Science.gov

Sample records for electric power monthly

  1. Electric power monthly

    SciTech Connect

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  2. Electric power monthly

    SciTech Connect

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  3. Electric Power Monthly

    EIA Publications

    2016-01-01

    Provides monthly statistics at the state, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold.

  4. Electric power monthly, May 1993

    SciTech Connect

    Not Available

    1993-05-25

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  5. Electric power monthly, April 1993

    SciTech Connect

    Not Available

    1993-05-07

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  6. Electric power monthly, September 1993

    SciTech Connect

    Not Available

    1993-09-17

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  7. Electric power monthly, August 1993

    SciTech Connect

    Not Available

    1993-08-13

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  8. Electric power monthly, June 1994

    SciTech Connect

    Not Available

    1994-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  9. Electric power monthly, July 1993

    SciTech Connect

    Not Available

    1993-07-29

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  10. Electric power monthly, August 1994

    SciTech Connect

    Not Available

    1994-08-24

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  11. Electric power monthly, May 1994

    SciTech Connect

    Not Available

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  12. Electric power monthly, April 1994

    SciTech Connect

    Not Available

    1994-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the U.S., Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. This April 1994 issue contains 1993 year-end data and data through January 1994.

  13. Electric Power Monthly, July 1990

    SciTech Connect

    Not Available

    1990-10-12

    The Electric Power Monthly (EPM) is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost in fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 12 refs., 4 figs., 48 tabs.

  14. Electric power monthly, July 1994

    SciTech Connect

    Not Available

    1994-07-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels. Data on quantity, quality, and cost of fossil fuels lag data on net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour by 1 month. This difference in reporting appears in the US, Census division, and State level tables. However, for purposes of comparison, plant-level data are presented for the earlier month.

  15. Electric power monthly, January 1994

    SciTech Connect

    Not Available

    1994-01-26

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  16. Electric power monthly, February 1994

    SciTech Connect

    Not Available

    1994-02-16

    The Electric Power Monthly (EMP) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  17. Electric power monthly, October 1993

    SciTech Connect

    Not Available

    1993-10-20

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  18. Electric Power Monthly, June 1990

    SciTech Connect

    Not Available

    1990-09-13

    The EPM is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 40 tabs.

  19. Electric power monthly, March 1995

    SciTech Connect

    1995-03-20

    This report for March 1995, presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  20. Electric power monthly, June 1988

    SciTech Connect

    Not Available

    1988-09-15

    Total net generation by electric utilities in the United States for the month of June 1988 was 232,183 gigawatthours, 3 percent higher than the amount reported a year ago. Although temperatures (measured by cooling degree days) for June 1988 were 9 percent warmer than normal, they were 3 percent cooler than for June 1987. A large portion of that higher demand for electricity was met by nuclear-powered generation. Net generation from nuclear power during June 1988 (44,079 gigawatthours) was only 1 percent below the record set in January of this year, and 21 percent above that reported in June 1987 (36,560 gigawatthours). The only energy source other than nuclear that reported higher levels of net generation during June 1988 was coal, up 2 percent over the same period last year. Warmer-than-normal temperatures did, however, have an affect on various parts of the country. For example, on Wednesday, June 22, 1988, unseasonably high temperatures forced the Pennsylvania, New Jersey, and Maryland Interconnection (PJM) into a system-wide 5-percent voltage reduction for 2 hours. Contributing to that reduction in voltage was the shutdown of the Three Mile Island, Unit 1, for refueling and the closing of the Peach Bottom Units 2 and 3 by the Nuclear Regulatory Commission. Three Mile Island, Unit 1, normally provides the PJM system with about 800 megawatts while the two Peach Bottom units, combined, provide approximately 2100 megawatts. 10 refs., 1 fig., 27 tabs.

  1. Electric power monthly, May 1996

    SciTech Connect

    1996-05-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and Stage agencies, the electric utility industry, and the general public. Purpose is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information to fulfill its data collection and dissemination responsibilities in Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  2. Electric Power monthly, November 1996

    SciTech Connect

    1996-11-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and state agencies, the electric utility industry, and the general public. Purpose is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  3. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  4. Electric power monthly, September 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  5. Electric Power Monthly, September 1991. [CONTAINS GLOSSARY

    SciTech Connect

    Not Available

    1991-09-12

    This publication provides monthly statistics at the national, Census division, and state levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, statistics at the company and plant level are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 63 tabs.

