Science.gov

Sample records for electric energy sources

  1. Electric Power From Ambient Energy Sources

    SciTech Connect

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  2. Wind energy as a significant source of electricity

    SciTech Connect

    Nix, R G

    1995-01-01

    Wind energy is a commercially available renewable energy source, with state-of-the-art wind plants producing electricity at about $0.05 per kWh. However, even at that production cost, wind-generated electricity is not yet fully cost-competitive with coal- or natural-gas-produced electricity for the bulk electricity market. The wind is a proven energy source; it is not resource-limited in the US, and there are no insolvable technical constraints. This paper describes current and historical technology, characterizes existing trends, and describes the research and development required to reduce the cost of wind-generated electricity to full competitiveness with fossil-fuel-generated electricity for the bulk electricity market. Potential markets are described.

  3. Development of Electricity Generation from Renewable Energy Sources in Turkey

    NASA Astrophysics Data System (ADS)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  4. Auroral electron beams - Electric currents and energy sources

    NASA Astrophysics Data System (ADS)

    Kaufmann, R. L.

    1981-09-01

    The energy sources, electric equipotentials and electric currents associated with auroral electron acceleration observed during rocket flight 18:152 are discussed. Steep flow gradients at the interface between the convection boundary layer and the plasma sheet are considered as the probable source of energy for dayside and dawn and dusk auroras, while it is suggested that the cross tail potential drop may provide an energy source for some midnight auroras. Birkeland currents that flow along distorted field lines are shown possibly to be important in the mechanism that produces U-shaped equipotentials in the ionosphere, as well as unexpected jumps in ionospheric or magnetotail currents and unusual electric fields and plasma drift in the magnetotail. The production of equipotential structures under oppositely directed higher-altitude electric fields is discussed, and it is pointed out that cold ionospheric plasma can enter the structure in a cusp-shaped region where fields are weak. The rocket data reveals that the sudden change in conductivity at the edge of the bright arc and the constancy of the electric field produce sudden changes in the Hall and Pedersen currents. It is concluded that current continuity is satisfied primarily by east-west changes in the electric field or conductivity.

  5. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  6. Electrical energy sources for organic synthesis on the early Earth.

    PubMed

    Chyba, C; Sagan, C

    1991-01-01

    In 1959, Miller and Urey (Science 130, 245) published their classic compilation of energy sources for indigenous prebiotic organic synthesis on the early Earth. Much contemporary origins of life research continues to employ their original estimates for terrestrial energy dissipation by lightning and coronal discharges, 2 x 10(19) J yr-1 and 6 x 10(19) J yr-1, respectively. However, more recent work in terrestrial lightning and point discharge research suggests that these values are overestimates by factors of about 20 and 120, respectively. Calculated concentrations of amino acids (or other prebiotic organic products) in the early terrestrial oceans due to electrical discharge sources may therefore have been equally overestimated. A review of efficiencies for those experiments that provide good analogues to naturally-occurring lightning and coronal discharges suggests that lightning energy yields for organic synthesis (nmole J-1) are about one order of magnitude higher than those for coronal discharge. Therefore organic production by lightning may be expected to have dominated that due to coronae on early Earth. Limited data available for production of nitric oxide in clouds suggests that coronal emission within clouds, a source of energy heretofore too uncertain to be included in the total coronal energy inventory, is insufficient to change this conclusion. Our recommended values for lightning and coronal discharge dissipation rates on the early Earth are, respectively, 1 x 10(18) J yr-1 and 5 x 10(17) J yr-1. PMID:11537539

  7. Electrical energy sources for organic synthesis on the early earth

    NASA Astrophysics Data System (ADS)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    In 1959, Miller and Urey (Science 130, 245) published their classic compilation of energy sources for indigenous prebiotic organic synthesis on the early Earth. Much contemporary origins of life research continues to employ their original estimates for terrestrial energy dissipation by lightning and coronal discharges, 2 × 1019 J yr-1 and 6 × 1019 J yr-1, respectively. However, more recent work in terrestrial lightning and point discharge research suggests that these values are overestimates by factors of about 20 and 120, respectively. Calculated concentrations of amino acids (or other prebiotic organic products) in the early terrestrial oceans due to electrical discharge sources may therefore have been equally overestimated. A review of efficiencies for those experiments that provide good analogues to naturally-occurring lightning and coronal discharges suggests that lightning energy yields for organic synthesis (nmole J-1) are about one order of magnitude higher than those for coronal discharge. Therefore organic production by lightning may be expected to have dominated that due to coronae on early Earth. Limited data available for production of nitric oxide in clouds suggests that coronal emission within clouds, a source of energy heretofore too uncertain to be included in the total coronal energy inventory, is insufficient to change this conclusion. Our recommended valves for lightning and coronal discharge dissipation rates on the early Earth are, respectively, 1 × 1018 J yr-1 and 5 × 1017 J yr-1.

  8. 48 CFR 217.174 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electricity from renewable energy sources. 217.174 Section 217.174 Federal Acquisition Regulations System... renewable energy sources. (a) The head of the contracting activity may enter into a contract for a period not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that...

  9. 48 CFR 217.174 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electricity from renewable energy sources. 217.174 Section 217.174 Federal Acquisition Regulations System... renewable energy sources. (a) The head of the contracting activity may enter into a contract for a period not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that...

  10. 48 CFR 217.174 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electricity from renewable energy sources. 217.174 Section 217.174 Federal Acquisition Regulations System... renewable energy sources. (a) The head of the contracting activity may enter into a contract for a period not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that...

  11. 48 CFR 217.175 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... electricity from renewable energy sources. 217.175 Section 217.175 Federal Acquisition Regulations System... SPECIAL CONTRACTING METHODS Mulityear Contracting 217.175 Multiyear contracts for electricity from... not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that...

  12. 48 CFR 217.174 - Multiyear contracts for electricity from renewable energy sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electricity from renewable energy sources. 217.174 Section 217.174 Federal Acquisition Regulations System... SPECIAL CONTRACTING METHODS Mulityear Contracting 217.174 Multiyear contracts for electricity from... not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that...

  13. Control of new energy sources in an electric utility system

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    1981-01-01

    The addition of generators based on renewable resources to the electric power system brings new problems of control and communication if the generators are to be controlled as an integrated part of the power system. Since many of these generators are small, it will require a large number of them, connected to the distribution system, to represent an appreciable fraction of the total generation. This situation contrasts with present day generation control which typically involves only the control of a small number of large generators. This paper examines the system requirements for integrated control, and proposes a control arrangement in which the incremental cost of power is an important parameter.

  14. Electrical energy sources for organic synthesis on the early earth

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    It is pointed out that much of the contemporary origin-of-life research uses the original estimates of Miller and Urey (1959) for terrestrial energy dissipation by lightning and coronal discharges being equal to 2 x 10 to the 19th J/yr and 6 x 10 to the 19th J/yr, respectively. However, data from experiments that provide analogues to naturally-occurring lightning and coronal discharges indicate that lightning energy yields for organic synthesis (nmole/J) are about one order of magnitude higher than the coronal discharge yields. This suggests that, on early earth, organic production by lightning may have dominated that due to coronal emission. New values are recommended for lightning and coronal discharge dissipation rates on the early earth, 1 x 10 to the 18th J/yr and 5 x 10 to the 17th J/yr, respectively.

  15. Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite

    NASA Astrophysics Data System (ADS)

    Dedinec, A.; Jovanovski, B.; Gajduk, A.; Markovska, N.; Kocarev, L.

    2016-05-01

    We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.

  16. The impacts of renewable energy policies on renewable energy sources for electricity generating capacity

    NASA Astrophysics Data System (ADS)

    Koo, Bryan Bonsuk

    Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.

  17. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  18. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  19. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    SciTech Connect

    Zaininger, H.W.

    1994-01-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The

  20. Strategies for the integration of intermittent renewable energy sources in the electrical system

    NASA Astrophysics Data System (ADS)

    Romanelli, Francesco

    2016-03-01

    Europe is pursuing an aggressive programme to increase its share of renewable energy source (RES). However, the integration of intermittent RES (wind and photovoltaic) in the electrical system requires either maintaining in operation thermal backup systems or providing a substantial amount of electricity storage. We analyze the Italian electricity data for the year 2013 provided by the transmission system operator TERNA. The present level of intermittent RES power is scaled-up to a level at which it generates an amount of electricity equal to the annual demand. While a substantial reduction of the energy annually produced by fossil backup systems (and the associated CO2 emission) with respect to the no-RES case is possible in many scenarios considered here, the backup power is generally only marginally reduced below the value in the absence of RES. The strategy proposed is based on the combination of a modest amount of storage (0.5-5TWh) and base-load power (6-15GW, to be used during the seasons of low RES production). In this way the non-RES installed power can be reduced from ˜ 50 GW to less than 15GW and could be covered by a combination of biomass and nuclear energy without any CO2 emission.

  1. Short and long term energy source technologies for electrically-heated catalysts

    SciTech Connect

    Bass, E.A.; Johnston, R.; Hunt, B.; Rodriguez, G.; Gottberg, I.; Ishizuka, A.; Hall, W.

    1996-12-31

    A consortium of six companies formed by Southwest Research Institute conducted an investigation into alternative electric power supplies for electrically heated catalysts (EHCs). Previous studies showed that, due to their high power and energy requirements upon engine start, battery-powered EHCs would cause premature failure of common lead-acid batteries. This project identified and characterized several alternative electric energy sources. Production starting, lighting, and ignition (SLI) batteries were evaluated along with lead-acid electric vehicle batteries, nickel-cadmium aircraft batteries, prototype ultracapacitors, and a modified alternator. Battery Council International and US Advanced Battery Consortium test methods were employed where applicable. Evaluations included ambient and low-temperature ({minus}18 C) constant-current discharge characterization, low-temperature peak-power determination, self-discharge, and passenger car Federal Test Procedure (FTP) emissions and fuel economy. As demonstrated by discharge-energy and peak-power tests, some EV batteries may have potential for the EHC/SLI application. Other appeared to be poorly suited due to low-temperature problems. The best low-temperature performance was observed with ultracapacitors. These units were also the least to be affected by the power versus energy trade-off. The problems with these prototype storage units were high cost and self-discharge rate. Alternator power for EHCs as an alternative to energy storage devices was successfully demonstrated on a vehicle. Power produced was a linear function of engine speed and EHC load. High-voltage switching devices will be necessary for successful use of alternator power on EHCs. A fuel economy penalty was expected, but not observed during the FTP vehicle demonstration.

  2. Energy-Water Nexus Relevant to Baseload Electricity Source Including Mini/Micro Hydropower Generation

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Tanabe, S.; Yamada, M.

    2014-12-01

    Water, food and energy is three sacred treasures that are necessary for human beings. However, recent factors such as population growth and rapid increase in energy consumption have generated conflicting cases between water and energy. For example, there exist conflicts caused by enhanced energy use, such as between hydropower generation and riverine ecosystems and service water, between shale gas and ground water, between geothermal and hot spring water. This study aims to provide quantitative guidelines necessary for capacity building among various stakeholders to minimize water-energy conflicts in enhancing energy use. Among various kinds of renewable energy sources, we target baseload sources, especially focusing on renewable energy of which installation is required socially not only to reduce CO2 and other greenhouse gas emissions but to stimulate local economy. Such renewable energy sources include micro/mini hydropower and geothermal. Three municipalities in Japan, Beppu City, Obama City and Otsuchi Town are selected as primary sites of this study. Based on the calculated potential supply and demand of micro/mini hydropower generation in Beppu City, for example, we estimate the electricity of tens through hundreds of households is covered by installing new micro/mini hydropower generation plants along each river. However, the result is based on the existing infrastructures such as roads and electric lines. This means that more potentials are expected if the local society chooses options that enhance the infrastructures to increase micro/mini hydropower generation plants. In addition, further capacity building in the local society is necessary. In Japan, for example, regulations by the river law and irrigation right restrict new entry by actors to the river. Possible influences to riverine ecosystems in installing new micro/mini hydropower generation plants should also be well taken into account. Deregulation of the existing laws relevant to rivers and

  3. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    SciTech Connect

    Haas, Reinhard; Meyer, Niels I.; Held, Anne; Finon, Dominique; Lorenzoni, Arturo; Wiser, Ryan; Nishio, Ken-ichiro

    2007-06-01

    The promotion of electricity generated from Renewable Energy Sources (RES) has recently gained high priority in the energy policy strategies of many countries in response to concerns about global climate change, energy security and other reasons. This chapter compares and contrasts the experience of a number of countries in Europe, states in the US as well as Japan in promoting RES, identifying what appear to be the most successful policy measures. Clearly, a wide range of policy instruments have been tried and are in place in different parts of the world to promote renewable energy technologies. The design and performance of these schemes varies from place to place, requiring further research to determine their effectiveness in delivering the desired results. The main conclusions that can be drawn from the present analysis are: (1) Generally speaking, promotional schemes that are properly designed within a stable framework and offer long-term investment continuity produce better results. Credibility and continuity reduce risks thus leading to lower profit requirements by investors. (2) Despite their significant growth in absolute terms in a number of key markets, the near-term prognosis for renewables is one of modest success if measured in terms of the percentage of the total energy provided by renewables on a world-wide basis. This is a significant challenge, suggesting that renewables have to grow at an even faster pace if we expect them to contribute on a significant scale to the world's energy mix.

