Science.gov

Sample records for elastomeric impression materials

  1. [Elastomeric impression materials].

    PubMed

    Anagnostopoulos, T; Tsokas, K

    1990-01-01

    A review of the literature on elastomeric impression materials, is presented in this paper. The article mentions the composition and the most important properties of the elastomeric impression materials used in dental practice. The clinical significance of these materials, physical and mechanical properties are also emphasized. In addition some new elastomeric impression materials with improved properties and a new (experimental) light-cured impression material, are mentioned. Another part of this article is the biocompatibility of these materials. In the end the great significance of handling is outlined. PMID:2130039

  2. [Elastomeric impression materials].

    PubMed

    Levartovsky, S; Folkman, M; Alter, E; Pilo, R

    2011-04-01

    Elastomeric impression materials are in common use. The impression taken should be highly precise, thus, requiring specific care when manipulatingthese materials. There are 4 groups of elastomers; polysulfide, condensation silicone, addition silicone and polyether; each differ in their setting mechanism and their physical and chemical properties. This review elaborates the major properties of elastomers and its implications on their use. The impression material is inserted into the patient's mouth in a viscous state and transforms into viscoelastic state, upon withdrawal, influencing the residual deformation. The requirements are minimal residual deformation or maximal elastic recovery. As the mouth is a wet environment a major consideration is hydrophilicity. The wettability which is estimated by measuring either the contact angle of a droplet of water and the substrate post setting or the contact angle of a droplet of impression material and the wet tooth pre setting, determines the interaction of the material with both mouth fluids and gypsum. As the primary end target is to obtain a model depicting accurately the oral details, an attention to the impressions' compatibility with gypsum should also be given. Many studies were conducted to get a thorough understanding of the hydrophilic properties of each material, and the mechanism utilized, such as surfactants in hydrophilic PVS. Polyether is the only material that is truly hydrophilic; it exhibits the lowest contact angle, during and after setting. Recent studies show that during setting the Polyether hydrophilicity is increased compared to the condition after setting. Dimensional stability, a crucial property of the impression, is affected by the physical and chemical attributes of the material, such as its tear strength. Polysulfide has the highest tear strength. Tear Strength is affected by two major parameters, viscosity, a built-in property, and how fast the impression is pulled out of the mouth, the

  3. Wettability of nonaqueous elastomeric impression materials.

    PubMed

    Chai, J Y; Yeung, T C

    1991-01-01

    The wettability of eight nonaqueous elastomeric impression materials was studied by comparing their contact angles. The materials included three polyethers (one of which was light activated), three hydrophilic poly(vinyl siloxanes), one conventional poly(vinyl siloxane), and one poly(vinyl siloxane) putty. Extracted teeth were prepared to approximate the roughness of a tooth preparation. Contact angles were measured at different time intervals after the start of mixing but were not shown to be significant. The nonhydrophilic poly(vinyl siloxane) materials and the poly(vinyl siloxane) putty were found to be significantly less wettable. PMID:1817528

  4. Evaluation of dimensional stability of autoclavable elastomeric impression material.

    PubMed

    Surendra, G P; Anjum, Ayesha; Satish Babu, C L; Shetty, Shilpa

    2011-03-01

    Impressions are important sources of cross contamination between patients and dental laboratories. As a part of infection control impressions contaminated with variety of micro-organisms via blood and oral secretions should be cleaned and disinfected or sterilized before being handled in dental laboratory. The purpose of this study was to determine the effect of autoclaving on dimensional stability of elastomeric impression material (polyvinyl siloxane-Affinis). In this in vitro study standardized stainless steel die as per ADA specification number 19 was fabricated. Polyvinyl siloxane (Affinis) light body and putty viscosity elastomeric impression materials were used. A total of 40 impressions of the stainless steel die were made and numeric coding system was used to identify the samples. Measurements were made using a measuring microscope. Distance between the cross lines CD and C'D' reproduced in the impression were measured before autoclaving, immediately after autoclaving and 24 hours after autoclaving and dimensional change was calculated. The data obtained was subjected to statistical analysis. The mean difference in dimensional change between the three groups was not statistically significant (P > 0.05). However the results revealed that there was higher mean dimensional change immediately after autoclaving when compared to the other 2 time intervals. It is desirable to delay the casting of an autoclavable elastomeric impression material by about 24 hours. Though disinfection of impression is routinely followed autoclaving of impression is an effective method of sterilization. PMID:22379308

  5. Hydrophilicity of unset and set elastomeric impression materials.

    PubMed

    Rupp, Frank; Geis-Gerstorfer, Jurgen

    2010-01-01

    The aim of this study was to compare the initial hydrophilicity of unset and set elastomeric impression materials. Initial water contact angles were studied on thin unset and set films of one polyether and six polyvinyl siloxane (PVS) impression materials using high-resolution drop shape analysis at drop ages of 1 and 3 seconds. All unset PVS materials were very hydrophobic initially but showed different kinetics of hydrophilization. In contrast, the unset polyether was more hydrophilic initially but lacked distinct hydrophilization. All impression materials showed statistically significant contact angle differences between unset and set surfaces (P < .05). Dependent on the drop age, two PVS materials reached or exceeded the hydrophilicity of the polyether (P < .05). It can be concluded that studies on the wetting behavior of elastomeric impression materials should consider both the experimental drop age and set and unset material surfaces. PMID:21209992

  6. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison

    PubMed Central

    De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  7. Comparison of Dimensional Accuracies Using Two Elastomeric Impression Materials in Casting Three-dimensional Tool Marks.

    PubMed

    Wang, Zhen

    2016-05-01

    The purpose of this study was to evaluate two types of impression materials which were frequently used for casting three-dimensional tool marks in China, namely (i) dental impression material and (ii) special elastomeric impression material for tool mark casting. The two different elastomeric impression materials were compared under equal conditions. The parameters measured were dimensional accuracies, the number of air bubbles, the ease of use, and the sharpness and quality of the individual characteristics present on casts. The results showed that dental impression material had the advantage of special elastomeric impression material in casting tool marks in crime scenes; hence, it combined ease of use, dimensional accuracy, sharpness and high quality. PMID:27122422

  8. The Effect of Disinfectants and a Surface Wetting Agent on the Wettability of Elastomeric Impression Materials: An In Vitro Study

    PubMed Central

    Lad, Pritam P; Gurjar, Minal; Gunda, Sachin; Gurjar, Vivek; Rao, Nandan K

    2015-01-01

    Background: This study was carried out to evaluate the effect of two commercially available chemical disinfectants namely sodium hypochlorite and glutaraldehyde and a surface wetting agent on the wettability of three high precision elastomeric impression materials, addition silicone, condensation silicone and polyether. Materials and Methods: Three different types of elastomeric impression materials commonly used in prosthodontic practice were selected. The glutaraldehyde and sodium hypochloride solutions were employed to disinfect the impressions made with the above-mentioned elastomeric impression materials. True Blue surface wetting agent was selected. GBX contact angle analyzer was used to measure advancing and receding contact angle. Results: The results of this study have demonstrated that the polyether impression material was the most hydrophilic of all the materials, followed by hydrophilic addition silicone. Condensation silicone was least hydrophilic. All materials showed improvement in the wettability when a topical surfactant was used. Conclusion: The short term disinfection of the three elastomeric impression materials does not affect the wettability of these impression materials. PMID:26124605

  9. Thiol-Ene functionalized siloxanes for use as elastomeric dental impression materials

    PubMed Central

    Cole, Megan A.; Jankousky, Katherine C.; Bowman, Christopher N.

    2014-01-01

    Objectives Thiol- and allyl-functionalized siloxane oligomers are synthesized and evaluated for use as a radical-mediated, rapid set elastomeric dental impression material. Thiol-ene siloxane formulations are crosslinked using a redox-initiated polymerization scheme, and the mechanical properties of the thiol-ene network are manipulated through the incorporation of varying degrees of plasticizer and kaolin filler. Formulations with medium and light body consistencies are further evaluated for their ability to accurately replicate features on both the gross and microscopic levels. We hypothesize that thiol-ene functionalized siloxane systems will exhibit faster setting times and greater detail reproduction than commercially available polyvinylsiloxane (PVS) materials of comparable consistencies. Methods Thiol-ene functionalized siloxane mixtures formulated with varying levels of redox initiators, plasticizer, and kaolin filler are made and evaluated for their polymerization speed (FTIR), consistency (ISO4823.9.2), and surface energy (goniometer). Feature replication is evaluated quantitatively by SEM. The Tg, storage modulus, and creep behavior are determined by DMA. Results Increasing redox initiation rate increases the polymerization rate but at high levels also limits working time. Combining 0.86 wt% oxidizing agent with up to 5 wt% plasticizer gave a working time of 3 min and a setting time of 2 min. The selected medium and light body thiol-ene formulations also achieved greater qualitative detail reproduction than the commercial material and reproduced micrometer patterns with 98% accuracy. Significance Improving detail reproduction and setting speed is a primary focus of dental impression material design and synthesis. Radical-mediated polymerizations, particularly thiol-ene reactions, are recognized for their speed, reduced shrinkage, and ‘click’ nature. PMID:24553250

  10. A Comparative Evaluation of the Dimensional Stability of Three Different Elastomeric Impression Materials after Autoclaving – An Invitro Study

    PubMed Central

    Thota, Kiran Kumar; Ravuri, Rajyalakshmi; Tella, Suchita

    2014-01-01

    Aim of the Study: The purpose of the study was to determine the effect of autoclaving on the dimensional stability of three different elastomeric impression materials at three different time intervals. Materials and Methods: Standardized stainless steel master die as per ADA specification number 19 was fabricated. The impression materials used for the study were condensation silicone (GP1), addition silicone (GP2) and polyether (GP3). A total of 45 samples of the stainless steel die were made (n = 45), that is 15 samples for each group. Impression materials were mixed according to the manufacturer’s instructions and were loaded into the mold to make an impression of the die. Impressions were identified with the help of numerical coding system and measurements were made using stereomicroscope (MAGNUS MSZ-Bi) of 0.65x magnification with the help of image analysis software (IMACE PRO-INSIGHT VERSION.The results were subjected to statistical analysis using one way analysis of variance and student t-test for comparison between the groups. Results: Within the limitations of the study statistically significant dimensional changes were observed for all the three impression materials at three different time intervals but this change was not clinically significant. Conclusion: It is well-known fact that all impressions should be disinfected to avoid possible transmission of infectious diseases either by direct contact or cross contamination. Immersion and spray disinfection as well as various disinfection solutions have been tested and proven to be effective for this purpose. But for elastomeric impression materials these methods have proven to be ineffective as they do not prevent cross contamination among the dental team. So autoclaving was one of the most effective sterilization procedure for condensation silicone and addition silicone. Since polyether is hydrophilic it is better to disinfect the impressions as recommended by the manufacturer or by immersion or spray

  11. Properties of a new polyether urethane dimethacrylate photoinitiated elastomeric impression material.

    PubMed

    Craig, R G; Hare, P H

    1990-01-01

    The photoinitiated impression material is supplied premixed as a light-bodied material in a light-tight plastic syringe and as a heavy-bodied material in a tube. The impression material has excellent physical, mechanical, and clinical qualities with noteworthy long working times, short setting times, dimensional stability, accuracy, high tear strength, good wettability, biocompatibility, and ease of cold disinfection without loss of quality. The impression material is also compatible with gypsum and silver or copper metallizing baths. Accurate casts can be obtained by means of either a double-impression technique or a double-mix technique. PMID:2295985

  12. The effect of tray selection on the accuracy of elastomeric impression materials.

    PubMed

    Gordon, G E; Johnson, G H; Drennon, D G

    1990-01-01

    This study evaluated the accuracy of reproduction of stone casts made from impressions using different tray and impression materials. The tray materials used were an acrylic resin, a thermoplastic, and a plastic. The impression materials used were an additional silicone, a polyether, and a polysulfide. Impressions were made of a stainless steel master die that simulated crown preparations for a fixed partial denture and an acrylic resin model with cross-arch and anteroposterior landmarks in stainless steel that typify clinical intra-arch distances. Impressions of the fixed partial denture simulation were made with all three impression materials and all three tray types. Impressions of the cross-arch and anteroposterior landmarks were made by using all three tray types with only the addition reaction silicone impression material. Impressions were poured at 1 hour with a type IV dental stone. Data were analyzed by using ANOVA with a sample size of five. Results indicated that custom-made trays of acrylic resin and the thermoplastic material performed similarly regarding die accuracy and produced clinically acceptable casts. The stock plastic tray consistently produced casts with greater dimensional change than the two custom trays. PMID:2404101

  13. Influence of Custom Trays, Dual-Arch Passive, Flexed Trays and Viscosities of Elastomeric Impression Materials on Working Dies

    PubMed Central

    Kohli, Shivani; Kalsi, Rupali

    2016-01-01

    Introduction Dual arch impression technique signifies an essential improvement in fixed prosthodontics and has numerous benefits over conventional impression techniques. The accuracy of working dies fabricated from dual arch impression technique remains in question because there is little information available in the literature. Aim This study was conducted to compare the accuracy of working dies fabricated from impressions made from two different viscosities of impression materials using metal, plastic dual arch trays and custom made acrylic trays. Materials and Methods The study samples were grouped into two groups based on the viscosity of impression material used i.e. Group I (monophase), whereas Group II consisted of Dual Mix technique using a combination of light and heavy body material. These were further divided into three subgroups A, B and C depending on the type of impression tray used (metal dual arch tray, plastic dual arch tray and custom made tray). Measurements of the master cast were made using profile projector. Descriptive statistics like mean, Standard Deviation (SD) were calculated for all the groups. One way analysis of variance (ANOVA) was used for multiple group comparisons. A p-value of 0.05 or less was considered statistically significant. Results The gypsum dies obtained with the three types of impression trays using two groups of impression materials were smaller than the master models in dimensions. Conclusion The plastic dual arch trays produced dies which were the least accurate of the three groups. There was no significant difference in the die dimensions obtained using the two viscosities of impression materials. PMID:27437342

  14. Fluorinated elastomeric materials

    DOEpatents

    Lagow, Richard J.; Dumitru, Earl T.

    1986-11-04

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  15. Fluorinated elastomeric materials

    DOEpatents

    Lagow, Richard J.; Dumitru, Earl T.

    1990-02-13

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  16. Dental impression materials.

    PubMed

    Perry, Rachel

    2013-01-01

    It is clear that many impression materials are available to the veterinary dentist. They each have different inherent properties, handling characteristics, and indications for use. A thorough understanding of these concepts is essential if the veterinarian and laboratory technician are to produce meaningful and accurate reproductions of oral structures. New products are constantly being introduced to the dental market, with fantastic claims for ease of use and reproduction of detail. The reader is urged to seek independent research findings when assessing such claims, and make decisions founded in the highest possible levels of evidence. PMID:24006720

  17. Evaluation of surface detail reproduction, dimensional stability and gypsum compatibility of monophase polyvinyl-siloxane and polyether elastomeric impression materials under dry and moist conditions

    PubMed Central

    Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N. Suman; Tadi, Durga Prasad

    2016-01-01

    Objectives: This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Materials and Methods: Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. Results: When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Conclusion: Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry

  18. Dimensional Accuracy of Hydrophilic and Hydrophobic VPS Impression Materials Using Different Impression Techniques - An Invitro Study

    PubMed Central

    Pilla, Ajai; Pathipaka, Suman

    2016-01-01

    Introduction The dimensional stability of the impression material could have an influence on the accuracy of the final restoration. Vinyl Polysiloxane Impression materials (VPS) are most frequently used as the impression material in fixed prosthodontics. As VPS is hydrophobic when it is poured with gypsum products, manufacturers added intrinsic surfactants and marketed as hydrophilic VPS. These hydrophilic VPS have shown increased wettability with gypsum slurries. VPS are available in different viscosities ranging from very low to very high for usage under different impression techniques. Aim To compare the dimensional accuracy of hydrophilic VPS and hydrophobic VPS using monophase, one step and two step putty wash impression techniques. Materials and Methods To test the dimensional accuracy of the impression materials a stainless steel die was fabricated as prescribed by ADA specification no. 19 for elastomeric impression materials. A total of 60 impressions were made. The materials were divided into two groups, Group1 hydrophilic VPS (Aquasil) and Group 2 hydrophobic VPS (Variotime). These were further divided into three subgroups A, B, C for monophase, one-step and two-step putty wash technique with 10 samples in each subgroup. The dimensional accuracy of the impressions was evaluated after 24 hours using vertical profile projector with lens magnification range of 20X-125X illumination. The study was analyzed through one-way ANOVA, post-hoc Tukey HSD test and unpaired t-test for mean comparison between groups. Results Results showed that the three different impression techniques (monophase, 1-step, 2-step putty wash techniques) did cause significant change in dimensional accuracy between hydrophilic VPS and hydrophobic VPS impression materials. One-way ANOVA disclosed, mean dimensional change and SD for hydrophilic VPS varied between 0.56% and 0.16%, which were low, suggesting hydrophilic VPS was satisfactory with all three impression techniques. However, mean

  19. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  20. 21 CFR 872.3660 - Impression material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impression material. 872.3660 Section 872.3660...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3660 Impression material. (a) Identification. Impression material is a device composed of materials such as alginate or polysulfide intended to be...

  1. 21 CFR 872.3660 - Impression material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impression material. 872.3660 Section 872.3660...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3660 Impression material. (a) Identification. Impression material is a device composed of materials such as alginate or polysulfide intended to be...

  2. 21 CFR 872.3660 - Impression material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impression material. 872.3660 Section 872.3660...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3660 Impression material. (a) Identification. Impression material is a device composed of materials such as alginate or polysulfide intended to be...

  3. 21 CFR 872.3660 - Impression material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3660 Impression material. (a) Identification... device is intended to provide models for study and for production of restorative prosthetic devices,...

  4. 21 CFR 872.3660 - Impression material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3660 Impression material. (a) Identification... device is intended to provide models for study and for production of restorative prosthetic devices,...

  5. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material.

    PubMed

    Manoj, Smita Sara; Cherian, K P; Chitre, Vidya; Aras, Meena

    2013-12-01

    There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregum Soft™, 3 M ESPE and the four impression techniques used were (1) Monophase impression technique using medium body impression material. (2) One step double mix impression technique using heavy body and light body impression materials simultaneously. (3) Two step double mix impression technique using a cellophane spacer (heavy body material used as a preliminary impression to create a wash space with a cellophane spacer, followed by the use of light body material). (4) Matrix impression using a matrix of polyether occlusal registration material. The matrix is loaded with heavy body material followed by a pick-up impression in medium body material. For each technique, thirty impressions were made of a stainless steel master model that contained three complete crown abutment preparations, which were used as the positive control. Accuracy was assessed by measuring eight dimensions (mesiodistal, faciolingual and inter-abutment) on stone dies poured from impressions of the master model. A two-tailed t test was carried out to test the significance in difference of the distances between the master model and the stone models. One way analysis of variance (ANOVA) was used for multiple group comparison followed by the Bonferroni's test for pair wise comparison. The accuracy was tested at α = 0.05. In general, polyether impression material produced stone dies that were smaller except for the dies produced from the one step double mix impression technique. The ANOVA revealed a highly

  6. Soft hydrogel materials from elastomeric gluten-mimetic proteins

    NASA Astrophysics Data System (ADS)

    Bagheri, Mehran; Scott, Shane; Wan, Fan; Dick, Scott; Harden, James; Biomolecular Assemblies Team

    2014-03-01

    Elastomeric proteins are ubiquitous in both animal and plant tissues, where they are responsible for the elastic response and mechanical resilience of tissues. In addition to fundamental interest in the molecular origins of their elastic behaviour, this class of proteins has great potential for use in biomaterial applications. The structural and elastomeric properties of these proteins are thought to be controlled by a subtle balance between hydrophobic interactions and entropic effects, and in many cases their characteristic properties can be recapitulated by multi-block protein polymers formed from repeats of short, characteristic polypeptide motifs. We have developed biomimetic multi-block protein polymers based on variants of several elastomeric gluten consensus sequences. These proteins include constituents designed to maximize their solubility in aqueous solution and minimize the formation of extended secondary structure. Thus, they are examples of elastic intrinsically disordered proteins. In addition, the proteins have distributed tyrosine residues which allow for inter-molecular crosslinking to form hydrogel networks. In this talk, we present experimental and simulation studies of the molecular and materials properties of these proteins and their assemblies.

  7. Long-time dynamic compatibility of elastomeric materials with hydrazine

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.; Cuddihy, E. F.; Fedors, R. F.

    1973-01-01

    The tensile property surfaces for two elastomeric materials, EPT-10 and AF-E-332, were generated in air and in liquid hydrazine environments using constant strain rate tensile tests over a range of temperatures and elongation rates. These results were used to predict the time-to-rupture for these materials in hydrazine as a function of temperature and amount of strain covering a span of operating times from less than a minute to twenty years. The results of limited sheet-folding tests and their relationship to the tensile failure boundary are presented and discussed.

  8. Otologic complications caused by hearing aid mold impression material.

    PubMed

    Lee, Dong Hoon; Cho, Hyong-Ho

    2012-08-01

    We report two extremely rare cases of otologic complications caused by hearing aid mold impression material. The symptoms of patients with retained impression material are characteristic of the length of time the impression material is retained. In case 1 had a chronic discharge and granulation tissue of the middle ear, while case 2 presented with acute pain and dizziness. The management for retained impression material may require surgical interventions, which can be safely accomplished by standard otologic techniques. PMID:21862255

  9. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    SciTech Connect

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  10. Molecular engineering of high-performance elastomeric materials

    NASA Astrophysics Data System (ADS)

    Deng, Shengwei; Falk, Michael

    2013-03-01

    Polyurethane is a typical elastomeric material and among the most versatile materials today. It is a linear block copolymer consisting of alternating soft and hard segments with phase separation due to thermodynamic segmental incompatibility. Inspired by the hierarchical structure of spider silk, this kind of block copolymer can be synthesized with two distinct blocks that can differ in their propensity to crystallize. Either the soft or hard segments can be amorphous or semicrystalline. Recent experiments indicate that crystallizable segments lead to higher tensile strength and that systems with crystalline hard segment exhibit better stiffness, strength and mechanical toughness. Here we implement molecular dynamics simulation to investigate the influence of block architectures on mechanical properties and molecular chain movement.

  11. Comparative study of dimensional accuracy of different impression techniques using addition silicone impression material.

    PubMed

    Penaflor, C F; Semacio, R C; De Las Alas, L T; Uy, H G

    1998-01-01

    This study compared dimensional accuracy of the single, double with spacer, double with cut-out and double mix impression technique using addition silicone impression material. A typhodont containing Ivorine teeth model with six (6) full-crown tooth preparations were used as the positive control. Two stone replication models for each impression technique were made as test materials. Accuracy of the techniques were assessed by measuring four dimensions on the stone dies poured from the impression of the Ivorine teeth model. Results indicated that most of the measurements for the height, width and diameter slightly decreased and a few increased compared with the Ivorine teeth model. The double with cut-out and double mix technique presents the least difference from the master model as compared to the two latter impression techniques. PMID:10202524

  12. The fungicidal effect of ultraviolet light on impression materials

    SciTech Connect

    Ishida, H.; Nahara, Y.; Tamamoto, M.; Hamada, T. )

    1991-04-01

    The effects of ultraviolet (UV) light on fungi and impression materials were tested. UV light (250 microW/cm2) killed most Candida organisms (10(3) cells/ml) within 5 minutes. UV light (8000 microW/cm2) killed most C. albicans (10(7) cells/ml) within 2 minutes of exposure. The effect of UV light on dimensional change and surface roughness of impression materials (irreversible hydrocolloid, agar, and silicone rubber) was tested. The results showed that neither dimensional change nor surface roughness of the impression materials were affected. The results of this study indicate that UV light disinfects impression materials that are contaminated with Candida organisms.

  13. Development and Evaluation of Elastomeric Materials for Geothermal Applications

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Kalfayan, S. H.; Reilly, W. W.; Yavrouian, A. H.; Mosesman, I. D.; Ingham, J. D.

    1979-01-01

    A material was formulated having about 250-350 psi tensile strength and 30-80 percent elongation at 260 C for at least 24 hours in simulated brine. The relationship between these laboratory test results and sealing performance in actual or simulated test conditions is not entirely clear; however, it is believed that no conventional formation or casing packer design is likely to perform well using these materials. The synthetic effort focused on high temperature block copolymers and development of curable polystyrene. Procedures were worked out for synthesizing these new materials. Initial results with heat-cured unfilled polystyrene 'gum' at 260 C indicate a tensile strength of about 50 psi. Cast films of the first sample of polyphenyl quinoxaline-polystyrene block copolymer, which has 'graft-block' structure consisting of a polystyrene chain with pendant polyphenyl quinoxaline groups, show elastomeric behavior in the required temperature range. Its tensile strength and elongation at 260 C were 220-350 psi and 18-36 percent, respectively. All of these materials also showed satisfactory hydrolytic stability.

  14. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material....

  15. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material....

  16. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material....

  17. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material....

  18. Replication techniques with new dental impression materials in combination with different negative impression materials.

    PubMed

    Pameijer, C H

    1979-01-01

    New materials and new techniques have enabled the fabrication of more reliable and more accurate replicas. Not only is the reproduction of detail of importance, but the expertise required from the operator and the time involved to produce a replica are considered key factors. For various reasons a reliable and reproducible replication technique for scanning electron microscopy offers many advantages. Recently a new dental precision impression material has been introduced, which in combination with low viscosity resins has produced superior results over other techniques. This combination processed by means of a centrifugal casting machine has produced replicas which could easily be compared to a standard test die at magnifications up to 3000 X. More in depth testing will have to be performed to establish whether these materials can be universally applied to a broad spectrum of replication problems. The combination Reprosil/Spurr low viscosity imbedding medium yielded replicas of high quality which can be made with simple equipment and without possessing special skills. Centrifugation of the positive replication material into the negative impression virtually eliminated the entrapment of airbubbles. PMID:392716

  19. Clinicians reaping benefits of new concepts in impressioning.

    PubMed

    Lawson, Nathaniel C; Burgess, John O

    2015-02-01

    While conventional elastomeric impression materials are still being used to generate excellent impressions, the future of impression-taking is undoubtedly with digital intraoral scanners. Advances in scanning systems are making this technology easier to use and more practical for dentists. PMID:25822643

  20. A new generation of sterile and radiopaque impression materials: an in vitro cytotoxicity study.

    PubMed

    Coppi, Chiara; Paolinelli Devincenzi, Chiara; Bortolini, Sergio; Consolo, Ugo; Tiozzo, Roberta

    2007-07-01

    Impression materials are largely used to record the geometry of dental tissue. Hence, the assessment of their possible cytotoxicity is a necessary step in the evaluation of their biocompatibility. The present study is carried out to evaluate the cytotoxicity of a new elastomeric sterile and radiopaque impression material. Human gingival fibroblasts, cultured in vitro are exposed directly to Elite Implant in three different viscosities, heavy, medium, and light. At 3, 9, 24, 48, and 72 h, the cellular proliferation is evaluated. In parallel, human gingival fibroblasts are exposed indirectly by means of fluid extracts of Elite Implant. The cellular viability is evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, (MTT) assay (Sigma, St Louis, Mo). The gingival fibroblasts proliferation and viability are unaffected by the presence of Elite Implant. This new impression material may represent a safe medical device for clinical and surgical applications. In addition, this material is radiopaque and, thus, can be identified radiographically. PMID:17065163

  1. The dimensional accuracy of polyvinyl siloxane impression materials using two different impression techniques: An in vitro study

    PubMed Central

    Kumari, Nirmala; Nandeeshwar, D. B.