  6. Electric power monthly, October 1991. [CONTAINS GLOSSARY

    SciTech Connect

    Not Available

    1991-10-11

    This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, statistics at the company and plant level are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 63 tabs.

  7. Electric power monthly, January 1991. [Contains glossary

    SciTech Connect

    Not Available

    1991-01-17

    This publication provides monthly statistics at the national, Census division, and state levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 48 tabs.

  8. Electric power monthly, June 1997 with data for March 1997

    SciTech Connect

    1997-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. 63 tabs.

  9. Electric power monthly, July 1997 with data for April 1997

    SciTech Connect

    1997-07-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. 57 tabs.

  10. Electric power monthly, December 1998 with data for September 1998

    SciTech Connect

    1998-12-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities. 57 tabs.

  11. Electric power monthly, March 1998 with data for December 1997

    SciTech Connect

    1998-03-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

  12. Electric power monthly, February 1999 with data for November 1998

    SciTech Connect

    1999-02-01

    The Electric Power Monthly presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Statistics are provided for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt-hour of electricity sold.

  13. Electric power monthly: April 1996, with data for January 1996

    SciTech Connect

    1996-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatt hour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 64 tabs.

  14. Electric Power Monthly, September 1995: With data for June 1995

    SciTech Connect

    1995-09-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  15. Electric power monthly, May 1998, with data for February 1998

    SciTech Connect

    1998-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974. The EPM provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 30 refs., 58 tabs.

  16. Electric power monthly, May 1995 with data for February 1995

    SciTech Connect

    1995-05-24

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisiommakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuel, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  17. Electric power monthly, March 1999 with data for December 1998

    SciTech Connect

    1999-03-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be sued in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

  18. Electric power monthly, August 1998, with data for May 1998

    SciTech Connect

    1998-08-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 9 refs., 57 tabs.

  19. Electric power monthly, December 1997 with data for September 1997

    SciTech Connect

    1997-12-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  20. Electric power monthly with data for November 1996

    SciTech Connect

    1997-02-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  1. Electric power monthly, January 1999 with data for October 1998

    SciTech Connect

    1999-01-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. 1 fig., 63 tabs.

  2. Electric power monthly: February 1995, with data for November 1994

    SciTech Connect

    1995-02-22

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. 64 tabs.

  3. Electric power monthly: March 1996, with data for December 1995

    SciTech Connect

    1996-03-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. 69 tabs.

  4. Electric power monthly, February 1998 with data for November 1997

    SciTech Connect

    1998-02-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  5. Electric power monthly, July 1998 with data for April 1998

    SciTech Connect

    1998-07-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  6. Electric power monthly, April 1998, with data for January 1998

    SciTech Connect

    1998-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. 63 tabs.

  7. Electric power monthly, May 1997 with data for February 1997

    SciTech Connect

    1997-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. 63 tabs.

  8. Electric power monthly, July 1999, with data for April 1999

    SciTech Connect

    1999-07-01

    The Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the Electric Power Monthly (EPM). This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 1 fig., 64 tabs.

  9. Electric power monthly. June 1966 with data for March 1996

    SciTech Connect

    1996-06-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and state agencies, the electric utility industry, and the general public, with the purpose of providing energy decisionmakers with accurate, timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities (Public Law 93-275). A section on upgrading transmission capacity for wholesale electric power trade is included. The tables include US electric power at a glance, utility net generation, utility consumption of fossil fuels, fossil-fuel stocks/receipts/cost at utilities, utility sales/revenue/revenue per kWh, and monthly plant aggregates.

