Science.gov

Sample records for elastomeric gasket materials

  1. [Elastomeric impression materials].

    PubMed

    Anagnostopoulos, T; Tsokas, K

    1990-01-01

    A review of the literature on elastomeric impression materials, is presented in this paper. The article mentions the composition and the most important properties of the elastomeric impression materials used in dental practice. The clinical significance of these materials, physical and mechanical properties are also emphasized. In addition some new elastomeric impression materials with improved properties and a new (experimental) light-cured impression material, are mentioned. Another part of this article is the biocompatibility of these materials. In the end the great significance of handling is outlined. PMID:2130039

  2. Fluorinated elastomeric materials

    DOEpatents

    Lagow, Richard J.; Dumitru, Earl T.

    1986-11-04

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  3. Fluorinated elastomeric materials

    DOEpatents

    Lagow, Richard J.; Dumitru, Earl T.

    1990-02-13

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  4. [Elastomeric impression materials].

    PubMed

    Levartovsky, S; Folkman, M; Alter, E; Pilo, R

    2011-04-01

    Elastomeric impression materials are in common use. The impression taken should be highly precise, thus, requiring specific care when manipulatingthese materials. There are 4 groups of elastomers; polysulfide, condensation silicone, addition silicone and polyether; each differ in their setting mechanism and their physical and chemical properties. This review elaborates the major properties of elastomers and its implications on their use. The impression material is inserted into the patient's mouth in a viscous state and transforms into viscoelastic state, upon withdrawal, influencing the residual deformation. The requirements are minimal residual deformation or maximal elastic recovery. As the mouth is a wet environment a major consideration is hydrophilicity. The wettability which is estimated by measuring either the contact angle of a droplet of water and the substrate post setting or the contact angle of a droplet of impression material and the wet tooth pre setting, determines the interaction of the material with both mouth fluids and gypsum. As the primary end target is to obtain a model depicting accurately the oral details, an attention to the impressions' compatibility with gypsum should also be given. Many studies were conducted to get a thorough understanding of the hydrophilic properties of each material, and the mechanism utilized, such as surfactants in hydrophilic PVS. Polyether is the only material that is truly hydrophilic; it exhibits the lowest contact angle, during and after setting. Recent studies show that during setting the Polyether hydrophilicity is increased compared to the condition after setting. Dimensional stability, a crucial property of the impression, is affected by the physical and chemical attributes of the material, such as its tear strength. Polysulfide has the highest tear strength. Tear Strength is affected by two major parameters, viscosity, a built-in property, and how fast the impression is pulled out of the mouth, the

  5. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  6. Wettability of nonaqueous elastomeric impression materials.

    PubMed

    Chai, J Y; Yeung, T C

    1991-01-01

    The wettability of eight nonaqueous elastomeric impression materials was studied by comparing their contact angles. The materials included three polyethers (one of which was light activated), three hydrophilic poly(vinyl siloxanes), one conventional poly(vinyl siloxane), and one poly(vinyl siloxane) putty. Extracted teeth were prepared to approximate the roughness of a tooth preparation. Contact angles were measured at different time intervals after the start of mixing but were not shown to be significant. The nonhydrophilic poly(vinyl siloxane) materials and the poly(vinyl siloxane) putty were found to be significantly less wettable. PMID:1817528

  7. The development and testing of asbestos-free gasket materials

    SciTech Connect

    Mallow, W.A. )

    1992-01-01

    Of the 27 vendors contacted, 11 submitted asbestos-free gasket materials for thermal analysis followed by hydrostatic pressure testing, steam pressure testing, and fire testing. Virtually all were acceptable up to 400 C (air-free), and most were stable to 700 C. Several can be used to over 900 C in air or gases, since they are ceramic. Several graphitic gaskets are serviceable to 900 C in absence of air. Several performed well in steam pressure testing to 315 C, requiring a single adjustment in bolt/flange pressure after pressurization. Many acquired a compression set and consequent slight pressure loss, but responded well to bolt tightening. All except one are made of compressed ceramic or graphite fiber with 0-35 wt% binder, hence was inelastic but malleable/compressible. The large number of ceramic-and graphitic-based gasket materials obviated the need for further development; efforts were concentrated on critical evaluation of the off-the-shelf available materials, in comparison with asbestos.

  8. 46 CFR 42.15-30 - Hatchways closed by weathertight covers of steel or other equivalent material fitted with gaskets...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... other equivalent material fitted with gaskets and clamping devices. 42.15-30 Section 42.15-30 Shipping... equivalent material fitted with gaskets and clamping devices. (a) Hatchway coamings. At positions 1 and 2 the... equivalent material fitted with gaskets and clamping devices shall be as specified in § 42.15-25(a)(1)....

  9. 46 CFR 42.15-30 - Hatchways closed by weathertight covers of steel or other equivalent material fitted with gaskets...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... other equivalent material fitted with gaskets and clamping devices. 42.15-30 Section 42.15-30 Shipping... equivalent material fitted with gaskets and clamping devices. (a) Hatchway coamings. At positions 1 and 2 the... equivalent material fitted with gaskets and clamping devices shall be as specified in § 42.15-25(a)(1)....

  10. Hydrophilicity of unset and set elastomeric impression materials.

    PubMed

    Rupp, Frank; Geis-Gerstorfer, Jurgen

    2010-01-01

    The aim of this study was to compare the initial hydrophilicity of unset and set elastomeric impression materials. Initial water contact angles were studied on thin unset and set films of one polyether and six polyvinyl siloxane (PVS) impression materials using high-resolution drop shape analysis at drop ages of 1 and 3 seconds. All unset PVS materials were very hydrophobic initially but showed different kinetics of hydrophilization. In contrast, the unset polyether was more hydrophilic initially but lacked distinct hydrophilization. All impression materials showed statistically significant contact angle differences between unset and set surfaces (P < .05). Dependent on the drop age, two PVS materials reached or exceeded the hydrophilicity of the polyether (P < .05). It can be concluded that studies on the wetting behavior of elastomeric impression materials should consider both the experimental drop age and set and unset material surfaces. PMID:21209992

  11. Evaluation of dimensional stability of autoclavable elastomeric impression material.

    PubMed

    Surendra, G P; Anjum, Ayesha; Satish Babu, C L; Shetty, Shilpa

    2011-03-01

    Impressions are important sources of cross contamination between patients and dental laboratories. As a part of infection control impressions contaminated with variety of micro-organisms via blood and oral secretions should be cleaned and disinfected or sterilized before being handled in dental laboratory. The purpose of this study was to determine the effect of autoclaving on dimensional stability of elastomeric impression material (polyvinyl siloxane-Affinis). In this in vitro study standardized stainless steel die as per ADA specification number 19 was fabricated. Polyvinyl siloxane (Affinis) light body and putty viscosity elastomeric impression materials were used. A total of 40 impressions of the stainless steel die were made and numeric coding system was used to identify the samples. Measurements were made using a measuring microscope. Distance between the cross lines CD and C'D' reproduced in the impression were measured before autoclaving, immediately after autoclaving and 24 hours after autoclaving and dimensional change was calculated. The data obtained was subjected to statistical analysis. The mean difference in dimensional change between the three groups was not statistically significant (P > 0.05). However the results revealed that there was higher mean dimensional change immediately after autoclaving when compared to the other 2 time intervals. It is desirable to delay the casting of an autoclavable elastomeric impression material by about 24 hours. Though disinfection of impression is routinely followed autoclaving of impression is an effective method of sterilization. PMID:22379308

  12. Soft hydrogel materials from elastomeric gluten-mimetic proteins

    NASA Astrophysics Data System (ADS)

    Bagheri, Mehran; Scott, Shane; Wan, Fan; Dick, Scott; Harden, James; Biomolecular Assemblies Team

    2014-03-01

    Elastomeric proteins are ubiquitous in both animal and plant tissues, where they are responsible for the elastic response and mechanical resilience of tissues. In addition to fundamental interest in the molecular origins of their elastic behaviour, this class of proteins has great potential for use in biomaterial applications. The structural and elastomeric properties of these proteins are thought to be controlled by a subtle balance between hydrophobic interactions and entropic effects, and in many cases their characteristic properties can be recapitulated by multi-block protein polymers formed from repeats of short, characteristic polypeptide motifs. We have developed biomimetic multi-block protein polymers based on variants of several elastomeric gluten consensus sequences. These proteins include constituents designed to maximize their solubility in aqueous solution and minimize the formation of extended secondary structure. Thus, they are examples of elastic intrinsically disordered proteins. In addition, the proteins have distributed tyrosine residues which allow for inter-molecular crosslinking to form hydrogel networks. In this talk, we present experimental and simulation studies of the molecular and materials properties of these proteins and their assemblies.

  13. Long-time dynamic compatibility of elastomeric materials with hydrazine

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.; Cuddihy, E. F.; Fedors, R. F.

    1973-01-01

    The tensile property surfaces for two elastomeric materials, EPT-10 and AF-E-332, were generated in air and in liquid hydrazine environments using constant strain rate tensile tests over a range of temperatures and elongation rates. These results were used to predict the time-to-rupture for these materials in hydrazine as a function of temperature and amount of strain covering a span of operating times from less than a minute to twenty years. The results of limited sheet-folding tests and their relationship to the tensile failure boundary are presented and discussed.

  14. Substitute materials to replace asbestos in refinery-service gaskets and packings

    SciTech Connect

    Thomas, S.F.; McKillop, G.R.

    1986-05-26

    Refiners have been able to successfully replace asbestos in many packing and gasket applications. The changeover has been driven by health concerns, refusal of product liability insurance to suppliers, and supplier concern over long-term availability of asbestos. A great deal of purchasing and engineering effort is currently being expended to qualify and convert nonasbestos materials for gaskets and packings. The task has been complicated by a lack of objective performance criteria in existing industry standards. The majority of industry standards has specified the use of asbestos-based products because operating experience has shown they work. The specification criteria which do exist typically are valid for comparing competitive asbestos products only, and do not correlate well when applied to unrelated materials. The task of reliably and safely operating a refinery without asbestos-based gasketing and packing is progressing on three fronts: 1. Replacement with products based on materials such as flexible graphite and poly tetra fluoro ethylene (PTFE). Performance characteristics are well known, and sufficient historical operating data exist. The initial cost of these materials is typically higher than asbestos-based products. 2. Trials and replacement with ''new'' materials such as Aramid or glass-fiber-based sheet materials and braided packing, or mica/graphite-filled, spiral-wound gaskets. The performance characteristics of these materials are not well known in comparison to asbestos.

  15. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    SciTech Connect

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  16. Molecular engineering of high-performance elastomeric materials

    NASA Astrophysics Data System (ADS)

    Deng, Shengwei; Falk, Michael

    2013-03-01

    Polyurethane is a typical elastomeric material and among the most versatile materials today. It is a linear block copolymer consisting of alternating soft and hard segments with phase separation due to thermodynamic segmental incompatibility. Inspired by the hierarchical structure of spider silk, this kind of block copolymer can be synthesized with two distinct blocks that can differ in their propensity to crystallize. Either the soft or hard segments can be amorphous or semicrystalline. Recent experiments indicate that crystallizable segments lead to higher tensile strength and that systems with crystalline hard segment exhibit better stiffness, strength and mechanical toughness. Here we implement molecular dynamics simulation to investigate the influence of block architectures on mechanical properties and molecular chain movement.

  17. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison

    PubMed Central

    De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  18. Development and Evaluation of Elastomeric Materials for Geothermal Applications

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Kalfayan, S. H.; Reilly, W. W.; Yavrouian, A. H.; Mosesman, I. D.; Ingham, J. D.

    1979-01-01

    A material was formulated having about 250-350 psi tensile strength and 30-80 percent elongation at 260 C for at least 24 hours in simulated brine. The relationship between these laboratory test results and sealing performance in actual or simulated test conditions is not entirely clear; however, it is believed that no conventional formation or casing packer design is likely to perform well using these materials. The synthetic effort focused on high temperature block copolymers and development of curable polystyrene. Procedures were worked out for synthesizing these new materials. Initial results with heat-cured unfilled polystyrene 'gum' at 260 C indicate a tensile strength of about 50 psi. Cast films of the first sample of polyphenyl quinoxaline-polystyrene block copolymer, which has 'graft-block' structure consisting of a polystyrene chain with pendant polyphenyl quinoxaline groups, show elastomeric behavior in the required temperature range. Its tensile strength and elongation at 260 C were 220-350 psi and 18-36 percent, respectively. All of these materials also showed satisfactory hydrolytic stability.

  19. Recent developments in PVRC gasket testing

    SciTech Connect

    Hsu, K.H.; Payne, J.R.; Derenne, M.

    1996-12-01

    For the past 15--20 years, a major research program aimed at solving the problem of leakage of gasketed flanged joints has been undertaken by the Pressure Vessel Research Council (PVRC). This program has resulted in greatly enhanced understanding of the leakage phenomena of a flanged joint and improvements of the ASME Code design procedures. The PVRC bolted flanged program has been organized into six areas: (1) implement PVRC gasket constants and test procedure development; (2) issue a flange design guidelines report considering items such as modeling, tightness, transients, relaxation, etc.; (3) flange rating parameters for standard flanges; (4) design parameters for ASME joints; (5) gasket testing for temperature behavior data and test method developments; and (6) flanged joint assembly and interaction effects. This paper presents an update of the recent developments in the area of gasket testing; specifically, testing on flexible graphite gaskets, elastomeric sheet gaskets, and fugitive emissions gasket characteristics with various types of fluids are described.

  20. Comparison of Dimensional Accuracies Using Two Elastomeric Impression Materials in Casting Three-dimensional Tool Marks.

    PubMed

    Wang, Zhen

    2016-05-01

    The purpose of this study was to evaluate two types of impression materials which were frequently used for casting three-dimensional tool marks in China, namely (i) dental impression material and (ii) special elastomeric impression material for tool mark casting. The two different elastomeric impression materials were compared under equal conditions. The parameters measured were dimensional accuracies, the number of air bubbles, the ease of use, and the sharpness and quality of the individual characteristics present on casts. The results showed that dental impression material had the advantage of special elastomeric impression material in casting tool marks in crime scenes; hence, it combined ease of use, dimensional accuracy, sharpness and high quality. PMID:27122422

  1. Elastomeric Polypeptides

    PubMed Central

    van Eldijk, Mark B.; McGann, Christopher L.

    2013-01-01

    Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin – two elastomeric biopolymers – and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering. PMID:21826606

  2. Development of an impact noise reduction method by the adding of a small thickness elastomeric material

    NASA Astrophysics Data System (ADS)

    Arz, Jean-Pierre

    The starting point of this Ph.D. is the industrial issue submitted to the ETS by the company Bombardier Recreational Products (BRP) of the noise reduction of the tracked drive mechanism of snowmobiles. The overall goal of is to develop a method to predict the impact noise reduction obtained by the adding of an elastomeric layer specimen of small thickness between the impacting body and the impacted structure which is a complex structure (i.e. a structure whose geometry is complex and whose composition involves several materials). To reach this overall goal, three specific goals have been fixed: (1) characterize the behavior under impact of different small thickness elastomeric layers; (2) predict the impact force generated when an elastomeric layer is added on a complex vibrating structure; and (3) validate experimentally the whole method by applying it to the impact noise reduction of a bar of the snowmobile track. To reach the first specific goal (characterize the behavior under impact of different small thickness elastomeric layers), a specific experimental characterization method has been developed. Firstly, an experimental device has been realized to submit the elastomeric layer specimens to the reproducible impact conditions of an impact hammer. The measurement of the penetration depth of the hammer into the elastomeric layer is achieved by recording its motion with a high-speed camera and by detecting its position by further analysis on the individual images. Secondly, the experimental curves obtained are analyzed to point out their main characteristics and choose an appropriate impact model. Thirdly, the contact force parameters are estimated from the experimental results and from the impact model. Using this method, eight impacted elastomeric specimens have been characterized. The results show that a more precise characterization than hardness is obtained. To reach the second specific goal (predict the impact force generated when an elastomeric layer is

  3. Developments in new aircraft tire tread materials. [fatigue life of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.; Riccitiello, S. R.; Golub, M. A.

    1976-01-01

    Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock.

  4. Methodology for Evaluating Raw Material Changes to RSRM Elastomeric Insulation Materials

    NASA Technical Reports Server (NTRS)

    Mildenhall, Scott D.; McCool, Alex (Technical Monitor)

    2001-01-01

    The Reusable Solid Rocket Motor (RSRM) uses asbestos and silicon dioxide filled acrylonitrile butadiene rubber (AS-NBR) as the primary internal insulation to protect the case from heat. During the course of the RSRM Program, several changes have been made to the raw materials and processing of the AS-NBR elastomeric insulation material. These changes have been primarily caused by raw materials becoming obsolete. In addition, some process changes have been implemented that were deemed necessary to improve the quality and consistency of the AS-NBR insulation material. Each change has been evaluated using unique test efforts customized to determine the potential impacts of the specific raw material or process change. Following the evaluations, the various raw material and process changes were successfully implemented with no detectable effect on the performance of the AS-NBR insulation. This paper will discuss some of the raw material and process changes evaluated, the methodology used in designing the unique test plans, and the general evaluation results. A summary of the change history of RSRM AS-NBR internal insulation is also presented.

  5. Characterization of elastomeric materials with application to design

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1986-01-01

    Redesign of the Space Shuttle Solid Booster has necessitated re-evaluation of the material used in the field joint O-ring seals. The viscoelastic characteristics of five candidate materials were determined. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.

  6. Development and evaluation of elastomeric materials for geothermal applications

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Kalfayan, S. H.; Reilly, W. W.; Ingham, J. D.

    1978-01-01

    A material for a casing packer for service for 24 hours in a geothermal environment was developed by synthesis of new elastomers and formulation of available materials. Formulation included use of commercial elastomer gumstocks and also crosslinking of plastic (high Tg) materials. Fibrous reinforcement of fluorocarbon rubbers was emphasized. Organic fiber reinforcement did not increase hot properties significantly. Glass fiber reinforcement gave significant increase in tensile properties. Elongation was reduced, and the glass-reinforced composition examined so far did not hold up well in the geothermal environment. Colloidal asbestos fibers were also investigated. A few experiments with polyphenyl ether gave material with low tensile and high compression set. Available high styrene SBR compositions were studied. Work to date suggests that new synthetic polymers will be required for service in geothermal environments.

  7. High k dielectric elastomeric materials for low voltage applications

    NASA Astrophysics Data System (ADS)

    Walder, C.; Molberg, M.; Opris, D. M.; Nüesch, F. A.; Löwe, C.; Plummer, C. J. G.; Leterrier, Y.; Månson, J.-A. E.

    2009-03-01

    In principle EAP technology could potentially replace common motion-generating mechanisms in positioning, valve control, pump and sensor applications, where designers are seeking quieter, power efficient devices to replace conventional electrical motors and drive trains. Their use as artificial muscles is of special interest due to their similar properties in terms of stress and strain, energy and power densities or efficiency. A broad application of dielectric elastomer actuators (DEA) is limited by the high voltage necessary to drive such devices. The development of novel elastomers offering better intrinsic electromechanical properties is one way to solve the problem. We prepared composites from cross-linked silicone elastomers or thermoplastic elastomers (TPE) by blending them with organic fillers exhibiting a high dielectric constant. Well characterized monomeric phthalocyanines and modified doped polyaniline (PANI) were used as filler materials. In addition, blends of TPE and an inorganic filler material PZT were characterized as well. We studied the influence of the filler materials onto the mechanical and electromechanical properties of the resulting mixtures. A hundredfold increase of the dielectric constant was already observed for blends of an olefin based thermoplastic elastomer and PANI.

  8. Effects of atomic oxygen and ultraviolet radiation on candidate elastomeric materials for long duration missions. Test series no.1

    NASA Technical Reports Server (NTRS)

    Linton, R. C.; Finckenor, M. M.; Kamenetzky, R. R.; Gray, P.

    1993-01-01

    Research was conducted at MSFC on the behavior of elastomeric materials after exposure to simulated space environment. Silicone S383 and Viton V747 samples were exposed to thermal vacuum, ultraviolet radiation, and atomic oxygen and then evaluated for changes in material properties. Characterization of the elastomeric materials included weight, hardness, optical inspection under normal and black light, spectrofluorescence, solar absorptance and emittance, Fourier transform infrared spectroscopy, and permeability. These results indicate a degree of sensitivity to exposure and provided some evidence of UV and atomic oxygen synergism.

  9. The Effect of Disinfectants and a Surface Wetting Agent on the Wettability of Elastomeric Impression Materials: An In Vitro Study

    PubMed Central

    Lad, Pritam P; Gurjar, Minal; Gunda, Sachin; Gurjar, Vivek; Rao, Nandan K

    2015-01-01

    Background: This study was carried out to evaluate the effect of two commercially available chemical disinfectants namely sodium hypochlorite and glutaraldehyde and a surface wetting agent on the wettability of three high precision elastomeric impression materials, addition silicone, condensation silicone and polyether. Materials and Methods: Three different types of elastomeric impression materials commonly used in prosthodontic practice were selected. The glutaraldehyde and sodium hypochloride solutions were employed to disinfect the impressions made with the above-mentioned elastomeric impression materials. True Blue surface wetting agent was selected. GBX contact angle analyzer was used to measure advancing and receding contact angle. Results: The results of this study have demonstrated that the polyether impression material was the most hydrophilic of all the materials, followed by hydrophilic addition silicone. Condensation silicone was least hydrophilic. All materials showed improvement in the wettability when a topical surfactant was used. Conclusion: The short term disinfection of the three elastomeric impression materials does not affect the wettability of these impression materials. PMID:26124605

  10. The thermal and mechanical properties of a low density elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1973-01-01

    Thermal and mechanical properties data were obtained for a low density elastomeric resin based ablation material with phenolic-glass honeycomb reinforcement. Data were obtained for the material in the charred and uncharred state. Ablation material specimens were charred in a laboratory furnace at temperatures in the range from 600 K to 1700 K to obtain char specimens representative of the ablation char layer formed during reentry. These specimens were then used to obtain effective thermal conductivity, heat capacity, porosity, and permeability data at the char formation temperature. This provided a boxing of the data which enables the prediction of the transient response of the material during ablation. Limited comparisons were made between the furnace charred specimens and specimens which had been exposed to simulated reentry conditions.

  11. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.

    PubMed

    Schäfer, Christian G; Lederle, Christina; Zentel, Kristina; Stühn, Bernd; Gallei, Markus

    2014-11-01

    In this work, the preparation of highly thermoresponsive and fully reversible stretch-tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate-co-ethyl acrylate) (PDEGMEMA-co-PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt-shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano- and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV-induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross-linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA-containing colloidal architectures, application of the melt-shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli-responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications. PMID:25243892

  12. Gasket with pushrod retainer

    DOEpatents

    Knudsen, Julian R.; Welch, Christopher B.

    2005-04-26

    In an engine having a rocker member adapted to rock about an axis intermediate the rocker member and a pushrod extending from a lower body to an upper body and engaging an end of the rocker member, a gasket for sealing the lower body to the upper body is provided. The gasket includes a sealing portion adapted to substantially seal at least a portion of the upper body to the lower body, and a pushrod support portion extending outwardly from the sealing portion adapted to engage the pushrod. At least a portion of the pushrod support portion engaging the pushrod is constructed from a material that is softer than the material of the pushrod.

  13. Elastomeric optical fiber sensors and method for detecting and measuring events occurring in elastic materials

    DOEpatents

    Muhs, Jeffrey D.; Capps, Gary J.; Smith, David B.; White, Clifford P.