    2015-01-01

    Aim of the Study: To evaluate and compare the linear dimensional changes of the three representative polyvinyl siloxane (PVS) impression materials and to compare the accuracy of single mix with double mix impression technique. Methodology: A study mold was prepared according to revised American Dental Association specification number 19 for nonaqueous elastic dental impression materials. Three PVS impression materials selected were Elite-HD, Imprint™ II Garant, Aquasil Ultra Heavy. Two impression techniques used were single mix and double mix impression technique. A total of 60 specimens were made and after 24 h the specimens were measured using profile projector. Statistical Analysis: The data were analyzed using one-way analyses of variance analysis and significant differences were separated using Student's Newman–Keul's test. Results: When all the three study group impression materials were compared for double mix technique, the statistically significant difference was found only between Imprint™ II Garantand Elite-HD (P < 0.05). Similarly, using single mix technique, statistically significant difference were found between Elite-HD and Imprint™ II Garant (P < 0.05) and also between Aquasil Ultra Heavy and Elite-HD (P < 0.05). When the linear dimensional accuracy of all three impression material in double mix impression technique and single mix impression technique were compared with the control group, Imprint™ II Garant showed the values more nearing to the values of master die, followed by Aquasil Ultra Heavy and Elite-HD respectively. Conclusion: Among the impression materials Imprint™ II Garant showed least dimensional change. Among the impression techniques, double mix impression technique showed the better results. PMID:26929515

  2. Does immediate dentin sealing influence the polymerization of impression materials?

    PubMed Central

    Ghiggi, Paula Cristine; Steiger, Arno Kieling; Marcondes, Maurem Leitão; Mota, Eduardo Gonçalves; Burnett, Luiz Henrique; Spohr, Ana Maria

    2014-01-01

    Objectives: The objective of the following study is to evaluate the interaction between the resin materials used in immediate dentin sealing (IDS) techniques and impression materials with two different techniques to eliminate the oxygen-inhibition layer. Materials and Methods: The occlusal dentin surface of 35 human molars was exposed. The teeth were used in two Groups: Group 1 – Impression with Express XT; Group 2 – Impression with Impregum. Groups 1 and 2 were divided into 14 subgroups: Groups 1a and 2a – Control groups; 1b and 2b – IDS with Clearfil SE Bond (CSE); 1c and 2c – IDS with CSE + additional polymerization with glycerin jelly; 1d and 2d – IDS with CSE + alcohol; 1e and 2e – IDS with CSE and Protect Liner F (PLF); 1f and 2f – IDS with CSE and PLF + additional polymerization with glycerin jelly; and 1g and 2g – IDS with CSE and PLF + alcohol. Five teeth were used in each experimental group, and the tooth surface was photographed using a digital camera. Results: Small quantity of unpolymerized impression material remained attached to the CSE or to the PLF in Groups 1b and 1e. Groups 1c and 1d prevented the interaction. Small quantity of polymerized impression material remained attached to the CSE or to the PLF for Groups 2b and 2e. The same interaction was observed for Groups 2c and 2d. For Groups 2c and 2f, no interactions were observed. Conclusion: Resin materials interacted with impression materials. The application of glycerin jelly and alcohol prevented the interaction of CSE with Express XT and PLF with Impregum; however, these treatments were not completely effective in preventing the interaction of CSE with Impregum and PLF with Express XT. PMID:25202218

  3. [Consistency of zinc oxide-eugenol impression materials].

    PubMed

    Gomes, W L; Santos, J F; Muench, A

    1990-01-01

    The purpose of this work was investigate the consistency of three zinc oxide-eugenol impression pastes, considering its flow. Flow tests were performed based on the AMERICAN DENTAL ASSOCIATION-Specification no 16. Setting time was based at that one when should be applied the load to get considered disc diameter; the values were obtained graphically. Considering the results it was possible to conclude: a) the first two materials (Equalizing and Horus) present high initial flow, which however drops down earlier on the second one; b) both materials may be used with non compressive impression technic but the second one has shorter working time; c) the third material (Lysanda) as it presents lower flow and faster setting time, may be used with compressive impression technic. PMID:2135423

  4. Accuracy of different impression materials in parallel and nonparallel implants

    PubMed Central

    Vojdani, Mahroo; Torabi, Kianoosh; Ansarifard, Elham

    2015-01-01

    Background: A precise impression is mandatory to obtain passive fit in implant-supported prostheses. The aim of this study was to compare the accuracy of three impression materials in both parallel and nonparallel implant positions. Materials and Methods: In this experimental study, two partial dentate maxillary acrylic models with four implant analogues in canines and lateral incisors areas were used. One model was simulating the parallel condition and the other nonparallel one, in which implants were tilted 30° bucally and 20° in either mesial or distal directions. Thirty stone casts were made from each model using polyether (Impregum), additional silicone (Monopren) and vinyl siloxanether (Identium), with open tray technique. The distortion values in three-dimensions (X, Y and Z-axis) were measured by coordinate measuring machine. Two-way analysis of variance (ANOVA), one-way ANOVA and Tukey tests were used for data analysis (α = 0.05). Results: Under parallel condition, all the materials showed comparable, accurate casts (P = 0.74). In the presence of angulated implants, while Monopren showed more accurate results compared to Impregum (P = 0.01), Identium yielded almost similar results to those produced by Impregum (P = 0.27) and Monopren (P = 0.26). Conclusion: Within the limitations of this study, in parallel conditions, the type of impression material cannot affect the accuracy of the implant impressions; however, in nonparallel conditions, polyvinyl siloxane is shown to be a better choice, followed by vinyl siloxanether and polyether respectively. PMID:26288620

  5. Effect of Time on Gypsum-Impression Material Compatibility

    NASA Astrophysics Data System (ADS)

    Won, John Boram

    The purpose of this study was to evaluate the compatibility of dental gypsum with three recently introduced irreversible hydrocolloid (alginate) alternatives. The test materials were Alginot® (Kerr™), Position Penta Quick® (3M ESPE™) and Silgimix ® (Sultan Dental™). The irreversible hydrocolloid impression material, Jeltrate Plus antimicrobial® (Dentsply Caulk™) served as the control. Materials and Methods: Testing of materials was conducted in accordance with ANSI/ADA Specification No. 18 for Alginate Impression Materials. Statistical Analysis: The 3-Way ANOVA test was used to analyze measurements between different time points at a significance level of (p < 0.05). Outcome: It was found that there was greater compatibility between gypsum and the alternative materials over time than the traditional irreversible hydrocolloid material that was tested. A statistically significant amount of surface change/incompatibility was found over time with the combination of the dental gypsum products and the control impression material (Jeltrate Plus antimicrobial®).

  6. Elastomeric Polypeptides

    PubMed Central

    van Eldijk, Mark B.; McGann, Christopher L.

    2013-01-01

    Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin – two elastomeric biopolymers – and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering. PMID:21826606

  7. Development of an impact noise reduction method by the adding of a small thickness elastomeric material

    NASA Astrophysics Data System (ADS)

    Arz, Jean-Pierre

    The starting point of this Ph.D. is the industrial issue submitted to the ETS by the company Bombardier Recreational Products (BRP) of the noise reduction of the tracked drive mechanism of snowmobiles. The overall goal of is to develop a method to predict the impact noise reduction obtained by the adding of an elastomeric layer specimen of small thickness between the impacting body and the impacted structure which is a complex structure (i.e. a structure whose geometry is complex and whose composition involves several materials). To reach this overall goal, three specific goals have been fixed: (1) characterize the behavior under impact of different small thickness elastomeric layers; (2) predict the impact force generated when an elastomeric layer is added on a complex vibrating structure; and (3) validate experimentally the whole method by applying it to the impact noise reduction of a bar of the snowmobile track. To reach the first specific goal (characterize the behavior under impact of different small thickness elastomeric layers), a specific experimental characterization method has been developed. Firstly, an experimental device has been realized to submit the elastomeric layer specimens to the reproducible impact conditions of an impact hammer. The measurement of the penetration depth of the hammer into the elastomeric layer is achieved by recording its motion with a high-speed camera and by detecting its position by further analysis on the individual images. Secondly, the experimental curves obtained are analyzed to point out their main characteristics and choose an appropriate impact model. Thirdly, the contact force parameters are estimated from the experimental results and from the impact model. Using this method, eight impacted elastomeric specimens have been characterized. The results show that a more precise characterization than hardness is obtained. To reach the second specific goal (predict the impact force generated when an elastomeric layer is

  8. Developments in new aircraft tire tread materials. [fatigue life of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.; Riccitiello, S. R.; Golub, M. A.

    1976-01-01

    Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock.

  9. Wettability changes in polyether impression materials subjected to immersion disinfection

    PubMed Central

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-01-01

    Background: Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. Materials and Methods: A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. Results: The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P < 0.001). After 30 min of disinfection, only the samples immersed in 0.05% iodophor showed there were no significant changes in the contact angle, whereas the other disinfectants significantly increased the contact angle and decreased the wettability of the polyether material. Conclusion: Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material. PMID:24130593

  10. Methodology for Evaluating Raw Material Changes to RSRM Elastomeric Insulation Materials

    NASA Technical Reports Server (NTRS)

    Mildenhall, Scott D.; McCool, Alex (Technical Monitor)

    2001-01-01

    The Reusable Solid Rocket Motor (RSRM) uses asbestos and silicon dioxide filled acrylonitrile butadiene rubber (AS-NBR) as the primary internal insulation to protect the case from heat. During the course of the RSRM Program, several changes have been made to the raw materials and processing of the AS-NBR elastomeric insulation material. These changes have been primarily caused by raw materials becoming obsolete. In addition, some process changes have been implemented that were deemed necessary to improve the quality and consistency of the AS-NBR insulation material. Each change has been evaluated using unique test efforts customized to determine the potential impacts of the specific raw material or process change. Following the evaluations, the various raw material and process changes were successfully implemented with no detectable effect on the performance of the AS-NBR insulation. This paper will discuss some of the raw material and process changes evaluated, the methodology used in designing the unique test plans, and the general evaluation results. A summary of the change history of RSRM AS-NBR internal insulation is also presented.

  11. Characterization of elastomeric materials with application to design

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1986-01-01

    Redesign of the Space Shuttle Solid Booster has necessitated re-evaluation of the material used in the field joint O-ring seals. The viscoelastic characteristics of five candidate materials were determined. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.

  12. Development and evaluation of elastomeric materials for geothermal applications

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Kalfayan, S. H.; Reilly, W. W.; Ingham, J. D.

    1978-01-01

    A material for a casing packer for service for 24 hours in a geothermal environment was developed by synthesis of new elastomers and formulation of available materials. Formulation included use of commercial elastomer gumstocks and also crosslinking of plastic (high Tg) materials. Fibrous reinforcement of fluorocarbon rubbers was emphasized. Organic fiber reinforcement did not increase hot properties significantly. Glass fiber reinforcement gave significant increase in tensile properties. Elongation was reduced, and the glass-reinforced composition examined so far did not hold up well in the geothermal environment. Colloidal asbestos fibers were also investigated. A few experiments with polyphenyl ether gave material with low tensile and high compression set. Available high styrene SBR compositions were studied. Work to date suggests that new synthetic polymers will be required for service in geothermal environments.

  13. High k dielectric elastomeric materials for low voltage applications

    NASA Astrophysics Data System (ADS)

    Walder, C.; Molberg, M.; Opris, D. M.; Nüesch, F. A.; Löwe, C.; Plummer, C. J. G.; Leterrier, Y.; Månson, J.-A. E.

    2009-03-01

    In principle EAP technology could potentially replace common motion-generating mechanisms in positioning, valve control, pump and sensor applications, where designers are seeking quieter, power efficient devices to replace conventional electrical motors and drive trains. Their use as artificial muscles is of special interest due to their similar properties in terms of stress and strain, energy and power densities or efficiency. A broad application of dielectric elastomer actuators (DEA) is limited by the high voltage necessary to drive such devices. The development of novel elastomers offering better intrinsic electromechanical properties is one way to solve the problem. We prepared composites from cross-linked silicone elastomers or thermoplastic elastomers (TPE) by blending them with organic fillers exhibiting a high dielectric constant. Well characterized monomeric phthalocyanines and modified doped polyaniline (PANI) were used as filler materials. In addition, blends of TPE and an inorganic filler material PZT were characterized as well. We studied the influence of the filler materials onto the mechanical and electromechanical properties of the resulting mixtures. A hundredfold increase of the dielectric constant was already observed for blends of an olefin based thermoplastic elastomer and PANI.

  14. Effect of disinfection of custom tray materials on adhesive properties of several impression material systems.

    PubMed

    Thompson, G A; Vermilyea, S G; Agar, J R

    1994-12-01

    The effects of impression tray disinfection procedures on the bond strength of impression-material adhesives to two types of resin trays were evaluated with a tensile test. Autopolymerizing acrylic resin and a visible light-curing resin were formed into one-half inch cubes. A screw eye was attached to each cube before polymerization. Perforated trays were fabricated with stops to maintain an even one-eighth inch of impression material over the resin block. Hooks on the opposite side permitted attachment of the metal plate to a mechanical testing machine. Before adhesive was applied, one third of the resin specimens were immersed in a 1:213 iodophor solution; one third in a 10% sodium hypochlorite solution, and one third were kept in the "as fabricated" condition. Polysulfide, polyether, and polyvinyl siloxane impression material-adhesive systems were evaluated. The resin-impression material-metal plate couples were attached to a mechanical testing machine and tensile forces were applied at a separation rate of 5 inches per minute. Mean values for adhesive strength ranged from 3.49 kg/cm2 for the autopolymerizing acrylic resin/iodophor/polyether combination to 10.55 kg/cm2 for the autopolymerizing acrylic resin/untreated/polyvinyl siloxane combination. Differences were detected among materials and disinfecting procedure. Clinically, disinfection of resin trays may adversely affect retention of the impression material to the tray. PMID:7853264

  15. Effects of atomic oxygen and ultraviolet radiation on candidate elastomeric materials for long duration missions. Test series no.1

    NASA Technical Reports Server (NTRS)

    Linton, R. C.; Finckenor, M. M.; Kamenetzky, R. R.; Gray, P.

    1993-01-01

    Research was conducted at MSFC on the behavior of elastomeric materials after exposure to simulated space environment. Silicone S383 and Viton V747 samples were exposed to thermal vacuum, ultraviolet radiation, and atomic oxygen and then evaluated for changes in material properties. Characterization of the elastomeric materials included weight, hardness, optical inspection under normal and black light, spectrofluorescence, solar absorptance and emittance, Fourier transform infrared spectroscopy, and permeability. These results indicate a degree of sensitivity to exposure and provided some evidence of UV and atomic oxygen synergism.

  16. A comparison of dimensional accuracy between three different addition cured silicone impression materials.

    PubMed

    Forrester-Baker, L; Seymour, K G; Samarawickrama, D; Zou, L; Cherukara, G; Patel, M

    2005-06-01

    Ten impressions of a metal implant abutment were made with each of three addition-cured silicone impression materials. Using the technique of co-ordinate metrology, the shoulder region of the abutment and corresponding regions of both impressions and dies made from these impressions were scanned and measured. Comparison of these measurements indicated that the mean dimension measured from the shoulder region for each group of impression materials was significantly different from those taken from the original metal implant abutment. However, when these impressions were cast in a gypsum based die material, none of the measured dimensions taken from the casts were significantly different from those taken from the original metal implant abutment. Thus, any change in measured dimensions occurring during impression making, was compensated for in some way by the casting process. PMID:16011234

  17. Performance of dental impression materials: Benchmarking of materials and techniques by three-dimensional analysis.

    PubMed

    Rudolph, Heike; Graf, Michael R S; Kuhn, Katharina; Rupf-Köhler, Stephanie; Eirich, Alfred; Edelmann, Cornelia; Quaas, Sebastian; Luthardt, Ralph G

    2015-01-01

    Among other factors, the precision of dental impressions is an important and determining factor for the fit of dental restorations. The aim of this study was to examine the three-dimensional (3D) precision of gypsum dies made using a range of impression techniques and materials. Ten impressions of a steel canine were fabricated for each of the 24 material-method-combinations and poured with type 4 die stone. The dies were optically digitized, aligned to the CAD model of the steel canine, and 3D differences were calculated. The results were statistically analyzed using one-way analysis of variance. Depending on material and impression technique, the mean values had a range between +10.9/-10.0 µm (SD 2.8/2.3) and +16.5/-23.5 µm (SD 11.8/18.8). Qualitative analysis using colorcoded graphs showed a characteristic location of deviations for different impression techniques. Three-dimensional analysis provided a comprehensive picture of the achievable precision. Processing aspects and impression technique were of significant influence. PMID:25948142

  18. The thermal and mechanical properties of a low density elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1973-01-01

    Thermal and mechanical properties data were obtained for a low density elastomeric resin based ablation material with phenolic-glass honeycomb reinforcement. Data were obtained for the material in the charred and uncharred state. Ablation material specimens were charred in a laboratory furnace at temperatures in the range from 600 K to 1700 K to obtain char specimens representative of the ablation char layer formed during reentry. These specimens were then used to obtain effective thermal conductivity, heat capacity, porosity, and permeability data at the char formation temperature. This provided a boxing of the data which enables the prediction of the transient response of the material during ablation. Limited comparisons were made between the furnace charred specimens and specimens which had been exposed to simulated reentry conditions.

  19. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.

    PubMed

    Schäfer, Christian G; Lederle, Christina; Zentel, Kristina; Stühn, Bernd; Gallei, Markus

    2014-11-01

    In this work, the preparation of highly thermoresponsive and fully reversible stretch-tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate-co-ethyl acrylate) (PDEGMEMA-co-PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt-shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano- and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV-induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross-linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA-containing colloidal architectures, application of the melt-shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli-responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications. PMID:25243892

  20. The effect of a range of disinfectants on the dimensional accuracy of some impression materials.

    PubMed

    Jagger, D C; Al Jabra, O; Harrison, A; Vowles, R W; McNally, L

    2004-12-01

    In this study the dimensional accuracy of two model materials; dental stone and plaster of Paris, reproduced from three commonly used impression materials; alginate, polyether and addition-cured silicone, retained by their adhesives in acrylic resin trays and exposed to four disinfectant solutions was evaluated. Ninety casts were used to investigate the effect of the four disinfectants on the dimensional accuracy of alginate, polyether and addition-cured silicone impression material. For each impression material 30 impressions were taken, half were poured in dental stone and half in plaster of Paris. The disinfectants used were Dimenol, Perform-ID, MD-520, and Haz-tabs. Measurements were carried out using a High Precision Reflex Microscope. For the alginate impressions only those disinfected by 5-minute immersion in Haz-tabs solution and in full-strength MD 520 were not adversely affected by the disinfection treatment. All polyether impressions subjected to immersion disinfection exhibited a clinically acceptable expansion. Disinfected addition-cured silicone impressions produced very accurate stone casts. Those disinfected by spraying with fill-strength Dimenol produced casts that were very similar to those left as controls, but those treated by immersion disinfection exhibited negligible and clinically acceptable expansion. The results of the studied demonstrated that the various disinfection treatments had different effects on the impression materials. It is important that an appropriate disinfectant is used for each type of impression material. PMID:15691188

  1. Effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts

    PubMed Central

    Ebadian, Behnaz; Rismanchian, Mansor; Dastgheib, Badrosadat; Bajoghli, Farshad

    2015-01-01

    Background: Different factors such as impression techniques and materials can affect the passive fit between the superstructure and implant. The aim of this study was to determine the effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts. Materials and Methods: Four internal hex implants (Biohorizons Ø4 mm) were placed on a metal maxillary model perpendicular to the horizontal plane in maxillary lateral incisors, right canine and left first premolar areas. Three impression techniques including open tray, closed tray using ball top screw abutments and closed tray using short impression copings and two impression materials (polyether and polyvinyl siloxane) were evaluated (n = 60). The changes in distances between implant analogues in mediolateral (x) and anteroposterior (y) directions and analogue angles in x/z and y/z directions in the horizontal plane on the definitive casts were measured by coordinate measuring machine. The data were analyzed by multivariate two-way analysis of variance and one sample t-test (α = 0.05). Results: No statistical significant differences were observed between different impression techniques and materials. However, deviation and distortion of definitive casts had a significant difference with the master model when short impression copings and polyvinyl siloxane impression material were used (P < 0.05). In open tray technique, there was a significant difference in the rotation of analogs compared with the master model with both impression materials (P < 0.05). Conclusion: There was no difference between open and closed tray impression techniques; however, less distortion and deviation were observed in the open tray technique. In the closed tray impression technique, ball top screw was more accurate than short impression copings. PMID:25878678

  2. A Single Step Impression Technique of Flabby Ridges Using Monophase Polyvinylsiloxane Material: A Case Report

    PubMed Central

    Pai, Umesh Y.; Reddy, Vikram Simha; Hosi, Rushad Nariman

    2014-01-01

    Complete denture fabrication in clinically compromised situations such as flabby ridges is a challenging task for the clinician. Accurate impressioning of these tissues plays a major role in ensuring a well-fitting prosthesis. In this paper, the authors have proposed a newer technique of impression making of the flabby tissues using a combination of readily available newer and older materials to ensure an accurate and easy impression of these tissues. PMID:24872897

  3. Elastomeric optical fiber sensors and method for detecting and measuring events occurring in elastic materials

    DOEpatents

    Muhs, Jeffrey D.; Capps, Gary J.; Smith, David B.; White, Clifford P.

    1994-01-01

    Fiber optic sensing means for the detection and measurement of events such as dynamic loadings imposed upon elastic materials including cementitious materials, elastomers, and animal body components and/or the attrition of such elastic materials are provided. One or more optical fibers each having a deformable core and cladding formed of an elastomeric material such as silicone rubber are embedded in the elastic material. Changes in light transmission through any of the optical fibers due the deformation of the optical fiber by the application of dynamic loads such as compression, tension, or bending loadings imposed on the elastic material or by the attrition of the elastic material such as by cracking, deterioration, aggregate break-up, and muscle, tendon, or organ atrophy provide a measurement of the dynamic loadings and attrition. The fiber optic sensors can be embedded in elastomers subject to dynamic loadings and attrition such as commonly used automobiles and in shoes for determining the amount and frequency of the dynamic loadings and the extent of attrition. The fiber optic sensors are also useable in cementitious material for determining the maturation thereof.

  4. Evaluation of properties of irreversible hydrocolloid impression materials mixed with disinfectant liquids

    PubMed Central

    Amalan, Arul; Ginjupalli, Kishore; Upadhya, Nagaraja

    2013-01-01

    Background: Addition of disinfectant to irreversible hydrocolloid impression materials can eliminate the disinfection step to avoid dimensional changes associated with it. The aim of the present study was to evaluate the effect of various disinfectant mixing liquids on the properties of commercially available irreversible hydrocolloid impression materials. Materials and Methods: Four commercially available irreversible hydrocolloid impression materials (Zelgan, Vignette, Tropicalgin, and Algitex) were mixed with disinfectant liquid containing chlorhexidine (0.1 and 0.2%) and sodium hypochlorite (0.1 and 0.5%). After mixing with disinfectant liquids, materials were evaluated for pH changes during gelation, gelation time, flow, gel strength, permanent deformation and detail reproduction. Results: Significant changes in gelation time were observed in irreversible hydrocolloid impression materials upon mixing with disinfectant liquids. In general, chlorhexidine increased the gelation time, whereas sodium hypochlorite reduced it. However, no significant changes in the flow were observed both with chlorhexidine and sodium hypochlorite. Gel strength was found to decrease when mixed with chlorhexidine, whereas an increase in gel strength was observed upon mixing with sodium hypochlorite. Permanent deformation of the most irreversible hydrocolloid impression materials was below the specification limit even after mixing with disinfectant liquids. Sodium hypochlorite significantly reduced the surface detail reproduction, whereas no change in detail reproduction was observed with chlorhexidine. Conclusion: Chlorhexidine solution can be used to mix irreversible hydrocolloid impression materials in regular dental practice as it did not significantly alter the properties. This may ensure effective disinfection of impressions. PMID:23878566

  5. Dimensional Changes of Alginate Dental Impression Materials-An Invitro Study

    PubMed Central

    Thombare, Ram U

    2015-01-01

    Background Dentists are always looking ahead for more dimensionally stable material for accurate and successful fabrication of prosthesis in this competitive world. Arrival of newer materials and increased material market puts dentists in dilemma for selection of material. Aim The study evaluated the effect of variations in time of pour and temperature on dimensional stability of three brands of commercially available alginates. Materials and Methods Velplast, Marieflex & Zelgan alginate impression materials were evaluated by measuring dimensional accuracy of the master cast. A die was prepared and mounted on the apparatus for the ease of impression making. The prepared casts were categorized into five groups and made up of three brands of alginate impression material with variation in time of pour viz: immediate, 20&40 minutes interval and with varying temperature of 250C, 300C & 400C. Results Impressions showed least distortion at varying degrees of temperature for 20 minutes, but the values obtained by storing of alginate impressions for 20 minutes at 300C were found to be nearly accurate than the values obtained by storing of impression at 400C. However, storing showed shrinkage of impressions. Conclusion Marieflex showed better accuracy in comparison with other two materials. Maintenance of temperature and humidity play key role during storage & transport to prevent distortion. But the study suggests immediate pouring which will minimize the distortion. The manipulation instructions, temperature of mixing water, environment & water powder ratio also plays key role in minimizing the distortion. PMID:26436059

  6. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material

    PubMed Central

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-01-01

    Objective: The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Materials and Methods: Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. Results: E. coli counts were higher in hand-mixed materials (P < 0.05); no other statistically significant differences were found between hand- and auto-mixed materials. According to the Kruskal-Wallis test, significant differences were found between the disinfection procedures (Z > 2.394). Conclusion: The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface. PMID:24966729

  7. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  8. Impression materials in fixed prosthodontics: influence of choice on clinical procedure.