  10. Electric power monthly, April 1999 with data for January 1999

    SciTech Connect

    1999-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  11. Electric power monthly, October 1998, with data for July 1998

    SciTech Connect

    1998-10-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  12. Electric power monthly, November 1998, with data for August 1998

    SciTech Connect

    1998-11-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  13. Electric power monthly, June 1999, with data for March 1999

    SciTech Connect

    1999-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  14. Electric power monthly, September 1998, with data for June 1998

    SciTech Connect

    1998-09-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  15. Electric power monthly: October 1995, with data for July 1995

    SciTech Connect

    1995-10-19

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  16. Electric Power monthly, November 1995 with data for August 1995

    SciTech Connect

    1995-11-15

    This report presents monthly electricity statistics, with the purpose of providing energy decisionmakers with accurate, timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities; the information are from six data sources: forms EIA-759, FERC Form 423, EIA-826, EIA-861, EIA-860, and Form OE-417R. An article on reclicensing and environmental issues affecting hydropower is included. Then the statistics are presented in: US electric power at a glance, utility net generation, utility consumption of fossil fuels, fossil-fuel stocks at utilities, fossil fuel receipts and costs, utility sales/revenue/average revenue per kWh, and monthly plant aggregates. Finally, nonutility power producer statistics, bibliography, technical notes, and a glossary are presented.

  17. Electric power monthly: October 1996, with data for July 1996

    SciTech Connect

    1996-10-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. This report contains approximately 60 tables.

  18. Electric power monthly, May 1999, with data for February 1999

    SciTech Connect

    1999-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 64 tabs.

  19. Electric power monthly January 1997 with data for October 1996

    SciTech Connect

    1997-01-01

    This publication presents monthly electricity statistical data. Information is included on U.S. electric utility net generation, consumption of fossil fuels, and fossil-fuel stocks; U.S. electric utility sales; receipts and cost of fossil fuels at utilities; and monthly plant aggregates. A glossary is included.

  20. Electric power monthly, December 1996 with data for September 1996

    SciTech Connect

    1996-12-01

    The report presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  1. Electric power monthly, December 1995 with data for September 1995

    SciTech Connect

    1995-12-14

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Its purpose is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information to fulfill its data collection and dissemination responsibilities. (User instructions on EIA`s electronic publishing system are included, as is a glossary.)

  2. Electric Power Monthly with data for July 1997

    SciTech Connect

    1997-10-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation are published by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The monthly update is summarized, and industry developments are briefly described. 57 tabs.

  3. Electric power monthly with data for June 1997

    SciTech Connect

    1997-09-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity, and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation by energy source and capability of new generating units by company and plant are also included. A section is included in the report which summarizes major industry developments. 1 fig., 64 tabs.

  4. Electric power monthly, August 1996, with data for May 1996

    SciTech Connect

    1996-08-09

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and state agencies, the electric utility industry, and the general public. Purpose is to provide energy decisionmakers with accurate, timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974. Statistics are presented in this publication on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  5. Electric power monthly, June 1995 with data for March 1995

    SciTech Connect

    1995-06-19

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 68 tabs.

  6. Electric power monthly with data for October 1995

    SciTech Connect

    1996-01-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  7. Electric power monthly, September 1996, with data for June 1996

    SciTech Connect

    1996-09-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  8. Electric power monthly with data for December 1996

    SciTech Connect

    1997-03-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  9. Electric power monthly with data for January 1997

    SciTech Connect

    1997-04-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  10. Electric power monthly with data for August 1997

    SciTech Connect

    1997-11-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation are published by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The monthly update is summarized, and industry developments are briefly described. 1 fig., 63 tabs.

  11. Electric power monthly with data for October 1997

    SciTech Connect

    1998-01-01

    This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics are published on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. A monthly utility update and summary of industry developments are also included. 63 tabs., 1 fig.

  12. Electric power monthly, June 1998, with data for March 1998

    SciTech Connect

    1998-06-01

    The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and Us levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 5 refs., 57 tabs.

  13. Electric power monthly, July 1995 - with data for April 1995

    SciTech Connect

    1995-07-01

    This publication provides statistical data on net generation, fuel consumption, fossil fuel stocks, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on fossil fuel stocks and costs are also included.

  14. Mining power and hydrocarbon consciousness from the monthly electricity bill: a classroom project

    NASA Astrophysics Data System (ADS)

    O'Brien, William P., Jr.