    1994-01-01

    Fiber optic sensing means for the detection and measurement of events such as dynamic loadings imposed upon elastic materials including cementitious materials, elastomers, and animal body components and/or the attrition of such elastic materials are provided. One or more optical fibers each having a deformable core and cladding formed of an elastomeric material such as silicone rubber are embedded in the elastic material. Changes in light transmission through any of the optical fibers due the deformation of the optical fiber by the application of dynamic loads such as compression, tension, or bending loadings imposed on the elastic material or by the attrition of the elastic material such as by cracking, deterioration, aggregate break-up, and muscle, tendon, or organ atrophy provide a measurement of the dynamic loadings and attrition. The fiber optic sensors can be embedded in elastomers subject to dynamic loadings and attrition such as commonly used automobiles and in shoes for determining the amount and frequency of the dynamic loadings and the extent of attrition. The fiber optic sensors are also useable in cementitious material for determining the maturation thereof.

  14. 46 CFR 98.30-8 - Gaskets and lining.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Gaskets and lining. 98.30-8 Section 98.30-8 Shipping... Gaskets and lining. No person may transfer a hazardous material to or from a portable tank on board a vessel unless each gasket and the lining of the portable tank are made of a material that is—...

  15. 46 CFR 98.30-8 - Gaskets and lining.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Gaskets and lining. 98.30-8 Section 98.30-8 Shipping... Gaskets and lining. No person may transfer a hazardous material to or from a portable tank on board a vessel unless each gasket and the lining of the portable tank are made of a material that is—...

  16. Development and Evaluation of High Temperature Gaskets for Hypersonic and Reentry Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Shpargel, Tarah

    2007-01-01

    A wide variety of flexible gasket compositions were developed and tested at high temperatures. The gasket material system has high temperature capability. GRABER sealants were very effective in sealing machined ACC-4 composite surfaces. The gasket composition do not bond strongly with the ACC-4 substrate materials. The density of gasket materials can be tailored to show appropriate compressibility.

  17. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  18. Biodegradable and Elastomeric Poly(glycerol sebacate) as a Coating Material for Nitinol Bare Stent

    PubMed Central

    Kim, Min Ji; Hwang, Moon Young; Kim, JiHeung; Chung, Dong June

    2014-01-01

    We synthesized and evaluated biodegradable and elastomeric polyesters (poly(glycerol sebacate) (PGS)) using polycondensation between glycerol and sebacic acid to form a cross-linked network structure without using exogenous catalysts. Synthesized materials possess good mechanical properties, elasticity, and surface erosion biodegradation behavior. The tensile strength of the PGS was as high as 0.28 ± 0.004 MPa, and Young's modulus was 0.122 ± 0.0003 MPa. Elongation was as high as 237.8 ± 0.64%, and repeated elongation behavior was also observed to at least three times the original length without rupture. The water-in-air contact angles of the PGS surfaces were about 60°. We also analyzed the properties of an electrospray coating of biodegradable PGS on a nitinol stent for the purpose of enhancing long-term patency for the therapeutic treatment of varicose veins disease. The surface morphology and thickness of coating layer could be controlled by adjusting the electrospraying conditions and solution parameters. PMID:24955369

  19. Biodegradable and elastomeric poly(glycerol sebacate) as a coating material for nitinol bare stent.

    PubMed

    Kim, Min Ji; Hwang, Moon Young; Kim, JiHeung; Chung, Dong June

    2014-01-01

    We synthesized and evaluated biodegradable and elastomeric polyesters (poly(glycerol sebacate) (PGS)) using polycondensation between glycerol and sebacic acid to form a cross-linked network structure without using exogenous catalysts. Synthesized materials possess good mechanical properties, elasticity, and surface erosion biodegradation behavior. The tensile strength of the PGS was as high as 0.28 ± 0.004 MPa, and Young's modulus was 0.122 ± 0.0003 MPa. Elongation was as high as 237.8 ± 0.64%, and repeated elongation behavior was also observed to at least three times the original length without rupture. The water-in-air contact angles of the PGS surfaces were about 60°. We also analyzed the properties of an electrospray coating of biodegradable PGS on a nitinol stent for the purpose of enhancing long-term patency for the therapeutic treatment of varicose veins disease. The surface morphology and thickness of coating layer could be controlled by adjusting the electrospraying conditions and solution parameters. PMID:24955369

  20. Thiol-Ene functionalized siloxanes for use as elastomeric dental impression materials

    PubMed Central

    Cole, Megan A.; Jankousky, Katherine C.; Bowman, Christopher N.

    2014-01-01

    Objectives Thiol- and allyl-functionalized siloxane oligomers are synthesized and evaluated for use as a radical-mediated, rapid set elastomeric dental impression material. Thiol-ene siloxane formulations are crosslinked using a redox-initiated polymerization scheme, and the mechanical properties of the thiol-ene network are manipulated through the incorporation of varying degrees of plasticizer and kaolin filler. Formulations with medium and light body consistencies are further evaluated for their ability to accurately replicate features on both the gross and microscopic levels. We hypothesize that thiol-ene functionalized siloxane systems will exhibit faster setting times and greater detail reproduction than commercially available polyvinylsiloxane (PVS) materials of comparable consistencies. Methods Thiol-ene functionalized siloxane mixtures formulated with varying levels of redox initiators, plasticizer, and kaolin filler are made and evaluated for their polymerization speed (FTIR), consistency (ISO4823.9.2), and surface energy (goniometer). Feature replication is evaluated quantitatively by SEM. The Tg, storage modulus, and creep behavior are determined by DMA. Results Increasing redox initiation rate increases the polymerization rate but at high levels also limits working time. Combining 0.86 wt% oxidizing agent with up to 5 wt% plasticizer gave a working time of 3 min and a setting time of 2 min. The selected medium and light body thiol-ene formulations also achieved greater qualitative detail reproduction than the commercial material and reproduced micrometer patterns with 98% accuracy. Significance Improving detail reproduction and setting speed is a primary focus of dental impression material design and synthesis. Radical-mediated polymerizations, particularly thiol-ene reactions, are recognized for their speed, reduced shrinkage, and ‘click’ nature. PMID:24553250

  1. 46 CFR 56.25-15 - Gaskets (modifies 108.4).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Gaskets (modifies 108.4). 56.25-15 Section 56.25-15... APPURTENANCES Pipe Flanges, Blanks, Flange Facings, Gaskets, and Bolting § 56.25-15 Gaskets (modifies 108.4). (a) Gaskets shall be made of materials which are not injuriously affected by the fluid or by temperature....

  2. 46 CFR 56.25-15 - Gaskets (modifies 108.4).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Gaskets (modifies 108.4). 56.25-15 Section 56.25-15... APPURTENANCES Pipe Flanges, Blanks, Flange Facings, Gaskets, and Bolting § 56.25-15 Gaskets (modifies 108.4). (a) Gaskets shall be made of materials which are not injuriously affected by the fluid or by temperature....

  3. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  4. Nuclear power plant accident simulations of gasket materials under simultaneous radiation plus thermal plus mechanical stress conditions

    SciTech Connect

    Gillen, K.T.; Malone, G.M.

    1997-07-01

    In order to probe the response of silicone door gasket materials to a postulated severe accident in an Italian nuclear power plant, compression stress relaxation (CSR) and compression set (CS) measurements were conducted under combined radiation (approximately 6 kGy/h) and temperature (up to 230{degrees}C) conditions. By making some reasonable initial assumptions, simplified constant temperature and dose rates were derived that should do a reasonable job of simulating the complex environments for worst-case severe events that combine overall aging plus accidents. Further simplification coupled with thermal-only experiments allowed us to derive thermal-only conditions that can be used to achieve CSR and CS responses similar to those expected from the combined environments that are more difficult to simulate. Although the thermal-only simulations should lead to sealing forces similar to those expected during a severe accident, modulus and density results indicate that significant differences in underlying chemistry are expected for the thermal-only and the combined environment simulations. 15 refs., 31 figs., 15 tabs.

  5. Elastomeric member

    DOEpatents

    Hoppie, Lyle O.

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  6. Elastomeric member

    DOEpatents

    Hoppie, L.O.

    1985-07-30

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond there between. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  7. Serpentine metal gasket

    DOEpatents

    Rothgeb, Timothy Moore; Reece, Charles Edwin

    2009-06-02

    A metallic seal or gasket for use in the joining of cryogenic fluid conduits, the seal or gasket having a generally planar and serpentine periphery defining a central aperture. According to a preferred embodiment, the periphery has at least two opposing elongated serpentine sides and two opposing arcuate ends joining the opposing elongated serpentine sides and is of a hexagonal cross-section.

  8. Flame resistant elastic elastomeric fibers

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Massucco, A. A.

    1972-01-01

    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.

  9. Fiber gasket and method of making same

    DOEpatents

    Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.

    2003-01-01

    A gasket (1) is made by repetitively spirally winding a fiber (3) back on itself in a closed path. The gasket (1) so made has a multi-layer spiral winding (1) formed in a loop (5). The fiber (3) can be wound at a constant wrap rate to form a gasket with a uniform cross-section around the loop. Alternatively, the wrap rate can be varied, increased to increase cross-sectional bulk, and decreased to reduce cross-section bulk around the loop (5). Also, the spiral winding (7) can be applied over a core (13) of either strands of the fiber (3) or a dissimilar material providing a desired property such as resiliency, stiffness or others. For high temperature applications, a ceramic fiber (3) can be used. The gasket (1) can have any of various geometric configurations with or without a core (13).

  10. A Comparative Evaluation of the Dimensional Stability of Three Different Elastomeric Impression Materials after Autoclaving – An Invitro Study

    PubMed Central

    Thota, Kiran Kumar; Ravuri, Rajyalakshmi; Tella, Suchita

    2014-01-01

    Aim of the Study: The purpose of the study was to determine the effect of autoclaving on the dimensional stability of three different elastomeric impression materials at three different time intervals. Materials and Methods: Standardized stainless steel master die as per ADA specification number 19 was fabricated. The impression materials used for the study were condensation silicone (GP1), addition silicone (GP2) and polyether (GP3). A total of 45 samples of the stainless steel die were made (n = 45), that is 15 samples for each group. Impression materials were mixed according to the manufacturer’s instructions and were loaded into the mold to make an impression of the die. Impressions were identified with the help of numerical coding system and measurements were made using stereomicroscope (MAGNUS MSZ-Bi) of 0.65x magnification with the help of image analysis software (IMACE PRO-INSIGHT VERSION.The results were subjected to statistical analysis using one way analysis of variance and student t-test for comparison between the groups. Results: Within the limitations of the study statistically significant dimensional changes were observed for all the three impression materials at three different time intervals but this change was not clinically significant. Conclusion: It is well-known fact that all impressions should be disinfected to avoid possible transmission of infectious diseases either by direct contact or cross contamination. Immersion and spray disinfection as well as various disinfection solutions have been tested and proven to be effective for this purpose. But for elastomeric impression materials these methods have proven to be ineffective as they do not prevent cross contamination among the dental team. So autoclaving was one of the most effective sterilization procedure for condensation silicone and addition silicone. Since polyether is hydrophilic it is better to disinfect the impressions as recommended by the manufacturer or by immersion or spray

  11. Experience with gasket testing according to new DIN standards

    SciTech Connect

    Kockelmann, H.; Bartonicek, J.; Hirschvogel, A.

    1996-12-01

    In 1995 new DIN standards were published containing gasket factor definitions, gasket testing procedures and requirements as a basis for technical delivery conditions. The gasket factors in DIN 28090 are consistent with those in the design rules for bolted flanged connections laid down in DIN EN 1591. Both standards together are an advanced and reliable tool for strength analysis and tightness assessment for bolted flanged connections. The new DIN standards contain new features in detail: gasket factors are related to tightness classes allowing tightness classification of flanged joints; time and temperature effects are regarded by means of high temperature longterm aging leakage tests; and gasket material degradation due to chemical attack is covered by means of chemical resistance tests. Verification of gasket testing according to the new DIN standards by means of tests on real flanged joints is under way.

  12. A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels

    NASA Astrophysics Data System (ADS)

    Chester, Shawn A.; Anand, Lallit

    2011-10-01

    An elastomeric gel is a cross-linked polymer network swollen with a solvent, and certain gels can undergo large reversible volume changes as they are cycled about a critical temperature. We have developed a continuum-level theory to describe the coupled mechanical deformation, fluid permeation, and heat transfer of such thermally responsive gels. In discussing special constitutive equations we limit our attention to isotropic materials, and consider a model based on a Flory-Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled with a non-Gaussian statistical-mechanical model for the change in configurational entropy—a model which accounts for the limited extensibility of polymer chains. We have numerically implemented our theory in a finite element program. We show that our theory is capable of simulating swelling, squeezing of fluid by applied mechanical forces, and thermally responsive swelling/de-swelling of such materials.

  13. 30 CFR 18.27 - Gaskets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gaskets. 18.27 Section 18.27 Mineral Resources... Gaskets. A gasket(s) shall not be used between any two surfaces forming a flame-arresting path except as follows: (a) A gasket of lead, elastomer, or equivalent will be acceptable provided the gasket does...

  14. 30 CFR 18.27 - Gaskets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gaskets. 18.27 Section 18.27 Mineral Resources... Gaskets. A gasket(s) shall not be used between any two surfaces forming a flame-arresting path except as follows: (a) A gasket of lead, elastomer, or equivalent will be acceptable provided the gasket does...

  15. Thermal performance of 625-kg/cu m elastomeric ablative materials on spherically blunted 0.44-radian cones

    NASA Technical Reports Server (NTRS)

    Champman, A. J.

    1972-01-01

    Spherically blunted 0.44-radian (25 deg) half-angle conical models coated with elastomeric ablative materials were tested in supersonic arc-heated wind tunnels to evaluate performance of the ablators over a range of conditions typical of lifting entry. Four test conditions were combinations of stagnation point-heat transfer rates of 2.3 and 4.5 MW/m2 and stagnation pressures of 20 and 2kN/m2. Afterbody values of heat transfer rate and pressure were 0.05 to 0.20 of stagnation point values. Stagnation enthalpy varied from 4.4 to 25 MJ/kg (1900 to 11000 Btu/lbm) and free-stream Mach number was in a range from 3.5 to 4. Ablative materials retained the spherical nose shape throughout tests at the lower heat transfer level, but receded, assuming a flattened nose shape, during tests at the high heat transfer level. The residue layer that formed on the conical after-body was weak, friable, and extensively cracked. The reference ablative material, which contained phenolic microspheres, generally retained the conical shape on the model afterbody. However, a modified ablator, in which phenolic microspheres were replaced with silica microspheres, deformed and separated from the undegraded material, and thereby produced a very uneven surface. Substrate temperatures and ablator recession were in good agreement with values computed by a numerical analysis.

  16. Elastomeric polypeptide-based biomaterials

    PubMed Central

    Li, Linqing; Charati, Manoj B.; Kiick, Kristi L.

    2011-01-01

    Elastomeric proteins are characterized by their large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Motivated by their unique mechanical properties, there has been tremendous research in understanding and manipulating elastomeric polypeptides, with most work conducted on the elastins but more recent work on an expanded set of polypeptide elastomers. Facilitated by biosynthetic strategies, it has been possible to manipulate the physical properties, conformation, and mechanical properties of these materials. Detailed understanding of the roles and organization of the natural structural proteins has permitted the design of elastomeric materials with engineered properties, and has thus expanded the scope of applications from elucidation of the mechanisms of elasticity to the development of advanced drug delivery systems and tissue engineering substrates. PMID:21637725

  17. Flame resistant elastic elastomeric fiber

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Massucco, A. A.; Sidman, K. R.

    1974-01-01

    Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene.

  18. Determination of spring modulus for several types of elastomeric materials (O-rings) and establishment of an open database for seals

    SciTech Connect

    McMurtry, W.M.; Hohnstreiter, G.F.

    1995-12-31

    Seals that provide the containment system interface between the packaging body and closure must function in high and low temperature environments, under dynamic and static loading conditions, and with different types of contained media. It is one of the most critical elements in the container since the container fails to meet regulations if the seal does not function properly. A research and testing program for seal materials was initiated at Sandia in 1988 with the goal of characterizing the behavior of seal materials commonly used in packages conditions as specified in the regulations (NRC IOCFR Part 71) and American National Standards Institute (ANSI) 14.5. The performance of elastomeric seals in undeformed closures at both high and low temperatures has been investigated (Bronowski 1995). Work has begun with this program to determine the response of elastomeric seals to fast acting dynamic deformations`` in the closure. The response of elastomeric o-ring seals during closure movements due to long-term deformations has already been characterized. What has not been well characterized are short-term closure movements with durations of only a few milliseconds that result in the so called ``burp`` release. Methods for generating this type of response in a repeatable manner had not been developed and standard leak detection equipment does not have a fast enough response time to measure these transient events. One factor which affects the length of the burp is the ability of the o-ring to quickly close the gap to prevent a significant leak. The dynamic characteristics of the elastomeric o-ring material including the dynamic spring modulus and internal damping are directly related to its ability to quickly close the gap. A set of tests designed to determine the dynamic properties for various material types and durometers (hardness) of elastomers that were both lubricated and dry at ambient temperature were conducted.

  19. Elastomeric load sharing device

    NASA Technical Reports Server (NTRS)

    Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)

    1992-01-01

    An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.

  20. Properties of a new polyether urethane dimethacrylate photoinitiated elastomeric impression material.

    PubMed

    Craig, R G; Hare, P H

    1990-01-01

    The photoinitiated impression material is supplied premixed as a light-bodied material in a light-tight plastic syringe and as a heavy-bodied material in a tube. The impression material has excellent physical, mechanical, and clinical qualities with noteworthy long working times, short setting times, dimensional stability, accuracy, high tear strength, good wettability, biocompatibility, and ease of cold disinfection without loss of quality. The impression material is also compatible with gypsum and silver or copper metallizing baths. Accurate casts can be obtained by means of either a double-impression technique or a double-mix technique. PMID:2295985

  1. A New Method for Evaluating Elastomeric Materials for Use in High Pressure Oxygen

    NASA Technical Reports Server (NTRS)

    Jordan, Scott M.

    2001-01-01

    The seal configuration tester (SCT) developed at the Stennis Space Center (SSC) was designed to replicate the intended application of different seat and seal materials in a high pressure oxygen system and assess the wearibility of those materials. Statistical models were used to test the reliability of the SCT in its intended application, and the tests showed very consistent measurements over time, indicating that the device was working as intended. Other statistical designs were used to test different O-ring materials in a high-pressure oxygen system. Those tests indicated that the SCT could be used to rank the performance of O-ring materials in certain environments. The results indicated that some cheaper materials performed as well as, if not better than, other more expensive materials. Different lubrications were integrated in the testing as well and had a significant impact on the performance of the materials. Testing of seat materials is the next stage of this project. An augmentation grant (JAG) was obtained to further this experimental testing at the Stennis Space Center. This part of the project is ongoing at this time and therefore there are no significant accomplishments with respect to seat materials as of yet.

  2. The effect of tray selection on the accuracy of elastomeric impression materials.

    PubMed

    Gordon, G E; Johnson, G H; Drennon, D G

    1990-01-01

    This study evaluated the accuracy of reproduction of stone casts made from impressions using different tray and impression materials. The tray materials used were an acrylic resin, a thermoplastic, and a plastic. The impression materials used were an additional silicone, a polyether, and a polysulfide. Impressions were made of a stainless steel master die that simulated crown preparations for a fixed partial denture and an acrylic resin model with cross-arch and anteroposterior landmarks in stainless steel that typify clinical intra-arch distances. Impressions of the fixed partial denture simulation were made with all three impression materials and all three tray types. Impressions of the cross-arch and anteroposterior landmarks were made by using all three tray types with only the addition reaction silicone impression material. Impressions were poured at 1 hour with a type IV dental stone. Data were analyzed by using ANOVA with a sample size of five. Results indicated that custom-made trays of acrylic resin and the thermoplastic material performed similarly regarding die accuracy and produced clinically acceptable casts. The stock plastic tray consistently produced casts with greater dimensional change than the two custom trays. PMID:2404101

  3. A summary of laboratory testing performed to characterize and select an elastomeric O-ring material to be used in the redesigned solid rocket motors of the space transportation system

    NASA Technical Reports Server (NTRS)

    Turner, J. E.

    1993-01-01

    An elastomeric O-ring material is used in the joints of the redesigned solid motors (RSRM's) of the National Space Transportation System (NSTS). The selection of the O-ring material used in the RSRM's was a very thorough process that included efforts by NASA's Marshall Space Flight Center and the Langley Research Center, and the Thiokol Corporation. One of the efforts performed at MSFC was an extensive in-house laboratory test regime to screen potential O-ring materials and ultimately to characterize the elastomeric material that was chosen to be used in the RSRM's. The laboratory tests performed at MSFC are summarized.

  4. Flight and ground tests of a very low density elastomeric ablative material

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.; Chapman, A. J., III

    1972-01-01

    A very low density ablative material, a silicone-phenolic composite, was flight tested on a recoverable spacecraft launched by a Pacemaker vehicle system; and, in addition, it was tested in an arc heated wind tunnel at three conditions which encompassed most of the reentry heating conditions of the flight tests. The material was composed, by weight, of 71 percent phenolic spheres, 22.8 percent silicone resin, 2.2 percent catalyst, and 4 percent silica fibers. The tests were conducted to evaluate the ablator performance in both arc tunnel and flight tests and to determine the predictability of the albator performance by using computed results from an existing one-dimensional numerical analysis. The flight tested ablator experienced only moderate surface recession and retained a smooth surface except for isolated areas where the char was completely removed, probably following reentry and prior to or during recovery. Analytical results show good agreement between arc tunnel and flight test results. The thermophysical properties used in the analysis are tabulated.

  5. Embedded strain gauges for condition monitoring of silicone gaskets.

    PubMed

    Schotzko, Timo; Lang, Walter

    2014-01-01

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099

  6. Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets

    PubMed Central

    Schotzko, Timo; Lang, Walter

    2014-01-01

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099

  7. Application of gasket performance data for design and operation of low emissions, high-reliability gasketed joints

    SciTech Connect

    Waterland, A.F. III

    1996-07-01

    The MTI project No. 47, Test Methods for Non-Asbestos Gasket Materials, opened everyone`s eyes to the breadth of performance and use information for gasket materials. What the MTI has started has resulted in a quiet revolution in gasketing, and just in time. Today`s emissions and reliability mandates have created a situation whereby gasket materials can no longer be selected and designed into systems simply through practicable experience and personnel judgment. A defined engineering approach is required. Based on the work initiated by the MTI and furthered by groups such as ASME and PVRC, there now exists extensive performance data for all gasketing materials. This presentation addresses the existence and usage of the various MTI and PVRC-type performance data as a tool for initial material selection. With this background, a novel simplification to the future ASME code procedure is introduced which allows for a simple yet accurate means of applying this widely available data to an emissions` control program at the plant level.

  8. Evaluation of Force Degradation Pattern of Elastomeric Ligatures and Elastomeric Separators in Active Tieback State

    PubMed Central

    Mohammadi, Amir; Mahmoodi, Farhang

    2015-01-01

    Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek) were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11-18% of the initial force of the specimens was lost within the first 3 minutes and 29-63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62-81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05). Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state. PMID:26889363

  9. Evaluation of Force Degradation Pattern of Elastomeric Ligatures and Elastomeric Separators in Active Tieback State.

    PubMed

    Mohammadi, Amir; Mahmoodi, Farhang

    2015-01-01

    Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek) were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11-18% of the initial force of the specimens was lost within the first 3 minutes and 29-63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62-81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05). Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state. PMID:26889363

  10. Sealing Force Increasing of ACM Gasket through Electron Beam Radiation

    NASA Astrophysics Data System (ADS)

    dos Santos, D. J.; Batalha, G. F.