    PubMed

    Hamalian, Techkouhie A; Nasr, Elie; Chidiac, José J

    2011-02-01

    The purpose of this article is to review impression materials used for fabricating fixed restorations in dentistry. Their compositions, properties, advantages, and disadvantages are presented and compared. How these properties influence clinical decisions is also described. This review helps the clinician choose which material is more suitable for a specific case. A broad search of the published literature was performed using Medline to identify pertinent current articles. Textbooks, the Internet, and manufacturers' literature were also used to supplement this information. It is limited to impression materials used in fixed prosthodontics. The review gives basic knowledge of ideal impression material properties and discusses traditional and, primarily, more recently developed products, such as polyethers, poly(vinyl siloxane), polysulfides, and condensation silicone materials. Clear advantages and disadvantages for these impression materials are provided along with the role that compositional variations have on the outcome of the impression. This should enable clinicians and technicians to easily identify the important physical properties of each type of impression material and their primary clinical indications. PMID:21284760

  9. Biodegradable and Elastomeric Poly(glycerol sebacate) as a Coating Material for Nitinol Bare Stent

    PubMed Central

    Kim, Min Ji; Hwang, Moon Young; Kim, JiHeung; Chung, Dong June

    2014-01-01

    We synthesized and evaluated biodegradable and elastomeric polyesters (poly(glycerol sebacate) (PGS)) using polycondensation between glycerol and sebacic acid to form a cross-linked network structure without using exogenous catalysts. Synthesized materials possess good mechanical properties, elasticity, and surface erosion biodegradation behavior. The tensile strength of the PGS was as high as 0.28 ± 0.004 MPa, and Young's modulus was 0.122 ± 0.0003 MPa. Elongation was as high as 237.8 ± 0.64%, and repeated elongation behavior was also observed to at least three times the original length without rupture. The water-in-air contact angles of the PGS surfaces were about 60°. We also analyzed the properties of an electrospray coating of biodegradable PGS on a nitinol stent for the purpose of enhancing long-term patency for the therapeutic treatment of varicose veins disease. The surface morphology and thickness of coating layer could be controlled by adjusting the electrospraying conditions and solution parameters. PMID:24955369

  10. Biodegradable and elastomeric poly(glycerol sebacate) as a coating material for nitinol bare stent.

    PubMed

    Kim, Min Ji; Hwang, Moon Young; Kim, JiHeung; Chung, Dong June

    2014-01-01

    We synthesized and evaluated biodegradable and elastomeric polyesters (poly(glycerol sebacate) (PGS)) using polycondensation between glycerol and sebacic acid to form a cross-linked network structure without using exogenous catalysts. Synthesized materials possess good mechanical properties, elasticity, and surface erosion biodegradation behavior. The tensile strength of the PGS was as high as 0.28 ± 0.004 MPa, and Young's modulus was 0.122 ± 0.0003 MPa. Elongation was as high as 237.8 ± 0.64%, and repeated elongation behavior was also observed to at least three times the original length without rupture. The water-in-air contact angles of the PGS surfaces were about 60°. We also analyzed the properties of an electrospray coating of biodegradable PGS on a nitinol stent for the purpose of enhancing long-term patency for the therapeutic treatment of varicose veins disease. The surface morphology and thickness of coating layer could be controlled by adjusting the electrospraying conditions and solution parameters. PMID:24955369

  11. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  12. Silicone impression material foreign body in the middle ear: Two case reports and literature review.

    PubMed

    Suzuki, Nobuyoshi; Okamura, Koji; Yano, Takuya; Moteki, Hideaki; Kitoh, Ryosuke; Takumi, Yutaka; Usami, Shin-ichi

    2015-10-01

    We report two cases of impression material foreign body in the middle ear. The first case had been affected with chronic otitis media. The silicone flowed into the middle ear through a tympanic membrane perforation during the process of making an ear mold. About 4 years and 8 months after, the patient had severe vertigo and deafness. We found bone erosion of the prominence of the lateral semicircular canal and diagnosed labyrinthitis caused by silicone impression material. In the second case silicone flowed into the canal wall down mastoid cavity. Both cases required surgery to remove the foreign body. The clinical courses in such cases are variable and timing of surgery is sometimes difficult. In addition to reporting these two cases, we present here a review of the literature regarding impression material foreign bodies. PMID:25956272

  13. A Paradigm shift in the concept for making dental impressions.

    PubMed

    Nayar, Sanjna; Mahadevan, R

    2015-04-01

    Digital dental impression is a revolutionary technological advancement that so surpasses the accuracy and efficiency of former techniques for obtaining replicas of prepared teeth for the purpose of fabricating restorations that its adoption by dentists is rapidly eclipsing the use of elastomeric impression materials. The ultimate goals of dentists dedicated to quality restorative dentistry are to make their treatment of patients as accurate, stressless, and efficient as possible. By elimination of the everyday problems described above, there is no question that the significant advantages of digital impressions will make intraoral digital scanning standard procedure in most dental offices within the next several years. Furthermore, digital impressions have proven to reduce remakes and returns, as well as increase overall efficiency. The patient also benefits by being provided a far more positive experience. Finally, through the use of digital impression making, it has been determined that laboratory products become more consistent and require less chair time at insertion. PMID:26015714

  14. Elastomeric member

    DOEpatents

    Hoppie, Lyle O.

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  15. Elastomeric member

    DOEpatents

    Hoppie, L.O.

    1985-07-30

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond there between. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  16. Flame resistant elastic elastomeric fibers

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Massucco, A. A.

    1972-01-01

    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.

  17. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    PubMed Central

    Alikhasi, Marzieh; Siadat, Hakimeh; Kharazifard, Mohammad Javad

    2015-01-01

    Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials. Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM). Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM). These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05. Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (P<0.001). Also, the open tray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05). Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction. PMID:27252761

  18. Method and apparatus for non-destructive evaluation of composite materials with cloth surface impressions

    NASA Technical Reports Server (NTRS)

    Madras, Eric I. (Inventor)

    1995-01-01

    A method and related apparatus for nondestructive evaluation of composite materials by determination of the quantity known as Integrated Polar Backscatter, which avoids errors caused by surface texture left by cloth impressions by identifying frequency ranges associated with peaks in a power spectrum for the backscattered signal, and removing such frequency ranges from the calculation of Integrated Polar Backscatter for all scan sites on the composite material is presented.

  19. A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels

    NASA Astrophysics Data System (ADS)

    Chester, Shawn A.; Anand, Lallit

    2011-10-01

    An elastomeric gel is a cross-linked polymer network swollen with a solvent, and certain gels can undergo large reversible volume changes as they are cycled about a critical temperature. We have developed a continuum-level theory to describe the coupled mechanical deformation, fluid permeation, and heat transfer of such thermally responsive gels. In discussing special constitutive equations we limit our attention to isotropic materials, and consider a model based on a Flory-Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled with a non-Gaussian statistical-mechanical model for the change in configurational entropy—a model which accounts for the limited extensibility of polymer chains. We have numerically implemented our theory in a finite element program. We show that our theory is capable of simulating swelling, squeezing of fluid by applied mechanical forces, and thermally responsive swelling/de-swelling of such materials.

  20. Biometric Denture Space- Concept of Neutral Zone Revisited Using A Hydrocolloid Impression Material

    PubMed Central

    Umamaheswaran, Aruna; Nayar, Sanjna

    2015-01-01

    Though the concept of neutral zone in making complete denture and its significance are well known, the material of choice has always been experimented to achieve better results. Recording of neutral zone using irreversible hydrocolloid (Alginate) as a material of choice would make the way of recording the neutral zone easier, as well as comfortable for the patient, when compared with other materials used for the purpose. This article describes the method of recording the biometric denture space (neutral zone) using hydrocolloid impression material which is most commonly used in everyday dental practice. PMID:26673250

  1. Comparing the Accuracy of Three Different Impression Materials in Making Duplicate Dies

    PubMed Central

    Bajoghli, Farshad; Sabouhi, Mahmoud; Nosouhian, Saeid; Davoudi, Amin; Behnamnia, Zeynab

    2015-01-01

    Background: Marginal adaptation is very important in cast restorations. Maladaptation leads to plaque retention, reduction of mechanical and esthetic properties. The aim of this study was to evaluate the precision of three different impression materials (including: Additional silicone [AS] and condensational silicone [CS] and polyether [PE]) for duplicating master dies. Materials and Methods: Three master dies from an acrylic tooth model-with supragingival and shoulder finishing line was made by using PE: Impergum, CS: Speedex, and AS: Panasil separately. The Ni-Cr copings were prepared from master dies separately. They were placed on the acrylic model and the mean marginal difference was recorded by using a stereomicroscope. Then 30 duplicate test dies were made by using the same impression materials and the marginal gaps were recorded. The comparison was done by one-way ANOVA and SPSS software (Version 13) at a significant level of 0.05. Results: The mean marginal difference of four walls from Impergum (38.56 um) was the lowest than Speedex (38.92 um) and Panasil (38.24 um). The Impergum had the highest capability in making duplicate dies (P > 0.05). Conclusion: The Impergum impression material manifested the highest capability in making a better marginal adaptation of duplicate dies but further studies are needed to make a precise decision. PMID:26229364

  2. Comparison of Different Final Impression Techniques for Management of Resorbed Mandibular Ridge: A Case Report

    PubMed Central

    Yadav, Bhupender; Jayna, Manisha; Yadav, Harish; Suri, Shrey; Phogat, Shefali; Madan, Reshu

    2014-01-01

    The history of complete denture impression procedures has been influenced largely by the development of impression materials from which new techniques and ideas arose. The purpose of this study was to compare the retention of complete dentures made by using different impression techniques like conventional, admixed, all green, and functional techniques. The results showed that there was significant difference in retention between the six techniques where functional technique showed the highest mean value of retention followed by elastomeric, all green, and admixed, while cocktail and green stick compound showed the lowest mean value. However, on clinical examination, the retention produced by the six techniques was satisfactory. PMID:25180105

  3. Thermal performance of 625-kg/cu m elastomeric ablative materials on spherically blunted 0.44-radian cones

    NASA Technical Reports Server (NTRS)

    Champman, A. J.

    1972-01-01

    Spherically blunted 0.44-radian (25 deg) half-angle conical models coated with elastomeric ablative materials were tested in supersonic arc-heated wind tunnels to evaluate performance of the ablators over a range of conditions typical of lifting entry. Four test conditions were combinations of stagnation point-heat transfer rates of 2.3 and 4.5 MW/m2 and stagnation pressures of 20 and 2kN/m2. Afterbody values of heat transfer rate and pressure were 0.05 to 0.20 of stagnation point values. Stagnation enthalpy varied from 4.4 to 25 MJ/kg (1900 to 11000 Btu/lbm) and free-stream Mach number was in a range from 3.5 to 4. Ablative materials retained the spherical nose shape throughout tests at the lower heat transfer level, but receded, assuming a flattened nose shape, during tests at the high heat transfer level. The residue layer that formed on the conical after-body was weak, friable, and extensively cracked. The reference ablative material, which contained phenolic microspheres, generally retained the conical shape on the model afterbody. However, a modified ablator, in which phenolic microspheres were replaced with silica microspheres, deformed and separated from the undegraded material, and thereby produced a very uneven surface. Substrate temperatures and ablator recession were in good agreement with values computed by a numerical analysis.

  4. The Effect of Three Different Disinfection Materials on Alginate Impression by Spray Method

    PubMed Central

    Badrian, Hamid; Ghasemi, Ehsan; Khalighinejad, Navid; Hosseini, Nafiseh

    2012-01-01

    Introduction. The aim of this study was to investigate the effect of three different types of disinfectant agents on alginate impression material after 5 and 10 minutes. Method and Materials. In this in vitro experimental study, 66 circular samples of alginate impression material were contaminated with Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans fungus. Except for control samples, all of them were disinfected with sodium hypochlorite 0.525, Deconex, and Epimax by way of spraying. Afterwards, they were kept in plastic bags with humid rolled cotton for 5 and 10 minutes. The number of colonies was counted after 24 and 48 hours for bacteria and after 72 hours for fungus. Statistical Mann-Whitney test was used for data analysis (α = 0.05). Results. After 5 minutes, Epimax showed the highest disinfection action on Staphylococcus aureus as it completely eradicated the bacteria. The disinfection capacity of different agents can be increased as time elapses except for Pseudomonas aeruginosa which was eradicated completely in both 5 and 10 minutes. Conclusion. This study revealed that alginate can be effectively disinfected by three types of disinfecting agents by spraying method, although Epimax showed the highest disinfection action after 10 minutes compared to other agents. PMID:22900196

  5. Elastomeric polypeptide-based biomaterials

    PubMed Central

    Li, Linqing; Charati, Manoj B.; Kiick, Kristi L.

    2011-01-01

    Elastomeric proteins are characterized by their large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Motivated by their unique mechanical properties, there has been tremendous research in understanding and manipulating elastomeric polypeptides, with most work conducted on the elastins but more recent work on an expanded set of polypeptide elastomers. Facilitated by biosynthetic strategies, it has been possible to manipulate the physical properties, conformation, and mechanical properties of these materials. Detailed understanding of the roles and organization of the natural structural proteins has permitted the design of elastomeric materials with engineered properties, and has thus expanded the scope of applications from elucidation of the mechanisms of elasticity to the development of advanced drug delivery systems and tissue engineering substrates. PMID:21637725

  6. Flame resistant elastic elastomeric fiber

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Massucco, A. A.; Sidman, K. R.

    1974-01-01

    Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene.

  7. Determination of spring modulus for several types of elastomeric materials (O-rings) and establishment of an open database for seals

    SciTech Connect

    McMurtry, W.M.; Hohnstreiter, G.F.

    1995-12-31

    Seals that provide the containment system interface between the packaging body and closure must function in high and low temperature environments, under dynamic and static loading conditions, and with different types of contained media. It is one of the most critical elements in the container since the container fails to meet regulations if the seal does not function properly. A research and testing program for seal materials was initiated at Sandia in 1988 with the goal of characterizing the behavior of seal materials commonly used in packages conditions as specified in the regulations (NRC IOCFR Part 71) and American National Standards Institute (ANSI) 14.5. The performance of elastomeric seals in undeformed closures at both high and low temperatures has been investigated (Bronowski 1995). Work has begun with this program to determine the response of elastomeric seals to fast acting dynamic deformations`` in the closure. The response of elastomeric o-ring seals during closure movements due to long-term deformations has already been characterized. What has not been well characterized are short-term closure movements with durations of only a few milliseconds that result in the so called ``burp`` release. Methods for generating this type of response in a repeatable manner had not been developed and standard leak detection equipment does not have a fast enough response time to measure these transient events. One factor which affects the length of the burp is the ability of the o-ring to quickly close the gap to prevent a significant leak. The dynamic characteristics of the elastomeric o-ring material including the dynamic spring modulus and internal damping are directly related to its ability to quickly close the gap. A set of tests designed to determine the dynamic properties for various material types and durometers (hardness) of elastomers that were both lubricated and dry at ambient temperature were conducted.

  8. Effect of Different Disinfectants on Staphylococcus aureus and Candida albicans Transferred to Alginate and Polyvinylsiloxane Impression Materials

    PubMed Central

    Parnia, Fereydun; Hafezeqoran, Ali; Moslehifard, Elnaz; Mahboub, Farhang; Nahaei, Mohammadreza; Akbari Dibavar, Mohammad

    2009-01-01

    Background and aims Several products have been marketed for disinfecting impression materials. The present study evaluated the effect of Deconex, Micro 10, Alprocid and Unisepta Plus sprays on Staphylococcus aureus and Candida albicans transferred to alginate and polyvinylsiloxane impression materials. Materials and methods A total of 180 impressions of a maxillary model (90 alginate and 90 polyvinylsiloxane im-pressions) were taken for the purpose of this in vitro study. Half of the impressions were infected with Staphylococcus au-reus and the other half were infected with Candida albicans. Then the microorganisms were cultured and their counts were determined. Subsequently, the impressions were divided into groups of 15 impressions each. Each group was disinfected with Deconex, Micro10, Alprocid and Unisepta Plus according to manufacturers' instructions except for the control group. The culturing procedure was repeated after disinfection and microbial counts were determined again. Data was analyzed by ANOVA and paired-sample t-test. Results There were statistically significant differences in the means of S. aureus and C. albicans counts before and after the use of disinfectants (P < 0.05). The use of the four disinfectants reduced S. aureus counts to zero in 80% of the cases. There were no statistically significant differences in S. aureus count reductions between the four disinfectants evaluated (P = 0.31). Micro 10 was more effective on alginate; Deconex was more efficient for polyvinylsiloxane and Alprocid had a better efficacy in both impression materials in eliminating C. albicans (P < 0.05). Conclusion All the disinfectants evaluated have high disinfecting postentials. PMID:23230499

  9. Elastomeric load sharing device

    NASA Technical Reports Server (NTRS)

    Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)

    1992-01-01

    An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.

  10. Evaluation of accuracy of casts of multiple internal connection implant prosthesis obtained from different impression materials and techniques: an in vitro study.

    PubMed

    Pujari, Malesh; Garg, Pooja; Prithviraj, D R

    2014-04-01

    Movement of impression copings inside the impression material using a direct (open tray) impression technique during clinical and laboratory phases may cause inaccuracy in transferring the 3-dimensional spatial orientation of implants intraorally to the cast. Consequently, the prosthesis may require corrective procedures. This in vitro study evaluated the accuracy of 3 different impression techniques using polyether and vinyl polysiloxane (VPS) impression material to obtain a precise cast for multiple internal connection implants. A reference acrylic resin model with 4 internal connection implants was fabricated. Impressions of the reference model were made using 3 different techniques and 2 different impression materials. The study consisted of 24 specimens divided into 6 groups of 4 each. Impressions were poured with ADA type IV stone (Kalrock, Kalabhai Karson Pvt Ltd, Mumbai, India). All casts were evaluated for the positional accuracy (mm) of the implant replica heads using a profile projector. These measurements were compared to the measurements calculated on the reference resin model, which served as a control. Data were analyzed with 2-way analysis of variance (ANOVA) followed by Bonferroni multiple comparison procedures to evaluate group means. The results revealed significant difference for anterior implant distance between the 2 impression materials (P < .01) and also among the 3 different techniques (P < .05). The lowest mean variation was found with the polyether impression material and the splinted technique. For posterior implants, the results suggested no significant difference between the 2 impression materials (P ≥ .05). Although results were not statistically significant, the polyether impression material showed the lowest mean variation as compared to the VPS impression material. However, there was a significant difference among the 3 different techniques (P < .05). Among the 3 different techniques, the lowest mean variation between 2 posterior

  11. A New Method for Evaluating Elastomeric Materials for Use in High Pressure Oxygen

    NASA Technical Reports Server (NTRS)

    Jordan, Scott M.

    2001-01-01

    The seal configuration tester (SCT) developed at the Stennis Space Center (SSC) was designed to replicate the intended application of different seat and seal materials in a high pressure oxygen system and assess the wearibility of those materials. Statistical models were used to test the reliability of the SCT in its intended application, and the tests showed very consistent measurements over time, indicating that the device was working as intended. Other statistical designs were used to test different O-ring materials in a high-pressure oxygen system. Those tests indicated that the SCT could be used to rank the performance of O-ring materials in certain environments. The results indicated that some cheaper materials performed as well as, if not better than, other more expensive materials. Different lubrications were integrated in the testing as well and had a significant impact on the performance of the materials. Testing of seat materials is the next stage of this project. An augmentation grant (JAG) was obtained to further this experimental testing at the Stennis Space Center. This part of the project is ongoing at this time and therefore there are no significant accomplishments with respect to seat materials as of yet.

  12. Investigation of dental alginate and agar impression materials as a brain simulant for ballistic testing.

    PubMed

    Falland-Cheung, Lisa; Piccione, Neil; Zhao, Tianqi; Lazarjan, Milad Soltanipour; Hanlin, Suzanne; Jermy, Mark; Waddell, J Neil

    2016-06-01

    Routine forensic research into in vitro skin/skull/brain ballistic blood backspatter behavior has traditionally used gelatin at a 1:10 Water:Powder (W:P) ratio by volume as a brain simulant. A limitation of gelatin is its high elasticity compared to brain tissue. Therefore this study investigated the use of dental alginate and agar impression materials as a brain simulant for ballistic testing. Fresh deer brain, alginate (W:P ratio 91.5:8.5) and agar (W:P ratio 81:19) specimens (n=10) (11×22×33mm) were placed in transparent Perspex boxes of the same internal dimensions prior to shooting with a 0.22inch caliber high velocity air gun. Quantitative analysis to establish kinetic energy loss, vertical displacement elastic behavior and qualitative analysis to establish elasticity behavior was done via high-speed camera footage (SA5, Photron, Japan) using Photron Fastcam Viewer software (Version 3.5.1, Photron, Japan) and visual observation. Damage mechanisms and behavior were qualitatively established by observation of the materials during and after shooting. The qualitative analysis found that of the two simulant materials tested, agar behaved more like brain in terms of damage and showed similar mechanical response to brain during the passage of the projectile, in terms of energy absorption and vertical velocity displacement. In conclusion agar showed a mechanical and subsequent damage response that was similar to brain compared to alginate. PMID:27131216

  13. A summary of laboratory testing performed to characterize and select an elastomeric O-ring material to be used in the redesigned solid rocket motors of the space transportation system

    NASA Technical Reports Server (NTRS)

    Turner, J. E.

    1993-01-01

    An elastomeric O-ring material is used in the joints of the redesigned solid motors (RSRM's) of the National Space Transportation System (NSTS). The selection of the O-ring material used in the RSRM's was a very thorough process that included efforts by NASA's Marshall Space Flight Center and the Langley Research Center, and the Thiokol Corporation. One of the efforts performed at MSFC was an extensive in-house laboratory test regime to screen potential O-ring materials and ultimately to characterize the elastomeric material that was chosen to be used in the RSRM's. The laboratory tests performed at MSFC are summarized.

  14. Flight and ground tests of a very low density elastomeric ablative material

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.; Chapman, A. J., III

    1972-01-01

    A very low density ablative material, a silicone-phenolic composite, was flight tested on a recoverable spacecraft launched by a Pacemaker vehicle system; and, in addition, it was tested in an arc heated wind tunnel at three conditions which encompassed most of the reentry heating conditions of the flight tests. The material was composed, by weight, of 71 percent phenolic spheres, 22.8 percent silicone resin, 2.2 percent catalyst, and 4 percent silica fibers. The tests were conducted to evaluate the ablator performance in both arc tunnel and flight tests and to determine the predictability of the albator performance by using computed results from an existing one-dimensional numerical analysis. The flight tested ablator experienced only moderate surface recession and retained a smooth surface except for isolated areas where the char was completely removed, probably following reentry and prior to or during recovery. Analytical results show good agreement between arc tunnel and flight test results. The thermophysical properties used in the analysis are tabulated.

  15. To study the flow property of seven commercially available zinc oxide eugenol impression material at various time intervals after mixing.

    PubMed

    Katna, Vishal; Suresh, S; Vivek, Sharma; Meenakshi, Khandelwal; Ankita, Gaur

    2014-12-01

    Aims and objective of the study was to evaluate the flow property of seven commercially available zinc oxide eugenol impression materials at various time intervals, after mixing 49 samples (seven groups) were fabricated for flow property of the material. The sample were fabricated as equal length of base and accelerator paste of the test materials was taken on the glass slab and mixed with a rigid stainless steel spatula as per manufacturers recommendation till the homogenous mix was obtained. The mix material was loaded in glass syringe and 0.5 ml material was injected on a cellophane sheet placed on marked glass plate. A cellophane sheet and glass plate 70 and 500 g weight was carefully placed on freshly dispensed zinc oxide eugenol impression paste sequentially. The diameter of the mix was noted after 30 s and 1 min of load application and also after the final set of material. The diameter gives the flow of material. The samples were stored at the room temperature. The data of the flow property was analyzed with analysis of variance, Post hoc test and t test. The flow of the zinc oxide eugenol impression paste after 30 s, 1 min and final set of load application for Group A to Group G was noted. Maximum flow was seen for Group G zinc oxide eugenol impression material followed by Group F, D, E, B, C and A in descending order respectively after 30 s, where as the flow property changed after 1 min in the sequence of maximum for Group G followed by Group E, D, B, A, C, and F. Lastly after final set of the impression material the flow maximum for Group G followed by Group E, D, C, F, A and B in descending order. Based on statistical analysis of the results and within in the limitations of this in-vitro study, the following conclusions were drawn that; the flow of zinc oxide eugenol impression material after 30 s, 1 min and that after the final set was maximum for P.S.P. (Group G) and the flow for PYREX (Group A) was minimum. PMID:25489163

  16. Single Stage Silicone Border Molded Closed Mouth Impression Technique-Part II.

    PubMed

    Solomon, E G R

    2011-09-01

    Functioning of a complete denture depends to a great extent on the impression technique. Several impression techniques have been described in the literature since the turn of this century when Greene [Clinical courses in dental prothesis, 1916] brothers introduced the first scientific system of recording dental impression. Advocates of each technique have their own claim of superiority over the other. The introduction of elastomeric impression materials [Skinner and Cooper, J Am Dent Assoc 51:523-536, 1955] has made possible new techniques of recording impression for complete denture construction. These rubber like materials are of two types; one has a polysulfide base and is popularily known as polysulfide rubber (Thiokol and Mercaptan). The other variety has a silicone base known as silicone rubber or silicone elastomer. Silicone elastomers are available in four different consistencies; a thin easy flowing light bodied material,a creamy medium bodied material, a highly viscous heavy bodied material and a kneadable putty material. This paper describes an active closed mouth impression technique with one stage border molding using putty silicone material as a substitute for low fusing compound. PMID:22942578

  17. Comparative evaluation of pressure generated on a simulated maxillary oral analog by impression materials in custom trays of different spacer designs: An in vitro study

    PubMed Central

    Chopra, Sakshi; Gupta, Narendra Kumar; Tandan, Amrit; Dwivedi, Ravi; Gupta, Swati; Agarwal, Garima

    2016-01-01

    Introduction: Literature reveals that masticatory load on denture bearing tissues through complete dentures should be maximum on primary stress bearing areas and least on relief area in accordance with the histology of underlying tissues. A study to validate the existing beliefs was planned to compare the pressure on mucosa using selective pressure technique and minimal pressure technique, with the incorporation of two different impression materials utilizing the pressure sensors during secondary impression procedure. Materials and Methods: The study was performed using a maxillary analog. Three pressure sensors were imbedded in the oral analog, one in the mid palatine area and the other two in the right and left ridge crest. Custom trays of two different configurations were fabricated. The two impression materials tested were light body and zinc oxide eugenol. A total of 40 impressions were made. A constant weight of 1 kg was placed, and the pressure was recorded as initial and end pressures. Results: A significant difference in the pressure produced using different impression materials was found (P < 0.001). Light body vinyl polysiloxane produced significantly lesser pressure than zinc oxide eugenol impression materials. The presence of relief did affect the magnitude of pressure at various locations. Conclusion: All impression materials produced pressure during maxillary edentulous impression making. Tray modification is an important factor in changing the amount of pressure produced. The impression materials used also had a significant role to play on the pressures acting on the tissues during impression procedure. Clinical Implication: Light body VPS impression material may be recommended to achieve minimal pressure on the denture bearing tissues in both selective as well as minimal pressure techniques. PMID:27041902

  18. Evaluation of Force Degradation Pattern of Elastomeric Ligatures and Elastomeric Separators in Active Tieback State

    PubMed Central

    Mohammadi, Amir; Mahmoodi, Farhang

    2015-01-01

    Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek) were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11-18% of the initial force of the specimens was lost within the first 3 minutes and 29-63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62-81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05). Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state. PMID:26889363

  19. Evaluation of Force Degradation Pattern of Elastomeric Ligatures and Elastomeric Separators in Active Tieback State.

    PubMed

    Mohammadi, Amir; Mahmoodi, Farhang

    2015-01-01

    Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek) were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11-18% of the initial force of the specimens was lost within the first 3 minutes and 29-63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62-81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05). Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state. PMID:26889363

  20. Inadvertent insertion of hearing aid impression material into the middle ear: Case report and implications for future community hearing services☆

    PubMed Central

    Algudkar, Ashwin; Maden, Belma; Singh, Arvind; Tatla, Taran

    2013-01-01

    INTRODUCTION The creation of ear moulds for hearing aids is generally considered a safe and routine procedure for trained professionals. In the literature there are reports of otological complications caused by hearing aid mould impression material in the middle ear cavity but such complications are considered rare. PRESENTATION OF CASE We present the case of a patient in whom impression material entered the middle ear through a perforation of the tympanic membrane during the process of making a hearing aid mould and review how this was managed. DISCUSSION We discuss how many aspects of the British Society of Audiology guidelines were not followed during this procedure and make recommendations as to how independent community practitioners need to be closely supervised with regular review to minimise the risks of such complications. CONCLUSION Our report demonstrates how a serious otological complication from the creation of a hearing aid impression in a community based private hearing clinic was managed. The reporting of such complications is rare but the incidence is likely to be much higher than the literature would suggest. We recommend and advise how these adverse incidents may be minimised and managed through competency reviews and formal referral links from community centres to hospital otolaryngology/audiology departments. PMID:24262374

  1. [Studies on the cytotoxic action of various silicone rubber impression materials by means of cell culture (author's transl)].

