangers or submarine-towed sensor arrays and the flow about parachute ribbons. In the present work, a vortex method is used for solving the unsteady flow field. This method demonstrates inherent advantages over more conventional grid-based computational fluid dynamics. The vortex method is non-iterative, does not require artificial viscosity for stability, displays minimal numerical diffusion, can easily treat moving boundaries, and allows a greatly reduced computational domain since vorticity occupies only a small fraction of the fluid volume. A gridless approach is used in the flow sufficiently distant from surfaces. A Lagrangian remap scheme is used near surfaces to calculate diffusion and convection of vorticity. A fast multipole technique is utilized for efficient calculation of velocity from the vorticity field. The ability of the method to correctly predict lift and drag forces on simple stationary geometries over a broad range of Reynolds numbers is presented.

  13. Acquisition and analysis of angle-beam wavefield data

    SciTech Connect

    Dawson, Alexander J.; Michaels, Jennifer E.; Levine, Ross M.; Chen, Xin; Michaels, Thomas E.

    2014-02-18

    Angle-beam ultrasonic testing is a common practical technique used for nondestructive evaluation to detect, locate, and characterize a variety of material defects and damage. Greater understanding of the both the incident wavefield produced by an angle-beam transducer and the subsequent scattering from a variety of defects and geometrical features is anticipated to increase the reliability of data interpretation. The focus of this paper is on acquiring and analyzing propagating waves from angle-beam transducers in simple, defect-free plates as a first step in the development of methods for flaw characterization. Unlike guided waves, which excite the plate throughout its thickness, angle-beam bulk waves bounce back and forth between the plate surfaces, resulting in the well-known multiple “skips” or “V-paths.” The experimental setup consists of a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. Although laser vibrometry is now routinely used to record guided waves for which the frequency content is below 1 MHz, it is more challenging to acquire higher frequency bulk waves in the 1–10 MHz range. Signals are recorded on the surface of an aluminum plate that were generated from a 5 MHz, 65° refracted angle, shear wave transducer-wedge combination. Data are analyzed directly in the x-t domain, via a slant stack Radon transform in the τ-p (offset time-slowness) domain, and via a 2-D Fourier transform in the ω-k domain, thereby enabling identification of specific arrivals and modes. Results compare well to those expected from a simple ray tracing analysis except for the unexpected presence of a strong Rayleigh wave.

  14. Exploring the Seismic Wavefield with EarthScope's Transportable Array

    NASA Astrophysics Data System (ADS)

    Ammon, C. J.; Lay, T.

    2007-12-01

    The unprecedented aperture and dense station spacing of EarthScope's Transportable Array (TA) provide opportunities to explore subtle features of the seismic wave field using array methods, including stacking to enhance signals from small, distant events, and using spatial animations and slowness spectra to investigate the origin and nature of long-period (tens to hundreds of seconds) seismic coda. We illustrate the TA's capabilities using teleseismic short-period P waves and complete broadband ground motion recordings. The high quality and uniform installation procedures of the TA produce many stations with superb short-period signal- to-noise ratios enabling direct detection of tiny amplitude (~2nm) P-waves from the mb 4.2, 09 October, 2006 North Korean nuclear test. Stacking of many TA signals resolves subtle complexity in the source signals. Guided by seismic wavefield animations from large earthquakes, which display many wavefronts sweeping across the array, visual inspection and seismic slowness spectra of the extended coda resolve off-great circle Rayleigh-wave arrivals. The scattered waves approach the array from preferred directions depending on the source location relative to the TA. For example, scattered signals from the 01 April, 2007 Solomon Islands earthquakes are preferentially located to the west and northwest, with timing that suggests scattering from subduction zones along the margin of the western and north Pacific ocean. For the 16 August, 2007 Central Peru earthquake, Rayleigh wave coda contains significant energy arriving from the north and northeast, scattered near the North American margin. Analysis of scattered arrivals may lead to improved constraints on lateral gradients in lithospheric structures.

  15. On the reliability and limitations of the SPAC method with a directional wavefield

    NASA Astrophysics Data System (ADS)

    Luo, Song; Luo, Yinhe; Zhu, Lupei; Xu, Yixian

    2016-03-01

    The spatial autocorrelation (SPAC) method is one of the most efficient ways to extract phase velocities of surface waves from ambient seismic noise. Most studies apply the method based on the assumption that the wavefield of ambient noise is diffuse. However, the actual distribution of sources is neither diffuse nor stationary. In this study, we examined the reliability and limitations of the SPAC method with a directional wavefield. We calculated the SPAC coefficients and phase velocities from a directional wavefield for a four-layer model and characterized the limitations of the SPAC. We then applied the SPAC method to real data in Karamay, China. Our results show that, 1) the SPAC method can accurately measure surface wave phase velocities from a square array with a directional wavefield down to a wavelength of twice the shortest interstation distance; and 2) phase velocities obtained from real data by the SPAC method are stable and reliable, which demonstrates that this method can be applied to measure phase velocities in a square array with a directional wavefield.

  16. Computational experiences with variable modulus, elastic-plastic, and viscoelastic concrete models. [HTGR

    SciTech Connect

    Anderson, C.A.

    1981-01-01

    Six years ago the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC) approached the Los Alamos National Laboratory to develop a comprehensive concrete structural analysis code to predict the static and dynamic behavior of Prestressed Concrete Reactor Vessels (PCRVs) that serve as the containment structure of a High-Temperature Gas-Cooled Reactor. The PCRV is a complex concrete structure that must be modeled in three dimensions and posseses other complicating features such as a steel liner for the reactor cavity and woven cables embedded vertically in the PCRV and wound circumferentially on the outside of the PCRV. The cables, or tendons, are used for prestressing the reactor vessel. In addition to developing the computational capability to predict inelastic three dimensional concrete structural behavior, the code response was verified against documented experiments on concrete structural behavior. This code development/verification effort is described.

  17. An efficient method of 3-D elastic full waveform inversion using a finite-difference injection method for time-lapse imaging

    NASA Astrophysics Data System (ADS)

    Borisov, Dmitry; Singh, Satish C.; Fuji, Nobuaki

    2015-09-01

    Seismic full waveform inversion is an objective method to estimate elastic properties of the subsurface and is an important area of research, particularly in seismic exploration community. It is a data-fitting approach, where the difference between observed and synthetic data is minimized iteratively. Due to a very high computational cost, the practical implementation of waveform inversion has so far been restricted to a 2-D geometry with different levels of physics incorporated in it (e.g. elasticity/viscoelasticity) or to a 3-D geometry but using an acoustic approximation. However, the earth is three-dimensional, elastic and heterogeneous and therefore a full 3-D elastic inversion is required in order to obtain more accurate and valuable models of the subsurface. Despite the recent increase in computing power, the application of 3-D elastic full waveform inversion to real-scale problems remains quite challenging on the current computer architecture. Here, we present an efficient method to perform 3-D elastic full waveform inversion for time-lapse seismic data using a finite-difference injection method. In this method, the wavefield is computed in the whole model and is stored on a surface above a finite volume where the model is perturbed and localized inversion is performed. Comparison of the final results using the 3-D finite-difference injection method and conventional 3-D inversion performed within the whole volume shows that our new method provides significant reductions in computational time and memory requirements without any notable loss in accuracy. Our approach shows a big potential for efficient reservoir monitoring in real time-lapse experiments.

  18. Elastic Properties of Human Osteon and Osteonal Lamella Computed by a Bidirectional Micromechanical Model and Validated by Nanoindentation.

    PubMed

    Korsa, Radim; Lukes, Jaroslav; Sepitka, Josef; Mares, Tomas

    2015-08-01

    Knowledge of the anisotropic elastic properties of osteon and osteonal lamellae provides a better understanding of various pathophysiological conditions, such as aging, osteoporosis, osteoarthritis, and other degenerative diseases. For this reason, it is important to investigate and understand the elasticity of cortical bone. We created a bidirectional micromechanical model based on inverse homogenization for predicting the elastic properties of osteon and osteonal lamellae of cortical bone. The shape, the dimensions, and the curvature of osteon and osteonal lamellae are described by appropriately chosen curvilinear coordinate systems, so that the model operates close to the real morphology of these bone components. The model was used to calculate nine orthotropic elastic constants of osteonal lamellae. The input values have the elastic properties of a single osteon. We also expressed the dependence of the elastic properties of the lamellae on the angle of orientation. To validate the model, we performed nanoindentation tests on several osteonal lamellae. We compared the experimental results with the calculated results, and there was good agreement between them. The inverted model was used to calculate the elastic properties of a single osteon, where the input values are the elastic constants of osteonal lamellae. These calculations reveal that the model can be used in both directions of homogenization, i.e., direct homogenization and also inverse homogenization. The model described here can provide either the unknown elastic properties of a single lamella from the known elastic properties at the level of a single osteon, or the unknown elastic properties of a single osteon from the known elastic properties at the level of a single lamella. PMID:25901781

  19. On a New Concept and Foundations of an Arbitrary Reference Configuration (ARC) Theory and Formulation for Computational Finite Deformation Applications—Part I: Elasticity

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Sha, D.; Tamma, K. K.

    2006-10-01

    Of interest here are the class of static/dynamic finite deformation problems that arise in computational mechanics, and the question of the suitability in employing the total strain measure for this class of problems is raised. An attempt to resolve the problem by proposing a new arbitrary reference configuration (ARC) framework is described in this exposition. The ARC framework consists of the ARC elasticity, which bridges the Truesdell stress rate hypo-elasticity and the St. Venant-Kirchhoff hyperelasticity, and the ARC Lagrangian formulation, which bridges the updated Lagrangian formulation and the total Lagrangian formulation. The ARC framework serves as a generalized computational framework to handle both the computational infinitesimal and the finite deformation/strain deformation applications in a consistent and unified manner. In part II of the paper [1], we further extend the ARC framework to elasto-plasticity.

  20. Imaging the North Anatolian Fault using the scattered teleseismic wavefield

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Rost, S.; Houseman, G. A.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Frederiksen, A. W.; Rondenay, S.

    2013-12-01

    The North Anatolian Fault Zone (NAFZ) is a major continental strike-slip fault system, similar in size and scale to the San Andreas system, that extends ˜1200 km across Turkey. In 2012, a new multidisciplinary project (FaultLab) was instigated to better understand deformation throughout the entire crust in the NAFZ, in particular the expected transition from narrow zones of brittle deformation in the upper crust to possibly broader shear zones in the lower crust/upper mantle and how these features contribute to the earthquake loading cycle. This contribution will discuss the first results from the seismic component of the project, a 73 station network encompassing the northern and southern branches of the NAFZ in the Sakarya region. The Dense Array for North Anatolia (DANA) is arranged as a 6×11 grid with a nominal station spacing of 7 km, with a further 7 stations located outside of the main grid. With the excellent resolution afforded by the DANA network, we will present images of crustal structure using the technique of teleseismic scattering tomography. The method uses a full waveform inversion of the teleseismic scattered wavefield coupled with array processing techniques to infer the properties and location of small-scale heterogeneities (with scales on the order of the seismic wavelength) within the crust. We will also present preliminary results of teleseismic scattering migration, another powerful method that benefits from the dense data coverage of the deployed seismic network. Images obtained using these methods together with other conventional imaging techniques will provide evidence for how the deformation is distributed within the fault zone at depth, providing constraints that can be used in conjunction with structural analyses of exhumed fault segments and models of geodetic strain-rate across the fault system. By linking together results from the complementary techniques being employed in the FaultLab project, we aim to produce a comprehensive

  1. Towards Simulating a Realistic Planetary Seismic Wavefield: The Contribution of the Megaregolith and Low-Velocity Waveguides

    NASA Technical Reports Server (NTRS)

    Schmerr, Nicholas C.; Weber, Renee C.; Lin, Pei-Ying Patty; Thorne, Michael Scott; Garnero, Ed J.

    2011-01-01

    Lunar seismograms are distinctly different from their terrestrial counterparts. The Apollo lunar seismometers recorded moonquakes without distinct P- or S-wave arrivals; instead waves arrive as a diffuse coda that decays over several hours making the identification of body waves difficult. The unusual character of the lunar seismic wavefield is generally tied to properties of the megaregolith: it consists of highly fractured and broken crustal rock, the result of extensive bombardment of the Moon. The megaregolith extends several kilometers into the lunar crust, possibly into the mantle in some regions, and is covered by a thin coating of fine-scale dust. These materials possess very low seismic velocities that strongly scatter the seismic wavefield at high frequencies. Directly modeling the effects of the megaregolith to simulate an accurate lunar seismic wavefield is a challenging computational problem, owing to the inherent 3-D nature of the problem and the high frequencies (greater than 1 Hz) required. Here we focus on modeling the long duration code, studying the effects of the low velocities found in the megaregolith. We produce synthetic seismograms using 1-D slowness integration methodologies, GEMINI and reflectivity, and a 3-D Cartesian finite difference code, Wave Propagation Program, to study the effect of thin layers of low velocity on the surface of a planet. These codes allow us generate seismograms with dominant frequencies of approximately 1 Hz. For background lunar seismic structure we explore several models, including the recent model of Weber et al., Science, 2011. We also investigate variations in megaregolithic thickness, velocity, attenuation, and seismogram frequency content. Our results are compared to the Apollo seismic dataset, using both a cross correlation technique and integrated envelope approach to investigate coda decay. We find our new high frequency results strongly support the hypothesis that the long duration of the lunar seismic

  2. Unsupervised pattern recognition in continuous seismic wavefield records using Self-Organizing Maps

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas; Ohrnberger, Matthias; Scherbaum, Frank

    2010-09-01

    Modern acquisition of seismic data on receiver networks worldwide produces an increasing amount of continuous wavefield recordings. In addition to manual data inspection, seismogram interpretation requires therefore new processing utilities for event detection, signal classification and data visualization. The use of machine learning techniques automatises decision processes and reveals the statistical properties of data. This approach is becoming more and more important and valuable for large and complex seismic records. Unsupervised learning allows the recognition of wavefield patterns, such as short-term transients and long-term variations, with a minimum of domain knowledge. This study applies an unsupervised pattern recognition approach for the discovery, imaging and interpretation of temporal patterns in seismic array recordings. For this purpose, the data is parameterized by feature vectors, which combine different real-valued wavefield attributes for short time windows. Standard seismic analysis tools are used as feature generation methods, such as frequency-wavenumber, polarization and spectral analysis. We use Self-Organizing Maps (SOMs) for a data-driven feature selection, visualization and clustering procedure. The application to continuous recordings of seismic signals from an active volcano (Mount Merapi, Java, Indonesia) shows that volcano-tectonic and rockfall events can be detected and distinguished by clustering the feature vectors. Similar results are obtained in terms of correctly classifying events compared to a previously implemented supervised classification system. Furthermore, patterns in the background wavefield, that is the 24-hr cycle due to human activity, are intuitively visualized by means of the SOM representation. Finally, we apply our technique to an ambient seismic vibration record, which has been acquired for local site characterization. Disturbing wavefield patterns are identified which affect the quality of Love wave dispersion

  3. Wavefield properties of a shallow long-period event and tremor at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Dawson, P.

    2001-01-01

    The wavefields of tremor and a long-period (LP) event associated with the ongoing eruptive activity at Kilauea Volcano, Hawaii, are investigated using a combination of dense small-aperture (300 m) and sparse large-aperture (5 km) arrays deployed in the vicinity of the summit caldera. Measurements of azimuth and slowness for tremor recorded on the small-aperture array indicate a bimodal nature of the observed wavefield. At frequencies below 2 Hz, the wavefield is dominated by body waves impinging the array with steep incidence. These arrivals are attributed to the oceanic microseismic noise. In the 2-6 Hz band, the wavefield is dominated by waves propagating from sources located at shallow depths (<1 km) beneath the eastern edge of the Halemaumau pit crater. The hypocenter of the LP event, determined from frequency-slowness analyses combined with phase picks, appears to be located close to the source of tremor but at a shallower depth (<0.1 km). The wavefields of tremor and LP event are characterized by a complex composition of body and surface waves, whose propagation and polarization properties are strongly affected by topographic and structural features in the summit caldera region. Analyses of the directional properties of the wavefield in the 2-6 Hz band point to the directions of main scattering sources, which are consistent with pronounced velocity contrasts imaged in a high-resolution three-dimensional velocity model of the caldera region. The frequency and Q of the dominant peak observed in the spectra of the LP event may be explained as the dominant oscillation mode of a crack with scale length 20-100 m and aperture of a few centimeters filled with bubbly water. The mechanism driving the shallow tremor appears to be consistent with a sustained excitation originating in the oscillations of a bubbly cloud resulting from vesiculation and degassing in the magma. ?? 2001 Elsevier Science B.V. All rights reserved.

  4. Delamination detection in foam core composite structures using transient flexural wavefields

    NASA Astrophysics Data System (ADS)

    Lamboul, B.; Osmont, D.

    2016-03-01

    This paper investigates a health monitoring technique for foam sandwich structures based on flexural wavefields imaged by Laser Doppler vibrometry. A study of calibrated artificial defect responses in harmonic regime demonstrates that the use of a low frequency regime (below 30 kHz) makes it possible to excite defects in their first flexural resonance modes. The analysis performed in harmonic regime is used to interpret signature patterns obtained with accumulated energy maps from transient wavefield recordings. The potential of the technique is demonstrated on a real impact-induced defect. The robustness of the method relatively to the excitation center frequency selection and to the presence of wave reverberation is demonstrated.

  5. Toward a Better Understanding of the Seismolectric Logging Wavefields and the Earthquake Coseismic Electrokinetic Signals

    NASA Astrophysics Data System (ADS)

    Hu, H.; Guan, W.; Wang, Z.

    2014-12-01

    Borehole electrokinetic wavefields have been theoretically simulated and experimentally recorded. However, it is still challenging to explain some of the signals in the full seismoeletric waveform. Similarly, while earthquake coseismic electric and magnetic signals were recorded and theoretically modeled, there are some basic questions to be answered regarding the formulation of the earthquake electrokinetic field. First, an electromagnetic signal appears at the same time in all recorded full waveforms when an acoustic wave is incident on the borehole wall or an interface between two porous media. Is it a traveling electromagnetic wave or a field? This is explained by a comparison between the waveforms obtained by solving the full Pride equations and those by a quasi-static approximation to the seismic-to-electric conversion. Second, a magnetic signal accompanies the borehole P-wave. Does that contradicts to Pride's prediction that no magnetic signal travels with a P-wave? We will show that the borehole P-wave consists of plane fast-P, slow-P and shear waves. It is the plane S-wave that brings about the magnetic field. Thirdly, it was proposed that there were no seismoelectric signal accompanying the collar wave during seismoelectric logging while drilling, because the electrokinetic conversion occurs only in the porous formation. Why there is an electric signal accompanies the acoustic collar wave? A detailed study of the acoustic field in the formation reveals that there is a wave propagates with the collar wave speed in the formation. This wave is present in the calculated full waveforms, either by the discrete wavenumber method or by the finite-difference-time-domain algorithm. That explains the existence of a noise signal with collar-wave speed in the full waveform of the electric field recorded during seismoelectric logging while drilling. Finally, an earthquake is usually modeled by a double couple in an elastic medium, and the displacement field is

  6. Elastic scattering and inversion for the spatially heterogeneous distribution of compliance of a single fracture

    NASA Astrophysics Data System (ADS)

    Minato, S.; Ghose, R.

    2013-12-01

    The elastdynamic response of a fracture is often modeled using the linear-slip model (LSM) for the fracture compliance. In earlier theoretical and laboratory studies, the distribution of compliance along the plane of a fracture has generally been assumed to be homogeneous. However, naturally occurring fractures are spatially heterogeneous, with the microscale properties varying along the fracture plane. The spatial heterogeneity of the microscale parameters along the fracture plane, e.g., roughness, contact area and distribution of fluid filled aperture, controls significantly the mechanical and hydraulic response of a fracture. When the fracture compliance is spatially heterogeneous, an incident elastic wavefield will be scattered at the fracture plane. This scattered wavefield contains information of the spatial heterogeneity of fracture compliance. In this study, we show through numerical modeling that the scattered elastic wavefield is sensitive to the spatial heterogeneity in compliance distribution. We find that the back-scattered elastic wavefield from a spatially heterogeneous fracture appears as the coda of the specular reflection, with amplitude differing from that for a homogenous fracture compliance. An analysis of the scattered wavefield does reveal the spatial heterogeneity along the fracture plane. In order to estimate the spatially heterogeneous compliance distribution, we have developed an inversion scheme. The scheme has the following two steps: (1) extrapolating the recorded back-scattered elastic wavefield and estimating the stress field at the fracture plane, and (2) solving the boundary condition of LSM using the estimated stress field. We illustrate this new method through numerical examples mimicking laboratory-scale measurements (Figure). In the low frequency, the estimated compliance distribution is smooth and inaccurate because of the presence of the evanescent waves. However, at the peak frequency, the compliance distribution can be

  7. Effect of strong elastic contrasts on the propagation of seismic wave in hard-rock environments

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Zheng, L.; Liu, Q.; Milkereit, B.

    2013-12-01

    Understanding the propagation of seismic waves in a presence of strong elastic contrasts, such as topography, tunnels and ore-bodies is still a challenge. Safety in mining is a major concern and seismic monitoring is the main tool here. For engineering purposes, amplitudes (peak particle velocity/acceleration) and travel times of seismic events (mostly blasts or microseismic events) are critical parameters that have to be determined at various locations in a mine. These parameters are useful in preparing risk maps or to better understand the process of spatial and temporal stress distributions in a mine. Simple constant velocity models used for monitoring studies in mining, cannot explain the observed complexities in scattered seismic waves. In hard-rock environments modeling of elastic seismic wavefield require detailed 3D petrophysical, infrastructure and topographical data to simulate the propagation of seismic wave with a frequencies up to few kilohertz. With the development of efficient numerical techniques, and parallel computation facilities, a solution for such a problem is achievable. In this study, the effects of strong elastic contrasts such as ore-bodies, rough topography and tunnels will be illustrated using 3D modeling method. The main tools here are finite difference code (SOFI3D)[1] that has been benchmarked for engineering studies, and spectral element code (SPECFEM) [2], which was, developed for global seismology problems. The modeling results show locally enhanced peak particle velocity due to presence of strong elastic contrast and topography in models. [1] Bohlen, T. Parallel 3-D viscoelastic finite difference seismic modeling. Computers & Geosciences 28 (2002) 887-899 [2] Komatitsch, D., and J. Tromp, Introduction to the spectral-element method for 3-D seismic wave propagation, Geophys. J. Int., 139, 806-822, 1999.

  8. Uniform shear flow in dissipative gases: computer simulations of inelastic hard spheres and frictional elastic hard spheres.

    PubMed

    Astillero, Antonio; Santos, Andrés

    2005-09-01

    In the preceding paper, we have conjectured that the main transport properties of a dilute gas of inelastic hard spheres (IHSs) can be satisfactorily captured by an equivalent gas of elastic hard spheres (EHSs), provided that the latter are under the action of an effective drag force and their collision rate is reduced by a factor (1+alpha)/2 (where alpha is the constant coefficient of normal restitution). In this paper we test the above expectation in a paradigmatic nonequilibrium state, namely, the simple or uniform shear flow, by performing Monte Carlo computer simulations of the Boltzmann equation for both classes of dissipative gases with a dissipation range 0.5 < or = alpha < or = 0.95 and two values of the imposed shear rate a. It is observed that the evolution toward the steady state proceeds in two stages: a short kinetic stage (strongly dependent on the initial preparation of the system) followed by a slower hydrodynamic regime that becomes increasingly less dependent on the initial state. Once conveniently scaled, the intrinsic quantities in the hydrodynamic regime depend on time, at a given value of alpha, only through the reduced shear rate a*(t) is proportional to a/square root(T(t)), until a steady state, independent of the imposed shear rate and of the initial preparation, is reached. The distortion of the steady-state velocity distribution from the local equilibrium state is measured by the shear stress, the normal stress differences, the cooling rate, the fourth and sixth cumulants, and the shape of the distribution itself. In particular, the simulation results seem to be consistent with an exponential overpopulation of the high-velocity tail. These properties are common to both the IHS and EHS systems. In addition, the EHS results are in general hardly distinguishable from the IHS ones if alpha approximately > 0.7, so that the distinct signature of the IHS gas (higher anisotropy and overpopulation) only manifests itself at relatively high

  9. INVERSION OF FULL ACOUSTIC WAVEFIELD IN LOCAL HELIOSEISMOLOGY: A STUDY WITH SYNTHETIC DATA

    SciTech Connect

    Cobden, L. J.; Warner, M. R.; Tong, C. H.

    2011-02-01

    We present the first results from the inversion of full acoustic wavefield in the helioseismic context. In contrast to time-distance helioseismology, which involves analyzing the travel times of seismic waves propagating into the solar interior, wavefield tomography models both the travel times and amplitude variations present in the entire seismic record. Unlike the use of ray-based, Fresnel-zone, Born, or Rytov approximations in previous time-distance studies, this method does not require any simplifications to be made to the sensitivity kernel in the inversion. In this study, the acoustic wavefield is simulated for all iterations in the inversion. The sensitivity kernel is therefore updated while lateral variations in sound-speed structure in the model emerge during the course of the inversion. Our results demonstrate that the amplitude-based inversion approach is capable of resolving sound-speed structures defined by relatively sharp vertical and horizontal boundaries. This study therefore provides the foundation for a new type of subsurface imaging in local helioseismology that is based on the inversion of the entire seismic wavefield.

  10. Time-frequency-wavenumber Decomposition To Investigate Seismic Wavefield: Application To The Annot Experiment

    NASA Astrophysics Data System (ADS)

    Schissele, E.; Cansi, Y.; Gaffet, S.

    Many observations and studies as well as numerical simulations have been done in order to completely understand the whole seismogram recorded during an earthquake. At regional distances, the seismic wavefield is strongly influenced by crustal hetero- geneities. The primary wavefield constituted by Pn, Pg, Sn, Sg, Rg, Lg.... phases is diffracted and refracted by these heterogeneities and hence forms the coda of the seis- mogram. But the different mechanisms of propagation in a heterogeneous medium are not fully understood. The identification of the different phases contributing to the coda seems to be essential to progress in the comprehension of the seismic wavefield propagation. Seismic arrays are then well-adapted tools since they provide the spatio-temporal evo- lution of the wavefield. In 1998, 4 small-scales arrays were deployed for 2 months around the Annot region, located in the southern French Alps. Each array was constituted by 9 short-period seismometers, recording frequencies greater than 0.2 Hz. Its aperture was 250 meters, with a minimal distance between 2 adjacent sensors of 20 meters. That allows us to study the seismic wavefield for very low wavelength without any problem of spatial aliasing. It will be interesting to characterize in terms of wavefield deformation the signature of the different kinds of heterogeneities (fault system, topographic relief, impedance contrast...) surrounding this area. We expect the primary wavefield to be diffracted or refracted by all these heterogeneities. A time-frequency-wavenumber technique which allows us to characterize the whole coherent part of the energy which prop- agates through the seismic array has been derived. Such a characterization involves, for each coherent wavelet, an estimate of: (i) an arrival time and a frequency content and (ii) an azimuth and an apparent velocity. This way, the principal phases will be described. What will be more interesting, is the extraction of the deterministic part of the

  11. Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling.

    PubMed

    Doyle, Heather; Lohfeld, Stefan; McHugh, Peter

    2014-03-01

    This study assesses the ability of finite element (FE) models to capture the mechanical behaviour of sintered orthopaedic scaffold materials. Individual scaffold struts were fabricated from a 50:50 wt% poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) blend, using selective laser sintering. The tensile elastic modulus of single struts was determined experimentally. High resolution FE models of single struts were generated from micro-CT scans (28.8 μm resolution) and an effective strut elastic modulus was calculated from tensile loading simulations. Three material assignment methods were employed: (1) homogeneous PCL elastic constants, (2) composite PCL/β-TCP elastic constants based on rule of mixtures, and (3) heterogeneous distribution of micromechanically-determined elastic constants. In comparison with experimental results, the use of homogeneous PCL properties gave a good estimate of strut modulus; however it is not sufficiently representative of the real material as it neglects the β-TCP phase. The rule of mixtures method significantly overestimated strut modulus, while there was no significant difference between strut modulus evaluated using the micromechanically-determined elastic constants and experimentally evaluated strut modulus. These results indicate that the multi-scale approach of linking micromechanical modelling of the sintered scaffold material with macroscale modelling gives an accurate prediction of the mechanical behaviour of the sintered structure. PMID:24057867

  12. Statistical redundancy of instantaneous phases: theory and application to the seismic ambient wavefield

    NASA Astrophysics Data System (ADS)

    Gaudot, Ianis; Beucler, Éric; Mocquet, Antoine; Schimmel, Martin; Le Feuvre, Mathieu

    2016-04-01

    In order to detect possible signal redundancies in the seismic ambient wavefield, we develop a new method based on pairwise comparisons among a set of synchronous time-series. This approach is based on instantaneous phase coherence statistics. The first and second moments of the pairwise phase coherence distribution are used to characterize the phase randomness. Both theory and synthetic experiments show that, for perfect phase randomness, the theoretical values of the mean and variance are equal to 0 and 1 ‑ 2/π, respectively. As a consequence, any deviation from these values indicates the presence of a redundant phase in the raw continuous signal. Using the ergodicity property of a random signal, we split an initial time-series into a set of synchronous signals. This allows us to detect and to quantify the repetitiveness of any possible temporally persistent and spatially localized source, during a given period of observation. In the case of the detection of a redundant phase, individual coherences (one trace against all others) quantify the contribution of each time-series independently. A previously detected 26 s period microseismic source located near the Gulf of Guinea is used to illustrate one of the possible ways of handling phase coherence statistics. We use the continuous vertical component data recorded during the month of 2004 August by four broad-band stations of the Federation of Digital Seismography Network. To compute coherence statistics among a set composed of a sufficient number of synchronous traces, the raw seismic signal is split into 372 2-hr sliding time windows. Only the basic signal processing steps (including removing the mean, trend and the instrumental response) are applied. After bandpass filtering the data between 23 and 32 s periods, the 2-hr time-series are cross-correlated, leading to a set of 372 synchronous cross-correlations for each station pair. We observe that, for all station pairs, the mean overall coherence value is

  13. Computational study of structural, elastic and electronic properties of lithium disilicate (Li(2)Si(2)O(5)) glass-ceramic.

    PubMed

    Biskri, Zine Elabidine; Rached, Habib; Bouchear, Merzoug; Rached, Djamel

    2014-04-01

    The objective of this study is to investigate theoretically the structural, elastic and electronic properties of Lithium Disilicate (LD) crystal (Li2Si2O5), using the pseudo potential method based on Density Functional Theory (DFT) with the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). The calculated structural properties namely the equilibrium lattice parameters and cell volume are in good agreement with the available experimental results. However, for the LD crystal elastic moduli: Shear modulus G, Young's modulus E and Poisson's ratio ν we have found a discrepancy between our theoretical values and experimental ones reported in polycrystalline sample containing LD crystals. The calculated elastic properties show that LD is more rigid compared with other components. We also investigated the mechanical stability of Li2Si2O5 compound and we have noticed that this compound is stable against elastic deformations. On the basis of shear to bulk modulus ratio analysis, we inferred that Li2Si2O5 compound is brittle in nature. In order to complete the fundamental characteristics of this compound we have measured the elastic anisotropy. Our results for the energy band structure and Density of States (DOS) show that Li2Si2O5 compound has an insulator characteristic. PMID:24411692

  14. Boundary element modeling of earthquake site effects including the complete incident wavefield

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Tae

    Numerical modeling of earthquake site effects in realistic, three-dimensional structures, including high frequencies, low surface velocities and surface topography, has not been possible simply because the amount of computer memory constrains the number of grid points available. In principle, this problem is reduced in the Boundary Element Method (BEM) since only the surface of the velocity discontinuity is discretized; wave propagation both inside and outside this boundary is computed analytically. Equivalent body forces are determined on the boundary by solving a matrix equation containing frequency-domain displacement and stress Green's functions from every point on the boundary to every other point. This matrix problem has imposed a practical limit on the size or maximum frequency of previous BEM models. Although the matrix can be quite large, it also seems to be fairly sparse. We have used iterative matrix algorithms of the PETSc package and direct solution algorithms of the ScaLAPACK on the massively parallel supercomputers at Cornell, San Diego and Michigan. Preconditioning has been applied using blockwise ILU decomposition for the iterative approach or LU decomposition for the direct approach. The matrix equation is solved using the GMRES method for the iterative approach and a tri-diagonal solver for the direct approach. Previous BEM applications typically have assumed a single, incident plane wave. However, it is clear that for more realistic ground motion simulations, we need to consider the complete incident wavefield. If we assume that the basin or three-dimensional structure of interest is embedded in a surrounding plane-layered medium, we may use the propagator matrix method to solve for the displacements and stresses at depth on the boundary. This is done in the frequency domain with integration over wavenumber so that all P, S, mode conversions, reverberations and surface waves are included. The Boundary Element Method succeeds in modeling

  15. The Propagation of Seismic Waves in the Presence of Strong Elastic Property Contrasts

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Jeyaraj, R.; Milkereit, B.; Liu, Q.; Valley, B.

    2012-12-01

    In an active underground mine there are many seismic activities taking place, such as seismic noises, blasts, tremors and microseismic events. In between the activities, the microseismic events are mainly used for monitoring purposes. The frequency content of microseismic events can be up to few KHz, which can result in wavelengths on the order of a few meters in hard rock environment. In an underground mine, considering the presence of both small wavelength and strong elastic contrasts, the simulation of seismic wave propagation is a challenge. With the recent availability of detailed 3D rock property models of mines, in addition to the development of efficient numerical techniques (such as Spectral Element Method (SEM)), and parallel computation facilities, a solution for such a problem is achievable. Most seismic wave scattering studies focus on large scales (>1 km) and weak elastic contrasts (velocity perturbations less than 10%). However, scattering in the presence of small-scale heterogeneities and large elastic contrasts is an area of ongoing research. In a mine environment, the presence of strong contrast discontinuities such as massive ore bodies, tunnels and infrastructure lead to discontinuities of displacement and/or stress tensor components, and have significant impact on the propagation of seismic waves. In order to obtain an accurate image of wave propagation in such a complex media, it is necessary to consider the presence of these discontinuities in numerical models. In this study, the effects of such a contrast are illustrated with 2D/3D modeling and compared with real broadband 3-component seismic data. The real broadband 3-component seismic data will be obtained in one of the Canadian underground mines in Ontario. One of the possible scenarios investigated in this study that may explain the observed complexity in seismic wavefield pattern in hard rock environments is the effect of near field displacements rather than far field. Considering the

  16. Resonance scattering and radiation force calculations for an elastic cylinder using the translational addition theorem for cylindrical wave functions

    SciTech Connect

    Mitri, F. G.

    2015-09-15

    The standard Resonance Scattering Theory (RST) of plane waves is extended for the case of any two-dimensional (2D) arbitrarily-shaped monochromatic beam incident upon an elastic cylinder with arbitrary location using an exact methodology based on Graf’s translational addition theorem for the cylindrical wave functions. The analysis is exact as it does not require numerical integration procedures. The formulation is valid for any cylinder of finite size and material that is immersed in a nonviscous fluid. Partial-wave series expansions (PWSEs) for the incident, internal and scattered linear pressure fields are derived, and the analysis is further extended to obtain generalized expressions for the on-axis and off-axis acoustic radiation force components. The wave-fields are expressed using generalized PWSEs involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. The off-axial BSCs are expressed analytically in terms of an infinite PWSE with emphasis on the translational offset distance d. Numerical computations are considered for a zeroth-order quasi-Gaussian beam chosen as an example to illustrate the analysis. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. In addition, computations for the radiation force exerted on an elastic cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed.

  17. Elastic modeling and migration in Earth models

    NASA Astrophysics Data System (ADS)

    Filhocunha, Carlos Alves

    Migration and inversion of marine seismic data using the elastic wave equation requires the transformation of the recorded pressure data into a vector particle-displacement field. This can be done easily when the recording geometry samples the wavefield both horizontally and vertically. However, only experimental surveys have cables located at different depths. Using a few assumptions, I derive a method for performing this transformation, which is applicable to standard surveys. The assumptions are: smooth water surface, cable nearly parallel to water surface, and perfect seismic-reflection at the water surface. Results in a realistic example, where these assumptions are only partially fulfilled, demonstrate that the method is robust. Elastic, reverse-time migration/inversion schemes in the space-time domain are usually implemented by finite-difference or finite-element methods. When imaging beyond structures, a dynamically accurate scheme must be used. For models characterized by layers with sharp boundaries, traditional finite-difference methods fail to correctly describe the dynamics of the propagation process. Failure comes from the lack of distinction between model and field variables; the same difference operator is applied to discontinuous (model) and continuous (wavefield) components. The problem is solved with a modified finite-difference scheme (dual-operator), which uses long operators for wave-fields, short operators for elastic parameters, Shoenberg-Muir (1989) equivalence relations, and a modified Virieux (1984) staggered grid scheme. Tests show that the dual-operator is dynamically more accurate than traditional finite-difference schemes and comparable to Haskell-Thomson schemes. In structurally complex media, accurate recovery of angle-dependent reflectivities requires elastic prestack migration. Mode separation can be done before or after depth extrapolation. Though more complex, the latter is more complete because it images mode-converted waves

  18. Elastic Modeling and Migration in Earth Models

    NASA Astrophysics Data System (ADS)

    Cunha, Carlos Alves, Filho

    Migration and inversion of marine seismic data using the elastic wave equation requires the transformation of the recorded pressure data into a vector particle-displacement field. This can be done easily when the recording geometry samples the wavefield both horizontally and vertically. However, only experimental surveys have cables located at different depths. Using a few assumptions, I derive a method for performing this transformation, which is applicable to standard surveys. The assumptions are: smooth water surface, cable nearly parallel to water surface, and perfect seismic -reflection at the water surface. Results in a realistic example, where these assumptions are only partially fulfilled, demonstrate that the method is robust. Elastic, reverse-time migration/inversion schemes in the space-time domain are usually implemented by finite -difference or finite-element methods. When imaging beyond structures, a dynamically accurate scheme must be used. For models characterized by layers with sharp boundaries traditional finite-difference methods fail to correctly describe the dynamics of the propagation process. Failure comes from the lack of distinction between model and field variables; the same difference operator is applied to discontinuous (model) and continuous (wavefield) components. The problem is solved with a modified finite-difference scheme (dual -operator), which uses long operators for wavefields, short operators for elastic parameters, Shoenberg-Muir (1989) equivalence relations and a modified Virieux (1984) staggered grid scheme. Tests show that the the dual-operator is dynamically more accurate than traditional finite-difference schemes and comparable to Haskell-Thomson schemes. In structurally complex media, accurate recovery of angle-dependent reflectivities requires elastic prestack migration. Mode separation can be done before or after depth extrapolation. Though more complex, the latter is more complete because it images mode

  19. On the seismic noise wavefield in a weakly dissipative layered Earth

    NASA Astrophysics Data System (ADS)

    Lunedei, Enrico; Albarello, Dario

    2009-06-01

    Proceeding on the assumption that the seismic noise wavefield mainly consists of surface waves generated by a random distribution of independent, point-like and harmonic sources, we modelled a set of relationships that allows us to interpret empirical H/V and apparent dispersion curves in terms of the dynamic properties of a viscoelastic layered Earth. This formalization can be used to determine the effect of material damping on the expected noise wavefield in cases where the sources are relatively distant from the receivers and where the frequencies taken into account are higher than the fundamental resonance frequency of the local subsoil. Numerical experiments indicate that such effects are significant on the H/V ratio curve, whereas the apparent dispersion curve appears to be less strongly influenced by damping. This finding opens new perspectives for the use of noise measurements to infer the in situ anelastic properties of subsoil from passive seismic measurements made at the surface.

  20. Damage Detection in Plate Structures Using Sparse Ultrasonic Transducer Arrays and Acoustic Wavefield Imaging

    SciTech Connect

    Michaels, T.E.; Michaels, J.E.; Mi, B.; Ruzzene, M.

    2005-04-09

    A methodology is presented for health monitoring and subsequent inspection of critical structures. Algorithms have been developed to detect and approximately locate damaged regions by analyzing signals recorded from a permanently mounted, sparse array of transducers. Followup inspections of suspected flaw locations are performed using a dual transducer ultrasonic approach where a permanently mounted transducer is the source and an externally scanned transducer is the receiver. Scan results are presented as snapshots of the propagating ultrasonic wavefield radiating out from the attached transducers. This method, referred to here as Acoustic Wavefield Imaging (AWI), provides an excellent visual representation of the interaction of propagating ultrasonic waves with the structure. Pre-flaw and post-flaw ultrasonic waveforms are analyzed from an aluminum plate specimen with artificially induced damage, and the AWI results show the location and spatial extent of all of the defects.