  4. Hybrid Design of Electric Power Generation Systems Including Renewable Sources of Energy

    ERIC Educational Resources Information Center

    Wang, Lingfeng; Singh, Chanan

    2008-01-01

    With the stricter environmental regulations and diminishing fossil-fuel reserves, there is now higher emphasis on exploiting various renewable sources of energy. These alternative sources of energy are usually environmentally friendly and emit no pollutants. However, the capital investments for those renewable sources of energy are normally high,…

  5. Wind energy as a significant source of electricity for the United States

    SciTech Connect

    Nix, R.G.

    1996-06-01

    This paper discusses wind energy and its potential to significantly impact the generation of electricity within the US. The principles and the equipment used to convert wind energy to electricity are described, as is the status of current technology. Markets and production projections are given. There is discussion of the advances required to reduce the selling cost of electricity generated from the wind from today`s price of about $0.05 per kilowatt-hour to full cost-competitiveness with gas- and coal-based electricity.

  6. Source of electricity

    SciTech Connect

    Marhanka, F.D.

    1983-06-28

    A source of electricity has a first electrode, a second electrode which is spaced from the first electrode and which is made from a metal that is displaced in the electromotive series from the metal of the first electrode, a first mass which is electrically conductive and which contains particulates and liquid and which is in electrically-conducting engagement with the inner surface of the first electrode, a second mass which is electrically conductive and which contains particulates and liquid and which is in electrically-conducting engagement with the inner surface of the second electrode and which has at least one particulate that is different from all of the particulates in the first mass, an interface between the confronting surfaces of the first and second masses, a polarity-imparting material in one of the masses, and that polarity-imparting material and the liquids enabling the masses to cause the electrodes to supply a unidirectional flow of current to any load which is connected across them.

  7. Reverse electrodialysis using bipolar ion-exchange membranes as a source of electric energy

    SciTech Connect

    Pivovarov, N.Ya.; Greben`, V.P.; Kovarskii, N.Ya.

    1994-06-01

    It is established that, in the regime of the H{sup +} and OH{sup {minus}} ions recombination, voltage on the bipolar membranes and the efficiency of the latter, as a transformer of chemical energy into electric, increases in the series of ionogen groups contained in the bipolar region. This is due to an increase in the recombination rate constants in the bipolar contact for the H{sup +} and OH{sup {minus}} ions. As the sodium and chlorine ions penetrate the bipolar transition region, they sharply decrease the membrane potential and the voltage drop on the bipolar membranes, because the ionogen groups turn into salt form, which is catalytically inactive in the H{sup +} and OH{sup {minus}} ions recombination reaction. It is shown that the source of current, containing the MB-24 (bipolar), MF-4sk (cation-exchange), and AMV (anion-exchange) ion-exchange membranes, has a specific power of 0.11 W/dm{sup 2} (calculated in terms of one bipolar membrane) and efficiency of 29% for 0.5 M solution of hydrochloric acid and sodium hydroxide, and 0.5 A/dm{sup 2} current density.

  8. Nuclear electric power sources

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Measurements on radioactive commercial p-n junction silicon cells show that these units are capable of delivering several hundred microwatts per curie of Am-241 alpha source, indicating their usefulness in such electronic devices as hearing aids, heart pacemakers, electronic watches, delay timers and nuclear dosimeter chargers. It is concluded that the Am-241 sources are superior to the beta sources used previously, because of higher alpha specific ionization and simultaneous production of low energy photons which are easily converted into photoelectrons for additional power.

  9. Contribution of electric energy to the process of elimination of low emission sources in Cracow

    SciTech Connect

    Lach, J.; Mejer, T.; Wybranski, A.

    1995-12-31

    At present energy supply belongs to the most important global problems. A significant part of energy is consumed for residential heating purposes. Depending on climatic conditions, fuel distribution and the level of technological development, the contribution of these purposes ranges between ca. 50% (Poland) and ca. 12% (Spain). The power engineering structure in Poland is based almost exclusively upon solid fuels, i.e. hard and brown coal. Chemical compounds (carbon dioxide, sulfur dioxide and nitrogen oxides) produced in combustion process influence negatively the natural environment. The contribution of residential heating in this negative effect is rather significant. Because of the fact, that the resources of fossil fuels (the most important source of energy at present) are limited and their influence on natural environment is negative, efforts are made to find out more effective ways of energy consumption and to reduce the pollutant emission from heating sources. This problem is a topical issue in Cracow, especially during the heating season because the coal-fired stoves situated in the central part of the town remain the most important source of pollutant emission. These sources cause serious menace to the health of inhabitants; furthermore the pollutants destroy Cracow monuments entered in the UNESCO world list of human heritage.

  10. Causal Analysis of the Inadvertent Contact with an Uncontrolled Electrical Hazardous Energy Source (120 Volts AC)

    SciTech Connect

    David E. James; Dennis E. Raunig; Sean S. Cunningham

    2014-10-01

    On September 25, 2013, a Health Physics Technician (HPT) was performing preparations to support a pneumatic transfer from the HFEF Decon Cell to the Room 130 Glovebox in HFEF, per HFEF OI 3165 section 3.5, Field Preparations. This activity involves an HPT setting up and climbing a portable ladder to remove the 14-C meter probe from above ball valve HBV-7. The HPT source checks the meter and probe and then replaces the probe above HBV-7, which is located above Hood ID# 130 HP. At approximately 13:20, while reaching past the HBV-7 valve position indicator switches in an attempt to place the 14-C meter probe in the desired location, the HPT’s left forearm came in contact with one of the three sets of exposed terminals on the valve position indication switches for HBV 7. This resulted in the HPT receiving an electrical shock from a 120 Volt AC source. Upon moving the arm, following the electrical shock, the HPT noticed two exposed electrical connections on a switch. The HPT then notified the HFEF HPT Supervisor, who in turn notified the MFC Radiological Controls Manager and HFEF Operations Manager of the situation. Work was stopped in the area and the hazard was roped off and posted to prevent access to the hazard. The HPT was escorted by the HPT Supervisor to the MFC Dispensary and then preceded to CFA medical for further evaluation. The individual was evaluated and released without any medical restrictions. Causal Factor (Root Cause) A3B3C01/A5B2C08: - Knowledge based error/Attention was given to wrong issues - Written Communication content LTA, Incomplete/situation not covered The Causal Factor (root cause) was attention being given to the wrong issues during the creation, reviews, verifications, and actual performance of HFEF OI-3165, which covers the need to perform the weekly source check and ensure placement of the probe prior to performing a “rabbit” transfer. This resulted in the hazard not being identified and mitigated in the procedure. Work activities

  11. Electricity generation by intermittent sources

    NASA Astrophysics Data System (ADS)

    Wagner, F.

    2015-08-01

    This paper deals with the production of electricity by wind and photovoltaic (PV) power mostly in Germany. The German data of 2012 are scaled to a 100% supply of the electricity consumption by renewable sources. Wind and PV power are mixed in a ratio which minimises back-up energy. The 100%, optimal mix data are used to identify the powers to be installed, the accumulating backup and surplus energies, the size of storage to replace thermal back-up power, the possibilities of demand-side-management, and the specific CO2 production. The benefits of using an EU-wide field of renewable energies (RES) instead of the national one are quantified and the interconnection capacities specified. Finally, the costs of installing RES are discussed. The conclusion is that a 100% supply by RES may not be meaningful. Large-scale supply by RES alone has deficiencies and it will remain a major task for science and technology to either improve such a system or find a suitable replacement.

  12. Electricity production using solar energy

    SciTech Connect

    Demirbas, M.F.

    2007-07-01

    In this study, a solar-powered development project is used to identify whether it is possible to utilize solar technologies in the electricity production sector. Electricity production from solar energy has been found to be a promising method in the future. Concentrated solar energy can be converted to chemical energy via high-temperature endothermic reactions. Coal and biomass can be pyrolyzed or gasified by using concentrated solar radiation for generating power. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is an increasing need for energy in the future. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling.

  13. Lithium polymer batteries and proton exchange membrane fuel cells as energy sources in hydrogen electric vehicles

    NASA Astrophysics Data System (ADS)

    Corbo, P.; Migliardini, F.; Veneri, O.

    This paper deals with the application of lithium ion polymer batteries as electric energy storage systems for hydrogen fuel cell power trains. The experimental study was firstly effected in steady state conditions, to evidence the basic features of these systems in view of their application in the automotive field, in particular charge-discharge experiments were carried at different rates (varying the current between 8 and 100 A). A comparison with conventional lead acid batteries evidenced the superior features of lithium systems in terms of both higher discharge rate capability and minor resistance in charge mode. Dynamic experiments were carried out on the overall power train equipped with PEM fuel cell stack (2 kW) and lithium batteries (47.5 V, 40 Ah) on the European R47 driving cycle. The usage of lithium ion polymer batteries permitted to follow the high dynamic requirement of this cycle in hard hybrid configuration, with a hydrogen consumption reduction of about 6% with respect to the same power train equipped with lead acid batteries.

  14. Evaluating the value of concentrated solar power in electricity systems with fluctuating energy sources

    NASA Astrophysics Data System (ADS)

    Lunz, Benedikt; Stöcker, Philipp; Pitz-Paal, Robert; Sauer, Dirk Uwe

    2016-05-01

    The paper presents a method for evaluating the value of CSP in electricity systems in comparison to other technologies. The low parametrization effort of the presented model allows for conducting studies for different electricity systems and scenarios within a manageable time frame. CSP systems in possible German electricity systems in the year 2050 can be used at its best, when the share of fluctuating renewables (FRES) is low. Under these conditions CSP is a cost-effective solution to meet CO2-reduction goals of 90 % in comparison to 1990. With FRES shares above 70 % the utilization of CSP systems would be too low to be competitive.

  15. Energy 101: Electric Vehicles

    SciTech Connect

    2012-01-01

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  16. Energy 101: Electric Vehicles

    ScienceCinema

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  17. A source of electrical energy using an air-aluminum element (AAE)

    SciTech Connect

    Anisin, A.V.; Borisenok, V.A.; Potemkin, G.A.

    1996-04-01

    An air-aluminium element (AAE) is a chemical current source (CCS) with an aluminium anode and an oxygen gas-diffusion cathode. An AAE may be relegated to intermediate types of CCS, occupying a position between primary and fuel cells. The consumable material is aluminium, and the oxidizer is oxygen in the air coming from the external environment. The electrolyte is an aqueous solution of sodium chloride. Sea water may be used in this capacity. The end product of AAE operation is aluminium hydroxide, which can be regenerated into the initial anode aluminium, and is a non-toxic product.

  18. Compact portable electric power sources

    SciTech Connect

    Fry, D.N.; Holcomb, D.E.; Munro, J.K.; Oakes, L.C.; Matson, M.J.

    1997-02-01

    This report provides an overview of recent advances in portable electric power source (PEPS) technology and an assessment of emerging PEPS technologies that may meet US Special Operations Command`s (SOCOM) needs in the next 1--2- and 3--5-year time frames. The assessment was performed through a literature search and interviews with experts in various laboratories and companies. Nineteen PEPS technologies were reviewed and characterized as (1) PEPSs that meet SOCOM requirements; (2) PEPSs that could fulfill requirements for special field conditions and locations; (3) potentially high-payoff sources that require additional R and D; and (4) sources unlikely to meet present SOCOM requirements. 6 figs., 10 tabs.

  19. Electricity energy outlook in Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, C. S.; Maragatham, K.; Leong, Y. P.

    2013-06-01

    Population and income growth are the key drivers behind the growing demand for energy. Demand for electricity in Malaysia is always growing in tandem with its Gross Domestic Product (GDP) growth. The growth for electricity in Malaysia forecasted by Economic Planning Unit (EPU) has shown an increase of 3.52% in 2012 compared to 3.48% in 2011. This growth has been driven by strong demand growth from commercial and domestic sectors. The share of electricity consumption to total energy consumption has increased from 17.4% in 2007 to 21.7% in 2012. The total electricity production was reported at 122.12TWh in 2012, where gas is still the major fuel source contributing to 52.7% of the total generation fuel mix of electricity followed by Coal, 38.9%, hydro, 7.3%, oil, 1% and others, 0.2%. This paper aims to discuss the energy outlook particularly the electricity production and ways toward greener environment in electricity production in Malaysia

  20. Fluid jet electric discharge source

    DOEpatents

    Bender, Howard A.

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  1. Energy Sources and Development.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with energy sources and development. Its objective is for the student to be able to discuss energy sources and development related to the historical perspective, biological development, current aspects, and future expectations…

  2. Earth to space dc to dc power transmission system utilizing a microwave beam as source of energy for electric propelled interorbital vehicles

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1985-01-01

    The paper contributes to the credibility of an electric propelled interorbital transportation system by introducing a new low-mass source of continuous dc power for electric propulsion and illustrating how the source can be economically tied to an electric utility on earth by an electronically steered microwave beam. The new thin-film rectenna, which functions as the receiving end of an earth-to-space microwave power transmission system is described. It is easily fabricated, is over 80 percent efficient, has a specific mass of no more than 2 kilograms per kilowatt of continuous dc power output, and is well adapted for deployment in space. The paper then describes a complete system consisting of the interorbital vehicle and the microwave power transmission system that supplies it with power. A design scenario is used to obtain performance data from the system in terms of vehicle transfer times, payload fractions, and costs. Electric energy costs are found to be less than $1000 per kilogram of payload delivered to geosynchronous orbit from low-earth orbit.

  3. On the problem of optimal control of the thrust value of the electric propulsion rocket with solar energy source

    NASA Astrophysics Data System (ADS)

    Kiforenko, Boris N.; Vasil'ev, Igor Yu.; Tkachenko, Yaroslav V.