    PubMed

    Watanabe, H

    1977-07-01

    Biological test of the silicone rubber impression materials was done by utilizing tissue cultures of L strain cells. Criteria for cytotoxicity were based upon response index in agar diffusion method which was determined by zone index and lysis index, and morphological observations of the cells. The materials used were chosen among those which were commercially available. Base material, catalyst, unset and set mixes of both materials were tested respectively. X-ray fluorescence analysis of the material was also performed. Following results were obtained. 1) Base material of all the materials showed zone index of a range between 11.8 mm and 18.6 mm. On the otherhand, lysis index was relatively small and minimum response index was 11.8 mm/8.6 mm. The cells appeared normal after cultivation with the base materials, though tissue culture medium became opaque due to dissolution of the base materials. It is revealed that the above results mean little cytotoxicity to the cells. 2) Catalyst, on the otherhand, yielded intense cytotoxicity. Minimum response index for the catalyst was 13.4 mm/14.8 mm. Morphological observation was parallel to the results of agar diffusion method. 3) Unset mixes also yielded intense to moderate cytotoxicity. 4) Set mixes showed a similar in level of cytotoxicity to the unset mixes. 5) X-ray fluorescence analysis of the materials revealed existence of such elements as Si, Sr, Sn, S, Cu and Fe. Moreover, Zn was found in materials A, B, C, D and E; P in materials A and B, and Pb in materials E and F. However, it was unable to show what compound was formed by these elements. It is expected that the present results could give a clue on animal experiments or clinical use from the view point of biocompatibility of silicone rubber impression materials. PMID:282367

  2. Good Impressions.

    ERIC Educational Resources Information Center

    Banks, Geraldine; Pulsifer, Mary

    1986-01-01

    An art activity featuring ballerinas in classic poses and costumes was extended by a visit to an exhibit on Edgar Degas. Hearing impaired students shared their impressions of another traveling exhibit with French students via computers. (CL)

  3. An Investigation into the Accuracy of Two Currently Available Dental Impression Materials in the Construction of Cobalt-Chromium Frameworks for Removable Partial Dentures.

    PubMed

    Dubal, Rajesh Kumar; Friel, Tim; Taylor, Philip D

    2015-03-01

    This study investigated the suitability of irreversible hydrocolloid as an impression material for cobalt-chromium framework construction. Scans of casts derived from (1) alginate and (2) addition-cured polyvinylsiloxane impressions were superposed on to a control. The differences within and between groups were compared at fixed landmarks. The investigation revealed a high degree of scan coincidence within and between groups. However, certain features, such as undercuts, resulted in a lower degree of scan coincidence. Irreversible hydrocolloid appears to be a viable alternative to addition-cured polyvinyl-siloxane as an impression material for cobalt-chromium framework construction. PMID:26415334

  4. Conductive elastomeric extensometer

    NASA Technical Reports Server (NTRS)

    Gause, R. L.; Glenn, C. G. (Inventor)

    1974-01-01

    An extensometer was used for measuring surface area changes of the human body caused by expansion and contraction of the body. A relatively thin and wide strain responsive conductive elastomeric band was adapted for application to a part of the body, such as around a limb or the trunk of the body. The elastomeric band is incorporated as a resistor in a balanced bridge circuit. Expansion or contraction of the portion of the body on which the elastomeric band is applied causes a change in the resistance of the band and a resultant imbalance of the bridge circuit. The output of the amplifier in volts is suitable for proving the desired reading through a recorder, oscilloscope or voltmeter.

  5. First Impressions.

    ERIC Educational Resources Information Center

    Coen, Frank

    1969-01-01

    The unreliability of first impressions and subjective judgments is the subject of both Jane Austen's "Pride and Prejudice" and Lionel Trilling's "Of This Time, Of That Place"; consequently, the works are worthwhile parallel studies for high school students. Austen, by means of irony and subtle characterization, dramatizes the need for constant…

  6. Chemical enhancement of footwear impressions in blood deposited on fabric--evaluating the use of alginate casting materials followed by chemical enhancement.

    PubMed

    Farrugia, Kevin J; NicDaéid, Niamh; Savage, Kathleen A; Bandey, Helen

    2010-12-01

    Most footwear marks made in blood on a surface such as fabric tend to be enhanced in situ rather than physically recovered using a lifting technique prior to enhancement. This work reports on the use of an alginate material to recover the impressed footwear marks made in blood and deposited on a range of fabric types and colours. The lifted marks were then enhanced using acid black 1 and leuco crystal violet with excellent results. This presents a new method for the lifting and recovery of blood impressions in situ from crime scene followed by subsequent mark enhancement of the lifted impression. PMID:21075299

  7. Highly tunable elastomeric silk biomaterials

    PubMed Central

    Partlow, Benjamin P.; Hanna, Craig W.; Rnjak-Kovacina, Jelena; Moreau, Jodie E.; Applegate, Matthew B.; Burke, Kelly A.; Marelli, Benedetto; Mitropoulos, Alexander N.; Omenetto, Fiorenzo G.

    2014-01-01

    Elastomeric, fully degradable and biocompatible biomaterials are rare, with current options presenting significant limitations in terms of ease of functionalization and tunable mechanical and degradation properties. We report a new method for covalently crosslinking tyrosine residues in silk proteins, via horseradish peroxidase and hydrogen peroxide, to generate highly elastic hydrogels with tunable properties. The tunable mechanical properties, gelation kinetics and swelling properties of these new protein polymers, in addition to their ability to withstand shear strains on the order of 100%, compressive strains greater than 70% and display stiffness between 200 – 10,000 Pa, covering a significant portion of the properties of native soft tissues. Molecular weight and solvent composition allowed control of material mechanical properties over several orders of magnitude while maintaining high resilience and resistance to fatigue. Encapsulation of human bone marrow derived mesenchymal stem cells (hMSC) showed long term survival and exhibited cell-matrix interactions reflective of both silk concentration and gelation conditions. Further biocompatibility of these materials were demonstrated with in vivo evaluation. These new protein-based elastomeric and degradable hydrogels represent an exciting new biomaterials option, with a unique combination of properties, for tissue engineering and regenerative medicine. PMID:25395921

  8. A finite strain thermo-viscoelastic constitutive model to describe the self-heating in elastomeric materials during low-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Ovalle Rodas, C.; Zaïri, F.; Naït-Abdelaziz, M.

    2014-03-01

    A thermo-visco-hyperelastic constitutive model, in accordance with the second thermodynamics principle, is formulated to describe the self-heating evolution in elastomeric materials under cyclic loading. The mechanical part of the model is based upon a Zener rheological representation in which the specific free energy potential is dependent on an added internal variable, allowing the description of the time-dependent mechanical response. The large strain mechanical behavior is described using a Langevin spring, while the continuous stress-softening under cyclic loading is taken into account by means of a network alteration kinetics. The thermo-mechanical coupling is defined by postulating the existence of a dissipation pseudo-potential, function of the viscous dilatation tensor. The proposed model is fully three-dimensional and is implemented into a finite element code. The model parameters are identified using experimental data obtained on a styrene-butadiene rubber under a given strain rate for different strain conditions. Predicted evolutions given by the model for other strain rates are found in good agreement with the experimental data.

  9. Modeling the low-cycle fatigue behavior of visco-hyperelastic elastomeric materials using a new network alteration theory: Application to styrene-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Ayoub, G.; Zaïri, F.; Naït-Abdelaziz, M.; Gloaguen, J. M.

    2011-02-01

    Although several theories were more or less recently proposed to describe the Mullins effect, i.e. the stress-softening after the first load, the nonlinear equilibrium and non-equilibrium material response as well as the continuous stress-softening during fatigue loading need to be included in the analysis to propose a reliable design of rubber structures. This contribution presents for the first time a network alteration theory, based on physical interpretations of the stress-softening phenomenon, to capture the time-dependent mechanical response of elastomeric materials under fatigue loading, and this until failure. A successful physically based visco-hyperelastic model is revisited by introducing an evolution law for the physical material parameters affected by the network alteration. The general form of the model can be basically represented by two parallel networks: a nonlinear equilibrium response and a time-dependent deviation from equilibrium, in which the network parameters become functions of the damage rate (defined as the ratio of the applied cycle over the applied cycle to failure). The mechanical behavior of styrene-butadiene rubber was experimentally investigated, and the main features of the constitutive response under fatigue loading are highlighted. The experimental results demonstrate that the evolution of the normalized maximum stress only depends on the damage rate endured by the material during the fatigue loading history. The average chain length and the average chain density are then taken as functions of the damage rate in the proposed network alteration theory. The new model is found to adequately capture the important features of the observed stress-strain curves under loading-unloading for a large spectrum of strain and damage levels. The model capabilities to predict variable amplitude tests are critically discussed by comparisons with experiments.

  10. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  11. Ghana. Part One-Class Materials. Development Studies No. 1, Third Impression.

    ERIC Educational Resources Information Center

    Jones, Paula; Bourne, Fay

    Background readings and classroom materials dealing with Ghana for use with secondary and college students are provided in this publication. The major historical, social, geographical, and political aspects which have contributed to the present day development of Ghana are examined. The background readings for teachers which comprise section one…

  12. Dinosaur Impressions

    NASA Astrophysics Data System (ADS)

    Taquet, Philippe

    1998-09-01

    Perhaps you are a paleontologist or have always wondered what it is like to be one. Or you are fascinated by fossils and like to read about the origins and natural history of dinosaurs. Or maybe you are an avid traveler and reader of travelogues. If you are any of these things, then this book is for you. Originally published in 1994 in French, Dinosaur Impressions is the engaging account of thirty years of travel and paleontological exploration by Philippe Taquet, one of the world's most noted paleontologists. Dr. Taquet takes the reader on a surprisingly far-flung tour ranging from the Provence countryside to the Niger desert, from the Brazilian bush to the Mongolian Steppes, and from the Laos jungle to the Moroccan mountains in search of dinosaur bones and what they have to tell us about a vanished world. With wry humor and lively anecdotes, Dr. Taquet retraces the history of paleontological research, along the way discussing the latest theories of dinosaur existence and extinction. Elegantly translated by Kevin Padian, Dinosaur Impressions provides a unique, thoughtful perspective not often encountered in American- and English-language works. This insightful, first-hand account of an exceptional career is also a travelogue par excellence that will enthrall enthusiasts and general readers alike. Philippe Taquet is the Director of the National Museum of Natural History in Paris and is a member of the French Academy of Sciences. Kevin Padian is a professor in the Department of Integrative Biology and Curator of the Museum of Paleontology at the University of California, Berkeley. He is also the editor of The Beginning of the Age of Dinosaurs (Cambridge, 1986) and The Encyclopedia of Dinosaurs (1997).

  13. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, L.O.; McNinch, J.H. Jr.; Nowell, G.C.

    1984-10-23

    A molding process is described for molding an elongated elastomeric member with wire mesh sleeves bonded to the ends. A molding preform of elastomeric material is positioned within a seamless mold cylinder, and the open ends of the wire mesh sleeves are mounted to end plug assemblies slidably received into the mold cylinder and positioned against the ends of the preform. A specialized profile is formed into surfaces of the respective end plug assemblies and by heating of the mold, the ends of the elastomeric preform are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves. Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces there through. The completed elastomeric member is removed from the mold cylinder by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder and removal thereof. 9 figs.

  14. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, Lyle O.; McNinch, Jr., Joseph H.; Nowell, Gregory C.

    1984-01-01

    A molding process for molding an elongated elastomeric member (60) with wire mesh sleeves (16) bonded to the ends (14). A molding preform (10) of elastomeric material is positioned within a seamless mold cylinder (26), and the open ends of the wire mesh sleeves (16) are mounted to end plug assemblies (30) slidably received into the mold cylinder (26) and positioned against the ends (14) of the preform (10). A specialized profile is formed into surfaces (44) of the respective end plug assemblies (30) and by heating of the mold (26), the ends (14) of the elastomeric preform (10) are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves (16). Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces therethrough. The completed elastomeric member (60) is removed from the mold cylinder (26) by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder (26) and removal thereof.

  15. 21 CFR 872.6570 - Impression tube.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... tube is a device consisting of a hollow copper tube intended to take an impression of a single tooth... material, such as wax, the remaining end is slipped over the tooth to make the impression....

  16. 21 CFR 872.6570 - Impression tube.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... tube is a device consisting of a hollow copper tube intended to take an impression of a single tooth... material, such as wax, the remaining end is slipped over the tooth to make the impression....

  17. 21 CFR 872.6570 - Impression tube.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... tube is a device consisting of a hollow copper tube intended to take an impression of a single tooth... material, such as wax, the remaining end is slipped over the tooth to make the impression....

  18. 21 CFR 872.6570 - Impression tube.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... tube is a device consisting of a hollow copper tube intended to take an impression of a single tooth... material, such as wax, the remaining end is slipped over the tooth to make the impression....

  19. 21 CFR 872.6570 - Impression tube.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... tube is a device consisting of a hollow copper tube intended to take an impression of a single tooth... material, such as wax, the remaining end is slipped over the tooth to make the impression....

  20. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more

  1. Adhesiveless Transfer Printing of Ultrathin Microscale Semiconductor Materials by Controlling the Bending Radius of an Elastomeric Stamp.

    PubMed

    Cho, Sungbum; Kim, Namyun; Song, Kwangsun; Lee, Jongho

    2016-08-01

    High-performance electronic devices integrated onto unconventional substrates provide opportunities for use in diverse applications, such as wearable or implantable forms of electronic devices. However, the interlayer adhesives between the electronic devices and substrates often limit processing temperature or cause electrical or thermal resistance at the interface. This paper introduces a very simple but effective transfer printing method that does not require an interlayer adhesive. Controlling the bending radius of a simple flat stamp enables picking up or printing of microscale semiconductor materials onto rigid, curvilinear, or flexible surfaces without the aid of a liquid adhesive. Theoretical and experimental studies reveal the underlying mechanism of the suggested approach. Adhesiveless printing of thin Si plates onto diverse substrates demonstrates the capability of this method. PMID:27458878

  2. Evaluation of the effect of elastomeric damping material on the stability of a bearingless main rotor system

    NASA Technical Reports Server (NTRS)

    Sheffler, M.; Staley, J.; Warmbrodt, W.

    1980-01-01

    The considered investigation was conducted in connection with a contract to design, fabricate, and test a prototype bearingless main rotor (BMR) system. Part of the design process involved an aeroelastic stability investigation in a wind tunnel. Attention is given to a description of model testing, model test results, the description of the full scale wind tunnel configuration, full scale test results, and aspects of correlation with theory. It was found that the complex geometry of the BMR, with 12.5 degrees of nose-up prepitch at the hub and 2.5 degrees of tip-up predroop at the blade attachment clevis, is required to achieve a stable configuration. Subsequent model testing showed that a constrained layer of elastomer material could increase stability at all rotor speeds and collectives tested for a flat strap configuration.

  3. Lasting Impression

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2006-01-01

    Many schools and universities thought they were getting a good deal when they were building education facilities in the 1950s and 1960s. However, the K-12 and higher-education spaces constructed to accommodate the millions of baby-boomer students no longer look like the quick-fix bargain they did years ago. Low-quality materials and construction,…

  4. Apparatus for cutting elastomeric materials

    NASA Technical Reports Server (NTRS)

    Corbett, A. B.

    1974-01-01

    Sharp thin cutting edge is held in head of milling machine designed for metal working. Controls of machine are used to position cutting edge in same plane as vibrating specimen. Controls then are operated, making blade come into contact with specimen, to cut it into shapes and sizes desired. Cut surfaces appear mirror-smooth; vibrating mechanism causes no visible striations.

  5. Sterilizing elastomeric chains without losing mechanical properties. Is it possible?

    PubMed Central

    Pithon, Matheus Melo; Ferraz, Caio Souza; Rosa, Francine Cristina Silva; Rosa, Luciano Pereira

    2015-01-01

    OBJECTIVE: To investigate the effects of different sterilization/disinfection methods on the mechanical properties of orthodontic elastomeric chains. METHODS: Segments of elastomeric chains with 5 links each were sent for sterilization by cobalt 60 (Co60) (20 KGy) gamma ray technology. After the procedure, the elastomeric chains were contaminated with clinical samples of Streptococcus mutans. Subsequently, the elastomeric chains were submitted to sterilization/disinfection tests carried out by means of different methods, forming six study groups, as follows: Group 1 (control - without contamination), Group 2 (70°GL alcohol), Group 3 (autoclave), Group 4 (ultraviolet), Group 5 (peracetic acid) and Group 6 (glutaraldehyde). After sterilization/disinfection, the effectiveness of these methods, by Colony forming units per mL (CFU/mL), and the mechanical properties of the material were assessed. Student's t-test was used to assess the number of CFUs while ANOVA and Tukey's test were used to assess elastic strength. RESULTS: Ultraviolet treatment was not completely effective for sterilization. No loss of mechanical properties occurred with the use of the different sterilization methods (p > 0.05). CONCLUSION: Biological control of elastomeric chains does not affect their mechanical properties. PMID:26154462

  6. Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.

    PubMed

    Sekiguchi, Atsuko; Tanaka, Fumiaki; Saito, Takeshi; Kuwahara, Yuki; Sakurai, Shunsuke; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-09-01

    Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used. PMID:26218988

  7. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  8. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    PubMed Central

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-01-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated. PMID:27221079

  9. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    NASA Astrophysics Data System (ADS)

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-05-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.

  10. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler.

    PubMed

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-01-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated. PMID:27221079

  11. Effects of sulfur-based hemostatic agents and gingival retraction cords handled with latex gloves on the polymerization of polyvinyl siloxane impression materials

    PubMed Central

    MACHADO, Carlos Eduardo Palhares; GUEDES, Carlos Gramani

    2011-01-01

    Objectives This study investigated the possible interactions between three addition silicone materials (Express®, Aquasil Ultra® and Adsil®), three hemostatic agents (ferric sulfate, StatGel FS®; aluminum sulfate, GelCord®; and aluminum chloride, Hemostop®) and gingival retraction cords previously handled with latex gloves to determine whether direct contact with medicaments or indirect contamination by latex in conditions similar to those found in clinical practice inhibit or affect the setting of the impression materials. Material and Methods A portable device for the simultaneous test of several specimens was specifically developed for this study. Polymerization inhibition was analyzed by examination of the impressions and the molded surface. Ten trials were performed for each addition silicone material used in the study, at a total of 240 study samples. Results All the samples tested (N=240) were nonreactive regardless of the type of combination used. Conclusions Aluminum sulfate, ferric sulfate and aluminum chloride hemostatic solutions did not show any inhibitory potential on the addition silicone samples under study, and there were no changes in polymerization as a result of contact between addition silicone and retraction cords handled with latex gloves. PMID:22230998

  12. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Sung; Kim, Yong Hee; Choi, Eun Ha; Kim, Kyoung-Nam

    2013-05-01

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials.

  13. Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S. G.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1976-01-01

    Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc.

  14. Process for spinning flame retardant elastomeric compositions. [fabricating synthetic fibers for high oxygen environments

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions comprised of either spandex type polyurethane having halogen containing polyols incorporated into the polymer chain, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives were developed. Methods are described for preparing fibers of the flame retardant elastomeric materials and manufactured articles as well as nonelastic materials such as polybenzimidazoles, fiberglass, and nylons, for high oxygen environments.

  15. A Comparative Evaluation of Dimensional Accuracy and Surface Detail Reproduction of Four Hydrophilic Vinyl Polysiloxane Impression Materials Tested Under Dry, Moist, and Wet Conditions-An In Vitro Study.

    PubMed

    Nagrath, Rahul; Lahori, Manesh; Agrawal, Manjari

    2014-12-01

    Vinyl polysiloxane (VPS) impression materials have application in a wide variety of situations in both fixed and removable prosthodontics. A major limitation of VPS impression materials is their hydrophobicity. There are two aspects of this problem, the wettability of the polymerized impression by dental gypsum materials and the ability of the unpolymerized material to wet intraoral tissues. To address this problem, manufacturers have added surfactants and labelled these new products as "hydrophilic vinyl polysiloxane." The purpose of this study was to evaluate and compare dimensional accuracy and surface detail reproduction of four hydrophilic VPS impression materials, when used under dry, moist, and wet conditions. A total of 180 samples were made of stainless steel die similar to as described in ADA sp. no. 19. The die was scored with three horizontal and two vertical lines. Impressions were made under dry, moist and wet conditions. Dimensional accuracy was measured by comparing the length of the middle horizontal line in each impression to the same line on the metal die, by using Universal Length Measuring machine. A 2-way ANOVA was performed on the percentage change data for measured lengths of the 4 impression materials under the 3 conditions to evaluate dimensional accuracy. Surface detail was evaluated in two ways: (1) by use of criteria similar to ADA sp. no. 19 for detail reproduction, and (2) by use of a method that categorized the impressions as satisfactory or unsatisfactory based on their surface characteristics: presence of pits, voids, or roughness. Pearson X2 (α = 0.05) was used to compare surface detail reproduction results. Conditions (dry, moist, and wet) did not cause significant adverse effects on the dimensional accuracy of all the four material. With both surface detail analyses, dry, moist, and wet conditions had a significant effect on the detail reproduction of all the four materials (P < 0.05). The study concluded that the

  16. The effect upon friction of the degradation of orthodontic elastomeric modules.

    PubMed

    Edwards, Ian Robert; Spary, David John; Rock, William Peter

    2012-10-01

    Orthodontic elastomeric modules are susceptible to degradation and deformation after time in the mouth. The aims of this study were to determine whether degradation of elastomeric modules significantly affects friction during sliding mechanics and to investigate whether there is a difference in the behaviour of elastomeric modules after storage in both in vivo and in vitro environments. An Instron testing machine was used to determine the friction generated by elastomeric modules on 0.019 × 0.025 inch stainless steel archwires at 4 degrees of bracket tip. Four brands of modules were tested straight from the packet (n = 15), after storage in artificial saliva (n = 15), and after being in patients' mouths (n = 32). Modules were tested after 24 hours, 1 week, and 6 weeks after storage in both in vivo and in vitro. Analysis of variance revealed that the degradation of elastomeric modules had a variable affect upon friction and that each storage medium produced a distinct pattern of frictional resistance. Modules stored in artificial saliva experienced a significant reduction in friction (P < 0.001) while modules collected from patients' mouths produced similar friction to modules tested straight from the packet. TP Super Slick® modules under dry test conditions produced significantly greater friction than the other three types of test modules (P < 0.001). The structure and surface characteristics of elastomeric modules may affect frictional resistance when a bracket slides along an archwire. These effects vary according to time, storage medium, and brand of elastomeric material. PMID:21771803

  17. Polyprotein of GB1 is an ideal artificial elastomeric protein

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Li, Hongbin

    2007-02-01

    Naturally occurring elastomeric proteins function as molecular springs in their biological settings and show mechanical properties that underlie the elasticity of natural adhesives, cell adhesion proteins and muscle proteins. Constantly subject to repeated stretching-relaxation cycles, many elastomeric proteins demonstrate remarkable consistency and reliability in their mechanical performance. Such properties had hitherto been observed only in naturally evolved elastomeric proteins. Here we use single-molecule atomic force microscopy techniques to demonstrate that an artificial polyprotein made of tandem repeats of non-mechanical protein GB1 has mechanical properties that are comparable or superior to those of known elastomeric proteins. In addition to its mechanical stability, we show that GB1 polyprotein shows a unique combination of mechanical features, including the fastest folding kinetics measured so far for a tethered protein, high folding fidelity, low mechanical fatigue during repeated stretching-relaxation cycles and ability to fold against residual forces. These fine features make GB1 polyprotein an ideal artificial protein-based molecular spring that could function in a challenging working environment requiring repeated stretching-relaxation. This study represents a key step towards engineering artificial molecular springs with tailored nanomechanical properties for bottom-up construction of new devices and materials.

  18. Modeling friction phenomena and elastomeric dampers in multibody dynamics analysis

    NASA Astrophysics Data System (ADS)

    Ju, Changkuan

    the behavior of the elastomeric damper based on a continuum mechanics approach: the configuration of the damper is modeled using a finite element approach, and material behavior is represented by a set of nonlinear constitutive laws and material parameters. The validated finite element model of the elastomeric damper is then coupled with a comprehensive, multibody dynamics analysis code to predict the behavior of complex systems featuring elastomeric components, for example, rotorcraft with elastomeric lead-lag dampers.