    2011-01-01

    Rubber is an engineering material largely used as sealing parts, in form of O-rings, solid gaskets and liquid gaskets, materials applied in liquid state with posterior vulcanization and sealing. Stress relaxation is a rubber characteristic which impacts negatively in such industrial applications (rings and solid gaskets). This work has the purpose to investigate the use of electron beam radiation (EB) as a technology able to decrease the stress relaxation in acrylic rubber (ACM), consequently increasing the sealing capability of this material. ACM samples were irradiated with dose of 100 kGy and 250 kGy, its behavior was comparatively investigated using, dynamic mechanical analysis (DMA) and compression stress relaxation (CSR) experiments. The results obtained by DMA shown an increase of Tg and changes in dynamic mechanical behavior.

  11. Conductive elastomeric extensometer

    NASA Technical Reports Server (NTRS)

    Gause, R. L.; Glenn, C. G. (Inventor)

    1974-01-01

    An extensometer was used for measuring surface area changes of the human body caused by expansion and contraction of the body. A relatively thin and wide strain responsive conductive elastomeric band was adapted for application to a part of the body, such as around a limb or the trunk of the body. The elastomeric band is incorporated as a resistor in a balanced bridge circuit. Expansion or contraction of the portion of the body on which the elastomeric band is applied causes a change in the resistance of the band and a resultant imbalance of the bridge circuit. The output of the amplifier in volts is suitable for proving the desired reading through a recorder, oscilloscope or voltmeter.

  12. Filter holder and gasket assembly for candle or tube filters

    DOEpatents

    Lippert, T.E.; Alvin, M.A.; Bruck, G.J.; Smeltzer, E.E.

    1999-03-02

    A filter holder and gasket assembly are disclosed for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut. 9 figs.

  13. Filter holder and gasket assembly for candle or tube filters

    DOEpatents

    Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.

    1999-03-02

    A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.

  14. Highly tunable elastomeric silk biomaterials

    PubMed Central

    Partlow, Benjamin P.; Hanna, Craig W.; Rnjak-Kovacina, Jelena; Moreau, Jodie E.; Applegate, Matthew B.; Burke, Kelly A.; Marelli, Benedetto; Mitropoulos, Alexander N.; Omenetto, Fiorenzo G.

    2014-01-01

    Elastomeric, fully degradable and biocompatible biomaterials are rare, with current options presenting significant limitations in terms of ease of functionalization and tunable mechanical and degradation properties. We report a new method for covalently crosslinking tyrosine residues in silk proteins, via horseradish peroxidase and hydrogen peroxide, to generate highly elastic hydrogels with tunable properties. The tunable mechanical properties, gelation kinetics and swelling properties of these new protein polymers, in addition to their ability to withstand shear strains on the order of 100%, compressive strains greater than 70% and display stiffness between 200 – 10,000 Pa, covering a significant portion of the properties of native soft tissues. Molecular weight and solvent composition allowed control of material mechanical properties over several orders of magnitude while maintaining high resilience and resistance to fatigue. Encapsulation of human bone marrow derived mesenchymal stem cells (hMSC) showed long term survival and exhibited cell-matrix interactions reflective of both silk concentration and gelation conditions. Further biocompatibility of these materials were demonstrated with in vivo evaluation. These new protein-based elastomeric and degradable hydrogels represent an exciting new biomaterials option, with a unique combination of properties, for tissue engineering and regenerative medicine. PMID:25395921

  15. A finite strain thermo-viscoelastic constitutive model to describe the self-heating in elastomeric materials during low-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Ovalle Rodas, C.; Zaïri, F.; Naït-Abdelaziz, M.

    2014-03-01

    A thermo-visco-hyperelastic constitutive model, in accordance with the second thermodynamics principle, is formulated to describe the self-heating evolution in elastomeric materials under cyclic loading. The mechanical part of the model is based upon a Zener rheological representation in which the specific free energy potential is dependent on an added internal variable, allowing the description of the time-dependent mechanical response. The large strain mechanical behavior is described using a Langevin spring, while the continuous stress-softening under cyclic loading is taken into account by means of a network alteration kinetics. The thermo-mechanical coupling is defined by postulating the existence of a dissipation pseudo-potential, function of the viscous dilatation tensor. The proposed model is fully three-dimensional and is implemented into a finite element code. The model parameters are identified using experimental data obtained on a styrene-butadiene rubber under a given strain rate for different strain conditions. Predicted evolutions given by the model for other strain rates are found in good agreement with the experimental data.

  16. Modeling the low-cycle fatigue behavior of visco-hyperelastic elastomeric materials using a new network alteration theory: Application to styrene-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Ayoub, G.; Zaïri, F.; Naït-Abdelaziz, M.; Gloaguen, J. M.

    2011-02-01

    Although several theories were more or less recently proposed to describe the Mullins effect, i.e. the stress-softening after the first load, the nonlinear equilibrium and non-equilibrium material response as well as the continuous stress-softening during fatigue loading need to be included in the analysis to propose a reliable design of rubber structures. This contribution presents for the first time a network alteration theory, based on physical interpretations of the stress-softening phenomenon, to capture the time-dependent mechanical response of elastomeric materials under fatigue loading, and this until failure. A successful physically based visco-hyperelastic model is revisited by introducing an evolution law for the physical material parameters affected by the network alteration. The general form of the model can be basically represented by two parallel networks: a nonlinear equilibrium response and a time-dependent deviation from equilibrium, in which the network parameters become functions of the damage rate (defined as the ratio of the applied cycle over the applied cycle to failure). The mechanical behavior of styrene-butadiene rubber was experimentally investigated, and the main features of the constitutive response under fatigue loading are highlighted. The experimental results demonstrate that the evolution of the normalized maximum stress only depends on the damage rate endured by the material during the fatigue loading history. The average chain length and the average chain density are then taken as functions of the damage rate in the proposed network alteration theory. The new model is found to adequately capture the important features of the observed stress-strain curves under loading-unloading for a large spectrum of strain and damage levels. The model capabilities to predict variable amplitude tests are critically discussed by comparisons with experiments.

  17. Novel rhenium gasket design for nuclear resonant inelastic x-ray scattering at high pressure

    SciTech Connect

    Tanis, Elizabeth A.; Giefers, Hubertus; Nicol, Malcolm F.

    2008-02-15

    For the first time, a highly absorbing element, rhenium, has been proven to be a strong, reliable, and safe gasket material for achieving high pressure in nuclear resonant inelastic x-ray scattering (NRIXS) experiments. Rhenium foil was cut into rectangular slices and in order to reduce absorption, the elevated imprint due to preindenting of the gasket is removed using electrical discharge machining. By utilizing this novel gasket design, transmission losses were mitigated while performing NRIXS experiments conducted on the {sup 119}Sn and {sup 57}Fe Moessbauer isotopes.

  18. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  19. Gaskets of teflon-bonded EPDM halt leakage from acid lines - low sealing force design eliminates flange distress

    SciTech Connect

    Walker, I.S.; Gaines, A.

    1987-11-01

    The W.R. Grace Chemical Division plant in Lake Charles, LA had to stop producing catalysts for the oil refining industry whenever a piping system for 98% sulfuric acid developed a leak. Gaskets of a nonasbestos material were being used between the flanges of the steel pipe lined with TFE or polypropylene. The flange bolts were kept tight, but the gaskets usually failed to maintain a leaktight seal with the acid at 60 psi for more than a few weeks or months. The acid lines had to be drained before the faulty gasket could be replaced, and production downtime would range from one to three hours. In July 1986, the plant decided to try a chemical resistant gasket of Teflon molded and bonded to a core of Shore A 65-66 durometer EPDM rubber in the acid lines. The resilient gasket also has patented double convex rings on both faces for optimum sealing with only one-eighth the bolt tightening torque commonly required with flat-faced gaskets. The low sealing force requirement prolongs the life of the gasket, eliminates plastic cold flow at the flange of lined steel pipe, and avoids stresses that can damage thermoplastic and fiberglass piping systems. The gasket has a temperature range of {minus}4 to 210{degree}F and is available in 1/2 through 12 inch sizes that conform to ANSI B16.1 flange dimensions. Alternative gasket materials are Kynar PVDF-bonded EPDM and EPDM without a fluoropolymer laminate. The Teflon-bonded EPDM gaskets eliminated unscheduled catalyst production downtime due to leakage from the sulfuric acid piping system. The plant maintains an inventory of the low torque gasket, but has never had to replace any that have been in service since July 1986.

  20. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, L.O.; McNinch, J.H. Jr.; Nowell, G.C.

    1984-10-23

    A molding process is described for molding an elongated elastomeric member with wire mesh sleeves bonded to the ends. A molding preform of elastomeric material is positioned within a seamless mold cylinder, and the open ends of the wire mesh sleeves are mounted to end plug assemblies slidably received into the mold cylinder and positioned against the ends of the preform. A specialized profile is formed into surfaces of the respective end plug assemblies and by heating of the mold, the ends of the elastomeric preform are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves. Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces there through. The completed elastomeric member is removed from the mold cylinder by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder and removal thereof. 9 figs.

  1. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, Lyle O.; McNinch, Jr., Joseph H.; Nowell, Gregory C.

    1984-01-01

    A molding process for molding an elongated elastomeric member (60) with wire mesh sleeves (16) bonded to the ends (14). A molding preform (10) of elastomeric material is positioned within a seamless mold cylinder (26), and the open ends of the wire mesh sleeves (16) are mounted to end plug assemblies (30) slidably received into the mold cylinder (26) and positioned against the ends (14) of the preform (10). A specialized profile is formed into surfaces (44) of the respective end plug assemblies (30) and by heating of the mold (26), the ends (14) of the elastomeric preform (10) are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves (16). Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces therethrough. The completed elastomeric member (60) is removed from the mold cylinder (26) by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder (26) and removal thereof.

  2. Integrated-fin gasket for palm cubic-anvil high pressure apparatus

    SciTech Connect

    Cheng, J.-G.; Matsubayashi, K.; Nagasaki, S.; Hisada, A.; Hirayama, T.; Uwatoko, Y.; Hedo, M.; Kagi, H.

    2014-09-15

    We described an integrated-fin gasket technique for the palm cubic-anvil apparatus specialized for the high-pressure and low-temperature measurements. By using such a gasket made from the semi-sintered MgO ceramics and the tungsten-carbide anvils of 2.5 mm square top, we successfully generate pressures over 16 GPa at both room and cryogenic temperatures down to 0.5 K. We observed a pressure self-increment for this specific configuration and further characterized the thermally induced pressure variation by monitoring the antiferromagnetic transition temperature of chromium up to 12 GPa. In addition to enlarge the pressure capacity, such a modified gasket also improves greatly the surviving rate of electrical leads hanging the sample inside a Teflon capsule filled with the liquid pressure-transmitting medium. These improvements should be attributed to the reduced extrusion of gasket materials during the initial compression.

  3. Influence of Custom Trays, Dual-Arch Passive, Flexed Trays and Viscosities of Elastomeric Impression Materials on Working Dies

    PubMed Central

    Kohli, Shivani; Kalsi, Rupali

    2016-01-01

    Introduction Dual arch impression technique signifies an essential improvement in fixed prosthodontics and has numerous benefits over conventional impression techniques. The accuracy of working dies fabricated from dual arch impression technique remains in question because there is little information available in the literature. Aim This study was conducted to compare the accuracy of working dies fabricated from impressions made from two different viscosities of impression materials using metal, plastic dual arch trays and custom made acrylic trays. Materials and Methods The study samples were grouped into two groups based on the viscosity of impression material used i.e. Group I (monophase), whereas Group II consisted of Dual Mix technique using a combination of light and heavy body material. These were further divided into three subgroups A, B and C depending on the type of impression tray used (metal dual arch tray, plastic dual arch tray and custom made tray). Measurements of the master cast were made using profile projector. Descriptive statistics like mean, Standard Deviation (SD) were calculated for all the groups. One way analysis of variance (ANOVA) was used for multiple group comparisons. A p-value of 0.05 or less was considered statistically significant. Results The gypsum dies obtained with the three types of impression trays using two groups of impression materials were smaller than the master models in dimensions. Conclusion The plastic dual arch trays produced dies which were the least accurate of the three groups. There was no significant difference in the die dimensions obtained using the two viscosities of impression materials. PMID:27437342

  4. Manifold gasket accommodating differential movement of fuel cell stack

    SciTech Connect

    Kelley, Dana A.; Farooque, Mohammad

    2007-11-13

    A gasket for use in a fuel cell system having at least one externally manifolded fuel cell stack, for sealing the manifold edge and the stack face. In accordance with the present invention, the gasket accommodates differential movement between the stack and manifold by promoting slippage at interfaces between the gasket and the dielectric and between the gasket and the stack face.

  5. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more

  6. Adhesiveless Transfer Printing of Ultrathin Microscale Semiconductor Materials by Controlling the Bending Radius of an Elastomeric Stamp.

    PubMed

    Cho, Sungbum; Kim, Namyun; Song, Kwangsun; Lee, Jongho

    2016-08-01

    High-performance electronic devices integrated onto unconventional substrates provide opportunities for use in diverse applications, such as wearable or implantable forms of electronic devices. However, the interlayer adhesives between the electronic devices and substrates often limit processing temperature or cause electrical or thermal resistance at the interface. This paper introduces a very simple but effective transfer printing method that does not require an interlayer adhesive. Controlling the bending radius of a simple flat stamp enables picking up or printing of microscale semiconductor materials onto rigid, curvilinear, or flexible surfaces without the aid of a liquid adhesive. Theoretical and experimental studies reveal the underlying mechanism of the suggested approach. Adhesiveless printing of thin Si plates onto diverse substrates demonstrates the capability of this method. PMID:27458878

  7. Evaluation of the effect of elastomeric damping material on the stability of a bearingless main rotor system

    NASA Technical Reports Server (NTRS)

    Sheffler, M.; Staley, J.; Warmbrodt, W.

    1980-01-01

    The considered investigation was conducted in connection with a contract to design, fabricate, and test a prototype bearingless main rotor (BMR) system. Part of the design process involved an aeroelastic stability investigation in a wind tunnel. Attention is given to a description of model testing, model test results, the description of the full scale wind tunnel configuration, full scale test results, and aspects of correlation with theory. It was found that the complex geometry of the BMR, with 12.5 degrees of nose-up prepitch at the hub and 2.5 degrees of tip-up predroop at the blade attachment clevis, is required to achieve a stable configuration. Subsequent model testing showed that a constrained layer of elastomer material could increase stability at all rotor speeds and collectives tested for a flat strap configuration.

  8. Investigation of extrusion failures of PTFE-based gaskets in chemical plant service

    SciTech Connect

    Winter, J.R.; Keywood, S.S.

    1996-12-01

    PTFE-based gaskets in chemical plant service typically fail in an extrusion mode, sometimes referred to as blowout. Test work previously published by Monsanto indicated that correctly installed PTFE-based gaskets have pressure performance far exceeding system pressure ratings. These results have since been confirmed by extensive testing at the Montreal based Ecole Polytechnique Tightness Testing and Research Laboratory (TTRL), funded by a consortium of gasket users and manufacturers. With the knowledge that properly installed gaskets can withstand system pressures in excess of 1,000 psig [6,894 kPa], failures at two chemical plants were re-examined. This analysis indicates that extrusion type failures can be caused by excessive internal pressures, associated with sections of pipe having an external source of heat coincident with a blocked flow condition. This results in high system pressures which explain the extrusion type failures observed. The paper discusses details of individual failures and examines methods to prevent them. Other causes for extrusion failures are reviewed, with a recommendation that stronger gasket materials not be utilized to correct problems until it is verified that excessive pressure build-up is not the problem. Also summarized are the requirements for proper installation to achieve the potential blowout resistance found in these gaskets.

  9. Apparatus for cutting elastomeric materials

    NASA Technical Reports Server (NTRS)

    Corbett, A. B.

    1974-01-01

    Sharp thin cutting edge is held in head of milling machine designed for metal working. Controls of machine are used to position cutting edge in same plane as vibrating specimen. Controls then are operated, making blade come into contact with specimen, to cut it into shapes and sizes desired. Cut surfaces appear mirror-smooth; vibrating mechanism causes no visible striations.

  10. Sterilizing elastomeric chains without losing mechanical properties. Is it possible?

    PubMed Central

    Pithon, Matheus Melo; Ferraz, Caio Souza; Rosa, Francine Cristina Silva; Rosa, Luciano Pereira

    2015-01-01

    OBJECTIVE: To investigate the effects of different sterilization/disinfection methods on the mechanical properties of orthodontic elastomeric chains. METHODS: Segments of elastomeric chains with 5 links each were sent for sterilization by cobalt 60 (Co60) (20 KGy) gamma ray technology. After the procedure, the elastomeric chains were contaminated with clinical samples of Streptococcus mutans. Subsequently, the elastomeric chains were submitted to sterilization/disinfection tests carried out by means of different methods, forming six study groups, as follows: Group 1 (control - without contamination), Group 2 (70°GL alcohol), Group 3 (autoclave), Group 4 (ultraviolet), Group 5 (peracetic acid) and Group 6 (glutaraldehyde). After sterilization/disinfection, the effectiveness of these methods, by Colony forming units per mL (CFU/mL), and the mechanical properties of the material were assessed. Student's t-test was used to assess the number of CFUs while ANOVA and Tukey's test were used to assess elastic strength. RESULTS: Ultraviolet treatment was not completely effective for sterilization. No loss of mechanical properties occurred with the use of the different sterilization methods (p > 0.05). CONCLUSION: Biological control of elastomeric chains does not affect their mechanical properties. PMID:26154462

  11. 46 CFR 64.23 - Gasket and lining.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Gasket and lining. 64.23 Section 64.23 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.23 Gasket and lining. Each gasket and lining must be made...

  12. 46 CFR 64.23 - Gasket and lining.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Gasket and lining. 64.23 Section 64.23 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.23 Gasket and lining. Each gasket and lining must be made...

  13. Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.

    PubMed

    Sekiguchi, Atsuko; Tanaka, Fumiaki; Saito, Takeshi; Kuwahara, Yuki; Sakurai, Shunsuke; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-09-01

    Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used. PMID:26218988

  14. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  15. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    PubMed Central

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-01-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated. PMID:27221079

  16. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    NASA Astrophysics Data System (ADS)

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-05-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.

  17. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler.

    PubMed

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-01-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated. PMID:27221079

  18. Liquid-Oxygen-Compatible Cement for Gaskets

    NASA Technical Reports Server (NTRS)

    Elmore, N. L.; Neale, B. C.

    1984-01-01

    Fluorelastomer and metal bonded reliably by new procedure. To cure fluoroelastomer cement, metal plate/gasket assembly placed in vacuum bag evacuated to minimum vacuum of 27 inches (69 cm) of mercury. Vacuum maintained throughout heating process and until assembly returns to ambient room temperature. Used to seal gaskets and O-rings or used to splice layers of elastomer to form non-standard sized O-rings. Another possible use is to apply protective, liquid-oxygen-compatible coating to metal parts.

  19. Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S. G.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1976-01-01

    Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc.

  20. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  1. Process for spinning flame retardant elastomeric compositions. [fabricating synthetic fibers for high oxygen environments

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions comprised of either spandex type polyurethane having halogen containing polyols incorporated into the polymer chain, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives were developed. Methods are described for preparing fibers of the flame retardant elastomeric materials and manufactured articles as well as nonelastic materials such as polybenzimidazoles, fiberglass, and nylons, for high oxygen environments.

  2. Recent buckling experiences with spiral wound flexible graphite filled gaskets

    SciTech Connect

    Mueller, R.T.

    1996-12-01

    Given the long and successful history of spiral wound asbestos filled gaskets as widely used in petrochemical plants and refineries, the evolution to flexible graphite filled spiral wound gaskets was expected to be relatively straightforward. For the most part, the transition to flexible graphite has occurred with relatively good success consistent with its improved sealing performance. However, recent experiences reported with buckling type instability problems of flexible graphite filled spiral wound gaskets warrants another look at the industry practices covering this type of gasket. The paper presents findings from 2 different but related instability problems involving spiral would flexible graphite filled gaskets. The first involved Class 1500 and 2500 spiral wound gaskets fitted with inner retaining rings which suffered severe inward buckling with initial boltup. The second experience pertains to Class 600 and lower gaskets supplied without inner retaining rings. Gaskets supplied in both cases complied fully with ASME B16.20 requirements, which highlights possible inadequacies in this standard for spiral wound gaskets. Efforts have been initiated to work with manufacturers in their assessment of fundamental design considerations and with appropriate Code committees to address apparent deficiencies discovered with the industry standards for this type of gasket.

  3. The effect upon friction of the degradation of orthodontic elastomeric modules.

    PubMed

    Edwards, Ian Robert; Spary, David John; Rock, William Peter

    2012-10-01

    Orthodontic elastomeric modules are susceptible to degradation and deformation after time in the mouth. The aims of this study were to determine whether degradation of elastomeric modules significantly affects friction during sliding mechanics and to investigate whether there is a difference in the behaviour of elastomeric modules after storage in both in vivo and in vitro environments. An Instron testing machine was used to determine the friction generated by elastomeric modules on 0.019 × 0.025 inch stainless steel archwires at 4 degrees of bracket tip. Four brands of modules were tested straight from the packet (n = 15), after storage in artificial saliva (n = 15), and after being in patients' mouths (n = 32). Modules were tested after 24 hours, 1 week, and 6 weeks after storage in both in vivo and in vitro. Analysis of variance revealed that the degradation of elastomeric modules had a variable affect upon friction and that each storage medium produced a distinct pattern of frictional resistance. Modules stored in artificial saliva experienced a significant reduction in friction (P < 0.001) while modules collected from patients' mouths produced similar friction to modules tested straight from the packet. TP Super Slick® modules under dry test conditions produced significantly greater friction than the other three types of test modules (P < 0.001). The structure and surface characteristics of elastomeric modules may affect frictional resistance when a bracket slides along an archwire. These effects vary according to time, storage medium, and brand of elastomeric material. PMID:21771803

  4. Polyprotein of GB1 is an ideal artificial elastomeric protein

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Li, Hongbin

    2007-02-01

    Naturally occurring elastomeric proteins function as molecular springs in their biological settings and show mechanical properties that underlie the elasticity of natural adhesives, cell adhesion proteins and muscle proteins. Constantly subject to repeated stretching-relaxation cycles, many elastomeric proteins demonstrate remarkable consistency and reliability in their mechanical performance. Such properties had hitherto been observed only in naturally evolved elastomeric proteins. Here we use single-molecule atomic force microscopy techniques to demonstrate that an artificial polyprotein made of tandem repeats of non-mechanical protein GB1 has mechanical properties that are comparable or superior to those of known elastomeric proteins. In addition to its mechanical stability, we show that GB1 polyprotein shows a unique combination of mechanical features, including the fastest folding kinetics measured so far for a tethered protein, high folding fidelity, low mechanical fatigue during repeated stretching-relaxation cycles and ability to fold against residual forces. These fine features make GB1 polyprotein an ideal artificial protein-based molecular spring that could function in a challenging working environment requiring repeated stretching-relaxation. This study represents a key step towards engineering artificial molecular springs with tailored nanomechanical properties for bottom-up construction of new devices and materials.