    2013-08-01

    Under consideration is the optimal control problem on a spacecraft motion in Newtonian central gravity field. With the use of the mathematical model of electrojet propulsion device (EPD) with solar energy source, proposed earlier in paper [1], the dependence of the EPD working substance choice on both the duration of the given dynamic maneuver and the propellant expenditures for its fulfillment is investigated. The efficiency evaluation is carrying out of optimal control of variable valued thrust as well as that for relay mode thrust and relay mode thrust with optimal fixed thrust value.

  4. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1993-10-01

    This report documents the technical progress in the two investigations which make up the project 'Support of Research Projects for Electrical Energy Systems,' Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. During 1992, the derivation of equations which predict differences between the average magnetic flux density using circular coil probes and the flux density at the center of the probe, assuming a dipole magnetic field, were completed. The information gained using these equations allows the determination of measurement uncertainty due to probe size when magnetic fields from many electrical appliances are characterized. Consultations with various state and federal organizations and the development of standards related to electric and magnetic field measurements continued. The second investigation is concerned with two different activities related to compressed-gas insulated high voltage systems: the measurement of dissociative electron attachment cross sections and negative ion production in S2F10, S2OF10, and S2O2F10, and Monte-Carlo simulations of ac-generated partial-discharge pulses that can occur in SF6-insulated power systems and can be sources of gas decomposition.

  5. Electric Vehicles Mileage Extender Kinetic Energy Storage

    NASA Astrophysics Data System (ADS)

    Jivkov, Venelin; Draganov, Vutko; Stoyanova, Yana

    2015-03-01

    The proposed paper considers small urban vehicles with electric hybrid propulsion systems. Energy demands are examined on the basis of European drive cycle (NEUDC) and on an energy recuperation coefficient and are formulated for description of cycle energy transfers. Numerical simulation results show real possibilities for increasing in achievable vehicle mileage at the same energy levels of a main energy source - the electric battery. Kinetic energy storage (KES), as proposed to be used as an energy buffer and different structural schemes of the hybrid propulsion system are commented. Minimum energy levels for primary (the electric battery) and secondary (KES) sources are evaluated. A strategy for reduced power flows control is examined, and its impact on achievable vehicle mileage is investigated. Results show an additional increase in simulated mileage at the same initial energy levels.

  6. Radiant energy to electric energy converter

    NASA Technical Reports Server (NTRS)

    Sher, Arden (Inventor)

    1980-01-01

    Radiant energy is converted into electric energy by irradiating a capacitor including an ionic dielectric. The dielectric is a sintered crystal superionic conductor, e.g., lanthanum trifluoride, lanthanum trichloride, or silver bromide, so that a multiplicity of crystallites exist between electrodes of the capacitor. The radiant energy cyclically irradiates the dielectric so that the dielectric exhibits a cyclic photocapacitive like effect. Adjacent crystallites have abutting surfaces that enable the crystallites to effectively form a multiplicity of series capacitor elements between the electrodes. Each of the capacitor elements has a dipole layer only on or near its surface. The capacitor is initially charged to a voltage just below the dielectric breakdown voltage by connecting it across a DC source causing a current to flow through a charging resistor to the dielectric. The device can be utilized as a radiant energy detector or as a solar energy cell.

  7. Electrical Neuroimaging with Irrotational Sources

    PubMed Central

    Grave de Peralta Menendez, Rolando; Gonzalez Andino, Sara

    2015-01-01

    This paper discusses theoretical aspects of the modeling of the sources of the EEG (i.e., the bioelectromagnetic inverse problem or source localization problem). Using the Helmholtz decomposition (HD) of the current density vector (CDV) of the primary current into an irrotational (I) and a solenoidal (S) part we show that only the irrotational part can contribute to the EEG measurements. In particular we present for the first time the HD of a dipole and of a pure irrotational source. We show that, for both kinds of sources, I extends all over the space independently of whether the source is spatially concentrated (as the dipole) or not. However, the divergence remains confined to a region coinciding with the expected location of the sources, confirming that it is the divergence rather than the CDV that really defines the spatial extension of the generators, from where it follows that an irrotational source model (ELECTRA) is always physiologically meaningful as long as the divergence remains confined to the brain. Finally we show that the irrotational source model remains valid for the most general electrodynamics model of the EEG in inhomogeneous anisotropic dispersive media and thus far beyond the (quasi) static approximation. PMID:26113873

  8. Load Frequency Control by use of a Number of Both Heat Pump Water Heaters and Electric Vehicles in Power System with a Large Integration of Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Masuta, Taisuke; Shimizu, Koichiro; Yokoyama, Akihiko

    In Japan, from the viewpoints of global warming countermeasures and energy security, it is expected to establish a smart grid as a power system into which a large amount of generation from renewable energy sources such as wind power generation and photovoltaic generation can be installed. Measures for the power system stability and reliability are necessary because a large integration of these renewable energy sources causes some problems in power systems, e.g. frequency fluctuation and distribution voltage rise, and Battery Energy Storage System (BESS) is one of effective solutions to these problems. Due to a high cost of the BESS, our research group has studied an application of controllable loads such as Heat Pump Water Heater (HPWH) and Electric Vehicle (EV) to the power system control for reduction of the required capacity of BESS. This paper proposes a new coordinated Load Frequency Control (LFC) method for the conventional power plants, the BESS, the HPWHs, and the EVs. The performance of the proposed LFC method is evaluated by the numerical simulations conducted on a power system model with a large integration of wind power generation and photovoltaic generation.

  9. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  10. Storing the Electric Energy Produced by an AC Generator

    ERIC Educational Resources Information Center

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  11. Overview of electrochemical power sources for electric and hybrid-electric vehicles.

    SciTech Connect

    Dees, D. W.

    1999-02-12

    Electric and hybrid-electric vehicles are being developed and commercialized around the world at a rate never before seen. These efforts are driven by the prospect of vehicles with lower emissions and higher fuel efficiencies. The widespread adaptation of such vehicles promises a cleaner environment and a reduction in the rate of accumulation of greenhouse gases, Critical to the success of this technology is the use of electrochemical power sources such as batteries and fuel cells, which can convert chemical energy to electrical energy more efficiently and quietly than internal combustion engines. This overview will concentrate on the work being conducted in the US to develop advanced propulsion systems for the electric and hybrid vehicles, This work is spearheaded by the US Advanced Battery Consortium (USABC) for electric vehicles and the Partnership for a New Generation of Vehicle (PNGV) for hybrid-electric vehicles, both of which can be read about on the world wide web (www.uscar.tom). As is commonly known, electric vehicles rely strictly on batteries as their source of power. Hybrid-electric vehicles, however, have a dual source of power. An internal combustion engine or eventually a fuel cell supplies the vehicle with power at a relatively constant rate. A battery pack (much smaller than a typical electric-vehicle battery pack) provides the vehicle with its fast transient power requirements such as during acceleration. This hybrid arrangement maximizes vehicle fuel efficiency. Electric and hybrid-electric vehicles will also be able to convert the vehicle's change in momentum during braking into electrical energy and store it in its battery pack (instead of lose the energy as heat). This process, known as regenerative braking, will add to the vehicle's fuel efficiency in an urban environment.

  12. Energy Efficiency for Electrical Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in electrical technology. The following topics are examined: where to look for energy waste; conservation methods for electrical consumers, for…

  13. Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint

    SciTech Connect

    Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

    2005-09-01

    To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

  14. A multipurpose secondary source of electric power

    NASA Astrophysics Data System (ADS)

    Duplin, N. I.; Ivanov, S. R.

    The source can be used as a constant-voltage regulator, a constant-current regulator, a simulator of solar cells and thermoemission oscillators, and a generator of voltage and current pulses of high power. It can also be used in electric welding. The source consists of a series of transforming cells/current regulators in a linear control. The design provides for the automatic connection and disconnection of the required number of cells. The mode of operation is controlled by a switch.

  15. Energy Efficiency and Electric Utilities

    SciTech Connect

    2007-11-15

    The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs are being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.

  16. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  17. Optically-electrically pumped THz source

    NASA Astrophysics Data System (ADS)

    Haji-Saeed, Bahareh; Khoury, Jed; Buchwald, Walter; Woods, Charles; Wentzell, Sandra; Krejca, Brian; Kierstead, John

    2010-08-01

    In this paper, we propose a design for a widely tunable solid-state optically and electrically pumped THz source based on the Smith-Purcell free-electron laser. Our design consists of a thin dielectric layer sandwiched between an upper corrugated structure and a lower layer of thin metal, semiconductor, or high electron mobility material. The lower layer is for current streaming, which replaces the electron beam in the Smith-Purcell free-electron laser design. The upper layer consists of two micro-gratings for optical pumping, and a nano-grating to couple with electrical pumping in the lower layer. The optically generated surface plasmon waves from the upper layer and the electrically induced surface plasmon waves from the lower layer are then coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  18. Extreme-UV electrical discharge source

    DOEpatents

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  19. Science Activities in Energy: Electrical Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  20. The sources of electrically evoked otoacoustic emissions.

    PubMed

    Zou, Yuan; Zheng, Jiefu; Nuttall, Alfred L; Ren, Tianying

    2003-06-01

    It has been hypothesized that electrically evoked otoacoustic emissions (EEOAEs) are generated at a site on the basilar membrane near the stimulating electrode. From this original site, the energy propagates towards the oval window, giving rise to the short time delay component (SDC) of EEOAEs. The energy also propagates towards its characteristic frequency (CF) location, and the emission reflected from the CF location forms a long time delay component (LDC). This hypothesis is directly tested in this study by using an acoustical swept tone to modulate the EEOAEs generated by alternating electric current delivered to the round window niche in gerbils. An acoustical tone with a high sound pressure level or a small frequency separation from the EEOAE frequency induced a strong suppression of the EEOAE LDC, but no obvious suppression of the SDC. When the electrical current frequency was fixed, the swept acoustic tone induced a slight suppression, an enhanced peak, and a strong suppression of EEOAEs as the acoustic frequency was swept from the low to high frequency. These data indicate that the electrical current induced cochlear partition vibration near the stimulating electrode. One part of this energy propagates directly to the ear canal, forming the SDC, and the other part propagates to its CF place and is reflected from there to the ear canal, forming the LDC. PMID:12782357

  1. Non-conventional energy sources

    SciTech Connect

    Furlan, G.; Rodriguez, H.; Violini, G.

    1982-01-01

    This book presents the papers given at a conference on renewable energy sources. Topics considered at the conference included the estimate of global and diffuse radiation, thin films in photothermal solar energy conversion, solar collectors, prospects for photovoltaic products in the developing countries, passive energy systems in buildings, hydrogen fuels, geothermal energy, wind energy, tidal energy, and wave energy in developing countries.

  2. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1991-06-01

    The technical progress in four investigations which make up the project 'Support of Research Projects for Electrical Energy Systems,' funded by the U.S. Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST) is discussed. These investigations include measurements of magnetic fields in support of epidemiological and in vitro studies of biological field effects; development of a technique to measure trace amounts of S2F10 in the presence of SF6 and the development of an improved stochastic analyzer for pulsating phenomena; optical and electrical measurements of negative streamers preceding electric breakdown in liquid dielectrics; and the development of a reference resistive divider for high voltage impulse measurements.

  3. Teach with Energy! FUNdamental Energy, Electricity, and Science Lessons for Grades K-3.

    ERIC Educational Resources Information Center

    National Energy Foundation, Salt Lake City, UT.

    This book is an energy, electricity, and science resource guide for teachers of grades K-3. The types of energy covered are: coal, oil, natural gas, nuclear energy, renewable energy sources, electricity and food. Thirty-one interdisciplinary energy lessons are the heart of the book. Each lesson is teacher tested and can be incorporated into the…

  4. Teach with Energy! FUNdamental Energy, Electricity, and Science Lessons for Grades 4-6.

    ERIC Educational Resources Information Center

    National Energy Foundation, Salt Lake City, UT.

    This book is an energy, electricity, and science resource guide for teachers of grades K-3. The types of energy covered are: coal, oil, natural gas, nuclear energy, renewable energy sources, electricity and food. Thirty-one interdisciplinary energy lessons are the heart of the book. Each lesson is teacher tested and can be incorporated into the…

  5. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  6. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  7. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Emergency source of electrical power. 28.375 Section 28... power. (a) Each vessel must have an emergency source of electrical power which is independent of the main sources of electrical power and which is located outside the main machinery space. (b)...

  8. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Emergency source of electrical power. 28.870 Section 28... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must be connected to an independent emergency source of...

  9. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Emergency source of electrical power. 28.870 Section 28... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must be connected to an independent emergency source of...

  10. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Emergency source of electrical power. 28.870 Section 28... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must be connected to an independent emergency source of...

  11. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Emergency source of electrical power. 28.375 Section 28... power. (a) Each vessel must have an emergency source of electrical power which is independent of the main sources of electrical power and which is located outside the main machinery space. (b)...

  12. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Emergency source of electrical power. 28.870 Section 28... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must be connected to an independent emergency source of...

  13. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Emergency source of electrical power. 28.375 Section 28... power. (a) Each vessel must have an emergency source of electrical power which is independent of the main sources of electrical power and which is located outside the main machinery space. (b)...

  14. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Emergency source of electrical power. 28.375 Section 28... power. (a) Each vessel must have an emergency source of electrical power which is independent of the main sources of electrical power and which is located outside the main machinery space. (b)...

  15. Energy conservation in electric distribution

    SciTech Connect

    Lee, Chong-Jin

    1994-12-31

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal`s knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution.