  19. Comparison of Contamination of Low-Frictional Elastomeric Rings with That of Conventional Elastomeric Rings by Streptococcus mutans - An In-vivo Study

    PubMed Central

    Mogra, Subraya; Shetty, V. Surendra; Shetty, Siddarth; Jose, Nidhin Philip

    2015-01-01

    Introduction: The presence of brackets and ligatures has been shown to be related to an increase in gingival inflammation and increased risk of decalcification. The various measures were taken to reduce the plaque accumulation and also lot of efforts were made by manufacturers that reduced the binding friction between the ligature rings and arch wire that facilitated easy sliding of the tooth through the wire. The low frictional ligatures rings manufactured by different manufacturers presumed to attract fewer bacteria due to greater reduction in surface roughness. Our study aimed to evaluate whether the low frictional elastomeric rings accumulate fewer bacteria than conventional ligature rings. Materials and Methods: Thirty patients (15 males and 15 females) who underwent fixed appliance therapy were selected. The study was done using split-mouth design. In each volunteer, synergy low frictional elastomeric rings were tied to brackets bonded to the maxillary premolar on the right side and mandibular premolar on the left side. Conventional elastomeric rings that served as control group were tied to the contralateral teeth, with the same design. Samples were collected after four weeks (28 days) and cultured for bacteria Streptococcus mutans. Results: There was no statistical difference between Streptococcus mutans count in low frictional elastomeric rings with that of conventional rings. Conclusion: We concluded that adherence of Streptococcus mutans is similar in both synergy low frictional elastomeric rings and conventional clear elastomeric rings and thus the manufacturer’s claim of minimal bacterial adherence was discarded. PMID:26023638

  20. ETI: Our first impressions

    NASA Astrophysics Data System (ADS)

    Harrison, Albert A.; Johnson, Joel T.

    2000-06-01

    Despite scant or ambiguous information, people are capable of developing comprehensive and detailed impressions. Consequently, if the detection of an electromagnetically-active civilization is announced, many people will rapidly form impressions of what the extraterrestrials and their civilization are "like". First impressions are crucial, not only because of their immediate psychological, social, and political consequences on Earth, but because they can influence the future of interstellar communication. Initial impressions will rest less on hard data than on the nature and tone of the "evidence" that is gleaned from the transmission; the interpretation and dissemination of this evidence; and the hard wiring, psychological programming, cultural conditioning, and social influence processes that shape human perception. We consider how dispositional inferences, implicit theories of personality, negatively toned or adverse information, physical appearance, prior expectations, the confirmation bias, and thinking and unthinking approaches to attitude formation are likely to affect human impressions of ETI.

  1. Elastic proteins and elastomeric protein alloys.

    PubMed

    Aghaei-Ghareh-Bolagh, Behnaz; Mithieux, Suzanne M; Weiss, Anthony S

    2016-06-01

    The elastomeric proteins elastin and resilin have been used extensively in the fabrication of biomaterials for tissue engineering applications due to their unique mechanical and biological properties. Tropoelastin is the soluble monomer component of elastin. Tropoelastin and resilin are both highly elastic with high resilience, substantial extensibility, high durability and low energy loss, which makes them excellent candidates for the fabrication of elastic tissues that demand regular and repetitive movement like the skin, lung, blood vessels, muscles and vocal folds. Combinations of these proteins with silk fibroin further enhance their biomechanical and biological properties leading to a new class of protein alloy materials with versatile properties. In this review, the properties of tropoelastin-based and resilin-based biomaterials with and without silk are described in concert with examples of their applications in tissue engineering. PMID:26780495

  2. Impression block with orientator

    NASA Astrophysics Data System (ADS)

    Brilin, V. I.; Ulyanova, O. S.

    2015-02-01

    Tool review, namely the impression block, applied to check the shape and size of the top of fish as well as to determine the appropriate tool for fishing operation was realized. For multiple application and obtaining of the impress depth of 3 cm and more, the standard volumetric impression blocks with fix rods are used. However, the registered impress of fish is not oriented in space and the rods during fishing are in the extended position. This leads to rods deformation and sinking due to accidental impacts of impression block over the borehole irregularity and finally results in faulty detection of the top end of fishing object in hole. The impression blocks with copy rods and fixed magnetic needle allow estimating the object configuration and fix the position of magnetic needle determining the position of the top end of object in hole. However, the magnetic needle fixation is realized in staged and the rods are in extended position during fishing operations as well as it is in standard design. The most efficient tool is the impression block with copy rods which directs the examined object in the borehole during readings of magnetic needles data from azimuth plate and averaging of readings. This significantly increases the accuracy of fishing toll direction. The rods during fishing are located in the body and extended only when they reach the top of fishing object.

  3. Neurological Impress Method plus

    ERIC Educational Resources Information Center

    Flood, James; Lapp, Diane; Fisher, Douglas

    2005-01-01

    The purpose of these two studies was to redirect interest to the Neurological Impress Method, a multisensory approach to reading instruction that occurs between a teacher and a student, which has been largely forgotten in mainstream and special education circles over the past decades. In addition to its emphasis on oral reading, we included a…

  4. Chemical Stability of Telavancin in Elastomeric Pumps☆

    PubMed Central

    Sand, Patrick; Aladeen, Traci; Kirkegaard, Paul; LaChance, Dennis; Slover, Christine

    2015-01-01

    solutions examined. All decreases in telavancin concentration were ≤2.7%. Comparison of each test sample solution to the corresponding glass control indicated no loss of active drug due to absorption by the elastomeric material of the pumps. The greatest increase in the amount of total degradants observed over the 8-day period was ~0.7 w/w%. Conclusions The results of this study indicate that telavancin remains chemically stable when diluted in the Intermate Infusion System and the Homepump Eclipse elastomeric pumps and stored at 2°C to 8°C for up to 8 days protected from light at the concentration range and dilution schemes evaluated. PMID:26649079

  5. Understanding Mechanical Response of Elastomeric Graphene Networks.

    PubMed

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-01-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls. PMID:26348898

  6. Understanding Mechanical Response of Elastomeric Graphene Networks

    NASA Astrophysics Data System (ADS)

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-09-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls.

  7. Elastomeric Photopolymers: Shaping Polymer Gels with Light

    NASA Astrophysics Data System (ADS)

    Kornfield, Julia

    2008-03-01

    Polymer gels that possess a latent ability to change shape, which can be triggered in a spatially resolved manner using light---``elastomeric photopolymers''---have been developed to meet the need for materials that can be reshaped without direct contact, e.g., to non-invasively adjust an implanted lens in the human eye. The physics of diffusion and swelling in elastomers are applied to create a transparent silicone suitable for making a foldable intraocular lens that can be reshaped using near ultraviolet light. A crosslinked silicone matrix dictates the initial shape of the lens, while ``macromers''--short silicone chains with polymerizable end groups—and photoinitiator enable shape adjustment using light: polymerization of the macromer in the irradiated regions, followed by diffusion of free macromer causes local swelling. To predict shape change directly from irradiation profile, a theoretical treatment is presented that captures 1. shape change with no external forces, 2. coupling between diffusion and deformation, and 3. connection between thermodynamics, constitutive equations and equations of motion. Using continuum mechanics complemented with thermodynamics within the auspices of the finite element method, we develop a steady-state model which successfully captures the coupling between diffusion and deformation. Parameter values are drawn from our prior experimental studies of the mechanical properties, equilibrium swelling, penetrant diffusivities and interaction parameters in systematically varied polydimethylsiloxane (PDMS) networks and acrylate endcapped PDMS macromers. Preliminary computational studies show qualitative agreement with experimentally observed phenomena.

  8. Understanding Mechanical Response of Elastomeric Graphene Networks

    PubMed Central

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-01-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls. PMID:26348898

  9. Strain-induced crystallization in elastomeric polymer networks prepared in solution and sol-gel derived high-temperature organic-inorganic hybrid materials

    NASA Astrophysics Data System (ADS)

    Premachandra, Jagath Kumara

    Cross-linking polymer chains in solution should bring about fewer inter-chain entanglements in the resulting network. The subsequent drying of this network should compress the chains into a "super-contracted" state. The opposing effects of these changes on strain-induced crystallization in cis-1,4-polyisoprene networks formed in solution were investigated. Higher elongations were required to achieve strain-induced crystallinity in the networks prepared at higher dilutions, suggesting that in this regard the compressed states of the chains was more important than their reduced entangling. The constrained-junction theory was applied to strain-induced crystallization in the above networks. The stress-strain isotherms generated from this theory were in satisfactory agreement with experiment. It was found that the constraint parameter kappa decreases with increase in dilution during cross-linking mainly due to the fact that cross-linking in solution decreases chain interpenetration. The dependence of hydrolysis and condensation of gamma-ureidopropyltrimethoxysilane on pH in the water-methanol system at 23sp°C was investigated by FTIR spectroscopy. Quantitative analysis of rates of hydrolysis showed that gamma-ureidopropyltrimethoxysilane is most stable in the water-methanol system at pH 7.7. The rate of overall condensation of silanols produced by the hydrolysis was qualitatively analyzed. These silanol groups are relatively more stable around pH 4.87. The mechanical properties, thermal stability and water absorption of high-temperature sulfopolybenzobisthiazole-silica hybrid materials were investigated. The use of a bonding agent N,N-diethylaminopropyltrimethoxysilane facilitated the interfacial bonding between the organic and inorganic phases in these materials prepared through the sol-gel process. Tensile modulus, thermal stability and the resistant to water absorption were increased with increase in silica content in the resulting composites

  10. Tool for Taking Clay Impressions

    NASA Technical Reports Server (NTRS)

    Duncan, R. S.

    1984-01-01

    Clay impression of small parts taken with tool consisting of hollow tube closed at one end. Slots at other end admit part short distance into tube. Impression used to make silicone rubber mold for examination.

  11. Substance Use as Impression Management.

    ERIC Educational Resources Information Center

    Sharp, Mark J.; Getz, J. Greg

    1996-01-01

    Examines the function of substance use as an impression management tactic. Introductory psychology students (n=377) responded to a survey instrument measuring self-monitoring, perceived success in impression management, interaction anxiety, and self-esteem. Results suggest that alcohol use may serve an impression management function. (JPS)

  12. Impression Testing of Self-Healing Polymers

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Huber, Amy

    2005-01-01

    As part of the BIOSANT program (biologically-inspired smart nanotechnology), scientists at NASA-Langley have identified a "self-healing" plastic that spontaneously closes the hole left by the passage of a bullet. To understand and generalize the phenomenon in question, the mechanical properties responsible for this ability are being explored. Low-rate impression testing was chosen to characterize post-yield material properties, and it turned out that materials that heal following ballistic puncture also show up to 80% healing of the low-rate impression. Preliminary results on the effects of temperature and rate of puncture are presented.

  13. Elastomeric member for energy storage device

    DOEpatents

    Hoppie, Lyle O.; Chute, Richard

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.

  14. Photocrosslinkable and elastomeric hydrogels for bone regeneration.

    PubMed

    Thakur, Teena; Xavier, Janet R; Cross, Lauren; Jaiswal, Manish K; Mondragon, Eli; Kaunas, Roland; Gaharwar, Akhilesh K

    2016-04-01

    Nanocomposite biomaterials are extensively investigated for cell and tissue engineering applications due their unique physical, chemical and biological characteristics. Here, we investigated the mechanical, rheological, and degradation properties of photocrosslinkable and elastomeric nanocomposite hydrogels from nanohydroxyapatite (nHAp) and gelatin methacryloyl (GelMA). The addition of nHAp resulted in a significant increase in mechanical stiffness and physiological stability. Cells readily adhere and proliferate on the nanocomposite surfaces. Cyclic stretching of cells on the elastomeric nanocomposites revealed that nHAp elicited a stronger alignment response in the direction of strain. In vitro studies highlight enhanced bioactivity of nanocomposites as determined by alkaline phosphate (ALP) activity. Overall, the elastomeric and photocrosslinkable nanocomposite hydrogels can be used for minimally invasive therapy for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 879-888, 2016. PMID:26650507

  15. Blends of thermoplastic and elastomeric matrices with liquid crystalline polymers

    SciTech Connect

    Roggero, A.; Pedretti, U.; La Mantia, F.P.

    1995-12-01

    Liquid crystalline polymers (LCPs) present a unique balance of properties and, when added to thermoplastic (TP) or elastomeric (EL) matrices, can impart to the relevant blends specific properties that can be utilized for specific applications. As regards TP/LCP blends, the proclivity of LCPs to form fibrous structures and their low melt viscositiy allowed to obtain blends reinforced and easier to process than the pure TPs: particularly, depending on the LCP-TP structures and on the processing parameters, materials with improved processability, high modulus, enhanced impact strength and creeping resistance were obtained. As regards EL/LCP blends, that based on fluoroelastomers were in depth investigated and offered outstanding properties.

  16. Elastomeric organic material for switching application

    SciTech Connect

    Shiju, K. E-mail: pravymon@gmail.com Praveen, T. E-mail: pravymon@gmail.com Preedep, P. E-mail: pravymon@gmail.com

    2014-10-15

    Organic Electronic devices like OLED, Organic Solar Cells etc are promising as, cost effective alternatives to their inorganic counterparts due to various reasons. However the organic semiconductors currently available are not attractive with respect to their high cost and intricate synthesis protocols. Here we demonstrate that Natural Rubber has the potential to become a cost effective solution to this. Here an attempt has been made to fabricate iodine doped poly isoprene based switching device. In this work Poly methyl methacrylate is used as dielectric layer and Aluminium are employed as electrodes.

  17. Recombinant exon-encoded resilins for elastomeric biomaterials.

    PubMed

    Qin, Guokui; Rivkin, Amit; Lapidot, Shaul; Hu, Xiao; Preis, Itan; Arinus, Shira B; Dgany, Or; Shoseyov, Oded; Kaplan, David L

    2011-12-01

    Resilin is an elastomeric protein found in specialized regions of the cuticle of most insects, providing outstanding material properties including high resilience and fatigue lifetime for insect flight and jumping needs. Two exons (1 and 3) from the resilin gene in Drosophila melanogaster were cloned and the encoded proteins expressed as soluble products in Escherichia coli. A heat and salt precipitation method was used for efficient purification of the recombinant proteins. The proteins were solution cast from water and formed into rubber-like biomaterials via horseradish peroxidase-mediated cross-linking. Comparative studies of the two proteins expressed from the two different exons were investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Circular Dichrosim (CD) for structural features. Little structural organization was found, suggesting structural order was not induced by the enzyme-mediated di-tyrosine cross-links. Atomic Force Microscopy (AFM) was used to study the elastomeric properties of the uncross-linked and cross-linked proteins. The protein from exon 1 exhibited 90% resilience in comparison to 63% for the protein from exon 3, and therefore may be the more critical domain for functional materials to mimic native resilin. Further, the cross-linking of the recombinant exon 1 via the citrate-modified photo-Fenton reaction was explored as an alternative di-tyrosine mediated polymerization method and resulted in both highly elastic and adhesive materials. The citrate-modified photo-Fenton system may be suitable for in vivo applications of resilin biomaterials. PMID:21963157

  18. Recombinant Exon-Encoded Resilins for Elastomeric Biomaterials

    PubMed Central

    Qin, Guokui; Rivkin, Amit; Lapidot, Shaul; Hu, Xiao; Arinus, Shira B.; Dgany, Or; Shoseyov, Oded; Kaplan, David L.

    2011-01-01

    Resilin is an elastomeric protein found in specialized regions of the cuticle of most insects, providing outstanding material properties including high resilience and fatigue lifetime for insect flight and jumping needs. Two exons (1 and 3) from the resilin gene in Drosophila melanogaster were cloned and the encoded proteins expressed as soluble products in Escherichia coli. A heat and salt precipitation method was used for efficient purification of the recombinant proteins. The proteins were solution cast from water and formed into rubber-like biomaterials via horseradish peroxidase-mediated cross-linking. Comparative studies of the two proteins expressed from the two different exons were investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Circular Dichrosim (CD) for structural features. Little structural organization was found, suggesting structural order was not induced by the enzyme-mediateed dityrosine cross-links. Atomic Force Microscopy (AFM) was used to study the elastomeric properties of the uncross-linked and cross-linked proteins. The protein from exon 1 exhibited 90% resilience in comparison to 63% for the protein from exon 3, and therefore may be the more critical domain for functional materials to mimic native resilin. Further, the cross-linking of the recombinant exon 1 via the citrate-modified photo-Fenton reaction was explored as an alternative dityrosine mediated polymerization method and resulted in both highly elastic and adhesive materials. The citrate-modified photo-Fenton system may be suitable for in-vivo applications of resilin biomaterials. PMID:21963157

  19. Elastomeric PGS scaffolds in arterial tissue engineering.

    PubMed

    Lee, Kee-Won; Wang, Yadong

    2011-01-01

    Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation. The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS) for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro

  20. Elastomeric member and method of manufacture therefor

    DOEpatents

    Hoppie, L.O.

    1985-12-10

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  1. Elastomeric member and method of manufacture therefor

    DOEpatents

    Hoppie, Lyle O.

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  2. [Digital implant impression taking - an overview].

    PubMed

    Mahl, Dominik; Glenz, Fabienne; Marinello, Carlo P

    2014-01-01

    In dentist's daily practice, intraoral scanning systems are increased. Besides scanning of prepared teeth, also implants could be scanned intraorally. This clinical report describes the step-by-step techniques to scan digitally intraoral implants with two intraoral scanners (Lava™ C.O.S., 3M Espe and the CEREC AC connected with inLab MC XL, Sirona) for generating implant suprastructures without the use of impression materials, dental stone or implant impression copings. Different workflows, possibilities and limits by scanning dental implants are demonstrated. PMID:24585419

  3. Elastomeric binders for electrodes. [in secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D. H.; Somoano, R. B.

    1983-01-01

    The poor mechanical integrity of the cathode represents an important problem which affects the performance of ambient temperature secondary lithium cells. Repeated charge of a TiS2 cathode may give rise to stresses which disturb the electrode structure and can contribute to capacity loss. An investigation indicates that the use of an inelastic binder material, such as Teflon, aggravates the problem, and can lead to electrode disruption and poor TiS2 particle-particle contact. The feasibility of a use of elastomers as TiS2 binder materials has, therefore, been explored. It was found that elastomeric binders provide an effective approach for simplifying rechargeable cathode fabrication. A pronounced improvement in the mechanical integrity of the cathode structure contributes to a prolonged cycle life.

  4. Effect of the impression margin thickness on the linear accuracy of impression and stone dies: an in vitro study.

    PubMed

    Naveen, Y G; Patil, Raghunath

    2013-03-01

    The space available for impression material in gingival sulcus immediately after the removal of retraction cord has been found to be 0.3-0.4 mm. However after 40 s only 0.2 mm of the retracted space is available. This is of concern when impression of multiple abutments is to be made. Hence a study was planned to determine the minimum width of the retracted sulcus necessary to obtain a good impression. Five metal dies were machined to accurately fit a stainless steel block with a square cavity in the center with spaces, 1 mm deep and of varying widths (0.11-0.3 mm) away from the block. Polyvinyl siloxane impressions were made and poured using a high strength stone. Using traveling microscope, length and widths of abutment, impression and die were measured and compared for linear accuracy and completeness of impression. Results showed 1.5-3 times greater mean distortion and larger coefficient of variance in the 0.11 mm group than in the wider sulcular groups. ANOVA test for distortion also showed statistically significant differences (P < 0.05). 75 % of impressions in 0.11 mm group were defective compared to less than 25 % of impressions in other width groups. It is not always possible to predictably obtain accurate impressions in sulcus width of 0.11 mm or lesser. Dimensionally accurate and defect free impressions were obtained in sulcus width of 0.15 mm and wider. Hence clinicians must choose retraction methods to obtain a width greater than 0.35 mm. Further immediate loading of the impression material after cord removal may improve accuracy. PMID:24431701

  5. Characterization of a Crosslinked Elastomeric-Protein Inspired Polypeptide.

    PubMed

    Bochicchio, Brigida; Bracalello, Angelo; Pepe, Antonietta

    2016-08-01

    Materials inspired by natural proteins have a great appeal in tissue engineering for their biocompatibility and similarity to extracellular matrix (ECM). Chimeric polypeptides inspired by elastomeric proteins such as silk, elastin, and collagen are of outstanding interest in the field. A recombinant polypeptide constituted of three different blocks, each of them having sequences derived from elastin, resilin, and collagen proteins, was demonstrated to be a good candidate as biomaterial for its self-assembling characteristics and biocompatibility. Herein, taking advantage of the primary amine functionalities present in the linear polypeptide, we crosslinked it with 1,6-hexamethylene-diisocyanate (HMDI). The characterization of the obtained polypeptide was realized by CD spectroscopy, AFM, and SEM microscopies. The obtained results, although not conclusive, demonstrate that the crosslinked polypeptide gave rise to porous networks, thin nanowires, and films not observable for the linear polypeptide. Chirality 28:606-611, 2016. © 2016 Wiley Periodicals, Inc. PMID:27403636

  6. Elastomeric polymer light-emitting devices and displays

    NASA Astrophysics Data System (ADS)

    Liang, Jiajie; Li, Lu; Niu, Xiaofan; Yu, Zhibin; Pei, Qibing

    2013-10-01

    The emergence of devices that combine elasticity with electronic or optoelectronic properties offers exciting new opportunities for applications, but brings significant materials challenges. Here, we report the fabrication of an elastomeric polymer light-emitting device (EPLED) using a simple, all-solution-based process. The EPLED features a pair of transparent composite electrodes comprising a thin percolation network of silver nanowires inlaid in the surface layer. The resulting EPLED, which exhibits rubbery elasticity at room temperature, is collapsible, and can emit light when exposed to strains as large as 120%. It can also survive repeated continuous stretching cycles, and small stretching is shown to significantly enhance its light-emitting efficiency. The fabrication process is scalable and was readily adapted for the demonstration of a simple passive matrix monochrome display featuring a 5 × 5 pixel array.

  7. Confinement of elastomeric block copolymers via forced assembly coextrusion.

    PubMed

    Burt, Tiffani M; Keum, Jong; Hiltner, Anne; Baer, Eric; Korley, Lashanda T J

    2011-12-01

    Forced assembly processing provides a unique opportunity to examine the effects of confinement on block copolymers (BCPs) via conventional melt processing techniques. The microlayering process was utilized to produce novel materials with enhanced mechanical properties through selective manipulation of layer thickness. Multilayer films consisting of an elastomeric, symmetric block copolymer confined between rigid polystyrene (PS) layers were produced with layer thicknesses ranging from 100 to 600 nm. Deformation studies of the confined BCP showed an increase in ductility as the layer thickness decreased to 190 nm due to a shift in the mode of deformation from crazing to shear yielding. Postextrusion annealing was performed on the multilayer films to investigate the impact of a highly ordered morphology on the mechanical properties. The annealed multilayer films exhibited increased toughness with decreasing layer thickness and resulted in homogeneous deformation compared to the as-extruded films. Multilayer coextrusion proved to be an advantageous method for producing continuous films with tunable mechanical response. PMID:22124208

  8. Accuracy and consistency of modern elastomeric pumps.

    PubMed

    Weisman, Robyn S; Missair, Andres; Pham, Phung; Gutierrez, Juan F; Gebhard, Ralf E

    2014-01-01

    Continuous peripheral nerve blockade has become a popular method of achieving postoperative analgesia for many surgical procedures. The safety and reliability of infusion pumps are dependent on their flow rate accuracy and consistency. Knowledge of pump rate profiles can help physicians determine which infusion pump is best suited for their clinical applications and specific patient population. Several studies have investigated the accuracy of portable infusion pumps. Using methodology similar to that used by Ilfeld et al, we investigated the accuracy and consistency of several current elastomeric pumps. PMID:25140510

  9. Method of making hollow elastomeric bodies

    NASA Technical Reports Server (NTRS)

    Broyles, H. F.; Moacanin, J.; Cuddihy, E. F. (Inventor)

    1976-01-01

    Annular elastomeric bodies having intricate shapes are cast by dipping a heated, rotating mandrel into a solution of the elastomer, permitting the elastomer to creep into sharp recesses, drying the coated mandrel and repeating the operation until the desired thickness has been achieved. A bladder for a heart assist pump in which a cylindrical body terminating in flat, sharp horizontal flanges fabricated by this procedure has been subjected to over 2,500 hours of simulated life conditions with no visible signs of degradation.

  10. Elastomeric biodegradable polyurethane blends for soft tissue applications.

    PubMed

    Fromstein, J D; Woodhouse, K A

    2002-01-01

    Four biodegradable polyurethane blends were made from segmented polyurethanes that contain amino acid-based chain extender and diisocyanate groups. The soft segments of these parent polyurethanes were either polyethylene oxide (PEO) or polycaprolactone (PCL) diols. The blends were developed to investigate the effect of varying soft segment compositions on the overall morphological, mechanical, and degradative properties of the materials, with a view to producing a family of materials with a wide range of properties. The highly hydrophilic PEO material was incorporated to increase the blend's susceptibility to degradation, while the PCL polyurethane was selected to provide higher moduli and percent elongations (strains) than the PEO parent materials can achieve. All four blends were determined to be semi-crystalline, elastomeric materials that possess similarly shaped stress-strain curves to that of the PCL-based parent polyurethane. As the percent composition of PEO polyurethane within the blend increased, the material became weaker and less extensible. The blends demonstrated rapid initial degradation in buffer followed by significantly slower, prolonged degradation, likely corresponding to an initial loss of primarily PEO-containing polymer, followed by the slower degradation of the PCL polyurethane. All four blends were successfully formed into three-dimensional porous scaffolds utilizing solvent casting/particulate leaching methods. Since these new blends possess a range of mechanical and degradation properties and can be shaped into three-dimensional objects, these materials may hold potential for use in soft tissue engineering scaffold applications. PMID:12160300

  11. Use of Clinical UV Chamber to Disinfect Dental Impressions: A Comparative Study

    PubMed Central

    Sharma, Sakshi; Kumar, Varun; Gupta, Neelu

    2015-01-01

    Introduction Dental impressions are potential source of infection in a prosthodontic practice. Risk of transmission of infection through saliva, blood etc is considered as hazard for both dentist as well as dental auxiliary staff. A number of methods are currently employed for disinfecting the impressions which are technique sensitive and time consuming. This study focuses on disinfecting impression using dental UV chamber which is commonly employed for storing sterilized instruments. Aim The aim of this invitro study was to evaluate the use of clinical UV chamber to disinfect various impression materials at different time intervals and its comparison with 2% glutaraldehyde using standard immersion technique. Materials and Methods Total sample size of 180 specimens was taken from three different impression materials. The impressions were made from 30 dentulous subjects. A total of ten impressions were made for each impression material i.e. alginate, addition silicone and polyether impression material. Six punch samples were taken from each impression. Out of 6 punch sample, one was kept as control, second was disinfected by immersing in freshly prepared 2% glutaraldehyde solution for 10 minutes and remaining four were exposed to UV rays for 3 minutes, 6 minutes, 10 minutes and 15 minutes using dental UV chamber. Amount of disinfection achieved was evaluated by counting the colonies over the culture plates with the help of digital colony. Results The results showed that the mean CFUs for alginate were found to be i.e. 11797.40 ± 5989.73 (mean ± SD). The mean CFUs for addition silicone impression material was found 7095.40 with a standard deviation of 4268.83 and the mean CFUs for polyether impression material was found to be 2168.92 ± 1676 (mean ± SD). Conclusion For alginate and addition silicone impression material, disinfection was achieved on exposure to UV rays for a period of 10 minutes. However, for polyether impression material 3 minutes of exposure to

  12. Using double-poured alginate impressions to fabricate bleaching trays.

    PubMed

    Haywood, V B; Powe, A

    1998-01-01

    Esthetic and diagnostic treatment often requires two casts of one arch, one for baseline and one for alterations (diagnostic wax-up, bleaching tray, occlusal analysis). The purpose of this study was to compare the accuracy of stone casts generated from a second pour of a properly handled alginate impression with first-poured casts. A maxillary dentoform was indexed with six reference spaces (#8-15, 9-2, 2-15, and incisal-to-gingival of #3, 9, 14). Irreversible hydrocolloid (Jeltrate) impressions were made in perforated steel trays by a single investigator. Impression material was spatulated for 1 minute. The seated impression and dentoform were wrapped in a damp paper towel to simulate intraoral conditions, and allowed to set for 2 minutes. Upon separation, the impression was stored in a damp towel for 5 minutes. The impression was poured in cast stone (Microstone) according to the manufacturer's instructions. The stone-filled impression was immediately rewrapped in a damp paper towel and allowed to set for 45 minutes at room temperature. Upon removal of the stone, the impression was rinsed with cold water, shaken dry, and repoured in the same manner. Ten impressions were made: the first five impressions were poured to make casts for Group A, then repoured as described above for casts for Group B. The remaining five impressions were poured once to make casts for Group C. The six spaces of each cast were measured three times in random order using a dial caliper and the space average calculated for the cast. At each space, analysis of variance showed no significant difference among Groups A, B, or C (P < 0.05). When alginate impressions that have been poured with cast stone are kept moist during stone setting and repoured within 45 minutes, two casts can be generated from one impression with the same degree of accuracy as two casts made from taking two separate impressions, providing the alginate does not tear during first cast removal. PMID:9656923

  13. Statistical analysis of barefoot impressions.

    PubMed

    Kennedy, Robert B; Pressman, Irwin S; Chen, Sanping; Petersen, Peter H; Pressman, Ari E

    2003-01-01

    Comparison of the shapes of barefoot impressions from an individual with footprints or shoes linked to a crime may be useful as a means of including or excluding that individual as possibly being at the scene of a crime. The question of the distinguishability of a person's barefoot print arises frequently. This study indicates that measurements taken from the outlines of inked footprint impressions show a great degree of variability between donors and a great degree of similarity for multiple impressions taken from the same donor. The normality of the set of measurements on footprint outlines that we have selected for this study is confirmed. A statistical justification for the use of the product rule on individual statistical precisions is developed. PMID:12570199

  14. Evaluation of shear mounted elastomeric damper

    NASA Technical Reports Server (NTRS)

    Zorzi, E.; Walton, J.