    2007-01-01

    Residential monthly electricity bills provided by students in physics classes served as data for a project designed to help them develop a sense of scale for electric energy consumption referenced to their own electric lifestyles and insight into how these lifestyles depend heavily on various naturally occurring terrestrial hydrocarbon resources. From kilowatt-hours (kWh) reported on the bill, we determined per capita averages for electric power load (661 W) and energy consumption (476 kWh/month) which provide a quantitative framework for discussions about personal and societal electric energy use and illustrate how physics provides the fundamental vocabulary and analytical perspective for comprehending and managing our various local and global energy dilemmas. Interpretation and presentation of these data could be modified for audiences ranging from middle-school physical science classes to university-level environmental science classes.

  15. Electric Power Research Institute, Environmental Control Technology Center monthly report to the Steering Committee, June 1994

    SciTech Connect

    1994-11-02

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot FGD unit continued this month with High Velocity Scrubbing and the Tampa Electric Company (TECO) Tailored Collaboration test block. Additionally, Phase III of the Toxics Removal/Carbon Injection test block was conducted concurrently with FGD testing. At the beginning of the month, a second phase of third-party testing began for Suncor, Inc. The Suncor Gypsum Sample Collection test block (MSUN) began on June 5 on the 0.4 MW Mini-Pilot Wet FGD unit. Testing was completed on June 13. On the Cold-Side Selective Catalytic Reduction (SCR) unit, testing continued this month as ammonia slip measurements were conducted under low catalyst inlet temperatures and at baseline conditions.

  16. Electric Power Research Institute: Environmental control technology. Final technical monthly report

    SciTech Connect

    1995-06-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block. A second phase of the lime Forced Oxidation process with DBA addition (LDG) was also conducted simultaneously on the Pilot System this month. This month the ECTC was off-line from 6/9 through 6/19 to complete a Facility retrofit project. During this brief outage, modifications were made to the ECTC Flue Gas Handling System to enhance the facility capabilities, and to prepare for future High Velocity Wet FGD Testing. On the Cold-Side Selective Catalytic Reduction (SCR) unit, the low temperature performance testing resumed this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the new SCR catalysts.

  17. Electric Power Research Institute Environmental Control Technology Center final monthly technical report, August 1995

    SciTech Connect

    1995-08-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit this month involved the Trace Element Removal (TER) test block, and the simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). Additionally, the second phase of the 1995 Carbon Injection test block began this month with the SDA/PJFF test configuration. At the end of the LDG testing this month, a one-week baseline test was conducted to generate approximately 200 lbs. of magnesium-lime FGD solids for analysis. On the 1.0 MW Post-FGD Selective Catalytic Reduction (SCR) unit, performance testing was continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and S0{sub 3} generation across the catalysts installed in the reactor. As a result of new directions received from EPRI, this will be the last scheduled month of testing for the SCR unit in 1995. At the completion of this month, the unit will be isolated from the flue gas path and placed in a cold-standby mode for future test activities. This report describes the status of facilities and test facilities at the pilot and mini-pilot plants.

  18. Mining Power and Hydrocarbon Consciousness from the Monthly Electricity Bill: A Classroom Project

    ERIC Educational Resources Information Center

    O'Brien, William P., Jr.

    2007-01-01

    Residential monthly electricity bills provided by students in physics classes served as data for a project designed to help them develop a sense of scale for electric energy consumption referenced to their own electric lifestyles and insight into how these lifestyles depend heavily on various naturally occurring terrestrial hydrocarbon resources.…

  19. Electric Power Research Institute: Environmental Control Technology Center report to the Steering Committee. Final technical monthly report

    SciTech Connect

    1995-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal test block (TER) as the Pilot was operated under forced oxidation conditions. With this testing, the mercury measurement (Method 29) studies also continued as investigations into various activated carbons, metal amalgams, and impinger capture solutions were conducted. Following these studies, a brief test of the Pilot High Velocity FGD configuration (PHV) was conducted. This test block will be continued at the end of the month after the Fall outage is completed. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode. During this month`s outage, the inlet and outlet damper plates were sealed to isolate the SCR system from flue gas. Also, the internals of the heat pipe heat exchanger (HPHE) and catalyst reactor tower were inspected and cleaned so that the system could be available for future test activities. Monthly inspections of all SCR system equipment placed in this cold-standby mode, as well as the fire safety systems in the SCR building, will continue to be conducted by the ECTC maintenance department and will include manual rotation of the booster fan.