  16. Fission Energy and Other Sources of Energy

    ERIC Educational Resources Information Center

    Alfven, Hannes

    1974-01-01

    Discusses different forms of energy sources and basic reasons for the opposition to the use of atomic energy. Suggests that research efforts should also be aimed toward the fission technology to make it acceptable besides major research studies conducted in the development of alternative energy sources. (CC)

  17. Restrictive loads powered by separate or by common electrical sources

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.

    1989-01-01

    In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.

  18. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1992-06-01

    This report documents the technical progress in the four investigations which make up the project 'Support of Research Projects for Electrical Energy Systems', Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. The second investigation is concerned with two different activities: the production of S2F10 in negative corona in SF6 and the measurement of electron scattering and dissociative electron attachment cross sections for SF6 and its electrical by-products. The third investigation is also concerned with tvo different activities: several liquids that are currently used or have potential for use as high voltage dielectrics are studied using conventional impulse breakdown measurement techniques and high-speed photography and advances in partial discharge measurement techniques are presented. The last investigation is concerned with the evaluation and improvement of methods for measuring fast transients in electrical power systems such as might be associated with an electromagnetic impulse.

  19. Electrical Energy Storage and the Grid

    NASA Astrophysics Data System (ADS)

    Howes, Ruth

    2007-05-01

    Demand for electricity varies seasonally, daily, and on much shorter time scales. Renewable energy sources such as solar or wind power are naturally intermittent. Nuclear power plants can respond to a narrow range of fluctuating demand quickly and to larger fluctuations in hours. However, they are most efficient when operated at a constant power output. Thus implementing either nuclear power or power from renewables requires either a system for storage of electrical energy that can respond quickly to demand or a back-up power source, usually a gas turbine plant that has a quick response time. We have studied six technologies for storing electrical energy from the grid: pumped hydropower, compressed air storage, batteries, flywheels, superconducting magnetic energy storage, and electrochemical capacitors. In addition, the power conversion systems (PCS) that connect storage to the grid are both expensive and critical to the success of a storage technology. Each of these six technologies offers different benefits, is at a different stage of readiness for commercial use, and offers opportunities for research. Advantages and disadvantages for each of the technologies and PCS will be discussed. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.E1.1

  20. Impact of electric cars on national energy consumption

    NASA Astrophysics Data System (ADS)

    Agarwal, P. D.

    1980-02-01

    Energy utilization of electric vehicles is discussed in terms of energy efficiency in comparison to internal combustion engine automobiles, starting from oil or coal as the prime energy source. It is found that although an electric car does not save primary energy resources, it can transfer some of the transportation fuel needs from petroleum to coal, nuclear, or hydropower. With reference to the impact of electric vehicles on reduction of petroleum consumption, it is shown that the dependence of the United States on foreign oil can be reduced much more quickly and at much lower cost by converting electric utility boilers from oil to coal.

  1. Thermal to Electric Energy Conversion

    NASA Astrophysics Data System (ADS)

    Hagelstein, Peter L.

    2005-12-01

    As research in the area of excess power production moves forward, issues associated with thermal to electric conversion become increasingly important. This paper provides a brief tutorial on basic issues, including the Carnot limit, entropy, and thermoelectric conversion. Practical thermal to electric conversion is possible well below the Carnot limit, and this leads to a high threshold for self-sustaining operation in Pons-Fleischmann type experiments. Excess power production at elevated temperatures will become increasingly important as we move toward self-sustaining devices and energy production for applications. Excess power production in heat-producing systems that do not require electrical input have an enormous advantage over electrochemical systems. Such systems should be considered seriously within our community in the coming years.

  2. World Energy Projection System Plus Model Documentation: World Electricity Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  3. Energy-efficient electric motors study

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  4. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Main source of electrical power. 28.850 Section 28.850... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies on electricity to power any of the following essential loads must have...

  5. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Emergency source of electrical power. 28.870 Section 28.870 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must...

  6. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Main source of electrical power. 28.850 Section 28.850... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies on electricity to power any of the following essential loads must have...

  7. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Main source of electrical power. 28.850 Section 28.850... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies on electricity to power any of the following essential loads must have...

  8. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Main source of electrical power. 28.355 Section 28.355... Operate With More Than 16 Individuals on Board § 28.355 Main source of electrical power. (a) Applicability. Each vessel that relies on electricity to power any of the following essential loads must have at...

  9. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Main source of electrical power. 28.355 Section 28.355... Operate With More Than 16 Individuals on Board § 28.355 Main source of electrical power. (a) Applicability. Each vessel that relies on electricity to power any of the following essential loads must have at...

  10. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Main source of electrical power. 28.355 Section 28.355... Operate With More Than 16 Individuals on Board § 28.355 Main source of electrical power. (a) Applicability. Each vessel that relies on electricity to power any of the following essential loads must have at...

  11. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Main source of electrical power. 28.850 Section 28.850... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies on electricity to power any of the following essential loads must have...

  12. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Main source of electrical power. 28.355 Section 28.355... Operate With More Than 16 Individuals on Board § 28.355 Main source of electrical power. (a) Applicability. Each vessel that relies on electricity to power any of the following essential loads must have at...

  13. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  14. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  15. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  16. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  17. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  18. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen; Brotz, Jay Kristoffer

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  19. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  20. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  1. Energy sources for Nigeria

    SciTech Connect

    Okoroji, C.E.I.

    1982-09-01

    A public consensus has developed on the need for national energy policies and better planning in the utilization of energy resources in Nigeria. A look at Nigeria's energy future is timely as a period of rapid technological growth and industrial development begins. At the present time, Nigeria exports a relatively high percentage (92%) of the petroleum produced annually. In addition, about 95% of all produced natural gas is flared. Only a relatively minor fraction of the coal produced is used and the rest exported to West African countries. Water power in Nigeria is not yet fully developed. Although the deposits of uranium and oil sand may be substantial, the reserves are not currently known. The proportions in which mineral fuels are used are not related to their relative abundance. Based on present production rates, domestic reserves of petroleum will last 20 years, those of natural gas 63 years, and those of coal 1503 years. Nigeria is not currently and is not likely to become self-sufficient in terms of energy requirements. During the past decade, Nigeria's population has increased by 28.4%. Of vital concern for the immediate future in Nigeria are the demands on energy consumption and mineral resources resulting from increasing population pressure.

  2. The comparative analysis of systems of long-term electric power storage intended for sources of back-up and emergency power supply, as well as for power plants using renewable energy sources

    NASA Astrophysics Data System (ADS)

    Popel', O. S.; Tarasenko, A. B.

    2012-11-01

    This paper describes variants of using electric power accumulators of various types-lithium-ion and lead-acid storage batteries, flow-through redox storage batteries, and the hydrogen cycle-for the niche of back-up and emergency power supply sources designed for long periods of operation (8-72 h). The schematic diagrams are proposed, and, on the basis of data submitted by equipment manufacturers and designers, the comparative technical and economic analysis of these systems has been performed.

  3. Economics and energy sources.

    PubMed

    Munro, Malcolm G

    2013-01-01

    Energy-based instrumentation has not only facilitated the rapid adoption of laparoscopic surgery, but could be considered essential for the completion of abdominal and pelvic procedures under endoscopic guidance. For decades, relatively simple and generic reusable monopolar and bipolar systems were the only options available. More recently, the available options for energy-based surgical instrumentation have become more crowded with the introduction of ultrasound-based cutting and sealing instruments and proprietary, impedance monitoring radiofrequency coagulation devices. Such instrumentation is presented as being easier to use as well as providing greater safety and efficacy. However, these new instruments typically require the expenditure of capital for proprietary energy generators and are usually designed to be for single use, a circumstance that increases per case costs, a circumstance that begs the question of value. Do the additional costs expended for the more expensive devices translate into reduced complications, faster operating time, or even wider access to minimally invasive procedures because they enable more surgeons to offer the service? Herein is explored the complex economic issues associated with the use of energy-based surgical devices as they apply to minimal access surgery in general and to laparoscopic procedures specifically. PMID:23659752

  4. Energy Sources, Teacher's Guide.

    ERIC Educational Resources Information Center

    Karplus, Robert

    The unit presented in this teacher's guide is the first of two developed for the fifth year in the Science Curriculum Improvement Study (SCIS) curriculum. Attention is focused on energy transfers involved in the interaction of matter in solid, liquid, and gaseous forms. The chapters are presented in six parts which include activities for reviewing…

  5. Controlling hazardous energy sources (lockout/tagout)

    NASA Technical Reports Server (NTRS)

    Dominguez, Manuel B.

    1991-01-01

    The minimum requirements as established by the Occupational Safety and Health Administration (OSHA) standard 29 CFR 1910.147 are discussed for preventing the unexpected operation of equipment or release of energy which could cause injury to personnel, damage to equipment, harm to the environment, or loss or compromise of test data. Safety requirements both for government and contractor personnel are explained for potentially hazardous energy sources during work operations at LeRC (Cleveland and Plum Brook Stations). Basic rules are presented to ensure protection against harmful exposures, and baseline implementation requirements are discussed from which detailed lockout/tagout procedures can be developed for individual equipment items. Examples of energy sources covered by this document include electrical, pneumatic, mechanical, chemical, cryogenic, thermal, spring tension/compression suspended or moving loads, and other potentially hazardous sources. Activities covered by this standard include, but are not limited to, construction, maintenance, installation, calibration, inspection, cleaning, or repair.

  6. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  7. Power conversion from environmentally scavenged energy sources.

    SciTech Connect

    Druxman, Lee Daniel

    2007-09-01

    As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.

  8. [Pollution and alternative energy sources].

    PubMed

    Melino, C

    1989-01-01

    In order to reach higher standards of living, man has always been interested in searching new energy sources. Natural energy from sun, wind and water has been overcame by more sophisticated resources such as coal, vapour, hydroelectricity, natural gas, petroleum, and, at least, nuclear energy. However all these resources present unwanted effects, namely various hazards to man and environment. On this matter society is quering the risk-benefit balance of some energy choices and optimum performance with new safety means to limit dangerousness are being pursued and developed. It is necessary to evaluate carefully every aspect of safety without under-estimating or over-evaluating problems. For each energy source a "real price" has to be paired, even more in the future, since more energy will be required to guarantee the necessary technological progress linked to a better quality of life. In the present review all risks related to different energy sources are described and discussed aiming at defining: 1) specific risks for different sources 2) benefit from their utilization 3) means of defence guaranteeing security for man and environment. Italy is strictly dependent for energy production, which comes for 80% from abroad. An appropriate balance is required considering economical and social factors and real availability of energy. This balance needs therefore to be clearly evaluated hoping in a better future for an alternative energy, less dangerous and more clear, such as that from nuclear fusion. PMID:2483087

  9. VEDCO energy installations sources

    SciTech Connect

    McDonald, A.

    1996-12-31

    A process for solid waste management is described. The approach combines materials recovery, recycling, and using refuse-derived fuel for cogeneration. A fluidized bed system is used for combustion. An example of the use of this system is briefly cited; it has extended landfill life up to 100 years for one county and allowed three counties to close municipal landfills. Over 50,000 tons of material are recycled each year, saving more than $100 million on waste disposal. Energy generation saves a chemical company over 3 million gallons of oil annually and allows the local utility company to save 75,000 tons of coal. Air emissions at the chemical company will also be reduced by over 50%.

  10. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  11. Alternative energy sources for agriculture

    SciTech Connect

    Baird, D.

    1981-05-01

    The following energy systems are discussed as alternative sources of energy for agriculture and potential demonstration projects in vocational agriculture programs: solar water heating, solar greenhouse heating, solar crop drying, gasification of wood or crop residues, and methane generation from livestock wastes. 13 references.

  12. Energy flow for electric power system deregulation

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung

    Over the past few years, the electric power utility industry in North America and other countries has experienced a strong drive towards deregulation. People have considered the necessity of deregulation of electric utilities for higher energy efficiency and energy saving. The vertically integrated monopolistic industry is being transferred into a horizontally integrated competitive structure in some countries. Wheeling charges are a current high priority problem throughout the power industry, for independent power producers, as well as regulators. Nevertheless the present transmission pricing mechanism fails to be adjusted by a customer loading condition. Customer loading is dynamic, but the present wheeling charge method is fixed, not real-time. A real-time wheeling charge method is developed in this dissertation. This dissertation introduces a concept of a power flow network which can be used for the calculation of power contribution factors in a network. The contribution factor is defined as the ratio of the power contributed by a particular source to a line flow or bus load to the total output of the source. Generation, transmission, and distribution companies can employ contribution factors for the calculation of energy cost, wheeling charges, and loss compensation. Based on the concept of contribution factors, a proposed loss allocation method is developed in this dissertation. Besides, counterflow condition will be given a credit in the proposed loss allocation method. A simple 22-bus example was used for evaluating the contribution factors, proposed wheeling charge method, and loss allocation method.

  13. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  14. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Main source of electrical power. 28.850 Section 28.850 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies...

  15. 77 FR 18872 - Availability of Electric Power Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... on September 24, 2010 (75 FR 5844) for a 60 day public comment period. The public comment period... COMMISSION Availability of Electric Power Sources AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory... 1 of Regulatory Guide (RG) 1.93, ``Availability of Electric Power Sources.'' This guide...