    1982-01-01

    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  15. Impression Procedures for Metal Frame Removable Partial Dentures as Applied by General Dental Practitioners.

    PubMed

    Fokkinga, Wietske A; van Uchelen, Judith; Witter, Dick J; Mulder, Jan; Creugers, Nico H J

    2016-01-01

    This pilot study analyzed impression procedures for conventional metal frame removable partial dentures (RPDs). Heads of RPD departments of three dental laboratories were asked to record features of all incoming impressions for RPDs during a 2-month period. Records included: (1) impression procedure, tray type (stock/custom), impression material (elastomer/alginate), use of border-molding material (yes/no); and (2) RPD type requested (distal-extension/tooth-bounded/combination). Of the 132 total RPD impressions, 111 (84%) involved custom trays, of which 73 (55%) were combined with an elastomer. Impression border-molding material was used in 4% of the cases. Associations between impression procedure and RPD type or dentists' year/university of graduation were not found. PMID:26929957

  16. Social Relevance Enhances Memory for Impressions in Older Adults

    PubMed Central

    Cassidy, Brittany S.; Gutchess, Angela H.

    2012-01-01

    Previous research has demonstrated that older adults have difficulty retrieving contextual material over items alone. Recent research suggests this deficit can be reduced by adding emotional context, allowing for the possibility that memory for social impressions may show less age-related decline than memory for other types of contextual information. Two studies investigated how orienting to social or self-relevant aspects of information contributed to the learning and retrieval of impressions in young and older adults. Participants encoded impressions of others in conditions varying in the use of self-reference (Experiment 1) and interpersonal meaningfulness (Experiment 2), and completed memory tasks requiring the retrieval of specific traits. For both experiments, age groups remembered similar numbers of impressions. In Experiment 1, using more self-relevant encoding contexts increased memory for impressions over orienting to stimuli in a non-social way, regardless of age. In Experiment 2, older adults had enhanced memory for impressions presented in an interpersonally meaningful relative to a personally irrelevant way, whereas young adults were unaffected by this manipulation. The results provide evidence that increasing social relevance ameliorates age differences in memory for impressions, and enhances older adults’ ability to successfully retrieve contextual information. PMID:22364168

  17. [Complications Resulting from Taking Ear Impressions].

    PubMed

    Sugiuchi, Tomoko; Kodera, Kazuoki; Zusho, Hiroyuki; Asano, Yoshikazu; Kanesada, Keiko; Hayashida, Mitsuhiro; Kanaya, Koichiro; Tokumaru, Takeshi

    2015-08-01

    In 2012, we carried out a study in a large sample to understand the secondary injuries caused during the taking ear impressions for hearing aids. This study is a follow-up of previous research conducted in 1986 (285 medical institutions) and 1999 (98 medical institutions). We posted a questionnaire survey to the otolaryngology departments of 3,257 medical institutions. The response rate to the questionnaire was 62.9% (2,050 of the 3,257 institutions), and the results indicated that 301 of the 2050 institutions (14.7%) had experience with secondary injuries, with a total of 460 cases reported. In 342 of the 460 cases (74.3%), the secondary injuries occurred at hearing-aid dealerships, followed by 67 cases (14.6%) at affiliated medical institutions, and 51 cases (11.1%) in other locations, including other medical institutions, rehabilitation counseling centers, and educational institutions. The most common type of secondary injury (298 cases, 64.8%) was caused by the presence of foreign bodies in the ear, which in turn was a result of complications occurring during the removal of residual ear impression material. Of these 298 cases, 32 required excision of the foreign bodies and surgical intervention under general anesthesia. The remaining 10 cases exhibited isolated tympanic membrane perforation without foreign body-related complications. Furthermore, 146 cases (31.7%) developed bleeding and otitis externa following removal of the ear impression, and there were reports of cases with bleeding that required long-term outpatient care and treatment. Therefore, since retention of a foreign body in the ear and tympanic membrane perforation can occur even in patients without a history of surgery or prior otologic history, adjustment of hearing aids requires prior otorhinolaryngological examination. Furthermore, because of the risk of secondary injury when taking ear impressions, this procedure must be performed with caution under the guidance of an otolaryngologist. PMID

  18. Elastomeric composites based on carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Araby, Sherif; Meng, Qingshi; Zhang, Liqun; Zaman, Izzuddin; Majewski, Peter; Ma, Jun

    2015-03-01

    Carbon nanomaterials including carbon black (CB), carbon nanotubes (CNTs) and graphene have attracted increasingly more interest in academia due to their fascinating properties. These nanomaterials can significantly improve the mechanical, electrical, thermal, barrier, and flame retardant properties of elastomers. The improvements are dependent on the molecular nature of the matrix, the intrinsic property, geometry and dispersion of the fillers, and the interface between the matrix and the fillers. In this article, we briefly described the fabrication processes of elastomer composites, illuminated the importance of keeping fillers at nanoscale in matrices, and critically reviewed the recent development of the elastomeric composites by incorporating CB, CNTs, and graphene and its derivatives. Attention has been paid to the mechanical properties and electrical and thermal conductivity. Challenges and further research are discussed at the end of the article.

  19. Anisotropic dewetting on stretched elastomeric substrates.

    PubMed

    Qiao, L; He, L H

    2008-08-01

    We study the instability of a very thin liquid film resting on a uniformly stretched soft elastomeric substrate driven by van der Waals forces. A linear stability analysis shows that the critical fluctuation wavelength in the tensile direction is larger than those in the other directions. The magnitudes of the critical wavelengths are adjustable in the sense that they depend on the principal stretch of the substrate. For example, when the principal stretch of the substrate varies from 1.0 (unstretched) to 3.0, the range of the critical wavelength in the tensile direction increases by 7.0% while that normal to the tensile direction decreases by 8.7%. Therefore, the phenomenon may find potential applications in creating tunable topographically patterned surfaces with nano- to microscale features. PMID:19230211

  20. Friction of soft elastomeric wrinkled surfaces

    NASA Astrophysics Data System (ADS)

    Rand, Charles J.; Crosby, Alfred J.

    2009-09-01

    We evaluate the sliding of a rigid spherical lens over a surface-wrinkled, elastomeric substrate. Sliding is conducted both parallel and perpendicular to the aligned surface wrinkles, and the sliding force is compared to the required sliding forces on nonwrinkled surfaces. We evaluate the effects of wrinkle dimensions and applied normal force on the sliding resistance. A simple Bowden-Tabor friction model can describe the dependence of the sliding force on normal load, with different coefficients of friction associated with the nonwrinkled and wrinkled surfaces both perpendicular and parallel. The aspect ratio of the wrinkles has a secondary effect on the sliding force. We associate the changes in friction to changes in the tangential stiffness and fracture angle caused by the surface wrinkles.

  1. Reliability of the impression replica technique.

    PubMed

    Falk, Anders; Vult von Steyern, Per; Fransson, Håkan; Thorén, Margareta Molin

    2015-01-01

    The aim of this study was to evaluate the reliability of the impression replica technique with a four-unit zirconia fixed dental prosthesis (FDP). Marginal and internal fit were measured by repeatedly placing the FDP on an epoxy cast using light-body silicone material corresponding to cement. All measured marginal and internal fit points showed varying values. The greatest variations were seen at the most distal margin (33 μm) and at the distal abutment of the FDP (77 μm). The results showed that the technique gives moderate variations and is a useful method to evaluate marginal and internal fit. PMID:25822305

  2. Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates.

    PubMed

    Ding, Hangjun; Zhong, Mingjiang; Wu, Haosheng; Park, Sangwoo; Mohin, Jacob W; Klosterman, Luke; Yang, Zhou; Yang, Huai; Matyjaszewski, Krzysztof; Bettinger, Christopher John

    2016-06-28

    A strategy for creating elastomeric conducting polyaniline networks is described. Simultaneous elastomeric mechanical properties (E < 10 MPa) and electronic conductivities (σ > 10 S cm(-1)) are achieved via molecular templating of conjugated polymer networks. Diblock copolymers with star topologies processed into self-assembled elastomeric thin films reduce the percolation threshold of polyaniline synthesized via in situ polymerization. Block copolymer templates with star topologies produce elastomeric conjugated polymer composites with Young's moduli ranging from 4 to 12 MPa, maximum elongations up to 90 ± 10%, and electrical conductivities of 30 ± 10 S cm(-1). Templated polyaniline films exhibit Young's moduli up to 3 orders of magnitude smaller compared to bulk polyaniline films while preserving comparable bulk electronic conductivity. Flexible conducting polymers have prospective applications in devices for energy storage and conversion, consumer electronics, and bioelectronics. PMID:27175931

  3. The application of elastomeric connector for multi-channel electrophysiological recordings.

    PubMed

    Szabó, Imre; Máthé, Kálmán; Tóth, Attila; Hernádi, István; Czurkó, András

    2002-02-15

    Interest in recording multi-channel electrophysiological data from behaving animals is rapidly growing, and many laboratories tend to record a large number of EEG and/or multi-unit channels, despite the limitation of the size of the headpiece that a small behaving animal can carry. A common drawback of these experiments, therefore, is the relatively large size of even the smallest, commercially available, high-density micro-connectors for the headset. To overcome this problem, we suggest the application of elastomeric or silicone inter-rubber connectors, that are widely used in electronics. The elastomeric or "zebra" connector consists of alternating thin strips of layered electrically conductive and non-conductive materials. The conductive strips provide electrical connections between uninsulated contact surfaces of printed circuit boards such as the connector plate of the micro-drive, that holds the brain electrode wires, and the preamplifier board of the recording system. In the present paper, we provide technical details of the design of this type of connector-sets and discuss common issues arising from their use. By comparing the applicability of two designs, we aim to demonstrate the simplicity, reliability and durability of the elastomeric inter-rubber connectors in electrophysiological experiments on freely moving laboratory animals. PMID:11850041

  4. Long-term compression effects on elastomeric O-ring behavior

    NASA Technical Reports Server (NTRS)

    Clinton, R. G.; Turner, J. E.

    1990-01-01

    This paper discusses the results of testing performed on elastomeric seal materials that had been under compression for extended periods of time. Elastomeric seals used in the Space Shuttle redesigned solid rocket motors can experience compression times of up to six months. These seals must be capable of sealing internal motor pressure upon ignition. The tests described herein were performed in order to verify that the seals, which had experienced long-term compression could seal throughout motor operation. Testing was divided into two phases: (1) dynamic high pressure testing, and (2) resiliency testing. Dynamic testing was performed using specialized test fixtures that allowed simulation of the field joint movements during initial motor operation along with high pressure gas. Resiliency testing was performed using specialized test fixtures that also simulated field joint movements and also had the ability to measure the sealing force of the O-ring. Results from all testing indicated that the current elastomeric seals used in the redesigned solid rocket motors will seal during motor operations in the currently defined launch environments.

  5. The effect of dietary pigmentation on the esthetic appearance of clear orthodontic elastomeric modules

    PubMed Central

    Talic, Nabeel F; Almudhi, Abdullazez A

    2016-01-01

    Objective: To compare the stain resistance of three types of clear elastomeric modules exposed to several common dietary substances through the assessment of the perception of a group of dentists to discoloration using visual analog scale (VAS). Materials and Methods: Elastomeric modules from Unitek (AU), Ormco (OR), and dentaurum (DE) were immersed in the following food substances: Coffee, black tea, chocolate, energy drink, ketchup, and Coca-Cola for 72 h. VAS was used to reflect the module staining severity. Results: Significant difference was found among the three types of modules examined in this study. OR modules showed the least mean staining ratings by the examiners. There was no statistical difference in the staining properties between AU and DE modules. Coffee and tea showed higher staining potential as compared to all staining media. Furthermore, there was no difference in the staining characteristics of coffee and black tea. Conclusions: Coffee and tea are strong staining media that should be avoided by patients who opted to have esthetic appliances for their orthodontic treatment. Elastomeric modules manufactured by AU showed higher staining optical properties as compared to the other two companies, which could be related to the manufacturing processing of these modules. PMID:27127754

  6. Eyeblinks in formation of impressions.

    PubMed

    Omori, Y; Miyata, Y

    1996-10-01

    The purpose of this study was to investigate the influence of frequency of one's eyeblinks on creating a personal impression. The subjects, 102 males and 127 females, ages 15 to 60 years, rated on a 7-point semantic differential scale a rarely blinking person or a frequently blinking person described on a question-sheet. A factor analysis of the ratings yielded three factors, interpreted as Nervousness, Unfriendliness, and Lack of intelligence. The frequently blinking person was rated as more nervous and less intelligent than the rarely blinking person. Present results provided evidence that frequency of eyeblinks may play an important role on the formation of impressions. Further implications of the findings are discussed. PMID:8902035

  7. Solvent-resistant elastomeric microfluidic devices and applications

    NASA Astrophysics Data System (ADS)

    van Dam, Robert Michael

    Microfluidics is increasingly being used in many areas of biotechnology and chemistry to achieve reduced reagent volumes, improved performance, integration, and parallelism, among other advantages. Though early devices were based on rigid materials such as glass and silicon, elastomeric materials such as polydiznethylsiloxane (PDMS) are rapidly emerging as a ubiquitous platform for applications in biotechnology. This is due, in part, to simpler fabrication procedures and to the ability to integrate mechanical microvalves at vastly greater densities. For many applications in the areas of chemical synthesis and analysis, however, PDMS cannot replace glass and silicon due to its incompatibility with many solvents and reagents. Such areas could benefit tremendously from the development of an elastomeric microfluidic device technology that combines the advantages of PDMS with the property of solvent resistance. Simplified fabrication could increase the accessibility of microfluidics, and the possibility of dense valve integration could lead to significant advances in device sophistication. Applications could be more rapidly developed by design re-use due to the independence of mechanical valves on fluid properties (unlike electrokinetic pumping), and the property of permeability could enable novel fluidic functions for accessing a broader range of reactions than is possible in glass and silicon. The first half of this thesis describes our strategies and efforts to develop this new enabling technology. Several approaches are presented in Chapter 3, and two particularly successful ones, based on new elastomers (FNB and PFPE), are described in Chapters 4 and 5. Chapter 6 describes a novel method of fabricating devices from 3D molds that could expand the range of useful clastomers. The second half of this thesis discusses microfluidic combinatorial synthesis and high throughput screening-applications that take particular advantage of the ability to integrate thousands of

  8. Intraoral Digital Impression Technique: A Review.

    PubMed

    Ting-Shu, Su; Jian, Sun

    2015-06-01

    With the techniques of computer-aided design and computer-aided manufacturing (CAD/CAM) being applied in the field of prosthodontics, a concept of intraoral digital impressions was put forward in the early 1980s. It has drawn comprehensive attention from dentists and has been used for dental prosthesis fabrication in a number of cases. This new digital impression technique is expected to bring about absolute digitization to the mode of prosthodontics. A few published articles have indicated that dental prostheses fabricated from intraoral digital impressions have exhibited remarkable advantages over those from conventional impressions in several respects. The present review discusses intraoral digital impression techniques in terms of the following aspects: (1) categories and principles of intraoral digital impression devices currently available; (2) operating characteristics of the devices; and (3) comparison of the manipulation, accuracy, and repeatability between intraoral digital impression and conventional impression. PMID:25220390

  9. A Technique to Transfer the Emergence Profile Contours of a Provisional Implant Crown to the Definitive Impression.

    PubMed

    Shah, Karnik; Yilmaz, Burak

    2016-01-01

    This clinical report describes a method to create a proper emergence profile and accurately transfer it to the definitive impression, using an indirectly fabricated modified impression post. A provisional screwretained crown was indexed with a polyvinyl siloxane material. An autopolymerizing acrylic resin was used to modify an impression post on the polyvinyl siloxane index, which was then screwed onto the implant for the definitive impression after proper soft tissue healing. The indirectly fabricated modified impression post helped to transfer the contours to the definitive impression with minimal soft tissue irritation. PMID:27004296

  10. Elastomeric and soft conducting microwires for implantable neural interfaces.

    PubMed

    Kolarcik, Christi L; Luebben, Silvia D; Sapp, Shawn A; Hanner, Jenna; Snyder, Noah; Kozai, Takashi D Y; Chang, Emily; Nabity, James A; Nabity, Shawn T; Lagenaur, Carl F; Cui, X Tracy

    2015-06-28

    Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young's modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young's modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications. PMID:25993261

  11. Elastomeric and soft conducting microwires for implantable neural interfaces

    PubMed Central

    Kolarcik, Christi L.; Luebben, Silvia D.; Sapp, Shawn A.; Hanner, Jenna; Snyder, Noah; Kozai, Takashi D.Y.; Chang, Emily; Nabity, James A.; Nabity, Shawn T.; Lagenaur, Carl F.; Cui, X. Tracy

    2015-01-01

    Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young’s modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young’s modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications. PMID:25993261

  12. Charge Effects on Mechanical Properties of Elastomeric Proteins

    NASA Astrophysics Data System (ADS)

    Kappiyoor, Ravi; Balasubramanian, Ganesh; Dudek, Daniel; Puri, Ishwar

    2012-02-01

    Several biological molecules of nanoscale dimensions, such as elastin and resilin, are capable of performing diverse tasks with minimal energy loss. These molecules are efficient in that the ratio of energy output to energy consumed is very close to unity. This is in stark contrast to some of the best synthetic materials that have been created. For example, it is known that resilin found in dragonflies has a hysteresis loss of only 0.8% of the energy input while the best synthetic rubber made to date, polybutadiene, has a loss of roughly 20%.We simulate tensile tests of naturally occurring motifs found in resilin (a highly hydrophilic protein), as well as similar simulations found in reduced-polarity counterparts (i.e. the same motif with the charge on each individual atom set to half the natural value, the same motif with the charge on each individual atom set to zero, and a motif in which all the polar amino acids have been replaced with nonpolar amino acids). The results show a strong correlation between charge and extensibility. In order to further understand the effect of properties such as charge on the system, we will run simulations of elastomeric proteins such as resilin in different solvents.

  13. Elastomeric gradients: a hedge against stress concentration in marine holdfasts?

    PubMed Central

    Waite, J Herbert; Vaccaro, Eleonora; Sun, Chengjun; Lucas, Jared M

    2002-01-01

    The byssal threads of marine mussels are elastomeric fibres with a great capacity for absorbing and dissipating energy. Up to 70% of the total absorbed energy can be dissipated in the byssus. Because byssal threads attach the mussel to hard inert surfaces in its habitat, they must combine the need to be good shock absorbers with appropriate matching of Young's modulus between living tissue and a hard sub-stratum such as stone - stiffnesses that can differ by five orders of magnitude. Recent data suggest that improved modulus matching and decreased stress concentration between different portions of the byssus is achieved by the use of protein gradients. Protein gradients in byssal threads are constructed using natural macromolecular chimeras having a central collagenous domain, variable flanking modules and histidine-rich amino and carboxy termini. Stiff silk-like flanking modules prevail distally, while at the animal end, rubbery modules resembling elastin predominate. In between the two thread ends there is a mix of both module types. The histidine-rich termini provide metal binding/cross-linking sites, while collagen domains may confer self-assembly on all parts of the structure. A graded axial distribution of flanking modules is expected to moderate stress concentration in joined materials having disparate moduli. PMID:11911771

  14. Elastomeric composites with tuned electromagnetic characteristics

    NASA Astrophysics Data System (ADS)

    Wheeland, Sara; Bayatpur, Farhad; Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2013-01-01

    This paper presents a novel elastomeric composite that exhibits a deformation-induced change in chirality. Previous efforts primarily dealt with a coil array in air without chiral tuning. Here, a composite is created that consists of an array of parallel, metallic helices of the same handedness embedded in a polymer matrix. The chiral response of the composite depends on pitch, coil diameter, wire thickness and coil spacing; however, pitch has the greatest effect on electromagnetic performance. The present study explores this effect by using helical elements to construct a chiral medium that can be mechanically stretched to adjust pitch. This adjustment directly affects the overall chirality of the composite. A prototype sample of the composite, fabricated for operation between 5.5-12.5 GHz, demonstrates repeatable elastic deformation. Using a transmit/receive measurement setup, the composite scattering response is measured over the frequency interval. The results indicate substantial tuning of chirality through deformation. An increase in axial strain of up to 30% yields a ˜18% change in axial chirality.

  15. A spun elastomeric graft for dialysis access.

    PubMed

    Drasler, W J; Wilson, G J; Stenoien, M D; Jenson, M L; George, S A; Dutcher, R G; Possis, Z C

    1993-01-01

    A new composite vascular graft was developed using electrostatic spinning technology. The graft is primarily microfibrous polydimethylsiloxane spun onto a mandrel; a small diameter polyester yarn provides additional strength while minimizing wall thickness, and a helical bead provides crush and kink resistance. Eighteen grafts were implanted in a mongrel canine arteriovenous shunt model for 12 months. The grafts were implanted in femoral artery to femoral vein loops and were cannulated using three pairs of 16 gauge dialysis needles per week. Grafts were evaluated during each puncture session, and also followed using angiography. Histologic study of explanted grafts, regional lymph nodes, and lungs was performed. The grafts provided excellent handling and puncture characteristics, with no bleeding through the graft wall at puncture sites. Cumulative patency of these punctured grafts was 88% at 6 months and 80% at 1 year. Histologic study showed external fibroconnective tissue encapsulation of the grafts, with tissue growth through the interstices of the graft consisting of a microvascular network surrounded predominantly by histiocytes, many multinucleated foreign body giant cells, with some fibroblasts and collagen formation also present. Little luminal thrombus was seen at puncture sites in the patent grafts, and there was no evidence of pulmonary thromboemboli. This new elastomeric graft shows excellent promise for dialysis access; similar grafts under development may also find application for small diameter peripheral vascular reconstruction. PMID:8324257

  16. Regenerative braking through elastomeric energy storage

    NASA Astrophysics Data System (ADS)

    Hoppie, L. O.

    The project goals are to improve the energy density and fatigue life of the elastomeric units through elastomer formulations and fabrication technique research, and to verify that a compact method of attachment is feasible in full-size units. Samples of a new compound have shown an improvement of 100% in energy density as compared with the previous compound. The energy density, hysteresis loss, and fatigue life of fullsize units fabricated with this compound will be measured during the project. Molding techniques commonly used within the rubber industry give rise to surface flaws on the finished energy storage units, and these surface flaws have been indentified as sources of subsequent fatigue failure. A molding technique aimed at minimizing surface flaws will be investigated during this project. Small-scale energy storage units were used to carry out a comparison of compact attachment concepts. One concept has been selected and will be incorporated into full-size units for test and evaluation during this project.

  17. Development of a snubber type magnetorheological fluid elastomeric lag damper for helicopter stability augmentation

    NASA Astrophysics Data System (ADS)

    Ngatu, Grum T.

    Most advanced helicopter rotors are typically fitted with lag dampers, such as elastomeric or hybrid fluid-elastomeric (FE) lag dampers, which have lower parts counts, are lighter in weight, easier to maintain, and more reliable than conventional hydraulic dampers. However, the damping and stiffness properties of elastomeric and fluid elastomeric lag dampers are non-linear functions of lag/rev frequency, dynamic lag amplitude, and operating temperature. It has been shown that elastomeric damping and stiffness levels diminish markedly as amplitude of damper motion increases. Further, passive dampers tend to present severe damping losses as damper operating temperature increases either due to in-service self-heating or hot atmospheric conditions. Magnetorheological (MR) dampers have also been considered for application to helicopter rotor lag dampers to mitigate amplitude and frequency dependent damping behaviors. MR dampers present a controllable damping with little or no stiffness. Conventional MR dampers are similar in configuration to linear stroke hydraulic type dampers, which are heavier, occupy a larger space envelope, and are unidirectional. Hydraulic type dampers require dynamic seal to prevent leakage, and consequently, frequent inspections and maintenance are necessary to ensure the reliability of these dampers. Thus, to evaluate the potential of combining the simplicity and reliability of FE and smart MR technologies in augmenting helicopter lag mode stability, an adaptive magnetorheological fluid-elastomeric (MRFE) lag damper is developed in this thesis as a retrofit to an actual fluid-elastomeric (FE) lag damper. Consistent with the loading condition of a helicopter rotor system, single frequency (lag/rev) and dual frequency (lag/rev at 1/rev) sinusoidal loading were applied to the MRFE damper at varying temperature conditions. The complex modulus method was employed to linearly characterize and compare the performance of the MRFE damper with the

  18. Synthesis and Characterization of Elastomeric Heptablock Terpolymers Structured by Crystallization

    SciTech Connect

    Alfonzo, C.Guillermo; Fleury, Guillaume; Chaffin, Kimberly A.; Bates, Frank S.