  1. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic

  2. Appraising the reliability of converted wavefield imaging: application to USArray imaging of the 410-km discontinuity

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Pavlis, Gary L.

    2013-03-01

    We develop a generic method to appraise the reliability of wavefield imaging methods and use it to validate some novel observations on the 410-km discontinuity. The core concept of the error appraisal method is to produce a simulated data set that replicates the geometry of the real data. Here we implemented two simulation methods: (1) flat layer primary P to S conversions, and (2) a point source scattering model for P to S conversion data based on the Born approximation and ray theory propagators. We show how the approach can be extended for any simulation algorithm. We apply this new approach to appraise recent results using a 3-D, three-component P to S conversion imaging method applied to data collected by the USArray. Multiple metrics show that the amplitude of P to S converted energy scattered from the 410-km discontinuity varies by 18 dB with a systematically lower amplitude in an irregular band running from Idaho through northern Arizona. In addition, we observe strong lateral changes in the ratio of amplitudes recovered on the radial versus the transverse component. We compute point resolution functions and a checkerboard test to demonstrate we can reliably recover relative amplitudes with a lateral scale of the order of 200 km and a vertical scale of approximately 10 km. Irregular coverage locally distorts the amplitudes recovered in the checkerboard, but a 156 km scale checkerboard pattern is recovered. Flat layer simulations show we can recover relative amplitudes to within a range of 1 dB and the reconstructed transverse to radial amplitude is everywhere less than 0.1. A model with north-south oriented ridges with a 3° wavelength and 12.5 km amplitude shows of the order of ±6 dB amplitude variations and small, but clear correlation of the transverse/radial amplitude ratio topography in the model. Finally, we model the 410-km discontinuity as a rough surface characterized by variations in amplitude and depth derived from the USArray data. The rough

  3. Fracture-related wavefield polarization and seismic anisotropy across the Greendale Fault

    NASA Astrophysics Data System (ADS)

    Pischiutta, M.; Savage, M. K.; Holt, R. A.; Salvini, F.

    2015-10-01

    We investigate seismic signatures of fracturing in a newly ruptured strike-slip fault by determining the wavefield polarization in the New Zealand Canterbury Plains area and across the Greendale Fault, which was responsible for the 3 September 2010 Darfield Mw 7.1 earthquake. Previous studies suggested that fractured rocks in fault damage zones cause directional amplification and ground motion polarization in the fracture-perpendicular direction as an effect of stiffness anisotropy, and cause velocity anisotropy with shear wave velocity larger in the fracture-parallel component. An array of 14 stations was installed following the Darfield earthquake. We assess polarization both in the frequency and time domains through the individual-station horizontal-to-vertical spectral ratio and covariance matrix analysis, respectively, and compare the results to previously reported anisotropy measurements from shear wave splitting. Stations installed in the Canterbury Plains have an amplification peak between 0.1 and 0.3 Hz for both earthquakes and ambient noise. We relate the amplification to the resonance of a considerable thickness (c. 1 km) of soft sediments lying over the metamorphic bedrock. Analysis of seismic events revealed the existence of another peak in amplification between 2 and 5 Hz at two on-fault stations, which was not visible in the noise analysis. In contrast to the lower frequency peak, the ones between 2 and 5 Hz are more strongly anisotropic, attaining amplitudes up to a factor of 4 in the N52° direction. To interpret this effect we model the fracture pattern in the fault damage zone produced by the fault kinematics. We conclude that the horizontal polarization is orthogonal to extensional fractures, which predominate in the shallow layers (<2 km) with an expected strike of N139°. Fracture orientation is consistent with coseismic surface rupture observations, confirming the reliability of the model. S wave splitting is produced by velocity anisotropy

  4. Computer program: Jet 3 to calculate the large elastic plastic dynamically induced deformations of free and restrained, partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.

  5. Quantitatively understanding the imprint of fractures in the seismic wave-field

    NASA Astrophysics Data System (ADS)

    Vsemirnova, Ekaterina; Roberts, Alan; Long, Jon; Jones, Richard; McCaffrey, Ken; Hobbs, Richard

    2015-04-01

    Understanding fracture connectivity in the shallow crust is of major importance for the development and production of hydrocarbon fields. Fracture datasets collected from wells have limited spatial coverage compared to remote sensing methods such as seismic imaging, Ground Penetrating Radar (GPR), electromagnetic recording, Terrestrial Laser Scanning (TLS), and Unmanned Aerial Vehicles ("drones"). In this study we focus on quantitatively understanding the imprint of several classes of realistic fracture network on the seismic wave-field. The thin, often rough sheet-like form of fractures poses challenges for reliable imaging of fracture networks using seismic methods, and the seismic response can be significantly altered by the highly variable dip of the fractures. A number of studies have been published showing the effect of the presence of simple fracture configurations on the synthetic seismic wave-field. At present, however, due to the inherent complexity of real fracture networks, there is limited understanding regarding the extraction of network characteristics from seismic data. Our work involves forward seismic wave-field simulation of a range of complex fracture networks derived from detailed quantitative characterisation of fractures in outcrop. We aim to build a library of calibrated examples from which to both develop understanding of the information contained in a seismic dataset related to the fracture network, and further research into the quantitative inversion and imaging of such information.

  6. An analytical solution to separate P-waves and S-waves in the VSP wavefield

    SciTech Connect

    Amano, Hiroshi

    1994-12-31

    An analytical solution to separate P-waves and S-waves in the VSP wavefield is derived with combinations of the formal solution of a forward VSP modeling. Some practical applications of this method to synthetic seismograms and field data are investigated and evaluated. Little wave distortion is recognized and the weak wavefield masked by dominant wave trains can be extracted with this method. The decomposed wavefield is expressed in frequency-depth (f-z) domain as a linear combination of up to the third order differential of traces, which is approximated by trace difference sin the practical separation process. In general, five traces with single-component data are required in this process, but the same process is implemented with only three traces in the acoustic case. Two-trace extrapolation is applied to each edge of data gather in order to enhance the accuracy of trace difference. Since the formulas are developed in f-z domain, the influence of anelasticity is taken into account with simplicity and the calculation is carried out fast enough with the benefit of fast Fourier transform (FFT).

  7. Computational simulation of the bone remodeling using the finite element method: an elastic-damage theory for small displacements

    PubMed Central

    2013-01-01

    Background The resistance of the bone against damage by repairing itself and adapting to environmental conditions is its most important property. These adaptive changes are regulated by physiological process commonly called the bone remodeling. Better understanding this process requires that we apply the theory of elastic-damage under the hypothesis of small displacements to a bone structure and see its mechanical behavior. Results The purpose of the present study is to simulate a two dimensional model of a proximal femur by taking into consideration elastic-damage and mechanical stimulus. Here, we present a mathematical model based on a system of nonlinear ordinary differential equations and we develop the variational formulation for the mechanical problem. Then, we implement our mathematical model into the finite element method algorithm to investigate the effect of the damage. Conclusion The results are consistent with the existing literature which shows that the bone stiffness drops in damaged bone structure under mechanical loading. PMID:23663260

  8. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Shin, Hosop; Park, Jonghyun; Han, Sangwoo; Sastry, Ann Marie; Lu, Wei

    2015-03-01

    The mechanical instability of the Solid Electrolyte Interphase (SEI) layer in lithium ion (Li-ion) batteries causes significant side reactions resulting in Li-ion consumption and cell impedance rise by forming further SEI layers, which eventually leads to battery capacity fade and power fade. In this paper, the composition-/structure-dependent elasticity of the SEI layer is investigated via Atomic Force Microscopy (AFM) measurements coupled with X-ray Photoelectron Spectroscopy (XPS) analysis, and atomistic calculations. It is observed that the inner layer is stiffer than the outer layer. The measured Young's moduli are mostly in the range of 0.2-4.5 GPa, while some values above 80 GPa are also observed. This wide variation of the observed elastic modulus is elucidated by atomistic calculations with a focus on chemical and structural analysis. The numerical analysis shows the Young's moduli range from 2.4 GPa to 58.1 GPa in the order of the polymeric, organic, and amorphous inorganic components. The crystalline inorganic component (LiF) shows the highest value (135.3 GPa) among the SEI species. This quantitative observation on the elasticity of individual components of the SEI layer must be essential to analyzing the mechanical behavior of the SEI layer and to optimizing and controlling it.

  9. Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.

    2011-12-01

    ) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.

  10. Using 3D Wavefield Modeling in Modeling in Interpreting Historical Macroseismic Observations - The Luroy Earthquake of 31 Aug. 1819.

    NASA Astrophysics Data System (ADS)

    Husebye, E. S.; Kebeasy, T. R.

    2004-12-01

    The Luroy earthquake of August 31, 1819 with MS around 6.0 is, by many colleagues, rated as the largest in NW Europe in historical times (pre-1900) and even up to present. Local shaking manifestations were most spectacular with rock and mud avalanches, mast-high waves in nearby Rana fjord and even liquefaction was reported. Most surprisingly, at epicentral distances exceeding 100 km except for Stockholm 800 km away, very few macroseismic observations are available. Another peculiarity was the lack of any significant housing damage even in the Luroy parish itself. In a recent paper, we postulated that the earthquake was of moderate size, reestimated at MS = 5.1, but of shallow depth between 5 - 10 km causing the intense local shaking. In this article, we add a new dimension to the many of Luroy earthquake studies namely simulating the seismic wavefield response of Luroy itself and adjacent areas characterized by steep topographic relief. We use a 3D finite difference scheme and compute ground motion for a point source. We used a shear waves source with a focal depth of 5 km. Water covered areas are replaced by crystalline crust due to the dearth of dense bathymetric data. Main results are that the topography of the Luroy, close to the mountain peak at 685 meter, cause wavefield amplification by a factor of 20 and even stronger. Further away in the Rana fjord and surrounding areas, we also got strong amplification in particular where the relief is sharpest thus explaining triggering of avalanches in a quantitative manner. In other words, macroseismic observations would be biased upward due to the topographic focusing effects and unless properly corrected for also will increase the final earthquake magnitude estimate. We take these results to strongly support our claim that the historic Luroy earthquake was of moderate size of MS = 5.1 and not at MS = 6.0 class as claimed by many colleagues. Finally, downscaling of maximum earthquake magnitude would also lower the

  11. Elastic Velocity Updating through Image-Domain Tomographic Inversion of Passive Seismic Data

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2014-12-01

    Seismic monitoring at injection sites (e.g., CO2sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits images of the earthquake source using various imaging conditions based upon the P- and S-wavefield data. We generate image volumes by back propagating data through initial models and then applying a correlation-based imaging condition. We use the P-wavefield autocorrelation, S-wavefield autocorrelation, and P-S wavefield cross-correlation images. Inconsistencies in the images form the residuals, which are used to update the P- and S-wave velocity models through adjoint-state tomography. Because the image volumes are constructed from all trace data, the signal-to-noise in this space is increased when compared to the individual traces. Moreover, it eliminates the need for picking and does not require any estimation of the source location and timing. Initial tests show that with reasonable source distribution and acquisition array, velocity anomalies can be recovered. Future tests will apply this methodology to other scales from laboratory to global.

  12. Visco-elastic controlled-source full waveform inversion without surface waves

    NASA Astrophysics Data System (ADS)

    Paschke, Marco; Krause, Martin; Bleibinhaus, Florian

    2016-04-01

    We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.

  13. The Broad-Band Seismic Noise Wavefield at the Larderello-Travale Geothermal Field (Italy)

    NASA Astrophysics Data System (ADS)

    Zupo, M.; Saccorotti, G.; Piccinini, D.

    2013-12-01

    Cross-correlation of ambient noise wave-field between a pair of receivers (NCF), provides an estimate of the Green's Function between the two sites, thus allowing extraction of the associated group velocity dispersion curve. This is valid under the assumption that noise sources and/or scatterers are isotropically distributed and uncorrelated each other. These conditions are usually met once the cross-correlations are averaged over long time intervals. At frequencies lower than 1 Hz, ambient noise wavefield is essentially composed by surface waves that are mostly associated with oceanic sources; as a consequence, the noise wavefield may exhibit marked directional properties over short (day) to intermediate (weeks) time scales. A detailed assessment of the nature and duration of these sources is therefore required in order to define the optimal conditions for retrieving the Green's functions from NCF analysis. This study presents ambient noise analysis for the Larderello-Travale Geothermal Field (Italy). We use data collected by a temporary seismic array consisting of 20 broad-band instruments, with station spacing ranging from 6 to 50 Km. Below 1 Hz, the most energetic sources are those associated with both primary and secondary microseisms, with dominant spectral peaks spanning the 0.05-0.5 Hz frequency range. Focusing on the secondary microseism sources (f > 0.1 Hz), we test the validity of the isotropic-wavefield assumption by determining the kinematic properties of the wavefield using frequency-domain beamforming. For the May-November 2012 time span, our results show that the most energetic and persistent wavefield components propagate from WNW (Gulf of Marseille and Genova) and SW (Sardinia channel). In the late part of the observation period, additional wavefield components are observed to propagate from the NE-SE azimuthal range, corresponding to sources located throughout the Adriatic sea. This suggests that the conditions for the application of the NCF

  14. Self-Consistent Theory of Elastic Properties of Strongly Anharmonic Crystals I:. General Treatment and Comparison with Computer Simulations and Experiment for Fcc Crystals

    NASA Astrophysics Data System (ADS)

    Zubov, V. I.; Sanchez, J. F.; Tretiakov, N. P.; Yusef, A. E.

    Based on the correlative method of an unsymmetrized self-consistent field,16-23 we have derived expressions for elastic constant tensors of strongly anharmonic crystals of cubic symmetry. Each isothermal elastic constant consists of four terms. The first one is the zeroth approximation containing the main anharmonicity (up to the fourth order). The second term is the quantum correction. It is important at temperatures below the De-bye characteristic temperature. Finally, the third and fourth terms are the perturbation theory corrections which take into account the influence of the correlations in atomic displacements from the lattice points and that of the high-order anharmonicity respectively. These corrections appear to be small up to the melting temperatures. It is sufficient for a personal computer to perform all our calculations with just a little computer time. A comparison with certain Monte Carlo simulations and with experimental data for Ar and Kr is made. For the most part, our results are between. The quasi-harmonic approximation fails at high temperatures, confirming once again the crucial role of strong anharmonicity.

  15. A uniqueness theorem for the time-domain elastic-wave scattering in inhomogeneous, anisotropic solids with relaxation

    NASA Astrophysics Data System (ADS)

    de Hoop, Adrianus T.

    2004-06-01

    A uniqueness theorem for the (analytic or computational) time-domain modeling of the elastic wave motion in a scattering configuration that consists of inhomogeneous, anisotropic solids with arbitrary relaxation properties, occupying a bounded subdomain in an unbounded homogeneous, isotropic, perfectly elastic embedding, is presented. No direct time-domain uniqueness proof seems to exist for this kind of configuration. As an intermediate step, the one-to-one correspondence between the causal time-domain wavefield components and the constitutive material response functions on the one hand, and their time Laplace-transform counterparts for (a sequence of) real, positive values of the transform parameter on the other hand, seems a necessary tool. It is shown that such an approach leads to simple, explicit, sufficiency conditions on the inertial loss and compliance relaxation tensors describing the solid's constitutive behavior for uniqueness to hold. In it, the property of causality plays an essential role. In Christensen [Theory of Viscoelasticity-An Introduction (Academic, New York, 1971)] a similar approach is applied to the problem of uniqueness of the elastodynamic initial-/boundary-value problem associated with a viscoelastic object of bounded extent, the surface of which is subject to an admissible set of explicit boundary values. In the scattering configuration of unbounded extent, no explicit boundary values occur and the far-field compressional and shear wave radiation characteristics at ``infinity'' in the embedding play a key role in the proof.

  16. Validation and verification of a high-fidelity computational model for a bounding robot's parallel actuated elastic spine

    NASA Astrophysics Data System (ADS)

    Pusey, Jason L.; Yoo, Jin-Hyeong

    2014-06-01

    We document the design and preliminary numerical simulation study of a high fidelity model of Canid, a recently introduced bounding robot. Canid is a free-standing, power-autonomous quadrupedal machine constructed from standard commercially available electromechanical and structural elements, incorporating compliant C-shaped legs like those of the decade old RHex design, but departing from that standard (and, to the best of our knowledge, from any prior) robot platform in its parallel actuated elastic spine. We have used a commercial modeling package to develop a finite-element model of the actuated, cable-driven, rigid-plate-reinforced harness for the carbon-fiber spring that joins the robot's fore- and hind-quarters. We compare a numerical model of this parallel actuated elastic spine with empirical data from preliminary physical experiments with the most important component of the spine assembly: the composite leaf spring. Specifically, we report our progress in tuning the mechanical properties of a standard modal approximation to a conventional compliant beam model whose boundary conditions represent constraints imposed by the actuated cable driven vertebral plates that comprise the active control affordance over the spine. We conclude with a brief look ahead at near-term future experiments that will compare predictions of this fitted composite spring model with data taken from the physical spine flexed in isolation from the actuated harness.

  17. First-principles computation of structural, elastic and magnetic properties of Ni2FeGa across the martensitic transformation.

    PubMed

    Sahariah, Munima B; Ghosh, Subhradip; Singh, Chabungbam S; Gowtham, S; Pandey, Ravindra

    2013-01-16

    The structural stabilities, elastic, electronic and magnetic properties of the Heusler-type shape memory alloy Ni(2)FeGa are calculated using density functional theory. The volume conserving tetragonal distortion of the austenite Ni(2)FeGa find an energy minimum at c/a = 1.33. Metastable behaviour of the high temperature cubic austenite phase is predicted due to elastic softening in the [110] direction. Calculations of the total and partial magnetic moments show a dominant contribution from Fe atoms of the alloy. The calculated density of states shows a depression in the minority spin channel of the cubic Ni(2)FeGa just above the Fermi level which gets partially filled up in the tetragonal phase. In contrast to Ni(2)MnGa, the transition metal spin-down states show partial hybridization in Ni(2)FeGa and there is a relatively high electron density of states near the Fermi level in both phases. PMID:23186622

  18. Computational Modeling Reinforces that Proprioceptive Cues May Augment Compliance Discrimination When Elasticity Is Decoupled From Radius of Curvature

    PubMed Central

    Wang, Yuxiang; Gerling, Gregory J.

    2015-01-01

    Our capability to discriminate object compliance is based on cues both tactile and proprioceptive, in addition to visual. To understand how the mechanics of the fingertip skin and bone might encode such information, we used finite element models to simulate the task of differentiating spherical indenters of radii (4, 6 and 8 mm) and elasticity (initial shear modulus of 10, 50 and 90 kPa). In particular, we considered two response variables, the strain energy density (SED) at the epidermal-dermal interface where Merkel cell end-organs of slowly adapting type I afferents reside, and the displacement of the fingertip bone necessary to achieve certain surface contact force. The former variable ties to tactile cues while the latter ties to proprioceptive cues. The results indicate that distributions of SED are clearly distinct for most combinations of object radii and elasticity. However, for certain combinations – e.g., between 4 mm spheres of 10 kPa and 8 mm of 90 kPa – spatial distributions of SED are nearly identical. In such cases where tactile-only cues are non-differentiable, we may rely on proprioceptive cues to discriminate compliance. PMID:25699293

  19. ESP Toolbox: A Computational Framework for Precise, Scale-Independent Analysis of Bulk Elastic and Seismic Properties

    NASA Astrophysics Data System (ADS)

    Johnson, S. E.; Vel, S. S.; Cook, A. C.; Song, W. J.; Gerbi, C. C.; Okaya, D. A.

    2014-12-01

    Owing to the abundance of highly anisotropic minerals in the crust, the Voigt and Reuss bounds on the seismic velocities can be separated by more than 1 km/s. These bounds are determined by modal mineralogy and crystallographic preferred orientations (CPO) of the constituent minerals, but where the true velocities lie between these bounds is determined by other fabric parameters such as the shapes, shape-preferred orientations, and spatial arrangements of grains. Thus, the calculation of accurate bulk stiffness relies on explicitly treating the grain-scale heterogeneity, and the same principle applies at larger scales, for example calculating accurate bulk stiffness for a crustal volume with varying proportions and distributions of folds or shear zones. We have developed stand-alone GUI software - ESP Toolbox - for the calculation of 3D bulk elastic and seismic properties of heterogeneous and polycrystalline materials using image or EBSD data. The GUI includes a number of different homogenization techniques, including Voigt, Reuss, Hill, geometric mean, self-consistent and asymptotic expansion homogenization (AEH) methods. The AEH method, which uses a finite element mesh, is most accurate since it explicitly accounts for elastic interactions of constituent minerals/phases. The user need only specify the microstructure and material properties of the minerals/phases. We use the Toolbox to explore changes in bulk elasticity and related seismic anisotropy caused by specific variables, including: (a) the quartz alpha-beta phase change in rocks with varying proportions of quartz, (b) changes in modal mineralogy and CPO fabric that occur during progressive deformation and metamorphism, and (c) shear zones of varying thickness, abundance and geometry in continental crust. The Toolbox allows rapid sensitivity analysis around these and other variables, and the resulting bulk stiffness matrices can be used to populate volumes for synthetic wave propagation experiments that

  20. Computationally efficient parabolic equation solutions to seismo-acoustic problems involving thin or low-shear elastic layers.

    PubMed

    Metzler, Adam M; Collis, Jon M

    2013-04-01

    Shallow-water environments typically include sediments containing thin or low-shear layers. Numerical treatments of these types of layers require finer depth grid spacing than is needed elsewhere in the domain. Thin layers require finer grids to fully sample effects due to elasticity within the layer. As shear wave speeds approach zero, the governing system becomes singular and fine-grid spacing becomes necessary to obtain converged solutions. In this paper, a seismo-acoustic parabolic equation solution is derived utilizing modified difference formulas using Galerkin's method to allow for variable-grid spacing in depth. Propagation results are shown for environments containing thin layers and low-shear layers. PMID:23556690

  1. Elastic Deformations in 2D van der waals Heterostructures and their Impact on Optoelectronic Properties: Predictions from a Multiscale Computational Approach

    NASA Astrophysics Data System (ADS)

    Kumar, Hemant; Er, Dequan; Dong, Liang; Li, Junwen; Shenoy, Vivek B.

    2015-06-01

    Recent technological advances in the isolation and transfer of different 2-dimensional (2D) materials have led to renewed interest in stacked Van der Waals (vdW) heterostructures. Interlayer interactions and lattice mismatch between two different monolayers cause elastic strains, which significantly affects their electronic properties. Using a multiscale computational method, we demonstrate that significant in-plane strains and the out-of-plane displacements are introduced in three different bilayer structures, namely graphene-hBN, MoS2-WS2 and MoSe2-WSe2, due to interlayer interactions which can cause bandgap change of up to ~300 meV. Furthermore, the magnitude of the elastic deformations can be controlled by changing the relative rotation angle between two layers. Magnitude of the out-of-plane displacements in graphene agrees well with those observed in experiments and can explain the experimentally observed bandgap opening in graphene. Upon increasing the relative rotation angle between the two lattices from 0° to 10°, the magnitude of the out-of-plane displacements decrease while in-plane strains peaks when the angle is ~6°. For large misorientation angles (>10°), the out-of-plane displacements become negligible. We further predict the deformation fields for MoS2-WS2 and MoSe2-WSe2 heterostructures that have been recently synthesized experimentally and estimate the effect of these deformation fields on near-gap states.

  2. 1-D seismic inversion of dual wavefield data. Part 2: A Gulf of Mexico example

    SciTech Connect

    Hildebrand, S.T. ); McMechan, G.A. . Center for Lithospheric Studies)

    1994-05-01

    Stable estimates for angle-dependent acoustic impedance are obtained from a dual wavefield data set that consists of pressure and vertical particle velocity measurements. Using these acoustic impedance estimates, a nonlocal inversion procedure predicts sediment material impedance, interval velocity, density, and their associated relative errors as a function of depth. The method is successfully applied to data from a marine seismic experiment conducted by Halliburton Geophysical Services in the Gulf of Mexico in 1989. The inverted values for the seafloor sediment density and interval velocity lie close to those obtained independently by other methods, implying that the inversion illustrated is valid for use with field data.

  3. Recent Advancements in Quantitative Full-Wavefield Electromagnetic Induction and Ground Penetrating Radar Inversion for Shallow Subsurface Characterization

    NASA Astrophysics Data System (ADS)

    Van Der Kruk, J.; Yang, X.; Klotzsche, A.; von Hebel, C.; Busch, S.; Mester, A.; Huisman, J. A.; Vereecken, H.

    2014-12-01

    Ray-based or approximate forward modeling techniques have been often used to reduce the computational demands for inversion purposes. Due to increasing computational power and possible parallelization of inversion algorithms, accurate forward modeling can be included in advanced inversion approaches such that the full-wavefield content can be exploited. Here, recent developments of large-scale quantitative electromagnetic induction (EMI) inversion and full-waveform ground penetrating radar (GPR) inversions are discussed that yield higher resolution of quantitative medium properties compared to conventional approaches due to the use of accurate modeling tools that are based on Maxwell's equations. For a limited number of parameters, a combined global and local search using the simplex search algorithm or the shuffled complex evolution (SCE) can be used for inversion. Examples will be shown where calibrated large-scale multi-configuration EMI data measured with new generation multi-offset EMI systems are inverted for a layered electrical conductivity earth, and quantitative permittivity and conductivity values of a layered subsurface can be obtained using on-ground GPR full-waveform inversion that includes the estimation of the unknown source wavelet. For a large number of unknowns, gradient-based optimization methods are commonly used that need a good start model to prevent it from being trapped in a local minimum. Examples will be shown where the non-linearity invoked by the presence of high contrast media can be tamed by using a novel combined frequency-time-domain full-waveform inversion, and a low-velocity waveguide layer can be imaged by using crosshole GPR full-waveform inversion, after adapting the starting model using waveguide identification in the measured data. Synthetic data calculated using the inverted permittivity and conductivity models show similar amplitudes and phases as observed in the measured data, which indicates the reliability of the

  4. An Elasticity-Based Mesh Scheme Applied to the Computation of Unsteady Three-Dimensional Spoiler and Aeroelastic Problems

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    1999-01-01

    This paper presents a modification of the spring analogy scheme which uses axial linear spring stiffness with selective spring stiffening/relaxation. An alternate approach to solving the geometric conservation law is taken which eliminates the need for storage of metric Jacobians at previous time steps. Efficiency and verification are illustrated with several unsteady 2-D airfoil Euler computations. The method is next applied to the computation of the turbulent flow about a 2-D airfoil and wing with two and three- dimensional moving spoiler surfaces, and the results compared with Benchmark Active Controls Technology (BACT) experimental data. The aeroelastic response at low dynamic pressure of an airfoil to a single large scale oscillation of a spoiler surface is computed. This study confirms that it is possible to achieve accurate solutions with a very large time step for aeroelastic problems using the fluid solver and aeroelastic integrator as discussed in this paper.

  5. Computation of the Diffracted Field by an Elliptic Rigid or Elastic Scatterer: An Overview of the Numerical Limitations

    NASA Astrophysics Data System (ADS)

    Cassereau, Didier; Mézière, Fabien; Muller, Marie; Bossy, Emmanuel; Derode, Arnaud

    In this paper, we are interested in the 2D computation of the pressure scattered by an elliptic scatterer using a semi-analytical method based on a decomposition of the solutions on a basis of cylindrical waves. This approach is perfectly adapted to circular scatterers, and has been extended to scatterers of arbitrary shape [F. Chati et al. (2004)]. We will see that this extended formulation yields some very difficult numerical issues, particularly in our context of a flat and small elliptic scatterer. The use of arbitrary precision mathematics appears as a possible workaround, even if the cost in terms of the computation time may be prohibitive.

  6. Statistical redundancy of instantaneous phases: theory and application to the seismic ambient wavefield

    NASA Astrophysics Data System (ADS)

    Gaudot, I.; Beucler, É.; Mocquet, A.; Schimmel, M.; Le Feuvre, M.

    2016-02-01

    In order to detect possible signal redundancies in the ambient seismic wavefield, we develop a new method based on pairwise comparisons among a set of synchronous time-series. This approach is based on instantaneous phase coherence statistics. The first and second moments of the pairwise phase coherence distribution are used to characterize the phase randomness. For perfect phase randomness, the theoretical values of the mean and variance are equal to 0 and √{1-2/π }, respectively. As a consequence, any deviation from these values indicates the presence of a redundant phase in the raw continuous signal. A previously detected microseismic source in the Gulf of Guinea is used to illustrate one of the possible ways of handling phase coherence statistics. The proposed approach allows us to properly localize this persistent source, and to quantify its contribution to the overall seismic ambient wavefield. The strength of the phase coherence statistics relies in its ability to quantify the redundancy of a given phase among a set of time-series with various useful applications in seismic noise-based studies (tomography and/or source characterization).

  7. Wireless ultrasonic wavefield imaging via laser for hidden damage detection inside a steel box girder bridge

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Song, Homin; Sohn, Hoon

    2014-09-01

    This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge.

  8. Computational Simulation of the Activation Cycle of Gα Subunit in the G Protein Cycle Using an Elastic Network Model

    PubMed Central

    Kim, Min Hyeok; Kim, Young Jin; Kim, Hee Ryung; Jeon, Tae-Joon; Choi, Jae Boong; Chung, Ka Young; Kim, Moon Ki

    2016-01-01

    Agonist-activated G protein-coupled receptors (GPCRs) interact with GDP-bound G protein heterotrimers (Gαβγ) promoting GDP/GTP exchange, which results in dissociation of Gα from the receptor and Gβγ. The GTPase activity of Gα hydrolyzes GTP to GDP, and the GDP-bound Gα interacts with Gβγ, forming a GDP-bound G protein heterotrimer. The G protein cycle is allosterically modulated by conformational changes of the Gα subunit. Although biochemical and biophysical methods have elucidated the structure and dynamics of Gα, the precise conformational mechanisms underlying the G protein cycle are not fully understood yet. Simulation methods could help to provide additional details to gain further insight into G protein signal transduction mechanisms. In this study, using the available X-ray crystal structures of Gα, we simulated the entire G protein cycle and described not only the steric features of the Gα structure, but also conformational changes at each step. Each reference structure in the G protein cycle was modeled as an elastic network model and subjected to normal mode analysis. Our simulation data suggests that activated receptors trigger conformational changes of the Gα subunit that are thermodynamically favorable for opening of the nucleotide-binding pocket and GDP release. Furthermore, the effects of GTP binding and hydrolysis on mobility changes of the C and N termini and switch regions are elucidated. In summary, our simulation results enabled us to provide detailed descriptions of the structural and dynamic features of the G protein cycle. PMID:27483005

  9. Elastic properties of HMX.

    SciTech Connect

    Sewell, T. D.; Bedrov, D.; Menikoff, Ralph; Smith, G. D.

    2001-01-01

    Atomistic molecular dynamics simulations have been used to calculate isothermal elastic properties for {beta}-, {alpha}-, and {delta}-HMX. The complete elastic tensor for each polymorph was determined at room temperature and pressure via analysis of microscopic strain fluctuations using formalism due to Rahman and Parrinello [J. Chem. Phys. 76,2662 (1982)]. Additionally, the isothermal compression curve was computed for {beta}-HMX for 0 {le} p {le} 10.6 GPa; the bulk modulus K and its pressure derivative K{prime} were obtained from two fitting forms employed previously in experimental studies of the {beta}-HMX equation of state. Overall, the results indicate good agreement between the bulk modulus predicted from the measured and calculated compression curves. The bulk modulus determined directly from the elastic tensor of {beta}-HMX is in significant disagreement with the compression curve-based results. The explanation for this discrepancy is an area of current research.

  10. Elastic membranes in confinement.

    PubMed

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. PMID:27440257

  11. Elasticity theory

    NASA Astrophysics Data System (ADS)

    Moraru, Gheorghe; Mursa, Condrat

    2006-12-01

    In this book we present the basic concepts of the theory of elasticity: stress and deformation states (plane and three-dimensional) and generalized Hooke's law. We present a number of problems which have applications in strength analysis. The book includes a synthesis of the theory of elasticity and modern methods of applied mathematics. This book is designed for students, post graduate students and specialists in strength analysis. the book contains a number of appendixes which includes: elements of matrix-calculation, concepts of tensorial calculation, the Fourier transform, the notion of improper integrals,singular and hypersingular integrals, generalized functions, the Dirac Delta function

  12. On the anisotropic elastic properties of hydroxyapatite.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  13. Development of Active Seismic Vector-Wavefield Imaging Technology for Geothermal Applications

    SciTech Connect

    B. A. Hardage; J. L. Simmons, Jr.; M. DeAngelo

    1999-10-01

    This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and reservoir characterization. Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two seismic sources were developed and tested in this study that can be used to illuminate geothermal reservoirs with S-waves. The first was an explosive package that generates a strong, azimuth-oriented, horizontal force vector when deployed in a conventional shot hole. This vector-explosive source has never been available to industry before. The second source was a dipole formed by operating two vertical vibrators in either a force or phase imbalance. Field data are shown that document the strong S-wave modes generated by these sources.

  14. Geometric effect on a laboratory-scale wavefield inferred from a three-dimensional numerical simulation

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, Nana; Furumura, Takashi; Maeda, Takuto

    2016-09-01

    The coda part of a waveform transmitted through a laboratory sample should be examined for the high-resolution monitoring of the sample characteristics in detail. However, the origin and propagation process of the later phases in a finite-sized small sample are very complicated with the overlap of multiple unknown reflections and conversions. In this study, we investigated the three-dimensional (3D) geometric effect of a finite-sized cylindrical sample to understand the development of these later phases. This study used 3D finite difference method simulation employing a free-surface boundary condition over a curved model surface and a realistic circular shape of the source model. The simulated waveforms and the visualized 3D wavefield in a stainless steel sample clearly demonstrated the process of multiple reflections and the conversions of the P and S waves at the side surface as well as at the top and bottom of the sample. Rayleigh wave propagation along the curved side boundary was also confirmed, and these waves dominate in the later portion of the simulated waveform with much larger amplitudes than the P and S wave reflections. The feature of the simulated waveforms showed good agreement with laboratory observed waveforms. For the simulation, an introduction of an absorbing boundary condition at the top and bottom of the sample made it possible to efficiently separate the contribution of the vertical and horizontal boundary effects in the simulated wavefield. This procedure helped to confirm the additional finding of vertically propagating multiple surface waves and their conversion at the corner of the sample. This new laboratory-scale 3D simulation enabled the appearance of a variety of geometric effects that constitute the later phases of the transmitted waves.

  15. Shallow-velocity models at the Kilauea Volcano, Hawaii, determined from array analyses of tremor wavefields

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Dawson, P.

    2003-01-01

    The properties of the surface wavefield at Kilauea Volcano are analysed using data from small-aperture arrays of short-period seismometers deployed in and around the Kilauea caldera. Tremor recordings were obtained during two Japan-US cooperative experiments conducted in 1996 and 1997. The seismometers were deployed in three semi-circular arrays with apertures of 300, 300 and 400 m, and a linear array with length of 1680 m. Data are analysed using a spatio-temporal correlation technique well suited for the study of the stationary stochastic wavefields of Rayleigh and Love waves associated with volcanic activity and scattering sources distributed in and around the summit caldera. Spatial autocorrelation coefficients are obtained as a function of frequency and are inverted for the dispersion characteristics of Rayleigh and Love waves using a grid search that seeks phase velocities for which the L-2 norm between data and forward modelling operators is minimized. Within the caldera, the phase velocities of Rayleigh waves range from 1400 to 1800 m s-1 at 1 Hz down to 300-400 m s-1 at 10 Hz, and the phase velocities of Love waves range from 2600 to 400 m s-1 within the same frequency band. Outside the caldera, Rayleigh wave velocities range from 1800 to 1600 m s-1 at 1 Hz down to 260-360 m s-1 at 10 Hz, and Love wave velocities range from 600 to 150 m s-1 within the same frequency band. The dispersion curves are inverted for velocity structure beneath each array, assuming these dispersions represent the fundamental modes of Rayleigh and Love waves. The velocity structures observed at different array sites are consistent with results from a recent 3-D traveltime tomography of the caldera region, and point to a marked velocity discontinuity associated with the southern caldera boundary.

  16. Power spectral density function and spatial autocorrelation of the ambient vibration full-wavefield generated by a distribution of spatially correlated surface sources

    NASA Astrophysics Data System (ADS)

    Lunedei, Enrico; Albarello, Dario

    2016-03-01

    Synthetic dispersion curves are here computed in the frame of an ambient-vibration full-wavefield model, which relies on the description of both ambient-vibration ground displacement and its sources as stochastic fields defined on the Earth's surface, stationary in time and homogeneous in space. In this model, previously developed for computing synthetic Horizontal-to-Vertical Spectral Ratio curves, the power spectral density function and the spatial autocorrelation of the displacement are naturally described as functions of the power spectral density function of the generating forces and of the subsoil properties (via the relevant Green's function), by also accounting for spatial correlation of these forces. Dispersion curves are computed from the displacement power spectral density function and from the spatial autocorrelation according with the well-known f-k and SPAC techniques, respectively. Two examples illustrate the way this new ambient-vibration model works, showing its possible use in better understanding the role of the surface waves in forming the dispersion curves, as well as its capability to capture some remarkable experimental findings.

  17. Elastic plate spallation

    NASA Technical Reports Server (NTRS)

    Oline, L.; Medaglia, J.

    1972-01-01

    The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.

  18. Elasticity of crystalline molecular explosives

    DOE PAGESBeta

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less

  19. Elasticity of crystalline molecular explosives

    SciTech Connect

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, and an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.

  20. 1-D seismic inversion of dual wavefield data. Part 1: Nonuniqueness and stability

    SciTech Connect

    Hildebrand, S.T. ); McMechan, G.A. . Center for Lithospheric Studies)

    1994-05-01

    The inversion problem for determining seismic impedance is nonunique and nonstable because of limited recording aperture, data bandwidth, and data noise. For large reflection angles, small errors in the reflection coefficients give rise to arbitrarily large errors in the seismic impedance estimates. Spatial resolution of the seismic impedance response is controlled by the dominant wavelength corresponding to the source time wavelet; aperture limitations control the resolution of material impedance and interval velocity. Analysis of a linearization-approximation approach shows that this method degenerates into a single-parameter estimator for material impedance when using only small-offset data and for velocity when using only far-offset data. A nonlocal inversion method is introduced to estimate the material impedance and interval velocity by exploring interval velocity space and computing an associated variance estimate surface. Using this method, the resolution of the material impedance and compressional and shear interval velocities is shown to be poor in the elastic case because of a ''valley'' feature in the variance estimate surface; in the acoustic problem, resolution of the material impedance and interval velocity is excellent.

  1. Iterative Multiparameter Elastic Waveform Inversion Using Prestack Time Imaging and Kirchhoff approximation

    NASA Astrophysics Data System (ADS)

    Khaniani, Hassan

    boundary condition of the wave equation is set up along reflection surfaces. Hence, the surface integral Kirchhoff approximation is used as a mathematical framework instead of the volume integral of the Born approximation. In addition, I study the feasibility of iterative coupling of ray theory with the Kirchhoff approximation for inversion. For the amplitude considerations, the direct relationship between the scattering potential of the Born approximation with the reflectivity function of the asymptotic Kirchhoff approximation for elastic waves is used. Therefore, I use the linearized Zoeppritz approximation of Aki and Richards (1980) for computation of the forward modeling and migration operators as well as gradient function from Amplitude vs Offset (AVO) inversion. The multiparameter elastic inversion approach is applicable to all types of reflected wavefields such as P-to-P, P-to-S, S-to-S and S-to-P. Traveltime estimation of forward modeling and migration/inversion operators are based on the DSR equation. All operators involved in inversion, including the background model for DSR and AVO are updated at each iteration. The migration/inversion procedure maps the mode converted waves to the traveltime of incident waves which fixes the registration problem of events that travel from source to scatter point. The inversion of the reflected P-to-P and P-to-S synthetic and field data are provided for the numerical examples. This approach is applicable for complex structures however, to estimate the traveltime of scatterpoints, ray tracing can be added to the algorithm. For such a medium, the scatterpoint traveltime approximations from the PSTM, is compared to the PSDM approach using numerical analysis of ray- and FDTD-based modeling. In part of this thesis, I further improve the conventional velocity analysis of Common Scatter Point (CSP) gathers by including the tilt effects. I show that travel time response of scatter points beneath a dipping interface experiences an

  2. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix A: A computer program for calculating alpha- and q- stability derivatives and induced drag for thin elastic aeroplanes at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Lan, C.; Mehrotra, S.

    1972-01-01

    The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.