  20. Conceptual design of a solar electric advanced Stirling power system: Monthly progress report, 1 January-31 January 1987

    SciTech Connect

    White, M.A.; Brown, A.T.

    1987-02-09

    The overall objective of this program is to develop a high confidence conceptual design for a free-piston Stirling engine based system designed to deliver 25 kW of three-phase electric power to a utility grid when coupled to the 11 meter Test Bed Concentrator (TBC) at SNLA. Further specific objectives include a design life of 60,000 hours, minimum life cycle cost and dynamic balancing. The approach used to achieve these objectives is to utilize a hermetically sealed Stirling hydraulic concept based on technology developed to an advanced level during the past 19 years for an artificial heart power source. Such engines and critical metal bellows components have demonstrated operating times in the desired range. This approach provides full film hydraulic lubrication of all sliding parts, simple construction with conventional manufacturing tolerances, proven hydraulically coupled counterbalancing, and simple but effective power control to follow insolation variations. Other advantages include use of commercially available hydraulic motors and rotary alternators which can be placed on the ground to minimize suspended weight. The output from several engine/concentrator modules can be directed to one large motor/alternator for further cost savings. Three monthly progress reports for the same period, January 1-January 31, 1987, are compiled within this document.

  1. Electrically powered hand tool

    DOEpatents

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  2. Electric Power Research Institute Environmental Control Technology Center report to the Steering Committee. Final monthly technical report, May 1995

    SciTech Connect

    1995-05-01

    Operation and maintenance continued this month. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection (Mercury removal) test block and the Trace Element Removal tests. On the Cold-Side Selective Catalytic Reduction unit, baseline performance testing continued this month as measurements were taken for NOx removal efficiency, residual ammonia slip, and SO{sub 3} generation across the new catalysts installed in the SCR reactor.

  3. Mobile electric power

    SciTech Connect

    Bloomfield, V.J.; Bloomfield, D.P.; Johnson, B.Q.

    1992-01-30

    Analytic Power has proven the feasibility of a mobile electric power unit in the form of a hydride fueled ion-exchange membrane (IEM) fuel cell stack. We have over 5 years experience building and testing IEM fuel cells. The power section of a 350 watt fuel cell stack weighs 4.65 pounds based on our five cell sub-stack component weights. The composite stack structure is fabricated from two components; a unitized flow field and catalyzed membrane. The lightweight unitized flow field concept was proven in the first three months of the contract. A single unit flow field weighs 0.155 pounds and can seal to 60 psi. The single cell catalyzed Nafion membrane exceeded our performance goal of 0.6 volts at 100 ASF. Stack performance points were 0.42 volts at 113 ASF and .75 volts at 96 asf.

  4. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  5. Electric power annual 1992

    SciTech Connect

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  6. Electric power annual 1997. Volume 1

    SciTech Connect

    1998-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  7. Electric power annual 1993

    SciTech Connect

    Not Available

    1994-12-08

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  8. US electric power system reliability

    NASA Astrophysics Data System (ADS)

    Electric energy supply, transmission and distribution systems are investigated in order to determine priorities for legislation. The status and the outlook for electric power reliability are discussed.

  9. Electric power emergency handbook

    SciTech Connect

    Labadie, J.R.

    1980-09-01

    The Emergency Electric Power Administration's Emergency Operations Handbook is designed to provide guidance to the EEPA organization. It defines responsibilities and describes actions performed by the government and electric utilities in planning for, and in operations during, national emergencies. The EEPA Handbook is reissued periodically to describe organizational changes, to assign new duties and responsibilities, and to clarify the responsibilities of the government to direct and coordinate the operations of the electric utility industry under emergencies declared by the President. This Handbook is consistent with the assumptions, policies, and procedures contained in the National Plan for Emergency Preparedness. Claimancy and restoration, communications and warning, and effects of nuclear weapons are subjects covered in the appendices.

  10. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  11. Electric power apparatus

    SciTech Connect

    Justice, D.S.