    2010-12-07

    We report the synthesis and characterization of fully saturated hydrocarbon block copolymer thermoplastic elastomers with competitive mechanical properties and attractive processing features. Block copolymers containing glassy poly(cyclohexylethylene) (C), elastomeric poly(ethylene-alt-propylene) (P), and semicrystalline poly(ethylene) (E) were produced in a CEC-P-CEC heptablock architecture, denoted XPX, by anionic polymerization and catalytic hydrogenation. The X blocks contain equal volume fractions of C and E, totaling 40%-60% of the material overall. All the XPX polymers are disordered above the melt temperature for E (T{sub m,E} {approx_equal} 95 C) as evidenced by SAXS and dynamic mechanical spectroscopy measurements. Cooling below T{sub m,E} results in crystallization of the E blocks, which induces microphase segregation of E, C, and P into a complex morphology with a continuous rubbery domain and randomly arranged hard domains as shown by TEM. This mechanism of segregation decouples the processing temperature from the XPX molecular weight up to a limiting value. Tensile mechanical testing (simple extension and cyclic loading) demonstrates that the tensile strength (ca. 30 MPa) and strain at break (>500%) are comparable to the behavior of CPC triblock thermoplastic elastomers of similar molecular weight and glass content. However, in the CPC materials, processability is constrained by the order-disorder transition temperature, limiting the applications of these materials. Elastic recovery of the XPX materials following seven cycles of tensile deformation is correlated with the fraction of X in the heptablock copolymer, and the residual strain approaches that of CPC when the fraction of hard blocks f{sub X} {le} 0.39.

  19. Effect of Commonly Used Beverage, Soft Drink, and Mouthwash on Force Delivered by Elastomeric Chain: A Comparative In Vitro Study

    PubMed Central

    Kumar, Kiran; Shetty, Sharath; Krithika, M J; Cyriac, Bobby

    2014-01-01

    Background: The objective was to evaluate and compare the effect of Coca-Cola®, tea, Listerine® mouthwash on the force delivered by elastomeric chain in vitro. Materials and Methods: Four specimen groups (distilled water, Coca-Cola®, tea, Listerine® mouthwash) with a total sample size of 480 specimens. A specimen is described as a four link grey close elastomeric chain. Jigs, each with a series of pins set 25 mm apart, was used to hold stretched elastomeric chains at a constant length. These jigs allowed for complete submersion of the elastomeric chain in a water bath throughout the test period, as well as the dipping of elastomeric chains in respective control and test solutions. For 60 s, twice a day, groups were exposed to the respective solutions, the two daily exposure was separated by 9 h and force measurements were taken at six time points during the experiment, that is, 1 h, 24 h, 7 days, 14 days, 21 days, and 28 days. Force measurements were made by Instron machine by a single blinded examiner with the help of a second examiner. Results: It was found out that there was highly significant difference between groups control, Coca-Cola®, Listerine®, and tea as well as there was highly significant (p < 0.01) between time periods. Group versus time was also highly significant (p < 0.01). For all groups substantial amount of force decay occurred until 7 days. The control group reached plateau between 7 and 14 days and then suddenly decreased from 14 days to 28 days. The Coca-Cola® and the Listerine® group reached a plateau between 7 and 21 days then decrease between 21 and 28 days. The tea group showed plateau phase between 7 and 28 days. After 28 days in the control group, 25% force decay occurred while the test groups force decay of 30-50% occurred. Conclusion: Coca-Cola®, Listerine® mouthwash, and tea cause an increase in force decay of elastomeric chains over time. Tea caused highest force decay followed by Listerine® and Coca-Cola® when compared

  20. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description...

  1. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description...

  2. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40...

  3. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40...

  4. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40...

  5. Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance.

    PubMed

    Sanders, Joan E; Nicholson, Brian S; Zachariah, Santosh G; Cassisi, Damon V; Karchin, Ari; Fergason, John R

    2004-03-01

    The mechanical properties of 15 elastomeric liner products used in limb prosthetics were evaluated under compressive, frictional, shear, and tensile loading conditions. All testing was conducted at load levels comparable to interface stress measurements reported on transtibial amputee subjects. For each test configuration, materials were classified into four groups based on the shapes of their response curves. For the 15 liners tested, there were 10 unique classification sets, indicating a wide range of unique materials. In general, silicone gel liners classified within the same groups thus were quite similar to each other. They were of lower compressive, shear, and tensile stiffness than the silicone elastomer products, consistent with their lightly cross-linked, high-fluid content structures. Silicone elastomer products better spanned the response groups than the gel liners, demonstrating a wide range of compressive, shear, and tensile stiffness values. Against a skin-like material, a urethane liner had the highest coefficient of friction of any liner tested, although coefficients of friction values for most of the materials were higher than interface shear:pressure ratios measured on amputee subjects using Pelite liners. The elastomeric liner material property data and response groupings provided here can potentially be useful to prosthetic fitting by providing quantitative information on similarities and differences among products. PMID:15558371

  6. Evaluation of the durability of elastomeric easy-release coatings

    NASA Astrophysics Data System (ADS)

    Christiaen, Anne-Claire

    1998-12-01

    Novel coatings have been designed to solve problems associated with biofouling of marine structures, particularly ship hulls. The best candidates to date are multilayered coatings incorporating silicone rubber technology. These materials are efficient because they exhibit excellent release properties. However, they are very soft and tend to be more susceptible to various forms of mechanical damage. Fundamental analysis of the durability of these coatings has been done using standard laboratory tests. Simulative studies are essential to screen candidates as well as to predict the true life of the systems. The goal of this project was to develop a testing protocol for the evaluation of the durability of elastomeric easy release coatings and to implement it on selected candidate coatings. A brushing apparatus was designed and built to simulate the cleaning processes of ship hulls. Wear was measured with profilometry. The proposed methodology is valuable to study the processes of wear of the coatings, to screen various materials and to identify parameters, either functional or material, which would directly affect their durability. Two groups of candidate coatings were tested: the EXS series and the NRL series. The EXS series samples showed better wear resistance than the NRL series samples and showed no dependence on the rotational speed of the brushes. The NRL series samples showed that increasing the sliding speed resulted in a decrease in wear. An increase in the applied load resulted in increased wear for both sample series. The effect of coating thickness was also investigated and discrimination between the proposed coatings could not be established because the tips of the bristles were sharp and irregular. Scratches matching the path of the brush bristles were observed in the wear scars of both sample types under all load and speed conditions. The NRL samples also exhibited ridges perpendicular to the sliding direction similar to the abrasion pattern.

  7. Simulated Body Fluid Nucleation of Three-Dimensional Printed Elastomeric Scaffolds for Enhanced Osteogenesis.

    PubMed

    Castro, Nathan J; Tan, Wilhelmina Nanrui; Shen, Charlie; Zhang, Lijie Grace

    2016-07-01

    Osseous tissue defects caused by trauma present a common clinical problem. Although traditional clinical procedures have been successfully employed, several limitations persist with regards to insufficient donor tissue, disease transmission, and inadequate host-implant integration. Therefore, this work aims to address current limitations regarding inadequate host tissue integration through the use of a novel elastomeric material for three-dimensional (3D) printing biomimetic and bioactive scaffolds. A novel thermoplastic polyurethane-based elastomeric composite filament (Gel-Lay) was used to manufacture porous scaffolds. In an effort to render the scaffolds more bioactive, the flexible scaffolds were subsequently incubated in simulated body fluid at various time points and evaluated for enhanced mechanical properties along with the effects on cell adhesion, proliferation, and 3-week osteogenesis. This work is the first reported use of a novel class of flexible elastomeric materials for the manufacture of 3D printed bioactive scaffold fabrication allowing efficient and effective nucleation of hydroxyapatite (HA) leading to increased nanoscale surface roughness while retaining the bulk geometry of the predesigned structure. Scaffolds with interconnected microfibrous filaments of ∼260 μm were created and nucleated in simulated body fluid that facilitated cell adhesion and spreading after only 24 h in culture. The porous structure further allowed efficient nucleation, exchange of nutrients, and metabolic waste removal during new tissue formation. Through the incorporation of osteoconductive HA, human fetal osteoblast adhesion and differentiation were greatly enhanced thus setting the tone for further exploration of this novel material for biomedical and tissue regenerative applications. PMID:27298115

  8. A review on the cords & plies reinforcement of elastomeric polymer matrix

    NASA Astrophysics Data System (ADS)

    Mahmood, S. S.; Husin, H.; Mat-Shayuti, M. S.; Hassan, Z.

    2016-06-01

    Steel, polyester, nylon and rayon are the main materials of cords & plies that have been reinforced in the natural rubber to produce quality tyres but there is few research reported on cord and plies reinforcement in silicone rubber. Taking the innovation of tyres as inspiration, this review's first objective is to compile the comprehensive studies about the cords & plies reinforcement in elastomeric polymer matrix. The second objective is to gather information about silicone rubber that has a high potential as a matrix phase for cords and plies reinforcement. All the tests and findings are gathered and compiled in sections namely processing preparation, curing, physical and mechanical properties, and adhesion between cords-polymer.

  9. Evaluation of oral scanning in comparison to impression using three-dimensional registration

    NASA Astrophysics Data System (ADS)

    Brogle-Kim, Yur-Chung; Deyhle, Hans; Müller, Bert; Schulz, Georg; Bormann, Therese; Beckmann, Felix; Jäger, Kurt

    2012-10-01

    Crown and bridge restorations are one of the main treatment methods in fixed prosthodontics. The fabrication requires data on the patient's denture shape. This information is generally obtained as a hard copy from an impression mold. Alternatively, one can acquire the data electronically using oral optical three-dimensional (3D) imaging techniques, which determine the surface of the denture. The aim of the study was to quantitatively compare the accuracy of three dimensional scanning with that of conventional impressions and give a statement how far the scanner provides a clinical alternative with equal or better precision. Data from 10 teeth were acquired in the dental office with a polyether impression material and an oral scanner. Data from the impressions were digitalized by means of micro computed tomography. The data were then 3D registered to identify the potential differences between impression and optical scan. We could demonstrate that the oral scanner's data and the conventional impressions are comparable.

  10. An innovative impression technique for fabrication of a custom made ocular prosthesis

    PubMed Central

    Tripuraneni, Sunil Chandra; Vadapalli, Sriharsha Babu; Ravikiran, P; Nirupama, N

    2015-01-01

    Various impression and fitting techniques have been described in the past for restoring ocular defects. The present article describes a new direct impression technique for recording and rehabilitating ocular defects, by custom-made ocular prosthesis. All the techniques described in the history, mainly concentrated in recording the tissue surface of the defect, which made it difficult to contour the palpebral surface resulting in the poor esthetics of the prosthesis. The present impression technique uses heavy bodied polyvinyl siloxane impression material, which facilitates accurate recording of the tissue surface and the palpebral surface of the defect, resulting in the fabrication of functionally and esthetically acceptable prosthesis. PMID:26265651

  11. Physiologic Compliance in Engineered Small-diameter Arterial Constructs Based on an Elastomeric Substrate

    PubMed Central

    CRAPO, PETER M.; WANG, YADONG

    2009-01-01

    Compliance mismatch is a significant challenge to long-term patency in small-diameter bypass grafts because it causes intimal hyperplasia and ultimately graft occlusion. Current engineered grafts are typically stiff with high burst pressure but low compliance and low elastin expression. We postulated that engineering small arteries on elastomeric scaffolds under dynamic mechanical stimulation would result in strong and compliant arterial constructs. Compare properties of engineered arterial constructs based on biodegradable polyester scaffolds composed of either rigid poly(lactide-co-glycolide) (PLGA) or elastomeric poly(glycerol sebacate) (PGS). Adult baboon arterial smooth muscle cells (SMCs) were cultured in vitro for 10 days in tubular, porous scaffolds. Scaffolds were significantly stronger after culture regardless of material, but the elastic modulus of PLGA constructs was an order of magnitude greater than that of porcine carotid arteries and PGS constructs. Deformation was elastic in PGS constructs and carotid arteries but plastic in PLGA constructs. Compliance of arteries and PGS constructs were equivalent at pressures tested. Altering scaffold material from PLGA to PGS significantly decreased collagen content and significantly increased insoluble elastin content in constructs without affecting soluble elastin concentration in the culture medium. PLGA constructs contained no appreciable insoluble elastin. This research demonstrates that: (1) substrate stiffness directly affects in vitro tissue development and mechanical properties; (2) rigid materials likely inhibit elastin incorporation into the extracellular matrix of engineered arterial tissues; and (3) grafts with physiologic compliance and significant elastin content can be engineered in vitro after only days of cell culture. PMID:19962188

  12. Effect of splinting in accuracy of two implant impression techniques.

    PubMed

    de Avila, Erica Dorigatti; de Matos Moraes, Fernanda; Castanharo, Sabrina Maria; Del'Acqua, Marcelo Antonialli; de Assis Mollo, Francisco

    2014-12-01

    Because there is no consensus in the literature about the need for a splint between copings, the aim of this study was to evaluate, in vitro, the accuracy of 2 impression techniques for implant-supported prostheses. A master cast was fabricated with four parallel implant abutment analogs and a passive framework. Two groups with 5 casts each were formed: Group 1 (squared impression copings with no splint: S) and Group 2 (splinted squared impression copings, using metal drill burs and Pattern resin: SS). The impression material used was polyvinyl siloxane with open trays for standard preparation of the casts. For each cast, the framework was positioned, and a titanium screw was tightened with 10 N·cm torque in analog A, after which measurements of the abutment-framework interface gaps were performed at analogs C and D. This process was repeated for analog D. These measurements were analyzed using software. A one-way analysis of variance (ANOVA) with a confidence interval of 95% was used to analyze the data. Significant differences were detected between S and SS in relation to the master cast (P ≤ 0.05). The median values of the abutment-framework interface gaps were as follows: master cast: 39.64 μm; squared impression copings with no splint: 205.86 μm; splinted squared impression copings: 99.19 μm. Under the limitations of this study, the technique presented for Group 2 produces better results compared with the technique used for Group 1. PMID:25506658

  13. Plaque retention on elastomeric ligatures. An in vivo study

    PubMed Central

    CONDÒ, R.; CASAGLIA, A.; CONDÒ, S.G.; CERRONI, L.

    2013-01-01

    SUMMARY Fixed orthodontic appliances make it difficult to maintain the oral hygiene, resulting in plaque accumulation. Retention of bacterial plaque, represents a risk for white spot lesions and development of periodontal disease. Aim Purpose of this study was to determine in vivo the retention of plaque on three different elastic ligatures, in comparison with stainless steel ligature, to determine a possible association between type of ligatures and accumulation of microorganisms. Material and Methods three elastic ligation systems were analyzed for plaque retention: ring-shape, clear, latex ligatures (Leone® Spa), ring-shape, grey, polyurethane ligatures (Micerium® Spa) and grey, polyurethane, Slide low-friction ligatures (Leone® Spa), compared with stainless steel ligatures (Leone® Spa) used as control. Forthy orthodontic patients undergoing fixed orthodontic therapy were selected. A sample for each type of ligature were applied inside the oral cavity of each subject. Samples were kept in the oral cavity for 28 days, ligating 0.16 X 0.22 stainless steel archwire to stainless steel orthodontic premolars brackets. The presence of bacterical slime was quantified by spectrophotometric method (crystal violet-Bouin’s fixative) and morphological observations was evaluated by Scanning Electron Microscopy (SEM). Results From analysis of bacterical slime emerges that all the elastics showed a low plaque retention, especially if compared to the group of steinless steel ligatures, that presented a greater plaque adhesion, statistically significant compared to the Slide group (r<0.0002) and the two elastic groups (r<0.0001). This study reported no significant difference between the Slide ligatures and the traditional elastic ligatures as regards the retention of plaque. SEM images showed presence of cocci, rods and few filamentous organisms and an interbacterial matrix in all observed samples. Conclusion Elastomeric ligatures showed a significant lower susceptibility

  14. Stability of colistimethate sodium in a disposable elastomeric infusion device.

    PubMed

    Abdulla, Alan; van Leeuwen, Roelof W F; de Vries Schultink, Aurelia H M; Koch, Birgit C P

    2015-01-01

    Infections of the respiratory tract with Pseudomonas aeruginosa in cystic fibrosis patients are frequently treated with colistimethate sodium (CMS). For the intravenous administration of CMS a disposable elastomeric pump is a convenient option. To date, there are no data available on the chemical stability of CMS solutions stored in elastomeric pumps. We evaluated the chemical stability of 0.8 mg/mL solutions of CMS by measuring the degradation over a period of 7 days. Test samples were prepared by diluting CMS with saline solution (0.9%). The preparations were transferred to 100-mL elastomeric pumps and stored at 4 °C. The chemical stability was measured by a high-performance liquid chromatography method with UV detection. There was no degradation of CMS (<0.5% of CMS present as colistin) for at least 3 day at 4 °C, and after 7 days all test samples remained chemically stable (<5% of CMS present as colistin). Since colistin formed in pharmacy-compounded CMS solutions prior to administration may cause toxicity, we advise that the solution should be used before the hydrolysis of CMS occurs. Therefore, we recommend that the 0.8 mg/mL solution of CMS can be stored for up to 3 days at 4 °C in an elastomeric pump. PMID:25863116

  15. A Teacher's Impressions of the Soviet Union.

    ERIC Educational Resources Information Center

    Thomas, Anne

    1987-01-01

    Reports the impressions of an 11th-grade world cultures teacher who visited European Russia and Uzbekistan in August, 1985. Ten major impressions are detailed, among them are (1) the poverty, (2) the sloppiness, (3) the pervasive presence of Lenin, and (4) the cultural importance of the Babushka, the Russian word for grandmother. (JDH)

  16. Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Tao; Yang, Juan-yu; Lu, Shi-gang

    2012-08-01

    Silicon has been investigated intensively as a promising anode material for rechargeable lithium-ion batteries. The choice of a binder is very important to solve the problem of the large capacity fade observed along cycling. The effect of modified elastomeric binders on the electrochemical performance of crystalline nano-silicon powders was studied. Compared with the conventional binder (polyvinylidene fluoride (PVDF)), Si electrodes using the elastomeric styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose (SCMC) combined binder show an improved cycling performance. The reversible capacity of the Si electrode with the SCMC/SBR binder is as high as 2221 mA·h/g for 30 cycles in a voltage window between 0.005 and 2 V. The structure changes from SEM images of the silicon electrodes with different binders were used to explore the property improvement.

  17. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

    PubMed Central

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin

    2016-01-01

    Objective To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. Results All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. Conclusions The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken. PMID:27226958

  18. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

    PubMed Central

    Rhee, Ye-Kyu

    2015-01-01

    PURPOSE The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05). PMID:26816576

  19. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure.

    PubMed

    McGann, Christopher L; Akins, Robert E; Kiick, Kristi L

    2016-01-11

    Hydrogels derived from resilin-like polypeptides (RLPs) have shown outstanding mechanical resilience and cytocompatibility; expanding the versatility of RLP-based materials via conjugation with other polypeptides and polymers would offer great promise in the design of a range of materials. Here, we present an investigation of the biochemical and mechanical properties of hybrid hydrogels composed of a recombinant RLP and a multiarm PEG macromer. These hybrid hydrogels can be rapidly cross-linked through a Michael-type addition reaction between the thiols of cysteine residues on the RLP and vinyl sulfone groups on the multiarm PEG. Oscillatory rheology and tensile testing confirmed the formation of elastomeric hydrogels with mechanical resilience comparable to aortic elastin; hydrogel stiffness was easily modulated through the cross-linking ratio. Macromolecular phase separation of the RLP-PEG hydrogels offers the unique advantage of imparting a heterogeneous microstructure, which can be used to localize cells, through simple mixing and cross-linking. Assessment of degradation of the RLP by matrix metalloproteinases (MMPs) illustrated the specific proteolysis of the polypeptide in both its soluble form and when cross-linked into hydrogels. Finally, the successful encapsulation and viable three-dimensional culture of human mesenchymal stem cells (hMSCs) demonstrated the cytocompatibility of the RLP-PEG gels. Overall, the cytocompatibility, elastomeric mechanical properties, microheterogeneity, and degradability of the RLP-PEG hybrid hydrogels offer a suite of promising properties for the development of cell-instructive, structured tissue engineering scaffolds. PMID:26646060

  20. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes.

    PubMed

    Xu, Bing; Li, Yuan; Fang, Xiya; Thouas, George A; Cook, Wayne D; Newgreen, Donald F; Chen, Qizhi

    2013-12-01

    One of the major challenges in the field of biomaterials engineering is the replication of the non-linear elasticity observed in soft tissues. In the present study, non-linearly elastic biomaterials were successfully fabricated from a chemically cross-linked elastomeric poly(glycerol sebacate) (PGS) and thermoplastic poly(L-lactic acid) (PLLA) using the core/shell electrospinning technique. The spun fibrous materials, containing a PGS core and PLLA shell, demonstrated J-shaped stress-strain curves, and having ultimate tensile strength, rupture elongation, and stiffness constants respectively comparable to muscle tissue properties. In vitro evaluations also showed that PGS/PLLA fibrous biomaterials possess excellent biocompatibility, capable of supporting human stem-cell-derived cardiomyocytes over several weeks in culture. Therefore, the core/shell electrospun elastomeric materials provide a new potential scaffold to support cells in the therapy of a wide range of soft tissues exposed to cyclic deformation, such as tendon, ligament, cardiac or smooth muscle and lung epithelium. PMID:24125905

  1. Clinical Evaluation of Different Pre-impression Preparation Procedures of Dental Arch

    PubMed Central

    Arora, Nitin; Arora, Monika; Gupta, Naveen; Agarwal, Manisha; Verma, Rohit; Rathod, Pankaj

    2015-01-01

    Background: Bubbles and voids on the occlusal surface impede the actual intercuspation and pre-impression preparation aims to reduce the incidence of air bubbles and voids as well as influences the quality of occlusal reproduction and actual clinical intercuspation in the articulator. The study was undertaken to determine the influence of different pre-impression preparation procedures of antagonistic dental arch on the quality of the occlusal reproduction of the teeth in irreversible hydrocolloid impressions and to determine most reliable pre-impression preparation method to reduce the incidence of air bubbles. Materials and Methods: A total of 20 subjects were selected having full complement of mandibular teeth from second molar to second molar with well demarcated cusp height. 200 impressions were made with irreversible hydrocolloid material. The impressions were divided into five groups of 40 impressions each and each group had one specific type of pre-impression preparation. All the impressions were poured in die stone. A stereomicroscope with graduated eyepiece was used to count the number of bubbles on the occlusal surface of premolars and molars. The mean and standard deviations were calculated for each group. Mann–Whitney U-test was applied to find the significant difference between different groups. Results: Least bubbles were found in the group in which oral cavity was dried by saliva ejector and fluid hydrocolloid was finger painted onto the occlusal surfaces immediately before the placement of impression tray in the mouth. Conclusion: It was found that finger painting the tooth surfaces with fluid hydrocolloid immediately before the placement of loaded impression tray in the mouth was the most reliable method. The oral cavity can be cleared more easily of excess saliva by vacuum suction rather than by use of an astringent solution. PMID:26229376

  2. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds.

    PubMed

    Bat, Erhan; Kothman, Bas H M; Higuera, Gustavo A; van Blitterswijk, Clemens A; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    A practical method of photocrosslinking high molecular weight poly(trimethylene carbonate)(PTMC) is presented. Flexible, elastomeric and biodegradable networks could be readily prepared by UV irradiating PTMC films containing pentaerythritol triacrylate (PETA) and a photoinitiator. The network characteristics, mechanical properties, wettability, and in vitro enzymatic erosion of the photocrosslinked PTMC films were investigated. Densely crosslinked networks with gel contents up to 98% could be obtained in this manner. Upon photocrosslinking, flexible and tough networks with excellent elastomeric properties were obtained. To illustrate the ease with which the properties of the networks can be tailored, blends of PTMC with mPEG-PTMC or with PTMC-PCL-PTMC were also photocrosslinked. The wettability and the enzymatic erosion rate of the networks could be tuned by blending with block copolymers. Tissue engineering scaffolds were also fabricated using these flexible photocrosslinkable materials. After crosslinking, the fabricated PTMC-based scaffolds showed inter-connected pores and extensive microporosity. Human mesenchymal stem cell (hMSC) culturing studies showed that the photocrosslinked scaffolds prepared from PTMC and PTMC/PTMC-PCL-PTMC blends are well-suited for tissue engineering applications. PMID:20739060

  3. Antimicrobial Effect of Zataria Multiflora Extract in Comparison with Chlorhexidine Mouthwash on Experimentally Contaminated Orthodontic Elastomeric Ligatures

    PubMed Central

    Aghili, Hossein; Jafari Nadoushan, Abbas Ali; Herandi, Vahid

    2015-01-01

    Objectives: Long-term use of orthodontic appliances and fixation ligatures creates a favorable environment for the accumulation of oral normal microflora and increases the risk of enamel demineralization and periodontal disease. The aim of this study was to compare the antimicrobial effects of Zataria Multiflora extract and 0.2% chlorhexidine (CHX) mouthwash on experimentally contaminated orthodontic elastomeric ligatures. Materials and Methods: In this lab trial study, Iranian and foreign-made elastomeric ligatures were experimentally contaminated in Streptococcus mutans, Enterococcus faecalis and Candida albicans suspensions. Ligatures were then decontaminated using 0.2% CHX as the control, 0.5 mg/ml Zataria multiflora extract mouthwashes as the test and phosphate buffered saline (PBS) as the negative control for one hour. Antimicrobial properties of both solutions were evaluated by comparing the mean viable bacterial cell count on both rings after decontamination, using SPSS version 15 software. Results: The mean viable bacterial cell count on Iranian ligatures was greater than that on foreign-made ligatures before disinfection (P=0.001), however this difference for C. albicans was not statistically significant (P=0.061). Chlorhexidine mouthwash completely eliminated all tested microorganisms attached to both elastomeric rings, but Zataria extract was only capable of completely eliminating C. albicans from both ligatures. Statistically significant differences were found in viable bacterial counts on both ligatures before and after disinfection with Zataria extract (P=0.0001). Conclusion: Zataria multiflora extract has antimicrobial properties and can be used for disinfection of elastomeric ligatures. In vivo studies are required to evaluate the efficacy of the incorporation of this herbal extract in mouthwashes for orthodontic patients. PMID:26005448

  4. Finite Element Analysis of Plastic Deformation During Impression Creep

    NASA Astrophysics Data System (ADS)

    Naveena; Ganesh Kumar, J.; Mathew, M. D.