  5. Modeling friction phenomena and elastomeric dampers in multibody dynamics analysis

    NASA Astrophysics Data System (ADS)

    Ju, Changkuan

    the behavior of the elastomeric damper based on a continuum mechanics approach: the configuration of the damper is modeled using a finite element approach, and material behavior is represented by a set of nonlinear constitutive laws and material parameters. The validated finite element model of the elastomeric damper is then coupled with a comprehensive, multibody dynamics analysis code to predict the behavior of complex systems featuring elastomeric components, for example, rotorcraft with elastomeric lead-lag dampers.

  6. Flexible ceramic gasket for SOFC generator

    DOEpatents

    Zafred, Paolo; Prevish, Thomas

    2009-02-03

    A solid oxide fuel cell generator (10) contains stacks of hollow axially elongated fuel cells (36) having an open top end (37), an oxidant inlet plenum (52), a feed fuel plenum (11), a combustion chamber (94) for combusting reacted oxidant/spent fuel; and, optionally, a fuel recirculation chamber (106) below the combustion chamber (94), where the fuel recirculation chamber (94) is in part defined by semi-porous fuel cell positioning gasket (108), all within an outer generator enclosure (8), wherein the fuel cell gasket (108) has a laminate structure comprising at least a compliant fibrous mat support layer and a strong, yet flexible woven layer, which may contain catalytic particles facing the combustion chamber, where the catalyst, if used, is effective to further oxidize exhaust fuel and protect the open top end (37) of the fuel cells.

  7. Gasket and snap ring installation tool

    DOEpatents

    Southerland, Jr., James M.; Barringer, Jr., Curtis N.

    1994-01-01

    A tool for installing a gasket and a snap ring including a shaft, a first plate attached to the forward end of the shaft, a second plate slidably carried by the shaft, a spring disposed about the shaft between the first and second plates, and a sleeve that is free to slide over the shaft and engage the second plate. The first plate has a loading surface with a loading groove for receiving a snap ring and a shoulder for holding a gasket. A plurality of openings are formed through the first plate, communicating with the loading groove and approximately equally spaced about the groove. A plurality of rods are attached to the second plate, each rod slidable in one of the openings. In use, the loaded tool is inserted into a hollow pipe or pipe fitting having an internal flange and an internal seating groove, such that the gasket is positioned against the flange and the ring is in the approximate plane of the seating groove. The sleeve is pushed against the second plate, sliding the second plate towards the first plate, compressing the spring and sliding the rods forwards in the openings. The rods engage the snap ring and urge the ring from the loading groove into the seating groove.

  8. Gasket and snap ring installation tool

    SciTech Connect

    Southerland, J.M. Jr.; Barringer, C.N. Jr.

    1994-09-06

    A tool is disclosed for installing a gasket and a snap ring including a shaft, a first plate attached to the forward end of the shaft, a second plate slidably carried by the shaft, a spring disposed about the shaft between the first and second plates, and a sleeve that is free to slide over the shaft and engage the second plate. The first plate has a loading surface with a loading groove for receiving a snap ring and a shoulder for holding a gasket. A plurality of openings are formed through the first plate, communicating with the loading groove and approximately equally spaced about the groove. A plurality of rods are attached to the second plate, each rod slidable in one of the openings. In use, the loaded tool is inserted into a hollow pipe or pipe fitting having an internal flange and an internal seating groove, such that the gasket is positioned against the flange and the ring is in the approximate plane of the seating groove. The sleeve is pushed against the second plate, sliding the second plate towards the first plate, compressing the spring and sliding the rods forwards in the openings. The rods engage the snap ring and urge the ring from the loading groove into the seating groove. 6 figs.

  9. Gasket and snap ring installation tool

    SciTech Connect

    Southerland, J.M., Sr.; Barringer, C.N., Sr.

    1993-08-23

    This invention is comprised of a tool for installing a gasket and a snap ring including a shaft, a first plate attached to the forward end of the shaft, a second plate slidably carried by the shaft, a spring disposed about the shaft between the first and second plates, and a sleeve that is free to slide over the shaft and engage the second plate. The first plate has a loading surface with a loading groove for receiving a snap ring and a shoulder for holding a gasket. A plurality of openings are formed through the first plate, communicating with the loading groove and approximately equally spaced about the groove. A plurality of rods are attached to the second plate, each rod slidable in one of the openings. In use, the loaded tool is inserted into a hollow pipe or pipe fitting having an internal flange and an internal seating groove, such that the gasket is positioned against the flange and the ring is in the approximate plane of the seating groove. The sleeve is pushed against the second plate, sliding the second plate towards the first plate, compressing the spring and sliding the rods forwards in the openings. The rods engage the snap ring and urge the ring from the loading groove into the seating groove.

  10. Gasket Assembly for Sealing Mating Surfaces

    NASA Technical Reports Server (NTRS)

    Bryant, Melvin A., III (Inventor)

    2003-01-01

    A pair of substantially opposed mating surfaces are joined to each other and sealed in place by means of an electrically-conductive member which is placed in proximity to the mating surfaces. The electrically-conductive member has at least one element secured thereto which is positioned to contact the mating surfaces, and which softens when the electrically-conductive member is heated by passing an electric current therethrough. The softened element conforms to the mating surfaces, and upon cooling of the softened element the mating surfaces are joined together in an effective seal. Of particular significance is an embodiment of the electrically-conductive member which is a gasket having an electrically-conductive gasket base and a pair of the elements secured to opposite sides of the gasket base. This embodiment is positioned between the opposed mating surfaces to be joined to each other. Also significant is an embodiment of the electrically-conductive member which is an electrically-conductive sleeve having an element secured to its inner surface. This embodiment surrounds cylindrical members the bases of which are the substantially opposed mating surfaces to be joined, and the element on the inner surface of the sleeve contacts the outer surfaces of the cylindrical members.

  11. Comparison of Contamination of Low-Frictional Elastomeric Rings with That of Conventional Elastomeric Rings by Streptococcus mutans - An In-vivo Study

    PubMed Central

    Mogra, Subraya; Shetty, V. Surendra; Shetty, Siddarth; Jose, Nidhin Philip

    2015-01-01

    Introduction: The presence of brackets and ligatures has been shown to be related to an increase in gingival inflammation and increased risk of decalcification. The various measures were taken to reduce the plaque accumulation and also lot of efforts were made by manufacturers that reduced the binding friction between the ligature rings and arch wire that facilitated easy sliding of the tooth through the wire. The low frictional ligatures rings manufactured by different manufacturers presumed to attract fewer bacteria due to greater reduction in surface roughness. Our study aimed to evaluate whether the low frictional elastomeric rings accumulate fewer bacteria than conventional ligature rings. Materials and Methods: Thirty patients (15 males and 15 females) who underwent fixed appliance therapy were selected. The study was done using split-mouth design. In each volunteer, synergy low frictional elastomeric rings were tied to brackets bonded to the maxillary premolar on the right side and mandibular premolar on the left side. Conventional elastomeric rings that served as control group were tied to the contralateral teeth, with the same design. Samples were collected after four weeks (28 days) and cultured for bacteria Streptococcus mutans. Results: There was no statistical difference between Streptococcus mutans count in low frictional elastomeric rings with that of conventional rings. Conclusion: We concluded that adherence of Streptococcus mutans is similar in both synergy low frictional elastomeric rings and conventional clear elastomeric rings and thus the manufacturer’s claim of minimal bacterial adherence was discarded. PMID:26023638

  12. Elastic proteins and elastomeric protein alloys.

    PubMed

    Aghaei-Ghareh-Bolagh, Behnaz; Mithieux, Suzanne M; Weiss, Anthony S

    2016-06-01

    The elastomeric proteins elastin and resilin have been used extensively in the fabrication of biomaterials for tissue engineering applications due to their unique mechanical and biological properties. Tropoelastin is the soluble monomer component of elastin. Tropoelastin and resilin are both highly elastic with high resilience, substantial extensibility, high durability and low energy loss, which makes them excellent candidates for the fabrication of elastic tissues that demand regular and repetitive movement like the skin, lung, blood vessels, muscles and vocal folds. Combinations of these proteins with silk fibroin further enhance their biomechanical and biological properties leading to a new class of protein alloy materials with versatile properties. In this review, the properties of tropoelastin-based and resilin-based biomaterials with and without silk are described in concert with examples of their applications in tissue engineering. PMID:26780495

  13. 46 CFR 56.30-35 - Gasketed mechanical couplings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a)...

  14. 46 CFR 56.30-35 - Gasketed mechanical couplings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a) This section applied to pipe fittings...

  15. 46 CFR 56.30-35 - Gasketed mechanical couplings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a)...

  16. 46 CFR 56.30-35 - Gasketed mechanical couplings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a)...

  17. 46 CFR 56.30-35 - Gasketed mechanical couplings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a)...

  18. Hydrostatic low-range pressure applications of the Paris–Edinburgh cell utilizing polymer gaskets for diffuse X-ray scattering measurements

    PubMed Central

    Chapman, Karena W.; Chupas, Peter J.; Kurtz, Charles A.; Locke, Darren R.; Parise, John B.; Hriljac, Joseph A.

    2007-01-01

    The use of a polymeric Torlon (polyamide–imide) gasket material in a Paris–Edinburgh pressure cell for in situ high-pressure X-ray scattering measurements is demonstrated. The relatively low bulk modulus of the gasket allows for fine control of the sample pressure over the range 0.01–0.42 GPa. The quality of the data obtained in this way is suitable for Bragg and pair distribution function analysis. PMID:19461850

  19. Partial-Vacuum-Gasketed Electrochemical Corrosion Cell

    NASA Technical Reports Server (NTRS)

    Bonifas, Andrew P.; Calle, Luz M.; Hintze, Paul E.

    2006-01-01

    An electrochemical cell for making corrosion measurements has been designed to prevent or reduce crevice corrosion, which is a common source of error in prior such cells. The present cell (see figure) includes an electrolyte reservoir with O-ring-edged opening at the bottom. In preparation for a test, the reservoir, while empty, is pressed down against a horizontal specimen surface to form an O-ring seal. A purge of air or other suitable gas is begun in the reservoir, and the pressure in the reservoir is regulated to maintain a partial vacuum. While maintaining the purge and partial vacuum, and without opening the interior of the reservoir to the atmosphere, the electrolyte is pumped into the reservoir. The reservoir is then slowly lifted a short distance off the specimen. The level of the partial vacuum is chosen such that the differential pressure is just sufficient to keep the electrolyte from flowing out of the reservoir through the small O-ring/specimen gap. Electrochemical measurements are then made. Because there is no gasket (and, hence, no crevice between the specimen and the gasket), crevice corrosion is unlikely to occur.

  20. Seal Materials Compatible with the Electroplating Solvent Used in Constellation-X Mirrors

    NASA Technical Reports Server (NTRS)

    Pei, Xiong-Skiba

    1999-01-01

    The existing gasket seals used in electroplating of the Constellation-X mirrors are difficult to assemble, and the current seal material is hydrophobic and too thick. The combination of the above problems result in: 1) non-uniform plating; 2) defect sites such as pits on the mirror edges; 3) "bear claws" on the edges of the mandrels and mirrors causing difficulties in shell-mirror separations; and 4) leakage of the plating solution past the seals into the mandrel causing chemical etching of the mandrel interior. This paper reports the results of this summer study in searching for alternate seal materials chemically compatible with the electroplating solvent. Fifteen common elastomeric rubber seal materials made-by Parker Seals were investigated including butyl, ethylene propylene, fluorosilicone, nitrile, Viton fluorocarbon, and silicone. Test results showed that Viton fluorocarbon compounds as a group were superior to the other tested compounds for chemical compatibility with the plating bath.

  1. Sealability of API R, RX, and BX ring gaskets

    SciTech Connect

    Fowler, J.R.

    1995-12-31

    This report presents work done to determine the sealability limits of API R, RX, and BX gaskets. The work included finite element modeling and full scale testing. The research teaches that bolt stresses of 15 to 30 ksi are necessary to seat the gaskets. If these seating loads are not achieved, the gaskets will likely leak at design pressure, particularly for gas service. If the flanges are properly madeup, the sealability limits in API Bulletins 6AF and 6AF2 are too conservative and can be eliminated for non cyclic service.

  2. Airborne asbestos exposures associated with gasket and packing replacement: a simulation study of flange and valve repair work and an assessment of exposure variables.

    PubMed

    Madl, Amy K; Devlin, Kathryn D; Perez, Angela L; Hollins, Dana M; Cowan, Dallas M; Scott, Paul K; White, Katherine; Cheng, Thales J; Henshaw, John L

    2015-02-01

    A simulation study was conducted to evaluate worker and area exposure to airborne asbestos associated with the replacement of asbestos-containing gaskets and packing materials from flanges and valves and assess the influence of several variables previously not investigated. Additionally, potential of take home exposures from clothing worn during the study was characterized. Our data showed that product type, ventilation type, gasket location, flange or bonnet size, number of flanges involved, surface characteristics, gasket surface adherence, and even activity type did not have a significant effect on worker exposures. Average worker asbestos exposures during flange gasket work (PCME=0.166 f/cc, 12-59 min) were similar to average worker asbestos exposures during valve overhaul work (PCME=0.165 f/cc, 7-76 min). Average 8-h TWA asbestos exposures were estimated to range from 0.010 to 0.062 f/cc. Handling clothes worn during gasket and packing replacement activities demonstrated exposures that were 0.71% (0.0009 f/cc 40-h TWA) of the airborne asbestos concentration experienced during the 5 days of the study. Despite the many variables considered in this study, exposures during gasket and packing replacement occur within a relatively narrow range, are below current and historical occupational exposure limits for asbestos, and are consistent with previously published data. PMID:25445297

  3. REVIEW OF ENERGY EFFICIENCY OF REFRIGERATOR/FREEZER GASKETS

    EPA Science Inventory

    The report gives results of an investigation of the significance of heat leakage through gaskets in household refrigerator/freezers, explores different design features, and suggests further study if necessary. he report gives results of an extensive literature review, interviews ...

  4. REVIEW OF ENERGY EFFICIENCY OF REFRIGERATOR/FREEZER GASKETS

    EPA Science Inventory

    The report gives results of an investigation of the significance of heat leakage through gaskets in household refrigerator/freezers, explores different design features, and suggests further study if necessary. The report gives results of an extensive literature review, interviews...

  5. Chemical Stability of Telavancin in Elastomeric Pumps☆

    PubMed Central

    Sand, Patrick; Aladeen, Traci; Kirkegaard, Paul; LaChance, Dennis; Slover, Christine

    2015-01-01

    solutions examined. All decreases in telavancin concentration were ≤2.7%. Comparison of each test sample solution to the corresponding glass control indicated no loss of active drug due to absorption by the elastomeric material of the pumps. The greatest increase in the amount of total degradants observed over the 8-day period was ~0.7 w/w%. Conclusions The results of this study indicate that telavancin remains chemically stable when diluted in the Intermate Infusion System and the Homepump Eclipse elastomeric pumps and stored at 2°C to 8°C for up to 8 days protected from light at the concentration range and dilution schemes evaluated. PMID:26649079

  6. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF

    SciTech Connect

    Krementz, D.; Coughlin, Jeffrey

    2009-05-05

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manually or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and

  7. Evaluation of surface detail reproduction, dimensional stability and gypsum compatibility of monophase polyvinyl-siloxane and polyether elastomeric impression materials under dry and moist conditions

    PubMed Central

    Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N. Suman; Tadi, Durga Prasad

    2016-01-01

    Objectives: This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Materials and Methods: Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. Results: When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Conclusion: Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry

  8. Understanding Mechanical Response of Elastomeric Graphene Networks.

    PubMed

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-01-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls. PMID:26348898

  9. Understanding Mechanical Response of Elastomeric Graphene Networks

    NASA Astrophysics Data System (ADS)

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-09-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls.

  10. Elastomeric Photopolymers: Shaping Polymer Gels with Light

    NASA Astrophysics Data System (ADS)

    Kornfield, Julia

    2008-03-01

    Polymer gels that possess a latent ability to change shape, which can be triggered in a spatially resolved manner using light---``elastomeric photopolymers''---have been developed to meet the need for materials that can be reshaped without direct contact, e.g., to non-invasively adjust an implanted lens in the human eye. The physics of diffusion and swelling in elastomers are applied to create a transparent silicone suitable for making a foldable intraocular lens that can be reshaped using near ultraviolet light. A crosslinked silicone matrix dictates the initial shape of the lens, while ``macromers''--short silicone chains with polymerizable end groups—and photoinitiator enable shape adjustment using light: polymerization of the macromer in the irradiated regions, followed by diffusion of free macromer causes local swelling. To predict shape change directly from irradiation profile, a theoretical treatment is presented that captures 1. shape change with no external forces, 2. coupling between diffusion and deformation, and 3. connection between thermodynamics, constitutive equations and equations of motion. Using continuum mechanics complemented with thermodynamics within the auspices of the finite element method, we develop a steady-state model which successfully captures the coupling between diffusion and deformation. Parameter values are drawn from our prior experimental studies of the mechanical properties, equilibrium swelling, penetrant diffusivities and interaction parameters in systematically varied polydimethylsiloxane (PDMS) networks and acrylate endcapped PDMS macromers. Preliminary computational studies show qualitative agreement with experimentally observed phenomena.

  11. Understanding Mechanical Response of Elastomeric Graphene Networks

    PubMed Central

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-01-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls. PMID:26348898

  12. 49 CFR 178.356-2 - Materials of construction and other requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... specification 20PF-1 top section. (b) Gaskets must be as follows: (1) Inner liner flange—Neoprene rubber of 30 to 60 type A durometer hardness or other equivalent gasket material which is compatible with...

  13. 49 CFR 178.356-2 - Materials of construction and other requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specification 20PF-1 top section. (b) Gaskets must be as follows: (1) Inner liner flange—Neoprene rubber of 30 to 60 type A durometer hardness or other equivalent gasket material which is compatible with...

  14. Strain-induced crystallization in elastomeric polymer networks prepared in solution and sol-gel derived high-temperature organic-inorganic hybrid materials

    NASA Astrophysics Data System (ADS)

    Premachandra, Jagath Kumara

    Cross-linking polymer chains in solution should bring about fewer inter-chain entanglements in the resulting network. The subsequent drying of this network should compress the chains into a "super-contracted" state. The opposing effects of these changes on strain-induced crystallization in cis-1,4-polyisoprene networks formed in solution were investigated. Higher elongations were required to achieve strain-induced crystallinity in the networks prepared at higher dilutions, suggesting that in this regard the compressed states of the chains was more important than their reduced entangling. The constrained-junction theory was applied to strain-induced crystallization in the above networks. The stress-strain isotherms generated from this theory were in satisfactory agreement with experiment. It was found that the constraint parameter kappa decreases with increase in dilution during cross-linking mainly due to the fact that cross-linking in solution decreases chain interpenetration. The dependence of hydrolysis and condensation of gamma-ureidopropyltrimethoxysilane on pH in the water-methanol system at 23sp°C was investigated by FTIR spectroscopy. Quantitative analysis of rates of hydrolysis showed that gamma-ureidopropyltrimethoxysilane is most stable in the water-methanol system at pH 7.7. The rate of overall condensation of silanols produced by the hydrolysis was qualitatively analyzed. These silanol groups are relatively more stable around pH 4.87. The mechanical properties, thermal stability and water absorption of high-temperature sulfopolybenzobisthiazole-silica hybrid materials were investigated. The use of a bonding agent N,N-diethylaminopropyltrimethoxysilane facilitated the interfacial bonding between the organic and inorganic phases in these materials prepared through the sol-gel process. Tensile modulus, thermal stability and the resistant to water absorption were increased with increase in silica content in the resulting composites

  15. Elastomeric member for energy storage device

    DOEpatents

    Hoppie, Lyle O.; Chute, Richard

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.

  16. Photocrosslinkable and elastomeric hydrogels for bone regeneration.

    PubMed

    Thakur, Teena; Xavier, Janet R; Cross, Lauren; Jaiswal, Manish K; Mondragon, Eli; Kaunas, Roland; Gaharwar, Akhilesh K

    2016-04-01

    Nanocomposite biomaterials are extensively investigated for cell and tissue engineering applications due their unique physical, chemical and biological characteristics. Here, we investigated the mechanical, rheological, and degradation properties of photocrosslinkable and elastomeric nanocomposite hydrogels from nanohydroxyapatite (nHAp) and gelatin methacryloyl (GelMA). The addition of nHAp resulted in a significant increase in mechanical stiffness and physiological stability. Cells readily adhere and proliferate on the nanocomposite surfaces. Cyclic stretching of cells on the elastomeric nanocomposites revealed that nHAp elicited a stronger alignment response in the direction of strain. In vitro studies highlight enhanced bioactivity of nanocomposites as determined by alkaline phosphate (ALP) activity. Overall, the elastomeric and photocrosslinkable nanocomposite hydrogels can be used for minimally invasive therapy for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 879-888, 2016. PMID:26650507

  17. Blends of thermoplastic and elastomeric matrices with liquid crystalline polymers

    SciTech Connect

    Roggero, A.; Pedretti, U.; La Mantia, F.P.

    1995-12-01

    Liquid crystalline polymers (LCPs) present a unique balance of properties and, when added to thermoplastic (TP) or elastomeric (EL) matrices, can impart to the relevant blends specific properties that can be utilized for specific applications. As regards TP/LCP blends, the proclivity of LCPs to form fibrous structures and their low melt viscositiy allowed to obtain blends reinforced and easier to process than the pure TPs: particularly, depending on the LCP-TP structures and on the processing parameters, materials with improved processability, high modulus, enhanced impact strength and creeping resistance were obtained. As regards EL/LCP blends, that based on fluoroelastomers were in depth investigated and offered outstanding properties.

  18. Coevolutionary extremal dynamics on gasket fractal

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Eun; Sung, Joo Yup; Cha, Moon-Yong; Maeng, Seong Eun; Bang, Yu Sik; Lee, Jae Woo

    2009-11-01

    We considered a Bak-Sneppen model on a Sierpinski gasket fractal. We calculated the avalanche size distribution and the distribution of distances between subsequent minimal sites. To observe the temporal correlations of the avalanche, we estimated the return time distribution, the first-return time, and the all-return time distribution. The avalanche size distribution follows the power law, P(s)∼s, with the exponent τ=1.004(7). The distribution of jumping sites also follows the power law, P(r)∼r, with the critical exponent π=4.12(4). We observe the periodic oscillation of the distribution of the jumping distances which originated from the jumps of the level when the minimal site crosses the stage of the fractal. The first-return time distribution shows the power law, P(t)∼t, with the critical exponent τ=1.418(7). The all-return time distribution is also characterized by the power law, P(t)∼t, with the exponent τ=0.522(4). The exponents of the return time satisfy the scaling relation τ+τ=2 for τ⩽2.

  19. Elastomeric organic material for switching application

    SciTech Connect

    Shiju, K. E-mail: pravymon@gmail.com Praveen, T. E-mail: pravymon@gmail.com Preedep, P. E-mail: pravymon@gmail.com

    2014-10-15

    Organic Electronic devices like OLED, Organic Solar Cells etc are promising as, cost effective alternatives to their inorganic counterparts due to various reasons. However the organic semiconductors currently available are not attractive with respect to their high cost and intricate synthesis protocols. Here we demonstrate that Natural Rubber has the potential to become a cost effective solution to this. Here an attempt has been made to fabricate iodine doped poly isoprene based switching device. In this work Poly methyl methacrylate is used as dielectric layer and Aluminium are employed as electrodes.