  16. Middle atmosphere electrical energy coupling

    NASA Technical Reports Server (NTRS)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  17. Energy sources for intravenous nutrition

    PubMed Central

    Rowlands, B J

    1987-01-01

    Controversy exists concerning the appropriate use of carbohydrate solutions and fat emulsions as energy sources in intravenous nutritional regimens. Current evidence suggests that glucose is the carbohydrate energy source of choice and that when infused with appropriate quantities of protein it provides cheap and effective nutritional support in the majority of patients and clinical circumstances. During glucose infusion, blood glucose and acid-base balance should be closely monitored and, when indicated, exogenous insulin should be added to the regimen to combat hyperglycaemia and improve protein anabolism. Fat emulsions, although expensive, may justifiably be used in patients with moderate or severe stress to provide up to 50% of non-protein energy, especially in circumstances where attempts to satisfy energy requirements exclusively with glucose would impose an additional metabolic stress. PMID:3109093

  18. Alternative Energy Sources in Seismic Methods

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Mutlu, Sunay; Ecevitoğlu, Berkan

    2015-04-01

    When the suitability of a settlement area is investigated, soil-amplification, liquefaction and fault-related hazards should be defined, and the associated risks should be clarified. For this reason, soil engineering parameters and subsurface geological structure of a new settlement area should be investigated. Especially, faults covered with quaternary alluvium; thicknesses, shear-wave velocities and geometry of subsurface sediments could lead to a soil amplification during an earthquake. Likewise, changes in shear-wave velocities along the basin are also very important. Geophysical methods can be used to determine the local soil properties. In this study, use of alternative seismic energy sources when implementing seismic reflection, seismic refraction and MASW methods in the residential areas of Eskisehir/Turkey, were discussed. Our home developed seismic energy source, EAPSG (Electrically-Fired-PS-Gun), capable to shoot 2x24 magnum shotgun cartridges at once to generate P and S waves; and our home developed WD-500 (500 kg Weight Drop) seismic energy source, mounted on a truck, were developed under a scientific research project of Anadolu University. We were able to reach up to penetration depths of 1200 m for EAPSG, and 800 m for WD-500 in our seismic reflection surveys. WD-500 seismic energy source was also used to perform MASW surveys, using 24-channel, 10 m apart, 4.5 Hz vertical geophone configuration. We were able to reach 100 m of penetration depth in MASW surveys.

  19. NV Energy Electricity Storage Valuation

    SciTech Connect

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  20. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  1. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  2. Noise around electrical energy substations

    NASA Astrophysics Data System (ADS)

    Diniz, Fabiano B.; Zannin, Paulo H.

    2005-09-01

    This survey is intended to characterize the noise impact due to electrical energy substations in the city of Curitiba over the population living in their vicinity. This impact has been studied with the aid of a computational tool capable of mapping the acoustical field of substations and their vicinity. Several factors have been considered in this survey: sound power of the transformers; vehicle flow on the surrounding roads; positioning of the firewalls, of the buildings and of the walls; terrain topography. Seven substations have been analyzed, and acoustical maps have been traced for each of them for the day and night periods. With these maps it was possible to visualize what was the incident noise levels on the building facades. The predicted noise levels have been compared to the environmental legislation of the noise emissions in effect in the city. Finally the construction of noise barrier walls surrounding the transformers has been simulated, via the software, for some cases, in order to evaluate the reduction on the acoustical discomfort caused by the transformers over the neighborhood population.

  3. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOEpatents

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  4. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  5. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  6. Ohm's Law and Electrical Sources, a Programmed Text.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed textbook was developed under contract with the United States Office of Education as Number 2 of a series of materials for use in an electrical engineering sequence. It is divided into five parts--(1) Ohm's Law, (2) resistance, (3) conductance, (4) voltage sources, and (5) current sources. (DH)

  7. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  8. Fusion: an energy source for synthetic fuels

    SciTech Connect

    Fillo, J A; Powell, J; Steinberg, M

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  9. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  10. Revitalize Electrical Program with Renewable Energy Focus

    ERIC Educational Resources Information Center

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  11. Electrically driven single photon source at high temperature

    NASA Astrophysics Data System (ADS)

    El Halawany, Ahmed; Leuenberger, Michael N.

    2016-03-01

    We present a theoretical model for an electrically driven single photon source operating at high temperatures. We show that decoherence, which is usually the main obstacle for operating single photon sources at high temperatures, ensures an efficient operation of the presented electrically driven single photon source at high temperatures. The single-photon source is driven by a single electron source attached to a heterostructure semiconductor nanoring. The electron’s dynamics in the nanoring and the subsequent recombination with the hole is described by the generalized master equation with a Hamiltonian based on tight-binding model, taking into account the electron-LO phonon interaction. As a result of decoherence, an almost 100% single photon emission with a strong antibunching behavior i.e. {{g}(2)}(0)\\ll 1 at high temperature up to 300 K is achieved.

  12. Electrically driven single photon source at high temperature.

    PubMed

    El Halawany, Ahmed; Leuenberger, Michael N

    2016-03-01

    We present a theoretical model for an electrically driven single photon source operating at high temperatures. We show that decoherence, which is usually the main obstacle for operating single photon sources at high temperatures, ensures an efficient operation of the presented electrically driven single photon source at high temperatures. The single-photon source is driven by a single electron source attached to a heterostructure semiconductor nanoring. The electron's dynamics in the nanoring and the subsequent recombination with the hole is described by the generalized master equation with a Hamiltonian based on tight-binding model, taking into account the electron-LO phonon interaction. As a result of decoherence, an almost 100% single photon emission with a strong antibunching behavior i.e. g(2)(0) < 1 at high temperature up to 300 K is achieved. PMID:26828830

  13. Understanding the electrical behavior of the action potential in terms of elementary electrical sources.

    PubMed

    Rodriguez-Falces, Javier

    2015-03-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However, this model is unsuitably complex for teaching purposes. In addition, the Hodgkin and Huxley approach describes the shape of the action potential only in terms of ionic currents, i.e., it is unable to explain the electrical significance of the action potential or describe the electrical field arising from this source using basic concepts of electromagnetic theory. The goal of the present report was to propose a new model to describe the electrical behaviour of the action potential in terms of elementary electrical sources (in particular, dipoles). The efficacy of this model was tested through a closed-book written exam. The proposed model increased the ability of students to appreciate the distributed character of the action potential and also to recognize that this source spreads out along the fiber as function of space. In addition, the new approach allowed students to realize that the amplitude and sign of the extracellular electrical potential arising from the action potential are determined by the spatial derivative of this intracellular source. The proposed model, which incorporates intuitive graphical representations, has improved students' understanding of the electrical potentials generated by bioelectrical sources and has heightened their interest in bioelectricity. PMID:25727465

  14. Hybrid energy sources for embedded sensor nodes

    NASA Astrophysics Data System (ADS)

    Silva, Ramon; Farinholt, Kevin; Park, Gyuhae

    2011-04-01

    In this paper, we present a series of hybrid energy configurations that are designed to provide a robust power source for embedded sensing hardware. The proper management of energy resources is a critical component in the design of any deployed sensing network. For systems that are installed in remote or inaccessible locations, or those with an operational lifespan that exceeds traditional battery technologies, energy harvesting is an attractive alternative. Unfortunately, the dependence on a single energy source (i.e. solar) can cause potential problems when environmental conditions preclude the system from operating at peak performance. In this paper we consider the use of a hybrid energy source that extracts energy from multiple sources and uses this collective energy to power sensing hardware. The sources considered in this work include: solar, vibration, thermal gradients, and RF energy capture. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  15. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  16. Energy-harvesting power sources for gun-fired munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Murray, R.; Pereira, C.; Nguyen, H.-L.

    2011-06-01

    A novel class of piezoelectric-based energy-harvesting power sources has been developed for gun-fired munitions which harvest energy from the firing acceleration. These piezoelectric-based devices have been shown to produce enough electrical energy for many applications such as fuzing, where they provide an ultrasafe power source, often eliminating the need for chemical batteries. An overview of the development of these power sources is provided, along with methods and results of laboratory and field testing performed on prototypes. Additionally, methods for integrating the generators into different classes of projectiles are discussed along with strategies for manufacturing and a side-by-side comparison with competing technologies.

  17. GEODE An electrical energy supply with high availability

    SciTech Connect

    Mertz, J.L.; Gerard, M.J.; Girard, J.

    1983-10-01

    Project GEODE describes an electrical energy supply characterized by its very high availability. It is to be used in the PTT (French Telephone Company) telephone exchanges and is targeted for an unavailability of better than 10/sup -6/. In order to achieve this performance Merlin Gerin has adopted: a double bus bar architecture, remote controlled electrical equipment, a motor-generator set specifically designed for this project, and computer assisted surveillance. The authors present the overall reliability calculations for this project along with that for energy sources. The E.d.F (French Utility Company) network and the Motor-Generators.

  18. Decentralized energy systems for clean electricity access

    NASA Astrophysics Data System (ADS)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  19. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    NASA Astrophysics Data System (ADS)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  20. HARNESSING OCEAN WAVE ENERGY TO GENERATE ELECTRICITY

    EPA Science Inventory

    A technical challenge to sustainability is finding an energy source that is abundant enough to meet global demands without producing greenhouse gases or radioactive waste. Energy from ocean surface waves can provide the people of this planet a clean, endless power source to me...

  1. Sugar cane. Positive energy source for alcohol

    SciTech Connect

    Polack, J.A.; Birkett, H.S.; West, M.D.

    1981-06-01

    Sugar cane stands out as a renewable resource for fuel alcohol production, thanks to its unique, highly positive energy balance. It supplies its own processing fuel, bagasse. Net liquid fuel usage is only that consumed on the farm, amounting to a maximum of 0.3 volume per volume of ethanol produced. In some locations, the net liquid fuel consumption of the farm is as low as 0.12 volume/volume produced. This small debit may be offset by generating electric power and by foreseeable processing improvements. In view of the very favorable fuel balance for sugar cane, a decision to employ it as a renewable source of ethanol depends wholly on economic and political factors, which in turn are highly location-dependent.

  2. Economics of renewable and nonrenewable energy sources

    SciTech Connect

    Canavan, G.H.

    1991-05-01

    Nonrenewable sources are subject to intertemporal optimization. Electrical and renewable sources, which are exogenous, can be integrated and treated on nonrenewable sources. For typical conditions, the model predicts that prices will increase and flows will fall more abruptly than is generally expected. These trends are exacerbated by limits on renewable sources. Predicted price trajectories should permit the introduction of alternative fuels if available, but their late introduction could be costly. Greater imports do not appear likely or appropriate. 17 refs., 24 figs.

  3. Research for Electric Energy Systems

    SciTech Connect

    Anderson, W.E.

    1991-06-01

    This report documents the technical progress in investigations. The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. NIST cohosted a workshop on exposure and biological parameters that should be considered during the vitro studies with extremely low frequency (ELF) magnetic and electric fields. Also, equations were developed to predict the magnetic field in a parallel plate magnetic field exposure system. The second investigation is concerned with two different activities: the detection of trace levels of S{sub 2}F{sub 10} in SF{sub 6} and the development of an improved stochastic analyzer for pulsating phenomena (SAPP). The detection of S{sub 2}F{sub 10} in the presence of SF{sub 6} using mass-spectrometric detection coupled to a gas chromatograph is difficult because of the similar mass spectra. A technique is described that enables the detection of S{sub 2}F{sub 10} in gaseous SF{sub 6} down to the ppb level using a modified gas chromatograph-mass spectrometer. The new system was applied to an investigation of the stochastic behavior of negative corona (Trichel pulses) and the effect of a dielectric barrier on these discharges. The third investigation is concerned with breakdown and prebreakdown phenomena in liquid dielectrics. The activity reported here was a study of negative steamers preceding electric breakdown in hexanes. Using the image preserving optical delay, the growth of the streamers associated with partial discharges at a point cathode are photographed at high magnification. The last investigation is concerned with the evaluation and improvement of methods for measuring fast transients in electrical power systems such as might be associated with an electromagnetic impulse. A compact resistive divider, NIST4, was designed. It is anticipated that this divider together with some Kerr electro-optical devices will be used as the reference system at NIST.

  4. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Emergency source of electrical power. 28.375 Section 28.375 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar Stage of Construction on or After or...

  5. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Main source of electrical power. 28.355 Section 28.355 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar Stage of Construction on or After or Which Undergo...

  6. The Harnessed Atom: Nuclear Energy & Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  7. Efficient conversion of solar energy to biomass and electricity

    PubMed Central

    2014-01-01

    The Earth receives around 1000 W.m−2 of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture. PMID:24976951

  8. Remote Electric Power Transfer Between Spacecrafts by Infrared Beamed Energy

    NASA Astrophysics Data System (ADS)

    Chertok, Boris E.; Evdokimov, Roman A.; Legostaev, Victor P.; Lopota, Vitaliy A.; Sokolov, Boris A.; Tugaenko, Vjacheslav Yu.

    2011-11-01

    High efficient wireless electric energy transmission (WET) technology between spacecrafts by laser channel is proposed. WET systems could be used for remote power supplying of different consumers in space. First of all, there are autonomous technology modules for microgravity experiments, micro and nano satellites, different equipment for explorations of planetary surfaces, space transport vehicles with electric rocket propulsion systems. The main components of the WET technology consist of radiation sources on the base of semiconductor IR laser diodes; systems for narrow laser beam creation; special photovoltaic receivers for conversion of monochromatic IR radiation with high energy density to electric power. The multistage space experiment for WET technology testing is described. During this experiment energy will be transmitted from International Space Station to another spacecrafts like cargo transport vehicles (Progress or/and ATV) and micro satellites.

  9. Supplementing Conservation Practices with Alternative Energy Sources.

    ERIC Educational Resources Information Center

    Kraetsch, Gayla A.