    2015-04-01

    Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

  5. The elastomers for complete denture impression: A review of the literature

    PubMed Central

    Daou, Elie E.

    2010-01-01

    This article reviews the current trends in materials used for complete denture impression. Peer-reviewed articles, published in English and in French between 1954 and 2007, were identified through a MEDLINE search (Pubmed and Elsevier) and a hand search of relevant textbooks and annual publications. Emphasis was made on the characteristics of the elastomers, their manipulation, the different techniques used, and the quality of the impression obtained. The combination of excellent physical properties, handling characteristics, and unlimited dimensional stability assures the popularity of these impression materials. PMID:24151408

  6. Soft materials with recoverable shape factors from extreme distortion states

    DOE PAGESBeta

    Goff, Jonathan; Sulaiman, Santy; Arkles, Barry; Lewicki, James P.

    2016-01-20

    We present elastomeric polysiloxane nanocomposites with elongations of >5000% (more than 3× greater than any previously reported material) with excellent shape recovery. Highly deformable materials are desirable for the fabrication of stretchable implants and microfluidic devices. No crosslinking or domain formation is observed by a variety of analytical techniques, suggesting that their elastomeric behavior is caused by polymer chain entanglements.

  7. Characterization and impression creep testing of silicon aluminum oxynitride ceramics

    NASA Astrophysics Data System (ADS)

    Fox, Kevin M.

    2005-11-01

    Three Yb-containing SiAlON materials were studied for potential use as hot section components in advanced microturbine engines. Two of the materials consisted of equiaxed alpha-SiAlON grains, elongated beta-SiAlON grains, and an amorphous intergranular phase containing a relatively large amount of Yb. The third material consisted of alpha- and beta-SiAlON grains with equiaxed morphologies and virtually no intergranular phase. An instrument was designed and constructed for impression creep testing of the YbSiAlON materials. Uniaxial compression creep experiments were also performed for comparison. In compression creep, the SiAlON materials exhibited activation energies that were similar to those of other SiAlONs reports in the literature, and stress exponents that were approximately 1. In impression creep, the SiAlONs tested exhibited activation energies similar to those reported in the literature for SiAlONs tested in uniaxial compression and tension. However, the SiAlON composition with equiaxed beta-SiAlON grains showed an exaggerated activation energy due to a change in creep mechanism above 1340°C. The measured stress exponents in impression creep were approximately 2. The stress state present below the punch in impression creep caused dilation to occur in the grain structure. The dilation results in an increase in the volume of the multi-grain junctions, and an increased dependence of strain rate on stress. The enlarged multi-grain junctions can become filled with the intergranular glassy phase. These large pockets of the glassy phase can enable an additional creep mechanism whereby the equiaxed grains slide past each other viscously. All of the SiAlONs developed an additional volume of the intergranular glassy phase during creep testing. A microstructure containing elongated beta-SiAlON grains is most effective in enhancing creep performance of the Yb-SiAlON materials tested. The impression creep data for the Yb-SiAlON materials can be related to the

  8. Assessing patient preference for two types of elastomeric infusion device.

    PubMed

    Dodd, Susan

    Home administration of antibiotic therapy to cystic fibrosis patients is one of many applications for the use of elastomeric infusion devices. Patient acceptability can significantly affect adherence to complex drug regimens with concordance being a concern in this patient population. While patient acceptance is often cited as a factor in pump selection, patient preference has not been assessed within a particular class of infusion device. The objective of this study was to assess patient preference for one type of elastomeric infusion device (Baxter Intermate--hard-shelled design) or another (Fresenius Kabi Eclipse--soft-shelled design). Twenty-four patients entered the study. 20/24 (83%) patients expressed a preference for the Eclipse, while 4/24 (17%) stated no preference for either device. The Eclipse device was found to be much more favourable in terms of comfort and discreetness. Patient preference should therefore be given significant consideration in order to maximize concordance with drug regimens. PMID:18026019

  9. Bending a beam by a generalized ideal elastomeric gel

    PubMed Central

    Cai, Shengqiang

    2015-01-01

    A hybrid beam with a gel layer bonded on the top of an elastic non-swellable substrate has been commonly adopted to make various sensors and actuators. Usually, different models need to be developed for the hybrid beam when different gels are used in the system. In this article, based on the generalized ideal elastomeric gel model, we formulate a unified relationship between the swelling of hydrogels and the bending curvature of the elastic beam, which is independent of specific swelling mechanisms of gels. We further illustrate that the equations derived in the article can be used to validate the ideal elastomeric gel model and measure the elasticity of polymer networks of the gels. PMID:25792965

  10. Preliminary impression techniques for microstomia patients.

    PubMed

    Kumar, K Aswini; Bhat, Vinaya; Nair, K Chandrasekheran; Suresh, Reshma

    2016-01-01

    The Prosthetic rehabilitation of microstomia patients presents difficulties at all the stages. The difficulty starts with the preliminary impression making. This is due to the tongue rigidity and the decreased oral opening. A maximum oral opening which is smaller than the size of the tray can make prosthetic treatment challenging. Due to the restricted mouth opening, insertion and removal of the impression trays is extremely cumbersome and various modifications of the trays have been used in the past. Among these are the flexible trays and the sectional trays used with different modes of reassembling the segments extra orally after the impression is made. This article reviews the literature published from 1971 to 2015 concerning preliminary impression techniques used in making impressions for patients with microstomia based on various tray designs. An electronic search was performed across three databases (PubMed, Science Direct and Google Scolar) for relevant citations. The keywords/combinations used for the search were microstomia, limited/constricted/restricted mouth opening/oral access, trismus, sectional trays, impressions and prosthetic/prosthodontic rehabilitation. The search was limited to papers written in English which resulted in a total of 45 related articles of which 17 articles were included for discussion of this review. PMID:27621540

  11. Interaction of Reinforced Elastomeric Bearings in Bridge Construction

    NASA Astrophysics Data System (ADS)

    Nittmannová, Ľubica; Magura, Martin

    2016-03-01

    The aim of this paper is to demonstrate the behavior of reinforced elastomeric bearings under various loads. They are made of special types of bearings. The experimental verification of these special bearings has been tested on various types of loading. The results of the experimental measurements are compared with the results of the numerical modeling and calculations according to the standard assumptions in STN EN 1337-3. In the conclusion, the results are summarized for the selected types of bearings.

  12. Generation and detection of gigahertz surface acoustic waves using an elastomeric phase-shift mask

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Zhao, Peng; Zhao, Ji-Cheng; Cahill, David G.

    2013-10-01

    We describe a convenient approach for measuring the velocity vSAW of surface acoustic waves (SAWs) of the near-surface layer of a material through optical pump-probe measurements. The method has a lateral spatial resolution of <10 μm and is sensitive to the elastic constants of the material within ≈300 nm of the surface. SAWs with a wavelength of 700 nm and 500 nm are generated and detected using an elastomeric polydimethylsiloxane phase-shift mask which is fabricated using a commercially available Si grating as a mold. Time-domain electromagnetics calculations show, in agreement with experiment, that the efficiency of the phase-shift mask for generating and detecting SAWs decreases rapidly as the periodicity of the mask decreases below the optical wavelength. We validate the experimental approach using bulk and thin film samples with known elastic constants.

  13. The Effect of Disinfection by Spray Atomization on Dimensional Accuracy of Condensation Silicone Impressions

    PubMed Central

    Saleh Saber, Fariba; Abolfazli, Nader; Kohsoltani, Maryam

    2010-01-01

    Background and aims The condensation silicone impression materials are available, but there is little knowledge of their accuracy after disinfection. The objective of this study was to evaluate the effect of the disinfection by spray atomization on dimensional accuracy of condensation silicone impressions. Materials and methods Impressions were made on a stainless steel master model containing a simulated two complete crown preparation with an edentulous space interposed using Spidex® and Rapid® impression materials. 44 impressions were made with each material, of which 16 were disinfected with 5.25% sodium hypochlorite, 16 were disinfected with 10% iodophor and 12 were not disinfected. Three dimensional measurements of working casts, including interpreparation distance, height, and diameter, were calculated using a measuring microscope graduated at 0.001 mm. Dimensional changes (mm) between the disinfected and non-disinfected working casts were compared. One-way analysis of variance (ANOVA) was employed to analyze the data (α=0.05). Results Disinfection of each condensation silicone material by spraying atomization with two different disinfectant material resulted in significant change in interpreparation distance (p<0.05). Changes in height and diameter were only significant in Spidex® impressions (p<0.05). Conclusion Significant changes in the mean dimensions were seen as a result of disinfection by spraying; however, the dimensional changes do not seem great enough to cause critical positional distortion of teeth when fixed partial denture restorations are made. PMID:23346339

  14. Laboratory assessment of impression accuracy by clinical simulation.

    PubMed

    Wassell, R W; Abuasi, H A

    1992-04-01

    Some laboratory tests of impression material accuracy mimic the clinical situation (simulatory) while others attempt to quantify a material's individual properties. This review concentrates on simulatory testing and aims to give a classification of the numerous tests available. Measurements can be made of the impression itself or the resulting cast. Cast measurements are divided into those made of individual dies and those made of interdie relations. Contact measurement techniques have the advantage of simplicity but are potentially inaccurate because of die abrasion. Non-contact techniques can overcome the abrasion problem but the measurements, especially those made in three dimensions, may be difficult to interpret. Nevertheless, providing that care is taken to avoid parallax error non-contact methods are preferable as experimental variables are easier to control. Where measurements are made of individual dies these should include the die width across the finishing line, as occlusal width measurements provide only limited information. A new concept of 'differential die distortion' (dimensional difference from the master model in one plane minus the dimensional difference in the perpendicular plane) provides a clinically relevant method of interpreting dimensional changes. Where measurements are made between dies movement of the individual dies within the master model must be prevented. Many of the test methods can be criticized as providing clinically unrealistic master models/dies or impression trays. Phantom head typodonts form a useful basis for the morphology of master models providing that undercuts are standardized and the master model temperature adequately controlled. PMID:1564180

  15. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Joo Jeong, Yeon; Islam, Mohammad F.

    2015-07-01

    Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of density 13-15 mg mL-1, which corresponds to a volume fraction of 0.009, that were mechanically robust and recovered their original shape even after uniaxially compressing them by more than 50%. We made these porous elastomeric composites using a solution based assembly process that involved first shaping SWCNTs into porous networks of density ~7 mg mL-1 (volume fraction ~0.005) followed by coatings of SWCNT networks with 6-8 mg mL-1 of h-BN (volume fraction ~0.003-0.004). The h-BN coating strengthened the underlying SWCNT networks, likely via reinforcement of the nodes between the SWCNTs, resulting in an increase in Young's modulus by ~100% compared to that of SWCNT networks alone. Surprisingly, SWCNT networks, which were initially highly fragile, became elastomeric after h-BN coating, even though porous structures solely from h-BN are very brittle. Our fabrication approach preserves the morphology of the underlying networks, allowing for fabrication of various shapes and sizes of porous composites of h-BN and SWCNTs. Finally, our fabrication scheme is robust and facile for the preparation of porous composites of diverse ceramic materials and SWCNTs using the appropriate ceramic-precursor.Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of

  16. In-use Stability of Ceftaroline Fosamil in Elastomeric Home Infusion Systems and MINI-BAG Plus Containers.

    PubMed

    Bhattacharya, Sisir; Parekh, Satish; Dedhiya, Mahendra

    2015-01-01

    The objective of this study was to determine in-use stability of ceftaroline fosamil infusion solution of concentrations up to 12 mg/mL in elastomeric home infusion system prefilled with 0.9% Sodium Chloride Injection USP or 5% Dextrose Injection USP and MINI-BAG Plus Container delivery devices prefilled with 0.9% sodium chloride injection. In-use ceftaroline fosamil infusion solution (12 mg/mL) was prepared for elastomeric home infusion systems (Homepump Eclipse, Baxter Intermate, and AccuRx Elastomeric Pump) pre-filled with either 0.9% sodium chloride injection or 5% dextrose; or Baxter MINI-BAG Plus Containers pre-filled with 0.9% Sodium Chloride Injection USP (4 mg/mL to 12 mg/mL ceftaroline fosamil in final solution). The systems were stored refrigerated for 24 hours followed by up to 6 hours of storage at room temperature. Samples were analyzed at various time points for assay and degradation product by a validated stability-indicating high-performance liquid chromatography method. In-use ceftaroline fosamil infusion solution, ranging from 4-mg/mL to a maximum of 12-mg/mL concentration, in elastomeric home infusion systems prefilled with 0.9% sodium chloride injection or 5% dextrose, and MINI-BAG Plus Containers prefilled with 0.9% sodium chloride injection were chemically stable for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours at room temperature and had acceptable compatibility with material used. Ceftaroline fosamil (4 mg/mL to 12 mg/mL) maintains its potency for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours of storage at room temperature upon reconstitution in infusion solution with 0.9% sodium chloride or 5% dextrose when used in elastomeric home infusion system and MINI-BAG Plus Containers delivery devices prefilled with 0.9% sodium chloride injection. PMID:26775451

  17. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes.

    PubMed

    Jeong, Yeon Joo; Islam, Mohammad F

    2015-08-14

    Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of density 13-15 mg mL(-1), which corresponds to a volume fraction of 0.009, that were mechanically robust and recovered their original shape even after uniaxially compressing them by more than 50%. We made these porous elastomeric composites using a solution based assembly process that involved first shaping SWCNTs into porous networks of density ∼7 mg mL(-1) (volume fraction ∼0.005) followed by coatings of SWCNT networks with 6-8 mg mL(-1) of h-BN (volume fraction ∼0.003-0.004). The h-BN coating strengthened the underlying SWCNT networks, likely via reinforcement of the nodes between the SWCNTs, resulting in an increase in Young's modulus by ∼100% compared to that of SWCNT networks alone. Surprisingly, SWCNT networks, which were initially highly fragile, became elastomeric after h-BN coating, even though porous structures solely from h-BN are very brittle. Our fabrication approach preserves the morphology of the underlying networks, allowing for fabrication of various shapes and sizes of porous composites of h-BN and SWCNTs. Finally, our fabrication scheme is robust and facile for the preparation of porous composites of diverse ceramic materials and SWCNTs using the appropriate ceramic-precursor. PMID:26161911

  18. Manikin-based performance evaluation of elastomeric respirators against combustion particles.

    PubMed

    He, Xinjian; Yermakov, Michael; Reponen, Tiina; McKay, Roy T; James, Kelley; Grinshpun, Sergey A

    2013-01-01

    This study investigated the effects of faceseal leakage, breathing flow, and combustion material on the overall (non-size-selective) penetration of combustion particles into P-100 half and full facepiece elastomeric respirators used by firefighters. Respirators were tested on a breathing manikin exposed to aerosols produced by combustion of three materials (wood, paper, and plastic) in a room-size exposure chamber. Testing was performed using a single constant flow (inspiratory flow rate = 30 L/min) and three cyclic flows (mean inspiratory flow rates = 30, 85, and 135 L/min). Four sealing conditions (unsealed, nose-only sealed, nose and chin sealed, and fully sealed) were examined to evaluate the respirator faceseal leakage. Total aerosol concentration was measured inside (C(in)) and outside (C(out)) the respirator using a condensation particle counter. The total penetration through the respirator was determined as a ratio of the two (P = C(in) / C(out)). Faceseal leakage, breathing flow type and rate, and combustion material were all significant factors affecting the performance of the half mask and full facepiece respirators. The efficiency of P-100 respirator filters met the NIOSH certification criteria (penetration ≤0.03%); it was not significantly influenced by the challenge aerosol and flow type, which supports the current NIOSH testing procedure using a single challenge aerosol and a constant airflow. However, contrary to the NIOSH total inward leakage (TIL) test protocol assuming that the result is independent on the type of the tested aerosol, this study revealed that the challenge aerosol significantly affects the particle penetration through unsealed and partially sealed half mask respirators. Increasing leak size increased total particle penetration. The findings point to some limitations of the existing TIL test in predicting protection levels offered by half mask elastomeric respirators. PMID:23442086

  19. Accuracy of Digital vs. Conventional Implant Impressions

    PubMed Central

    Lee, Sang J.; Betensky, Rebecca A.; Gianneschi, Grace E.; Gallucci, German O.

    2015-01-01

    The accuracy of digital impressions greatly influences the clinical viability in implant restorations. The aim of this study is to compare the accuracy of gypsum models acquired from the conventional implant impression to digitally milled models created from direct digitalization by three-dimensional analysis. Thirty gypsum and 30 digitally milled models impressed directly from a reference model were prepared. The models were scanned by a laboratory scanner and 30 STL datasets from each group were imported to an inspection software. The datasets were aligned to the reference dataset by a repeated best fit algorithm and 10 specified contact locations of interest were measured in mean volumetric deviations. The areas were pooled by cusps, fossae, interproximal contacts, horizontal and vertical axes of implant position and angulation. The pooled areas were statistically analysed by comparing each group to the reference model to investigate the mean volumetric deviations accounting for accuracy and standard deviations for precision. Milled models from digital impressions had comparable accuracy to gypsum models from conventional impressions. However, differences in fossae and vertical displacement of the implant position from the gypsum and digitally milled models compared to the reference model, exhibited statistical significance (p<0.001, p=0.020 respectively). PMID:24720423

  20. Assessing the clarity of friction ridge impressions.

    PubMed

    Hicklin, R Austin; Buscaglia, JoAnn; Roberts, Maria Antonia

    2013-03-10

    The ability of friction ridge examiners to correctly discern and make use of the ridges and associated features in finger or palm impressions is limited by clarity. The clarity of an impression relates to the examiner's confidence that the presence, absence, and attributes of features can be correctly discerned. Despite the importance of clarity in the examination process, there have not previously been standard methods for assessing clarity in friction ridge impressions. We introduce a process for annotation, analysis, and interchange of friction ridge clarity information that can be applied to latent or exemplar impressions. This paper: (1) describes a method for evaluating the clarity of friction ridge impressions by using color-coded annotations that can be used by examiners or automated systems; (2) discusses algorithms for overall clarity metrics based on manual or automated clarity annotation; and (3) defines a method of quantifying the correspondence of clarity when comparing a pair of friction ridge images, based on clarity annotation and resulting metrics. Different uses of this approach include examiner interchange of data, quality assurance, metrics, and as an aid in automated fingerprint matching. PMID:23313600

  1. Giving the wrong impression: food and beverage brand impressions delivered to youth through popular movies

    PubMed Central

    Skatrud-Mickelson, Monica; Adachi-Mejia, Anna M.; MacKenzie, Todd A.; Sutherland, Lisa A.

    2012-01-01

    Background Marketing on television showcases less-healthful options, with emerging research suggesting movies promote similar products. Given the obesity epidemic, understanding advertising to youth should be a public health imperative. The objective of this study was to estimate youth impressions to food and beverages delivered through movies. Methods Impressions were calculated by dividing US receipts annually into average movie ticket prices, then multiplying this by the number of brand appearances. Examination by ratings, product types and ages were conducted by Spearman rank correlation coefficient tests. Results Youth in the USA saw over 3 billion food, beverage or food–retail establishment (FRE) impressions on average, annually from 1996 to 2005. Those aged 12–18 viewed over half of all impressions, with PG-13-rated movies containing 61.5% of impressions. There were no significant trends in brand appearances by food, beverage or FRE impressions over the decade, although there was a decreasing trend in R-rated impressions for both foods (P< 0.01) and beverages (P< 0.01), but not FREs (P= 0.08). Conclusions Movies promote billions of food and beverage impressions annually to youth. Given the public health crisis of obesity, future research should further investigate these trends, as well as the potential association of these unhealthy exposures in youth. PMID:22076600

  2. Response of elastomeric packaging components to a corrosive simulant mixed waste

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1997-10-01

    The purpose of hazardous and radioactive materials packaging is to enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations in the US have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified by the US Department of Transportation and the US Nuclear Regulatory Commission. Based on these national requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at SNL. In this paper, the authors present the results of Part B of the second phase of this testing program. The first phase screened five liner materials and six seal materials towards four simulant mixed wastes. Part A of the second phase involved the comprehensive testing of five candidate liner materials to an aqueous Hanford Tank simulant mixed waste. Part B involved similar testing on elastomeric materials, ethylene-propylene and butadiene-acrylonitrile rubber. The comprehensive testing protocol involved exposing the respective materials to a matrix of four gamma radiation doses ({approximately}1, 3, 6, and 40 kGy), three temperatures (18, 50, and 60 C), and four exposure times (7, 14, 28, and 180 days). Following their exposure to these combinations of conditions, the materials were evaluated by measuring six material properties. These properties were specific gravity, dimensional changes, hardness, vapor transport rates, compression set, and mechanical properties.

  3. Facial feedback effects on impression formation.

    PubMed

    Ohira, H; Kurono, K

    1993-12-01

    Two experiments were conducted to examine effects of facial expressions upon social cognitive processes in which the impression of another person is formed. In each experiment, 30 female college students were induced to display or conceal their facial reactions to a hypothetical target person whose behaviors were mildly hostile (Exp. 1) or mildly friendly (Exp. 2), or their facial expressions were not manipulated. Displaying the facial expressions shifted the impression into the congruent directions with hedonic values corresponding to the facial expressions. Concealing the facial expressions, however, did not influence impression formation. Also, the positive-negative asymmetry was observed in the facial feedback effects, that is, the negative facial expression had a stronger effect on social cognition than the positive one. PMID:8170774

  4. Seismic response analyses of base isolated structures with high damping elastomeric bearings

    SciTech Connect

    Wang, C.Y.; Tang, Y.; Chang, Y.W.; Seidensticker, R.W. ); Marchertas, A.H. )

    1991-01-01

    Seismic response analysis of base-isolated structures with high damping elastomeric bearings is described. Emphasis is placed on the adaptation of a nonlinear constitutive model for the isolation bearing together with the treatment of foundation embedment for the soil-structure-interaction analysis. The constitutive model requires six input parameters derived from bearing experimental data under sinusoidal loading. The characteristic behavior of bearing, such as the variation of shear modulus and material damping with the change of maximum shear deformation, can be captured closely by the formulation. In the treatment of soil embedment a spring method is utilized to evaluate the foundation input motion as well as soil stiffness and damping. The above features have been incorporated into a three-dimensional system response program, SISEC, developed at Argonne National Laboratory. Sample problems are presented to illustrate the relative response of isolated and unisolated structures. 11 refs., 12 figs.

  5. Flame resistant elastomeric polymer development. [for use in space shuttle instrument packaging

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S. G.; Sidman, K. R.

    1975-01-01

    Elastomeric products were developed for use in the space shuttle program, and investigations were conducted to improve the properties of elastomers developed in previous programs, and to evaluate the possibility of using lower-cost general purpose polymers. Products were fabricated and processed on conventional processing equipment; these products include: foams based on fluorinated rubber flame-retarded compounds with a density of 20-30 pounds/cubic foot for use as padding and in helmets; foams based on urethane for use in instrument packaging in the space shuttle; flexible and semi-rigid films of fluorinated rubber and neoprene compounds that would not burn in a 70% nitrogen, 30% oxygen atmosphere, and in a 30% nitrogen, 70% oxygen atmosphere, respectively for use in packaging or in laminates; coated fabrics which used both nylon and Kelvar fabric substrates, coated with either fluorinated or neoprene polymer compositions to meet specific levels of flame retardancy; and other flame-resistant materials.

  6. Pressures involved in making upper edentulous impressions.

    PubMed

    Rihani, A

    1981-12-01

    A study was made of the pressures exerted on the upper denture-bearing area in three patients each with a different type of palatal vault. A method of measuring the relative pressures in different regions of the upper denture bearing area was devised. These pressures were registered with the use of manometers while making an impression in close fitting acrylic resin special trays. The results indicated that the main pressure regions during impression making were near the center of the palate and these pressures diminished toward the buccal borders. PMID:7028974

  7. PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE

    SciTech Connect

    Verst, C.; Skidmore, E.; Daugherty, W.

    2014-05-30

    A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading to a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.

  8. Life prediction of elastomeric and thermoplastic components

    SciTech Connect

    Stevenson, A.

    1994-12-31

    Life prediction tests for polymeric materials have been in use for a considerable period of time. However there are still fundamental problems with their usage and interpretation in terms of engineering performance. In particular, it is not yet in general possible to relate the rate of change of physical properties that arise as a consequence of chemical aging to the rate of change in the underlying chemical structure or morphology. Also, different physical properties may change at different rates and these materials are generally non-linear. This renders accelerated life prediction testing potentially unreliable. This paper reviews this general problem area and discusses advances which need to be made with respect to the roles of the permeation of fluids, mechanical fatigue crack growth and time dependent changes. Illustrative examples are discussed of both thermoplastics and crosslinked elastomers. Finally, a general scheme is discussed for future research in this area, related to the development of interactive numerical modelling.

  9. Micromechanical damage and fracture in elastomeric polymers

    NASA Astrophysics Data System (ADS)

    Heyden, Stefanie

    This thesis aims at a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. The failure model is motivated by post-mortem fractographic observations of void nucleation, growth and coalescence in polyurea stretched to failure, and accounts for the specific fracture energy per unit area attendant to rupture of the material. Furthermore, it is shown that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. Optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains, and to the strain-gradient elasticity regularization, are derived. Based on optimal scaling laws, it is shown how the critical energy-release rate of specific materials can be determined from test data. In addition, the scope and fidelity of the model is demonstrated by means of an example of application, namely Taylor-impact experiments of polyurea rods. Hereby, optimal transportation meshfree approximation schemes using maximum-entropy interpolation functions are employed. Finally, a different crazing model using full derivatives of the deformation gradient and a core cut-off is presented, along with a numerical non-local regularization model. The numerical model takes into account higher-order deformation gradients in a finite element framework. It is shown how the introduction of non-locality into the model stabilizes the effect of strain localization to small volumes in materials undergoing softening. From an investigation of craze formation in the limit of large deformations, convergence studies verifying scaling properties of both local- and non-local energy

  10. Accuracy of Different Putty-Wash Impression Techniques with Various Spacer Thickness

    PubMed Central

    Arora, Aman; Singh, Vijay Pratap

    2012-01-01

    ABSTRACT One of the most important steps is accurate impression making for fabrication of fixed partial denture. The two different putty-wash techniques that are commonly used are: (1) Putty-wash one-step technique, (2) putty-wash two-step technique. A uniform wash space is needed for an accurate impression. Nissan et al recommended the use of two-step technique for accurate impression making as there is uniform wash space for the light body material to polymerize. The aim of the present study was to compare the accuracy of stone casts obtained from different putty-wash impression techniques using various spacer thickness. The critical factor that influences the accuracy of putty-wash impression techniques is the controlled wash bulk which is absent in one-step putty-wash impression technique and with polyethylene spacer was used. How to cite this article: Chugh A, Arora A, Singh VP. Accuracy of Different Putty-Wash Impression Techniques with Various Spacer Thickness. Int J Clin Pediatr Dent 2012;5(1):33-38. PMID:25206132