  20. Recombinant exon-encoded resilins for elastomeric biomaterials.

    PubMed

    Qin, Guokui; Rivkin, Amit; Lapidot, Shaul; Hu, Xiao; Preis, Itan; Arinus, Shira B; Dgany, Or; Shoseyov, Oded; Kaplan, David L

    2011-12-01

    Resilin is an elastomeric protein found in specialized regions of the cuticle of most insects, providing outstanding material properties including high resilience and fatigue lifetime for insect flight and jumping needs. Two exons (1 and 3) from the resilin gene in Drosophila melanogaster were cloned and the encoded proteins expressed as soluble products in Escherichia coli. A heat and salt precipitation method was used for efficient purification of the recombinant proteins. The proteins were solution cast from water and formed into rubber-like biomaterials via horseradish peroxidase-mediated cross-linking. Comparative studies of the two proteins expressed from the two different exons were investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Circular Dichrosim (CD) for structural features. Little structural organization was found, suggesting structural order was not induced by the enzyme-mediated di-tyrosine cross-links. Atomic Force Microscopy (AFM) was used to study the elastomeric properties of the uncross-linked and cross-linked proteins. The protein from exon 1 exhibited 90% resilience in comparison to 63% for the protein from exon 3, and therefore may be the more critical domain for functional materials to mimic native resilin. Further, the cross-linking of the recombinant exon 1 via the citrate-modified photo-Fenton reaction was explored as an alternative di-tyrosine mediated polymerization method and resulted in both highly elastic and adhesive materials. The citrate-modified photo-Fenton system may be suitable for in vivo applications of resilin biomaterials. PMID:21963157

  1. Recombinant Exon-Encoded Resilins for Elastomeric Biomaterials

    PubMed Central

    Qin, Guokui; Rivkin, Amit; Lapidot, Shaul; Hu, Xiao; Arinus, Shira B.; Dgany, Or; Shoseyov, Oded; Kaplan, David L.

    2011-01-01

    Resilin is an elastomeric protein found in specialized regions of the cuticle of most insects, providing outstanding material properties including high resilience and fatigue lifetime for insect flight and jumping needs. Two exons (1 and 3) from the resilin gene in Drosophila melanogaster were cloned and the encoded proteins expressed as soluble products in Escherichia coli. A heat and salt precipitation method was used for efficient purification of the recombinant proteins. The proteins were solution cast from water and formed into rubber-like biomaterials via horseradish peroxidase-mediated cross-linking. Comparative studies of the two proteins expressed from the two different exons were investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Circular Dichrosim (CD) for structural features. Little structural organization was found, suggesting structural order was not induced by the enzyme-mediateed dityrosine cross-links. Atomic Force Microscopy (AFM) was used to study the elastomeric properties of the uncross-linked and cross-linked proteins. The protein from exon 1 exhibited 90% resilience in comparison to 63% for the protein from exon 3, and therefore may be the more critical domain for functional materials to mimic native resilin. Further, the cross-linking of the recombinant exon 1 via the citrate-modified photo-Fenton reaction was explored as an alternative dityrosine mediated polymerization method and resulted in both highly elastic and adhesive materials. The citrate-modified photo-Fenton system may be suitable for in-vivo applications of resilin biomaterials. PMID:21963157

  2. Elastomeric PGS scaffolds in arterial tissue engineering.

    PubMed

    Lee, Kee-Won; Wang, Yadong

    2011-01-01

    Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation. The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS) for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro

  3. Elastomeric member and method of manufacture therefor

    DOEpatents

    Hoppie, L.O.

    1985-12-10

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  4. Elastomeric member and method of manufacture therefor

    DOEpatents

    Hoppie, Lyle O.

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  5. 33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Seals and gaskets in fuel filters and strainers. 183.536 Section 183.536 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) (b) Each gasket and each...

  6. 33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Seals and gaskets in fuel filters and strainers. 183.536 Section 183.536 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) (b) Each gasket and each...

  7. 33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Seals and gaskets in fuel filters and strainers. 183.536 Section 183.536 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) (b) Each gasket and each...

  8. 33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Seals and gaskets in fuel filters and strainers. 183.536 Section 183.536 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) (b) Each gasket and each...

  9. 33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Seals and gaskets in fuel filters and strainers. 183.536 Section 183.536 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) (b) Each gasket and each...

  10. 10. Detail of center hangar doors and canvas gasket, dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail of center hangar doors and canvas gasket, dock no. 493. View to southwest. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  11. Elastomeric binders for electrodes. [in secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D. H.; Somoano, R. B.

    1983-01-01

    The poor mechanical integrity of the cathode represents an important problem which affects the performance of ambient temperature secondary lithium cells. Repeated charge of a TiS2 cathode may give rise to stresses which disturb the electrode structure and can contribute to capacity loss. An investigation indicates that the use of an inelastic binder material, such as Teflon, aggravates the problem, and can lead to electrode disruption and poor TiS2 particle-particle contact. The feasibility of a use of elastomers as TiS2 binder materials has, therefore, been explored. It was found that elastomeric binders provide an effective approach for simplifying rechargeable cathode fabrication. A pronounced improvement in the mechanical integrity of the cathode structure contributes to a prolonged cycle life.

  12. Effects of gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Feng, Biao; Levitas, Valery I.

    2016-01-01

    Combined plastic flow and strain-induced phase transformations (PTs) under high pressure in a sample within a gasket subjected to three dimensional compression and torsion in a rotational diamond anvil cell (RDAC) are studied using a finite element approach. The results are obtained for the weaker, equal-strength, and stronger high-pressure phases in comparison with low-pressure phases. It is found that, due to the strong gasket, the pressure in the sample is relatively homogenous and the geometry of the transformed zones is mostly determined by heterogeneity in plastic flow. For the equal-strength phases, the PT rate is higher than for the weaker and stronger high-pressure phases. For the weaker high-pressure phase, transformation softening induces material instability and leads to strain and PT localization. For the stronger high-pressure phase, the PT is suppressed by strain hardening during PT. The effect of the kinetic parameter k that scales the PT rate in the strain-controlled kinetic equation is also examined. In comparison with a traditional diamond anvil cell without torsion, the PT progress is much faster in RDAC under the same maximum pressure in the sample. Finally, the gasket size and strength effects are discussed. For a shorter and weaker gasket, faster plastic flow in radial and thickness directions leads to faster PT kinetics in comparison with a longer and stronger gasket. The rates of PT and plastic flows are not very sensitive to the modest change in a gasket thickness. Multiple experimental results are reproduced and interpreted. Obtained results allow one to design the desired pressure-plastic strain loading program in the experiments for searching new phases, reducing PT pressure by plastic shear, extracting kinetic properties from experiments with heterogeneous fields, and controlling homogeneity of all fields and kinetics of PTs.

  13. Practical Usage of Effect of Cold Weldability of Metals in Joint of Plastically Deformable Gasket and Flanges of Detachable Joint of Fuel Pipe-Line

    NASA Astrophysics Data System (ADS)

    Danchenko, V. G.

    2002-01-01

    The performed investigations of the character of changing the leakage of control gas through flange connections in the process of drawing- up the bolts in to calculation moment and subsequent lowering of bolt loading to zero have shown the following. Gradual reduction of leakage through a gasket occurs in the process of increasing the tightening torque up to its complete absence. But there is no leakage through the unloaded gasket after untwisting all nuts and removal of fastening bolts from flanges. The performed analysis has shown that this effect is caused by cold weldability of the gasket with flanges; this is a result of flowing of its material into microrough holes of contact surfaces of flanges at plastic deformation with formation of strong and dense contact. Some technological methods of formation of undetachable joint have been developed for practical application of this effect. According to one of those methods, drawing- up the gasket is performed with the help of flanges preliminarily. Those bolts are substituted by less strong standard bolts for drawing- up by less moment after achievement of stress needed. Method of pressurization of the joint is more effective when technological detachable flanges and bolts are used for reduction of the gasket up to its plastic state. Those flanges and bolts are removed after drawing- up; after that standard flanges are loaded by the moment used for reception of effort only from pressure of operational medium in the pipe- line (Qoper.m.) because drawing- up of the gasket by effort (Qeff.) that provides its plastic state, is already achieved. Then we exclude the first component (Qeff.) in dependence which is known from technical literature: Qdraw. = Qeff . + Qoper .m. = qFgas. + PFpip. (1), and the final formula for calculation of the effort of drawing- up the joint (in which drawing- up the gasket with provision of cold weldability is carried out preliminarily before drawing- up the standard bolts) is expressed in

  14. Characterization of a Crosslinked Elastomeric-Protein Inspired Polypeptide.

    PubMed

    Bochicchio, Brigida; Bracalello, Angelo; Pepe, Antonietta

    2016-08-01

    Materials inspired by natural proteins have a great appeal in tissue engineering for their biocompatibility and similarity to extracellular matrix (ECM). Chimeric polypeptides inspired by elastomeric proteins such as silk, elastin, and collagen are of outstanding interest in the field. A recombinant polypeptide constituted of three different blocks, each of them having sequences derived from elastin, resilin, and collagen proteins, was demonstrated to be a good candidate as biomaterial for its self-assembling characteristics and biocompatibility. Herein, taking advantage of the primary amine functionalities present in the linear polypeptide, we crosslinked it with 1,6-hexamethylene-diisocyanate (HMDI). The characterization of the obtained polypeptide was realized by CD spectroscopy, AFM, and SEM microscopies. The obtained results, although not conclusive, demonstrate that the crosslinked polypeptide gave rise to porous networks, thin nanowires, and films not observable for the linear polypeptide. Chirality 28:606-611, 2016. © 2016 Wiley Periodicals, Inc. PMID:27403636

  15. Elastomeric polymer light-emitting devices and displays

    NASA Astrophysics Data System (ADS)

    Liang, Jiajie; Li, Lu; Niu, Xiaofan; Yu, Zhibin; Pei, Qibing

    2013-10-01

    The emergence of devices that combine elasticity with electronic or optoelectronic properties offers exciting new opportunities for applications, but brings significant materials challenges. Here, we report the fabrication of an elastomeric polymer light-emitting device (EPLED) using a simple, all-solution-based process. The EPLED features a pair of transparent composite electrodes comprising a thin percolation network of silver nanowires inlaid in the surface layer. The resulting EPLED, which exhibits rubbery elasticity at room temperature, is collapsible, and can emit light when exposed to strains as large as 120%. It can also survive repeated continuous stretching cycles, and small stretching is shown to significantly enhance its light-emitting efficiency. The fabrication process is scalable and was readily adapted for the demonstration of a simple passive matrix monochrome display featuring a 5 × 5 pixel array.

  16. Confinement of elastomeric block copolymers via forced assembly coextrusion.

    PubMed

    Burt, Tiffani M; Keum, Jong; Hiltner, Anne; Baer, Eric; Korley, Lashanda T J

    2011-12-01

    Forced assembly processing provides a unique opportunity to examine the effects of confinement on block copolymers (BCPs) via conventional melt processing techniques. The microlayering process was utilized to produce novel materials with enhanced mechanical properties through selective manipulation of layer thickness. Multilayer films consisting of an elastomeric, symmetric block copolymer confined between rigid polystyrene (PS) layers were produced with layer thicknesses ranging from 100 to 600 nm. Deformation studies of the confined BCP showed an increase in ductility as the layer thickness decreased to 190 nm due to a shift in the mode of deformation from crazing to shear yielding. Postextrusion annealing was performed on the multilayer films to investigate the impact of a highly ordered morphology on the mechanical properties. The annealed multilayer films exhibited increased toughness with decreasing layer thickness and resulted in homogeneous deformation compared to the as-extruded films. Multilayer coextrusion proved to be an advantageous method for producing continuous films with tunable mechanical response. PMID:22124208

  17. Testing the influence of various conditions on the migration of epoxidised soybean oil from polyvinylchloride gaskets.

    PubMed

    Hanušová, Kristýna; Rajchl, Aleš; Votavová, Lenka; Dobiáš, Jaroslav; Steiner, Ingrid

    2013-01-01

    Epoxidised soybean oil (ESBO) is widely used as a plasticiser and stabiliser mainly in food contact materials on the base of polyvinylchloride (PVC), especially in the gaskets of jar lids. PVC gaskets containing 10-37% of ESBO were prepared by the baking of PVC plastisols at various process temperatures (180-240°C) in the laboratory. ESBO migration into olive oil and 3% acetic acid was studied at various temperatures (4°C, 25°C, 40°C and 60°C) during a storage time up to 12 months. ESBO released into food simulants was transmethylated, derivatised and analysed by gas chromatography-mass spectrometry (GC/MS). The effect of food processing, i.e. pasteurisation (80°C and 100°C) and sterilisation (125°C) on ESBO migration was also evaluated. The results were critically assessed with respect to the test conditions of specific migration in accordance with the current European Union legislation (Regulation (EU) No. 10/2011). The levels of ESBO migration found confirmed that the test conditions (i.e. 40°C or 60°C, 10 days) representing contact in the worst foreseeable use scenario seem to be insufficient for the simulation of ESBO migration during long-term storage and thus do not provide satisfactory objective results. PMID:23978228

  18. Accuracy and consistency of modern elastomeric pumps.

    PubMed

    Weisman, Robyn S; Missair, Andres; Pham, Phung; Gutierrez, Juan F; Gebhard, Ralf E

    2014-01-01

    Continuous peripheral nerve blockade has become a popular method of achieving postoperative analgesia for many surgical procedures. The safety and reliability of infusion pumps are dependent on their flow rate accuracy and consistency. Knowledge of pump rate profiles can help physicians determine which infusion pump is best suited for their clinical applications and specific patient population. Several studies have investigated the accuracy of portable infusion pumps. Using methodology similar to that used by Ilfeld et al, we investigated the accuracy and consistency of several current elastomeric pumps. PMID:25140510

  19. Method of making hollow elastomeric bodies

    NASA Technical Reports Server (NTRS)

    Broyles, H. F.; Moacanin, J.; Cuddihy, E. F. (Inventor)

    1976-01-01

    Annular elastomeric bodies having intricate shapes are cast by dipping a heated, rotating mandrel into a solution of the elastomer, permitting the elastomer to creep into sharp recesses, drying the coated mandrel and repeating the operation until the desired thickness has been achieved. A bladder for a heart assist pump in which a cylindrical body terminating in flat, sharp horizontal flanges fabricated by this procedure has been subjected to over 2,500 hours of simulated life conditions with no visible signs of degradation.

  20. Elastomeric biodegradable polyurethane blends for soft tissue applications.

    PubMed

    Fromstein, J D; Woodhouse, K A

    2002-01-01

    Four biodegradable polyurethane blends were made from segmented polyurethanes that contain amino acid-based chain extender and diisocyanate groups. The soft segments of these parent polyurethanes were either polyethylene oxide (PEO) or polycaprolactone (PCL) diols. The blends were developed to investigate the effect of varying soft segment compositions on the overall morphological, mechanical, and degradative properties of the materials, with a view to producing a family of materials with a wide range of properties. The highly hydrophilic PEO material was incorporated to increase the blend's susceptibility to degradation, while the PCL polyurethane was selected to provide higher moduli and percent elongations (strains) than the PEO parent materials can achieve. All four blends were determined to be semi-crystalline, elastomeric materials that possess similarly shaped stress-strain curves to that of the PCL-based parent polyurethane. As the percent composition of PEO polyurethane within the blend increased, the material became weaker and less extensible. The blends demonstrated rapid initial degradation in buffer followed by significantly slower, prolonged degradation, likely corresponding to an initial loss of primarily PEO-containing polymer, followed by the slower degradation of the PCL polyurethane. All four blends were successfully formed into three-dimensional porous scaffolds utilizing solvent casting/particulate leaching methods. Since these new blends possess a range of mechanical and degradation properties and can be shaped into three-dimensional objects, these materials may hold potential for use in soft tissue engineering scaffold applications. PMID:12160300

  1. Experiences with new European standards for calculation of flanged joints including necessary gasket factors

    SciTech Connect

    Bartonicek, J.; Kockelmann, H.; Schoeckle, F.

    1996-12-01

    The correct function of a flanged joint in a given construction (flanges, bolts) and with given loads (pressure, temperature, additional forces) depends on the following: (1) choice of the gasket for the operation environment; (2) determination of the gasket stress for assembly conditions; and (3) gasket stress in operation, i.e., the conditions when leakage has to be minimized. For the correct choice of a gasket it is necessary to have gasket factors available, as given by DIN 28090 (Sept. 95) together with the test procedures. These gasket factors determine the tightening characteristics as well as the deformation capability of the gaskets. Furthermore, these gasket factors must be available for use in calculations. On the basis of calculations a stress analysis (i.e. a limitation of the stresses in flanges and bolts) must be possible as well as the determination of the bolt forces for the assembly state and of the gasket stress for operating conditions. This is one of the goals of the standard pr DIN EN 1591. The paper first introduces the actual European standards. Calculations are reviewed using test data from special test rigs and from real flanged joints. The calculations were made according to DIN 2505 (initial German standard for flanged joints) and pr DIN EN 1591. Additionally, 2D and 3D Finite Element analysis calculations were performed.

  2. Evaluation of shear mounted elastomeric damper

    NASA Technical Reports Server (NTRS)

    Zorzi, E.; Walton, J.

    1982-01-01

    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  3. NCO-5 Technician Cuts Finger while Cutting Gasket Material

    SciTech Connect

    Trujillo, Stanley; Schreiber, Stephen Bruce; Mcneel, John Worth; Monsalve-Jones, Robert A.; Welsh, Mark; Ortega, Greg N.; Martinez, Xavier Baltazar; Padilla, Ruby A.

    2015-12-10

    As part of the ADPSM Safety Improvement Plan, the WSST has established a subcommittee for a Learning Team. The purpose of a Learning Team is to transfer and communicate the information into operational feedback and improvement. We want to pay attention to the small things that go wrong because they are often early warning signals and may provide insight into the health of the whole system.

  4. Rubber and alumina gaskets retain vacuum seal in high temperature EMF cell

    NASA Technical Reports Server (NTRS)

    Hesson, J. C.

    1966-01-01

    Silicone rubber gasket and an alumina gasket retain a vacuum inside a high temperature EMF cell in which higher and lower density liquid metal electrodes are separated by an intermediate density fused salt electrolyte. This innovation is in use on a sodium bismuth regenerable EMF cell in which the fused salts and metals are at about 500 deg to 600 deg C.

  5. Windows based computer program for gasket determination based on two different calculation procedures

    SciTech Connect

    Bernard, F.; Borovnicar, I.; Ghirlanda, M.

    1996-12-01

    The windows based computer program for gasket calculation was presented. C++ computer language was used. On the basis of experimental results and data sets available in the literature and calculated with the help of FSA and PVRC method, the assembly parameters were determined. The result is DONIT TESNITI Diskette, a smart tool to select gaskets on the basis of service conditions and tightness requirements.

  6. Elastomeric composites based on carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Araby, Sherif; Meng, Qingshi; Zhang, Liqun; Zaman, Izzuddin; Majewski, Peter; Ma, Jun

    2015-03-01

    Carbon nanomaterials including carbon black (CB), carbon nanotubes (CNTs) and graphene have attracted increasingly more interest in academia due to their fascinating properties. These nanomaterials can significantly improve the mechanical, electrical, thermal, barrier, and flame retardant properties of elastomers. The improvements are dependent on the molecular nature of the matrix, the intrinsic property, geometry and dispersion of the fillers, and the interface between the matrix and the fillers. In this article, we briefly described the fabrication processes of elastomer composites, illuminated the importance of keeping fillers at nanoscale in matrices, and critically reviewed the recent development of the elastomeric composites by incorporating CB, CNTs, and graphene and its derivatives. Attention has been paid to the mechanical properties and electrical and thermal conductivity. Challenges and further research are discussed at the end of the article.

  7. Anisotropic dewetting on stretched elastomeric substrates.

    PubMed

    Qiao, L; He, L H

    2008-08-01

    We study the instability of a very thin liquid film resting on a uniformly stretched soft elastomeric substrate driven by van der Waals forces. A linear stability analysis shows that the critical fluctuation wavelength in the tensile direction is larger than those in the other directions. The magnitudes of the critical wavelengths are adjustable in the sense that they depend on the principal stretch of the substrate. For example, when the principal stretch of the substrate varies from 1.0 (unstretched) to 3.0, the range of the critical wavelength in the tensile direction increases by 7.0% while that normal to the tensile direction decreases by 8.7%. Therefore, the phenomenon may find potential applications in creating tunable topographically patterned surfaces with nano- to microscale features. PMID:19230211

  8. Friction of soft elastomeric wrinkled surfaces

    NASA Astrophysics Data System (ADS)

    Rand, Charles J.; Crosby, Alfred J.

    2009-09-01

    We evaluate the sliding of a rigid spherical lens over a surface-wrinkled, elastomeric substrate. Sliding is conducted both parallel and perpendicular to the aligned surface wrinkles, and the sliding force is compared to the required sliding forces on nonwrinkled surfaces. We evaluate the effects of wrinkle dimensions and applied normal force on the sliding resistance. A simple Bowden-Tabor friction model can describe the dependence of the sliding force on normal load, with different coefficients of friction associated with the nonwrinkled and wrinkled surfaces both perpendicular and parallel. The aspect ratio of the wrinkles has a secondary effect on the sliding force. We associate the changes in friction to changes in the tangential stiffness and fracture angle caused by the surface wrinkles.

  9. Flame Arrival Measurement By Instrumented Spark Plug or Head Gasket

    Energy Science and Technology Software Center (ESTSC)

    1995-04-10

    PLUGBIN was developed to support Sandia technologies involving instrumented head gaskets and spark plugs for engine research and development. It acquires and processes measurements of flame arrival and pressure from a spark ignition. Flame arrival is determined from analog ionization-probe or visible-emission signals, and/or digitial signals from a dedicated flame arrival measurement processor. The pressure measurements are analyzed to determine the time of peak pressure and the time to burn 10 and 90 percent ofmore » the charge. Histograms are then calculated and displayed for each measurement.« less

  10. The characteristic of blind flanged bolted joints with full-face gaskets

    SciTech Connect

    Sawa, Toshiyuki

    1996-12-01

    In this paper, the characteristics of blind flanged bolted joints with full-face gaskets such as the contact stress distributions and the variation of axial bolt force are analyzed using axisymmetrical theory of elasticity. The effect of Young`s modulus of gaskets, the gasket thickness and the bolt pitch circle diameter on the contact stress distribution are clarified by the numerical calculations. In the experiments, the contact stress distributions were measured by sensitive films when the gasket is asbestos. Variations of axial bolt force are measured using strain gages. The internal pressure is observed when the internal fluid starts to leak. The numerical results are in fairly good agreement with the experimental results. Discussions are made on the sealing performance of gaskets used in these experiments.

  11. Gasket performance of SWG in ROTT and short term estimation at elevated temperature

    SciTech Connect

    Asahina, M.; Nishida, T.; Yamanaka, Y.

    1996-12-01

    This paper deals with the sealability at room temperature and the durability at elevated temperature of SWG (spiral wound gasket). The fillers in the gasket specimens are chosen as newly developed non-asbestos, asbestos and flexible graphite. The effects of inner and outer rings inserted in the gasket specimens on the new PVRC gaskets constants are examined by using the ROTT test procedure (room temperature tightness test). The durability of SWG at elevated temperature is estimated by using the weight loss of filler and the stress-deflection curve of SWG obtained after aging at elevated temperatures. As a result, the sealability and the durability of newly developed non-asbestos SWG is the same as asbestos SWG, and the durability of flexible graphite SWG at elevated temperatures in this method conform to the boundary temperature in field and it is shown that this method is available to estimate the durability of gaskets at elevated temperatures.