    1981-01-01

    Universities and colleges have two major roles: to reduce their own energy consumption and costs, and to develop and test new energy options. Alternative energy sources considered include solar energy, wind power, biomass, hydropower, ocean energy, geothermal heat, coal, and nuclear energy. (MLW)

  10. Low-energy control of electrical turbulence in the heart

    NASA Astrophysics Data System (ADS)

    Luther, Stefan; Fenton, Flavio H.; Kornreich, Bruce G.; Squires, Amgad; Bittihn, Philip; Hornung, Daniel; Zabel, Markus; Flanders, James; Gladuli, Andrea; Campoy, Luis; Cherry, Elizabeth M.; Luther, Gisa; Hasenfuss, Gerd; Krinsky, Valentin I.; Pumir, Alain; Gilmour, Robert F.; Bodenschatz, Eberhard

    2011-07-01

    Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult, because of the nonlinear interaction of excitation waves in a heterogeneous anatomical substrate. In the absence of a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation. Here we establish the relationship between the response of the tissue to an electric field and the spatial distribution of heterogeneities in the scale-free coronary vascular structure. We show that in response to a pulsed electric field, E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E) and a characteristic time, τ, for tissue depolarization that obeys the power law τ~Eα. These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore, efficient termination of fibrillation. Using this control strategy, we demonstrate low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.

  11. 77 FR 20374 - Application To Export Electric Energy; WSPP Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Application To Export Electric Energy; WSPP Inc. AGENCY: Office of Electricity Delivery and Energy Reliability... members, to renew the authority of those members to transmit electric energy from the United States to... new export authority for two other members to transmit electric energy from the United States...

  12. 75 FR 54116 - Application To Export Electric Energy; Powerex Corp

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Application To Export Electric Energy; Powerex Corp AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... authorized Powerex to transmit electric energy from the United States to Canada for a two-year term as...

  13. 78 FR 65978 - Application To Export Electric Energy; Powerex Corp.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Application To Export Electric Energy; Powerex Corp. AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... Powerex to transmit electric energy from the United States to Mexico as a power marketer for a...

  14. 75 FR 45607 - Application To Export Electric Energy; Manitoba Hydro

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Application To Export Electric Energy; Manitoba Hydro AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... Order No. EA-281, which authorized Manitoba to transmit electric energy from the United States to...

  15. Global renewable energy-based electricity generation and smart grid system for energy security.

    PubMed

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  16. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    PubMed Central

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  17. Model of electric energy accumulation for solar flares

    NASA Astrophysics Data System (ADS)

    Krivodubskij, Valery

    The model of accumulation of energy (in the form of electric charges) for solar flares is proposed. We called this mechanism as "model of electric conditional capacitor". The model explains a localization of flares near the neutral magnetic field lines with strong gradients of the field in the vicinity of active centres (sunspots). The inhomogeneous structure of magnetic fields in vicinity of sunspots and the turbulent motions influence on electric conductivity of solar plasma play key roles in this model. Electric currents serve as a source for accumulation of energy. These currents are excited due to the large-scale hydrodynamic (convective) plasma motions across the weak common magnetic field of the Sun. According to introduced mechanism, charges are accumulated at the boundaries of the limited region (near the neutral magnetic field lines with reduced turbulent electric conductivity) because of strong currents in the outside regions (with increased conductivity). Subsequent electric breakdown in the region conditional capacitor serves as a trigger mechanism for releasing of the accumulated energy.

  18. Electric machine and current source inverter drive system

    DOEpatents

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  19. Conservation as an alternative energy source

    NASA Technical Reports Server (NTRS)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  20. Decentralized conversion of biomass to energy, fuels and electricity with fuel cells

    SciTech Connect

    Grimes, P.

    1996-12-31

    Fuel cells, new processes, advanced equipment and total system approaches will allow biomass to become a larger source of energy to make electricity, fuel and chemicals. These innovative new approaches allow smaller scale operations and allow decentralization of biomass to energy. The pivotal role of biomass will change and expand. Biomass will become a significant near term and a long term energy source.

  1. Radionuclide and electric accelerator sources for food irradiation

    NASA Astrophysics Data System (ADS)

    Lagunas-Solar, Manuel C.; Matthews, Stephen M.

    Radiation processing of food requires radiation sources with high intensity, penetrability, reliability, and the flexibility to be adapted to current food processing techniques. Current proposed regulations limit the radiation sources which can be utilized to radionuclides (i.e. 5.27-y Co-60; or 30.2-y Cs-137) or electrically-driven accelerators (i.e. X rays up to 5 MeV, electron beams up to 10 MeV). Therefore, the power; throughput; and use efficiency of these sources are important factors affecting the design; installation; operation; and economics of large-scale food-processing facilities. An analysis of the advantages and disadvantages of these sources is presented here, with special attention to the current status of both technologies, and with emphasis on the needs of the food-processing industry.

  2. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  3. Electrode configuration for extreme-UV electrical discharge source

    DOEpatents

    Spence, Paul Andrew; Fornaciari, Neal Robert; Chang, Jim Jihchyun

    2002-01-01

    It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

  4. Electrically Injected Photon-Pair Source at Room Temperature

    NASA Astrophysics Data System (ADS)

    Boitier, Fabien; Orieux, Adeline; Autebert, Claire; Lemaître, Aristide; Galopin, Elisabeth; Manquest, Christophe; Sirtori, Carlo; Favero, Ivan; Leo, Giuseppe; Ducci, Sara

    2014-05-01

    One of the main challenges for future quantum information technologies is the miniaturization and integration of high performance components in a single chip. In this context, electrically driven sources of nonclassical states of light have a clear advantage over optically driven ones. Here we demonstrate the first electrically driven semiconductor source of photon pairs working at room temperature and telecom wavelengths. The device is based on type-II intracavity spontaneous parametric down-conversion in an AlGaAs laser diode and generates pairs at 1.57 μm. Time-correlation measurements of the emitted pairs give an internal generation efficiency of 7×10-11 pairs/injected electron. The capability of our platform to support the generation, manipulation, and detection of photons opens the way to the demonstration of massively parallel systems for complex quantum operations.

  5. Design and Construction of a High Voltage Pulsed Source for Electric Excitation of the Gas Laser

    NASA Astrophysics Data System (ADS)

    Díaz, Xavier Daza; Neira, Oscar León B.; Díaz-Pérez, H. Abraham

    2008-04-01

    In this paper, the design, construction and implementation of High Voltage Pulsed Source for Electrical Excitation of the Gas Lasers, as a first phase of the research project "Design and Construction of an economically and reliable Laser System constituted by a molecular pulsed laser and a single optical head for dyes" is presented. We proposed and considered the design and the construction of a source of pulsed high voltage that adjusts to the requirements of the pumping system that requires a low pressure nitrogen laser. The design and construction of the source high voltage prototype is presented like part of the electrical pumping system for a Pulsed Nitrogen Laser. The electrical pumping System is conformed by three subsystems: the high pulsed regulated voltage Source, the storage and unloading system of electrical energy of active medium, and the frequency control system of discharge repetition (spark gap) constituted by a circuit RLC and the electrodes of the laser discharge tube. In the present work the aspects related to the pulsed high regulated voltage Source is presented, Our Source of high pulsed voltage is constituted by four fundamental stages: the Stage of Conversion AC-DC (voltage reducer), the Stage of Commutation by means of a Insulated Gate Bipolar Transistor (IGBT), the stage of Generation of signal modulated by the pulses width "PWM" (with base to Circuit TL 494) and the Stage of Elevation of Voltage (using a FlyBack Transformer).

  6. Solar energy for electricity and fuels.

    PubMed

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies. PMID:26667056

  7. Scoping Calculations of Power Sources for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1994-01-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to make scoping calculations for mission analysis.

  8. Scoping calculations of power sources for nuclear electric propulsion

    SciTech Connect

    Difilippo, F.C.

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  9. High energy XeBr electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  10. High energy XeBr electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy XeBr laser for producing coherent radiation at 282 nm is disclosed. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr, is used as the halogen donor which undergoes harpooning reactions with Xe/sub M/ to form XeBr.

  11. Energy infrastructure: Mapping future electricity demand

    NASA Astrophysics Data System (ADS)

    Janetos, Anthony C.

    2016-08-01

    Electricity distribution system planners rely on estimations of future energy demand to build adequate supply, but these are complicated to achieve. An approach that combines spatially resolved projections of population movement and climate change offers a method for building better demand maps to mid-century.

  12. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    NASA Astrophysics Data System (ADS)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  13. Model of Electric Energy Accumulation for Solar Flares

    NASA Astrophysics Data System (ADS)

    Krivodubskij, Valery N.

    2015-08-01

    The model of accumulation of energy (in the form of electric charges) for solar flares is proposed. We have named this mechanism as "model of the conditioned electric capacitor". Two magnetohydrodynamics effects play the key role in the proposed model. The essence of the first effect is that the turbulent motion sharply reduces the conductivity coefficient of solar plasma (turbulent conductivity). Meanwhile, a strong magnetic field in some parts of the active regions suppresses turbulence (second effect), thereby neutralizing turbulence impact on conductivity. As a result, near the neutral lines of the magnetic field, the portions of solar plasma will be coexisting with different values of conductivity. The electric current, excited by the large-scale plasma hydrodynamic motions across the mean magnetic field, serves as a source for energy accumulation. The electric charges must be accumulated at the boundaries of the region with reduced turbulent conductivity because of the difference of conductivity values near the neutral magnetic lines ("conditioned capacitor"). The subsequent electrical breakdown in the bulk of "capacitor" will serve as a trigger mechanism for releasing the stored energy.

  14. Power conditioning system for energy sources

    SciTech Connect

    Mazumder, Sudip K.; Burra, Rajni K.; Acharya, Kaustuva

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  15. The source of the electric field in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.

  16. Shock wave generated by high-energy electric spark discharge

    NASA Astrophysics Data System (ADS)

    Liu, Qingming; Zhang, Yunming

    2014-10-01

    Shock wave generated by electric spark discharge was studied experimentally and the shock wave energy was evaluated in this paper. A pressure measurement system was established to study the pressure field of the electric spark discharge process. A series of electric spark discharge experiments were carried out and the energy of the electric spark used in present study was in the range of 10 J, 100 J, and 1000 J, respectively. The shock wave energy released from the electric spark discharge process was calculated by using the overpressure values at different measurement points near the electric spark discharge center. The good consistency of shock wave energies calculated by pressure histories at different measuring points in the same electric spark discharge experiment illustrates the applicability of the weak shock wave theory in calculating the energy of shock wave induced by electric spark discharge process. The result showed that shock wave formed at the initial stage of electric spark discharge process, and the shock wave energy is only a little part of electric spark energy. From the analysis of the shock wave energy and electric spark energy, a good linear relationship between shock wave energy and electric spark energy was established, which make it possible to calculate shock wave energy by measuring characteristic parameters of electric spark discharge process instead of shock wave. So, the initiation energy of direct initiation of detonation can be determined easily by measuring the parameters of electric spark discharge process.

  17. 75 FR 12737 - Application To Export Electric Energy; Integrys Energy Services, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... Application To Export Electric Energy; Integrys Energy Services, Inc. AGENCY: Office of Electricity Delivery.... (Integrys Energy) has applied to renew its authority to transmit electric energy from the United States to... authorizing Integrys Energy to transmit electric energy from the United States to Canada as a power......

  18. 77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Application To Export Electric Energy; DC Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... Energy to transmit electric energy from the United States to Canada as a power marketer for a...

  19. 76 FR 69712 - Application To Export Electric Energy; BP Energy Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... Application To Export Electric Energy; BP Energy Company AGENCY: Office of Electricity Delivery and Energy... its authority to transmit electric energy from the United States to Canada pursuant to section 202(e... (DOE) issued Order No. EA-315, which authorized BP Energy to transmit electric energy from the...

  20. 76 FR 69713 - Application To Export Electric Energy; BP Energy Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... Application To Export Electric Energy; BP Energy Company AGENCY: Office of Electricity Delivery and Energy... its authority to transmit electric energy from the United States to Mexico pursuant to section 202(e... Order No. EA-314, which authorized BP Energy to transmit electric energy from the United States...

  1. Low power energy harvesting and storage techniques from ambient human powered energy sources

    NASA Astrophysics Data System (ADS)

    Yildiz, Faruk

    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide

  2. Delays in Tapping Energy Sources

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1975-01-01

    Summarizes factors that will create severe energy shortages by 1980. Indicates that conservation is not enough, and the quickest path toward relief is the expansion of surface mining of low-sulfur coal in the Rocky Mountain states. (GS)

  3. EMISSIONS ASSESSMENT OF CONVENTIONAL STATIONARY SYSTEMS: VOLUME III. EXTERNAL COMBUSTION SOURCES FOR ELECTRICITY GENERATION

    EPA Science Inventory

    The report characterizes multimedia emissions from external combustion sources for electricity generation. Study results indicate that external combustion sources for electricity generation contribute significantly to the nationwide emissions burden. Flue gas emissions of NOx, SO...

  4. Barriers to electric energy efficiency in Ghana

    NASA Astrophysics Data System (ADS)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any

  5. Land-Use Intensity of Electricity Production: Comparison Across Multiple Sources

    NASA Astrophysics Data System (ADS)

    Swain, M.; Lovering, J.; Blomqvist, L.; Nordhaus, T.; Hernandez, R. R.