  3. Interaction of an acoustical 2D-beam with an elastic cylinder with arbitrary location in a non-viscous fluid.

    PubMed

    Mitri, F G

    2015-09-01

    The classical Resonance Scattering Theory (RST) for plane waves in acoustics is generalized for the case of a 2D arbitrarily-shaped beam incident upon an elastic cylinder with arbitrary location that is immersed in a nonviscous fluid. The formulation is valid for an elastic (or viscoelastic) cylinder (or a cylindrical shell, a layered cylinder/shell, or a multilayered cylindrical shell, etc.) of any size and material. Partial-wave series expansions (PWSEs) for the incident, internal and scattered fields are derived, and numerical examples illustrate the theory. The wave-fields are expressed using a generalized PWSE involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. When the beam is shifted off the center of the cylinder, the off-axial BSCs are evaluated by performing standard numerical integration. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. The properties related to the arbitrary scattering of a zeroth-order quasi-Gaussian cylindrical beam (chosen as an example) by an elastic brass cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed. Moreover, the total and resonance backscattering form function moduli are numerically computed, and the results discussed with emphasis on the contribution of the surface waves circumnavigating the cylinder circular surface to the resonance backscattering. Furthermore, the analysis is extended to derive general expressions for the axial and transverse acoustic radiation force functions for the cylinder in any 2D beam of arbitrary shape. Examples are provided for a zeroth-order quasi Gaussian cylindrical beam with different waist. Potential applications are in underwater and physical acoustics, however, ongoing research in biomedical ultrasound, non-destructive evaluation, imaging, manufacturing, instrumentation, and

  4. Subcritical scattering from buried elastic shells.

    PubMed

    Lucifredi, Irena; Schmidt, Henrik

    2006-12-01

    Buried objects have been largely undetectable by traditional high-frequency sonars due to their insignificant bottom penetration. Further, even a high grazing angle sonar approach is vastly limited by the coverage rate dictated by the finite water depth, making the detection and classification of buried objects using low frequency, subcritical sonar an interesting alternative. On the other hand, such a concept would require classification clues different from the traditional high-resolution imaging and shadows to maintain low false alarm rates. A potential alternative, even for buried targets, is classification based on the acoustic signatures of man-made elastic targets. However, the elastic responses of buried and proud targets are significantly different. The objective of this work is to identify, analyze, and explain some of the effects of the sediment and the proximity of the seabed interface on the scattering of sound from completely and partially buried elastic shells. The analysis was performed using focused array processing of data from the GOATS98 experiment carried out jointly by MIT and SACLANTCEN, and a new hybrid modeling capability combining a virtual source-or wave-field superposition-approach with an exact spectral integral representation of the Green's functions for a stratified ocean waveguide, incorporating all multiple scattering between the object and the seabed. Among the principal results is the demonstration of the significant role of structural circumferential waves in converting incident, evanescent waves into backscattered body waves, emanating to the receivers at supercritical grazing angles, in effect making the target appear closer to the sonar than predicted by traditional ray theory. PMID:17225387

  5. Full-Wavefield Modeling and Pre-Stack Depth Migration of Common-Source Seismic Data

    NASA Astrophysics Data System (ADS)

    Chen, How-Wei

    1992-01-01

    The goal of solving geophysical problems can be thought of as a data mapping or transform procedure. Through various techniques, the observed seismic data can be transformed into the solution domain to estimate the Earth properties. Seismic wave field simulation is a forward process used to synthesize the seismic responses of an Earth model. Seismic wave field imaging is an inverse process used to estimate the Earth parameters from observed seismic data. In this dissertation, finite-difference and pseudo-spectral computations, in two- and three-dimensional space, are used for full wave field simulations and imaging of common-source data. Numerical simulation is developed for seismic sources and multi-attribute wave fields in two-dimensional acoustic and elastic media. P- and S-waves can be primarily separated in the resulting seismograms by vector operators in simulated surface survey, Vertical Seismic Profile (VSP) and cross-hole recording geometries. Three-component displacement seismograms can be approximately simulated by treating the acoustic field as a scalar potential field. The algorithm is applied to a complex multi-component, multi-offset walkaway circular VSP data from offshore California. Numerical modeling of large-scale, wide-aperture 3-D seismic data volumes is performed using a 3-D pseudo-spectral approach. Asymmetrical source and 3-D wave propagation effects in physical model data are identified and interpreted through iterative numerical modeling. Prestack reverse-time migration algorithms based on finite-difference and pseudo-spectral wave field extrapolators are developed for acoustic media in two- and three-dimensions. The excitation time imaging condition is computed by ray tracing and by finite-difference solution of the Eikonal equation. I generalize the concept of reverse-time migration and apply it for the correction of near-surface static effects. The feasibility of using very large scale, very wide-aperture 3-D seismic data recorded on a

  6. Array analysis of regional Pn and Pg wavefields from the Nevada Test Site

    SciTech Connect

    Leonard, M.A. . Dept. of Geology and Geophysics Lawrence Berkeley Lab., CA )

    1991-06-01

    Small-aperture high-frequency seismic arrays with dimensions of a few kilometers or less, can improve our ability to seismically monitor compliance with a low-yield Threshold Test Ban Treaty. This work studies the characteristics and effectiveness of array processing of the regional Pn and Pg wavefields generated by underground nuclear explosions at the Nevada Test Site. Waveform data from the explosion HARDIN (m{sub b} = 5.5) is recorded at a temporary 12-element, 3-component, 1.5 km-aperture array sited in an area of northern Nevada. The explosions VILLE (m{sub b} = 4.4) and SALUT (m{sub b} = 5.5) are recorded at two arrays sited in the Mojave desert, one a 96-element vertical-component 7 km-aperture array and the other a 155-element vertical-component 4 km-aperture array. Among the mean spectra for the m{sub b} = 5.5 events there are significant differences in low-frequency spectral amplitudes between array sites. The spectra become nearly identical beyond about 6 Hz. Spectral ratios are used to examine seismic source properties and the partitioning of energy between Pn and Pg. Frequency-wavenumber analysis at the 12-element array is used to obtain estimates of signal gain, phase velocity, and source azimuth. This analysis reveals frequency-dependent biases in velocity and azimuth of the coherent Pn and Pg arrivals. Signal correlation, the principal factor governing array performance, is examined in terms of spatial coherence estimates. The coherence is found to vary between the three sites. In all cases the coherence of Pn is greater than that for Pg. 81 refs., 92 figs., 5 tabs.

  7. The Utility of the Extended Images in Ambient Seismic Wavefield Migration

    NASA Astrophysics Data System (ADS)

    Girard, A. J.; Shragge, J. C.

    2015-12-01

    Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.

  8. A hybrid method for the computation of quasi-3D seismograms.

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Romanowicz, Barbara

    2013-04-01

    The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these

  9. Full Elastic Waveform Search Engine for Near Surface Imaging

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, X.

    2014-12-01

    For processing land seismic data, the near-surface problem is often very complex and may severely affect our capability to image the subsurface. The current state-of-the-art technology for near surface imaging is the early arrival waveform inversion that solves an acoustic wave-equation problem. However, fitting land seismic data with acoustic wavefield is sometimes invalid. On the other hand, performing elastic waveform inversion is very time-consuming. Similar to a web search engine, we develop a full elastic waveform search engine that includes a large database with synthetic elastic waveforms accounting for a wide range of interval velocity models in the CMP domain. With each CMP gather of real data as an entry, the search engine applies Multiple-Randomized K-Dimensional (MRKD) tree method to find approximate best matches to the entry in about a second. Interpolation of the velocity models at CMP positions creates 2D or 3D Vp, Vs, and density models for the near surface area. The method does not just return one solution; it gives a series of best matches in a solution space. Therefore, the results can help us to examine the resolution and nonuniqueness of the final solution. Further, this full waveform search method can avoid the issues of initial model and cycle skipping that the method of full waveform inversion is difficult to deal with.

  10. Characterization of propagation and scattering via wavefield imaging for improved in situ imaging of damage in composites

    NASA Astrophysics Data System (ADS)

    Williams, Westin B.; Michaels, Jennifer E.; Michaels, Thomas E.

    2016-04-01

    Detection, localization, and characterization of impact damage in composites using in situ transducers are important objectives for the aerospace industry to both reduce maintenance costs and prevent failures. A network of piezoelectric transducers spatially distributed over an area of interest is one practical configuration for utilizing guided waves to accomplish these objectives. Detecting and localizing barely visible impact damage with such a sparse array has been demonstrated in prior work, and improvements in localization were demonstrated by incorporating fairly crude estimates of scattering patterns in the imaging algorithms. Here we obtain more estimates of scattering patterns from a simulated defect by employing baseline subtraction of wavefield data recorded in a circle centered at the scatterer. Scattering patterns are estimated from the wavefield residual signals before and after simulated damage is introduced and the estimated scattering patterns are then incorporated into sparse array imaging via the minimum variance imaging method. Images created with different scattering patterns are compared and the efficacy of the methodology is assessed.

  11. Elastic emission polishing

    SciTech Connect

    Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

    1988-12-01

    Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

  12. Real-time prediction of seismic ground motion (I) : real-time estimation of seismic wavefield using data assimilation technique and time evolutional prediction using Kirchhoff integral

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.

    2013-05-01

    In this presentation, I propose a new approach for real-time prediction of seismic ground motion which is applicable to Earthquake Early Waning (EEW), in which hypocentral location and magnitude are not required. . Many methods of EEW are based on a network method in which hypocenter and magnitude (source parameters) are quickly determined, and then the ground motions are predicted, and warnings are issued depending on the strength of the predicted ground motion. In this method, it is necessary to determine the hypocenter and magnitude at first, and error of the source parameters leads directly to the error of the prediction. It is not easy to take the effects of rupture directivity and source extent into account, and it is impossible to fully reproduce the current wavefield from the interpreted source parameters. Time evolutional prediction is a method in which future wavefield is iteratively predicted from the wavefield at the certain time, that is u(x, t+Δt)=P(u(x, t)), where u is the wave motion at location x at lapse time t, and P is the prediction operator. Future wave motion, u(x, t+Δt), is predicted from the distribution of the current wave motion u(x, t) using P. For P, finite difference technique or boundary integral equation method, such as Kirchhoff integral, is used. Kirchhoff integral is qualitatively approximated by Huygens principle. The real time monitoring of wavefield are important for this method, but it is possible to predict ground motion without a hypocentral location and magnitude. In the time evolutional prediction, determination of detailed distribution of current wavefield is an important key, so that dense seismic observation network is required. Data assimilation is a technique to produce artificially denser network, which is widely used for numerical weather forecast and oceanography. Distribution of current wave motion is estimated from not only the current real observation of u(xi, t) where xi is the location of the i-th site, but

  13. Characterizing the ambient seismic wavefield for upper crustal imaging: energy sources and station deployment protocols in an ocean island setting

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Heckscher, N.; Graham, L.; Arroucau, P.; Rawlinson, N.

    2009-12-01

    Techniques using ambient seismic energy have become powerful tools in the imaging of the Earth's lithosphere. In this work we investigate the potential for using ambient energy to image the upper crust at the highest possible resolution. Such images are sought-after in deducing regional-scale 3D geological structure. They are critical to activities which use the Earth's crust (e.g. hot dry rock geothermal energy production, carbon sequestration) as well as placing fundamental constraints on the crustal architecture which defines tectonic structure and evolution. We have deployed a line of variously spaced seismic stations in a region of relatively well-constrained regional geology in Eastern Tasmania. Located south of mainland Australia, in the 'roaring 40's' southerly latitudes, the ambient seismic energy is of considerable amplitude. We are able to characterise the ambient seismic wavefield: investigating the influence of station deployment geometry, deployment and processing protocols, and ocean and atmospheric conditions on the amplitude and frequency content of the signals derived from correlated waveforms. We also investigate the potential of using diffuse seismic sources from a highway and railway using ambient energy techniques. We find that, in this ocean-dominated island setting, a correlated signal of sufficient strength to model for structure is obtained in a few days. The relationship between station separation and the dominant wavelengths in the correlated signals places a minimum limit on station separations which are usable with standard modelling techniques. Hence, in this environment, crustal imaging may be best carried out using deployments with overlapping, frequently moved (or numerous and short-deployed), sets of station pairs. The potential for using cultural noise sources is limited by the dominance of the natural noise sources in the ambient wavefield.

  14. Elastic Wave Radiation from a Line Source of Finite Length

    SciTech Connect

    Aldridge, D.F.

    1998-11-04

    Straightforward algebraic expressions describing the elastic wavefield produced by a line source of finite length are derived in circular cylindrical coordinates. The surrounding elastic medium is assumed to be both homogeneous and isotropic, anc[ the source stress distribution is considered axisymmetic. The time- and space-domain formulae are accurate at all distances and directions from the source; no fa-field or long-wavelength assumptions are adopted for the derivation. The mathematics yield a unified treatment of three different types of sources: an axial torque, an axial force, and a radial pressure. The torque source radiates only azirnuthally polarized shear waves, whereas force and pressure sources generate simultaneous compressional and shear radiation polarized in planes containing the line source. The formulae reduce to more familiar expressions in the two limiting cases where the length of the line source approaches zero and infinity. Far-field approximations to the exact equations indicate that waves radiated parallel to the line source axI.s are attenuated relative to those radiated normal to the axis. The attenuation is more severe for higher I?equencies and for lower wavespeeds. Hence, shear waves are affected more than compressional waves. This fi-equency- and directiondependent attenuation is characterized by an extremely simple mathematical formula, and is readily apparent in example synthetic seismograms.

  15. Polycrystalline gamma plutonium's elastic moduli versus temperature

    SciTech Connect

    Migliori, Albert; Betts, J; Trugman, A; Mielke, C H; Mitchell, J N; Ramos, M; Stroe, I

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  16. Elastically Decoupling Dark Matter

    NASA Astrophysics Data System (ADS)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10-3- 1 fb range.

  17. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range. PMID:27314712

  18. An efficient Matlab script to calculate heterogeneous anisotropically elastic wave propagation in three dimensions

    USGS Publications Warehouse

    Boyd, O.S.

    2006-01-01

    We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Modal investigation of elastic anisotropy in shallow-water environments: anisotropy beyond vertical transverse isotropy.

    PubMed

    Soukup, Darin J; Odom, Robert I; Park, Jeffrey

    2013-07-01

    Theoretical and numerical results are presented for modal characteristics of the seismo-acoustic wavefield in anisotropic range-independent media. General anisotropy affects the form of the elastic-stiffness tensor, particle-motion polarization, the frequency and angular dispersion curves, and introduces near-degenerate modes. Horizontally polarized particle motion (SH) cannot be ignored when anisotropy is present for low-frequency modes having significant bottom interaction. The seismo-acoustic wavefield has polarizations in all three coordinate directions even in the absence of any scattering or heterogeneity. Even weak anisotropy may have a significant impact on seismo-acoustic wave propagation. Unlike isotropic and transversely isotropic media with a vertical symmetry axis where acoustic signals comprise P-SV modes alone (in the absence of any scattering), tilted TI media allow both quasi-P-SV and quasi-SH modes to carry seismo-acoustic energy. Discrete modes for an anisotropic medium are best described as generalized P-SV-SH modes with polarizations in all three Cartesian directions. Conversion to SH is a loss that will mimic acoustic attenuation. An in-water explosion will excite quasi-SH. PMID:23862797

  20. An efficient Matlab script to calculate heterogeneous anisotropically elastic wave propagation in three dimensions

    NASA Astrophysics Data System (ADS)

    Boyd, Oliver S.

    2006-03-01

    We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available.

  1. A parallel mixed 3D grid/explicit FEM scheme for computing elastic wave propagation on a GPU using an irregular mesh

    NASA Astrophysics Data System (ADS)

    Cherry, Matthew R.; Aldrin, John C.; Boehnlein, Thomas; Blackshire, James L.

    2013-01-01

    In this work, a combined grid/FEM method that is capable of using parallelepiped or tetragonal mesh elements, as well as a combination of the two, is investigated. A formulation was developed that leverages the architecture of GPUs with irregular grids to efficiently address complex structures and heterogeneous materials. Benchmark studies are presented comparing the computational time, memory requirements, and simulation accuracy for GPU and CPU solvers with several challenge NDE problems.

  2. Linear elastic fracture mechanics primer

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher D.

    1992-07-01

    This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.

  3. Elastic Flows Of Ellipsoidal Particles

    NASA Astrophysics Data System (ADS)

    Campbell, Charles S.

    2009-06-01

    Granular flow rheology can be divided into two global regimes, the Elastic, which is dominated by force chains and the inertial which are nearly free of force chains. The propensity of a material to form force chains is strongly influenced by particle shape. This paper is an attempt to assess the effect of particle shape on flow regime transitions, through computer simulations of shear flow of ellipsoidal particles. On one hand, the results show that at a given concentration, ellipsoidal particles generate smaller quasistatic stress than spheres, likely a result of their ability to form denser static packings. But at the same time, large aspect ratio ellipsoids more readily form force chains and demonstrate Elastic behavior at smaller concentrations than spheres.

  4. Linear elastic fracture mechanics primer

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.

    1992-01-01

    This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.

  5. Leveraging Cloud Technology to Provide a Responsive, Reliable and Scalable Backend for the Virtual Ice Sheet Laboratory Using the Ice Sheet System Model and Amazon's Elastic Compute Cloud

    NASA Astrophysics Data System (ADS)

    Perez, G. L.; Larour, E. Y.; Halkides, D. J.; Cheng, D. L. C.

    2015-12-01

    The Virtual Ice Sheet Laboratory(VISL) is a Cryosphere outreach effort byscientists at the Jet Propulsion Laboratory(JPL) in Pasadena, CA, Earth and SpaceResearch(ESR) in Seattle, WA, and the University of California at Irvine (UCI), with the goal of providing interactive lessons for K-12 and college level students,while conforming to STEM guidelines. At the core of VISL is the Ice Sheet System Model(ISSM), an open-source project developed jointlyat JPL and UCI whose main purpose is to model the evolution of the polar ice caps in Greenland and Antarctica. By using ISSM, VISL students have access tostate-of-the-art modeling software that is being used to conduct scientificresearch by users all over the world. However, providing this functionality isby no means simple. The modeling of ice sheets in response to sea and atmospheric temperatures, among many other possible parameters, requiressignificant computational resources. Furthermore, this service needs to beresponsive and capable of handling burst requests produced by classrooms ofstudents. Cloud computing providers represent a burgeoning industry. With majorinvestments by tech giants like Amazon, Google and Microsoft, it has never beeneasier or more affordable to deploy computational elements on-demand. This isexactly what VISL needs and ISSM is capable of. Moreover, this is a promisingalternative to investing in expensive and rapidly devaluing hardware.

  6. Elastic internal flywheel gimbal

    SciTech Connect

    Rabenhorst, D.W.

    1981-01-13

    An elastic joint mounting and rotatably coupling a rotary inertial energy storage device or flywheel, to a shaft, the present gimbal structure reduces vibration and shock while allowing precession of the flywheel without the need for external gimbal mounts. The present elastic joint usually takes the form of an annular elastic member either integrally formed into the flywheel as a centermost segment thereof or attached to the flywheel or flywheel hub member at the center thereof, the rotary shaft then being mounted centrally to the elastic member.

  7. User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W. H.; Stagliano, T. R.; Witmer, E. A.; Spilker, R. L.

    1978-01-01

    These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included.

  8. Estimation of In vivo Cancellous Bone Elasticity

    NASA Astrophysics Data System (ADS)

    Otani, Takahiko; Mano, Isao; Tsujimoto, Toshiyuki; Yamamoto, Tadahito; Teshima, Ryota; Naka, Hiroshi

    2009-07-01

    The effect of decreasing bone density (a symptom of osteoporosis) is greater for cancellous bone than for dense cortical bone, because cancellous bone is metabolically more active. Therefore, the bone density or bone mineral density of cancellous bone is generally used to estimate the onset of osteoporosis. Elasticity or elastic constant is a fundamental mechanical parameter and is directly related to the mechanical strength of bone. Accordingly, elasticity is a preferable parameter for assessing fracture risk. A novel ultrasonic bone densitometer LD-100 has been developed to determine the mass density and elasticity of cancellous bone with a spatial resolution comparable to that of peripheral quantitative computed tomography. Bone density and bone elasticity are evaluated using ultrasonic parameters based on fast and slow waves in cancellous bone by modeling the ultrasonic wave propagation path. Elasticity is deduced from the measured bone density and the propagation speed of the fast wave. Thus, the elasticity of cancellous bone is approximately expressed by a cubic equation of bone density.

  9. Elastic properties of minerals

    SciTech Connect

    Aleksandrov, K.S.; Prodaivoda, G.T.

    1993-09-01

    Investigations of the elastic properties of the main rock-forming minerals were begun by T.V. Ryzhova and K.S. Aleksandrov over 30 years ago on the initiative of B.P. Belikov. At the time, information on the elasticity of single crystals in general, and especially of minerals, was very scanty. In the surveys of that time there was information on the elasticity of 20 or 30 minerals. These, as a rule, did not include the main rock-forming minerals; silicates were represented only by garnets, quartz, topaz, tourmaline, zircon, beryl, and staurolite, which are often found in nature in the form of large and fairly high-quality crystals. Then and even much later it was still necessary to prove a supposition which now seems obvious: The elastic properties of rocks, and hence the velocities of elastic (seismic) waves in the earth`s crust, are primarily determined by the elastic characteristics of the minerals composing these rocks. Proof of this assertion, with rare exceptions of mono-mineralic rocks (marble, quartzite, etc.) cannot be obtained without information on the elasticities of a sufficiently large number of minerals, primarily framework, layer, and chain silicates which constitute the basis of most rocks. This also served as the starting point and main problem of the undertakings of Aleksandrov, Ryzhova, and Belikov - systematic investigations of the elastic properties of minerals and then of various rocks. 108 refs., 7 tabs.

  10. Postinstability models in elasticity

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1984-01-01

    It is demonstrated that the instability caused by the failure of hyperbolicity in elasticity and associated with the problem of unpredictability in classical mechanics expresses the incompleteness of the original model of an elastic medium. The instability as well as the ill-posedness of the Cauchy problem are eliminated by reformulating the original model.

  11. Elastic limit of silicane.

    PubMed

    Peng, Qing; De, Suvranu

    2014-10-21

    Silicane is a fully hydrogenated silicene-a counterpart of graphene-having promising applications in hydrogen storage with capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on density functional theory. We illustrate that non-linear elastic behavior is prominent in two-dimensional nanomaterials as opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag, and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear elastic response. The limitation of second, third, fourth, and fifth order elastic constants are in the strain range of 0.02, 0.08, and 0.13, and 0.21, respectively. The pressure effect on the second order elastic constants and Poisson's ratio were predicted from the third order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions and properties of silicane monolayers. PMID:25190587

  12. Seismic imaging of crust and upper mantle structure in western North America via surface wave inversion and wavefield depropagation

    NASA Astrophysics Data System (ADS)

    Stachnik, Joshua C.

    Surface wave analysis of both earthquake and ambient noise seismic data from arrays of broadband seismic stations provides new high resolution images of shear wave velocity of the crust and upper mantle in western North America. In the Yellowstone Hotspot region, new constraints are shown on the high velocity midcrustal layer of the eastern Snake River Plain that represents approximately 10 km of magmatic thickening and subsequent forcing of lower crustal outflow. In the Coast Mountain Batholith area of western British Columbia, the lack of a significant region of high velocities in the lower crust indicates that the foundering of negatively buoyant eclogitic lower crust has been efficient. A high resolution shear velocity model of the Sierra Nevada batholith region finds crustal thickening beneath the batholith, sinking material beneath the central Sierras with adjacent upwelling asthenospheric mantle, and the new image suggests that the Isabella (San Joaquin Valley) anomaly has a quasi-planar NW-SE striking geometry perhaps more consistent with being a Monterey plate slab remnant than an eclogite dominated feature. In addition to the surface wave results, new constraints are found on the sharpness of the 410-km velocity discontinuity via the wave-field continuation approach applied to five regional earthquakes in western North America. The 410-km discontinuity gradient ranges from 7-25 km, indicating the presence of water atop the transition zone in the two regions with large 410 km discontinuity gradient widths.

  13. Proton Nucleus Elastic Scattering Data.

    Energy Science and Technology Software Center (ESTSC)

    1993-08-18

    Version 00 The Proton Nucleus Elastic Scattering Data file PNESD contains the numerical data and the related bibliography for the differential elastic cross sections, polarization and integral nonelastic cross sections for elastic proton-nucleus scattering.

  14. Wavefield Analysis of Rayleigh Waves for Near-Surface Shear-Wave Velocity

    NASA Astrophysics Data System (ADS)

    Zeng, Chong

    2011-12-01

    Shear (S)-wave velocity is a key property of near-surface materials and is the fundamental parameter for many environmental and engineering geophysical studies. Directly acquiring accurate S-wave velocities from a seismic shot gather is usually difficult due to the poor signal-to-noise ratio. The relationship between Rayleigh-wave phase velocity and frequency has been widely utilized to estimate the S-wave velocities in shallow layers using the multichannel analysis of surface waves (MASW) technique. Hence, Rayleigh wave is a main focus of most near-surface seismic studies. Conventional dispersion analysis of Rayleigh waves assumes that the earth is laterally homogeneous and the free surface is horizontally flat, which limits the application of surface-wave methods to only 1D earth models or very smooth 2D models. In this study I extend the analysis of Rayleigh waves to a 2D domain by employing the 2D full elastic wave equation so as to address the lateral heterogeneity problem. I first discuss the accurate simulation of Rayleigh waves through finite-difference method and the boundary absorbing problems in the numerical modeling with a high Poisson's ratio (> 0.4), which is a unique near-surface problem. Then I develop an improved vacuum formulation to generate accurate synthetic seismograms focusing on Rayleigh waves in presence of surface topography and internal discontinuities. With these solutions to forward modeling of Rayleigh waves, I evaluate the influence of surface topography to conventional dispersion analysis in 2D and 3D domains by numerical investigations. At last I examine the feasibility of inverting waveforms of Rayleigh waves for shallow S-wave velocities using a genetic algorithm. Results of the study show that Rayleigh waves can be accurately simulated in near surface using the improved vacuum formulation. Spurious reflections during the numerical modeling can be efficiently suppressed by the simplified multiaxial perfectly matched layers. The

  15. Locating the Origin of Scattered Waves By Simulating Time Reversal of the Seismic Wavefield

    NASA Astrophysics Data System (ADS)

    Myers, S. C.; Pitarka, A.; Sjogreen, B.; Petersson, A.; Simmons, N. A.; Johannesson, G.

    2014-12-01

    The Source Physics Experiment (SPE) is a series of underground chemical explosions at the Nevada National Security Site (NNSS) that are improving our physical understanding how explosion sources generate seismic waves. Better understanding the origin of S-waves from explosions is a primary goal of the SPE. Even at distances of a few kilometers from the SPE sources, seismic recordings include arrivals of unknown origin that could originate as S-waves at the explosive source or from topographic and subsurface scatterers. Back propagation of time reversed seismograms has been used to determine the location of seismic events (e.g. Tromp et al., 2005; Larmat et al., 2006), and Myers et al. (2007) demonstrated that the time-reversal method can be used to determine the origin of direct and scattered waves in seismic simulations. In this study we identify the origin of distinct features in synthetic seismograms that are generated by elastic, finite-difference simulation of seismic propagation from SPE explosions through a model that has been developed specifically for the SPE. The SPE model includes 3-dimensional velocity discontinuities at geologic boundaries, as well as free-surface topography. Although the largest arrivals in the synthetic seismograms are expected to originate at the explosion source, other prominent features are likely to originate as scattered energy from model discontinuities. Scattering sources in the SPE model that are needed in order to match synthetic seismograms to field recordings of SPE shots will be identified. Conversely, model structures may be removed if they result in disagreement between synthetic seismograms and field recordings. Ultimately, we plan to constrain the origin of prominent features in field recordings of SPE shots by directly using the field recordings as inputs to time reversal simulations. Direct use of field recordings will require development of methods that account for the uncertainty of the seismic model through which

  16. Sub-wavelength energy trapping of elastic waves in a metamaterial.

    PubMed

    Colombi, Andrea; Roux, Philippe; Rupin, Matthieu

    2014-08-01

    Deep sub-wavelength focusing has been demonstrated for locally resonant metamaterials using electromagnetic and acoustic waves. The elastic equivalents of such objects are made of sub-wavelength resonating beams fixed to a two-dimensional plate, as presented here. Independent of a random or regular arrangement of the resonators, the metamaterial shows large bandgaps that are independent of the incident wave direction. Numerical simulations demonstrate that the insertion of a defect in the layout, as a shorter resonator, creates strong amplification of the wave-field on the defect. This energy trapping, which is localized on a spatial scale that is much smaller than the wavelength in the two-dimensional plate, leads to a >1 factor in terms of the local density of energy. PMID:25096146

  17. On granular elasticity

    PubMed Central

    Sun, Qicheng; Jin, Feng; Wang, Guangqian; Song, Shixiong; Zhang, Guohua

    2015-01-01

    Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour. PMID:25951049

  18. Elastic membranes in confinement

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Miksis, Michael; Davis, Stephen

    2014-11-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.

  19. Mechanism of Resilin Elasticity

    PubMed Central

    Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.

    2012-01-01

    Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127

  20. Accuracy and efficiency considerations for wide-angle wavefield extrapolators and scattering operators

    NASA Astrophysics Data System (ADS)

    Thomson, C. J.

    2005-10-01

    Several observations are made concerning the numerical implementation of wide-angle one-way wave equations, using for illustration scalar waves obeying the Helmholtz equation in two space dimensions. This simple case permits clear identification of a sequence of physically motivated approximations of use when the mathematically exact pseudo-differential operator (PSDO) one-way method is applied. As intuition suggests, these approximations largely depend on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow-angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so-called `standard-ordering' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane-wave synthesis lying at the heart of the calculations. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one-way propagator for the laterally varying case, representing the intuitive extension of classical integral-transform solutions for a laterally homogeneous medium. This exponential propagator permits larger forward stepsizes. Numerical comparisons with Helmholtz (i.e. full) wave-equation finite-difference solutions are presented for various canonical problems. These include propagation along an interfacial gradient, the effects of a compact inclusion and the formation of extended transmitted and backscattered wave trains by model roughness. The ideas extend to the 3-D, generally anisotropic case and to multiple scattering by invariant embedding. It is concluded that the method is very competitive, striking a new balance between simplifying approximations and computational labour. Complicated wave-scattering effects are retained without the need for expensive global solutions, providing a robust and flexible modelling tool.

  1. Deflation of elastic surfaces

    NASA Astrophysics Data System (ADS)

    Quilliet, Catherine; Quemeneur, François; Marmottant, Philippe; Imhof, Arnout; Pépin-Donat, Brigitte; van Blaaderen, Alfons

    2010-03-01

    The deflation of elastic spherical surfaces has been numerically investigated, and show very different types of deformations according the range of elastic parameters, some of them being quantitatively explained through simple calculations. This allows to retrieve various shapes observed on hollow shells (from colloidal to centimeter scale), on lipid vesicles, or on some biological objects. The extension of this process to other geometries allows to modelize vegetal objects such as the ultrafast trap of carnivorous plants.

  2. Iterative Multiparameter Elastic Waveform Inversion Using Prestack Time Imaging and Kirchhoff approximation

    NASA Astrophysics Data System (ADS)

    Khaniani, Hassan

    boundary condition of the wave equation is set up along reflection surfaces. Hence, the surface integral Kirchhoff approximation is used as a mathematical framework instead of the volume integral of the Born approximation. In addition, I study the feasibility of iterative coupling of ray theory with the Kirchhoff approximation for inversion. For the amplitude considerations, the direct relationship between the scattering potential of the Born approximation with the reflectivity function of the asymptotic Kirchhoff approximation for elastic waves is used. Therefore, I use the linearized Zoeppritz approximation of Aki and Richards (1980) for computation of the forward modeling and migration operators as well as gradient function from Amplitude vs Offset (AVO) inversion. The multiparameter elastic inversion approach is applicable to all types of reflected wavefields such as P-to-P, P-to-S, S-to-S and S-to-P. Traveltime estimation of forward modeling and migration/inversion operators are based on the DSR equation. All operators involved in inversion, including the background model for DSR and AVO are updated at each iteration. The migration/inversion procedure maps the mode converted waves to the traveltime of incident waves which fixes the registration problem of events that travel from source to scatter point. The inversion of the reflected P-to-P and P-to-S synthetic and field data are provided for the numerical examples. This approach is applicable for complex structures however, to estimate the traveltime of scatterpoints, ray tracing can be added to the algorithm. For such a medium, the scatterpoint traveltime approximations from the PSTM, is compared to the PSDM approach using numerical analysis of ray- and FDTD-based modeling. In part of this thesis, I further improve the conventional velocity analysis of Common Scatter Point (CSP) gathers by including the tilt effects. I show that travel time response of scatter points beneath a dipping interface experiences an

  3. Elastic Collisions and Gravity

    NASA Astrophysics Data System (ADS)

    Ball, Steven

    2009-04-01

    Elastic collisions are fascinating demonstrations of conservation principles. The mediating force must be conservative in an elastic collision. Truly elastic collisions take place only when the objects in collision do not touch, e.g. magnetic bumpers on low friction carts. This requires that we define a collision as a momentum transfer. Elastic collisions in 1-D can be solved in general and the implications are quite remarkable. For example, a heavy object moving initially towards a light object followed by an elastic collision results in a final velocity of the light object greater than either initial velocity. This is easily demonstrated with low friction carts. Gravitational elastic collisions involving a light spacecraft and an extremely massive body like a moon or planet can be approximated as 1-D collisions, such as the ``free return'' trajectory of Apollo 13 around the moon. The most fascinating gravitational collisions involve the gravitational slingshot effect used to boost spacecraft velocities. The maximum gravitational slingshot effect occurs when approaching a nearly 1-D collision, revealing that the spacecraft can be boosted to greater than twice the planet velocity, enabling the spacecraft to travel much further away from the Sun.

  4. Waveform Inversion of OBS Data and Illumination/Resolution Analyses on Marine Seismic Data Acquisitions by the Adjoint Wavefield Method

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, K.

    2012-12-01

    We applied a wave-equation based adjoint wavefield method for seismic illumination/resolution analyses and full waveform inversion. A two-way wave-equation is used to calculate directional and diffracted energy fluxes for waves propagating between sources and receivers to the subsurface target. The first-order staggered-grid pressure-velocity formulation, which lacks the characteristic of being self-adjoint is further validated and corrected to render the modeling operator before its practical application. Despite most published papers on synthetic kernel research, realistic applications to two field experiments are demonstrated and emphasize its practical needs. The Fréchet sensitivity kernels are used to quantify the target illumination conditions. For realistic illumination measurements and resolution analyses, two completely different survey geometries and nontrivial pre-conditioning strategies based on seismic data type are demonstrated and compared. From illumination studies, particle velocity responses are more sensitive to lateral velocity variations than pressure records. For waveform inversion, the more accurately estimated velocity model obtained the deeper the depth of investigation would be reached. To achieve better resolution and illumination, closely spaced OBS receiver interval is preferred. Based on the results, waveform inversion is applied for a gas hydrate site in Taiwan for shallow structure and BSR detection. Full waveform approach potentially provides better depth resolution than ray approach. The quantitative analyses, a by-product of full waveform inversion, are useful for quantifying seismic processing and depth migration strategies.llumination/resolution analysis for a 3D MCS/OBS survey in 2008. Analysis of OBS data shows that pressure (top), horizontal (middle) and vertical (bottom) velocity records produce different resolving power for gas hydrate exploration. ull waveform inversion of 8 OBS data along Yuan-An Ridge in SW Taiwan

  5. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  6. Multi-component elastic reverse time migration based on the P- and S-wave separated velocity-stress equations

    NASA Astrophysics Data System (ADS)

    Gu, Bingluo; Li, Zhiyuan; Ma, Xiaona; Liang, Guanghe

    2015-01-01

    The vector P- and S-seismograms in an elastic common-shot gather generated with a P-wave source in a two-dimensional model using a finite difference solution of the P- and S-wave separated velocity-stress equations can be imaged by two independent ERTMs based on the same equations. The inputs as boundary conditions for reverse-time extrapolation are the pure vector P- and S-waves, respectively. The vector P-wave image components can be obtained by the normalized correlation operation between the vector P-source wavefields and receiver wavefields, which are obtained by extrapolating the vector P-seismograms in reverse-time using the same equations as the forward modeling. The vector S-wave image components can be obtained by a similar method. Compared with the conventional ERTM, this method can minimize the artifacts caused by the crosstalk between different wave modes and can preserve the phase and amplitude attributes of migration images very well. Furthermore, the polarity-reversal of the vector S-wave data can be corrected automatically during the imaging process, so destructive interferences between data from adjacent sources do not exist. Numerical examples with synthetic data have demonstrated the feasibility and effectiveness of this method for complex structures.

  7. Quantum Critical Elasticity

    NASA Astrophysics Data System (ADS)

    Zacharias, Mario; Paul, Indranil; Garst, Markus

    2015-07-01

    We discuss elastic instabilities of the atomic crystal lattice at zero temperature. Because of long-range shear forces of the solid, at such transitions the phonon velocities vanish, if at all, only along certain crystallographic directions, and, consequently, the critical phonon fluctuations are suppressed to a lower dimensional manifold and governed by a Gaussian fixed point. In the case of symmetry-breaking elastic transitions, a characteristic critical phonon thermodynamics arises that is found, e.g., to violate Debye's T3 law for the specific heat. We point out that quantum critical elasticity is triggered whenever a critical soft mode couples linearly to the strain tensor. In particular, this is relevant for the electronic Ising-nematic quantum phase transition in a tetragonal crystal as discussed in the context of certain cuprates, ruthenates, and iron-based superconductors.

  8. Mechanics of elastic networks

    PubMed Central

    Norris, Andrew N.

    2014-01-01

    We consider a periodic lattice structure in d=2 or 3 dimensions with unit cell comprising Z thin elastic members emanating from a similarly situated central node. A general theoretical approach provides an algebraic formula for the effective elasticity of such frameworks. The method yields the effective cubic elastic constants for three-dimensional space-filling lattices with Z=4, 6, 8, 12 and 14, the last being the ‘stiffest’ lattice proposed by Gurtner & Durand (Gurtner & Durand 2014 Proc. R. Soc. A 470, 20130611. (doi:10.1098/rspa.2013.0611)). The analytical expressions provide explicit formulae for the effective properties of pentamode materials, both isotropic and anisotropic, obtained from the general formulation in the stretch-dominated limit for Z=d+1. PMID:25484608

  9. An elastic second skin.

    PubMed

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G; Sakamoto, Fernanda H; Gilchrest, Barbara A; Anderson, R Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings. PMID:27159017

  10. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  11. Quantum Critical Elasticity.

    PubMed

    Zacharias, Mario; Paul, Indranil; Garst, Markus

    2015-07-10

    We discuss elastic instabilities of the atomic crystal lattice at zero temperature. Because of long-range shear forces of the solid, at such transitions the phonon velocities vanish, if at all, only along certain crystallographic directions, and, consequently, the critical phonon fluctuations are suppressed to a lower dimensional manifold and governed by a Gaussian fixed point. In the case of symmetry-breaking elastic transitions, a characteristic critical phonon thermodynamics arises that is found, e.g., to violate Debye's T(3) law for the specific heat. We point out that quantum critical elasticity is triggered whenever a critical soft mode couples linearly to the strain tensor. In particular, this is relevant for the electronic Ising-nematic quantum phase transition in a tetragonal crystal as discussed in the context of certain cuprates, ruthenates, and iron-based superconductors. PMID:26207483

  12. An elastic second skin

    NASA Astrophysics Data System (ADS)

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

  13. Coiling of Elastic Ropes

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Ribe, N. M.; Bonn, Daniel

    2007-10-01

    A rope falling onto a solid surface typically forms a series of regular coils. Here, we study this phenomenon using laboratory experiments (with cotton threads and softened spaghetti) and an asymptotic “slender-rope” numerical model. The excellent agreement between the two with no adjustable parameters allows us to determine a complete phase diagram for elastic coiling comprising three basic regimes involving different force balances (elastic, gravitational, and inertial) together with resonant “whirling string” and “whirling shaft” eigenmodes in the inertial regime.

  14. Dynamic Elasticity Model of Resilin Biopolymers

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Duki, Solomon

    2013-03-01

    Resilin proteins are `super elastic rubbers' in the flight and jumping systems of most insects, and can extend and retract millions of times. Natural resilin exhibits high resilience (> 95%) under high-frequency conditions, and could be stretched to over 300% of its original length with a low elastic modulus of 0.1-3 MPa. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. We report on the dynamic structure transitions and functions of full length resilin from fruit fly (D. melanogaster CG15920) and its different functional domains. A dynamic computational model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for resilins, as well as other elastomeric proteins. A strong beta-turn transition was experimentally identified in the full length resilin and its non-elastic domains (Exon III). Changes in periodic long-range order were demonstrated during this transition, induced either by thermal or mechanical inputs, to confirm the universality of proposed mechanism. Further, this model offers new options for designing protein-based biopolymers with tunable material applications.

  15. Vascular elastic photoacoustic tomography in humans

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2016-03-01

    Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.