  12. Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates.

    PubMed

    Ding, Hangjun; Zhong, Mingjiang; Wu, Haosheng; Park, Sangwoo; Mohin, Jacob W; Klosterman, Luke; Yang, Zhou; Yang, Huai; Matyjaszewski, Krzysztof; Bettinger, Christopher John

    2016-06-28

    A strategy for creating elastomeric conducting polyaniline networks is described. Simultaneous elastomeric mechanical properties (E < 10 MPa) and electronic conductivities (σ > 10 S cm(-1)) are achieved via molecular templating of conjugated polymer networks. Diblock copolymers with star topologies processed into self-assembled elastomeric thin films reduce the percolation threshold of polyaniline synthesized via in situ polymerization. Block copolymer templates with star topologies produce elastomeric conjugated polymer composites with Young's moduli ranging from 4 to 12 MPa, maximum elongations up to 90 ± 10%, and electrical conductivities of 30 ± 10 S cm(-1). Templated polyaniline films exhibit Young's moduli up to 3 orders of magnitude smaller compared to bulk polyaniline films while preserving comparable bulk electronic conductivity. Flexible conducting polymers have prospective applications in devices for energy storage and conversion, consumer electronics, and bioelectronics. PMID:27175931

  13. Material morphology and electrical resistivity differences in EPDM rubbers.

    SciTech Connect

    Yang, Nancy Y. C.; Domeier, Linda A.

    2008-03-01

    Electrical resistance anomalies noted in EPDM gaskets have been attributed to zinc-enriched surface sublayers, about 10-{micro}m thick, in the sulfur cured rubber material. Gasket over-compression provided the necessary connector pin contact and was also found to cause surprising morphological changes on the gasket surfaces. These included distributions of zinc oxide whiskers in high pressure gasket areas and cone-shaped features rich in zinc, oxygen, and sulfur primarily in low pressure protruding gasket areas. Such whiskers and cones were only found on the pin side of the gaskets in contact with a molded plastic surface and not on the back side in contact with an aluminum surface. The mechanisms by which such features are formed have not yet been defined.

  14. The application of elastomeric connector for multi-channel electrophysiological recordings.

    PubMed

    Szabó, Imre; Máthé, Kálmán; Tóth, Attila; Hernádi, István; Czurkó, András

    2002-02-15

    Interest in recording multi-channel electrophysiological data from behaving animals is rapidly growing, and many laboratories tend to record a large number of EEG and/or multi-unit channels, despite the limitation of the size of the headpiece that a small behaving animal can carry. A common drawback of these experiments, therefore, is the relatively large size of even the smallest, commercially available, high-density micro-connectors for the headset. To overcome this problem, we suggest the application of elastomeric or silicone inter-rubber connectors, that are widely used in electronics. The elastomeric or "zebra" connector consists of alternating thin strips of layered electrically conductive and non-conductive materials. The conductive strips provide electrical connections between uninsulated contact surfaces of printed circuit boards such as the connector plate of the micro-drive, that holds the brain electrode wires, and the preamplifier board of the recording system. In the present paper, we provide technical details of the design of this type of connector-sets and discuss common issues arising from their use. By comparing the applicability of two designs, we aim to demonstrate the simplicity, reliability and durability of the elastomeric inter-rubber connectors in electrophysiological experiments on freely moving laboratory animals. PMID:11850041

  15. Long-term compression effects on elastomeric O-ring behavior

    NASA Technical Reports Server (NTRS)

    Clinton, R. G.; Turner, J. E.

    1990-01-01

    This paper discusses the results of testing performed on elastomeric seal materials that had been under compression for extended periods of time. Elastomeric seals used in the Space Shuttle redesigned solid rocket motors can experience compression times of up to six months. These seals must be capable of sealing internal motor pressure upon ignition. The tests described herein were performed in order to verify that the seals, which had experienced long-term compression could seal throughout motor operation. Testing was divided into two phases: (1) dynamic high pressure testing, and (2) resiliency testing. Dynamic testing was performed using specialized test fixtures that allowed simulation of the field joint movements during initial motor operation along with high pressure gas. Resiliency testing was performed using specialized test fixtures that also simulated field joint movements and also had the ability to measure the sealing force of the O-ring. Results from all testing indicated that the current elastomeric seals used in the redesigned solid rocket motors will seal during motor operations in the currently defined launch environments.

  16. The effect of dietary pigmentation on the esthetic appearance of clear orthodontic elastomeric modules

    PubMed Central

    Talic, Nabeel F; Almudhi, Abdullazez A

    2016-01-01

    Objective: To compare the stain resistance of three types of clear elastomeric modules exposed to several common dietary substances through the assessment of the perception of a group of dentists to discoloration using visual analog scale (VAS). Materials and Methods: Elastomeric modules from Unitek (AU), Ormco (OR), and dentaurum (DE) were immersed in the following food substances: Coffee, black tea, chocolate, energy drink, ketchup, and Coca-Cola for 72 h. VAS was used to reflect the module staining severity. Results: Significant difference was found among the three types of modules examined in this study. OR modules showed the least mean staining ratings by the examiners. There was no statistical difference in the staining properties between AU and DE modules. Coffee and tea showed higher staining potential as compared to all staining media. Furthermore, there was no difference in the staining characteristics of coffee and black tea. Conclusions: Coffee and tea are strong staining media that should be avoided by patients who opted to have esthetic appliances for their orthodontic treatment. Elastomeric modules manufactured by AU showed higher staining optical properties as compared to the other two companies, which could be related to the manufacturing processing of these modules. PMID:27127754

  17. Solvent-resistant elastomeric microfluidic devices and applications

    NASA Astrophysics Data System (ADS)

    van Dam, Robert Michael

    Microfluidics is increasingly being used in many areas of biotechnology and chemistry to achieve reduced reagent volumes, improved performance, integration, and parallelism, among other advantages. Though early devices were based on rigid materials such as glass and silicon, elastomeric materials such as polydiznethylsiloxane (PDMS) are rapidly emerging as a ubiquitous platform for applications in biotechnology. This is due, in part, to simpler fabrication procedures and to the ability to integrate mechanical microvalves at vastly greater densities. For many applications in the areas of chemical synthesis and analysis, however, PDMS cannot replace glass and silicon due to its incompatibility with many solvents and reagents. Such areas could benefit tremendously from the development of an elastomeric microfluidic device technology that combines the advantages of PDMS with the property of solvent resistance. Simplified fabrication could increase the accessibility of microfluidics, and the possibility of dense valve integration could lead to significant advances in device sophistication. Applications could be more rapidly developed by design re-use due to the independence of mechanical valves on fluid properties (unlike electrokinetic pumping), and the property of permeability could enable novel fluidic functions for accessing a broader range of reactions than is possible in glass and silicon. The first half of this thesis describes our strategies and efforts to develop this new enabling technology. Several approaches are presented in Chapter 3, and two particularly successful ones, based on new elastomers (FNB and PFPE), are described in Chapters 4 and 5. Chapter 6 describes a novel method of fabricating devices from 3D molds that could expand the range of useful clastomers. The second half of this thesis discusses microfluidic combinatorial synthesis and high throughput screening-applications that take particular advantage of the ability to integrate thousands of

  18. Elastomeric and soft conducting microwires for implantable neural interfaces.

    PubMed

    Kolarcik, Christi L; Luebben, Silvia D; Sapp, Shawn A; Hanner, Jenna; Snyder, Noah; Kozai, Takashi D Y; Chang, Emily; Nabity, James A; Nabity, Shawn T; Lagenaur, Carl F; Cui, X Tracy

    2015-06-28

    Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young's modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young's modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications. PMID:25993261

  19. Elastomeric and soft conducting microwires for implantable neural interfaces

    PubMed Central

    Kolarcik, Christi L.; Luebben, Silvia D.; Sapp, Shawn A.; Hanner, Jenna; Snyder, Noah; Kozai, Takashi D.Y.; Chang, Emily; Nabity, James A.; Nabity, Shawn T.; Lagenaur, Carl F.; Cui, X. Tracy

    2015-01-01

    Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young’s modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young’s modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications. PMID:25993261

  20. Charge Effects on Mechanical Properties of Elastomeric Proteins

    NASA Astrophysics Data System (ADS)

    Kappiyoor, Ravi; Balasubramanian, Ganesh; Dudek, Daniel; Puri, Ishwar

    2012-02-01

    Several biological molecules of nanoscale dimensions, such as elastin and resilin, are capable of performing diverse tasks with minimal energy loss. These molecules are efficient in that the ratio of energy output to energy consumed is very close to unity. This is in stark contrast to some of the best synthetic materials that have been created. For example, it is known that resilin found in dragonflies has a hysteresis loss of only 0.8% of the energy input while the best synthetic rubber made to date, polybutadiene, has a loss of roughly 20%.We simulate tensile tests of naturally occurring motifs found in resilin (a highly hydrophilic protein), as well as similar simulations found in reduced-polarity counterparts (i.e. the same motif with the charge on each individual atom set to half the natural value, the same motif with the charge on each individual atom set to zero, and a motif in which all the polar amino acids have been replaced with nonpolar amino acids). The results show a strong correlation between charge and extensibility. In order to further understand the effect of properties such as charge on the system, we will run simulations of elastomeric proteins such as resilin in different solvents.

  1. Elastomeric gradients: a hedge against stress concentration in marine holdfasts?

    PubMed Central

    Waite, J Herbert; Vaccaro, Eleonora; Sun, Chengjun; Lucas, Jared M

    2002-01-01

    The byssal threads of marine mussels are elastomeric fibres with a great capacity for absorbing and dissipating energy. Up to 70% of the total absorbed energy can be dissipated in the byssus. Because byssal threads attach the mussel to hard inert surfaces in its habitat, they must combine the need to be good shock absorbers with appropriate matching of Young's modulus between living tissue and a hard sub-stratum such as stone - stiffnesses that can differ by five orders of magnitude. Recent data suggest that improved modulus matching and decreased stress concentration between different portions of the byssus is achieved by the use of protein gradients. Protein gradients in byssal threads are constructed using natural macromolecular chimeras having a central collagenous domain, variable flanking modules and histidine-rich amino and carboxy termini. Stiff silk-like flanking modules prevail distally, while at the animal end, rubbery modules resembling elastin predominate. In between the two thread ends there is a mix of both module types. The histidine-rich termini provide metal binding/cross-linking sites, while collagen domains may confer self-assembly on all parts of the structure. A graded axial distribution of flanking modules is expected to moderate stress concentration in joined materials having disparate moduli. PMID:11911771

  2. Elastomeric composites with tuned electromagnetic characteristics

    NASA Astrophysics Data System (ADS)

    Wheeland, Sara; Bayatpur, Farhad; Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2013-01-01

    This paper presents a novel elastomeric composite that exhibits a deformation-induced change in chirality. Previous efforts primarily dealt with a coil array in air without chiral tuning. Here, a composite is created that consists of an array of parallel, metallic helices of the same handedness embedded in a polymer matrix. The chiral response of the composite depends on pitch, coil diameter, wire thickness and coil spacing; however, pitch has the greatest effect on electromagnetic performance. The present study explores this effect by using helical elements to construct a chiral medium that can be mechanically stretched to adjust pitch. This adjustment directly affects the overall chirality of the composite. A prototype sample of the composite, fabricated for operation between 5.5-12.5 GHz, demonstrates repeatable elastic deformation. Using a transmit/receive measurement setup, the composite scattering response is measured over the frequency interval. The results indicate substantial tuning of chirality through deformation. An increase in axial strain of up to 30% yields a ˜18% change in axial chirality.

  3. A spun elastomeric graft for dialysis access.

    PubMed

    Drasler, W J; Wilson, G J; Stenoien, M D; Jenson, M L; George, S A; Dutcher, R G; Possis, Z C

    1993-01-01

    A new composite vascular graft was developed using electrostatic spinning technology. The graft is primarily microfibrous polydimethylsiloxane spun onto a mandrel; a small diameter polyester yarn provides additional strength while minimizing wall thickness, and a helical bead provides crush and kink resistance. Eighteen grafts were implanted in a mongrel canine arteriovenous shunt model for 12 months. The grafts were implanted in femoral artery to femoral vein loops and were cannulated using three pairs of 16 gauge dialysis needles per week. Grafts were evaluated during each puncture session, and also followed using angiography. Histologic study of explanted grafts, regional lymph nodes, and lungs was performed. The grafts provided excellent handling and puncture characteristics, with no bleeding through the graft wall at puncture sites. Cumulative patency of these punctured grafts was 88% at 6 months and 80% at 1 year. Histologic study showed external fibroconnective tissue encapsulation of the grafts, with tissue growth through the interstices of the graft consisting of a microvascular network surrounded predominantly by histiocytes, many multinucleated foreign body giant cells, with some fibroblasts and collagen formation also present. Little luminal thrombus was seen at puncture sites in the patent grafts, and there was no evidence of pulmonary thromboemboli. This new elastomeric graft shows excellent promise for dialysis access; similar grafts under development may also find application for small diameter peripheral vascular reconstruction. PMID:8324257

  4. Regenerative braking through elastomeric energy storage

    NASA Astrophysics Data System (ADS)

    Hoppie, L. O.

    The project goals are to improve the energy density and fatigue life of the elastomeric units through elastomer formulations and fabrication technique research, and to verify that a compact method of attachment is feasible in full-size units. Samples of a new compound have shown an improvement of 100% in energy density as compared with the previous compound. The energy density, hysteresis loss, and fatigue life of fullsize units fabricated with this compound will be measured during the project. Molding techniques commonly used within the rubber industry give rise to surface flaws on the finished energy storage units, and these surface flaws have been indentified as sources of subsequent fatigue failure. A molding technique aimed at minimizing surface flaws will be investigated during this project. Small-scale energy storage units were used to carry out a comparison of compact attachment concepts. One concept has been selected and will be incorporated into full-size units for test and evaluation during this project.

  5. Development of a snubber type magnetorheological fluid elastomeric lag damper for helicopter stability augmentation

    NASA Astrophysics Data System (ADS)

    Ngatu, Grum T.

    Most advanced helicopter rotors are typically fitted with lag dampers, such as elastomeric or hybrid fluid-elastomeric (FE) lag dampers, which have lower parts counts, are lighter in weight, easier to maintain, and more reliable than conventional hydraulic dampers. However, the damping and stiffness properties of elastomeric and fluid elastomeric lag dampers are non-linear functions of lag/rev frequency, dynamic lag amplitude, and operating temperature. It has been shown that elastomeric damping and stiffness levels diminish markedly as amplitude of damper motion increases. Further, passive dampers tend to present severe damping losses as damper operating temperature increases either due to in-service self-heating or hot atmospheric conditions. Magnetorheological (MR) dampers have also been considered for application to helicopter rotor lag dampers to mitigate amplitude and frequency dependent damping behaviors. MR dampers present a controllable damping with little or no stiffness. Conventional MR dampers are similar in configuration to linear stroke hydraulic type dampers, which are heavier, occupy a larger space envelope, and are unidirectional. Hydraulic type dampers require dynamic seal to prevent leakage, and consequently, frequent inspections and maintenance are necessary to ensure the reliability of these dampers. Thus, to evaluate the potential of combining the simplicity and reliability of FE and smart MR technologies in augmenting helicopter lag mode stability, an adaptive magnetorheological fluid-elastomeric (MRFE) lag damper is developed in this thesis as a retrofit to an actual fluid-elastomeric (FE) lag damper. Consistent with the loading condition of a helicopter rotor system, single frequency (lag/rev) and dual frequency (lag/rev at 1/rev) sinusoidal loading were applied to the MRFE damper at varying temperature conditions. The complex modulus method was employed to linearly characterize and compare the performance of the MRFE damper with the

  6. Synthesis and Characterization of Elastomeric Heptablock Terpolymers Structured by Crystallization

    SciTech Connect

    Alfonzo, C.Guillermo; Fleury, Guillaume; Chaffin, Kimberly A.; Bates, Frank S.

    2010-12-07

    We report the synthesis and characterization of fully saturated hydrocarbon block copolymer thermoplastic elastomers with competitive mechanical properties and attractive processing features. Block copolymers containing glassy poly(cyclohexylethylene) (C), elastomeric poly(ethylene-alt-propylene) (P), and semicrystalline poly(ethylene) (E) were produced in a CEC-P-CEC heptablock architecture, denoted XPX, by anionic polymerization and catalytic hydrogenation. The X blocks contain equal volume fractions of C and E, totaling 40%-60% of the material overall. All the XPX polymers are disordered above the melt temperature for E (T{sub m,E} {approx_equal} 95 C) as evidenced by SAXS and dynamic mechanical spectroscopy measurements. Cooling below T{sub m,E} results in crystallization of the E blocks, which induces microphase segregation of E, C, and P into a complex morphology with a continuous rubbery domain and randomly arranged hard domains as shown by TEM. This mechanism of segregation decouples the processing temperature from the XPX molecular weight up to a limiting value. Tensile mechanical testing (simple extension and cyclic loading) demonstrates that the tensile strength (ca. 30 MPa) and strain at break (>500%) are comparable to the behavior of CPC triblock thermoplastic elastomers of similar molecular weight and glass content. However, in the CPC materials, processability is constrained by the order-disorder transition temperature, limiting the applications of these materials. Elastic recovery of the XPX materials following seven cycles of tensile deformation is correlated with the fraction of X in the heptablock copolymer, and the residual strain approaches that of CPC when the fraction of hard blocks f{sub X} {le} 0.39.

  7. Effect of Commonly Used Beverage, Soft Drink, and Mouthwash on Force Delivered by Elastomeric Chain: A Comparative In Vitro Study

    PubMed Central

    Kumar, Kiran; Shetty, Sharath; Krithika, M J; Cyriac, Bobby

    2014-01-01

    Background: The objective was to evaluate and compare the effect of Coca-Cola®, tea, Listerine® mouthwash on the force delivered by elastomeric chain in vitro. Materials and Methods: Four specimen groups (distilled water, Coca-Cola®, tea, Listerine® mouthwash) with a total sample size of 480 specimens. A specimen is described as a four link grey close elastomeric chain. Jigs, each with a series of pins set 25 mm apart, was used to hold stretched elastomeric chains at a constant length. These jigs allowed for complete submersion of the elastomeric chain in a water bath throughout the test period, as well as the dipping of elastomeric chains in respective control and test solutions. For 60 s, twice a day, groups were exposed to the respective solutions, the two daily exposure was separated by 9 h and force measurements were taken at six time points during the experiment, that is, 1 h, 24 h, 7 days, 14 days, 21 days, and 28 days. Force measurements were made by Instron machine by a single blinded examiner with the help of a second examiner. Results: It was found out that there was highly significant difference between groups control, Coca-Cola®, Listerine®, and tea as well as there was highly significant (p < 0.01) between time periods. Group versus time was also highly significant (p < 0.01). For all groups substantial amount of force decay occurred until 7 days. The control group reached plateau between 7 and 14 days and then suddenly decreased from 14 days to 28 days. The Coca-Cola® and the Listerine® group reached a plateau between 7 and 21 days then decrease between 21 and 28 days. The tea group showed plateau phase between 7 and 28 days. After 28 days in the control group, 25% force decay occurred while the test groups force decay of 30-50% occurred. Conclusion: Coca-Cola®, Listerine® mouthwash, and tea cause an increase in force decay of elastomeric chains over time. Tea caused highest force decay followed by Listerine® and Coca-Cola® when compared

  8. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description...

  9. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description...

  10. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40...

  11. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40...

  12. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40...

  13. Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance.

    PubMed

    Sanders, Joan E; Nicholson, Brian S; Zachariah, Santosh G; Cassisi, Damon V; Karchin, Ari; Fergason, John R

    2004-03-01

    The mechanical properties of 15 elastomeric liner products used in limb prosthetics were evaluated under compressive, frictional, shear, and tensile loading conditions. All testing was conducted at load levels comparable to interface stress measurements reported on transtibial amputee subjects. For each test configuration, materials were classified into four groups based on the shapes of their response curves. For the 15 liners tested, there were 10 unique classification sets, indicating a wide range of unique materials. In general, silicone gel liners classified within the same groups thus were quite similar to each other. They were of lower compressive, shear, and tensile stiffness than the silicone elastomer products, consistent with their lightly cross-linked, high-fluid content structures. Silicone elastomer products better spanned the response groups than the gel liners, demonstrating a wide range of compressive, shear, and tensile stiffness values. Against a skin-like material, a urethane liner had the highest coefficient of friction of any liner tested, although coefficients of friction values for most of the materials were higher than interface shear:pressure ratios measured on amputee subjects using Pelite liners. The elastomeric liner material property data and response groupings provided here can potentially be useful to prosthetic fitting by providing quantitative information on similarities and differences among products. PMID:15558371

  14. Evaluation of the durability of elastomeric easy-release coatings

    NASA Astrophysics Data System (ADS)

    Christiaen, Anne-Claire

    1998-12-01

    Novel coatings have been designed to solve problems associated with biofouling of marine structures, particularly ship hulls. The best candidates to date are multilayered coatings incorporating silicone rubber technology. These materials are efficient because they exhibit excellent release properties. However, they are very soft and tend to be more susceptible to various forms of mechanical damage. Fundamental analysis of the durability of these coatings has been done using standard laboratory tests. Simulative studies are essential to screen candidates as well as to predict the true life of the systems. The goal of this project was to develop a testing protocol for the evaluation of the durability of elastomeric easy release coatings and to implement it on selected candidate coatings. A brushing apparatus was designed and built to simulate the cleaning processes of ship hulls. Wear was measured with profilometry. The proposed methodology is valuable to study the processes of wear of the coatings, to screen various materials and to identify parameters, either functional or material, which would directly affect their durability. Two groups of candidate coatings were tested: the EXS series and the NRL series. The EXS series samples showed better wear resistance than the NRL series samples and showed no dependence on the rotational speed of the brushes. The NRL series samples showed that increasing the sliding speed resulted in a decrease in wear. An increase in the applied load resulted in increased wear for both sample series. The effect of coating thickness was also investigated and discrimination between the proposed coatings could not be established because the tips of the bristles were sharp and irregular. Scratches matching the path of the brush bristles were observed in the wear scars of both sample types under all load and speed conditions. The NRL samples also exhibited ridges perpendicular to the sliding direction similar to the abrasion pattern.