    2015-12-01

    Land is an increasingly scarce global resource that is subject to competing pressures from agriculture, human settlement, and energy development. As countries concerned about climate change seek to decarbonize their power sectors, renewable energy sources like wind and solar offer obvious advantages. However, the land needed for new energy infrastructure is also an important environmental consideration. The land requirement of different electricity sources varies considerably, but there are very few studies that offer a normalized comparison. In this paper, we use meta-analysis to calculate the land-use intensity (LUI) of the following electricity generation sources: wind, solar photovoltaic (PV), concentrated solar power (CSP), hydropower, geothermal, nuclear, biomass, natural gas, and coal. We used data from existing studies as well as original data gathered from public records and geospatial analysis. Our land-use metric includes land needed for the generation facility (e.g., power plant or wind farm) as well as the area needed to mine fuel for natural gas, coal, and nuclear power plants. Our results found the lowest total LUI for nuclear power (115 ha/TWh/y) and the highest LUI for biomass (114,817 ha/TWh/y). Solar PV and CSP had a considerably lower LUI than wind power, but both were an order of magnitude higher than fossil fuels (which ranged from 435 ha/TWh/y for natural gas to 579 ha/TWh/y for coal). Our results suggest that a large build-out of renewable electricity, though it would offer many environmental advantages over fossil fuel power sources, would require considerable land area. Among low-carbon energy sources, relatively compact sources like nuclear and solar have the potential to reduce land requirements.

  6. Electron cyclotron resonant multicusp magnetic field microwave plasma source for electric propulsion

    SciTech Connect

    Dahimene, M.; Mahoney, L.; Asmussen, J.

    1987-05-01

    The development of electrodeless microwave ion and plasma sources has been a recent, very active research project at Michigan State University. The results are efficient, compact microwave discharge configurations that operate at low pressures (0.5 mtorr to 100 mtorr) and efficiently produce low energy ions and free radicals and broad ion beams for oxidation, deposition, and etching experiments. The microwave discharge technology developed for these applications may be useful for application in electric propulsion. This paper reviews this microwave applicator technology and indicates how it may be extended to higher power levels and applied to electric propulsion systems. 12 references.

  7. Electrical Conductivity Imaging Using Controlled Source Electromagnetics for Subsurface Characterization

    NASA Astrophysics Data System (ADS)

    Miller, C. R.; Routh, P. S.; Donaldson, P. R.

    2004-05-01

    Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.

  8. 75 FR 78980 - Application to Export Electric Energy; Direct Energy Marketing, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application to Export Electric Energy; Direct Energy Marketing, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: Direct Energy Marketing,...

  9. 78 FR 65978 - Application to Export Electric Energy; Brookfield Energy Marketing Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application to Export Electric Energy; Brookfield Energy Marketing Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing...

  10. Dual radio frequency plasma source: Understanding via electrical asymmetry effect

    SciTech Connect

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Wong, C. S.

    2013-04-21

    On the basis of the global model, the influences of driving voltage and frequency on electron heating in geometrically symmetrical dual capacitively coupled radio frequency plasma have been investigated. Consistent with the experimental and simulation results, non-monotonic behavior of dc self bias and plasma heating with increasing high frequency is observed. In addition to the local maxima of plasma parameters for the integer values of the ratio between the frequencies ({xi}), ourstudies also predict local maxima for odd integer values of 2{xi} as a consequence of the electrical asymmetry effect produced by dual frequency voltage sources.

  11. Chewing electric wire coatings: an unusual source of lead poisoning.

    PubMed

    Franco, G; Cottica, D; Minoia, C

    1994-02-01

    This report describes a case of lead poisoning occurring in an electrician as the result of an unusual personal habit, namely, the chewing of lead-containing coatings of electric wires. A coating chewing test showed that a few minutes after beginning chewing, saliva lead concentration increased from 10 micrograms/l to several milligrams per liter. This case is an example of poisoning caused by an occupationally related source (coatings containing lead) as a consequence of a singular and unconventional worker's habit. PMID:8147401

  12. (Energy and electricity supply and demand)

    SciTech Connect

    Wilbanks, T.J.

    1990-10-09

    At the request of the International Atomic Energy Agency (IAEA), representing eleven international agencies which are sponsoring the 1991 Helsinki Symposium on Electricity and the Environment, I traveled to Brussels to participate in the second meeting of one of four advisory groups established to prepare for the Symposium. At the meeting, I was involved in a review of a draft issue paper being prepared for the Symposium and of the Symposium program.

  13. Non-powered Dams: An untapped source of renewable electricity in the USA

    SciTech Connect

    Hadjerioua, Boualem; Kao, Shih-Chieh; Wei, Yaxing; Battey, Hoyt; Smith, Brennan T

    2012-01-01

    Hydropower has been a source of clean, renewable electricity in the USA for more than 100 years. Today, approximately 2500 US dams provide 78 GW of conventional and 22 GW of pumped-storage hydropower. In contrast, another approximately 80 000 dams in the USA do not include hydraulic turbine equipment and provide non-energy related services, such as flood control, water supply, navigation, and recreation.

  14. Renewable energy sources 1991, part 2

    NASA Astrophysics Data System (ADS)

    Michalicka, L.

    1991-12-01

    The International Conference on Renewable Energy Sources was held in Prague on 1-4 Jul. 1991. Part 2 of the proceedings is devoted to the use of the energy of wind, biogas, and small hydroelectric sources. The publication contains 14 contributions, of which 3 were inputted in INIS. Topics covered include: a wind power plant in Sweden and its environmental impacts, economic aspects of the introduction of alternative energy sources in Czechoslovakia, and the efficiency of application of a Fresnel lens-based solar collector.

  15. Tuning a resonant energy harvester using a generalized electrical load

    NASA Astrophysics Data System (ADS)

    Cammarano, A.; Burrow, S. G.; Barton, D. A. W.; Carrella, A.; Clare, L. R.

    2010-05-01

    A fundamental drawback of vibration-based energy harvesters is that they typically feature a resonant mass/spring mechanical system to amplify the small source vibrations; the limited bandwidth of the mechanical amplifier restricts the effectiveness of the energy harvester considerably. By extending the range of input frequencies over which a vibration energy harvester can generate useful power, e.g. through adaptive tuning, it is not only possible to open up a wider range of applications, such as those where the source frequency changes over time, but also possible to relax the requirements for precision manufacture or the need for mechanical adjustment in situ. In this paper, a vibration-based energy harvester connected to a generalized electrical load (containing both real and reactive impedance) is presented. It is demonstrated that the reactive component of the electrical load can be used to tune the harvester system to significantly increase the output power away from the resonant peak of the device. An analytical model of the system is developed, which includes non-ideal components arising from the physical implementation, and the results are confirmed by experiment. The - 3 dB (half-power) bandwidth of the prototype energy harvester is shown to be over three times greater when presented with an optimized load impedance compared to that for the same harvester presented with an optimized resistive only load.

  16. Vehicle to grid: electric vehicles as an energy storage solution

    NASA Astrophysics Data System (ADS)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  17. Research for electric energy systems -- an annual report

    SciTech Connect

    Anderson, W.E.

    1993-10-01

    This report documents the technical progress in the two investigations which make up the project {open_quotes}Support of Research Projects for Electrical Energy Systems,{close_quotes} Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. During 1992, the derivation of equations which predict differences between the average magnetic flux density using circular coil probes and the flux density at the center of the probe, assuming a dipole magnetic field, were completed. The information gained using these equations allows the determination of measurement uncertainty due to probe size when magnetic fields from many electrical appliances are characterized. Consultations with various state and federal organizations and the development of standards related to electric and magnetic field measurements continued. The second investigation is concerned with two different activities related to compressed-gas insulated high voltage systems: (1) the measurement of dissociative electron attachment cross sections and negative ion production in S{sub 2}F{sub 10}, S{sub 2}OF{sub 10}, and S{sub 2}O{sub 2}F{sub 10}, and (2) Monte-Carlo simulations of ac-generated partial-discharge pulses that can occur in SF{sub 6}-insulated power systems and can be sources of gas decomposition.

  18. Polar Spacecraft Based Comparisons of Intense Electric Fields and Poynting Flux Near and Within the Plasma Sheet-Tail Lobe Boundary to UVI Images: An Energy Source for the Aurora

    NASA Technical Reports Server (NTRS)

    Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward

  19. ENERGY CONSERVATION THROUGH SOURCE REDUCTION

    EPA Science Inventory

    This report deals with energy conservation through reduction in generation of post-consumer solid waste. The objective, scope, methodology and summary of the report are presented in Section 1. Section 2 contains the conclusions. Section 3 presents a review of output and input app...

  20. 78 FR 50409 - Kansas Municipal Energy Agency v. Sunflower Electric Power Corporation, Mid-Kansas Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Energy Regulatory Commission Kansas Municipal Energy Agency v. Sunflower Electric Power Corporation, Mid-Kansas Electric Company, LLC, Southwest Power Pool, Inc.; Notice of Complaint Take notice that on August... Municipal Energy Agency (Complainant) filed a formal complaint against Sunflower Electric Power...

  1. Source Energy and Emission Factors for Energy Use in Buildings (Revised)

    SciTech Connect

    Deru, M.; Torcellini, P.

    2007-06-01

    This document supports the other measurement procedures and all building energy-monitoring projects by providing methods to calculate the source energy and emissions from the energy measured at the building. Energy and emission factors typically account for the conversion inefficiencies at the power plant and the transmission and distribution losses from the power plant to the building. The energy and emission factors provided here also include the precombustion effects, which are the energy and emissions associated with extracting, processing, and delivering the primary fuels to the point of conversion in the electrical power plants or directly in the buildings.

  2. A silicon-based electrical source of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; van Loon, R. V. A.; Brunets, I.; Schmitz, J.; Polman, A.

    2010-01-01

    After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

  3. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  4. 77 FR 15091 - Application To Export Electric Energy; DTE Energy Trading, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... Application To Export Electric Energy; DTE Energy Trading, Inc. AGENCY: Office of Electricity Delivery and... Trading) has applied to renew its authority to transmit electric energy from the United States to Canada... Order No. EA-211, which authorized DTE Energy Trading to transmit electric energy from the United...

  5. 77 FR 50487 - Application To Export Electric Energy; RBC Energy Services LP

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... Application To Export Electric Energy; RBC Energy Services LP AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to... Order No. EA-328 authorizing RBC Energy to transmit electric energy from the United States to Canada...

  6. 76 FR 20968 - Application To Export Electric Energy; DC Energy Texas, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Application To Export Electric Energy; DC Energy Texas, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... application from DCE Texas requesting authority to transmit electric energy from the United States to...

  7. PREFACE: Diagnostics for electrical discharge light sources: pushing the limits Diagnostics for electrical discharge light sources: pushing the limits

    NASA Astrophysics Data System (ADS)

    Zissis, Georges; Haverlag, Marco

    2010-06-01

    Light sources play an indispensable role in the daily life of any human being. Quality of life, health and urban security related to traffic and crime prevention depend on light and on its quality. In fact, every day approximately 30 billion electric light sources operate worldwide. These electric light sources consume almost 19% of worldwide electricity production. Finding new ways to light lamps is a challenge where the stakes are scientific, technological, economic and environmental. The production of more efficient light sources is a sustainable solution for humanity. There are many opportunities for not only enhancing the efficiency and reliability of lighting systems but also for improving the quality of light as seen by the end user. This is possible through intelligent use of new technologies, deep scientific understanding of the operating principles of light sources and knowledge of the varied human requirements for different types of lighting in different settings. A revolution in the domain of light source technology is on the way: high brightness light emitting diodes arriving in the general lighting market, together with organic LEDs (OLEDs), are producing spectacular advances. However, unlike incandescence, electrical discharge lamps are far from disappearing from the market. In addition, new generations of discharge lamps based on molecular radiators are becoming a reality. There are still many scientific and technological challenges to be raised in this direction. Diagnostics are important for understanding the fundamental mechanisms taking place in the discharge plasma. This understanding is an absolute necessity for system optimization leading to more efficient and high quality light sources. The studied medium is rather complex, but new diagnostic techniques coupled to innovative ideas and powerful tools have been developed in recent years. This cluster issue of seven papers illustrates these efforts. The selected papers cover all domains, from

  8. ALTERNATIVE ENERGY SOURCES FOR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The technology assessment provides an introduction to the use of several alternative energy sources at wastewater treatment plants. The report contains fact sheets (technical descriptions) and data sheets (cost and design information) for the technologies. Cost figures and schema...

  9. Electric energy savings from new technologies

    SciTech Connect

    Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-01-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

  10. 75 FR 51025 - Application to Export Electric Energy; Vitol Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power.... 824a(e)). On August 5, 2010, DOE received an application from Vitol for authority to transmit...

  11. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  12. Alpha Schottky junction energy source

    NASA Astrophysics Data System (ADS)

    Litz, Marc S.; Fan, Zhaoyang; Carroll, James J.; Bayne, Stephen

    2012-06-01

    Isotope batteries offer solutions for long-lived low-power sensor requirements. Alpha emitting isotopes have energy per decay 103 times that of beta emitters. Alpha particles are absorbed within 20 μm of most materials reducing shielding mitigation. However, damage to materials from the alphas limits their practical use. A Schottky Barrier Diode (SBD) geometry is considered with an alpha emitting contact-layer on a diamond-like crystal semiconductor region. The radiation tolerance of diamond, the safety of alpha particles, combined with the internal field of the SBD is expected to generate current useful for low-power electronic devices over decades. Device design parameters and calculations of the expected current are described.

  13. High-Energy Neutrinos from Galactic Sources

    NASA Astrophysics Data System (ADS)

    Kappes, Alexander

    2011-10-01

    Even 100 years after the discovery of cosmic rays their origin remains a mystery. In recent years, TeV gamma-ray detectors have discovered and investigated many Galactic sources where particles are accelerated up to energies of 100 TeV. However, it has not been possible up to now to identify these sites unambiguously as sources of hadronic acceleration. The observation of cosmic high-energy neutrinos from these or other sources will be a smoking-gun evidence for the sites of the acceleration of cosmic rays.