  16. Geometry of the Farallon Slab Revealed by Joint Interpretation of Wavefield Imaging and Tomography Results from the Earthscope Transportable Array

    NASA Astrophysics Data System (ADS)

    Pavlis, G. L.; Wang, Y.

    2015-12-01

    A significant number of P and S wave tomography models have been produced in the past decade using various subsets of data from the Earthscope USArray and different inversion algorithms. We focus here on published tomography results that span large portions of the final footprint of the USArray. We use 3D visualization techniques to search for common features in different tomography models. We also compare tomography results to features seen in our current generation wavefield images. Recent innovations of our plane wave migration method have yielded what is arguably the highest resolution image ever produced of the mantle in the vicinity of the transition zone. The new results reveal a rich collection of coherent, dipping structures seen throughout the upper mantle and transition zone. These dipping interfaces are judged significant according to a coherence metric. We treat these surfaces as strain markers to assess proposed models for geometry of the 3D geometry of the Farallon Slab under North America. We find the following geologic interpretations are well supported by independent results: 1. The old Farallon under eastern North America and below the base of transition zone is universally seen as a high velocity anomaly. 2. All results support a simple, 3D kinematic model of the updip limit of the Farallon slab window that follows a track from Cape Mendocino, across Nevada, and northern Arizona and New Mexico. 3. All models show a strong low-velocity mantle under the southwestern U.S. 4. A low-velocity features is universally seen related to the Yellowstone-Snake River system. Shorter wavelength features observed in different tomography models are inconsistent showing that the theme of this session is very important to understand what features are in current results are real. Isopach maps of the thickness of the transition show a systematic difference in transition zone thickness in the western and eastern US. The transition zone thickens in the eastern US in

  17. Documentation of programs that compute 1) quasi-static tilts produced by an expanding dislocation loop in an elastic and viscoelastic material, and 2) surface shear stresses, strains, and shear displacements produced by screw dislocations in a vertical slab with modulus contrast

    USGS Publications Warehouse

    McHugh, Stuart

    1976-01-01

    The material in this report can be grouped into two categories: 1) programs that compute tilts produced by a vertically oriented expanding rectangular dislocation loop in an elastic or viscoelastic material and 2) programs that compute the shear stresses, strains, and shear displacements in a three-phase half-space (i.e. a half-space containing a vertical slab). Each section describes the relevant theory, and provides a detailed guide to the operation of the programs. A series of examples is provided at the end of each section.

  18. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  19. The Calculus of Elasticity

    ERIC Educational Resources Information Center

    Gordon, Warren B.

    2006-01-01

    This paper examines the elasticity of demand, and shows that geometrically, it may be interpreted as the ratio of two simple distances along the tangent line: the distance from the point on the curve to the x-intercept to the distance from the point on the curve to the y-intercept. It also shows that total revenue is maximized at the transition…

  20. The Law of Elasticity

    ERIC Educational Resources Information Center

    Cocco, Alberto; Masin, Sergio Cesare

    2010-01-01

    Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…

  1. Elastically tailored composite structures

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Elastically tailored composite structures using out-of-autoclave processes. Several unsymetric autoclave-cured and electron-beam-cured composite laminates are compared. Cantilevered beam (unbalanced/asymetric laminate) used to demonstrate bend-twist coupling effects. Photographed in building 1145, photographic studio.

  2. Hydrodynamic Elastic Magneto Plastic

    Energy Science and Technology Software Center (ESTSC)

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  3. Renormalization of curvature elastic constants for elastic and fluid membranes

    NASA Astrophysics Data System (ADS)

    Ami, S.; Kleinert, H.

    1987-02-01

    We study the fluctuations of membranes with area and curvature elasticity and calculate the renormalization of the curvature elastic constants due to thermal fluctuations. For the mean curvature elastic constant the result is the same as obtained previously for “ideal membranes” which resist only to curvature deformations. The renormalization of the gaussian curvature, on the other hand, depends on the elastic contants. In an incompressible membrane, it is five times weaker than in an ideal membrane.

  4. Elastic wave turbulence and intermittency

    NASA Astrophysics Data System (ADS)

    Chibbaro, Sergio; Josserand, Christophe

    2016-07-01

    We investigate the onset of intermittency for vibrating elastic plate turbulence in the framework of the weak wave turbulence theory using a numerical approach. The spectrum of the displacement field and the structure functions of the fluctuations are computed for different forcing amplitudes. At low forcing, the spectrum predicted by the theory is observed, while the fluctuations are consistent with Gaussian statistics. When the forcing is increased, the spectrum varies at large scales, corresponding to the oscillations of nonlinear structures made of ridges delimited by d cones. In this regime, the fluctuations exhibit small-scale intermittency that can be fitted via a multifractal model. The analysis of the nonlinear frequency shows that the intermittency is linked to the breakdown of the weak turbulence at large scales only.

  5. Elastic wave turbulence and intermittency.

    PubMed

    Chibbaro, Sergio; Josserand, Christophe

    2016-07-01

    We investigate the onset of intermittency for vibrating elastic plate turbulence in the framework of the weak wave turbulence theory using a numerical approach. The spectrum of the displacement field and the structure functions of the fluctuations are computed for different forcing amplitudes. At low forcing, the spectrum predicted by the theory is observed, while the fluctuations are consistent with Gaussian statistics. When the forcing is increased, the spectrum varies at large scales, corresponding to the oscillations of nonlinear structures made of ridges delimited by d cones. In this regime, the fluctuations exhibit small-scale intermittency that can be fitted via a multifractal model. The analysis of the nonlinear frequency shows that the intermittency is linked to the breakdown of the weak turbulence at large scales only. PMID:27575068

  6. Quantifying wave-breaking dissipation using nonlinear phase-resolved wave-field simulations with a phenomenological-based wave breaking model

    NASA Astrophysics Data System (ADS)

    Qi, Yusheng; Yue, Dick

    2015-11-01

    We use direct nonlinear phase-resolved simulations based on a High-Order Spectral (HOS) method (Dommermuth & Yue 1987) to understand and quantify wave-breaking dissipation in the evolution of general irregular short-crested wave-fields. We achieve this by incorporating a robust phenomenological-based wave breaking model in HOS simulations to account for energy dissipation. This model can automatically simulate the onset of wave breaking, and the simulated wave-breaking dissipation strength differentiates corresponding to different wave breaking type (such as spilling or plunging breaking waves). The efficacy of this model is confirmed by direct comparisons against measurements for the energy loss in 2D and 3D breaking events. By comparing simulated wave-fields with and without the dissipation model in HOS, we obtain the dissipation field, which provides the times, locations and intensity of wave breaking events. From the dissipation field we further calculate the distribution of total length of breaking wave front per unit surface area per unit increment of breaking velocity (Phillips 1985), and obtain qualitative agreement with Phillips theoretical power-law.

  7. Frequency dependent elastic impedance inversion for interstratified dispersive elastic parameters

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao; Wu, Guochen

    2016-08-01

    The elastic impedance equation is extended to frequency dependent elastic impedance equation by taking partial derivative to frequency. With this equation as the forward solver, a practical frequency dependent elastic impedance inversion approach is presented to implement the estimation of the interstratified dispersive elastic parameters which makes full use of the frequency information of elastic impedances. Three main steps are included in this approach. Firstly, the elastic Bayesian inversion is implemented for the estimation of elastic impedances from different incident angle. Secondly, with those estimated elastic impedances, their variations are used to estimate P-wave velocity and S-wave velocity. Finally, with the prior elastic impedance and P-wave and S-wave velocity information, the frequency dependent elastic variation with incident angle inversion is presented for the estimation of the interstratified elastic parameters. With this approach, the interstratified elastic parameters rather than the interface information can be estimated, making easier the interpretation of frequency dependent seismic attributes. The model examples illustrate the feasibility and stability of the proposed method in P-wave velocity dispersion and S-wave velocity dispersion estimation. The field data example validates the possibility and efficiency in hydrocarbon indication of the estimated P-wave velocity dispersion and S-wave velocity dispersion.

  8. Elastic properties of hedenbergite

    NASA Astrophysics Data System (ADS)

    Kandelin, John; Weidner, Donald J.

    1988-02-01

    The single-crystal elastic moduli of hedenbergite (CaFeSi2O6) hare been measured at 20°C and 1 bar using Brillouin spectroscopy. The moduli are (in gigapascals): C11 = 222, C22 = 176, C23 = 249, C44 = 55, C55 = 63, C66 = 60, C12 = 69, C13 = 79, C33, = 86, C15 = 12, C25 = 13, C35 = 26, C46 = -10. The comparison of elastic properties among Mg-Fe-Ca bearing pyroxenes, known as quadrilateral pyroxenes, reveals only weak variations with changes in composition. Of the four quadrilateral pyroxenes, orthoferrosilite has elastic properties distinctive from the others. The principal differences among these pyroxenes are due to subtle structural differences. In particular, the mechanical linkage between the M2 polyhedral chains in clinopyroxenes enhances the importance of the cation in this site. In contrast to the orthopyroxenes, the aggregate shear modulus μ of the calcium-bearing clinopyroxenes (diopside and hedenbergite) exhibits no dependence on the amount of iron (Fe2+) present in the structure, while the ratio K/μ does. As a result, the compressional and shear acoustic velocities of the calcium-bearing clinopyroxenes show a smaller dependency on iron content than do the orthopyroxenes.

  9. Elastic properties of gamma-Pu by resonant ultrasound spectroscopy

    SciTech Connect

    Migliori, Albert; Betts, J; Trugman, A; Mielke, C H; Mitchell, J N; Ramos, M; Stroe, I

    2009-01-01

    Despite intense experimental and theoretical work on Pu, there is still little understanding of the strange properties of this metal. We used resonant ultrasound spectroscopy method to investigate the elastic properties of pure polycrystalline Pu at high temperatures. Shear and longitudinal elastic moduli of the {gamma}-phase of Pu were determined simultaneously and the bulk modulus was computed from them. A smooth linear and large decrease of all elastic moduli with increasing temperature was observed. We calculated the Poisson ratio and found that it increases from 0.242 at 519K to 0.252 at 571K.

  10. Elastic regimes of subisostatic athermal fiber networks

    NASA Astrophysics Data System (ADS)

    Licup, A. J.; Sharma, A.; MacKintosh, F. C.

    2016-01-01

    Athermal models of disordered fibrous networks are highly useful for studying the mechanics of elastic networks composed of stiff biopolymers. The underlying network architecture is a key aspect that can affect the elastic properties of these systems, which include rich linear and nonlinear elasticity. Existing computational approaches have focused on both lattice-based and off-lattice networks obtained from the random placement of rods. It is not obvious, a priori, whether the two architectures have fundamentally similar or different mechanics. If they are different, it is not clear which of these represents a better model for biological networks. Here, we show that both approaches are essentially equivalent for the same network connectivity, provided the networks are subisostatic with respect to central force interactions. Moreover, for a given subisostatic connectivity, we even find that lattice-based networks in both two and three dimensions exhibit nearly identical nonlinear elastic response. We provide a description of the linear mechanics for both architectures in terms of a scaling function. We also show that the nonlinear regime is dominated by fiber bending and that stiffening originates from the stabilization of subisostatic networks by stress. We propose a generalized relation for this regime in terms of the self-generated normal stresses that develop under deformation. Different network architectures have different susceptibilities to the normal stress but essentially exhibit the same nonlinear mechanics. Such a stiffening mechanism has been shown to successfully capture the nonlinear mechanics of collagen networks.

  11. Elastic regimes of subisostatic athermal fiber networks.

    PubMed

    Licup, A J; Sharma, A; MacKintosh, F C

    2016-01-01

    Athermal models of disordered fibrous networks are highly useful for studying the mechanics of elastic networks composed of stiff biopolymers. The underlying network architecture is a key aspect that can affect the elastic properties of these systems, which include rich linear and nonlinear elasticity. Existing computational approaches have focused on both lattice-based and off-lattice networks obtained from the random placement of rods. It is not obvious, a priori, whether the two architectures have fundamentally similar or different mechanics. If they are different, it is not clear which of these represents a better model for biological networks. Here, we show that both approaches are essentially equivalent for the same network connectivity, provided the networks are subisostatic with respect to central force interactions. Moreover, for a given subisostatic connectivity, we even find that lattice-based networks in both two and three dimensions exhibit nearly identical nonlinear elastic response. We provide a description of the linear mechanics for both architectures in terms of a scaling function. We also show that the nonlinear regime is dominated by fiber bending and that stiffening originates from the stabilization of subisostatic networks by stress. We propose a generalized relation for this regime in terms of the self-generated normal stresses that develop under deformation. Different network architectures have different susceptibilities to the normal stress but essentially exhibit the same nonlinear mechanics. Such a stiffening mechanism has been shown to successfully capture the nonlinear mechanics of collagen networks. PMID:26871101

  12. Homogenization of Heterogeneous Elastic Materials with Applications to Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Vel, S. S.; Johnson, S. E.; Okaya, D. A.; Cook, A. C.

    2014-12-01

    The velocities of seismic waves passing through a complex Earth volume can be influenced by heterogeneities at length scales shorter than the seismic wavelength. As such, seismic wave propagation analyses can be performed by replacing the actual Earth volume by a homogeneous i.e., "effective", elastic medium. Homogenization refers to the process by which the elastic stiffness tensor of the effective medium is "averaged" from the elastic properties, orientations, modal proportions and spatial distributions of the finer heterogeneities. When computing the homogenized properties of a heterogeneous material, the goal is to compute an effective or bulk elastic stiffness tensor that relates the average stresses to the average strains in the material. Tensor averaging schemes such as the Voigt and Reuss methods are based on certain simplifying assumptions. The Voigt method assumes spatially uniform strains while the Reuss method assumes spatially uniform stresses within the heterogeneous material. Although they are both physically unrealistic, they provide upper and lower bounds for the actual homogenized elastic stiffness tensor. In order to more precisely determine the homogenized stiffness tensor, the stress and strain distributions must be computed by solving the three-dimensional equations of elasticity over the heterogeneous region. Asymptotic expansion homogenization (AEH) is one such structure-based approach for the comprehensive micromechanical analysis of heterogeneous materials. Unlike modal volume methods, the AEH method takes into account how geometrical orientation and alignment can increase elastic stiffness in certain directions. We use the AEH method in conjunction with finite element analysis to calculate the bulk elastic stiffnesses of heterogeneous materials. In our presentation, wave speeds computed using the AEH method are compared with those generated using stiffness tensors derived from commonly-used analytical estimates. The method is illustrated

  13. Nucleon elastic form factors

    SciTech Connect

    D. Day

    2007-03-01

    The nucleon form factors are still the subject of active investigation even after an experimental effort spanning 50 years. This is because they are of critical importance to our understanding of the electromagnetic properties of nuclei and provide a unique testing ground for QCD motivated models of nucleon structure. Progress in polarized beams, polarized targets and recoil polarimetry have allowed an important and precise set of data to be collected over the last decade. I will review the experimental status of elastic electron scattering from the nucleon along with an outlook for future progress.

  14. Dynamic Elastic Tides

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack; Meyer, Jennifer

    2016-04-01

    This is an exploration of dynamic tides on elastic bodies. The body is thought of as a dynamical system described by its modes of oscillation. The dynamics of these modes are governed by differential equations that depend on the rheology. The modes are damped by dissipation. Tidal friction occurs as exterior bodies excite the modes and the modes act back on the tide raising body. The whole process is governed by a closed set of differential equations. Standard results from tidal theory are recovered in a two-timescale approximation to the solution of these differential equations.

  15. Theory of epithelial elasticity

    NASA Astrophysics Data System (ADS)

    Krajnc, Matej; Ziherl, Primož

    2015-11-01

    We propose an elastic theory of epithelial monolayers based on a two-dimensional discrete model of dropletlike cells characterized by differential surface tensions of their apical, basal, and lateral sides. We show that the effective tissue bending modulus depends on the apicobasal differential tension and changes sign at the transition from the flat to the fold morphology. We discuss three mechanisms that stabilize the finite-wavelength fold structures: Physical constraint on cell geometry, hard-core interaction between non-neighboring cells, and bending elasticity of the basement membrane. We show that the thickness of the monolayer changes along the waveform and thus needs to be considered as a variable rather than a parameter. Next we show that the coupling between the curvature and the thickness is governed by the apicobasal polarity and that the amplitude of thickness modulation along the waveform is proportional to the apicobasal differential tension. This suggests that intracellular stresses can be measured indirectly by observing easily measurable morphometric parameters. We also study the mechanics of three-dimensional structures with cylindrical symmetry.

  16. Design guidance for elastic followup

    SciTech Connect

    Naugle, F.V.

    1983-01-01

    The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed.

  17. Scaling, elasticity, and CLPT

    NASA Technical Reports Server (NTRS)

    Brunelle, Eugene J.

    1994-01-01

    The first few viewgraphs describe the general solution properties of linear elasticity theory which are given by the following two statements: (1) for stress B.C. on S(sub sigma) and zero displacement B.C. on S(sub u) the altered displacements u(sub i)(*) and the actual stresses tau(sub ij) are elastically dependent on Poisson's ratio nu alone: thus the actual displacements are given by u(sub i) = mu(exp -1)u(sub i)(*); and (2) for zero stress B.C. on S(sub sigma) and displacement B.C. on S(sub u) the actual displacements u(sub i) and the altered stresses tau(sub ij)(*) are elastically dependent on Poisson's ratio nu alone: thus the actual stresses are given by tau(sub ij) = E tau(sub ij)(*). The remaining viewgraphs describe the minimum parameter formulation of the general classical laminate theory plate problem as follows: The general CLT plate problem is expressed as a 3 x 3 system of differential equations in the displacements u, v, and w. The eighteen (six each) A(sub ij), B(sub ij), and D(sub ij) system coefficients are ply-weighted sums of the transformed reduced stiffnesses (bar-Q(sub ij))(sub k); the (bar-Q(sub ij))(sub k) in turn depend on six reduced stiffnesses (Q(sub ij))(sub k) and the material and geometry properties of the k(sup th) layer. This paper develops a method for redefining the system coefficients, the displacement components (u,v,w), and the position components (x,y) such that a minimum parameter formulation is possible. The pivotal steps in this method are (1) the reduction of (bar-Q(sub ij))(sub k) dependencies to just two constants Q(*) = (Q(12) + 2Q(66))/(Q(11)Q(22))(exp 1/2) and F(*) - (Q(22)/Q(11))(exp 1/2) in terms of ply-independent reference values Q(sub ij); (2) the reduction of the remaining portions of the A, B, and D coefficients to nondimensional ply-weighted sums (with 0 to 1 ranges) that are independent of Q(*) and F(*); and (3) the introduction of simple coordinate stretchings for u, v, w and x,y such that the process is

  18. Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications

    NASA Astrophysics Data System (ADS)

    da Rosa Righi, Rodrigo; Facco Rodrigues, Vinicius; André da Costa, Cristiano; Kreutz, Diego; Heiss, Hans-Ulrich

    2015-10-01

    Elasticity is one of the key features of cloud computing. It allows applications to dynamically scale computing and storage resources, avoiding over- and under-provisioning. In high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks or key-value applications through a load balancer and a loosely-coupled set of virtual machine (VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled HPC applications, we observe the need of rewriting source codes, previous knowledge of the application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides, there are problems related to how profit this new feature in the HPC scope, since in MPI 2.0 applications the programmers need to handle communicators by themselves, and a sudden consolidation of a VM, together with a process, can compromise the entire execution. To address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts as a middleware that allows iterative HPC applications to take advantage of dynamic resource provisioning of cloud infrastructures without any major modification. AutoElastic provides a new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow applications to either increase or decrease their computing resources without blocking the current execution. The feasibility of AutoElastic is demonstrated through a prototype that runs a CPU-bound numerical integration application on top of the OpenNebula middleware. The results showed the saving of about 3 min at each scaling out operations, emphasizing the contribution of the new concept on contexts where seconds are precious.

  19. Elastic recoil detection

    NASA Astrophysics Data System (ADS)

    Bik, W. M. A.; Habraken, F. H. P. M.

    1993-07-01

    In elastic recoil detection (ERD) one determines the yield and energy of particles ejected out of the surface region of samples under MeV ion bombardment. By application of this surface and thin film analysis technique one can obtain quantitative information concerning the depth distribution of light elements in a sample to be analysed. The quantitativity and the depth resolving power are based on knowledge of the recoil cross section and the stopping power of high-energy ions in matter. This paper reviews the fundamentals of this technique and the various experimental methods for recoil identification. Furthermore, important features for material analysis, such as detection limits, depth resolution and elemental range are discussed. Some emphasis is put on the conversion of the spectral contribution of the elements to atomic concentrations in the films for several representative cases. Throughout the review numerous examples are given to illustrate the features of ERD and to demonstrate empirically the accuracy of the quantification method.

  20. Elastic instabilities in rubber

    NASA Astrophysics Data System (ADS)

    Gent, Alan

    2009-03-01

    Materials that undergo large elastic deformations can exhibit novel instabilities. Several examples are described: development of an aneurysm on inflating a rubber tube; non-uniform stretching on inflating a spherical balloon; formation of internal cracks in rubber blocks at a critical level of triaxial tension or when supersaturated with a dissolved gas; surface wrinkling of a block at a critical amount of compression; debonding or fracture of constrained films on swelling, and formation of ``knots'' on twisting stretched cylindrical rods. These various deformations are analyzed in terms of a simple strain energy function, using Rivlin's theory of large elastic deformations, and the results are compared with experimental measurements of the onset of unstable states. Such comparisons provide new tests of Rivlin's theory and, at least in principle, critical tests of proposed strain energy functions for rubber. Moreover the onset of highly non-uniform deformations has serious implications for the fatigue life and fracture resistance of rubber components. [4pt] References: [0pt] R. S. Rivlin, Philos. Trans. Roy. Soc. Lond. Ser. A241 (1948) 379--397. [0pt] A. Mallock, Proc. Roy. Soc. Lond. 49 (1890--1891) 458--463. [0pt] M. A. Biot, ``Mechanics of Incremental Deformations'', Wiley, New York, 1965. [0pt] A. N. Gent and P. B. Lindley, Proc. Roy. Soc. Lond. A 249 (1958) 195--205. [0pt] A. N. Gent, W. J. Hung and M. F. Tse, Rubb. Chem. Technol. 74 (2001) 89--99. [0pt] A. N. Gent, Internatl. J. Non-Linear Mech. 40 (2005) 165--175.

  1. Spatial Distributions of Local Elastic Moduli Near the Jamming Transition

    NASA Astrophysics Data System (ADS)

    Mizuno, Hideyuki; Silbert, Leonardo E.; Sperl, Matthias

    2016-02-01

    Recent progress on studies of the nanoscale mechanical responses in disordered systems has highlighted a strong degree of heterogeneity in the elastic moduli. In this contribution, using computer simulations, we study the elastic heterogeneities in athermal amorphous solids—composed of isotropic static sphere packings—near the jamming transition. We employ techniques based on linear response methods that are amenable to experimentation. We find that the local elastic moduli are randomly distributed in space and are described by Gaussian probability distributions, thereby lacking any significant spatial correlations, that persist all the way down to the transition point. However, the shear modulus fluctuations grow as the jamming threshold is approached, which is characterized by a new power-law scaling. Through this diverging behavior we are able to identify a characteristic length scale, associated with shear modulus heterogeneities, that distinguishes between bulk and local elastic responses.

  2. Spatial Distributions of Local Elastic Moduli Near the Jamming Transition.

    PubMed

    Mizuno, Hideyuki; Silbert, Leonardo E; Sperl, Matthias

    2016-02-12

    Recent progress on studies of the nanoscale mechanical responses in disordered systems has highlighted a strong degree of heterogeneity in the elastic moduli. In this contribution, using computer simulations, we study the elastic heterogeneities in athermal amorphous solids--composed of isotropic static sphere packings--near the jamming transition. We employ techniques based on linear response methods that are amenable to experimentation. We find that the local elastic moduli are randomly distributed in space and are described by Gaussian probability distributions, thereby lacking any significant spatial correlations, that persist all the way down to the transition point. However, the shear modulus fluctuations grow as the jamming threshold is approached, which is characterized by a new power-law scaling. Through this diverging behavior we are able to identify a characteristic length scale, associated with shear modulus heterogeneities, that distinguishes between bulk and local elastic responses. PMID:26919018

  3. The First Law of Elasticity

    ERIC Educational Resources Information Center

    Girill, T. R.

    1972-01-01

    The Boyle-Mariotte gas law was formulated in terms of pneumatic springs," subsumed by Hooke under his own stress-strain relation, and generally regarded as a law of elasticity. The subsequent development of Boyle's principle and elasticity provide thought-provoking test cases for Kuhn's notations of paradigm and puzzle solving in physics.…

  4. Singularity computations

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.

    1976-01-01

    An approach is described for singularity computations based on a numerical method for elastoplastic flow to delineate radial and angular distribution of field quantities and measure the intensity of the singularity. The method is applicable to problems in solid mechanics and lends itself to certain types of heat flow and fluid motion studies. Its use is not limited to linear, elastic, small strain, or two-dimensional situations.

  5. Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.

  6. Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.

  7. Singularity-free dislocation dynamics with strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr

    2014-08-01

    The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the

  8. Least-squares reverse-time migration with cost-effective computation and memory storage

    NASA Astrophysics Data System (ADS)

    Liu, Xuejian; Liu, Yike; Huang, Xiaogang; Li, Peng

    2016-06-01

    Least-squares reverse-time migration (LSRTM), which involves several iterations of reverse-time migration (RTM) and Born modeling procedures, can provide subsurface images with better balanced amplitudes, higher resolution and fewer artifacts than standard migration. However, the same source wavefield is repetitively computed during the Born modeling and RTM procedures of different iterations. We developed a new LSRTM method with modified excitation-amplitude imaging conditions, where the source wavefield for RTM is forward propagated only once while the maximum amplitude and its excitation-time at each grid are stored. Then, the RTM procedure of different iterations only involves: (1) backward propagation of the residual between Born modeled and acquired data, and (2) implementation of the modified excitation-amplitude imaging condition by multiplying the maximum amplitude by the back propagated data residuals only at the grids that satisfy the imaging time at each time-step. For a complex model, 2 or 3 local peak-amplitudes and corresponding traveltimes should be confirmed and stored for all the grids so that multiarrival information of the source wavefield can be utilized for imaging. Numerical experiments on a three-layer and the Marmousi2 model demonstrate that the proposed LSRTM method saves huge computation and memory cost.

  9. Hybrid approach for fast occlusion processing in computer-generated hologram calculation.

    PubMed

    Gilles, Antonin; Gioia, Patrick; Cozot, Rémi; Morin, Luce

    2016-07-10

    A hybrid approach for fast occlusion processing in computer-generated hologram calculation is studied in this paper. The proposed method is based on the combination of two commonly used approaches that complement one another: the point-source and wave-field approaches. By using these two approaches together, the proposed method thus takes advantage of both of them. In this method, the 3D scene is first sliced into several depth layers parallel to the hologram plane. Light scattered by the scene is then propagated and shielded from one layer to another using either a point-source or a wave-field approach according to a threshold criterion on the number of points within the layer. Finally, the hologram is obtained by computing the propagation of light from the nearest layer to the hologram plane. Experimental results reveal that the proposed method does not produce any visible artifact and outperforms both the point-source and wave-field approaches. PMID:27409327

  10. Preferred orientation and elastic anisotropy in shales.

    SciTech Connect

    Lonardelli, I.; Wenk, H.-R.; Ren, Y.; Univ. of California at Berkeley

    2007-03-01

    Anisotropy in shales is becoming an important issue in exploration and reservoir geophysics. In this study, the crystallographic preferred orientation of clay platelets that contributes to elastic anisotropy was determined quantitatively by hard monochromatic X-ray synchrotron diffraction in two different shales from drillholes off the coast of Nigeria. To analyze complicated diffraction images with five different phases (illite/smectite, kaolinite, quartz, siderite, feldspar) and many overlapping peaks, we applied a methodology based on the crystallographic Rietveld method. The goal was to describe the intrinsic physical properties of the sample (phase composition, crystallographic preferred orientation, crystal structure, and microstructure) and compute macroscopic elastic properties by averaging single crystal properties over the orientation distribution for each phase. Our results show that elastic anisotropy resulting from crystallographic preferred orientation of the clay particles can be determined quantitatively. This provides a possible way to compare measured seismic anisotropy and texture-derived anisotropy and to estimate the contribution of the low-aspect ratio pores aligned with bedding.

  11. Nonlinear elasticity of disordered fiber networks

    NASA Astrophysics Data System (ADS)

    Feng, Jingchen; Levine, Herbert; Mao, Xiaoming; Sander, Leonard M.

    One of the most striking mechanical properties in disordered biopolymer gels is strong nonlinearities. In the case of athermal gels (such as collagen- I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching dominated regime of elasticity. The physics of this crossover is related to the existence of a central-force isostatic point and to the small bending modulus for most gels. This crossover induces scaling behavior for the elastic moduli. In particular, for linear elasticity such a scaling law has been demonstrated by Broedersz et al. We generalize the scaling to the nonlinear regime with a two-parameter scaling law involving three critical exponents. We do numerical testing of the scaling law for two disordered lattice models, and find a good scaling collapse for the shear modulus in both the linear and nonlinear regimes. We compute all the critical exponents for the two lattice models and discuss the applicability of our results to real systems.

  12. Algebraic Multiscale Solver for Elastic Geomechanical Deformation

    NASA Astrophysics Data System (ADS)

    Castelletto, N.; Hajibeygi, H.; Tchelepi, H.

    2015-12-01

    Predicting the geomechanical response of geological formations to thermal, pressure, and mechanical loading is important in many engineering applications. The mathematical formulation that describes deformation of a reservoir coupled with flow and transport entails heterogeneous coefficients with a wide range of length scales. Such detailed heterogeneous descriptions of reservoir properties impose severe computational challenges for the study of realistic-scale (km) reservoirs. To deal with these challenges, we developed an Algebraic Multiscale Solver for ELastic geomechanical deformation (EL-AMS). Constructed on finite element fine-scale system, EL-AMS imposes a coarse-scale grid, which is a non-overlapping decomposition of the domain. Then, local (coarse) basis functions for the displacement vector are introduced. These basis functions honor the elastic properties of the local domains subject to the imposed local boundary conditions. The basis form the Restriction and Prolongation operators. These operators allow for the construction of accurate coarse-scale systems for the displacement. While the multiscale system is efficient for resolving low-frequency errors, coupling it with a fine-scale smoother, e.g., ILU(0), leads to an efficient iterative solver. Numerical results for several test cases illustrate that EL-AMS is quite efficient and applicable to simulate elastic deformation of large-scale heterogeneous reservoirs.

  13. Geometrically nonlinear analysis of laminated elastic structures

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1984-01-01

    Laminated composite plates and shells that can be used to model automobile bodies, aircraft wings and fuselages, and pressure vessels among many other were analyzed. The finite element method, a numerical technique for engineering analysis of structures, is used to model the geometry and approximate the solution. Various alternative formulations for analyzing laminated plates and shells are developed and their finite element models are tested for accuracy and economy in computation. These include the shear deformation laminate theory and degenerated 3-D elasticity theory for laminates.

  14. Coupled mode propagation in an elastic oceanic wedge

    NASA Astrophysics Data System (ADS)

    Abawi, Ahmad T.

    2002-11-01

    The elastic version of the one-way coupled mode propagation model [Abawi, J. Acoust. Soc. Am. 111, 160-167 (2002)] is used to compute the propagation of waves in an ocean overlaying a shear-supporting wedge-shaped bottom. The range-dependent ocean is approximated by a set of stair-step elastic waveguides. The elastic modes are obtained from the solution of the equations of motion in each stair-step and the solution of the range-dependent problem is obtained by solving a set of coupled differential equations for the mode amplitudes as a function of range. Various field quantities such as the scalar and shear potentials, the compressional and shear pressures, and the displacements are computed and the results are compared with those obtained from the fast field propagation model, OASES.

  15. Covariance Matrix of a Double-Differential Doppler-broadened Elastic Scattering Cross Section

    SciTech Connect

    Arbanas, Goran; Becker, B.; Dagan, R; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L

    2012-01-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on {sup 238}U are computed near the 6.67 eV resonance at temperature T = 10{sup 3} K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments.

  16. Scattering of high-frequency P wavefield derived by dense Hi-net array observations in Japan and computer simulations of seismic wave propagations

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Furumura, Takashi

    2013-04-01

    We studied the scattering properties of high-frequency seismic waves due to the distribution of small-scale velocity fluctuations in the crust and upper mantle beneath Japan based on an analysis of three-component short-period seismograms and comparison with finite difference method (FDM) simulation of seismic wave propagation using various stochastic random velocity fluctuation models. Using a large number of dense High-Sensitivity Seismograph network waveform data of 310 shallow crustal earthquakes, we examined the P-wave energy partition of transverse component (PEPT), which is caused by scattering of the seismic wave in heterogeneous structure, as a function of frequency and hypocentral distances. At distance of less than D = 150 km, the PEPT increases with increasing frequency and is approximately constant in the range of from D = 50 to 150 km. The PEPT was found to increase suddenly at a distance of over D = 150 km and was larger in the high-frequency band (f > 4 Hz). Therefore, strong scattering of P wave may occur around the propagation path (upper crust, lower crust and around Moho discontinuity) of the P-wave first arrival phase at distances of larger than D = 150 km. We also found a regional difference in the PEPT value, whereby the PEPT value is large at the backarc side of northeastern Japan compared with southwestern Japan and the forearc side of northeastern Japan. These PEPT results, which were derived from shallow earthquakes, indicate that the shallow structure of heterogeneity at the backarc side of northeastern Japan is stronger and more complex compared with other areas. These hypotheses, that is, the depth and regional change of small-scale velocity fluctuations, are examined by 3-D FDM simulation using various heterogeneous structure models. By comparing the observed feature of the PEPT with simulation results, we found that strong seismic wave scattering occurs in the lower crust due to relatively higher velocity and stronger heterogeneities compared with that in the upper crust. To explain the observed regional difference, the velocity fluctuation model with 3-4 per cent stronger fluctuation and smaller κ is required at the backarc side of northeastern Japan.

  17. Impact of a vee-type seaplane on water with reference to elasticity

    NASA Technical Reports Server (NTRS)

    Weinig, F

    1936-01-01

    The theory developed by H. Wagner for the computation of the landing impact on water for a rigid float is extended to include elastic floats by introducing the concept of an equivalent rigid bottom to substitute for the actual elastic bottom.

  18. Elasticity of interfacial rafts of hard particles with soft shells.

    PubMed

    Knoche, Sebastian; Kierfeld, Jan

    2015-05-19

    We study an elasticity model for compressed protein monolayers or particle rafts at a liquid interface. Based on the microscopic view of hard-core particles with soft shells, a bead-spring model is formulated and analyzed in terms of continuum elasticity theory. The theory can be applied, for example, to hydrophobin-coated air-water interfaces or, more generally, to liquid interfaces coated with an adsorbed monolayer of interacting hard-core particles. We derive constitutive relations for such particle rafts and describe the buckling of compressed planar liquid interfaces as well as their apparent Poisson ratio. We also use the constitutive relations to obtain shape equations for pendant or buoyant capsules attached to a capillary, and to compute deflated shapes of such capsules. A comparison with capsules obeying the usual Hookean elasticity (without hard cores) reveals that the hard cores trigger capsule wrinkling. Furthermore, it is shown that a shape analysis of deflated capsules with hard-core/soft-shell elasticity gives apparent elastic moduli which can be much higher than the original values if Hookean elasticity is assumed. PMID:25901364

  19. Improved Optics For Quasi-Elastic Light Scattering

    NASA Technical Reports Server (NTRS)

    Cheung, Harry Michael

    1995-01-01

    Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.

  20. Measuring How Elastic Arteries Function.

    ERIC Educational Resources Information Center

    DeMont, M. Edwin; MacGillivray, Patrick S.; Davison, Ian G.; McConnell, Colin J.

    1997-01-01

    Describes a procedure used to measure force and pressure in elastic arteries. Discusses the physics of the procedure and recommends the use of bovine arteries. Explains the preparation of the arteries for the procedure. (DDR)

  1. Fingering in Confined Elastic Layers

    NASA Astrophysics Data System (ADS)

    Biggins, John; Mahadevan, L.; Wei, Z.; Saintyves, Baudouin; Bouchaud, Elizabeth

    2015-03-01

    Fingering has recently been observed in soft highly elastic layers that are confined between and bonded to two rigid bodies. In one case an injected fluid invades the layer in finger-like protrusions at the layer's perimeter, a solid analogue of Saffman-Taylor viscous fingering. In a second case, separation of the rigid bodies (with maintained adhesion to the layer) leads air to the formation of similar fingers at the layer's perimeter. In both cases the finger formation is reversible: if the fluid is removed or the separation reduced, the fingers vanish. In this talk I will discuss a theoretical model for such elastic fingers that shows that the origin of the fingers is large-strain geometric non-linearity in the elasticity of soft solids. Our simplified elastic model unifies the two types of fingering and accurately estimates the thresholds and wavelengths of the fingers.

  2. Elastic protectors for ultrasound injection

    SciTech Connect

    Barkhatov, V.A.; Nesterova, L.A.

    1995-07-01

    A new material has been developed for elastic protectors on ultrasonic probes: sonar rubber. This combines low ultrasonic absorption, high strength, and wear resistance, and so the rubber can be used in sensor designs.

  3. Flame resistant elastic elastomeric fibers

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Massucco, A. A.

    1972-01-01

    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.

  4. Linear elastic behavior of dry soap foams

    SciTech Connect

    Kraynik, A.M.; Reinelt, D.A.

    1996-08-10

    Linear elastic constants are computed for three dry foams that have crystal symmetry, bubbles with equal volume V, and films with uniform surface tension T. The Kelvin, Williams, and Weaire-Phelan foams contain one, two, and eight bubbles in the unit cell, respectively. All three foams have 14-sided bubbles, but these tetrakaidecahedra have different topology; the Weaire-Phelan foam also contains pentagonal dodecahedra. In addition to the bulk modulus for volume compression, the authors calculate two shear moduli for the Kelvin and Weaire-Phelan foams, which have cubic symmetry, and four shear moduli for the Williams foam, which has tetragonal symmetry. The Williams foam has five elastic constants, not six, because the stress remains isotropic for uniform expansion; this is not guaranteed by symmetry alone. The two shear moduli for the Weaire-Phelan foam differ by less than 5%. The other two foams exhibit much greater elastic anisotropy; their shear moduli differ by a factor of 2. An effective isotropic shear modulus {bar G}, which represents the response averaged over all orientations, is evaluated for each foam. Scaled by T/V{sup 1/3}, {bar G} is 0.8070, 0.7955, and 0.8684 for the Kelvin, Williams, and Weaire-Phelan foams, respectively. When extrapolated to the dry limit, the shear modulus data of Princen and Kiss (for concentrated oil-in-water emulsions with polydisperse drop-size distributions) fall within the range of the calculations. The Surface Evolver program, developed by Brakke, was used to compute minimal surfaces for the dry foams. Also reported for each undeformed foam are various geometric constants relating to interfacial energy density, cell edge length, and bubble pressure.

  5. Chemical-shift X-ray standing wavefield determination of the local structure of methanethiolate phases on Ni( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Fisher, C. J.; Woodruff, D. P.; Jones, R. G.; Cowie, B. C. C.; Formoso, V.

    2002-01-01

    By monitoring the X-ray absorption through the chemically-shifted components of the S 1s photoemission signal, normal-incidence X-ray standing wavefield absorption at the (1 1 1) and ( 1¯ 1 1) scatterer planes has been used to determine the local adsorption geometry of the two distinct methanethiolate (CH 3S-) species which occur on Ni(1 1 1) following exposure to methanethiol. The species which is favoured at low temperatures is found to occupy either mixed hollow or bridge sites on a non-reconstructed Ni(1 1 1) surface, whereas that seen at higher temperatures is shown to involve Ni surface layer reconstruction and the data are consistent with hollow site adsorption on a reduced density outermost Ni layer. The relative merits of alternative reconstruction models based on that which occurs due to methanethiolate adsorption on Cu(1 1 1), or the (5√3×2)rect. phase formed by atomic S on Ni(1 1 1), are discussed. Both of these models are based on local square or `pseudo-(1 0 0)' outermost Ni layers. Co-adsorbed atomic sulphur, to which the methanethiolate species decompose at higher temperatures, appears to occupy mainly fcc hollow sites at low temperatures, but is partially converted to the local geometry of the ordered reconstructed (5√3×2)rect.-S phase after higher temperature annealing.

  6. Orthogonal relation between wavefield polarization and fast S wave direction in the Val d'Agri region: An integrating method to investigate rock anisotropy

    NASA Astrophysics Data System (ADS)

    Pischiutta, M.; Pastori, M.; Improta, L.; Salvini, F.; Rovelli, A.