  15. Simulated Body Fluid Nucleation of Three-Dimensional Printed Elastomeric Scaffolds for Enhanced Osteogenesis.

    PubMed

    Castro, Nathan J; Tan, Wilhelmina Nanrui; Shen, Charlie; Zhang, Lijie Grace

    2016-07-01

    Osseous tissue defects caused by trauma present a common clinical problem. Although traditional clinical procedures have been successfully employed, several limitations persist with regards to insufficient donor tissue, disease transmission, and inadequate host-implant integration. Therefore, this work aims to address current limitations regarding inadequate host tissue integration through the use of a novel elastomeric material for three-dimensional (3D) printing biomimetic and bioactive scaffolds. A novel thermoplastic polyurethane-based elastomeric composite filament (Gel-Lay) was used to manufacture porous scaffolds. In an effort to render the scaffolds more bioactive, the flexible scaffolds were subsequently incubated in simulated body fluid at various time points and evaluated for enhanced mechanical properties along with the effects on cell adhesion, proliferation, and 3-week osteogenesis. This work is the first reported use of a novel class of flexible elastomeric materials for the manufacture of 3D printed bioactive scaffold fabrication allowing efficient and effective nucleation of hydroxyapatite (HA) leading to increased nanoscale surface roughness while retaining the bulk geometry of the predesigned structure. Scaffolds with interconnected microfibrous filaments of ∼260 μm were created and nucleated in simulated body fluid that facilitated cell adhesion and spreading after only 24 h in culture. The porous structure further allowed efficient nucleation, exchange of nutrients, and metabolic waste removal during new tissue formation. Through the incorporation of osteoconductive HA, human fetal osteoblast adhesion and differentiation were greatly enhanced thus setting the tone for further exploration of this novel material for biomedical and tissue regenerative applications. PMID:27298115

  16. Alloy 825 and 718 gasket corrosion in deep water (500 m) connections

    SciTech Connect

    Amen, C.; Howl, R.; Oldfield, J.W.

    1999-11-01

    Corrosion has been observed on a number of alloy 718 (UNS N07718) and alloy 825 (UNS N08825) gaskets from subsea connections. The gaskets were in contact with either weld overlaid alloy 625 (UNS N06625) or super duplex stainless steel hubs (UNS S32750). A few hubs also showed some limited corrosion in regions where severe gasket corrosion had occurred. Corrosion was more prevalent on jumpers that had been exposed to sea water for a few months at alloy 718 (UNS N07718) gaskets in contact with alloy 625 (UNS N06625) weld overlay. General observations were that short term exposures of up to 20 days did not result in corrosion but longer exposures of 40--50 days resulted in severe attack. A program of work was carried out to determine the reason for the observed attack and to suggest ways of avoiding it in the future. This paper describes the findings of the study.

  17. A review on the cords & plies reinforcement of elastomeric polymer matrix

    NASA Astrophysics Data System (ADS)

    Mahmood, S. S.; Husin, H.; Mat-Shayuti, M. S.; Hassan, Z.

    2016-06-01

    Steel, polyester, nylon and rayon are the main materials of cords & plies that have been reinforced in the natural rubber to produce quality tyres but there is few research reported on cord and plies reinforcement in silicone rubber. Taking the innovation of tyres as inspiration, this review's first objective is to compile the comprehensive studies about the cords & plies reinforcement in elastomeric polymer matrix. The second objective is to gather information about silicone rubber that has a high potential as a matrix phase for cords and plies reinforcement. All the tests and findings are gathered and compiled in sections namely processing preparation, curing, physical and mechanical properties, and adhesion between cords-polymer.

  18. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  19. Development of UHV compatible machined diamond profile gaskets for INDUS-2

    NASA Astrophysics Data System (ADS)

    Yadav, D. P.; Shiroman, R.; Shukla, S. K.; Kotaiah, S.

    2008-05-01

    Ultra High Vacuum (UHV) compatible demountable joints are needed in Indus-2 (2.5 GeV, 300mA) electron storage ring for connecting Al-alloy vacuum chambers (homogeneous joints) as well as Al-alloy vacuum chambers to well proven stainless steel components like beam diagnostic components and RF-shielded bellow assemblies (heterogeneous joints). Bakeable & reliable diamond profile Al-alloy gaskets have been developed for Helium leak rate less than 2×10-10 Std. CC/sec, which eliminated the need of any Al to SS transition pieces onto the Aluminium vacuum chambers. Salient features of these gaskets are: high reliability, low cost, reduced flange thickness, self alignment, ease in installation, less torque requirement, formability to non-circular shape & ultra cleanliness. These diamond profile gaskets were machined from extruded Al-alloy 6061-T5 pipes using specially developed high-speed steel formed cutting tools. Thermal cyclic tests were carried to check the reliability of these gaskets. No leaks were found even after several bakeouts at 150°C. Non-circular metallic gaskets like the one used in UHV gate valve bonnet seal can also be manufactured using specially developed formed toolings. This paper describes basic design philosophy, manufacturing process and testing details of these gaskets.

  20. Physiologic Compliance in Engineered Small-diameter Arterial Constructs Based on an Elastomeric Substrate

    PubMed Central

    CRAPO, PETER M.; WANG, YADONG

    2009-01-01

    Compliance mismatch is a significant challenge to long-term patency in small-diameter bypass grafts because it causes intimal hyperplasia and ultimately graft occlusion. Current engineered grafts are typically stiff with high burst pressure but low compliance and low elastin expression. We postulated that engineering small arteries on elastomeric scaffolds under dynamic mechanical stimulation would result in strong and compliant arterial constructs. Compare properties of engineered arterial constructs based on biodegradable polyester scaffolds composed of either rigid poly(lactide-co-glycolide) (PLGA) or elastomeric poly(glycerol sebacate) (PGS). Adult baboon arterial smooth muscle cells (SMCs) were cultured in vitro for 10 days in tubular, porous scaffolds. Scaffolds were significantly stronger after culture regardless of material, but the elastic modulus of PLGA constructs was an order of magnitude greater than that of porcine carotid arteries and PGS constructs. Deformation was elastic in PGS constructs and carotid arteries but plastic in PLGA constructs. Compliance of arteries and PGS constructs were equivalent at pressures tested. Altering scaffold material from PLGA to PGS significantly decreased collagen content and significantly increased insoluble elastin content in constructs without affecting soluble elastin concentration in the culture medium. PLGA constructs contained no appreciable insoluble elastin. This research demonstrates that: (1) substrate stiffness directly affects in vitro tissue development and mechanical properties; (2) rigid materials likely inhibit elastin incorporation into the extracellular matrix of engineered arterial tissues; and (3) grafts with physiologic compliance and significant elastin content can be engineered in vitro after only days of cell culture. PMID:19962188

  1. Mechanical-property changes of structural composite materials after low-temperature proton irradiation: Implications for use in SSC magnet systems

    SciTech Connect

    Morena, J.; Snead, C.L. Jr.; Czajkowski, C.; Skaritka, J.

    1993-07-01

    Longterm physical, mechanical, electrical, and other properties of advanced composites, plastics, and other polymer materials are greatly affected by high-energy proton, neutron, electron, and gamma radiation. The effects of high-energy particles on materials is a critical design parameter to consider when choosing polymeric structural, nonstructural, and elastomeric matrix resin systems. Polymer materials used for filled resins, laminates, seals, gaskets, coatings, insulation and other nonmetallic components must be chosen carefully, and reference data viewed with caution. Most reference data collected in the high-energy physics community to date reflects material property degradation using other than proton irradiations. In most instances, the data were collected for room-temperature irradiations, not 4.2 K or other cryogenic temperatures, and at doses less than 10{sup 8}--10{sup 9} Rad. Energetic proton (and the accompanying spallation-product particles) provide good simulation fidelity to the expected radiation fields predicted for the cold-mass regions of the SSC magnets, especially the corrector magnets. The authors present here results for some structural composite materials which were part of a larger irradiation-characterization of polymeric materials for SSC applications.

  2. Plaque retention on elastomeric ligatures. An in vivo study

    PubMed Central

    CONDÒ, R.; CASAGLIA, A.; CONDÒ, S.G.; CERRONI, L.

    2013-01-01

    SUMMARY Fixed orthodontic appliances make it difficult to maintain the oral hygiene, resulting in plaque accumulation. Retention of bacterial plaque, represents a risk for white spot lesions and development of periodontal disease. Aim Purpose of this study was to determine in vivo the retention of plaque on three different elastic ligatures, in comparison with stainless steel ligature, to determine a possible association between type of ligatures and accumulation of microorganisms. Material and Methods three elastic ligation systems were analyzed for plaque retention: ring-shape, clear, latex ligatures (Leone® Spa), ring-shape, grey, polyurethane ligatures (Micerium® Spa) and grey, polyurethane, Slide low-friction ligatures (Leone® Spa), compared with stainless steel ligatures (Leone® Spa) used as control. Forthy orthodontic patients undergoing fixed orthodontic therapy were selected. A sample for each type of ligature were applied inside the oral cavity of each subject. Samples were kept in the oral cavity for 28 days, ligating 0.16 X 0.22 stainless steel archwire to stainless steel orthodontic premolars brackets. The presence of bacterical slime was quantified by spectrophotometric method (crystal violet-Bouin’s fixative) and morphological observations was evaluated by Scanning Electron Microscopy (SEM). Results From analysis of bacterical slime emerges that all the elastics showed a low plaque retention, especially if compared to the group of steinless steel ligatures, that presented a greater plaque adhesion, statistically significant compared to the Slide group (r<0.0002) and the two elastic groups (r<0.0001). This study reported no significant difference between the Slide ligatures and the traditional elastic ligatures as regards the retention of plaque. SEM images showed presence of cocci, rods and few filamentous organisms and an interbacterial matrix in all observed samples. Conclusion Elastomeric ligatures showed a significant lower susceptibility

  3. Stability of colistimethate sodium in a disposable elastomeric infusion device.

    PubMed

    Abdulla, Alan; van Leeuwen, Roelof W F; de Vries Schultink, Aurelia H M; Koch, Birgit C P

    2015-01-01

    Infections of the respiratory tract with Pseudomonas aeruginosa in cystic fibrosis patients are frequently treated with colistimethate sodium (CMS). For the intravenous administration of CMS a disposable elastomeric pump is a convenient option. To date, there are no data available on the chemical stability of CMS solutions stored in elastomeric pumps. We evaluated the chemical stability of 0.8 mg/mL solutions of CMS by measuring the degradation over a period of 7 days. Test samples were prepared by diluting CMS with saline solution (0.9%). The preparations were transferred to 100-mL elastomeric pumps and stored at 4 °C. The chemical stability was measured by a high-performance liquid chromatography method with UV detection. There was no degradation of CMS (<0.5% of CMS present as colistin) for at least 3 day at 4 °C, and after 7 days all test samples remained chemically stable (<5% of CMS present as colistin). Since colistin formed in pharmacy-compounded CMS solutions prior to administration may cause toxicity, we advise that the solution should be used before the hydrolysis of CMS occurs. Therefore, we recommend that the 0.8 mg/mL solution of CMS can be stored for up to 3 days at 4 °C in an elastomeric pump. PMID:25863116

  4. Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Tao; Yang, Juan-yu; Lu, Shi-gang

    2012-08-01

    Silicon has been investigated intensively as a promising anode material for rechargeable lithium-ion batteries. The choice of a binder is very important to solve the problem of the large capacity fade observed along cycling. The effect of modified elastomeric binders on the electrochemical performance of crystalline nano-silicon powders was studied. Compared with the conventional binder (polyvinylidene fluoride (PVDF)), Si electrodes using the elastomeric styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose (SCMC) combined binder show an improved cycling performance. The reversible capacity of the Si electrode with the SCMC/SBR binder is as high as 2221 mA·h/g for 30 cycles in a voltage window between 0.005 and 2 V. The structure changes from SEM images of the silicon electrodes with different binders were used to explore the property improvement.

  5. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure.

    PubMed

    McGann, Christopher L; Akins, Robert E; Kiick, Kristi L

    2016-01-11

    Hydrogels derived from resilin-like polypeptides (RLPs) have shown outstanding mechanical resilience and cytocompatibility; expanding the versatility of RLP-based materials via conjugation with other polypeptides and polymers would offer great promise in the design of a range of materials. Here, we present an investigation of the biochemical and mechanical properties of hybrid hydrogels composed of a recombinant RLP and a multiarm PEG macromer. These hybrid hydrogels can be rapidly cross-linked through a Michael-type addition reaction between the thiols of cysteine residues on the RLP and vinyl sulfone groups on the multiarm PEG. Oscillatory rheology and tensile testing confirmed the formation of elastomeric hydrogels with mechanical resilience comparable to aortic elastin; hydrogel stiffness was easily modulated through the cross-linking ratio. Macromolecular phase separation of the RLP-PEG hydrogels offers the unique advantage of imparting a heterogeneous microstructure, which can be used to localize cells, through simple mixing and cross-linking. Assessment of degradation of the RLP by matrix metalloproteinases (MMPs) illustrated the specific proteolysis of the polypeptide in both its soluble form and when cross-linked into hydrogels. Finally, the successful encapsulation and viable three-dimensional culture of human mesenchymal stem cells (hMSCs) demonstrated the cytocompatibility of the RLP-PEG gels. Overall, the cytocompatibility, elastomeric mechanical properties, microheterogeneity, and degradability of the RLP-PEG hybrid hydrogels offer a suite of promising properties for the development of cell-instructive, structured tissue engineering scaffolds. PMID:26646060

  6. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes.

    PubMed

    Xu, Bing; Li, Yuan; Fang, Xiya; Thouas, George A; Cook, Wayne D; Newgreen, Donald F; Chen, Qizhi

    2013-12-01

    One of the major challenges in the field of biomaterials engineering is the replication of the non-linear elasticity observed in soft tissues. In the present study, non-linearly elastic biomaterials were successfully fabricated from a chemically cross-linked elastomeric poly(glycerol sebacate) (PGS) and thermoplastic poly(L-lactic acid) (PLLA) using the core/shell electrospinning technique. The spun fibrous materials, containing a PGS core and PLLA shell, demonstrated J-shaped stress-strain curves, and having ultimate tensile strength, rupture elongation, and stiffness constants respectively comparable to muscle tissue properties. In vitro evaluations also showed that PGS/PLLA fibrous biomaterials possess excellent biocompatibility, capable of supporting human stem-cell-derived cardiomyocytes over several weeks in culture. Therefore, the core/shell electrospun elastomeric materials provide a new potential scaffold to support cells in the therapy of a wide range of soft tissues exposed to cyclic deformation, such as tendon, ligament, cardiac or smooth muscle and lung epithelium. PMID:24125905

  7. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa

    SciTech Connect

    Meier, Thomas; Haase, Jürgen

    2015-12-15

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al{sub 2}O{sub 3}), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It is shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.

  8. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa.

    PubMed

    Meier, Thomas; Haase, Jürgen

    2015-12-01

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al2O3), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It is shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures. PMID:26724046

  9. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Haase, Jürgen

    2015-12-01

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al2O3), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It is shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.

  10. Thermal stress analysis of pipe flange connections with raised-face gasket subjected to heat conduction

    SciTech Connect

    Sawa, Toshiyuki; Kotani, Kenichi

    1996-12-01

    This paper deals with thermal stress analysis of a pipe flange connection with a raised-face gasket subjected to heat conduction. In the analysis, pipe flange, hubs of the flanges and a raised-face gasket are replaced by finite hollow cylinders. When the inner surface is subjected to heat conduction due to contained fluid and the outer surface are kept at a constant temperature, temperature distribution of the connection is analyzed. Using the temperature distribution, thermoelastic displacement potential is determined. Thermal stresses and displacements are analyzed by using the thermoelastic displacement potential and axisymmetrical theory of elasticity. Experiments are performed. The analytical results are in fairly good agreement with the experimental results concerning the variation of axial bolt force and the axial strain at the hubs of pipe flange. In the numerical calculations, the effects of the ratios of Young`s modulus and the gasket thickness between the flanges and the gaskets on the contact stress distribution are examined. As the results, it is seen that the thermal stress at the inner surface increases with a decrease of the ratio of Young`s modulus and that it increases with a decrease of the gasket thickness.

  11. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds.

    PubMed

    Bat, Erhan; Kothman, Bas H M; Higuera, Gustavo A; van Blitterswijk, Clemens A; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    A practical method of photocrosslinking high molecular weight poly(trimethylene carbonate)(PTMC) is presented. Flexible, elastomeric and biodegradable networks could be readily prepared by UV irradiating PTMC films containing pentaerythritol triacrylate (PETA) and a photoinitiator. The network characteristics, mechanical properties, wettability, and in vitro enzymatic erosion of the photocrosslinked PTMC films were investigated. Densely crosslinked networks with gel contents up to 98% could be obtained in this manner. Upon photocrosslinking, flexible and tough networks with excellent elastomeric properties were obtained. To illustrate the ease with which the properties of the networks can be tailored, blends of PTMC with mPEG-PTMC or with PTMC-PCL-PTMC were also photocrosslinked. The wettability and the enzymatic erosion rate of the networks could be tuned by blending with block copolymers. Tissue engineering scaffolds were also fabricated using these flexible photocrosslinkable materials. After crosslinking, the fabricated PTMC-based scaffolds showed inter-connected pores and extensive microporosity. Human mesenchymal stem cell (hMSC) culturing studies showed that the photocrosslinked scaffolds prepared from PTMC and PTMC/PTMC-PCL-PTMC blends are well-suited for tissue engineering applications. PMID:20739060

  12. Antimicrobial Effect of Zataria Multiflora Extract in Comparison with Chlorhexidine Mouthwash on Experimentally Contaminated Orthodontic Elastomeric Ligatures

    PubMed Central

    Aghili, Hossein; Jafari Nadoushan, Abbas Ali; Herandi, Vahid

    2015-01-01

    Objectives: Long-term use of orthodontic appliances and fixation ligatures creates a favorable environment for the accumulation of oral normal microflora and increases the risk of enamel demineralization and periodontal disease. The aim of this study was to compare the antimicrobial effects of Zataria Multiflora extract and 0.2% chlorhexidine (CHX) mouthwash on experimentally contaminated orthodontic elastomeric ligatures. Materials and Methods: In this lab trial study, Iranian and foreign-made elastomeric ligatures were experimentally contaminated in Streptococcus mutans, Enterococcus faecalis and Candida albicans suspensions. Ligatures were then decontaminated using 0.2% CHX as the control, 0.5 mg/ml Zataria multiflora extract mouthwashes as the test and phosphate buffered saline (PBS) as the negative control for one hour. Antimicrobial properties of both solutions were evaluated by comparing the mean viable bacterial cell count on both rings after decontamination, using SPSS version 15 software. Results: The mean viable bacterial cell count on Iranian ligatures was greater than that on foreign-made ligatures before disinfection (P=0.001), however this difference for C. albicans was not statistically significant (P=0.061). Chlorhexidine mouthwash completely eliminated all tested microorganisms attached to both elastomeric rings, but Zataria extract was only capable of completely eliminating C. albicans from both ligatures. Statistically significant differences were found in viable bacterial counts on both ligatures before and after disinfection with Zataria extract (P=0.0001). Conclusion: Zataria multiflora extract has antimicrobial properties and can be used for disinfection of elastomeric ligatures. In vivo studies are required to evaluate the efficacy of the incorporation of this herbal extract in mouthwashes for orthodontic patients. PMID:26005448

  13. Thin graphite bipolar plate with associated gaskets and carbon cloth flow-field for use in an ionomer membrane fuel cell

    DOEpatents

    Marchetti, George A.

    2003-01-03

    The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.

  14. Soft materials with recoverable shape factors from extreme distortion states

    DOE PAGESBeta

    Goff, Jonathan; Sulaiman, Santy; Arkles, Barry; Lewicki, James P.

    2016-01-20

    We present elastomeric polysiloxane nanocomposites with elongations of >5000% (more than 3× greater than any previously reported material) with excellent shape recovery. Highly deformable materials are desirable for the fabrication of stretchable implants and microfluidic devices. No crosslinking or domain formation is observed by a variety of analytical techniques, suggesting that their elastomeric behavior is caused by polymer chain entanglements.

  15. Assessing patient preference for two types of elastomeric infusion device.

    PubMed

    Dodd, Susan

    Home administration of antibiotic therapy to cystic fibrosis patients is one of many applications for the use of elastomeric infusion devices. Patient acceptability can significantly affect adherence to complex drug regimens with concordance being a concern in this patient population. While patient acceptance is often cited as a factor in pump selection, patient preference has not been assessed within a particular class of infusion device. The objective of this study was to assess patient preference for one type of elastomeric infusion device (Baxter Intermate--hard-shelled design) or another (Fresenius Kabi Eclipse--soft-shelled design). Twenty-four patients entered the study. 20/24 (83%) patients expressed a preference for the Eclipse, while 4/24 (17%) stated no preference for either device. The Eclipse device was found to be much more favourable in terms of comfort and discreetness. Patient preference should therefore be given significant consideration in order to maximize concordance with drug regimens. PMID:18026019

  16. Bending a beam by a generalized ideal elastomeric gel

    PubMed Central

    Cai, Shengqiang

    2015-01-01

    A hybrid beam with a gel layer bonded on the top of an elastic non-swellable substrate has been commonly adopted to make various sensors and actuators. Usually, different models need to be developed for the hybrid beam when different gels are used in the system. In this article, based on the generalized ideal elastomeric gel model, we formulate a unified relationship between the swelling of hydrogels and the bending curvature of the elastic beam, which is independent of specific swelling mechanisms of gels. We further illustrate that the equations derived in the article can be used to validate the ideal elastomeric gel model and measure the elasticity of polymer networks of the gels. PMID:25792965

  17. Interaction of Reinforced Elastomeric Bearings in Bridge Construction

    NASA Astrophysics Data System (ADS)

    Nittmannová, Ľubica; Magura, Martin

    2016-03-01

    The aim of this paper is to demonstrate the behavior of reinforced elastomeric bearings under various loads. They are made of special types of bearings. The experimental verification of these special bearings has been tested on various types of loading. The results of the experimental measurements are compared with the results of the numerical modeling and calculations according to the standard assumptions in STN EN 1337-3. In the conclusion, the results are summarized for the selected types of bearings.

  18. Generation and detection of gigahertz surface acoustic waves using an elastomeric phase-shift mask

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Zhao, Peng; Zhao, Ji-Cheng; Cahill, David G.

    2013-10-01

    We describe a convenient approach for measuring the velocity vSAW of surface acoustic waves (SAWs) of the near-surface layer of a material through optical pump-probe measurements. The method has a lateral spatial resolution of <10 μm and is sensitive to the elastic constants of the material within ≈300 nm of the surface. SAWs with a wavelength of 700 nm and 500 nm are generated and detected using an elastomeric polydimethylsiloxane phase-shift mask which is fabricated using a commercially available Si grating as a mold. Time-domain electromagnetics calculations show, in agreement with experiment, that the efficiency of the phase-shift mask for generating and detecting SAWs decreases rapidly as the periodicity of the mask decreases below the optical wavelength. We validate the experimental approach using bulk and thin film samples with known elastic constants.

  19. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Joo Jeong, Yeon; Islam, Mohammad F.