    1983-10-04

    A coiled tubular electric battery is a conductor through its electrolyte and it may coincide with an electromagnet and a wire coil. The electromagnet is powered by the battery and caused to pulsate whereby its fluctuating magnet is equivalent to relative motion between the coils and the magnet. Current is increased by ampere turns in the wire induction coil while voltage is increased by series connection of the battery cells.

  12. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect

    None, None

    2014-02-06

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013; 1,390 Home Area Networks (HANs) were registered; 797 new participants installed a HAN; Survey respondents’ are satisfied with the program and found value with a variety of specific program components; Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program; On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly; and An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  13. Electric power for space satellites

    NASA Technical Reports Server (NTRS)

    Mackenzie, C. M.

    1974-01-01

    The development of electric power systems for satellites is discussed as an evolutionary process requiring the integration of power generation, power storage, and power control and distribution. The growth of space electric power systems is traced. The capabilities and limitations of the various elements (i.e. silicon solar cells) are discussed together with their impact on future technological growth.

  14. TOPEX electrical power system

    NASA Technical Reports Server (NTRS)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  15. Battery-powered electric bicycles

    SciTech Connect

    Morchin, W.C.

    1994-12-31

    Electric bicycles powered with today`s nickel-metal hydride batteries offer a 100 km range between recharges and have a potential of 300 km when polymer batteries become available. The author discusses the development of the electric bicycle, presents a mathematical model, and considers general requirements. The available battery powered electric bicycles are listed and some test comparisons are given. 4 refs.

  16. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  17. Electric power annual 1996. Volume 1

    SciTech Connect

    1997-08-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1--with a focus on US electric utilities--contains final 1996 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1996 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold. Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA. Data published in the Electric Power Annual Volume 1 are compiled from three statistical forms filed monthly and two forms filed annually by electric utilities. These forms are described in detail in the Technical Notes. 5 figs., 30 tabs.

  18. Concept to convert electrical power

    NASA Technical Reports Server (NTRS)

    Ratti, N.

    1968-01-01

    Moving fluid conductor transforms electrical power from one voltage to another. The electrically conductive fluid acts as a coupling medium between or among multiple electromagnetic fields producing the conversion.

  19. Electric power 2007

    SciTech Connect

    2007-07-01

    Subjects covered include: power industry trends - near term fuel strategies - price/quality/delivery/opportunity; generating fleet optimization and plant optimization; power plant safety and security; coal power plants - upgrades and new capacity; IGCC, advanced combustion and CO{sub 2} capture technologies; gas turbine and combined cycle power plants; nuclear power; renewable power; plant operations and maintenance; power plant components - design and operation; environmental; regulatory issues, strategies and technologies; and advanced energy strategies and technologies. The presentations are in pdf format.

  20. Electric-Power System Simulator

    NASA Technical Reports Server (NTRS)

    Caldwell, R. W.; Grumm, R. L.; Biedebach, B. L.

    1984-01-01

    Shows different combinations of generation, storage, and load components: display, video monitor with keyboard input to microprocessor, and video monitor for display of load curves and power generation. Planning tool for electric utilities, regulatory agencies, and laymen in understanding basics of electric-power systems operation.

  1. Shunt regulation electric power system

    NASA Technical Reports Server (NTRS)

    Wright, W. H.; Bless, J. J. (Inventor)

    1971-01-01

    A regulated electric power system having load and return bus lines is described. A plurality of solar cells interconnected in a power supplying relationship and having a power shunt tap point electrically spaced from the bus lines is provided. A power dissipator is connected to the shunt tap point and provides for a controllable dissipation of excess energy supplied by the solar cells. A dissipation driver is coupled to the power dissipator and controls its conductance and dissipation and is also connected to the solar cells in a power taping relationship to derive operating power therefrom. An error signal generator is coupled to the load bus and to a reference signal generator to provide an error output signal which is representative of the difference between the electric parameters existing at the load bus and the reference signal generator. An error amplifier is coupled to the error signal generator and the dissipation driver to provide the driver with controlling signals.

  2. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  3. High Power, High Voltage Electric Power System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  4. Electrical power systems for Mars

    NASA Technical Reports Server (NTRS)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  5. Electrical power systems for Mars

    NASA Astrophysics Data System (ADS)

    Giudici, Robert J.