  14. 75 FR 38514 - Application to Export Electric Energy; Brookfield Energy Marketing LP

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... Application to Export Electric Energy; Brookfield Energy Marketing LP AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing LP... power marketing agencies and other entities within the United States. The existing...

  15. Energy Efficiency of Biogas Produced from Different Biomass Sources

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  16. Cosmic-ray source of runaway electrons in thundercloud electric field.

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2008-12-01

    To increase an accuracy of numerical simulations of the high-altitude and high-energy electric phenomena in thunderstorm atmosphere basing on the electric breakdown combining the cosmic-ray effects and relativistic runaway electron (RE) avalanches it is necessary to have accurate source of seed REs produced by cosmic rays. We calculated the source using the Monte-Carlo technique. Actually a number of secondary electrons was calculated with energies above the runaway threshold depending on the field overvoltage relative to the minimum of the drag force affecting electrons. The cosmic radiation propagation through the atmosphere was simulated based on simplified model of the nuclear cascade: a cosmic proton was assumed to completely lose its energy in the first interaction with air nuclei, producing 15 pions with equal energies. The flux of primary radiation was divided into 20 angular groups containing equal number of particles. In view of the lack of the experimental data on the RE source it is impossible to directly estimate the accuracy of the obtained source. Therefore the model reliability was verified by comparing results of secondary radiation calculations with known experimental altitude variations in the secondary cosmic rays and their spectra. The source was calculated as the specific generation rate of the secondary electrons by cosmic radiation dependent on electric field overvoltage and the altitude above the Earth's surface. It is recommended as a source of relativistic runaway electron avalanches in numerical simulations of electric discharges in atmosphere controlled by REs in thunderstorm fields and their emissions: optical, gamma and neutrons. The source already was used to simulate the high-altitude discharge and its emissions. In particular, the calculated gamma-ray pulses (photon numbers and spectra, pulse duration) agree with detected terrestrial gamma-ray flashes (TGFs). Conclusions of the published analyses (Cummer and Lyons, 2005; Cummer et

  17. 76 FR 11437 - Application To Export Electric Energy; Societe Generale Energy Corp.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Application To Export Electric Energy; Societe Generale Energy Corp. AGENCY: Office of Electricity Delivery.... (SGEC) has applied for authority to transmit electric energy from the United States to Canada pursuant... application from the SGEC for authority to transmit electric energy from the United States to Canada as...

  18. 77 FR 23238 - Application To Export Electric Energy; Citigroup Energy Canada ULC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Application To Export Electric Energy; Citigroup Energy Canada ULC AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to.... EA-326 authorizing CECU to transmit electric energy from the United States to Canada as a...

  19. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... FR 54114. After determining that energy conservation standards for small electric motors would be... of test procedures for certain small electric motors. 71 FR 38807 (July 10, 2006). Pursuant to... adopting test procedures for measuring the energy efficiency of small electric motors. 74 FR 32059....

  20. 76 FR 30325 - Application to Export Electric Energy; E-T Global Energy, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Energy Regulatory Commission Application to Export Electric Energy; E-T Global Energy, LLC AGENCY: Office... Global Energy, LLC (E-T Global) has applied for authority to transmit electric energy from the United... authority to transmit electric energy from the United States to Mexico for five years as a power...

  1. Ferrofluid based micro-electrical energy harvesting

    NASA Astrophysics Data System (ADS)

    Purohit, Viswas; Mazumder, Baishakhi; Jena, Grishma; Mishra, Madhusha; Materials Department, University of California, Santa Barbara, CA93106 Collaboration

    2013-03-01

    Innovations in energy harvesting have seen a quantum leap in the last decade. With the introduction of low energy devices in the market, micro energy harvesting units are being explored with much vigor. One of the recent areas of micro energy scavenging is the exploitation of existing vibrational energy and the use of various mechanical motions for the same, useful for low power consumption devices. Ferrofluids are liquids containing magnetic materials having nano-scale permanent magnetic dipoles. The present work explores the possibility of the use of this property for generation of electricity. Since the power generation is through a liquid material, it can take any shape as well as response to small acceleration levels. In this work, an electromagnet-based micropower generator is proposed to utilize the sloshing of the ferrofluid within a controlled chamber which moves to different low frequencies. As compared to permanent magnet units researched previously, ferrofluids can be placed in the smallest of containers of different shapes, thereby giving an output in response to the slightest change in motion. Mechanical motion from 1- 20 Hz was able to give an output voltage in mV's. In this paper, the efficiency and feasibility of such a system is demonstrated.

  2. Electrical energy storage for the grid: a battery of choices.

    PubMed

    Dunn, Bruce; Kamath, Haresh; Tarascon, Jean-Marie

    2011-11-18

    The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage. PMID:22096188

  3. Energy Sources of T-Tauri Stars

    NASA Astrophysics Data System (ADS)

    Calvet, N.; Albarran, J.

    1984-06-01

    We empirically estimated the total energy loss from the atmospheric regions above the photo sphere in T Tauri stars. We have also estimated the flux input into the atmosphere by magnetohydrodynamic (MHD) aves produced in the subphotospheric convection zone. Within the uncertainties of both theory and observations, this flux seems to represent the basic energy input into the atmosphere provided that a large surface coverage of magnetic regions exists. In addition to this basic energy input from the convection zone the T Tauri atmospheres must have other energy sources, originating in the stellar surfitee. Among those we can include the flux of energy carried by Alfven waves resulting from the action of surface material motions on magnetic flux tubes, as well as dissipation and annihilation of magnetic fields in flare events. The observed decrease in emission line fluxes with luminosity seems to indicate that MHD wave fluxes heat the chromosphere, while the uppermost atmospheric regions require another source of heating.

  4. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the...

  5. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the...

  6. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the...

  7. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing...

  8. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing...

  9. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the...

  10. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing...

  11. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing...

  12. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the emergency source of electric power, or vital components thereof, adjoins a space containing either... rise in the space containing the emergency source of electric power, or vital components thereof, for a... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  13. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... emergency source of electric power, or vital components thereof, adjoins a space containing either the ship... space containing the emergency source of electric power, or vital components thereof, for a period of at... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND...

  14. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  15. Optical arc sensor using energy harvesting power source

    NASA Astrophysics Data System (ADS)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  16. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    SciTech Connect

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  17. Stochastic Optimal Scheduling of Residential Appliances with Renewable Energy Sources

    SciTech Connect

    Wu, Hongyu; Pratt, Annabelle; Chakraborty, Sudipta

    2015-07-03

    This paper proposes a stochastic, multi-objective optimization model within a Model Predictive Control (MPC) framework, to determine the optimal operational schedules of residential appliances operating in the presence of renewable energy source (RES). The objective function minimizes the weighted sum of discomfort, energy cost, total and peak electricity consumption, and carbon footprint. A heuristic method is developed for combining different objective components. The proposed stochastic model utilizes Monte Carlo simulation (MCS) for representing uncertainties in electricity price, outdoor temperature, RES generation, water usage, and non-controllable loads. The proposed model is solved using a mixed integer linear programming (MILP) solver and numerical results show the validity of the model. Case studies show the benefit of using the proposed optimization model.

  18. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  19. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    SciTech Connect

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  20. 77 FR 20375 - Application to Export Electric Energy; Rainbow Energy Marketing Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Application to Export Electric Energy; Rainbow Energy Marketing Corporation AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Rainbow Energy Marketing Corporation (Rainbow) has applied to renew its authority to transmit electric energy from the United States...

  1. 75 FR 57912 - Application To Export Electric Energy; Rainbow Energy Marketing Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Application To Export Electric Energy; Rainbow Energy Marketing Corporation AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Rainbow Energy Marketing Corporation (Rainbow) has applied for authority to transmit electric energy from the United States to...

  2. Understanding and accepting fusion as an alternative energy source

    SciTech Connect

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  3. Inertial electrostatic confinement as a power source for electric propulsion

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Burton, R.; Javedani, J.; Yamamoto, Y.; Satsangi, A; Gu, Y.; Heck, P.; Nebel, R.; Schulze, N.; Christensen, J.

    1993-01-01

    The potential use of an INERTIAL ELECTROSTATIC CONFINEMENT (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, an alternate approach is considered, using the IEC to drive a 'conventional' electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Experiments at the U. of Illinois in small IEC devices (is less than 60 cm. dia.) demonstrated much of the basic physics underlying this concept, e.g. producing 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status are presented with a description of the overall propulsion system and estimated performance.

  4. Inertial electrostatic confinement as a power source for electric propulsion

    NASA Technical Reports Server (NTRS)

    Miley, George H.; Burton, R.; Javedani, J.; Yamamoto, Y.; Satsangi, A.; Gu, Y.; Heck, P.; Nebel, R.; Schulze, N.; Christensen, J.

    1993-01-01

    The potential use of an Inertial Electrostatic Confinement (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, in the present study, we consider an alternate approach, using the IEC to drive a conventional electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Present experiments at the U. of Illinois in small IEC devices (less than 60-cm. dia.) have demonstrated much of the basic physics underlying this concept, e.g. producing approximately 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status will be presented with a description of the overall propulsion system and estimated performance.

  5. Supercapacitors for the energy management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Faggioli, Eugenio; Rena, Piergeorgio; Danel, Veronique; Andrieu, X.; Mallant, Ronald; Kahlen, Hans

    The integration of the on-board energy source of an electrically propelled vehicle with a supercapacitor bank (SB) as a peak power unit, can lead to substantial benefits in terms of electric vehicle performances, battery life and energy economy. Different architectures may be envisaged, to be chosen according to technical-economical trade-off. A research activity, supported by the European Community in the frame of the Joule III program and titled `Development of Supercapacitors for Electric Vehicles' (contract JOE3-CT95-0001), has been in progress since the beginning of 1996. The partners involved are SAFT (project leader), Alcatel Alsthom Research (France), Centro Ricerche Fiat (Italy), University of Kaiserslautern (Germany), Danionics (DK) and ECN (Netherlands). Its objective is to develop a SB and its electronic control and to integrate them in two different full-scale traction systems, supplied, respectively, by sealed lead traction batteries and by a fuel cell system. Through the bench tests, it will be possible to evaluate the impact of the SB on both traction systems. In this paper, a project overview will be given; the power management strategy principles, the supercapacitor's control electronic devices, the system's architecture and the supercapacitor's requirements on the base of the simulation results, will be examined.

  6. 75 FR 45111 - Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ...] Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing Corporation; Notice... Order, the Commission directed Strategic Energy Management Corp. and Solaro Energy Marketing Corporation... Energy Management Corp. and Solaro Energy Marketing Corporation) have failed to file their...

  7. 77 FR 31342 - Application To Export Electric Energy; Emera Energy Services Subsidiaries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Application To Export Electric Energy; Emera Energy Services Subsidiaries AGENCY: Office of Electricity... subsidiaries of Emera Incorporated (Emera) have applied separately to renew its authority to transmit electric... EA-325, authorizing the Emera Subsidiaries to transmit electric energy from the United States...

  8. High electric field deuterium ion sources for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk

    Active interrogation systems for highly enriched uranium require improved fieldable neutron sources. The target technology for deuterium-tritium neutron generators is well understood and the most significant improvement can be achieved by improving the deuterium ion source through increased output and, in some cases, lifetime of the ion source. We are developing a new approach to a deuterium ion sources based upon the field desorption/evaporation of deuterium from the surfaces of metal tips. Electrostatic field desorption (EFD) desorbs previously adsorbed deuterium as ions under the influence of high electric fields (several V/A), without removing tip material. Single etched wire tip experiments have been performed and have shown that this is difficult but can be achieved with molybdenum and tungsten tips. Electrostatic field evaporation (EFE) evaporates ultra thin deuterated titanium films as ions. It has been shown that several 10s of atomic layers can be removed within a few nanoseconds from etched tungsten tips. In the course of these studies titanium deposition and deuteration methods were studied and new detection methods developed. Space charge effects resulting from the large ion currents were identified to be the most likely cause of some unusual ion emission characteristics. In addition, on W < 110 > oriented substrates a surprising body-centered cubic crystal structure of the titanium film was found and studied. The ion currents required for neutron generator applications can be achieved by microfabrication of metal tip arrays. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 3 V/A have been applied to the array tip surfaces to date, although fields of ˜ 2 V/A to ˜ 2.5 V/A are more typical. Desorption of atomic deuterium ions has been observed at fields of roughly 2 V/A at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and

  9. The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Briggs, Michael S.; Dwyer, Joseph R.; Xiong, Shaolin; Connaughton, Valerie; Fishman, Gerald J.; Lu, Gaopeng; Lyu, Fanchao; Solanki, Rahulkumar

    2014-12-01

    Many details of how thunderstorms generate terrestrial gamma ray flashes (TGFs) and other forms of high-energy radiation remain uncertain, including the basic question of where they are produced. We exploit the association of distinct low-frequency radio emissions with generation of terrestrial gamma ray flashes (TGFs) to directly measure for the first time the TGF source altitude. Analysis of two events reveals source altitudes of 11.8 ± 0.4 km and 11.9 ± 0.9 km. This places the source region in the interior of the thunderstorm between the two main charge layers and implies an intrinsic TGF brightness of approximately 1018 runaway electrons. The electric current in this nontraditional lightning process is found to be strong enough to drive nonlinear effects in the ionosphere, and in one case is comparable to the highest peak current lightning processes on the planet.

  10. Energy scavenging sources for biomedical sensors.

    PubMed

    Romero, E; Warrington, R O; Neuman, M R

    2009-09-01

    Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed. PMID:19687530