    2014-01-01

    polarization is investigated using 200 seismograms recorded by a network of 20 stations installed on rock outcrops in the Val d'Agri region that hosts the largest oil fields in the southern Apennines (Italy). Polarization is assessed both in the frequency and time domains through the individual-station horizontal-to-vertical spectral ratio and covariance-matrix analysis, respectively. We find that most of the stations show a persistent horizontal polarization of waveforms, with a NE-SW predominant trend. This direction is orthogonal to the general trend of Quaternary normal faults in the region and to the maximum horizontal stress related to the present extensional regime. According to previous studies in other areas, such a directional effect is interpreted as due to the presence of fault-related fracture fields, polarization being orthogonal to their predominant direction. A comparison with S wave anisotropy inferred from shear wave splitting indicates an orthogonal relation between horizontal polarization and fast S wave direction. This suggests that wavefield polarization and fast velocity direction are effects of the same cause: The existence of an anisotropic medium represented by fractured rocks where shear wave velocity is larger in the crack-parallel component and compliance is larger perpendicularly to the crack strike. The latter is responsible for the observed anisotropic pattern of amplitudes of horizontal ground motion in the study area.

  7. Elastic Properties of Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.; Stan, C. V.

    2012-12-01

    The most direct information about the interior structure of the Earth comes from seismic wave velocities. Interpretation of seismic data requires an understanding of how sound velocities and elastic properties of minerals vary with pressure, temperature, crystal structure, and composition as well as the role of anelasticity, melts, etc. More generally, elastic moduli are important for understanding many solid-state phenomena including mechanical stability, interatomic interactions, material strength, compressibility, and phase transition mechanisms. The database of mineral elasticity measurements has been growing rapidly in recent years. In this work, we report initial results of an ongoing survey of our current knowledge of mineral elasticity at both ambient conditions and high pressures and temperatures. The analysis is selective, emphasizing single crystal measurements but also incorporating polycrystalline measurements and volume compression data as appropriate. The goal is to synthesize our current understanding of mineral elasticity in terms of structure and composition, and to identify the major remaining needs for experimental and theoretical work. Clinopyroxenes (Cpx) provide an example of our approach. A wide range of clinopyroxene compositions are found geologically and Mg-, Ca-, and Na-rich clinopyroxenes are expected to be important components in the upper mantle. The single-crystal elastic properties of a number of endmember Cpx compositions have been measured and these exhibit a range of ~25% in shear velocity. Those with monovalent cations (spodumene, jadeite) in the M2 site exhibit the highest velocities while Fe-rich (hendenbergit, acmite) compositions have the lowest velocities. The effects on velocity due to a wide range of chemical substitutions can be defined, but there are important discrepancies and omissions in the database. New measurements of omphacites, intermediate diopside-hedenbergite compositions, aegerine/acmite, augite, etc. are

  8. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  9. Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.

  10. Visualization of scattering strength of elastic bodies in a fluid

    NASA Astrophysics Data System (ADS)

    Schenck, H. A.; Fales, J. L.

    1992-07-01

    As Part of the Submarine Technology Program, the Defense Advanced Research Projects Agency (DARPA) recently sponsored a Low-Frequency Structural Acoustics Benchmark Exercise. The purpose of the exercise was to test and validate several major computational codes that have been developed to solve acoustic scattering problems of elastic objects in a fluid. This report describes some of the visualization techniques and procedures that were developed to review, compare, and analyze the large amount of computational data generated in the exercise.

  11. Computer simulation of martensitic transformations

    SciTech Connect

    Xu, Ping

    1993-11-01

    The characteristics of martensitic transformations in solids are largely determined by the elastic strain that develops as martensite particles grow and interact. To study the development of microstructure, a finite-element computer simulation model was constructed to mimic the transformation process. The transformation is athermal and simulated at each incremental step by transforming the cell which maximizes the decrease in the free energy. To determine the free energy change, the elastic energy developed during martensite growth is calculated from the theory of linear elasticity for elastically homogeneous media, and updated as the transformation proceeds.

  12. Parton-parton elastic scattering and rapidity gaps at SSC and LHC energies

    SciTech Connect

    Duca, V.D.

    1993-08-01

    The theory of the perturbative pomeron, due to Lipatov and collaborators, is used to compute the probability of observing parton-parton elastic scattering and rapidity gaps between jets in hadron collisions at SSC and LHC energies.

  13. Parton-parton elastic scattering and rapidity gaps at Tevatron energies

    SciTech Connect

    Del Duca, V.; Tang, Wai-Keung

    1993-08-01

    The theory of the perturbative pomeron, due to Lipatov and collaborators, is used to compute the probability of observing parton-parton elastic scattering and rapidity gaps between jets in hadron collisions at Tevatron energies.

  14. Anisotropic linear elastic properties of fractal-like composites.

    PubMed

    Carpinteri, Alberto; Cornetti, Pietro; Pugno, Nicola; Sapora, Alberto

    2010-11-01

    In this work, the anisotropic linear elastic properties of two-phase composite materials, made up of square inclusions embedded in a matrix, are investigated. The inclusions present a fractal hierarchical distribution and are supposed to have the same Poisson's ratio as the matrix but a different Young's modulus. The effective elastic moduli of the medium are computed at each fractal iteration by coupling a position-space renormalization-group technique with a finite element analysis. The study allows to obtain and generalize some fundamental properties of fractal composite materials. PMID:21230552

  15. Estimation of the elastic Earth parameters from the SLR technique

    NASA Astrophysics Data System (ADS)

    Rutkowska, Milena

    ABSTRACT. The global elastic parameters (Love and Shida numbers) associated with the tide variations for satellite and stations are estimated from the Satellite Laser Ranging (SLR) data. The study is based on satellite observations taken by the global network of the ground stations during the period from January 1, 2005 until January 1, 2007 for monthly orbital arcs of Lageos 1 satellite. The observation equations contain unknown for orbital arcs, some constants and elastic Earth parameters which describe tide variations. The adjusted values are discussed and compared with geophysical estimations of Love numbers. All computations were performed employing the NASA software GEODYN II (eddy et al. 1990).

  16. Effective medium theory for elastic metamaterials in thin elastic plates

    NASA Astrophysics Data System (ADS)

    Torrent, Daniel; Pennec, Yan; Djafari-Rouhani, Bahram

    2014-09-01

    An effective medium theory for resonant and nonresonant metamaterials for flexural waves in thin plates is presented. The theory provides closed-form expressions for the effective mass density, rigidity, and Poisson's ratio of arrangements of isotropic scatterers in thin plates, valid for low frequencies and moderate filling fractions. It is found that the effective Young's modulus and Poisson's ratio are induced by a combination of the monopolar and quadrupolar scattering coefficient, as it happens for bulk elastic waves, while the effective mass density is induced by the monopolar coefficient, contrarily as it happens for bulk elastic waves, where the effective mass density is induced by the dipolar coefficient. It is shown that resonant positive or negative effective elastic parameters are possible, being therefore the monopolar resonance responsible for creating an effective medium with negative mass density. Several examples are given for both nonresonant and resonant effective parameters and the results are numerically verified by multiple scattering theory and finite element analysis.

  17. Eulerian Formulation of Spatially Constrained Elastic Rods

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre

    Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applications, the rod deflection is restricted by an external constraint and a significant part of the elastic body is in contact with a stiff constraining surface. The research work presented in this doctoral dissertation formulates a computational model for the solution of elastic rods constrained inside or around frictionless tube-like surfaces. The segmentation strategy adopted to cope with this complex class of problems consists in sequencing the global problem into, comparatively simpler, elementary problems either in continuous contact with the constraint or contact-free between their extremities. Within the conventional Lagrangian formulation of elastic rods, this approach is however associated with two major drawbacks. First, the boundary conditions specifying the locations of the rod centerline at both extremities of each elementary problem lead to the establishment of isoperimetric constraints, i.e., integral constraints on the unknown length of the rod. Second, the assessment of the unilateral contact condition requires, in principle, the comparison of two curves parametrized by distinct curvilinear coordinates, viz. the rod centerline and the constraint axis. Both conspire to burden the computations associated with the method. To streamline the solution along the elementary problems and rationalize the assessment of the unilateral contact condition, the rod governing equations are reformulated within the Eulerian framework of the constraint. The methodical exploration of both types of elementary problems leads to specific formulations of the rod governing equations that stress the profound connection between the mechanics of the rod and the geometry of the constraint surface. The proposed Eulerian reformulation, which restates the rod local equilibrium in terms of the curvilinear coordinate associated with the constraint axis, describes the rod deformed configuration

  18. Spectral filtering of gradient for l2-norm frequency-domain elastic waveform inversion

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Min, Dong-Joo

    2013-05-01

    To enhance the robustness of the l2-norm elastic full-waveform inversion (FWI), we propose a denoise function that is incorporated into single-frequency gradients. Because field data are noisy and modelled data are noise-free, the denoise function is designed based on the ratio of modelled data to field data summed over shots and receivers. We first take the sums of the modelled data and field data over shots, then take the sums of the absolute values of the resultant modelled data and field data over the receivers. Due to the monochromatic property of wavefields at each frequency, signals in both modelled and field data tend to be cancelled out or maintained, whereas certain types of noise, particularly random noise, can be amplified in field data. As a result, the spectral distribution of the denoise function is inversely proportional to the ratio of noise to signal at each frequency, which helps prevent the noise-dominant gradients from contributing to model parameter updates. Numerical examples show that the spectral distribution of the denoise function resembles a frequency filter that is determined by the spectrum of the signal-to-noise (S/N) ratio during the inversion process, with little human intervention. The denoise function is applied to the elastic FWI of synthetic data, with three types of random noise generated by the modified version of the Marmousi-2 model: white, low-frequency and high-frequency random noises. Based on the spectrum of S/N ratios at each frequency, the denoise function mainly suppresses noise-dominant single-frequency gradients, which improves the inversion results at the cost of spatial resolution.

  19. Hydrodynamic repulsion of elastic dumbbells

    NASA Astrophysics Data System (ADS)

    Ekiel-Jezewska, Maria L.; Bukowicki, Marek; Gruca, Marta

    2015-11-01

    Dynamics of two identical elastic dumbbells, settling under gravity in a viscous fluid at low Reynolds number are analyzed within the point-particle model. Initially, the dumbbells are vertical, their centers are aligned horizontally, and the springs which connect the dumbbell's beads are at the equilibrium. The motion of the beads is determined numerically with the use of the Runge-Kutta method. After an initial relaxation phase, the system converges to a universal time-dependent solution. The elastic dumbbells tumble while falling, but their relative motion is not periodic (as in case of rigid dumbbells or pairs of separated beads). The elastic constraints break the time-reversal symmetry of the motion. As the result, the horizontal distance between the dumbbells slowly increases - they are hydrodynamically repelled from each other. This effect can be very large even though the elastic forces are always much smaller than gravity. The dynamics described above are equivalent to the motion of a single elastic dumbbell under a constant external force which is parallel to a flat free surface. The dumbbell migrates away from the interface and its tumbling time increases.

  20. Integrated elastic microscope device

    NASA Astrophysics Data System (ADS)

    Lee, W. M.; Wright, D.; Watkins, R.; Cen, Zi

    2015-03-01

    The growing power of imaging and computing power of smartphones is creating the possibility of converting your smartphone into a high power pocket microscopy system. High quality miniature microscopy lenses attached to smartphone are typically made with glass or plastics that can only be produce at low cost with high volume. To revise the paradigm of microscope lenses, we devised a simple droplet lens fabrication technique that which produces low cost and high performance lens. Each lens is integrated into thin 3-D printed holder with complimentary light emitted diode (LEDs) that clips onto majority of smartphones. The integrated device converts a smartphone into a high power optical microscope/dermatoscope at around $2. This low cost device has wide application in a multitude of practical uses such as material inspection, dermascope and educational microscope.

  1. Elegent—An elastic event generator

    NASA Astrophysics Data System (ADS)

    Kašpar, J.

    2014-03-01

    Although elastic scattering of nucleons may look like a simple process, it presents a long-lasting challenge for theory. Due to missing hard energy scale, the perturbative QCD cannot be applied. Instead, many phenomenological/theoretical models have emerged. In this paper we present a unified implementation of some of the most prominent models in a C++ library, moreover extended to account for effects of the electromagnetic interaction. The library is complemented with a number of utilities. For instance, programs to sample many distributions of interest in four-momentum transfer squared, t, impact parameter, b, and collision energy √{s}. These distributions at ISR, Spp¯S, RHIC, Tevatron and LHC energies are available for download from the project web site. Both in the form of ROOT files and PDF figures providing comparisons among the models. The package includes also a tool for Monte-Carlo generation of elastic scattering events, which can easily be embedded in any other program framework. Catalogue identifier: AERT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERT_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 10551 No. of bytes in distributed program, including test data, etc.: 126316 Distribution format: tar.gz Programming language: C++. Computer: Any in principle, tested on x86-64 architecture. Operating system: Any in principle, tested on GNU/Linux. RAM: Strongly depends on the task, but typically below 20MB Classification: 11.6. External routines: ROOT, HepMC Nature of problem: Monte-Carlo simulation of elastic nucleon-nucleon collisions Solution method: Implementation of some of the most prominent phenomenological/theoretical models providing cumulative distribution function that is used for random event generation. Running time: Strongly depends on the task, but

  2. Hopf solitons and elastic rods

    SciTech Connect

    Harland, Derek; Sutcliffe, Paul; Speight, Martin

    2011-03-15

    Hopf solitons in the Skyrme-Faddeev model are stringlike topological solitons classified by the integer-valued Hopf charge. In this paper we introduce an approximate description of Hopf solitons in terms of elastic rods. The general form of the elastic rod energy is derived from the field theory energy and is found to be an extension of the classical Kirchhoff rod energy. Using a minimal extension of the Kirchhoff energy, it is shown that a simple elastic rod model can reproduce many of the qualitative features of Hopf solitons in the Skyrme-Faddeev model. Features that are captured by the model include the buckling of the charge three solution, the formation of links at charges five and six, and the minimal energy trefoil knot at charge seven.

  3. Mapping Elasticity at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Stan, Gheorghe; Price, William

    2006-03-01

    In the last few years Atomic Force Acoustic Microscopy has been developed to investigate the elastic response of materials at the nanoscale ^[1],[2]. We have extended this technique to the real-time mapping of nanomechanical properties of material surfaces. This mapping allows us to investigate the local variation of elastic properties with nanometer resolution and to reduce the uncertainties that arise from single measurements. Quantitative measurements are acquired by first performing an accurate calibration of the elastic properties of the Atomic Force Microscope’s probes with respect to single crystal reference materials. A wide variety of surfaces with different mechanical properties have been investigated to illustrate the applicability of this technique. ^[1] U. Rabe et al., Surf. Interface Anal. 33 , 65 (2002)^[2] D.C. Hurley et al., J. Appl. Phys. 94, 2347 (2003)

  4. Infrasonic tremor wavefield of the Pu`u `Ō`ō crater complex and lava tube system, Hawaii, in April 2007

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David; GarcéS, Milton A.

    2010-12-01

    Long-lived effusive volcanism at the Pu`u `Ō`ō crater complex, Kilauea Volcano, Hawaii produces persistent infrasonic tremor that has been recorded almost continuously for months to years. Previous studies showed that this infrasonic tremor wavefield can be recorded at a range of >10 km. However, the low signal power of this tremor relative to ambient noise levels results in significant propagation effects on signal detectability at this range. In April 2007, we supplemented a broadband infrasound array at ˜12.5 km from Pu`u `Ō`ō (MENE) with a similar array at ˜2.4 km from the source (KIPU). The additional closer-range data enable further evaluation of tropospheric propagation effects and provide higher signal-to-noise ratios for studying volcanic source processes. The infrasonic tremor source appears to consist of at least two separate physical processes. We suggest that bubble cloud oscillation in a roiling magma conduit beneath the crater complex may produce a broadband component of the tremor. Low-frequency sound sourced in a shallow magma conduit may radiate infrasound efficiently into the atmosphere due to the anomalous transparency of the magma-air interface. We further propose that more sharply peaked tones with complex temporal evolution may result from oscillatory interactions of a low-velocity gas jet with solid vent boundaries in a process analogous to the hole tone or whistler nozzle. The infrasonic tremor arrives with a median azimuth of ˜67° at KIPU. Additional infrasonic signals and audible sounds originating from the extended lava tube system to the south of the crater complex (median azimuth ˜77°) coincided with turbulent degassing activity at a new lava tube skylight. Our observations indicate that acoustic studies may aid in understanding persistent continuous degassing and unsteady flow dynamics at Kilauea Volcano.

  5. Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM-DSM hybrid method

    NASA Astrophysics Data System (ADS)

    Monteiller, Vadim; Chevrot, Sébastien; Komatitsch, Dimitri; Wang, Yi

    2015-08-01

    We present a method for high-resolution imaging of lithospheric structures based on full waveform inversion of teleseismic waveforms. We model the propagation of seismic waves using our recently developed direct solution method/spectral-element method hybrid technique, which allows us to simulate the propagation of short-period teleseismic waves through a regional 3-D model. We implement an iterative quasi-Newton method based upon the L-BFGS algorithm, where the gradient of the misfit function is computed using the adjoint-state method. Compared to gradient or conjugate-gradient methods, the L-BFGS algorithm has a much faster convergence rate. We illustrate the potential of this method on a synthetic test case that consists of a crustal model with a crustal discontinuity at 25 km depth and a sharp Moho jump. This model contains short- and long-wavelength heterogeneities along the lateral and vertical directions. The iterative inversion starts from a smooth 1-D model derived from the IASP91 reference Earth model. We invert both radial and vertical component waveforms, starting from long-period signals filtered at 10 s and gradually decreasing the cut-off period down to 1.25 s. This multiscale algorithm quickly converges towards a model that is very close to the true model, in contrast to inversions involving short-period waveforms only, which always get trapped into a local minimum of the cost function.

  6. Duration of an elastic collision

    NASA Astrophysics Data System (ADS)

    de Izarra, Charles

    2012-07-01

    With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding with the planar surface allows us to determine the duration of the elastic collision. In order to check the theoretical model, an experiment is proposed to measure the duration of the collision. A more refined model built with masses and springs gives good agreement between theoretical and experimental values.

  7. Price and Income Elasticities of Iranian Exports

    NASA Astrophysics Data System (ADS)

    Atrkar Roshan, Sedigheh

    This study investigates the export demand elasticities at the aggregate and disaggregated levels over the period 1977 to 2001 for Iran. By utilizing an export demand model and using time series techniques that account for the nonstationarity in the data, the price and income elasticities of demand are estimated by commodity class. As the elasticities of demand for various categories of exports are different, while they are crucial for policy determination. Based upon the estimated results, price and income elasticities are almost similar to those obtained in earlier studies in the case of developing countries. The main findings of this paper demonstrate that, price elasticities are smaller than -1 for all exports categories, whereas the income elasticities are found to be greater than one. The results also suggested, the income elasticities of industrial goods are higher compared to other export categories, while the lower elasticities are found in primary exports. The price and income elasticity estimates have also good statistical properties.

  8. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  9. Crumpling of an Elastic Ring in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Vanhuss, Carter; Cheng, Shengfeng

    We use molecular dynamics simulations to study the crumpling of an elastic ring (i.e., a circular elastic line) in two dimensions. The crumpling is triggered by reducing the radius of a circular repulsive wall that is used to confine the ring. The ring is modeled as a bead-spring chain. A harmonic potential describing the bonds between neighboring beads is parameterized to reproduce the Young's modulus of the elastic line in the continuum limit. A modified harmonic angle interaction is used to capture the bending of the elastic line including situations where the line is locally stretched or compressed. We have confirmed that the bead-spring model has the correct continuum limit by comparing results on rings made of different numbers of beads but with parameters derived from the same elastic line. With the computational model, we study the morphological transition of the ring and the local distribution of the bond and bending energies as the ring is compressed at various rates, forced to crumple, and finally confined into a dense-packed structure. We find that the crumpling transition signals a sharp energy transfer from the compression to the bending mode. We further explore the possibility of defining an effective temperature for such crumpled systems.

  10. Reflectance and fluorescence hyperspectral elastic image registration

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Baker, Ross; Hakansson, Johan; Gustafsson, Ulf P.

    2004-05-01

    Science and Technology International (STI) presents a novel multi-modal elastic image registration approach for a new hyperspectral medical imaging modality. STI's HyperSpectral Diagnostic Imaging (HSDI) cervical instrument is used for the early detection of uterine cervical cancer. A Computer-Aided-Diagnostic (CAD) system is being developed to aid the physician with the diagnosis of pre-cancerous and cancerous tissue regions. The CAD system uses the fusion of multiple data sources to optimize its performance. The key enabling technology for the data fusion is image registration. The difficulty lies in the image registration of fluorescence and reflectance hyperspectral data due to the occurrence of soft tissue movement and the limited resemblance of these types of imagery. The presented approach is based on embedding a reflectance image in the fluorescence hyperspectral imagery. Having a reflectance image in both data sets resolves the resemblance problem and thereby enables the use of elastic image registration algorithms required to compensate for soft tissue movements. Several methods of embedding the reflectance image in the fluorescence hyperspectral imagery are described. Initial experiments with human subject data are presented where a reflectance image is embedded in the fluorescence hyperspectral imagery.

  11. Hard elastic scattering in QCD: Leading behavior

    SciTech Connect

    Botts, J.F.

    1989-01-01

    The author derives the asymptotic behavior of elastic meson-meson and baryon-baryon scattering at high energy and large angle t/s {approximately} O(1). The results organize both Sudakov and nonleading logarithmic corrections to independent (Landshoff) scatterings of valence quarks. He shows how to separate these contributions systematically from single scattering contributions, in a manner which suggests that the complete amplitudes should be computable perturbatively down to the dimensional counting power, in terms of hadronic wave functions. In the final chapter, the perturbative asymptotic amplitude and differential cross section for elastic pion-pion scattering is calculated numerically. For various choices of pion wave function and running coupling, the onset of power law behavior, d{sigma}/dt {approximately} s{sup {minus}5.8}, was observed. The dependence in d{sigma}/dt on the cutoff in gluon momentum, chosen to be O({Lambda}{sub QCD}/Q), was observed to be sharp for ln(s/1GeV{sup 2}) less than 1. Very small oscillations in d{sigma}/dt appear in physically realizable energies, but these are cutoff dependent, and their interpretation unclear. Higher twist effects were estimated to be roughly {approximately}15% for 2 < ln(s/1GeV{sup 2}) < 10.

  12. Elastic granular flows of ellipsoidal particles

    NASA Astrophysics Data System (ADS)

    Campbell, Charles S.

    2011-01-01

    Granular flow rheology can be divided into two global regimes: the elastic, which is dominated by force chains, and the inertial, which is nearly free of force chains. As the propensity of a material to form force chains should be strongly influenced by particle shape, this paper is an attempt to assess the effects of shape on flow regime transitions through computer simulations of shear flow of ellipsoidal particles. On one hand, the results show that at a given concentration, ellipsoidal particles generate smaller quasistatic stress than spheres, likely a result of their ability to form denser packings. But at the same time, large aspect ratio ellipsoids more readily form force chains and demonstrate elastic behavior at smaller concentrations than spheres. This is shown to be due to a tradeoff between a shear-induced particle alignment that tends to minimize the interference of the particles and the shear flow, and the particle surface friction, which works to rotate the particles into the flow.

  13. Traveltime dispersion in an isotropic elastic mantle: strong lower-mantle signal in differential-frequency residuals

    NASA Astrophysics Data System (ADS)

    Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust

    2016-04-01

    Recently, we developed a joint forward modelling approach to test geodynamic hypotheses directly against seismic observations. By computing 3-D global wave propagation in seismic models derived from simulations of mantle flow, synthetic seismograms are generated independent of any seismic data. Here, we now show that this is also an excellent tool to study wavefield effects in a consistent manner, as length scales and magnitudes of seismic heterogeneity in the models are constrained by the dynamics of the flow. In this study, we quantify the traveltime dispersion of P- and S-waves caused by diffraction in our elastic and isotropic 3-D synthetic seismic structures. Intrinsic attenuation (i.e. dissipation of seismic energy) is deliberately neglected, so that any variation of traveltimes with frequency can be attributed to structural effects. Traveltime residuals are measured at 15, 22.5, 34 and 51 s dominant periods by cross-correlation of 3-D and 1-D synthetic waveforms. Additional simulations are performed for a model in which 3-D structure is removed in the upper 800 km to isolate the dispersion signal of the lower mantle. We find that the structural length scales inherent to a vigorously convecting mantle give rise to significant diffraction-induced body-wave traveltime dispersion. For both P- and S-waves, the difference between long-period and short-period residuals for a given source-receiver pair can reach up to several seconds for the period bands considered here. In general, these 'differential-frequency' residuals tend to increase in magnitude with increasing short-period delay. Furthermore, the long-period signal typically is smaller in magnitude than the short-period one; that is, wave-front healing is efficient independent of the sign of the residuals. Unlike the single-frequency residuals, the differential-frequency residuals are surprisingly similar between the 'lower-mantle' and the 'whole-mantle' model for corresponding source-receiver pairs. The

  14. Robustness Elasticity in Complex Networks

    PubMed Central

    Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu

    2012-01-01

    Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060

  15. Kinematic support using elastic elements

    NASA Technical Reports Server (NTRS)

    Geirsson, Arni; Debra, Daniel B.

    1988-01-01

    The design of kinematic supports using elastic elements is reviewed. The two standard methods (cone, Vee and flat and three Vees) are presented and a design example involving a machine tool metrology bench is given. Design goals included thousandfold strain attenuation in the bench relative to the base when the base strains due to temperature variations and shifting loads. Space applications are also considered.

  16. A problem in micropolar elasticity.

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1973-01-01

    In this paper a three-dimensional analysis for statics and dynamics of a class of simply supported rectangular plates made up of micropolar elastic material is presented. The solution is in the form of series, in which each term is explicitly determined. For free vibrations, the frequencies are obtained by the solution of a closed form characteristic equation.

  17. Pilot Study of Debt Elasticity

    ERIC Educational Resources Information Center

    Greiner, Keith; Girardi, Tony

    2006-01-01

    This report examines the relationship between student loan debt and the manner in which that debt is described. It focuses on three forms of description: (1) monthly payments, (2) total debt, and (3) income after graduation. The authors used the term elasticity to describe the relationship between consumers' college choices and the retention…

  18. Duration of an Elastic Collision

    ERIC Educational Resources Information Center

    de Izarra, Charles

    2012-01-01

    With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…

  19. Following the equilibria of slender elastic rods

    NASA Astrophysics Data System (ADS)

    Lazarus, Arnaud; Miller, James; Reis, Pedro

    2012-02-01

    We present a novel continuation method to characterize and quantify the equilibria of elastic rods under large geometrically nonlinear displacements and rotations. To describe the kinematics we exploit the synthetic power and computational efficiency of quaternions. The energetics of bending, stretching and torsion are all taken into account to derive the equilibrium equations which we solve using an asymptotic numerical continuation method. This provides access to the full set of analytical equilibrium branches (stable and unstable), a.k.a bifurcation diagrams. This is in contrast with the individual solution points attained by classic energy minimization or predictor-corrector techniques. We challenge our numerics for the specific problem of an extremely twisted naturally curved rod and perform a detailed comparison against a precision desktop-scale experiments. The quantification of the underlying 3D buckling instabilities and the characterization of the resulting complex configurations are in excellent agreement between numerics and experiments.

  20. Revisiting a magneto-elastic strange attractor

    NASA Astrophysics Data System (ADS)

    Tam, Jee Ian; Holmes, Philip

    2014-03-01

    We revisit an early example of a nonlinear oscillator that exhibits chaotic motions when subjected to periodic excitation: the magneto-elastically buckled beam. In the paper of Moons and Holmes (1980) [1] magnetic field calculations were outlined but not carried through; instead the nonlinear forces responsible for creation of a two-well potential and buckling were fitted to a polynomial function after reduction to a single mode model. In the present paper we compute the full magnetic field and use it to approximate the forces acting on the beam, also using a single mode reduction. This provides a complete model that accurately predicts equilibria, bifurcations, and free oscillation frequencies of an experimental device. We also compare some periodic, transient and chaotic motions with those obtained by numerical simulations of the single mode model, further illustrating the rich dynamical behavior of this simple electromechanical system.

  1. New generation of elastic network models.

    PubMed

    López-Blanco, José Ramón; Chacón, Pablo

    2016-04-01

    The intrinsic flexibility of proteins and nucleic acids can be grasped from remarkably simple mechanical models of particles connected by springs. In recent decades, Elastic Network Models (ENMs) combined with Normal Model Analysis widely confirmed their ability to predict biologically relevant motions of biomolecules and soon became a popular methodology to reveal large-scale dynamics in multiple structural biology scenarios. The simplicity, robustness, low computational cost, and relatively high accuracy are the reasons behind the success of ENMs. This review focuses on recent advances in the development and application of ENMs, paying particular attention to combinations with experimental data. Successful application scenarios include large macromolecular machines, structural refinement, docking, and evolutionary conservation. PMID:26716577

  2. Modeling an elastic swimmer driven at resonance

    NASA Astrophysics Data System (ADS)

    Yeh, Peter; Alexeev, Alexander

    2012-11-01

    Flexibility plays a vital role in the locomotion of aquatic animals. Using three dimensional computer simulations, we examine a flexible swimmer submerged in a viscous fluid with Reynolds number 100. The swimmer is modeled as a thin elastic rectangular plate, actuated at its leading edge to oscillate in a sinusoidal motion vertically at constant frequency and amplitude. The Lattice Boltzmann model is used to simulate an incompressible viscous fluid. The swimmer is free to move horizontally, and we measure the resulting steady state forward velocity, input power, and swimming performance. Our calculations reveal that both steady swimming velocity and performance strongly depend on the actuated frequency. Specifically, the maximum forward velocity is achieved near resonance, but the performance is maximized at a frequency about 1.8 times that at resonance. We visualize the vortex structures emerging in the fluid around swimmer and show how they contribute to the swimmer's forward motion.

  3. Nonlinear dynamic analysis for elastic robotic arms

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Rahimi, H. N.

    2011-06-01

    The aim of the paper is to analyze the nonlinear dynamics of robotic arms with elastic links and joints. The main contribution of the paper is the comparative assessment of assumed modes and finite element methods as more convenient approaches for computing the nonlinear dynamic of robotic systems. Numerical simulations comprising both methods are carried out and results are discussed. Hence, advantages and disadvantages of each method are illustrated. Then, adding the joint flexibility to the system is dealt with and the obtained model is demonstrated. Finally, a brief description of the optimal motion generation is presented and the simulation is carried out to investigate the role of robot dynamic modeling in the control of robots.

  4. A first-principles study of cementite (Fe3C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    NASA Astrophysics Data System (ADS)

    Ghosh, G.

    2015-08-01

    A comprehensive computational study of elastic properties of cementite (Fe3C) and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C) having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, Cij, of above M3Cs; (ii) anisotropies of bulk, Young's and shear moduli, and Poisson's ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young's moduli and Poisson's ratio) of M3Cs by homogenization of calculated Cijs; and (iv) acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  5. Third Order Elastic Coefficients of Rocks

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, K.

    2006-12-01

    We present a methodology to determine third order elastic (TOE) coefficients of rock from velocity measurements at different hydrostatic stress level. TOE coefficients help us to obtain a quantitative measure of the variation of velocity with stress. It is one of the most general ways to parameterize the stress sensitivity of rocks. We usually determine the isotropic TOE coefficients from measurements of all the independent stiffness elements under non-hydrostatic stress. However, for initially isotropic or weakly anisotropic rocks, most of the laboratory experiments are carried out under hydrostatic stress. In that case, the measurements of P- and S-wave velocities at different hydrostatic pressure alone are not enough to invert for the isotropic TOE parameters. In this underdetermined situation, more information about the rock microstructure causing the non-linearity is required to predict seismic velocities at any arbitrary stress state. Our workflow is based on the model of Mavko et al. (1995) to compute stress-induced anisotropy. This model assumes that the cause of elastic nonlinearity is the presence of compliant crack-like pore. The pressure dependence of generalized compliances is mainly governed by normal tractions resolved across cracks. This assumption allows one to map the pressure dependence from hydrostatic stress to any state of stress. Applying the model of Mavko et al. (1995), we obtain the full stiffness tensor at different non-hydrostatic stress levels from the usual Vp and Vs measurements. Changes in elastic stiffness elements from a reference state of stress are then used to invert for the TOE coefficients, C111, C112 and C123 using the third order stress- strain relations. This method allows us to compute the TOE elements using hydrostatic measurements of an initially isotropic rock. We show an application of the workflow with laboratory measurements of P- and S-wave velocities under varying hydrostatic stress. This enables us to express

  6. Elastic And Plastic Deformations In Butt Welds

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Report presents study of mathematical modeling of stresses and strains, reaching beyond limits of elasticity, in bars and plates. Study oriented toward development of capability to predict stresses and resulting elastic and plastic strains in butt welds.

  7. Elastic dynamics of a complete wind turbine structure: Theoretical development

    NASA Astrophysics Data System (ADS)

    Lobitz, D. W.; Arguello, J. G.; Veers, P. S.

    A pseudo-linear formulation of the equations of motion for analyzing elastic bodies which undergo large rotations relative to one another with an emphasis on its application to horizontal axis wind turbines (HAWT) is developed. This procedure greatly simplifies the computational aspects of the solution algorithm over the nonlinear alternatives and should yield a significant improvement in computer speed. Additional speed can be achieved by ordering the nodes such that a minimum bandwidth can be realized (leading to approximately 64 multiplications per degree of freedom per solution step). The formulation utilizes a set of nested moving coordinate systems, each of which is loosely tied to one of the elastic bodies such that the displacements in the body relative to its coordinate system remain small. The formulation also includes a scheme for handling the nonlinear geometric stiffness that occurs in the blades as a result of the centrifugal loads in a pseudo-linear fashion.

  8. Deformation of an Elastic beam due to Viscous Flow in an Embedded Channel Network

    NASA Astrophysics Data System (ADS)

    Matia, Yoav; Gat, Amir

    2015-11-01

    Elastic deformation due to embedded fluidic networks is currently studied in the context of soft-actuators and soft-robotic applications. In this work, we analyze the time dependent interaction between elastic deformation of a slender beam and viscous flow within a long serpentine channel, embedded in the elastic structure. The channel is positioned asymmetrically with regard to the midplane of the elastic beam, and thus pressure within the channel creates a local moment deforming the beam. We focus on creeping flows and small deformations of the elastic beam and obtain, in leading order, a convection-diffusion equation governing the pressure-field within the serpentine channel. The beam time-dependent deformation is then obtained as a function of the pressure-field and the geometry of the embedded network. This relation enables the design of complex time-dependent deformation patterns of beams with embedded channel networks. Our theoretical results were illustrated and verified by numerical computations.

  9. High pressure elastic properties of minerals from ab initio simulations: the case of pyrope, grossular and andradite silicate garnets.

    PubMed

    Erba, A; Mahmoud, A; Belmonte, D; Dovesi, R

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed. PMID:24697466

  10. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    SciTech Connect

    Erba, A. Mahmoud, A.; Dovesi, R.; Belmonte, D.

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  11. Determination of the elastic modulus of snow via acoustic measurements

    NASA Astrophysics Data System (ADS)

    Gerling, Bastian; van Herwijnen, Alec; Löwe, Henning

    2016-04-01

    The elastic modulus of snow is a key quantity from the viewpoint of avalanche research and forecasting, snow engineering or materials science in general. Since it is a fundamental property, many measurements have been reported in the literature. Due to differences in measurement methods, there is a lot of variation in the reported values. Especially values derived via computer tomography (CT) based numerical calculations using finite element methods are not corresponding to the results of other methods. The central issue is that CT based moduli are purely elastic whereas other methods may include viscoelastic deformation. In order to avoid this discrepancy we derived the elastic modulus of snow via wave propagation measurements and compared our results with CT based calculations. We measured the arrival times of acoustic pulses propagating through the snow samples to determine the P-wave velocity and in turn derive the elastic modulus along the direction of wave propagation. We performed a series of laboratory experiments to derive the P-wave modulus of snow in relation to density. The P-wave modulus ranged from 10 to 280 MPa for a snow density between 150 and 370 kg/m³. The moduli derived from the acoustic measurements correlated well with the CT-based values and both exhibited a power law trend over the entire density range. Encouraged by these results we used the acoustic method to investigate the temporal evolution of the elastic modulus. The rate of increase was very close to values mentioned in literature on the sintering rate of snow. Overall, our results are a first but important step towards a new measurement method to attain the elastic properties of snow.

  12. Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Deeks, J.; Lumley, D. E.

    2011-12-01

    Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the

  13. Elastic cone for Chinese calligraphy

    NASA Astrophysics Data System (ADS)

    Cai, Fenglei; Li, Haisheng

    2014-01-01

    The brush plays an important role in creating Chinese calligraphy. We regard a single bristle of a writing brush as an elastic rod and the brush tuft absorbing ink as an elastic cone, which naturally deforms according to the force exerted on it when painting on a paper, and the brush footprint is formed by the intersection region between the deformed tuft and the paper plane. To efficiently generate brush strokes, this paper introduces interpolation and texture mapping approach between two adjacent footprints, and automatically applies bristle-splitting texture to the stroke after long-time painting. Experimental results demonstrate that our method is effective and reliable. Users can create realistic calligraphy in real time.

  14. Elastic modulus of viral nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Ge, Zhibin; Fang, Jiyu

    2008-09-01

    We report an experimental and theoretical study of the radial elasticity of tobacco mosaic virus (TMV) nanotubes. An atomic force microscope tip is used to apply small radial indentations to deform TMV nanotubes. The initial elastic response of TMV nanotubes can be described by finite-element analysis in 5nm indentation depths and Hertz theory in 1.5nm indentation depths. The derived radial Young’s modulus of TMV nanotubes is 0.92±0.15GPa from finite-element analysis and 1.0±0.2GPa from the Hertz model, which are comparable with the reported axial Young’s modulus of 1.1GPa [Falvo , Biophys. J. 72, 1396 (1997)].

  15. Stability of elastically supported columns

    NASA Technical Reports Server (NTRS)

    Niles, Alfred S; Viscovich, Steven J

    1942-01-01

    A criterion is developed for the stiffness required of elastic lateral supports at the ends of a compression member to provide stability. A method based on this criterion is then developed for checking the stability of a continuous beam-column. A related method is also developed for checking the stability of a member of a pin-jointed truss against rotation in the plane of the truss.

  16. A parametric analysis of two-dimensional elastic full waveform inversion of teleseismic data for lithospheric imaging

    NASA Astrophysics Data System (ADS)

    Pageot, Damien; Operto, Stéphane; Vallée, Martin; Brossier, Romain; Virieux, Jean

    2013-06-01

    The development of dense networks of broad-band seismographs makes teleseismic data amenable to full-waveform inversion (FWI) methods for high-resolution lithospheric imaging. Compared to scattered-field migration, FWI seeks to involve the full seismic wavefield in the inversion. We present a parametric analysis of 2-D frequency-domain FWI in the framework of lithospheric imaging from teleseismic data to identify the main factors that impact on the quality of the reconstructed compressional (P)-wave and shear (S)-wave speed models. Compared to controlled-source seismology, the main adaptation of FWI to teleseismic configuration consists of the implementation with a scattered-filed formulation of plane-wave sources that impinge on the base of the lithospheric target located below the receiver network at an arbitrary incidence angle. Seismic modelling is performed with a hp-adaptive discontinuous Galerkin method on unstructured triangular mesh. A quasi-Newton inversion algorithm provides an approximate accounting for the Hessian operator, which contributes to reduce the footprint of the coarse acquisition geometry in the imaging. A versatile algorithm to compute the gradient of the misfit function with the adjoint-state method allows for abstraction between the forward-problem operators and the meshes that are during seismic modelling and inversion, respectively. An approximate correction for obliquity is derived for future application to real teleseismic data under the two-dimension approximation. Comparisons between the characteristic scales involved in exploration geophysics and in teleseismic seismology suggest that the resolution gain provided by full waveform technologies should be of the same order of magnitude for both applications. We first show the importance of the surface-reflected wavefield to dramatically improve the resolving power of FWI by combining tomography-like and migration-like imaging through the incorporation of the forward-scattered and the

  17. Improved Indentation Test for Measuring Nonlinear Elasticity

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2004-01-01

    A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.