    2015-07-01

    Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of density 13-15 mg mL-1, which corresponds to a volume fraction of 0.009, that were mechanically robust and recovered their original shape even after uniaxially compressing them by more than 50%. We made these porous elastomeric composites using a solution based assembly process that involved first shaping SWCNTs into porous networks of density ~7 mg mL-1 (volume fraction ~0.005) followed by coatings of SWCNT networks with 6-8 mg mL-1 of h-BN (volume fraction ~0.003-0.004). The h-BN coating strengthened the underlying SWCNT networks, likely via reinforcement of the nodes between the SWCNTs, resulting in an increase in Young's modulus by ~100% compared to that of SWCNT networks alone. Surprisingly, SWCNT networks, which were initially highly fragile, became elastomeric after h-BN coating, even though porous structures solely from h-BN are very brittle. Our fabrication approach preserves the morphology of the underlying networks, allowing for fabrication of various shapes and sizes of porous composites of h-BN and SWCNTs. Finally, our fabrication scheme is robust and facile for the preparation of porous composites of diverse ceramic materials and SWCNTs using the appropriate ceramic-precursor.Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of

  20. In-use Stability of Ceftaroline Fosamil in Elastomeric Home Infusion Systems and MINI-BAG Plus Containers.

    PubMed

    Bhattacharya, Sisir; Parekh, Satish; Dedhiya, Mahendra

    2015-01-01

    The objective of this study was to determine in-use stability of ceftaroline fosamil infusion solution of concentrations up to 12 mg/mL in elastomeric home infusion system prefilled with 0.9% Sodium Chloride Injection USP or 5% Dextrose Injection USP and MINI-BAG Plus Container delivery devices prefilled with 0.9% sodium chloride injection. In-use ceftaroline fosamil infusion solution (12 mg/mL) was prepared for elastomeric home infusion systems (Homepump Eclipse, Baxter Intermate, and AccuRx Elastomeric Pump) pre-filled with either 0.9% sodium chloride injection or 5% dextrose; or Baxter MINI-BAG Plus Containers pre-filled with 0.9% Sodium Chloride Injection USP (4 mg/mL to 12 mg/mL ceftaroline fosamil in final solution). The systems were stored refrigerated for 24 hours followed by up to 6 hours of storage at room temperature. Samples were analyzed at various time points for assay and degradation product by a validated stability-indicating high-performance liquid chromatography method. In-use ceftaroline fosamil infusion solution, ranging from 4-mg/mL to a maximum of 12-mg/mL concentration, in elastomeric home infusion systems prefilled with 0.9% sodium chloride injection or 5% dextrose, and MINI-BAG Plus Containers prefilled with 0.9% sodium chloride injection were chemically stable for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours at room temperature and had acceptable compatibility with material used. Ceftaroline fosamil (4 mg/mL to 12 mg/mL) maintains its potency for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours of storage at room temperature upon reconstitution in infusion solution with 0.9% sodium chloride or 5% dextrose when used in elastomeric home infusion system and MINI-BAG Plus Containers delivery devices prefilled with 0.9% sodium chloride injection. PMID:26775451

  1. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes.

    PubMed

    Jeong, Yeon Joo; Islam, Mohammad F

    2015-08-14

    Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of density 13-15 mg mL(-1), which corresponds to a volume fraction of 0.009, that were mechanically robust and recovered their original shape even after uniaxially compressing them by more than 50%. We made these porous elastomeric composites using a solution based assembly process that involved first shaping SWCNTs into porous networks of density ∼7 mg mL(-1) (volume fraction ∼0.005) followed by coatings of SWCNT networks with 6-8 mg mL(-1) of h-BN (volume fraction ∼0.003-0.004). The h-BN coating strengthened the underlying SWCNT networks, likely via reinforcement of the nodes between the SWCNTs, resulting in an increase in Young's modulus by ∼100% compared to that of SWCNT networks alone. Surprisingly, SWCNT networks, which were initially highly fragile, became elastomeric after h-BN coating, even though porous structures solely from h-BN are very brittle. Our fabrication approach preserves the morphology of the underlying networks, allowing for fabrication of various shapes and sizes of porous composites of h-BN and SWCNTs. Finally, our fabrication scheme is robust and facile for the preparation of porous composites of diverse ceramic materials and SWCNTs using the appropriate ceramic-precursor. PMID:26161911

  2. Manikin-based performance evaluation of elastomeric respirators against combustion particles.

    PubMed

    He, Xinjian; Yermakov, Michael; Reponen, Tiina; McKay, Roy T; James, Kelley; Grinshpun, Sergey A

    2013-01-01

    This study investigated the effects of faceseal leakage, breathing flow, and combustion material on the overall (non-size-selective) penetration of combustion particles into P-100 half and full facepiece elastomeric respirators used by firefighters. Respirators were tested on a breathing manikin exposed to aerosols produced by combustion of three materials (wood, paper, and plastic) in a room-size exposure chamber. Testing was performed using a single constant flow (inspiratory flow rate = 30 L/min) and three cyclic flows (mean inspiratory flow rates = 30, 85, and 135 L/min). Four sealing conditions (unsealed, nose-only sealed, nose and chin sealed, and fully sealed) were examined to evaluate the respirator faceseal leakage. Total aerosol concentration was measured inside (C(in)) and outside (C(out)) the respirator using a condensation particle counter. The total penetration through the respirator was determined as a ratio of the two (P = C(in) / C(out)). Faceseal leakage, breathing flow type and rate, and combustion material were all significant factors affecting the performance of the half mask and full facepiece respirators. The efficiency of P-100 respirator filters met the NIOSH certification criteria (penetration ≤0.03%); it was not significantly influenced by the challenge aerosol and flow type, which supports the current NIOSH testing procedure using a single challenge aerosol and a constant airflow. However, contrary to the NIOSH total inward leakage (TIL) test protocol assuming that the result is independent on the type of the tested aerosol, this study revealed that the challenge aerosol significantly affects the particle penetration through unsealed and partially sealed half mask respirators. Increasing leak size increased total particle penetration. The findings point to some limitations of the existing TIL test in predicting protection levels offered by half mask elastomeric respirators. PMID:23442086

  3. 21 CFR 177.1210 - Closures with sealing gaskets for food containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. Copies are available from the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Closures with sealing gaskets for food containers. 177.1210 Section 177.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  4. 21 CFR 177.1210 - Closures with sealing gaskets for food containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Closures with sealing gaskets for food containers. 177.1210 Section 177.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single...

  5. 21 CFR 177.1210 - Closures with sealing gaskets for food containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Viscometer),” which is incorporated by reference in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. Copies... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Closures with sealing gaskets for food containers. 177.1210 Section 177.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  6. 21 CFR 177.1210 - Closures with sealing gaskets for food containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. Copies are available from the... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Closures with sealing gaskets for food containers. 177.1210 Section 177.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  7. 21 CFR 177.1210 - Closures with sealing gaskets for food containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. Copies are available from the... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Closures with sealing gaskets for food containers. 177.1210 Section 177.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  8. Assessment of airborne asbestos exposure during the servicing and handling of automobile asbestos-containing gaskets.

    PubMed

    Blake, Charles L; Dotson, G Scott; Harbison, Raymond D

    2006-07-01

    Five test sessions were conducted to assess asbestos exposure during the removal or installation of asbestos-containing gaskets on vehicles. All testing took place within an operative automotive repair facility involving passenger cars and a pickup truck ranging in vintage from late 1960s through 1970s. A professional mechanic performed all shop work including engine disassembly and reassembly, gasket manipulation and parts cleaning. Bulk sample analysis of removed gaskets through polarized light microscopy (PLM) revealed asbestos fiber concentrations ranging between 0 and 75%. Personal and area air samples were collected and analyzed using National Institute of Occupational Safety Health (NIOSH) methods 7400 [phase contrast microscopy (PCM)] and 7402 [transmission electron microscopy (TEM)]. Among all air samples collected, approximately 21% (n = 11) contained chrysotile fibers. The mean PCM and phase contrast microscopy equivalent (PCME) 8-h time weighted average (TWA) concentrations for these samples were 0.0031 fibers/cubic centimeters (f/cc) and 0.0017 f/cc, respectively. Based on these findings, automobile mechanics who worked with asbestos-containing gaskets may have been exposed to concentrations of airborne asbestos concentrations approximately 100 times lower than the current Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) of 0.1 f/cc. PMID:16730109

  9. Response of elastomeric packaging components to a corrosive simulant mixed waste

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1997-10-01

    The purpose of hazardous and radioactive materials packaging is to enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations in the US have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified by the US Department of Transportation and the US Nuclear Regulatory Commission. Based on these national requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at SNL. In this paper, the authors present the results of Part B of the second phase of this testing program. The first phase screened five liner materials and six seal materials towards four simulant mixed wastes. Part A of the second phase involved the comprehensive testing of five candidate liner materials to an aqueous Hanford Tank simulant mixed waste. Part B involved similar testing on elastomeric materials, ethylene-propylene and butadiene-acrylonitrile rubber. The comprehensive testing protocol involved exposing the respective materials to a matrix of four gamma radiation doses ({approximately}1, 3, 6, and 40 kGy), three temperatures (18, 50, and 60 C), and four exposure times (7, 14, 28, and 180 days). Following their exposure to these combinations of conditions, the materials were evaluated by measuring six material properties. These properties were specific gravity, dimensional changes, hardness, vapor transport rates, compression set, and mechanical properties.

  10. Seismic response analyses of base isolated structures with high damping elastomeric bearings

    SciTech Connect

    Wang, C.Y.; Tang, Y.; Chang, Y.W.; Seidensticker, R.W. ); Marchertas, A.H. )

    1991-01-01

    Seismic response analysis of base-isolated structures with high damping elastomeric bearings is described. Emphasis is placed on the adaptation of a nonlinear constitutive model for the isolation bearing together with the treatment of foundation embedment for the soil-structure-interaction analysis. The constitutive model requires six input parameters derived from bearing experimental data under sinusoidal loading. The characteristic behavior of bearing, such as the variation of shear modulus and material damping with the change of maximum shear deformation, can be captured closely by the formulation. In the treatment of soil embedment a spring method is utilized to evaluate the foundation input motion as well as soil stiffness and damping. The above features have been incorporated into a three-dimensional system response program, SISEC, developed at Argonne National Laboratory. Sample problems are presented to illustrate the relative response of isolated and unisolated structures. 11 refs., 12 figs.

  11. Flame resistant elastomeric polymer development. [for use in space shuttle instrument packaging

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S. G.; Sidman, K. R.

    1975-01-01

    Elastomeric products were developed for use in the space shuttle program, and investigations were conducted to improve the properties of elastomers developed in previous programs, and to evaluate the possibility of using lower-cost general purpose polymers. Products were fabricated and processed on conventional processing equipment; these products include: foams based on fluorinated rubber flame-retarded compounds with a density of 20-30 pounds/cubic foot for use as padding and in helmets; foams based on urethane for use in instrument packaging in the space shuttle; flexible and semi-rigid films of fluorinated rubber and neoprene compounds that would not burn in a 70% nitrogen, 30% oxygen atmosphere, and in a 30% nitrogen, 70% oxygen atmosphere, respectively for use in packaging or in laminates; coated fabrics which used both nylon and Kelvar fabric substrates, coated with either fluorinated or neoprene polymer compositions to meet specific levels of flame retardancy; and other flame-resistant materials.

  12. PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE

    SciTech Connect

    Verst, C.; Skidmore, E.; Daugherty, W.

    2014-05-30

    A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading to a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.

  13. Life prediction of elastomeric and thermoplastic components

    SciTech Connect

    Stevenson, A.

    1994-12-31

    Life prediction tests for polymeric materials have been in use for a considerable period of time. However there are still fundamental problems with their usage and interpretation in terms of engineering performance. In particular, it is not yet in general possible to relate the rate of change of physical properties that arise as a consequence of chemical aging to the rate of change in the underlying chemical structure or morphology. Also, different physical properties may change at different rates and these materials are generally non-linear. This renders accelerated life prediction testing potentially unreliable. This paper reviews this general problem area and discusses advances which need to be made with respect to the roles of the permeation of fluids, mechanical fatigue crack growth and time dependent changes. Illustrative examples are discussed of both thermoplastics and crosslinked elastomers. Finally, a general scheme is discussed for future research in this area, related to the development of interactive numerical modelling.

  14. Micromechanical damage and fracture in elastomeric polymers

    NASA Astrophysics Data System (ADS)

    Heyden, Stefanie

    This thesis aims at a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. The failure model is motivated by post-mortem fractographic observations of void nucleation, growth and coalescence in polyurea stretched to failure, and accounts for the specific fracture energy per unit area attendant to rupture of the material. Furthermore, it is shown that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. Optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains, and to the strain-gradient elasticity regularization, are derived. Based on optimal scaling laws, it is shown how the critical energy-release rate of specific materials can be determined from test data. In addition, the scope and fidelity of the model is demonstrated by means of an example of application, namely Taylor-impact experiments of polyurea rods. Hereby, optimal transportation meshfree approximation schemes using maximum-entropy interpolation functions are employed. Finally, a different crazing model using full derivatives of the deformation gradient and a core cut-off is presented, along with a numerical non-local regularization model. The numerical model takes into account higher-order deformation gradients in a finite element framework. It is shown how the introduction of non-locality into the model stabilizes the effect of strain localization to small volumes in materials undergoing softening. From an investigation of craze formation in the limit of large deformations, convergence studies verifying scaling properties of both local- and non-local energy

  15. Mechanically durable and highly conductive elastomeric composites from long single-walled carbon nanotubes mimicking the chain structure of polymers.

    PubMed

    Ata, Seisuke; Kobashi, Kazufumi; Yumura, Motoo; Hata, Kenji

    2012-06-13

    By using long single-walled carbon nanotubes (SWNTs) as a filler possessing the highest aspect ratio and small diameter, we mimicked the chain structure of polymers in the matrix and realized a highly conductive elastomeric composite (30 S/cm) with an excellent mechanical durability (4500 strain cycles until failure), far superior to any other reported conductive elastomers. This exceptional mechanical durability was explained by the ability of long and traversing SWNTs to deform in concert with the elastomer with minimum stress concentration at their interfaces. The conductivity was sufficient to operate many active electronics components, and thus this material would be useful for practical stretchable electronic devices. PMID:22546049

  16. Drilling fluids based on a mixture of a sulfonated thermoplastic polymer and a sulfonated elastomeric polymer

    SciTech Connect

    Turner, S.R.; Lundberg, R.D.; Peiffer, D.G.; Thaler, W.A.; Walker, T.O.

    1984-01-10

    The present invention relates to mixtures of sulfonated thermoplastic polymers and sulfonated elastomeric polymers which function as viscosification agents when added to oil-based drilling muds which are the fluids used to maintain pressure, cool drill bits, and lift cuttings from the holes in the drilling operation for oil and gas wells. The sulfonated thermoplastic and elastomeric polymers both have about 5 to about 200 meq. of sulfonate groups per 100 grams of the sulfonated thermoplastic or elastomeric polymers, wherein the sulfonated groups are neutralized with a metallic cation or an amine or ammonium counterion. A polar cosolvent can optionally be added to the mixture of oil drilling mud and sulfonated thermoplastic and elastomeric polymers, wherein the polar cosolvent increases the solubility of the sulfonated thermoplastic and elastomeric polymer in the oil drilling mud by decreasing the strong ionic interactions between the sulfonate groups of the sulfonated polymers.

  17. Buckling dynamics of a solvent-stimulated stretched elastomeric sheet.

    PubMed

    Lucantonio, Alessandro; Roché, Matthieu; Nardinocchi, Paola; Stone, Howard A

    2014-04-28

    When stretched uniaxially, a thin elastic sheet may exhibit buckling. The occurrence of buckling depends on the geometrical properties of the sheet and the magnitude of the applied strain. Here we show that an elastomeric sheet initially stable under uniaxial stretching can destabilize when exposed to a solvent that swells the elastomer. We demonstrate experimentally and computationally that the features of the buckling pattern depend on the magnitude of stretching, and this observation offers a new way for controlling the shape of a swollen homogeneous thin sheet. PMID:24668079

  18. Mechanics of precisely controlled thin film buckling on Elastomeric substrate.

    SciTech Connect

    Sun, Y.; Jiang, H.; Rogers, J.; Huang, Y.; Arizone State Univ.; Beckman Inst.; University of Illinois Urbana-Champaign

    2007-01-01

    Stretchable electronics has many important and emerging applications. Sun et al. [Nature Nanotech. 1, 201 (2006)] recently demonstrated stretchable electronics based on precisely controlled buckle geometries in GaAs and Si nanoribbons on elastomeric substrates. A nonlinear buckling model is presented in this letter to study the mechanics of this type of thin film/substrate system. An analytical solution is obtained for the buckling geometry (wavelength and amplitude) and the maximum strain in buckled thin film. This solution agrees very well with the experiments, and shows explicitly how buckling can significantly reduce the thin film strain to achieve the system stretchability.

  19. Elastomer degradation sensor using a piezoelectric material

    DOEpatents

    Olness, Dolores U.; Hirschfeld, deceased, Tomas B.

    1990-01-01

    A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.

  20. Hierarchically UVO patterned elastomeric and thermoplastic structures

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Kulkarni, Manish; Marshall, Allan; Karim, Alamgir

    2014-03-01

    We demonstrate a simple yet versatile method to fabricate tunable hierarchical micro-nanostructures on flexible Poly(dimethylsiloxane) (PDMS) elastomer and thermoplastic polymer surface by a two-step process. Nanoscale patterned PDMS was obtained by imprinting compact disc (CD)/digital video disc (DVD) patterns. The second micro pattern was superposed by selective densification of PDMS by exposing to ultraviolet-ozone radiation (UVO) through micro-patterned TEM grid as a mask. The nanoscale patterns are preserved through UVO exposure step leading to formation of deep hierarchical patterns, so that for a 19 um square mesh, the micro pattern has a depth of 600nm with 6h PDMS UVO exposure time. This simple method can be promoted to fabricate hierarchical structures of thermoplastic materials (such as polystyrene), from which the mechanism of capillary imprinting and thermal stability of hierarchical patterns are investigated. This study is potentially important to various applications ranging from biomimetic scaffolds to solar cell.

  1. Three-Dimensional Elastomeric Scaffolds Designed with Cardiac-Mimetic Structural and Mechanical Features

    PubMed Central

    Neal, Rebekah A.; Jean, Aurélie; Park, Hyoungshin; Wu, Patrick B.; Hsiao, James; Engelmayr, George C.; Langer, Robert

    2013-01-01

    Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering. PMID:23190320

  2. Elastically stretchable thin film conductors on an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Jones Harris, Joyelle Elizabeth

    Imagine a large, flat screen television that can be rolled into a small cylinder after purchase in the store and then unrolled and mounted onto the wall of a home. The electronic devices within the television must be able to withstand large deformation and tensile strain. Consider a robot that is covered with an electronic skin that simulates human skin. The skin would enable the machine to lift an elderly person with care and sensitivity. The skin will endure repeated deformation with the highest tensile strains being experienced at the robot's joints. These applications and many others will benefit from stretchable electronic circuitry. While several different methods have been employed to create stretchable electronics, all methods use a common tool -- stretchable conductors. Therefore, the goal of this thesis work was to fabricate elastically stretchable conductors that can be used in stretchable electronics. We deposited Au thin films on an elastomeric substrate, and the resulting conductors remained electrically continuous when stretched by 30% and more. We developed photolithographic processes that can be used to pattern elastically stretchable conductors with a 10 mum resolution. We fabricated bi-level stretchable conductors that are separated by an elastomeric insulator and are electrically connected through via holes in the insulator. We applied our bi-level conductors to create a stretchable resistor-inductor-capacitor (RLC) circuit with a tunable resonant frequency. We also used stretchable conductors to measure action potentials in biological samples. This thesis describes the fabrication and application of our elastically stretchable conductors.

  3. Viscoelastic and elastomeric active matter: Linear instability and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Hemingway, E. J.; Cates, M. E.; Fielding, S. M.

    2016-03-01

    We consider a continuum model of active viscoelastic matter, whereby an active nematic liquid crystal is coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τC. To explore the resulting interplay between active and polymeric dynamics, we first generalize a linear stability analysis (from earlier studies without polymer) to derive criteria for the onset of spontaneous heterogeneous flows (strain rate) and/or deformations (strain). We find two modes of instability. The first is a viscous mode, associated with strain rate perturbations. It dominates for relatively small values of τC and is a simple generalization of the instability known previously without polymer. The second is an elastomeric mode, associated with strain perturbations, which dominates at large τC and persists even as τC→∞ . We explore the dynamical states to which these instabilities lead by means of direct numerical simulations. These reveal oscillatory shear-banded states in one dimension and activity-driven turbulence in two dimensions even in the elastomeric limit τC→∞ . Adding polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a type of drag reduction. The effect of including strong antagonistic coupling between the nematic and polymer is examined numerically, revealing a rich array of spontaneously flowing states.

  4. Thermoplastic vulcanizates: new materials of choice.

    PubMed

    Severyns, K

    2000-03-01

    Increasingly, thermoplastic vulcanizates of ethylene propylene diene monomer rubber-polypropylene are being specified for medical applications. This article describes their properties and advantages over thermoset rubbers and other conventional medical elastomeric materials. PMID:10915490

  5. “Pop-slide” patterning: Rapid fabrication of microstructured PDMS gasket slides for biological applications

    PubMed Central

    Ramji, Ramesh; Khan, Nafeesa T; Muñoz-Rojas, Andrés; Miller-Jensen, Kathryn

    2015-01-01

    We describe a “pop-slide” patterning approach to easily produce thin film microstructures on the surface of glass with varying feature sizes (3 μm – 250 μm) and aspect ratios (0.066 – 3) within 45 minutes. This low cost method does not require specialized equipment while allowing us to produce micro structured gasket layers for sandwich assays and could be readily applied to many biological applications. PMID:26949529

  6. Estimate for the fractal dimension of the Apollonian gasket in d dimensions.

    PubMed

    Farr, R S; Griffiths, E

    2010-06-01

    We adapt a recent theory for the random close packing of polydisperse spheres in three dimensions [R. S. Farr and R. D. Groot, J. Chem. Phys. 131, 244104 (2009)] in order to predict the Hausdorff dimension dA of the Apollonian gasket in dimensions 2 and above. Our approximate results agree with published values in two and three dimensions to within 0.05% and 0.6%, respectively, and we provide predictions for dimensions 4-8. PMID:20866417

  7. Storage containers for radioactive material

    DOEpatents

    Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.

    1981-01-01

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  8. Storage containers for radioactive material

    DOEpatents

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  9. Z-Pinch Wire-Electrode Contact Resistance Studies Using Weighted and Soft Metal Gasket Contacts*

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Zier, J. C.; Thurtell, A. F.; French, D. M.; Gilgenbach, R. M.; Tang, W.; Lau, Y. Y.

    2008-11-01

    The contact made between z-pinch wires and electrodes has a significant effect on both the energy deposited in the wires and the uniformity of the expansion profile of the wires. We have shown that using soft metal gaskets can improve wire-electrode contact significantly over typical weighted contacts. Images of wire expansion profile and wire plasma emission will be presented for single and double wire shots on a 16 kA, 100 kV 4-stage Marx bank with 150 ns risetime. Bench resistance measurements for aluminum, stainless steel, and tungsten wires with diameters ranging from 7.5 um to 30 um will be presented. These measurements utilized both soft metal gasket contacts (gaskets include: indium, silver, aluminum, tin, and lead) and double-ended wire weight contacts (weights ranged from 0.4 g to 1.9 g). *This research was supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the University of Michigan. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship sponsored by Sandia National Labs.

  10. Determination of design gasket assembly stress with the new constants -- Exact Method

    SciTech Connect

    Guizzo, A.C.

    1996-12-01

    The PVRC task force, working to determine the new design procedure for bolted flange connections, has done a great job in developing a theory based on extensive experimental work, but they are still striving to determine an adequate way to establish a calculation procedure, using the concepts behind the new gasket constants. The current draft of the new code describes the Convenient Method for doing a calculation. The results obtained by using this procedure are different from the ones obtained with the Flexible Method, an alternative calculation procedure that requires iteration to find what would be the lowest and therefore the optimum bolt load. As in some situations this iterative procedure shows no convergence, attempts are being made to modify the Convenient Method so that it would result in design bolt load figures closer to the optimum. This paper proposes and describes a direct approach for calculating the assembly stress to be applied on the gasket using the new constants concept. It proposes also the introduction of ``d`` the Tp exponent as a fourth constant and the utilization of the actual gasket diameter in the Tp calculation. Comparisons are made between these proposals and the current calculation procedure.