    1986-05-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  6. Power unit for electric cars

    SciTech Connect

    Ishikawa, Masami; Minezawa, Yukihiro.

    1993-07-06

    A power unit for mounting on the body of an electric car is described, comprising: a sensor for detecting a running condition of the car; a first power supply mounted on the electric car body; a second power supply module; means for detachably mounting different, interchangeable types of the second power supply module on the electric car body; a motor control circuit, including a computer, connected to the first power supply and the second power supply module for feeding a current to a motor as commanded by the computer; the computer including control means for determining (1) whether the second power supply module is mounted or not and (2) for determining the type of second power supply module mounted; setting means for connecting the first power supply and the second power supply module with the motor control circuit, in parallel or in series, responsive to the detected running condition; and the computer controlling the motor control circuit according to determinations of the control means.

  7. Nuclear electric power sources

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Measurements on radioactive commercial p-n junction silicon cells show that these units are capable of delivering several hundred microwatts per curie of Am-241 alpha source, indicating their usefulness in such electronic devices as hearing aids, heart pacemakers, electronic watches, delay timers and nuclear dosimeter chargers. It is concluded that the Am-241 sources are superior to the beta sources used previously, because of higher alpha specific ionization and simultaneous production of low energy photons which are easily converted into photoelectrons for additional power.

  8. Electric Power annual 1996: Volume II

    SciTech Connect

    1997-12-01

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  9. Electric-bicycle propulsion power

    SciTech Connect

    Oman, H.; Morchin, W.C.; Jamerson, F.E.

    1995-12-31

    In a human-powered hybrid electric vehicle (HPHEV) the travel distance available from a single battery charge can be lengthened with power from another source, the cyclist`s leg muscles. In a battery-powered electric bicycle the propulsion power goes mostly into overcoming aerodynamic drag. For example, at 18 km per hour (11 miles per hour) this drag represents 200 watts at the tire-to-road interface for a typical cyclist`s shape and clothing. Today`s typical electrical bicycle is propelled by a high-speed dc motor which is powered from a lead-acid battery. The combined efficiency of the motor and its speed-reducing gears is 50 to 65 percent. In this paper we calculate available travel distances, as a function of speed, grade, and the battery energy-content as measured in watt-hours per kg. We show the effect of battery cost and charge/discharge cycle-life on travel cost in terms of cents per kilometer travelled. Designs used in today`s electric bicycles are illustrated.

  10. Electrical power system WP-04

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  11. An electrically powered binary star?

    NASA Astrophysics Data System (ADS)

    Wu, Kinwah; Cropper, Mark; Ramsay, Gavin; Sekiguchi, Kazuhiro

    2002-03-01

    We propose a model for stellar binary systems consisting of a magnetic and a non-magnetic white dwarf pair which is powered principally by electrical energy. In our model the luminosity is caused by resistive heating of the stellar atmospheres arising from induced currents driven within the binary. This process is reminiscent of the Jupiter-Io system, but greatly increased in power because of the larger companion and stronger magnetic field of the primary. Electrical power is an alternative stellar luminosity source, following on from nuclear fusion and accretion. We find that this source of heating is sufficient to account for the observed X-ray luminosity of the 9.5-min binary RX J1914+24, and provides an explanation for its puzzling characteristics.

  12. Electric power annual 1995. Volume II

    SciTech Connect

    1996-12-01

    This document summarizes pertinent statistics on various aspects of the U.S. electric power industry for the year and includes a graphic presentation. Data is included on electric utility retail sales and revenues, financial statistics, environmental statistics of electric utilities, demand-side management, electric power transactions, and non-utility power producers.

  13. Ignitor Electrical Power Supply System

    NASA Astrophysics Data System (ADS)

    Coletti, Alberto; Coletti, Roberto; Costa, Pietro; Maffia, Giuseppe; Ramogida, Giuseppe; Roccella, Massimo; Santinelli, Maurizio; Starace, Fabio

    2004-11-01

    An iterative optimization process to reduce the total installed electrical power required for Ignitor has been performed, bringing its value down to about 70% of that estimated originally. Ignitor is planned to be installed within the 400 kV Station of Rondissone (near Turin). The required electrical power (1000 MVA / 320 MVAr, including 480 MVAr locally compensated through static system, SVC) has been demonstrated by the technical authority GRTN to be compatible with the Grid capability. The magnet systems of Ignitor are supplied by means of a set of 14, 12 pulse, current regulated, sequentially or internal freewheeling controlled, fully static power amplifier units which are installed inside standard, outdoor-kind containers, located near to the related step-down transformers. Each container can house up to 100 MW, 2x12 pulse power amplifier units. The connection between the power amplifiers and the machine is performed by means of coaxial, outdoor-kind, segregated bus-bars. These choices make the whole power supply system as flexible as possible in terms of the overall layout of the Ignitor plant.