  18. Elastic extended images and velocity-sensitive objective functions using multiple reflections and transmissions

    NASA Astrophysics Data System (ADS)

    Ravasi, Matteo; Vasconcelos, Ivan; Curtis, Andrew; Meles, Giovanni

    2015-08-01

    One interpretation of a seismic image is the instantaneous scattered wave response of a colocated pseudo-source and pseudo-receiver at each point in the subsurface model. If there is no model perturbation at a point then there will be no instantaneous scattered wave so nothing will be imaged; if something is imaged then there must be a perturbation at that location. By extension, so-called extended images (EIs) represent the full spatio-temporal response between offset subsurface pseudo-sources and pseudo-receivers which can be used to constrain elastic properties around each image point. However, one-sided illumination of the subsurface (from the Earth's surface), errors in the initial velocity model estimate, and the use of a linearized, single-scattering assumption (as is usual in seismic imaging) cause errors in EI gathers such as missing events, incorrect amplitudes, and spurious energy. By creating elastic (P-to-P and P-to-S) EIs in a synthetic example of subsalt imaging, we demonstrate the advantages of incorporating multiply scattered waves correctly by non-linear imaging, and of including transmitted waves by using two-sided receiver arrays, and discuss how the recently developed autofocussing methods could provide us with the various required subsurface wavefields. Pre- and post-imaging f-k filtering procedures are introduced to further improve the quality of the EIs by (explicitly or implicitly) limiting the directions of waves arriving at the subsurface pseudo-source and receiver survey line. These filters suppress strong linear events that arise from the erroneous interaction of near-horizontally propagating waves which are not naturally accounted for due to the lack of sources and receivers on either side of the imaging target. Finally, we analyse the sensitivity of elastic P-to-P EIs to errors in the migration velocity models and show that events in the EI are shifted in opposite directions when constructed using reflection or transmission data. In

  19. Multicomponent elastic imaging of subsurface sources

    NASA Astrophysics Data System (ADS)

    Artman, B.; Goertz, A.

    2009-12-01

    Active seismic processing is concerned with two-way travel times, down and up, through the subsurface. In contrast, passive seismic methods are predicated on 3+ travel paths in the case of interferometry, and one-way travel path wave fields in the case of source location. Secondary sources and diffractions maintain the same kinematics as primary sources and can also be imaged in the context of source location. We present the chain of time-reverse modeling, image space wave-field decomposition, and various imaging conditions as a migration-like algorithm to locate subsurface sources in passive data and diffractors in active data. The presented imaging conditions respond differently to source mechanism radiation patterns which interpreted in combination provide more information than simply location. Passive data examples are developed with surface acquisition geometry.

  20. Avalanche dynamics of elastic interfaces.

    PubMed

    Le Doussal, Pierre; Wiese, Kay Jörg

    2013-08-01

    Slowly driven elastic interfaces, such as domain walls in dirty magnets, contact lines wetting a nonhomogeneous substrate, or cracks in brittle disordered material proceed via intermittent motion, called avalanches. Here we develop a field-theoretic treatment to calculate, from first principles, the space-time statistics of instantaneous velocities within an avalanche. For elastic interfaces at (or above) their (internal) upper critical dimension d≥d(uc) (d(uc)=2,4 respectively for long-ranged and short-ranged elasticity) we show that the field theory for the center of mass reduces to the motion of a point particle in a random-force landscape, which is itself a random walk [Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model]. Furthermore, the full spatial dependence of the velocity correlations is described by the Brownian-force model (BFM) where each point of the interface sees an independent Brownian-force landscape. Both ABBM and BFM can be solved exactly in any dimension d (for monotonous driving) by summing tree graphs, equivalent to solving a (nonlinear) instanton equation. We focus on the limit of slow uniform driving. This tree approximation is the mean-field theory (MFT) for realistic interfaces in short-ranged disorder, up to the renormalization of two parameters at d=d(uc). We calculate a number of observables of direct experimental interest: Both for the center of mass, and for a given Fourier mode q, we obtain various correlations and probability distribution functions (PDF's) of the velocity inside an avalanche, as well as the avalanche shape and its fluctuations (second shape). Within MFT we find that velocity correlations at nonzero q are asymmetric under time reversal. Next we calculate, beyond MFT, i.e., including loop corrections, the one-time PDF of the center-of-mass velocity u[over ·] for dimension d

  1. Dynamic Models of Robots with Elastic Hinges

    NASA Astrophysics Data System (ADS)

    Krakhmalev, O. N.

    2016-04-01

    Two dynamic models of robots with elastic hinges are considered. Dynamic models are the implementation of the method based on the Lagrange equation using the transformation matrices of elastic coordinates. Dynamic models make it possible to determine the elastic deviations from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. One model is the exact implementation of the Lagrange method and makes it possible to determine the total elastic deviation of the robot from the programmed motion trajectory. Another dynamic model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by two models are compared to the example of a two-link manipulator system. The considered models can be used when performing investigations of the mathematical accuracy of the robots.

  2. Elastic Anisotropy of Trabecular Bone in the Elderly Human Vertebra.

    PubMed

    Unnikrishnan, Ginu U; Gallagher, John A; Hussein, Amira I; Barest, Glenn D; Morgan, Elise F

    2015-11-01

    Knowledge of the nature of the elastic symmetry of trabecular bone is fundamental to the study of bone adaptation and failure. Previous studies have classified human vertebral trabecular bone as orthotropic or transversely isotropic but have typically obtained samples from only selected regions of the centrum. In this study, the elastic symmetry of human vertebral trabecular bone was characterized using microfinite element (μFE) analyses performed on 1019 cubic regions of side length equal to 5 mm, obtained via thorough sampling of the centrums of 18 human L1 vertebrae (age = 81.17 ± 7.7 yr; eight males and ten females). An optimization procedure was used to find the closest orthotropic representation of the resulting stiffness tensor for each cube. The orthotropic elastic constants and orientation of the principal elastic axes were then recorded for each cube and were compared to the constants predicted from Cowin's fabric-based constitutive model (Cowin, 1985, "The Relationship Between the Elasticity Tensor and the Fabric Tensor," Mech. Mater., 4(2), pp. 137-147.) and the orientation of the principal axes of the fabric tensor, respectively. Deviations from orthotropy were quantified by the "orthotropic error" (van Rietbergen et al., 1996, "Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture," J. Biomech., 29(12), pp. 1653-1657), and deviations from transverse isotropy were determined by statistical comparison of the secondary and tertiary elastic moduli. The orthotropic error was greater than 50% for nearly half of the cubes, and the secondary and tertiary moduli differed from one another (p < 0.0001). Both the orthotropic error and the difference between secondary and tertiary moduli decreased with increasing bone volume fraction (BV/TV; p ≤ 0.007). Considering only the cubes with an orthotropic error less than 50%, only moderate correlations were observed between the fabric-based and the μFE-computed

  3. Variation of the energy release rate as a crack approaches and passes through an elastic inclusion

    NASA Technical Reports Server (NTRS)

    Li, Rongshun; Chudnovsky, A.

    1993-01-01

    The variation of the energy release rate (ERP) at the tip of a crack penetrating an elastic inclusion is analyzed using an approach involving modeling the random array of microcracks or other defects by an elastic inclusion with effective elastic properties. Computations are carried out using a finite element procedure. The eight-noded isoparametric serendipity element with the shift of the midpoint to the quarter-point is used to simulate the singularity at the crack tip, and the crack growth is accommodated by implementing a mesh regeneration technique. The ERP values were calculated for various crack tip positions which simulate the process of the crack approaching and penetrating the inclusion.

  4. The features of a non-stationary state of stress in the elastic multisupport construction

    NASA Astrophysics Data System (ADS)

    Ashirbayev, Nurgali; Ashirbayeva, Zhansaya; Abzhapbarov, Azimkhan; Shomanbayeva, Manat

    2016-08-01

    The paper deals with the problem of propagation of unsteady elastic waves in an elastic multisupport construction, which is a rectangular strip. The mixed problem is formulated in terms of the stress and velocity and is numerically modeled using an explicit difference scheme through computation based on the method of spatial characteristics. The main objective of this study is to analyze the impact of the gap in the boundary conditions on the propagation of wave processes in the internal points of the studied elastic medium. The concentration of dynamic stresses was investigated in the vicinity of the gap of the boundary conditions. The results of the study were brought to the numerical solution.

  5. Elastic constants of a Laves phase compound: C15 NbCr{sub 2}

    SciTech Connect

    Ormeci, A. |; Chu, F.; Wills, J.M.; Chen, S.P.; Albers, R.C.; Thoma, D.J.; Mitchell, T.E.

    1997-04-01

    The single-crystal elastic constants of C15 NbCr{sub 2} have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropic elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson`s ratio and the direction dependence of Young`s modulus.

  6. A Novel Representation for Riemannian Analysis of Elastic Curves in ℝn

    PubMed Central

    Joshi, Shantanu H.; Klassen, Eric; Srivastava, Anuj; Jermyn, Ian

    2011-01-01

    We propose a novel representation of continuous, closed curves in ℝn that is quite efficient for analyzing their shapes. We combine the strengths of two important ideas - elastic shape metric and path-straightening methods -in shape analysis and present a fast algorithm for finding geodesics in shape spaces. The elastic metric allows for optimal matching of features while path-straightening provides geodesics between curves. Efficiency results from the fact that the elastic metric becomes the simple 2 metric in the proposed representation. We present step-by-step algorithms for computing geodesics in this framework, and demonstrate them with 2-D as well as 3-D examples. PMID:21311729

  7. Role of gradients in vocal fold elastic modulus on phonation.

    PubMed

    Bhattacharya, Pinaki; Kelleher, Jordan E; Siegmund, Thomas

    2015-09-18

    New studies show that the elastic properties of the vocal folds (VFs) vary locally. In particular strong gradients exist in the distribution of elastic modulus along the length of the VF ligament, which is an important load-bearing constituent of the VF tissue. There is further evidence that changes in VF health are associated with alterations in modulus gradients. The role of VF modulus gradation on VF vibration and phonation remains unexplored. In this study the magnitude of the gradient in VF elastic modulus is varied, and sophisticated computational simulations are performed of the self-oscillation of three-dimensional VFs with realistic modeling of airflow physical properties. Results highlight that phonation frequency, characteristic modes of deformation and phase differences, glottal airflow rate, spectral-width of vocal output, and glottal jet dynamics are dependent on the magnitude of VF elastic modulus gradation. The results advance the understanding of how VF functional gradation can lead to perceptible changes in speech quality. PMID:26159059

  8. Elastic coupling of limb joints enables faster bipedal walking

    PubMed Central

    Dean, J.C.; Kuo, A.D.

    2008-01-01

    The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360

  9. Automated Finite Element Analysis of Elastically-Tailored Plates

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C. (Technical Monitor); Tatting, Brian F.; Guerdal, Zafer

    2003-01-01

    A procedure for analyzing and designing elastically tailored composite laminates using the STAGS finite element solver has been presented. The methodology used to produce the elastic tailoring, namely computer-controlled steering of unidirectionally reinforced composite material tows, has been reduced to a handful of design parameters along with a selection of construction methods. The generality of the tow-steered ply definition provides the user a wide variety of options for laminate design, which can be automatically incorporated with any finite element model that is composed of STAGS shell elements. Furthermore, the variable stiffness parameterization is formulated so that manufacturability can be assessed during the design process, plus new ideas using tow steering concepts can be easily integrated within the general framework of the elastic tailoring definitions. Details for the necessary implementation of the tow-steering definitions within the STAGS hierarchy is provided, and the format of the ply definitions is discussed in detail to provide easy access to the elastic tailoring choices. Integration of the automated STAGS solver with laminate design software has been demonstrated, so that the large design space generated by the tow-steering options can be traversed effectively. Several design problems are presented which confirm the usefulness of the design tool as well as further establish the potential of tow-steered plies for laminate design.

  10. Elastic waves in structurally chiral composites

    SciTech Connect

    Yang, Shiuhkuang.

    1990-01-01

    Elastic wave propagation through structurally chiral (handed) media was studied. The primary objectives are to construct structurally chiral composites and to characterize their properties. Structurally chiral composites are constructed by stacking identical uniaxial plates, whose consecutive symmetric axes describe either a right- or a left-handed spiral. A matrix representation method is used to solve the elastic wave propagation in such layered composites. Numerical computation of the plane wave reflection and transmission characteristics for chiral arrangements are compared with those for the non-chiral one. It is concluded that the co-polarized characteristics are unaffected by the structural chirality, while the cross-polarized reflected and transmitted fields are greatly influenced by it. Numerical modeling is also applied for the real samples. The polarization ellipse of the transmitted field of each sample is calculated. To verify the form chirality, four glass-reinforced chiral and non-chiral composite samples are made from helix tape, molded, debulked, and cured individually under identical temperature and pressure histories. The spiral composites are characterized using shear and longitudinal wave transducers in ultrasonic experiments. Both the material properties and the polarization ellipse of the transmitted field of each sample are measured. It is proved conclusively that left and right handedness in the microstructures of a material rotates the plane of polarization of a propagating shear wave in the opposite directions. Thus it is now possible to say that by reducing the length scale of the handed microstructures tone more appropriate to its propagating wavelength, a medium is obtained that gives rise to effects similar to optical radar and optical dichroism.

  11. Surface sensitivity of elastic peak electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Jablonski, A.

    2016-08-01

    New theoretical model describing the sampling depth of elastic peak electron spectroscopy (EPES) has been proposed. Surface sensitivity of this technique can be generally identified with the maximum depth reached by trajectories of elastically backscattered electrons. A parameter called the penetration depth distribution function (PDDF) has been proposed for this description. Two further parameters are descendant from this definition: the mean penetration depth (MPD) and the information depth (ID). From the proposed theory, relatively simple analytical expressions describing the above parameters can be derived. Although the Monte Carlo simulations can be effectively used to estimate the sampling depth of EPES, this approach may require a considerable amount of computations. In contrast, the analytical model proposed here (AN) is very fast and provides the parameters PDDF, MPD and ID that very well compare with results of MC simulations. As follows from detailed comparisons performed for four elements (Al, Ni, Pd and Au), the AN model practically reproduced complicated emission angle dependences of the MPDs and the IDs, correctly indicating numerous maximum and minimum positions. In the energy range from 200 eV to 5 keV, the averaged percentage differences between MPDs obtained from the MC and the AN models were close to 4%. An important conclusion resulting from the present studies refers to the procedure of determination of the inelastic mean free path (IMFP) from EPES. Frequently, the analyzed sample is deposited as a thin overlayer on a smooth substrate. From an analysis of the presently obtained IDs, is follows that 99% of trajectories in analyzed experimental configurations reaches depth not exceeding 2.39 in units of IMFP. Thus, one can postulate that a safe minimum thickness of an overlayer should be larger than about 3 IMFPs. For example, the minimum thickness of an Al overlayer shoud be about 8 nm at 5000 eV.

  12. Atom trap loss, elastic collisions, and technology

    NASA Astrophysics Data System (ADS)

    Booth, James

    2012-10-01

    The study of collisions and scattering has been one of the most productive approaches for modern physics, illuminating the fundamental structure of crystals, surfaces, atoms, and sub-atomic particles. In the field of cold atoms, this is no less true: studies of cold atom collisions were essential to the production of quantum degenerate matter, the formation of cold molecules, and so on. Over the past few years it has been my delight to investigate elastic collisions between cold atoms trapped in either a magneto-optical trap (MOT) or a magnetic trap with hot, background gas in the vacuum environment through the measurement of the loss of atoms from the trap. Motivated by the goal of creating cold atom-based technology, we are deciphering what the trapped atoms are communicating about their environment through the observed loss rate. These measurements have the advantages of being straightforward to implement and they provide information about the underlying, fundamental inter-atomic processes. In this talk I will present some of our recent work, including the observation of the trap depth dependence on loss rate for argon-rubidium collisions. The data follow the computed loss rate curve based on the long-range Van der Waals interaction between the two species. The implications of these findings are exciting: trap depths can be determined from the trap loss measurement under controlled background density conditions; observation of trap loss rate in comparison to models for elastic, inelastic, and chemical processes can lead to improved understanding and characterization of these fundamental interactions; finally the marriage of cold atoms with collision modeling offers the promise of creating a novel pressure sensor and pressure standard for the high and ultra-high vacuum regime.

  13. Ab-initio study of electronic structure and elastic properties of ZrC

    NASA Astrophysics Data System (ADS)

    Mund, H. S.; Ahuja, B. L.

    2016-05-01

    The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.

  14. Elasticity Imaging of Polymeric Media

    PubMed Central

    Sridhar, Mallika; Liu, Jie; Insana, Michael F.

    2009-01-01

    Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasistatic (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1–10 s) fluid flows and slow (50–400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease. PMID:17408331

  15. Elastic mismatch enhances cell motility

    NASA Astrophysics Data System (ADS)

    Bresler, Yony; Palmieri, Benoit; Grant, Martin

    In recent years, the study of physics phenomena in cancer has drawn considerable attention. In cancer metastasis, a soft cancer cell leaves the tumor, and must pass through the endothelium before reaching the bloodstream. Using a phase-field model we have shown that the elasticity mismatch between cells alone is sufficient to enhance the motility of thesofter cancer cell by means of bursty migration, in agreement with experiment. We will present further characterization of these behaviour, as well as new possible applications for this model.

  16. Determination of elastic stresses in gas-turbine disks

    NASA Technical Reports Server (NTRS)

    Manson, S S

    1947-01-01

    A method is presented for the calculation of elastic stresses in symmetrical disks typical of those of a high-temperature gas turbine. The method is essentially a finite-difference solution of the equilibrium and compatibility equations for elastic stresses in a symmetrical disk. Account can be taken of point-to-point variations in disk thickness, in temperature, in elastic modulus, in coefficient of thermal expansion, in material density, and in Poisson's ratio. No numerical integration or trial-and-error procedures are involved and the computations can be performed in rapid and routine fashion by nontechnical computers with little engineering supervision. Checks on problems for which exact mathematical solutions are known indicate that the method yields results of high accuracy. Illustrative examples are presented to show the manner of treating solid disks, disks with central holes, and disks constructed either of a single material or two or more welded materials. The effect of shrink fitting is taken into account by a very simple device.

  17. Visco elasticity in 2D materials

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto; Ferreirós, Yago; Landsteiner, Karl; Vozmediano, María A. H.

    2016-03-01

    The combination of Dirac physics and elasticity has been explored at length in graphene where the so-called ‘elastic gauge fields’ have given rise to an entire new field of research and applications: straintronics. The fact that these elastic fields couple to fermions as the electromagnetic field, implies that many electromagnetic responses will have elastic counterparts not yet explored. In this work we will first show that the presence of elastic gauge fields is the rule rather than the exception in most of the topologically non-trivial materials in two- and three-dimensions. We will show that, associated to the physics of the anomalies, and as a counterpart of the Hall conductivity, elastic two-dimension materials will have a Hall viscosity with a coefficient orders of magnitude bigger than the previously studied response. The magnitude and generality of the new effect will greatly improve the chances for the experimental observation of this topological response.

  18. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  19. Elastic, Conductive, Polymeric Hydrogels and Sponges

    NASA Astrophysics Data System (ADS)

    Lu, Yun; He, Weina; Cao, Tai; Guo, Haitao; Zhang, Yongyi; Li, Qingwen; Shao, Ziqiang; Cui, Yulin; Zhang, Xuetong

    2014-07-01

    As a result of inherent rigidity of the conjugated macromolecular chains resulted from the delocalized π-electron system along the polymer backbone, it has been a huge challenge to make conducting polymer hydrogels elastic by far. Herein elastic and conductive polypyrrole hydrogels with only conducting polymer as the continuous phase have been simply synthesized in the indispensable conditions of 1) mixed solvent, 2) deficient oxidant, and 3) monthly secondary growth. The elastic mechanism and oxidative polymerization mechanism on the resulting PPy hydrogels have been discussed. The resulting hydrogels show some novel properties, e.g., shape memory elasticity, fast functionalization with various guest objects, and fast removal of organic infectants from aqueous solutions, all of which cannot be observed from traditional non-elastic conducting polymer counterparts. What's more, light-weight, elastic, and conductive organic sponges with excellent stress-sensing behavior have been successfully achieved via using the resulting polypyrrole hydrogels as precursors.

  20. Evaluation of a Hybrid Elastic EVA Glove

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Akin, David

    2002-01-01

    The hybrid elastic design is based upon an American Society for Engineering Education (ASEE) glove designed by at the Space Systems Laboratory (SSL) in 1985. This design uses an elastic restraint layer instead of convolute joints to achieve greater dexterity and mobility during EVA (extravehicular activity). Two pilot studies and a main study were conducted using the hybrid elastic glove and 4000-series EMU (extravehicular activity unit) glove. Data on dexterity performance, joint range of motion, grip strength and perceived exertion was assessed for the EMU and hybrid elastic gloves with correlations to a barehanded condition. During this study, 30 test subjects performed multiple test sessions using a hybrid elastic glove and a 4000- series shuttle glove in a 4.3psid pressure environment. Test results to date indicate that the hybrid elastic glove performance is approximately similar to the performance of the 4000-series glove.

  1. Elastic, Conductive, Polymeric Hydrogels and Sponges

    PubMed Central

    Lu, Yun; He, Weina; Cao, Tai; Guo, Haitao; Zhang, Yongyi; Li, Qingwen; Shao, Ziqiang; Cui, Yulin; Zhang, Xuetong

    2014-01-01

    As a result of inherent rigidity of the conjugated macromolecular chains resulted from the delocalized π-electron system along the polymer backbone, it has been a huge challenge to make conducting polymer hydrogels elastic by far. Herein elastic and conductive polypyrrole hydrogels with only conducting polymer as the continuous phase have been simply synthesized in the indispensable conditions of 1) mixed solvent, 2) deficient oxidant, and 3) monthly secondary growth. The elastic mechanism and oxidative polymerization mechanism on the resulting PPy hydrogels have been discussed. The resulting hydrogels show some novel properties, e.g., shape memory elasticity, fast functionalization with various guest objects, and fast removal of organic infectants from aqueous solutions, all of which cannot be observed from traditional non-elastic conducting polymer counterparts. What's more, light-weight, elastic, and conductive organic sponges with excellent stress-sensing behavior have been successfully achieved via using the resulting polypyrrole hydrogels as precursors. PMID:25052015

  2. Elastic constants of layers in isotropic laminates.

    PubMed

    Heyliger, Paul R; Ledbetter, Hassel; Kim, Sudook; Reimanis, Ivar

    2003-11-01

    The individual laminae elastic constants in multilayer laminates composed of dissimilar isotropic layers were determined using ultrasonic-resonance spectroscopy and the linear theory of elasticity. Ultrasonic resonance allows one to measure the free-vibration response spectrum of a traction-free solid under periodic vibration. These frequencies depend on pointwise density, laminate dimensions, layer thickness, and layer elastic constants. Given a material with known mass but unknown constitution, this method allows one to extract the elastic constants and density of the constituent layers. This is accomplished by measuring the frequencies and then minimizing the differences between these and those calculated using the theory of elasticity for layered media to select the constants that best replicate the frequency-response spectrum. This approach is applied to a three-layer, unsymmetric laminate of WpCu, and very good agreement is found with the elastic constants of the two constituent materials. PMID:14649998

  3. A Full-Wave Approach to Elastic and Q Tomography

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Chen, P.

    2006-12-01

    Phase delays and traveltimes of seismic waves have been used extensively in seismic tomography to image the laterally heterogeneous elastic structures of the Earth. However, the amplitudes of seismic waves have not been as fully exploited. The difficulties in utilizing amplitudes in structural studies are two folds. The amplitudes of seismic waves are often affected by structural variations in a very nonlinear fashion and as a result the amplitudes are not robust data for tomography inversions. Moreover, the amplitudes of seismic waves are affected by not only the elastic structures through focusing/defocusing and scattering, but also the anelastic structures through attenuation. We propose a consistent and comprehensive approach to phase- delay and amplitude tomography inversion for the Earth's elastic and anelastic structures. We adopt a consistent definition for the phase-delay and amplitude anomalies and measure both from the same cross- correlation between synthetic and recorded seismograms. Frequency-dependent anomalies can be obtained from narrow-band filtered cross-correlagrams. We also assure consistency in interpreting the measurements in terms of structural variations by linearly relating the frequency-dependent phase-delay anomalies to both the elastic parameters to account for scattering and the Q values to account for physical dispersion; and at the same time linearly relating the frequency-dependent amplitude anomalies to the same elastic parameters and Q values to account for scattering and attenuation. We present examples of full-wave 3D sensitivity kernels for these linear relationships computed by coupled normal-mode summations, as well as results of an experimental Q tomography using regional Rayleigh waves in East Asia.

  4. Elastic deformations of bolalipid membranes.

    PubMed

    Galimzyanov, Timur R; Kuzmin, Peter I; Pohl, Peter; Akimov, Sergey A

    2016-02-17

    Archaeal membranes have unique mechanical properties that enable these organisms to survive under extremely aggressive environmental conditions. The so-called bolalipids contribute to this exceptional stability. They have two polar heads joined by two hydrocarbon chains. The two headgroups can face different sides of the membrane (O-shape conformation) or the same side (U-shape conformation). We have developed an elasticity theory for bolalipid membranes and show that the energetic contributions of (i) tilt deformations, (ii) area compression/stretching deformations, (iii) as well as those of Gaussian splay from the two membrane surfaces are additive, while splay deformations yield a cross-term. The presence of a small fraction of U-shaped molecules resulted in spontaneous membrane curvature. We estimated the tilt modulus to be approximately equal to that of membranes in eukaryotic cells. In contrast to conventional lipids, the bolalipid membrane possesses two splay moduli, one of which is estimated to be an order of magnitude larger than that of conventional lipids. The projected values of elastic moduli act to hamper pore formation and to decelerate membrane fusion and fission. PMID:26791255

  5. Electron-Hydrogen Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2004-01-01

    Scattering by single-electron systems is always of interest because the wave function of the target is known exactly. Various approximations have been employed to take into account distortion produced in the target. Among them are the method of polarized orbitals and the close coupling approximation. Recently, e-H and e-He+ S-wave scattering in the elastic region has been studied using the Feshbach projection operator formalism. In this approach, the usual Hartree-Fock and exchange potentials are augmented by an optical potential and the resulting phase shifts have rigorous lower bounds. Now this method is being applied to the e-H P-wave scattering in the elastic region. The number of terms in the Hylleraas-type wave function for the 1,3 P phase shifts is 84 and the resulting phase shifts (preliminary) are given. The results have been given up to five digits because to that accuracy they are rigorous lower bounds. They are in general agreement with the variational (VAR) results of Armstead, and those obtained from the intermediate energy R-matrix method (RM) of Scholz et al., and the finite element method (FEM) of Botero and Shertzer. The later two methods do not provide any bounds on phase shifts.

  6. Hummingbird tongues are elastic micropumps

    PubMed Central

    Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret A.

    2015-01-01

    Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue–fluid interaction in 18 hummingbird species, from seven of the nine main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue's grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates. PMID:26290074

  7. Hummingbird tongues are elastic micropumps.

    PubMed

    Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret A

    2015-08-22

    Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue-fluid interaction in 18 hummingbird species, from seven of the nine main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue's grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates. PMID:26290074

  8. Amplitude-Preserving Propagator and its Applications in Computational Wave Propagation and Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Eslaminia, Mehran

    A novel method is developed to approximately solve acoustic wave equation in the frequency domain. The key idea of the method is to partition the domain into smaller subdomains and solve for the wavefield in each subdomain sequentially, which is facilitated by special interface (continuity) conditions. The sequential solution is performed in two steps: First the downward propagating wavefield is computed considering only downward propagation and transmission at the interfaces. The wavefield is then corrected by adding the upward propagating wavefield resulting from reflections and body forces. It is shown that the proposed method results in accurate amplitudes for downward propagation and primary reflections and is hence called the Amplitude-Preserving Propagator. This novel wave propagator leads to three disparate contributions in large scale computational wave modeling and seismic imaging: forward modeling, migration imaging and full waveform inversion. Forward Modeling: The amplitude-preserving propagator is implemented as a preconditioner to iteratively solve the Helmholtz equation. The effectiveness of the proposed preconditioner is studied using various numerical experiments. We show three significant properties of the proposed preconditioner. First, number of iterations grows very slowly with increasing frequency which is a significant advantage compared to other methods, e.g. sweeping preconditioner. Second, the mesh size (i.e. number of elements per wavelength) does not change number of iterations. Third, and the most important one, the computational time is much less than many other preconditioners. Migration Imaging: In the context of migration imaging, the amplitude-preserving propagator is implemented as an efficient forward solver to perform wave propagation simulation in the frequency domain. We show that the propagator results in a new migration algorithm that is almost as accurate as full-wave migration, while being significantly more efficient

  9. Inversion of elastic impedance for unconsolidated sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Elastic properties of gas-hydrate-bearing sediments are important for quantifying gas hydrate amounts as well as discriminating the gas hydrate effect on velocity from free gas or pore pressure. This paper presents an elastic inversion method for estimating elastic properties of gas-hydrate-bearing sediments from angle stacks using sequential inversion of P-wave impedance from the zero-offset stack and S-wave impedance from the far-offset stack without assuming velocity ratio.

  10. Elastic scattering with weakly bound projectiles

    SciTech Connect

    Figueira, J. M.; Abriola, D.; Arazi, A.; Capurro, O. A.; Marti, G. V.; Martinez Heinmann, D.; Pacheco, A. J.; Testoni, J. E.; Barbara, E. de; Fernandez Niello, J. O.; Padron, I.; Gomes, P. R. S.; Lubian, J.

    2007-02-12

    Possible effects of the break-up channel on the elastic scattering threshold anomaly has been investigated. We used the weakly bound 6,7Li nuclei, which is known to undergo break-up, as projectiles in order to study the elastic scattering on a 27Al target. In this contribution we present preliminary results of these experiments, which were analyzed in terms of the Optical Model and compared with other elastic scattering data using weakly bound nuclei as projectile.

  11. Optimization of multilayered composite pressure vessels using exact elasticity solution

    SciTech Connect

    Adali, S.; Verijenko, V.E.; Tabakov, P.Y.; Walker, M.

    1995-11-01

    An approach for the optimal design of thick laminated cylindrical pressure vessels is given. The maximum burst pressure is computed using an exact elasticity solution and subject to the Tsai-Wu failure criterion. The design method is based on an accurate 3-D stress analysis. Exact elasticity solutions are obtained using the stress function approach where the radial, circumferential and shear stresses are determined taking the closed ends of the cylindrical shell into account. Design optimization of multilayered composite pressure vessels are based on the use of robust multidimensional methods which give fast convergence. Two methods are used to determine the optimum ply angles, namely, iterative and gradient methods. Numerical results are given for optimum fiber orientation of each layer for thick and thin-walled multilayered pressure vessels.

  12. Cyclic creep analysis from elastic finite-element solutions

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hwang, S. Y.

    1986-01-01

    A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.

  13. The elastic thickness of the lithosphere in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Calmant, Stephane

    1987-09-01

    The effective elastic thickness T(e) of the oceanic lithosphere along the Hawaiian-Emperor, the Marquesas, the Pitcairn-Mururoa-Gloucester (PMG) chains, the Tuamotu archipelago, and the Samoa islands was determined by computing the deflection of a continuous elastic plate under the load of volcanoes and was constrained by the geoid heights over the oceans provided by Seasat. The prediction by Watts (1978) according to which the value of the T(e) should increase with the square root of crustal age of the lithosphere at the time of volcano emplacement was not confirmed; while the T(e) estimate of the Hawaiian-Emperor chain and an isolated estimate in the Samoan group agree with the empirical trend found by Watts, the Marquesas and the PMG chains, as well as the previously analyzed Cook-Austral and Society chains, present anomalously low values which increase only slightly with age.

  14. Elastic energy of proteins and the stages of protein folding

    NASA Astrophysics Data System (ADS)

    Lei, J.; Huang, K.

    2009-12-01

    We propose a universal elastic energy for proteins, which depends only on the radius of gyration Rg and the residue number N. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The elastic energy gives rise to scaling relations of the form Rg~Nν in different regions. It shows three folding stages characterized by the progression with exponents ν=3/5, 3/7, 2/5, which we identify as the unfolded stage, pre-globule, and molten globule, respectively. The pre-globule goes over to the molten globule via a break in behavior akin to a first-order phase transition, which is initiated by a sudden acceleration of hydrogen bonding.

  15. Isogeometric analysis of free vibration of simple shaped elastic samples.

    PubMed

    Kolman, Radek; Sorokin, Sergey; Bastl, Bohumír; Kopačka, Ján; Plešek, Jiří

    2015-04-01

    The paper is devoted to numerical solution of free vibration problems for elastic bodies of canonical shapes by means of a spline based finite element method (FEM), called Isogeometric Analysis (IGA). It has an advantage that the geometry is described exactly and the approximation of unknown quantities is smooth due to higher-order continuous shape functions. IGA exhibits very convenient convergence rates and small frequency errors for higher frequency spectrum. In this paper, the IGA strategy is used in computation of eigen-frequencies of a block and cylinder as benchmark tests. Results are compared with the standard FEM, the Rayleigh-Ritz method, and available experimental data. The main attention is paid to the comparison of convergence rate, accuracy, and time-consumption of IGA against FEM and also to show a spline order and parameterization effects. In addition, the potential of IGA in Resonant Ultrasound Spectroscopy measurements of elastic properties of general anisotropy solids is discussed. PMID:25920859

  16. Calibrating elastic parameters from molecular dynamics simulations of capsid proteins

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen; Henley, Christopher

    2008-03-01

    Virus capsids are modeled with elastic network models in which a handful of parameters determine transitions in assembly [1] and morphology [2]. We introduce an approach to compute these parameters from the microscopic structure of the proteins involved. We consider each protein as one or a few rigid bodies with very general interactions, which we parameterize by fitting the simulated equilibrium fluctuations (relative translations and rotations) of a pair of proteins (or fragments) to a 6-dimensional Gaussian. We can then compose these generalized springs into the global capsid structure to determine the continuum elastic parameters. We demonstrate our approach on HIV capsid protein and compare our results with the observed lattice structure (from cryo-EM [3] and AFM indentation studies). [1] R. Zandi et al, PNAS 101 (2004) 15556. [2] J. Lidmar, L. Mirny, and D. R. Nelson, PRE 68 (2003) 051910. [3] B. K. Ganser-Pornillos et al, Cell 131 (2007) 70.

  17. Modelling Elastic Media With Arbitrary Shapes Using the Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Rosa, J. W.; Cardoso, F. A.; Rosa, J. W.; Aki, K.

    2004-12-01

    We extend the new method proposed by Rosa et al. (2001) for the study of elastic bodies with complete arbitrary shapes. The method was originally developed for modelling 2-D elastic media with the application of the wavelet transform, and was extended to cases where discontinuities simulated geologic faults between two different elastic media. In addition to extending the method for the study of bodies with complete arbitrary shapes, we also test new transforms with the objective of making the related matrices more compact, which are also applied to the most general case of the method. The basic method consists of the discretization of the polynomial expansion for the boundary conditions of the 2-D problem involving the stress and strain relations for the media. This parameterization leads to a system of linear equations that should be solved for the determination of the expansion coefficients, which are the model parameters, and their determination leads to the solution of the problem. Despite the fact that the media we studied originally were 2-D bodies, the result of the application of this new method can be viewed as an approximate solution to some specific 3-D problems. Among the motivations for developing this method are possible geological applications (that is, the study of tectonic plates and geologic faults) and simulations of the elastic behaviour of materials in several other fields of science. The wavelet transform is applied with two main objectives, namely to decrease the error related to the truncation of the polynomial expansion and to make the system of linear equations more compact for computation. Having validated this method for the original 2-D elastic media, we plan that this extension to elastic bodies with complete arbitrary shapes will enable it to be even more attractive for modelling real media. Reference Rosa, J. W. C., F. A. C. M. Cardoso, K. Aki, H. S. Malvar, F. A. V. Artola, and J. W. C. Rosa, Modelling elastic media with the

  18. Elastic moduli of pyrope rich garnets

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Pandey, A. K.; Singh, C. K.

    2013-06-01

    The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.

  19. Faraday wave lattice as an elastic metamaterial

    NASA Astrophysics Data System (ADS)

    Domino, L.; Tarpin, M.; Patinet, S.; Eddi, A.

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.

  20. Faraday wave lattice as an elastic metamaterial.

    PubMed

    Domino, L; Tarpin, M; Patinet, S; Eddi, A

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial. PMID:27300815

  1. Elastic anomalies in Fe-Cr alloys.

    PubMed

    Zhang, Hualei; Wang, Guisheng; Punkkinen, Marko P J; Hertzman, Staffan; Johansson, Börje; Vitos, Levente

    2013-05-15

    Using ab initio alloy theory, we determine the elastic parameters of ferromagnetic and paramagnetic Fe(1-c)Cr(c) (0 ≤ c ≤ 1) alloys in the body centered cubic crystallographic phase. Comparison with the experimental data demonstrates that the employed theoretical approach accurately describes the observed composition dependence of the polycrystalline elastic moduli. The predicted single-crystal elastic constants follow complex anomalous trends, which are shown to originate from the interplay between magnetic and chemical effects. The nonmonotonic composition dependence of the elastic parameters has marked implications on the micro-mechanical properties of ferrite stainless steels. PMID:23604218

  2. Elastic properties of solids at high pressure

    NASA Astrophysics Data System (ADS)

    Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.

    2015-11-01

    This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.

  3. Acoustic and elastic multiple scattering and radiation from cylindrical structures

    NASA Astrophysics Data System (ADS)

    Amirkulova, Feruza Abdukadirovna

    Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an

  4. Displacement decomposition ACO based preconditioning of FEM elasticity systems

    NASA Astrophysics Data System (ADS)

    Sviercoski, R. F.; Margenov, S.

    2013-10-01

    Computational simulations of multiscale deformable porous media are routinely encountered as a part of research and development activities in a number of engineering, environmental and biomedical fields. The efficiency of multilevel iterative solution of such problems is a challenging topic on numerical methods for large-scale scientific computing, this is because predicting the mechanical behavior of such systems with hierarchical structures with multiple scales is very computationally demanding. Our main interest application concerns medium that has complex hierarchical morphology in the sense that features ranges from nanometer to millimeter scales. The goal of this work is to propose a computationally efficient numerical tool that can be used to perform everyday predictive simulations as an integral part of osteoporosis treatment, for example. To achieve that, highly heterogeneous media are considered that resembles trabecular bone tissues. The related fine-scale linear elasticity problem is of high contrast and high frequency. The finite element method (FEM) is applied for discretization of the related linear elasticity problem, using separable displacement decomposition. The new feature in this work is that at coarser levels, a block diagonal preconditioner is applied that incorporates an analytical effective tensor into the simulation, avoiding costly numerical solutions of local problems that are inherent in methods for multiscale problems. The robustness of the new proposed algorithm is measured by comparing the number of V-cycles necessary to resolve the considered multiscale problems with other well known techniques.

  5. A first-principles study of cementite (Fe{sub 3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    SciTech Connect

    Ghosh, G.

    2015-08-15

    A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  6. Finite-temperature elasticity of fcc Al: Atomistic simulations and ultrasonic measurements

    NASA Astrophysics Data System (ADS)

    Pham, Hieu H.; Williams, Michael E.; Mahaffey, Patrick; Radovic, Miladin; Arroyave, Raymundo; Cagin, Tahir

    2011-08-01

    Though not very often, there are some cases in the literature where discrepancies exist in the temperature dependence of elastic constants of materials. A particular example of this case is the behavior of C12 coefficient of a simple metal, aluminum. In this paper we attempt to provide insight into various contributions to temperature dependence in elastic properties by investigating the thermoelastic properties of fcc aluminum as a function of temperature through the use of two computational techniques and experiments. First, ab initio calculations based on density functional theory (DFT) are used in combination with quasiharmonic theory to calculate the elastic constants at finite temperatures through a strain-free energy approach. Molecular dynamics (MD) calculations using tight-binding potentials are then used to extract the elastic constants through a fluctuation-based formalism. Through this dynamic approach, the different contributions (Born, kinetic, and stress fluctuations) to the elastic constants are isolated and the underlying physical basis for the observed thermally induced softening is elucidated. The two approaches are then used to shed light on the relatively large discrepancies in the reported temperature dependence of the elastic constants of fcc aluminum. Finally, the polycrystalline elastic constants (and their temperature dependence) of fcc aluminum are determined using resonant ultrasound spectroscopy (RUS) and compared to previously published data as well as the atomistic calculations performed in this work.

  7. Micro motor OCT enables catheter based assessment of vascular elasticity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Tianshi; Pfeiffer, Tom; Wieser, Wolfgang; Lancee, Charles T.; van der Steen, Antonius F. W.; Huber, Robert; van Soest, Gijs

    2016-03-01

    Here, we present the first catheter-based optical coherence elasticity measurement using a newly developed super fast intravascular optical coherence tomography (OCT) system. The system is based on a 1.5 MHz Fourier Domain Mode Locked laser and a 1.2 mm outer diameter motorized catheter. To detect the local elastic properties, the micro-motor is programmed to actuate the laser beam in a "step-by-step" mode at 1 revolution per second; which can potentially be increased to > 10 revolutions/s. The beam is scanned in a limited number (up to 50) of angular steps, at each of which the beam position is held stable. When the laser beam is stable, the phase difference across a variable number of A-lines can be computed to assess the elastic displacement. Choosing a proper window delay, local elastic tissue displacement and strain can be quantified based on the phase shift. We conducted ex-vivo experiments with a cylindrical phantom where the elastic property changes at different angular positions. A syringe pump was used to generate variable pressure loading, which is synchronized to the motor driving signal. The experimental results show that the elastic displacements are detected to be different at different angular positions. The results of elastic properties detection in human artery will also be demonstrated.

  8. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    SciTech Connect

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  9. The elastic constants of the human lens

    PubMed Central

    Fisher, R. F.

    1971-01-01

    1. When the lens is spun around its antero-posterior polar axis in an apparatus designed for the purpose, high speed photography can be used to record its changing profile. By this method a variable radial centrifugal force can be applied to the lens which mimics the pull of the zonule. 2. If the lens is not stressed at its centre beyond 100 Nm-2 it behaves as a truly elastic body. When stressed beyond this limit visco-elastic strain is produced at its poles. 3. The human lens has isotropic elastic properties at the extremes of life, but at the other times Young's Modulus of Elasticity varies with the direction in which it is measured. 4. Young's Modulus of Elasticity of the lens varies with age, polar elasticity and equatorial elasticity, at birth being 0·75 × 103 and 0·85 × 103 Nm-2 respectively, while at 63 years of age both are equal to 3 × 103 Nm-2. 5. A comparison of Young's Modulus of the young human lens with that of the rabbit and cat shows that the polar elasticity of the lenses of these animals was 5 times greater in the young rabbit, and 21 times greater in the adult cat. Equatorial elasticities of the rabbit and human lens were equal, while in the cat the equatorial elasticity was four times greater. 6. A mathematical model showing the lens substance possessing a nucleus of lower isotropic elasticity than that of the isotropic elastic cortex surrounding it, accounts for the difference between polar and equatorial elasticity of the intact adult lens. 7. The implications of these findings are discussed in relation to: (i) accommodation and the rheological properties of the lens; (ii) possible differences in the physical state of the lenticular proteins in the cortex and nucleus which may account for the senile variations in Young's Modulus of Elasticity in these regions of the lens; (iii) the loss of accommodation due solely to an increase in Young's Modulus of Elasticity of the lens between the ages of 15 and 60. This would amount to 44% of the

  10. Deriving capture and reaction cross sections from observed quasi-elastic and elastic backscattering

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Diaz-Torres, A.; Gomes, P. R. S.; Lenske, H.

    2014-12-01

    Based on reaction theory, we suggest a useful method for extracting total and partial reaction and capture (complete fusion) cross sections from the experimental elastic and quasi-elastic backscattering excitation functions taken at a single angle. We also propose a method to predict the differential reaction cross section from the observed elastic-scattering angular distribution.

  11. Hydrodynamic interaction between particles near elastic interfaces

    NASA Astrophysics Data System (ADS)

    Daddi-Moussa-Ider, Abdallah; Gekle, Stephan

    2016-07-01

    We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of the approximations in our analytical results is demonstrated by corresponding boundary integral simulations which are in excellent agreement with the theoretical predictions.

  12. Using patterned surfaces to sort elastic microcapsules

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Verberg, Rolf; Balazs, Anna C.

    2007-03-01

    For both biological cells and synthetic microcapsules, mechanical stiffness is a key parameter since it can reveal the presence of disease in the former case and the quality of the fabricated product in the latter case. To date, however, assessing the mechanical properties of such micron scale particles in an efficient, cost-effective means remains a critical challenge. By developing a three-dimensional computational model of fluid-filled, elastic spheres rolling on substrates patterned with diagonal stripes, we demonstrate a useful method for separating cells or microcapules by their compliance. In particular, we examine the fluid-driven motion of these capsules over a hard adhesive surface that contains soft stripes or a weakly adhesive surface that contains ``sticky'' stripes. As a result of their inherently different interactions with the heterogeneous substrate, particles with dissimilar stiffness are dispersed to distinct lateral locations on the surface. Since mechanically and chemically patterned surfaces can be readily fabricated through soft lithography and can easily be incorporated into microfluidic devices, our results point to a facile method for carrying out continuous ``on the fly'' separation processes.

  13. Elasticity of fibrous networks under uniaxial prestress.

    PubMed

    Vahabi, Mahsa; Sharma, Abhinav; Licup, Albert James; van Oosten, Anne S G; Galie, Peter A; Janmey, Paul A; MacKintosh, Fred C

    2016-06-14

    We present theoretical and experimental studies of the elastic response of fibrous networks subjected to uniaxial strain. Uniaxial compression or extension is applied to extracellular networks of fibrin and collagen using a shear rheometer with free water in/outflow. Both uniaxial stress and the network shear modulus are measured. Prior work [van Oosten, et al., Sci. Rep., 2015, 6, 19270] has shown softening/stiffening of these networks under compression/extension, together with a nonlinear response to shear, but the origin of such behaviour remains poorly understood. Here, we study how uniaxial strain influences the nonlinear mechanics of fibrous networks. Using a computational network model with bendable and stretchable fibres, we show that the softening/stiffening behaviour can be understood for fixed lateral boundaries in 2D and 3D networks with comparable average connectivities to the experimental extracellular networks. Moreover, we show that the onset of stiffening depends strongly on the imposed uniaxial strain. Our study highlights the importance of both uniaxial strain and boundary conditions in determining the mechanical response of hydrogels. PMID:27174568

  14. Elastic theory of origami-based metamaterials

    NASA Astrophysics Data System (ADS)

    Brunck, V.; Lechenault, F.; Reid, A.; Adda-Bedia, M.

    2016-03-01

    Origami offers the possibility for new metamaterials whose overall mechanical properties can be programed by acting locally on each crease. Starting from a thin plate and having knowledge about the properties of the material and the folding procedure, one would like to determine the shape taken by the structure at rest and its mechanical response. In this article, we introduce a vector deformation field acting on the imprinted network of creases that allows us to express the geometrical constraints of rigid origami structures in a simple and systematic way. This formalism is then used to write a general covariant expression of the elastic energy of n -creases meeting at a single vertex. Computations of the equilibrium states are then carried out explicitly in two special cases: the generalized waterbomb base and the Miura-Ori. For the waterbomb, we show a generic bistability for any number of creases. For the Miura folding, however, we uncover a phase transition from monostable to bistable states that explains the efficient deployability of this structure for a given range of geometrical and mechanical parameters. Moreover, the analysis shows that geometric frustration induces residual stresses in origami structures that should be taken into account in determining their mechanical response. This formalism can be extended to a general crease network, ordered or otherwise, and so opens new perspectives for the mechanics and the physics of origami-based metamaterials.

  15. Coiling of elastic rods on rigid substrates.

    PubMed

    Jawed, Mohammad K; Da, Fang; Joo, Jungseock; Grinspun, Eitan; Reis, Pedro M

    2014-10-14

    We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations toward developing predictive understanding of the coiling process. Both cases of deposition onto static and moving substrates are considered. We construct phase diagrams for the possible coiling patterns and characterize them as a function of the geometric and material properties of the rod, as well as the height and relative speeds of deployment. The modes selected and their characteristic length scales are found to arise from a complex interplay between gravitational, bending, and twisting energies of the rod, coupled to the geometric nonlinearities intrinsic to the large deformations. We give particular emphasis to the first sinusoidal mode of instability, which we find to be consistent with a Hopf bifurcation, and analyze the meandering wavelength and amplitude. Throughout, we systematically vary natural curvature of the rod as a control parameter, which has a qualitative and quantitative effect on the pattern formation, above a critical value that we determine. The universality conferred by the prominent role of geometry in the deformation modes of the rod suggests using the gained understanding as design guidelines, in the original applications that motivated the study. PMID:25267649

  16. Equilibrium theory for braided elastic filaments

    NASA Astrophysics Data System (ADS)

    van der Heijden, Gert

    Motivated by supercoiling of DNA and other filamentous structures, we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is found as part of the solution. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Simple analytical cases are discussed first and used as starting solutions in parameter continuation studies to compute classes of both open and closed (linked or knotted) braid solutions.

  17. Coiling of elastic rods on rigid substrates

    PubMed Central

    Jawed, Mohammad K.; Da, Fang; Joo, Jungseock; Grinspun, Eitan; Reis, Pedro M.

    2014-01-01

    We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations toward developing predictive understanding of the coiling process. Both cases of deposition onto static and moving substrates are considered. We construct phase diagrams for the possible coiling patterns and characterize them as a function of the geometric and material properties of the rod, as well as the height and relative speeds of deployment. The modes selected and their characteristic length scales are found to arise from a complex interplay between gravitational, bending, and twisting energies of the rod, coupled to the geometric nonlinearities intrinsic to the large deformations. We give particular emphasis to the first sinusoidal mode of instability, which we find to be consistent with a Hopf bifurcation, and analyze the meandering wavelength and amplitude. Throughout, we systematically vary natural curvature of the rod as a control parameter, which has a qualitative and quantitative effect on the pattern formation, above a critical value that we determine. The universality conferred by the prominent role of geometry in the deformation modes of the rod suggests using the gained understanding as design guidelines, in the original applications that motivated the study. PMID:25267649

  18. Fast Tensor Image Morphing for Elastic Registration

    PubMed Central

    Yap, Pew-Thian; Wu, Guorong; Zhu, Hongtu; Lin, Weili; Shen, Dinggang

    2009-01-01

    We propose a novel algorithm, called Fast Tensor Image Morphing for Elastic Registration or F-TIMER. F-TIMER leverages multiscale tensor regional distributions and local boundaries for hierarchically driving deformable matching of tensor image volumes. Registration is achieved by aligning a set of automatically determined structural landmarks, via solving a soft correspondence problem. Based on the estimated correspondences, thin-plate splines are employed to generate a smooth, topology preserving, and dense transformation, and to avoid arbitrary mapping of non-landmark voxels. To mitigate the problem of local minima, which is common in the estimation of high dimensional transformations, we employ a hierarchical strategy where a small subset of voxels with more distinctive attribute vectors are first deployed as landmarks to estimate a relatively robust low-degrees-of-freedom transformation. As the registration progresses, an increasing number of voxels are permitted to participate in refining the correspondence matching. A scheme as such allows less conservative progression of the correspondence matching towards the optimal solution, and hence results in a faster matching speed. Results indicate that better accuracy can be achieved by F-TIMER, compared with other deformable registration algorithms [1, 2], with significantly reduced computation time cost of 4–14 folds. PMID:20426052

  19. Hydrodynamic interaction between particles near elastic interfaces.

    PubMed

    Daddi-Moussa-Ider, Abdallah; Gekle, Stephan

    2016-07-01

    We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of the approximations in our analytical results is demonstrated by corresponding boundary integral simulations which are in excellent agreement with the theoretical predictions. PMID:27394123

  20. Elastic effects in superposed fluids

    NASA Astrophysics Data System (ADS)

    Joshi, Amey

    2014-02-01

    A non-uniform electric field of suitable gradient can make specific weights of two superposed dielectric fluids identical. If the fluids are Newtonian, this choice of electric field makes the interface resilient to small perturbations, even if the fluid on the top is heavier than the one at bottom. On the other hand, if the fluids are viscoelastic, the interface continues to remain unstable. We point out that although the right choice of electric field succeeds in overcoming the effects of gravity, the fluids' elasticity makes the interface unstable. The same effect can be achieved in the case of paramagnetic or ferro-fluids in presence of a non-uniform magnetic field.

  1. Elasticity of polymeric nanocolloidal particles

    NASA Astrophysics Data System (ADS)

    Riest, Jonas; Athanasopoulou, Labrini; Egorov, Sergei A.; Likos, Christos N.; Ziherl, Primož

    2015-11-01

    Softness is an essential mechanical feature of macromolecular particles such as polymer-grafted nanocolloids, polyelectrolyte networks, cross-linked microgels as well as block copolymer and dendrimer micelles. Elasticity of individual particles directly controls their swelling, wetting, and adsorption behaviour, their aggregation and self-assembly as well as structural and rheological properties of suspensions. Here we use numerical simulations and self-consistent field theory to study the deformation behaviour of a single spherical polymer brush upon diametral compression. We observe a universal response, which is rationalised using scaling arguments and interpreted in terms of two coarse-grained models. At small and intermediate compressions the deformation can be accurately reproduced by modelling the brush as a liquid drop, whereas at large compressions the brush behaves as a soft ball. Applicable far beyond the pairwise-additive small-strain regime, the models may be used to describe microelasticity of nanocolloids in severe confinement including dense disordered and crystalline phases.

  2. High elastic modulus polymer electrolytes

    DOEpatents

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  3. Elastic Torques about Membrane Edges

    PubMed Central

    Lorenzen, Silke; Servuss, Rolf-M.; Helfrich, Wolfgang

    1986-01-01

    The shape of mechanically pierced giant vesicles is studied to obtain the elastic modulus of Gaussian curvature of egg lecithin bilayers. It is argued that such experiments are governed by an apparent modulus, ¯κapp, not the true modulus of Gaussian curvature, ¯κ. A theory of ¯κapp is proposed, regarding the pierced bilayer vesicle as a closed monolayer vesicle. The quantity measured, i.e. ¯κapp/κ, where κ is the rigidity, agrees satisfactorily with the theory. We find ¯κapp = -(1.9 ± 0.3) · 10-12 erg (on the basis of κ = (2.3 ± 0.3) · 10-12 erg). The result may have implications for bilayer fusion. ImagesFIGURE 4FIGURE 5 PMID:19431686

  4. 21 CFR 880.5075 - Elastic bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Elastic bandage. 880.5075 Section 880.5075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5075 Elastic bandage. (a)...

  5. 7 CFR 29.3516 - Elasticity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Elasticity. 29.3516 Section 29.3516 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3516 Elasticity. The flexible, springy nature of the tobacco leaf to...

  6. 7 CFR 29.6013 - Elasticity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Elasticity. 29.6013 Section 29.6013 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6013 Elasticity. The flexible, springy nature of the tobacco leaf...

  7. 7 CFR 29.3516 - Elasticity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.3516 Section 29.3516 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3516 Elasticity. The flexible, springy nature of the tobacco leaf to...

  8. 7 CFR 29.1014 - Elasticity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Elasticity. 29.1014 Section 29.1014 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1014 Elasticity. The flexible, springy nature of the tobacco leaf to...

  9. 7 CFR 29.2265 - Elasticity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.2265 Section 29.2265 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Elasticity. The flexible, springy nature of the tobacco leaf to recover approximately its original size...

  10. 7 CFR 29.2265 - Elasticity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Elasticity. 29.2265 Section 29.2265 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Elasticity. The flexible, springy nature of the tobacco leaf to recover approximately its original size...

  11. 7 CFR 29.2515 - Elasticity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.2515 Section 29.2515 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2515 Elasticity. The flexible,...

  12. 7 CFR 29.6013 - Elasticity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.6013 Section 29.6013 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6013 Elasticity. The flexible, springy nature of the tobacco leaf...

  13. 7 CFR 29.1014 - Elasticity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.1014 Section 29.1014 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1014 Elasticity. The flexible, springy nature of the tobacco leaf to...

  14. 7 CFR 29.2515 - Elasticity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Elasticity. 29.2515 Section 29.2515 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2515 Elasticity. The flexible,...

  15. A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations

    NASA Astrophysics Data System (ADS)

    Ping, Ping; Zhang, Yu; Xu, Yixian

    2014-02-01

    In order to conquer the spurious reflections from the truncated edges and maintain the stability in the long-time simulation of elastic wave propagation, several perfectly matched layer (PML) methods have been proposed in the first-order (e.g., velocity-stress equations) and the second-order (e.g., energy equation with displacement unknown only) formulations. The multiaxial perfectly matched layer (M-PML) holds the excellent stability for the long-time simulation of wave propagation, even though it is not perfectly matched in the discretized M-PML equation system. This absorbing boundary approach can offer an alternative way to solve the problem of the late-time instability, especially for anisotropic media, which is also suffered by the convolutional perfectly matched layer (C-PML) that is supposed to be competent to handle most stable problems. The M-PML termination implementation in the first-order formulations is well proposed. The common drawback of the implementation of the first-order M-PML formulations is that it necessitates fundamental reconstruction of the existing codes of the second-order spectral element method (SEM) or finite element method (FEM). Therefore, we propose a nonconvolutional second-order M-PML absorbing boundary condition approach for the wave propagation simulation in elastic media that has not yet been developed before. Two-dimensional numerical simulation validations demonstrate that the proposed second-order M-PML has good performances: 1) superior efficiency and stability of absorbing the spurious elastic wavefields, both the surface waves and body waves, reflected on the boundaries; 2) superior stability in the long-time simulation even in the isotropic medium with a high Poisson's ratio; 3) superior efficiency and stability in the long-time simulation for anisotropic media. This method hence makes the SEM and FEM in the second-order wave equation formulation more efficient and stable for the long-time simulation.

  16. Wetting of Elastic Solids on Nanopillars

    NASA Astrophysics Data System (ADS)

    Ignacio, M.; Saito, Y.; Smereka, P.; Pierre-Louis, O.

    2014-04-01

    Solids and liquids are both known to exhibit Cassie-Baxter states, where a drop or a solid nanoparticle is maintained on top of pillars due to wetting forces. We point out that due to elastic strain, solid nanocrystals exhibit a behavior different from that of liquids. First, the equilibrium Cassie-Baxter state on a single pillar exhibits a spontaneous symmetry breaking due to elastic effects. The second consequence of elasticity is the existence of stable partially impaled states, resulting from a compromise between wetting forces which favor impalement and elastic strain which resists impalement. Based on kinetic Monte Carlo simulations which include elastic strain, we discuss these effects and we propose a global phase diagram for the stability of nanocrystals on nanopillars.

  17. Decoherence due to Elastic Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Uys, H.; Biercuk, M. J.; Vandevender, A. P.; Ospelkaus, C.; Meiser, D.; Ozeri, R.; Bollinger, J. J.

    2010-11-01

    We present theoretical and experimental studies of the decoherence of hyperfine ground-state superpositions due to elastic Rayleigh scattering of light off resonant with higher lying excited states. We demonstrate that under appropriate conditions, elastic Rayleigh scattering can be the dominant source of decoherence, contrary to previous discussions in the literature. We show that the elastic-scattering decoherence rate of a two-level system is given by the square of the difference between the elastic-scattering amplitudes for the two levels, and that for certain detunings of the light, the amplitudes can interfere constructively even when the elastic-scattering rates from the two levels are equal. We confirm this prediction through calculations and measurements of the total decoherence rate for a superposition of the valence electron spin levels in the ground state of Be+9 in a 4.5 T magnetic field.

  18. Decoherence due to elastic Rayleigh scattering.

    PubMed

    Uys, H; Biercuk, M J; Vandevender, A P; Ospelkaus, C; Meiser, D; Ozeri, R; Bollinger, J J

    2010-11-12

    We present theoretical and experimental studies of the decoherence of hyperfine ground-state superpositions due to elastic Rayleigh scattering of light off resonant with higher lying excited states. We demonstrate that under appropriate conditions, elastic Rayleigh scattering can be the dominant source of decoherence, contrary to previous discussions in the literature. We show that the elastic-scattering decoherence rate of a two-level system is given by the square of the difference between the elastic-scattering amplitudes for the two levels, and that for certain detunings of the light, the amplitudes can interfere constructively even when the elastic-scattering rates from the two levels are equal. We confirm this prediction through calculations and measurements of the total decoherence rate for a superposition of the valence electron spin levels in the ground state of 9Be+ in a 4.5 T magnetic field. PMID:21231210

  19. Aggregation-structure-elasticity relationship of gels

    NASA Astrophysics Data System (ADS)

    Ma, Hang-Shing

    Aerogel is a mesoporous, low-density material which is desirable for applications like thermal insulation and low-k interlayer dielectric. However, its lack of mechanical integrity hinders its development. Experiments have shown that aerogels exhibit a scaling relationship E ∝ rho m between modulus E and density rho, with the exponent m usually between 3 and 4. The objective of the dissertation is to use computer modeling to understand how the random aggregation process accounts for the fractal structure and the compliant nature of aerogels. Model gels were created by the diffusion-limited cluster-cluster aggregation (DLCA), which simulates random aggregation leading to the sol-gel transition. Then each resulting structure was modeled as an elastic beam network and numerically compressed using the finite element method (FEM). Analyses showed that the DLCA gels reproduced the scaling relationship after trimming the non-contributive dangling branches from the mechanically efficient looped networks. The dangling bond deflection (DEF) model was therefore developed to model the random rotational movement of the dangling branches and the subsequent loop structure formation. Model gels with extensive loops and negligible dangling branches were simulated by combining the DLCA and DEF models. Representation of the aerogel networks by the DLCADEF models was validated for the resemblance of the fractal geometry and elastic behavior. The lack of mechanical integrity in aerogels is a natural consequence of the random aggregation and the resulting fractal structure. Fractal clusters are created in the early stage of aggregation, each of which is characterized by a dense core and sparse perimeter. These clusters grow in size until they percolate at the gel point by knitting together at the perimeters. The gel structure possesses a "blob-and-link" architecture, with the blobs representing the rigid cores of the fractal clusters, and the links corresponding to the tenuous chains

  20. Computational hologram synthesis and representation on spatial light modulators for real-time 3D holographic imaging

    NASA Astrophysics Data System (ADS)

    Reichelt, Stephan; Leister, Norbert

    2013-02-01

    In dynamic computer-generated holography that utilizes spatial light modulators, both hologram synthesis and hologram representation are essential in terms of fast computation and high reconstruction quality. For hologram synthesis, i.e. the computation step, Fresnel transform based or point-source based raytracing methods can be applied. In the encoding step, the complex wave-field has to be optimally represented by the SLM with its given modulation capability. For proper hologram reconstruction that implies a simultaneous and independent amplitude and phase modulation of the input wave-field by the SLM. In this paper, we discuss full complex hologram representation methods on SLMs by considering inherent SLM parameter such as modulation type and bit depth on their reconstruction performance such as diffraction efficiency and SNR. We review the three implementation schemes of Burckhardt amplitude-only representation, phase-only macro-pixel representation, and two-phase interference representation. Besides the optical performance we address their hardware complexity and required computational load. Finally, we experimentally demonstrate holographic reconstructions of different representation schemes as obtained by functional prototypes utilizing SeeReal's viewing-window holographic display technology. The proposed hardware implementations enable a fast encoding of complex-valued hologram data and thus will pave the way for commercial real-time holographic 3D imaging in the near future.

  1. Cellular automata and complex dynamics of driven elastic media

    SciTech Connect

    Coppersmith, S.N.; Littlewodd, P.B.; Sibani, P.

    1995-12-01

    Several systems of importance in condensed matter physics can be modelled as an elastic medium in a disordered environment and driven by an external force. In the simplest cases, the equation of motion involves competition between a local non-linear potential (fluctuating in space) and elastic coupling, as well as relaxational (inertialess) dynamics. Despite a simple mathematical description, the interactions between many degrees of freedom lead to the emergence of time and length scales much longer than those set by the microscopic dynamics. Extensive computations have improved the understanding of the behavior of such models, but full solutions of the equations of motion for very large systems are time-consuming and may obscure important physical principles in a massive volume of output. The development of cellular automata models has been crucial, both in conceptual simplification and in allowing the collection of data on many replicas of very large systems. We will discuss how the marriage of cellular automata models and parallel computation on a MasPar MP-1216 computer has helped to elucidate the dynamical properties of these many-degree-of-freedom systems.

  2. The estimated elastic constants for a single bone osteonal lamella.

    PubMed

    Yoon, Young June; Cowin, Stephen C

    2008-02-01

    Micromechanical estimates of the elastic constants for a single bone osteonal lamella and its substructures are reported. These estimates of elastic constants are accomplished at three distinct and organized hierarchical levels, that of a mineralized collagen fibril, a collagen fiber, and a single lamella. The smallest collagen structure is the collagen fibril whose diameter is the order of 20 nm. The next structural level is the collagen fiber with a diameter of the order of 80 nm. A lamella is a laminate structure, composed of multiple collagen fibers with embedded minerals and consists of several laminates. The thickness of one laminate in the lamella is approximately 130 nm. All collagen fibers in a laminate in the lamella are oriented in one direction. However, the laminates rotate relative to the adjacent laminates. In this work, all collagen fibers in a lamella are assumed to be aligned in the longitudinal direction. This kind of bone with all collagen fibers aligned in one direction is called a parallel fibered bone. The effective elastic constants for a parallel fibered bone are estimated by assuming periodic substructures. These results provide a database for estimating the anisotropic poroelastic constants of an osteon and also provide a database for building mathematical or computational models in bone micromechanics, such as bone damage mechanics and bone poroelasticity. PMID:17297631

  3. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-01-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  4. Critical behaviour in the nonlinear elastic response of hydrogels.

    PubMed

    Dennison, M; Jaspers, M; Kouwer, P H J; Storm, C; Rowan, A E; MacKintosh, F C

    2016-08-17

    In this paper we study the elastic response of synthetic hydrogels to an applied shear stress. The hydrogels studied here have previously been shown to mimic the behaviour of biopolymer networks when they are sufficiently far above the gel point. We show that near the gel point they exhibit an elastic response that is consistent with the predicted critical behaviour of networks near or below the isostatic point of marginal stability. This point separates rigid and floppy states, distinguished by the presence or absence of finite linear elastic moduli. Recent theoretical work has also focused on the response of such networks to finite or large deformations, both near and below the isostatic point. Despite this interest, experimental evidence for the existence of criticality in such networks has been lacking. Using computer simulations, we identify critical signatures in the mechanical response of sub-isostatic networks as a function of applied shear stress. We also present experimental evidence consistent with these predictions. Furthermore, our results show the existence of two distinct critical regimes, one of which arises from the nonlinear stretch response of semi-flexible polymers. PMID:27464595

  5. Propagation of elastic waves through textured polycrystals: application to ice

    PubMed Central

    Maurel, Agnès; Lund, Fernando; Montagnat, Maurine

    2015-01-01

    The propagation of elastic waves in polycrystals is revisited, with an emphasis on configurations relevant to the study of ice. Randomly oriented hexagonal single crystals are considered with specific, non-uniform, probability distributions for their major axis. Three typical textures or fabrics (i.e. preferred grain orientations) are studied in detail: one cluster fabric and two girdle fabrics, as found in ice recovered from deep ice cores. After computing the averaged elasticity tensor for the considered textures, wave propagation is studied using a wave equation with elastic constants c=〈c〉+δc that are equal to an average plus deviations, presumed small, from that average. This allows for the use of the Voigt average in the wave equation, and velocities are obtained solving the appropriate Christoffel equation. The velocity for vertical propagation, as appropriate to interpret sonic logging measurements, is analysed in more details. Our formulae are shown to be accurate at the 0.5% level and they provide a rationale for previous empirical fits to wave propagation velocities with a quantitative agreement at the 0.07–0.7% level. We conclude that, within the formalism presented here, it is appropriate to use, with confidence, velocity measurements to characterize ice fabrics. PMID:27547099

  6. An analytically solvable eigenvalue problem for the linear elasticity equations.

    SciTech Connect

    Day, David Minot; Romero, Louis Anthony

    2004-07-01

    Analytic solutions are useful for code verification. Structural vibration codes approximate solutions to the eigenvalue problem for the linear elasticity equations (Navier's equations). Unfortunately the verification method of 'manufactured solutions' does not apply to vibration problems. Verification books (for example [2]) tabulate a few of the lowest modes, but are not useful for computations of large numbers of modes. A closed form solution is presented here for all the eigenvalues and eigenfunctions for a cuboid solid with isotropic material properties. The boundary conditions correspond physically to a greased wall.

  7. Elastic Face, An Anatomy-Based Biometrics Beyond Visible Cue

    SciTech Connect

    Tsap, L V; Zhang, Y; Kundu, S J; Goldgof, D B; Sarkar, S

    2004-03-29

    This paper describes a face recognition method that is designed based on the consideration of anatomical and biomechanical characteristics of facial tissues. Elastic strain pattern inferred from face expression can reveal an individual's biometric signature associated with the underlying anatomical structure, and thus has the potential for face recognition. A method based on the continuum mechanics in finite element formulation is employed to compute the strain pattern. Experiments show very promising results. The proposed method is quite different from other face recognition methods and both its advantages and limitations, as well as future research for improvement are discussed.

  8. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  9. Remarks on the elastic axis of shell wings

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1936-01-01

    The definitions of flexural center, torsional center, elastic center, and elastic axis are discussed. The calculation of elastic centers is dealt with in principle and a suggestion is made for the design of shear webs.

  10. Nondiffuse elastic and anelastic passive imaging.

    PubMed

    Mulargia, Francesco; Castellaro, Silvia

    2010-03-01

    The property at the basis of passive acoustic imaging is that, taken any two points, one of them can be seen as the source of the waves and the other as the recording station. This property, which was shown to hold also in nondiffuse fields, is here exploited: (1) to allow an undistorted passive imaging through the simple use of the statistical mode to estimate wave velocity, (2) to determine the azimuth of the instantaneous Huygens sources of the noise wavefield, and (3) to measure, provided that the noise bandwidth is wide with respect to that of the local system, the material dissipation constant as a function of frequency. The authors applied this theory to study the seismic noise field in the Ravenna, North-Central Italy, shore area and found it capable to provide velocity dispersion curves matching those of independent surveys, to track the sources of seismic noise to a few major firms in Ravenna port, with the prevailing source switching at the time scale of seconds, and to measure the dissipation quality factor Q at approximately 20 independent of frequency in the range 1-30 Hz. PMID:20329839

  11. Elastic metamaterial beam with remotely tunable stiffness

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  12. Intramuscular pressures beneath elastic and inelastic leggings

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Ballard, R. E.; Breit, G. A.; Watenpaugh, D. E.; Hargens, A. R.

    1994-01-01

    Leg compression devices have been used extensively by patients to combat chronic venous insufficiency and by astronauts to counteract orthostatic intolerance following spaceflight. However, the effects of elastic and inelastic leggings on the calf muscle pump have not been compared. The purpose of this study was to compare in normal subjects the effects of elastic and inelastic compression on leg intramuscular pressure (IMP), an objective index of calf muscle pump function. IMP in soleus and tibialis anterior muscles was measured with transducer-tipped catheters. Surface compression between each legging and the skin was recorded with an air bladder. Subjects were studied under three conditions: (1) control (no legging), (2) elastic legging, and (3) inelastic legging. Pressure data were recorded for each condition during recumbency, sitting, standing, walking, and running. Elastic leggings applied significantly greater surface compression during recumbency (20 +/- 1 mm Hg, mean +/- SE) than inelastic leggings (13 +/- 2 mm Hg). During recumbency, elastic leggings produced significantly higher soleus IMP of 25 +/- 1 mm Hg and tibialis anterior IMP of 28 +/- 1 mm Hg compared to 17 +/- 1 mm Hg and 20 +/- 2 mm Hg, respectively, generated by inelastic leggings and 8 +/- 1 mm Hg and 11 +/- 1 mm Hg, respectively, without leggings. During sitting, walking, and running, however, peak IMPs generated in the muscular compartments by elastic and inelastic leggings were similar. Our results suggest that elastic leg compression applied over a long period in the recumbent posture may impede microcirculation and jeopardize tissue viability.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Application of numerical methods to elasticity imaging.

    PubMed

    Castaneda, Benjamin; Ormachea, Juvenal; Rodríguez, Paul; Parker, Kevin J

    2013-03-01

    Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity. PMID:24010245

  14. Dynamically strained ferroelastics: Statistical behavior in elastic and plastic regimes

    NASA Astrophysics Data System (ADS)

    Ding, X.; Lookman, T.; Zhao, Z.; Saxena, A.; Sun, J.; Salje, E. K. H.

    2013-03-01

    The dynamic evolution in ferroelastic crystals under external shear is explored by computer simulation of a two-dimensional model. The characteristic geometrical patterns obtained during shear deformation include dynamic tweed in the elastic regime as well as interpenetrating needle domains in the plastic regime. As a result, the statistics of jerk energy differ in the elastic and plastic regimes. In the elastic regime the distributions of jerk energy are sensitive to temperature and initial configurations. However, in the plastic regime the jerk distributions are rather robust and do not depend much on the details of the configurations, although the geometrical pattern formed after yield is strongly influenced by the elastic constants of the materials and the configurations we used. Specifically, for all geometrical configurations we studied, the energy distribution of jerks shows a power-law noise pattern P(E)˜E-(γ-1)(γ-1=1.3-2) at low temperatures and a Vogel-Fulcher distribution P(E) ˜ exp-(E/E0) at high temperatures. More complex behavior occurs at the crossover between these two regimes where our simulated jerk distributions are very well described by a generalized Poisson distributions P(E)˜E-(γ-1) exp-(E/E0)n with n = 0.4-0.5 and γ-1 ≈ 0 (Kohlrausch law). The geometrical mechanisms for the evolution of the ferroelastic microstructure under strain deformation remain similar in all thermal regimes, whereas their thermodynamic behavior differs dramatically: on heating, from power-law statistics via the Kohlrausch law to a Vogel-Fulcher law. There is hence no simple way to predict the local evolution of the twin microstructure from just the observed statistical behavior of a ferroelastic crystal. It is shown that the Poisson distribution is a convenient way to describe the crossover behavior contained in all the experimental data without recourse to specific scaling functions or temperature-dependent cutoff lengths.

  15. Generalized topological sensitivity for inverse scattering of elastic waves

    NASA Astrophysics Data System (ADS)

    Chikichev, Ivan Sergeevich

    The focus of this research is an extension of the concept of topological sensitivity, rooted in theories of shape optimization and elastostatics, to three-dimensional elastodynamics and its application toward preliminary reconstruction and characterization of inner defects by way of elastic waves. In particular the original concept, which exercises the idea of cavity nucleation, is generalized to permit germination of solid obstacles. The main result of the proposed generalization is an expression for topological sensitivity, explicit in terms of either the elastodynamic Green's function or the so-called adjoint solution, that is obtained by an asymptotic expansion of a misfit-type cost functional with respect to the nucleation of a dissimilar elastic inclusion in a defect-free "reference" solid. To cater for a variety of physical applications including shallow seismic exploration, material testing, and medical imaging, the proposed methodology is developed both in the frequency domain and the time domain. The featured formula, consisting of an inertial-contrast monopole term and an elasticity-contrast dipole term, is shown to be applicable to a variety of reference domains such as finite, semi-infinite, and infinite homogeneous solids as well as their heterogeneous counterparts with smoothly-varying elastic properties. Through numerical examples, it is shown that the generalized topological sensitivity can be used as a robust and computationally-effective obstacle indicator through an assembly of sampling points where it attains pronounced negative values. On varying the material characteristics of the nucleating obstacle, a new identification algorithm is developed that permits the use of the featured sensitivity as a preparatory tool for both geometric and material characterization of internal defects.

  16. Numerical Algorithms for Two-Dimensional Dry Granular Flow with Deformable Elastic Grain

    SciTech Connect

    Boateng, H A; Elander, V; Jin, C; Li, Y; Vasquez, P; Fast, P

    2005-08-11

    The authors consider the dynamics of interacting elastic disks in the plane. This is an experimentally realizable two-dimensional model of dry granular flow where the stresses can be visualized using the photoelastic effect. As the elastic disks move in a vacuum, they interact through collisions with each other and with the surrounding geometry. Because of the finite propagation speed of deformations inside each grain it can be difficult to capture computationally even simple experiments involving just a few interacting grains. The goal of this project is to improve our ability to simulate dense granular flow in complex geometry. They begin this process by reviewing some past work, how they can improve upon previous work. the focus of this project is on capturing the elastic dynamics of each grain in an approximate, computationally tractable, model that can be coupled to a molecular dynamics scheme.

  17. Highly elastic conductive polymeric MEMS

    NASA Astrophysics Data System (ADS)

    Ruhhammer, J.; Zens, M.; Goldschmidtboeing, F.; Seifert, A.; Woias, P.

    2015-02-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.

  18. Elasticity of polymeric nanocolloidal particles

    PubMed Central

    Riest, Jonas; Athanasopoulou, Labrini; Egorov, Sergei A.; Likos, Christos N.; Ziherl, Primož

    2015-01-01

    Softness is an essential mechanical feature of macromolecular particles such as polymer-grafted nanocolloids, polyelectrolyte networks, cross-linked microgels as well as block copolymer and dendrimer micelles. Elasticity of individual particles directly controls their swelling, wetting, and adsorption behaviour, their aggregation and self-assembly as well as structural and rheological properties of suspensions. Here we use numerical simulations and self-consistent field theory to study the deformation behaviour of a single spherical polymer brush upon diametral compression. We observe a universal response, which is rationalised using scaling arguments and interpreted in terms of two coarse-grained models. At small and intermediate compressions the deformation can be accurately reproduced by modelling the brush as a liquid drop, whereas at large compressions the brush behaves as a soft ball. Applicable far beyond the pairwise-additive small-strain regime, the models may be used to describe microelasticity of nanocolloids in severe confinement including dense disordered and crystalline phases. PMID:26522242

  19. Elasticity of developing cardiac tissue

    NASA Astrophysics Data System (ADS)

    Majkut, Stephanie; Swift, Joe; Krieger, Christine; Discher, Dennis

    2011-03-01

    Proper development and function of the heart from the tissue to cellular scale depends on a compliant ECM. Here we study the maturation of embryonic cardiac tissue mechanics in parallel with the effects of extracellular mechanics on individual cardiomyocyte function throughout early development. We used micropipette aspiration to measure local and bulk elastic moduli (E) of embryonic avian heart tissue from days 2-12. We observe stiffening of the early heart tube from E = 1 kPa at day 1 to E = 2 kPa at day 4, reaching neonatal values by day 12. Treating heart tubes with blebbistatin led to 30% decrease in E, indicating a significant but partial actomyosin contribution to mechanics at these stages. We performed a proteomic analysis of intact and decellularized 2-4 day heart tubes by mass spectrometry to quantify the ECM present at these stages. Isolated cardiomyocytes from 2-4 day chick embryos were cultured on collagen-coated PA gels of various stiffnesses. Beating magnitude was modulated by substrates with E = 1-2 kPa, similar to physiological E at those stages.

  20. Structural basis of spectrin elasticity

    SciTech Connect

    Shen, B.W.; Stevens, F.J.; Luthi, U.; Goldin, S.B.

    1991-10-17

    A new model of human erythrocyte {alpha}-spectrin is proposed. The secondary structure of human erythrocyte {alpha}-spectrin and its folding into a condensed structure that can convert reversibly in situ, into an elongated configuration is predicted from its deduced protein sequence. Results from conformational and amphipathicity analyses suggest that {alpha}-spectrin consists mainly of short amphipathicity helices interconnected by flexible turns and/or coils. The distribution of charges and amphipathicity of the helices can facilitate their folding into stable domains of 4 and 3 helices surrounding a hydrophobic core. The association between adjacent four- and three-helix domains further organize them into recurring seven-helix motifs that might constitute the basic structural units of the extended {alpha}-spectrin. The elongated spectrin molecule packs, in a sinusoidal fashion, through interactions between neighboring motifs into a compact structure. We suggest that the reversible extension and contraction of this sigmoidally packed structure is the molecular basis of the mechanism by which spectrin contributes to the elasticity of the red cell membrane.

  1. Role of elasticity in stagnant lid convection

    NASA Astrophysics Data System (ADS)

    Patocka, Vojtech; Tackley, Paul; Cadek, Ondrej

    2016-04-01

    A present limitation of global thermo-chemical convection models is that they assume a purely viscous or visco-plastic flow law for solid rock, i.e. elasticity is ignored. This may not be a good assumption in the cold, outer boundary layer known as the lithosphere, where elastic deformation may be important. Elasticity in the lithosphere plays at least two roles: It changes surface topography, which changes the relationship between topography and gravity, and it alters the stress distribution in the lithosphere, which may affect dynamical behaviour such as the formation of plate boundaries and other tectonics features. In the present work we study these effects in the context of stagnant lid convection. We use StagYY (Tackley, 2008) enhanced to include elasticity through adding advected elastic stresses to the momentum equation and replacing viscosity by the "effective" one (the method described in e.g. Moresi et al., 2002). First, a test example with a cylinder rising below the lithosphere (Crameri et al., 2012) is considered in various geometries and the effect of elasticity on the resulting topography and geoid is evaluated. Both free-slip and free-surface upper boundary condition is considered. Second, comparison of stagnant lid convection models with and without elasticity is performed. It is shown that global characteristics of the convection do not change when a realistic value of shear modulus is employed and that the stress pattern in the lithosphere is very similar. The most important effect is that stresses build up gradually when elasticity is considered and thus the stress picture is more stable in the time domain in the elastic than in the viscous case. Viscoelastic lithosphere thus filters internal dynamics more effectively than a purely viscous one, responding only to features which stay stable for times comparable to its relaxation time. This effect is clearly recognizable only when free-surface upper boundary condition is considered. The role of

  2. Contribution of Elasticity in Slab Bending

    NASA Astrophysics Data System (ADS)

    Fourel, L.; Goes, S. D. B.; Morra, G.

    2014-12-01

    Previous studies have shown that plate rheology exerts a dominant control on the shape and velocity of subducting plates. Here, we perform a systematic investigation of the, often disregarded, role of elasticity in slab bending at the trench, using simple, yet fully dynamic, set of 2.5D models where an elastic, visco-elastic or visco-elasto-plastic plate subducts freely into a purely viscous mantle. We derive a scaling relationship between the bending radius of visco-elastic slabs and the Deborah number, De, which is the ratio of Maxwell time over deformation time. We show that De controls the ratio of elastically stored energy over viscously dissipated energy and find that at De exceeding 10-2, it requires substantially less energy to bend a visco-elastic slab to the same shape as a purely viscous slab with the same viscosity (90% less for De=0.1). Elastically stored energy at higher De facilitates slab unbending and hence favours retreating modes of subduction, while trench advance only occurs for some cases with De<10-2. We use our scaling relation to estimate apparent Deborah numbers, Deapp, from a global compilation of subduction-zone parameters. Values range from 10-3 to >1, where most zones have low Deapp<10-2, but a few young plates have Deapp>0.1. Slabs with Deapp ≤ 10-2 either have very low viscosities, ≤10 times mantle viscosity, or they may be yielding, in which case our apparent Deborah number may underestimate actual De by up to an order of magnitude. If a significant portion of the low Deapp slabs yield, then elastically stored energy may actually be important in quite a large number of subduction zones. Interestingly, increasing Deapp correlates with increasing proportion of larger seismic events (b-value) in both instrumental and historic catalogues, indicating that increased contribution of elasticity may facilitate rupture in larger, less frequent earthquakes.

  3. Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds

    NASA Astrophysics Data System (ADS)

    Ozyar, U. F.; Deligoz, E.; Colakoglu, K.

    2015-02-01

    The anisotropic elastic properties of XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds have been investigated by using first-principles calculations based on density functional theory. The calculated lattice parameters are in excellent agreement with the available experimental data. The computed elastic constants indicate that all compounds are mechanically stable according to the elastic stability criteria under pressure. We have calculated the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Debye temperature, and anisotropy value from the obtained elastic constants according to the Voigt-Reuss-Hill approximation. Additionally, the ductility and brittleness are characterized with the estimation from Pugh's rule (B/G) and Poisson's ratio. Furthermore, the elastic anisotropy have been visualized in detail by plotting the directional dependence of compressibility, Young's and shear moduli.

  4. Viscous flow within an embedded serpentine channel as a mechanism to create time-dependent deformation patterns of elastic beams

    NASA Astrophysics Data System (ADS)

    Matia, Yoav; Gat, Amir

    2014-11-01

    We analyze the time dependent interaction between the flow-field and the elastic deformation-field of a viscous liquid within a long serpentine channel, embedded in an elastic beam. The channel is positioned asymmetrically with regard to the midplane of the elastic beam. We focus on creeping flows and small deformations of the elastic beam and obtain, in leading order, a diffusion equation governing the pressure-field within the serpentine channel. The deformation of the beam is then related to the propagation of pressure within the channel. We thus obtain a viscous-elastic equation governing the deformation of the beam due to the viscous flow within the serpentine channel. This equation enables to design complex time-dependent deformation patterns of beams with embedded channel networks, relevant to soft-robotic applications. Our theoretical results were illustrated and verified using numerical computations. Israel Science Foundation 818/13.

  5. Interpretation of elasticity of liquid marbles.

    PubMed

    Whyman, Gene; Bormashenko, Edward

    2015-11-01

    Liquid marbles are non-stick droplets covered with micro-scaled particles. Liquid marbles demonstrate quasi-elastic properties when pressed. The interpretation of the phenomenon of elasticity of liquid marbles is proposed. The model considering the growth in the marble surface in the course of deformation under the conservation of marble's volume explains semi-quantitatively the elastic properties of marbles in satisfactory agreement with the reported experimental data. The estimation of the effective Young modulus of marbles and its dependence on the marble volume are reported. PMID:26164246

  6. Elastic activator for treatment of open bite.

    PubMed

    Stellzig, A; Steegmayer-Gilde, G; Basdra, E K

    1999-06-01

    This article presents a modified activator for treatment of open bite cases. The intermaxillary acrylic of the lateral occlusal zones is replaced by elastic rubber tubes. By stimulating orthopaedic gymnastics (chewing gum effect), the elastic activator intrudes upper and lower posterior teeth. A noticeable counterclockwise rotation of the mandible was accomplished by a decrease of the gonial angle. Besides the simple fabrication of the device and uncomplicated replacement of the elastic rubber tubes, treatment can be started even in mixed dentition when affixing plates may be difficult. PMID:10420241

  7. Failure of classical elasticity in auxetic foams

    NASA Astrophysics Data System (ADS)

    Roh, J. H.; Giller, C. B.; Mott, P. H.; Roland, C. M.

    2013-04-01

    Poisson's ratio, ν, was measured for four materials, a rubbery polymer, a conventional soft foam, and two auxetic foams. We find that for the first two materials, having ν ≥ 0.2, the experimental determinations of Poisson's ratio are in good agreement with values calculated from the shear and tensile moduli using the equations of classical elasticity. However, for the two auxetic materials (ν < 0), the equations of classical elasticity give values significantly different from the measured ν. We offer an interpretation of these results based on a recently published analysis of the bounds on Poisson's ratio for classical elasticity to be applicable.

  8. Experimental Study of Athermal Elastic Network Mechanics

    NASA Astrophysics Data System (ADS)

    Michel, Jonathan; Yunker, Peter

    Recently, significant theoretical effort has been directed towards understanding the mechanics of networks. Elastic networks are of inherent fundamental interest and serve as useful analogs for describing other physical systems. Recent applications include modeling of collagen and descriptions of jamming in granular media and glass formation. I propose to discuss ongoing experimental efforts to study mechanical properties of elastic networks, such as Young's modulus and ultimate strength, in the athermal limit. I will begin with the simple case of regular, isostatic crystalline lattices and proceed to studies of random, connected elastic networks of varying bond number for a given number of lattice sites, including both isostatic and sub-isostatic networks.

  9. DAEs and PDEs in elastic multibody systems

    NASA Astrophysics Data System (ADS)

    Simeon, B.

    1998-12-01

    Elastic multibody systems arise in the simulation of vehicles, robots, air- and spacecrafts. They feature a mixed structure with differential-algebraic equations (DAEs) governing the gross motion and partial differential equations (PDEs) describing the elastic deformation of particular bodies. We introduce a general modelling framework for this new application field and discuss numerical simulation techniques from several points of view. Due to different time scales, singular perturbation theory and model reduction play an important role. A slider crank mechanism with a 2D FE grid for the elastic connecting rod illustrates the techniques.

  10. How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model.

    PubMed

    De Santis, G; Lennon, A B; Boschetti, F; Verhegghe, B; Verdonck, P; Prendergast, P J

    2011-01-01

    A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i) the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii) cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii) the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs) in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation. PMID:22048898

  11. Numerical solution of an elastic and viscoelastic gravitational models by the finite element method

    NASA Astrophysics Data System (ADS)

    Arjona Almodóvar, A.; Chacón Rebollo, T.; Gómez Marmol, M.

    2014-12-01

    Volcanic areas present a lower effective viscosity than usually in the Earth's crust. Both the elastic-gravitational and the viscoelastic-gravitational models allow the computation of gravity, deformation, and gravitational potential changes in order to investigate crustal deformations of Earth (see for instance Battaglia & Segall, 2004; Fernández et al. 1999, 2001; Rundle 1980 and 1983). These models can be represented by a coupled system of linear parabolic (for the elastic deformations), hyperbolic (for the viscoelastic deformations) and elliptic partial differential equations (for gravitational potential changes) (see for instance Arjona et al. 2008 and 2010). The existence and uniqueness of weak solutions for both the elastic-gravitational and viscoelastic-gravitational problem was demonstrated in Arjona et al. (2008 and 2014). The stabilization to solutions of the associated stationary system was proved in Arjona and Díaz (2007). Here we consider the internal source as response to the effect of a pressurized magma reservoir into a multilayered, elastic-gravitational and viscoelastic-gravitational earth model. We introduce the numerical analysis of a simplified steady elastic-gravitational model, solved by means of the finite element method. We also present some numerical tests in realistic situations that confirm the predictions of theoretical order of convergence. Finally, we describe the methodology for both the elastic-gravitational and the viscoelastic-gravitational models using 2D and 3D test examples performed with FreeFEM++.

  12. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    DOE PAGESBeta

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less

  13. A Simple Experiment for Determining the Elastic Constant of a Fine Wire

    ERIC Educational Resources Information Center

    Freeman, W. Larry; Freda, Ronald F.

    2007-01-01

    Many general physics laboratories involve the use of springs to demonstrate Hooke's law, and much ado is made about how this can be used as a model for describing the elastic characteristics of materials at the molecular or atomic level. In recent years, the proliferation of computers, and appropriate sensors, have made it possible to demonstrate…

  14. Tuition Elasticity of the Demand for Higher Education among Current Students: A Pricing Model.

    ERIC Educational Resources Information Center

    Bryan, Glenn A.; Whipple, Thomas W.

    1995-01-01

    A pricing model is offered, based on retention of current students, that colleges can use to determine appropriate tuition. A computer-based model that quantifies the relationship between tuition elasticity and projected net return to the college was developed and applied to determine an appropriate tuition rate for a small, private liberal arts…

  15. Elastic Rod Model of a DNA Loop in the Lac Operon

    NASA Astrophysics Data System (ADS)

    Balaeff, Alexander; Mahadevan, L.; Schulten, Klaus

    1999-12-01

    We use the theory of elasticity to compute the shape of the DNA loop bridging the gap in the crystal structure of the lac repressor-DNA complex. The Kirchhoff system of equations with boundary conditions derived from the crystal structure is solved using a continuation method. This approach can be applied effectively to find coarse-grained conformational minima of DNA loops.

  16. Elastic spheres can walk on water

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.

    2016-02-01

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  17. Aligner for Elastic Collisions of Dropped Balls.

    ERIC Educational Resources Information Center

    Mellen, Walter Roy

    1995-01-01

    Discusses an aligner that permits dropping a stack of any number of balls of different sizes, elasticities, hardnesses, or types to observe the rebound of the top ball. Experimental results allow a reasonable comparison with theory. (MVL)

  18. Statistical properties of a folded elastic rod

    NASA Astrophysics Data System (ADS)

    Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2010-03-01

    A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.

  19. Elastic spheres can walk on water

    PubMed Central

    Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.

    2016-01-01

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys. PMID:26842860

  20. Elastic spheres can walk on water.

    PubMed

    Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T

    2016-01-01

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys. PMID:26842860

  1. Fracture imaging with converted elastic waves

    SciTech Connect

    Nihei, K.T.; Nakagawa, S.; Myer, L.R.

    2001-05-29

    This paper examines the seismic signatures of discrete, finite-length fractures, and outlines an approach for elastic, prestack reverse-time imaging of discrete fractures. The results of this study highlight the importance of incorporating fracture-generated P-S converted waves into the imaging method, and presents an alternate imaging condition that can be used in elastic reverse-time imaging when a direct wave is recorded (e.g., for crosswell and VSP acquisition geometries).

  2. Elastic form factors at higher CEBAF energies

    SciTech Connect

    Petratos, G.G.

    1994-04-01

    The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.

  3. A NONLINEAR MESOSCOPIC ELASTIC CLASS OF MATERIALS

    SciTech Connect

    P. JOHNSON; R. GUYER; L. OSTROVSKY

    1999-09-01

    It is becoming clear that the elastic properties of rock are shared by numerous other materials (sand, soil, some ceramics, concrete, etc.). These materials have one or more of the following properties in common strong nonlinearity, hysteresis in stress-strain relation, slow dynamics and discrete memory. Primarily, it is the material's compliance, the mesoscopic linkages between the rigid components, that give these materials their unusual elastic properties.

  4. The elastic properties of woven polymeric fabric

    SciTech Connect

    Warren, W.E. )

    1989-01-01

    The in-plane linear elastic constants of woven fabric are determined in terms of the specific fabric microstructure. The fabric is assumed to be a spatially periodic interlaced network of orthogonal yarns and the individual yarns are modeled as extensible elastica. These results indicate that a significant coupling of bending and stretching effects occurs during deformation. Results of this theoretical analysis compare favorable with measured in-plane elastic constants for Vincel yarn fabrics. 17 refs., 2 figs., 1 tab.

  5. Elastic properties of FeSi

    SciTech Connect

    Petrova, A. E.; Krasnorussky, V. N.; Stishov, S. M.

    2010-09-15

    Measurements of the sound velocities in a single crystal of FeSi were performed in the temperature range 4-300 K. Elastic constants C{sub 11} and C{sub 44} deviate from a quasiharmonic behavior at high temperature; on the other hand, elastic constants C{sub 12} increases anomalously in the entire temperature range, indicating a change in the electron structure of this material.

  6. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    SciTech Connect

    Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco

    2014-01-28

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.

  7. Low-Dimensional Generalized Coordinate Models of Large-Deformation Elastic Joints

    NASA Astrophysics Data System (ADS)

    Odhner, Lael; Dollar, Aaron

    2012-02-01

    In the field of robotics, it is increasingly common to use elastic elements such as rods, beams or sheets to allow motion between the rigid links of a robot, rather than conventional sliding mechanisms such as pin joints. Although these elastic joints are simpler to manufacture, especially at meso- and micro-scales, representational simplicity is sacrificed. It is far easier to compute the Lagrangian of a robot using joint angles as generalized coordinates, rather than by considering the large-deformation continuum behavior of elastic joints. In this talk, we will discuss our work toward finding accurate, low-dimensional discretizations of elastic joint mechanics, suitable for use in generalized coordinate models of robot kinematics and dynamics. We use modally parameterized backbone curves to describe the kinematic configuration of the elastic joints, and compute the energy associated with deformation using rod and shell theory. In the plane, only three smooth deformation modes are sufficient to describe Euler-Bernoulli bending of 90 degrees to within 1 percent. Parametric models for the three-dimensional motion of sheet hinges are more complex, but can be simplified significantly using boundary conditions and constraints imposed by ruled surface assumptions.

  8. Elastic finite-difference method for irregular grids

    SciTech Connect

    Oprsal, I.; Zahradnik, J.

    1999-01-01

    Finite-difference (FD) modeling of complicated structures requires simple algorithms. This paper presents a new elastic FD method for spatially irregular grids that is simple and, at the same time, saves considerable memory and computing time. Features like faults, low-velocity layers, cavities, and/or nonplanar surfaces are treated on a fine grid, while the remaining parts of the model are, with equal accuracy, represented on a coarse grid. No interpolation is needed between the fine and coarse parts due to the rectangular grid cells. Relatively abrupt transitions between the small and large grid steps produce no numerical artifacts in the present method. Planar or nonplanar free surfaces, including underground cavities, are treated in a way similar to internal grid points but with consideration of the zero-valued elastic parameters and density outside the free surface (vacuum formalism). A theoretical proof that vacuum formalism fulfills the free-surface conditions is given. Numerical validation is performed through comparison with independent methods, comparing FD with explicitly prescribed boundary conditions and finite elements. Memory and computing time needed in the studied models was only about 10 to 40% of that employing regular square grids of equal accuracy. A practical example of a synthetic seismic section, showing clear signatures of a coal seam and cavity, is presented. The method can be extended to three dimensions.

  9. Linear Lumbar Localized Lysis of Elastic Fibers

    PubMed Central

    Tschen, Jaime A.

    2013-01-01

    Background: The absence or loss of elastic fibers in the skin is referred to as dermal elastolysis. Purpose: This paper describes a woman with a distinctive clinical presentation of mid-dermal elastolysis characterized morphologically by multiple horizontal raised bands on the lower back. Methods: A 20-year-old Filipino woman presented with multiple asymptomatic, flesh-colored, raised, firm, linear, cord-like bands on the lumbar area of her back. There were neither similar lesions elsewhere nor a family member with this condition. Results: Microscopic examination of the raised band showed nearly complete absence of elastic fibers in the mid dermis. In contrast, a biopsy of symmetrically located normal-appearing skin showed a uniform distribution of elastic fibers throughout the dermis. Linear lumbar localized elastolysis is a descriptive designation that accurately reflects a correlation of the clinical and pathological changes of this condition. Conclusion: The clinical differential of raised horizontal cord-like bands on the lower back (without a family history of an inherited elastic fiber disorder, a prior history of trauma, or a significant change in weight or exercise habit) includes linear focal elastosis and linear lumbar localized elastolysis. Microscopic evaluation of a Verhoeff-van Gieson stained lesion specimen (which may be accompanied by a biopsy of normal-appearing skin for comparison) will readily differentiate these conditions. The former is usually characterized by increased elastic fibers, whereas the latter, as in this patient, shows a paucity or absence of elastic fibers in the mid dermis. PMID:23882313

  10. Digital instability of a confined elastic meniscus.

    PubMed

    Biggins, John S; Saintyves, Baudouin; Wei, Zhiyan; Bouchaud, Elisabeth; Mahadevan, L

    2013-07-30

    Thin soft elastic layers serving as joints between relatively rigid bodies may function as sealants, thermal, electrical, or mechanical insulators, bearings, or adhesives. When such a joint is stressed, even though perfect adhesion is maintained, the exposed free meniscus in the thin elastic layer becomes unstable, leading to the formation of spatially periodic digits of air that invade the elastic layer, reminiscent of viscous fingering in a thin fluid layer. However, the elastic instability is reversible and rate-independent, disappearing when the joint is unstressed. We use theory, experiments, and numerical simulations to show that the transition to the digital state is sudden (first-order), the wavelength and amplitude of the fingers are proportional to the thickness of the elastic layer, and the required separation to trigger the instability is inversely proportional to the in-plane dimension of the layer. Our study reveals the energetic origin of this instability and has implications for the strength of polymeric adhesives; it also suggests a method for patterning thin films reversibly with any arrangement of localized fingers in a digital elastic memory, which we confirm experimentally. PMID:23858433

  11. Digital instability of a confined elastic meniscus

    PubMed Central

    Biggins, John S.; Saintyves, Baudouin; Wei, Zhiyan; Bouchaud, Elisabeth; Mahadevan, L.

    2013-01-01

    Thin soft elastic layers serving as joints between relatively rigid bodies may function as sealants, thermal, electrical, or mechanical insulators, bearings, or adhesives. When such a joint is stressed, even though perfect adhesion is maintained, the exposed free meniscus in the thin elastic layer becomes unstable, leading to the formation of spatially periodic digits of air that invade the elastic layer, reminiscent of viscous fingering in a thin fluid layer. However, the elastic instability is reversible and rate-independent, disappearing when the joint is unstressed. We use theory, experiments, and numerical simulations to show that the transition to the digital state is sudden (first-order), the wavelength and amplitude of the fingers are proportional to the thickness of the elastic layer, and the required separation to trigger the instability is inversely proportional to the in-plane dimension of the layer. Our study reveals the energetic origin of this instability and has implications for the strength of polymeric adhesives; it also suggests a method for patterning thin films reversibly with any arrangement of localized fingers in a digital elastic memory, which we confirm experimentally. PMID:23858433

  12. Elastic actuator for precise force control

    DOEpatents

    Pratt, Gill A.; Williamson, Matthew M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  13. Elastic actuator for precise force control

    DOEpatents

    Pratt, G.A.; Williamson, M.M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  14. Transport of organelles by elastically coupled motor proteins.

    PubMed

    Bhat, Deepak; Gopalakrishnan, Manoj

    2016-07-01

    Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins simultaneously attached on to a cargo engage in pulling activity, often leading to tug-of-war, displaying bidirectional motion. However, most mathematical and computational models ignore the details of the motor-cargo interaction. A few studies have focused on more realistic models of cargo transport by including elastic motor-cargo coupling, but either restrict the number of motors and/or use purely phenomenological forms for force-dependent hopping rates. Here, we study a generic model in which N motors are elastically coupled to a cargo, which itself is subjected to thermal noise in the cytoplasm and to an additional external applied force. The motor-hopping rates are chosen to satisfy detailed balance with respect to the energy of elastic stretching. With these assumptions, an (N + 1) -variable master equation is constructed for dynamics of the motor-cargo complex. By expanding the hopping rates to linear order in fluctuations in motor positions, we obtain a linear Fokker-Planck equation. The deterministic equations governing the average quantities are separated out and explicit analytical expressions are obtained for the mean velocity and diffusion coefficient of the cargo. We also study the statistical features of the force experienced by an individual motor and quantitatively characterize the load-sharing among the cargo-bound motors. The mean cargo velocity and the effective diffusion coefficient are found to be decreasing functions of the stiffness. While the increase in the number of motors N does not increase the velocity substantially, it decreases the effective diffusion coefficient which falls as 1/N asymptotically. We further show that the cargo-bound motors share the force exerted on the cargo equally only in the limit of vanishing elastic stiffness; as stiffness is increased, deviations from equal load sharing are observed. Numerical simulations agree with

  15. Practical correction procedures for elastic electron scattering effects in ARXPS

    NASA Astrophysics Data System (ADS)

    Lassen, T. S.; Tougaard, S.; Jablonski, A.

    2001-06-01

    Angle-resolved XPS and AES (ARXPS and ARAES) are widely used for determination of the in-depth distribution of elements in the surface region of solids. It is well known that elastic electron scattering has a significant effect on the intensity as a function of emission angle and that this has a great influence on the determined overlayer thicknesses by this method. However the applied procedures for ARXPS and ARAES generally neglect this because no simple and practical procedure for correction has been available. However recently, new algorithms have been suggested. In this paper, we have studied the efficiency of these algorithms to correct for elastic scattering effects in the interpretation of ARXPS and ARAES. This is done by first calculating electron distributions by Monte Carlo simulations for well-defined overlayer/substrate systems and then to apply the different algorithms. We have found that an analytical formula based on a solution of the Boltzmann transport equation provides a good account for elastic scattering effects. However this procedure is computationally very slow and the underlying algorithm is complicated. Another much simpler algorithm, proposed by Nefedov and coworkers, was also tested. Three different ways of handling the scattering parameters within this model were tested and it was found that this algorithm also gives a good description for elastic scattering effects provided that it is slightly modified so that it takes into account the differences in the transport properties of the substrate and the overlayer. This procedure is fairly simple and is described in detail. The model gives a much more accurate description compared to the traditional straight-line approximation (SLA). However it is also found that when attenuation lengths instead of inelastic mean free paths are used in the simple SLA formalism, the effects of elastic scattering are also reasonably well accounted for. Specifically, from a systematic study of several

  16. Elastic Properties of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Melendez Martinez, Jaime

    Sedimentary rocks are an important research topic since such rocks are associated to sources of ground water as well as oil, gas, and mineral reservoirs. In this work, elastic and physical properties of a variety of sedimentary samples that include glacial sediments, carbonates, shales, one evaporite, and one argillite from a variety of locations are investigated. Assuming vertical transverse isotropy, ultrasonic compressional- and shear-waves (at 1 MHz central frequency) were measured as a function of confining pressure on all samples with the exception of glacial samples which were tested assuming isotropy. Tensile strength tests (Brazilian test) were also carried out on selected glacial samples and, in addition, static-train measurements were conducted on shales and argillite samples. Lithological and textural features of samples were obtained through thin section techniques, scanning electron microscopy images and micro-tomography images. X-ray diffraction and X-Ray fluorescence provided the mineralogical oxides content information. Porosity, density, and pore structure were studied by using a mercury intrusion porosimeter and a helium pycnometer. The wide range of porosities of the studied samples (ranging from a minimum of 1% for shales to a maximum 45% for some glacial sediments) influence the measured velocities since high porosity sample shows an noticeable velocity increment as confining pressure increases as a consequence of closure of microcracks and pores, unlike low porosity samples where increment is quasi-lineal. Implementation of Gassmann's relation to ultrasonic velocities obtained from glacial samples has negligible impact on them when assuming water saturated samples, which suggests that state of saturation it is no so important in defining such velocities and instead they are mainly frame-controlled. On the other hand, velocities measured on carbonate and evaporite samples show that samples are at best weak anisotropic, thus the intrinsic

  17. Transversely isotropic elasticity imaging of cancellous bone.

    PubMed

    Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F

    2011-06-01

    To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally

  18. The role of pressure in rubber elasticity.

    PubMed

    Bower, A F; Weiner, J H

    2004-06-22

    We describe a series of molecular dynamics computations that reveal an intimate connection at the atomic scale between difference stress (which resists stretches) and pressure (which resists volume changes) in an idealized elastomer, in contrast to the classical theory of rubber elasticity. Our simulations idealize the elastomer as a "pearl necklace," in which the covalent bonds are stiff linear springs, while nonbonded atoms interact through a Lennard-Jones potential with energy epsilon(LJ) and radius sigma(LJ). We calculate the difference stress t(11)-(t(22)+t(33))/2 and mean stress (t(11)+t(22)+t(33))/3 induced by a constant volume extension in the x(1) direction, as a function of temperature T and reduced density rho(*)=Nsigma(IJ) (3)/nu. Here, N is the number of atoms in the simulation cell and nu is the cell volume. Results show that for rho(*)<1, the difference stress is purely entropic and is in good agreement with the classical affine network model of rubber elasticity, which neglects nonbonded interactions. However, data presented by van Krevelen [Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), p. 79] indicate that rubber at standard conditions corresponds to rho(*)=1.2. For rho(*)>1, the system is entropic for kT/epsilon(LJ)>2, but at lower temperatures the difference stress contains an additional energy component, which increases as rho(*) increases and temperature decreases. Finally, the model exhibits a glass transition for rho(*)=1.2 and kT/epsilon(LJ) approximately 2. The atomic-scale processes responsible for generating stress are explored in detail. Simulations demonstrate that the repulsive portion of the Lennard-Jones potential provides a contribution sigma(nbr)>0 to the difference stress, the attractive portion provides sigma(nba) approximately 0, while the covalent bonds provide sigma(b)<0. In contrast, their respective contributions to the mean stress satisfy Pi(nbr)<0, Pi(nba)>0, and Pi(b)<0. Analytical calculations, together

  19. The role of pressure in rubber elasticity

    NASA Astrophysics Data System (ADS)

    Bower, A. F.; Weiner, J. H.

    2004-06-01

    We describe a series of molecular dynamics computations that reveal an intimate connection at the atomic scale between difference stress (which resists stretches) and pressure (which resists volume changes) in an idealized elastomer, in contrast to the classical theory of rubber elasticity. Our simulations idealize the elastomer as a "pearl necklace," in which the covalent bonds are stiff linear springs, while nonbonded atoms interact through a Lennard-Jones potential with energy εLJ and radius σLJ. We calculate the difference stress t11-(t22+t33)/2 and mean stress (t11+t22+t33)/3 induced by a constant volume extension in the x1 direction, as a function of temperature T and reduced density ρ*=NσIJ3/ν. Here, N is the number of atoms in the simulation cell and ν is the cell volume. Results show that for ρ*<1, the difference stress is purely entropic and is in good agreement with the classical affine network model of rubber elasticity, which neglects nonbonded interactions. However, data presented by van Krevelen [Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), p. 79] indicate that rubber at standard conditions corresponds to ρ*=1.2. For ρ*>1, the system is entropic for kT/εLJ>2, but at lower temperatures the difference stress contains an additional energy component, which increases as ρ* increases and temperature decreases. Finally, the model exhibits a glass transition for ρ*=1.2 and kT/εLJ≈2. The atomic-scale processes responsible for generating stress are explored in detail. Simulations demonstrate that the repulsive portion of the Lennard-Jones potential provides a contribution σnbr>0 to the difference stress, the attractive portion provides σnba≈0, while the covalent bonds provide σb<0. In contrast, their respective contributions to the mean stress satisfy Πnbr<0, Πnba>0, and Πb<0. Analytical calculations, together with simulations, demonstrate that mean and difference stresses are related by σnbr=-AΠnbr,

  20. Effects of microstructure on the speed and attenuation of elastic waves

    SciTech Connect

    Gubernatis, J.E.; Domany, E.

    1982-01-01

    A unified theory pertaining to the sensitivity of the propagation of an elastic wave to changes in the microstructural details of a material is discussed. In contrast to nearly all previous treatments a first principles approach, using developments from other multiple scattering problems and adapting them to the elastic wave case, is followed. We then present several simple, standard approximations. In the process the validity of the commonly made assumption that ..cap alpha.. = n anti sigma is clarified, and the effective speed, illustrating its complementary character to the attenuation, is computed. The principal objective is to present the formal analysis necessary to treat systematically the dependency of the wave propagation on microstructural statistics.

  1. Mechanisms of elastic enhancement and hindrance for finite length undulatory swimmers in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Thomases, Becca; Guy, Robert

    2014-11-01

    A computational model of finite-length undulatory swimmers is used to examine the physical origin of the effect of elasticity on swimming speed. We explore two distinct target swimming strokes, one derived from the motion of C. elegans, with large head undulations, and a contrasting stroke with large tail undulations. We show that both favorable stroke asymmetry and swimmer elasticity contribute to a speed-up, but a substantial boost results only when these two effects work together. We reproduce conflicting results from the literature simply by changing relevant physical parameters.

  2. Elasticity effects on cavitation in a squeeze film damper undergoing noncentered circular whirl

    NASA Technical Reports Server (NTRS)

    Brewe, David E.

    1988-01-01

    Elasticity of the liner and its effects on cavitation were numerically determined for a squeeze film damper subjected to dynamic loading. The loading was manifested as a prescribed motion of the rotor undergoing noncentered circular whirl. The boundary conditions were implemented using Elrod's algorithm which conserves lineal mass flux through the moving cavitation bubble as well as the oil film region of the damper. Computational movies were used to analyze the rapidly changing pressures and vapor bubble dynamics throughout the dynamic cycle for various flexibilities in the damper liner. The effects of liner elasticity on cavitation were only noticeable for the intermediate and high values of viscosity used in this study.

  3. ELATE: an open-source online application for analysis and visualization of elastic tensors.

    PubMed

    Gaillac, Romain; Pullumbi, Pluton; Coudert, François-Xavier

    2016-07-13

    We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots. PMID:27199239

  4. The elastic layer with a cylindrical hole subjected to a nonuniform axisymmetric radial displacement.

    NASA Technical Reports Server (NTRS)

    Grissom, D. S.; Michalopoulos, C. D.

    1973-01-01

    A problem in the linear theory of elasticity is considered wherein a layer with a circular cylindrical hole is subjected to a nonuniform axisymmetric radial displacement. The solution utilizes Navier's equations of elasticity which are solved by means of extended Hankel transforms. A special case in which the radial displacement is a linear function of the axial coordinate is presented. Numerical results are given in graphical form for the case when hole radius and layer thickness are equal. The inversion integrals were evaluated numerically using Longman's technique for computing infinite integrals of oscillatory functions.

  5. Mechanisms of Elastic Enhancement and Hindrance for Finite-Length Undulatory Swimmers in Viscoelastic Fluids

    NASA Astrophysics Data System (ADS)

    Thomases, Becca; Guy, Robert D.

    2014-08-01

    A computational model of finite-length undulatory swimmers is used to examine the physical origin of the effect of elasticity on swimming speed. We explore two distinct target swimming strokes: one derived from the motion of Caenorhabditis elegans, with large head undulations, and a contrasting stroke with large tail undulations. We show that both favorable stroke asymmetry and swimmer elasticity contribute to a speed-up, but a substantial boost results only when these two effects work together. We reproduce conflicting results from the literature simply by changing relevant physical parameters.

  6. ELATE: an open-source online application for analysis and visualization of elastic tensors

    NASA Astrophysics Data System (ADS)

    Gaillac, Romain; Pullumbi, Pluton; Coudert, François-Xavier

    2016-07-01

    We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots.

  7. Implementation of a trapezoidal ring element in NASTRAN for elastic-plastic analysis

    NASA Technical Reports Server (NTRS)

    Chen, P. C. T.; Ohara, G. P.

    1980-01-01

    The explicit expressions for an elastic-plastic trapezoidal ring element are presented and implemented in NASTRAN computer program. The material is assumed to obey the von Mises' yield criterion, isotropic hardening rule and the Prandtl-Reuss flow relations. For the purpose of demonstration, two elastic-plastic problems are solved and compared with previous results. The first is a plane-strain tube under uniform internal pressure and the second, a finite-length tube loaded over part of its inner surface. A very good agreement was found in both test problems.

  8. The design, analysis and experimental evaluation of an elastic model wing

    NASA Technical Reports Server (NTRS)

    Cavin, R. K., III; Thisayakorn, C.

    1974-01-01

    An elastic orbiter model was developed to evaluate the effectiveness of aeroelasticity computer programs. The elasticity properties were introduced by constructing beam-like straight wings for the wind tunnel model. A standard influence coefficient mathematical model was used to estimate aeroelastic effects analytically. In general good agreement was obtained between the empirical and analytical estimates of the deformed shape. However, in the static aeroelasticity case, it was found that the physical wing exhibited less bending and more twist than was predicted by theory.

  9. Nonlinear Visco-Elastic Response of Composites via Micro-Mechanical Models

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Sridharan, Srinivasan

    2005-01-01

    Micro-mechanical models for a study of nonlinear visco-elastic response of composite laminae are developed and their performance compared. A single integral constitutive law proposed by Schapery and subsequently generalized to multi-axial states of stress is utilized in the study for the matrix material. This is used in conjunction with a computationally facile scheme in which hereditary strains are computed using a recursive relation suggested by Henriksen. Composite response is studied using two competing micro-models, viz. a simplified Square Cell Model (SSCM) and a Finite Element based self-consistent Cylindrical Model (FECM). The algorithm is developed assuming that the material response computations are carried out in a module attached to a general purpose finite element program used for composite structural analysis. It is shown that the SSCM as used in investigations of material nonlinearity can involve significant errors in the prediction of transverse Young's modulus and shear modulus. The errors in the elastic strains thus predicted are of the same order of magnitude as the creep strains accruing due to visco-elasticity. The FECM on the other hand does appear to perform better both in the prediction of elastic constants and the study of creep response.

  10. Yielding Elastic Tethers Stabilize Robust Cell Adhesion

    PubMed Central

    Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.

    2014-01-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  11. Continuously-variable series-elastic actuator.

    PubMed

    Mooney, Luke; Herr, Hugh

    2013-06-01

    Actuator efficiency is an important factor in the design of powered leg prostheses, orthoses, exoskeletons, and legged robots. A continuously-variable series-elastic actuator (CV-SEA) is presented as an efficient actuator for legged locomotion. The CV-SEA implements a continuously-variable transmission (CVT) between a motor and series elastic element. The CVT reduces the torque seen at the motor and allows the motor to operate in speed regimes of higher efficiency, while the series-elastic element efficiently stores and releases mechanical energy, reducing motor work requirements for actuator applications where an elastic response is sought. An energy efficient control strategy for the CV-SEA was developed using a Monte-Carlo minimization method that randomly generates transmission profiles and converges on those that minimize the electrical energy consumption of the motor. The CV-SEA is compared to a standard SEA and an infinitely variable series elastic actuator (IV-SEA). Simulations suggest that a CV-SEA will require less energy that an SEA or IV-SEA when used in a knee prosthesis during level-ground walking. PMID:24187221

  12. Probing hysteretic elasticity in weakly nonlinear materials

    SciTech Connect

    Johnson, Paul A; Haupert, Sylvain; Renaud, Guillaume; Riviere, Jacques; Talmant, Maryline; Laugier, Pascal

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  13. Athermal nonlinear elastic constants of amorphous solids.

    PubMed

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar

    2010-08-01

    We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place. PMID:20866874

  14. Athermal nonlinear elastic constants of amorphous solids

    NASA Astrophysics Data System (ADS)

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar

    2010-08-01

    We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place.

  15. Soft random solids and their heterogeneous elasticity.

    PubMed

    Mao, Xiaoming; Goldbart, Paul M; Xing, Xiangjun; Zippelius, Annette

    2009-09-01

    Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the structure of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their elastic properties. Vulcanization theory studies semimicroscopic models of random-solid-forming systems and applies replica field theory to deal with their quenched disorder and thermal fluctuations. The elastic deformations of soft random solids are argued to be described by the Goldstone sector of fluctuations contained in vulcanization theory, associated with a subtle form of spontaneous symmetry breaking that is associated with the liquid-to-random-solid transition. The resulting free energy of this Goldstone sector can be reinterpreted as arising from a phenomenological description of an elastic medium with quenched disorder. Through this comparison, we arrive at the statistics of the quenched disorder of the elasticity of soft random solids in terms of residual stress and Lamé-coefficient fields. In particular, there are large residual stresses in the equilibrium reference state, and the disorder correlators involving the residual stress are found to be long ranged and governed by a universal parameter that also gives the mean shear modulus. PMID:19905095

  16. Soft random solids and their heterogeneous elasticity

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoming; Goldbart, Paul M.; Xing, Xiangjun; Zippelius, Annette

    2009-09-01

    Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the structure of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their elastic properties. Vulcanization theory studies semimicroscopic models of random-solid-forming systems and applies replica field theory to deal with their quenched disorder and thermal fluctuations. The elastic deformations of soft random solids are argued to be described by the Goldstone sector of fluctuations contained in vulcanization theory, associated with a subtle form of spontaneous symmetry breaking that is associated with the liquid-to-random-solid transition. The resulting free energy of this Goldstone sector can be reinterpreted as arising from a phenomenological description of an elastic medium with quenched disorder. Through this comparison, we arrive at the statistics of the quenched disorder of the elasticity of soft random solids in terms of residual stress and Lamé-coefficient fields. In particular, there are large residual stresses in the equilibrium reference state, and the disorder correlators involving the residual stress are found to be long ranged and governed by a universal parameter that also gives the mean shear modulus.

  17. Efficient perturbation analysis of elastic network models - Application to acetylcholinesterase of T. californica

    NASA Astrophysics Data System (ADS)

    Hamacher, K.

    2010-09-01

    Elastic network models in their different flavors have become useful models for the dynamics and functions of biomolecular systems such as proteins and their complexes. Perturbation to the interactions occur due to randomized and fixated changes (in molecular evolution) or designed modifications of the protein structures (in bioengineering). These perturbations are modifications in the topology and the strength of the interactions modeled by the elastic network models. We discuss how a naive approach to compute properties for a large number of perturbed structures and interactions by repeated diagonalization can be replaced with an identity found in linear algebra. We argue about the computational complexity and discuss the advantages of the protocol. We apply the proposed algorithm to the acetylcholinesterase, a well-known enzyme in neurobiology, and show how one can gain insight into the "breathing dynamics" of a structural funnel necessary for the function of the protein. The computational speed-up was a 60-fold increase in this example.

  18. Computer simulation of earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1977-01-01

    In a computer simulation study of earthquakes a seismically active strike slip fault is represented by coupled mechanical blocks which are driven by a moving plate and which slide on a friction surface. Elastic forces and time independent friction are used to generate main shock events, while viscoelastic forces and time dependent friction add aftershock features. The study reveals that the size, length, and time and place of event occurrence are strongly influenced by the magnitude and degree of homogeneity in the elastic, viscous, and friction parameters of the fault region. For example, periodically reoccurring similar events are observed in simulations with near-homogeneous parameters along the fault, whereas seismic gaps are a common feature of simulations employing large variations in the fault parameters. The study also reveals correlations between strain energy release and fault length and average displacement and between main shock and aftershock displacements.

  19. Optimal rotated staggered-grid finite-difference schemes for elastic wave modeling in TTI media

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2015-11-01

    The rotated staggered-grid finite-difference (RSFD) is an effective approach for numerical modeling to study the wavefield characteristics in tilted transversely isotropic (TTI) media. But it surfaces from serious numerical dispersion, which directly affects the modeling accuracy. In this paper, we propose two different optimal RSFD schemes based on the sampling approximation (SA) method and the least-squares (LS) method respectively to overcome this problem. We first briefly introduce the RSFD theory, based on which we respectively derive the SA-based RSFD scheme and the LS-based RSFD scheme. Then different forms of analysis are used to compare the SA-based RSFD scheme and the LS-based RSFD scheme with the conventional RSFD scheme, which is based on the Taylor-series expansion (TE) method. The contrast in numerical accuracy analysis verifies the greater accuracy of the two proposed optimal schemes, and indicates that these schemes can effectively widen the wavenumber range with great accuracy compared with the TE-based RSFD scheme. Further comparisons between these two optimal schemes show that at small wavenumbers, the SA-based RSFD scheme performs better, while at large wavenumbers, the LS-based RSFD scheme leads to a smaller error. Finally, the modeling results demonstrate that for the same operator length, the SA-based RSFD scheme and the LS-based RSFD scheme can achieve greater accuracy than the TE-based RSFD scheme, while for the same accuracy, the optimal schemes can adopt shorter difference operators to save computing time.

  20. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-09-13

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data