  14. Manned spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  15. Power Sales to Electric Utilities

    SciTech Connect

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities

  16. Evolutionary Tuning of Building Models to Monthly Electrical Consumption

    SciTech Connect

    Garrett, Aaron; New, Joshua Ryan; Chandler, Theodore

    2013-01-01

    Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

  17. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  18. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  19. Wildlife and electric power transmission

    USGS Publications Warehouse

    Ellis, D.H.; Goodwin, J.G., Jr.; Hunt, J.R.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  20. FUSE satellite electrical power subsystem

    SciTech Connect

    Roufberg, L.; Noah, K.

    1998-07-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite will be placed into a low earth orbit to investigate astrophysical processes related to the formation and development of the early universe. The FUSE satellite is considered a pathfinder for NASA's Mid-Class Explorers (MIDEX). To reduce mission cost and development time while delivering quality science, NASA has enforced strict cost caps with a clear definition of high-level science objectives. As a result, a significant design driver for the electrical power subsystem (EPS) was to minimize cost. The FUSE EPS is a direct energy transfer, unregulated bus architecture, with batteries directly on the bus and solar array power limted by pulse-width-modulated shunt regulators. The power subsystem electronics (PSE) contains circuitry to control battery charging, provide power to the loads, and provide fault protection. The electronics is based on the PSE which Orbital (formerly, Fairchild Space) designed and built for NASA/GSFC's XTE spacecraft. However, the FUSE PSE design incorporates a number of unique features to meet the mission requirements. To minimize size of the solar panels due to stowed attachment constraints, GaAs/Ge solar cells were selected. This is the first time this type of large area, thinned solar cell with integral bypass diodes are being used for a NASA LEO mission. The solar panels support a satellite load power of 520W. Nickel Cadmium (NiCd) batteries are used which are identical to the RADARSAT-I design, except for different temperature sensors. This is the first mission for which Orbital is using SAFT NiCd batteries. The spacecraft bus, including the EPS, has successfully completed environmental testing and has been delivered for instrument integration. Tradeoffs involved in designing the EPS and selecting components based on the requirements are discussed. Analyses including solar array and battery sizing and energy balance are presented in addition to results from testing the flight

  1. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  2. Compact portable electric power sources

    SciTech Connect

    Fry, D.N.; Holcomb, D.E.; Munro, J.K.; Oakes, L.C.; Matson, M.J.

    1997-02-01

    This report provides an overview of recent advances in portable electric power source (PEPS) technology and an assessment of emerging PEPS technologies that may meet US Special Operations Command`s (SOCOM) needs in the next 1--2- and 3--5-year time frames. The assessment was performed through a literature search and interviews with experts in various laboratories and companies. Nineteen PEPS technologies were reviewed and characterized as (1) PEPSs that meet SOCOM requirements; (2) PEPSs that could fulfill requirements for special field conditions and locations; (3) potentially high-payoff sources that require additional R and D; and (4) sources unlikely to meet present SOCOM requirements. 6 figs., 10 tabs.

  3. Electric power substation capital costs

    SciTech Connect

    Dagle, J.E.; Brown, D.R.

    1997-12-01

    The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

  4. Electrical power technology for robotic planetary rovers

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.

    1993-01-01

    Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.

  5. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  6. Electric Power: Decisions for the Future.

    ERIC Educational Resources Information Center

    Cardon, Phillip L.; Preston, John

    2003-01-01

    Reviews the past 25 years of electricity consumption in the United States and considers the implications for the near future. Discusses strategies for energy conservation and provides a student activity for measuring and conserving electric power. (Author/JOW)

  7. Electric power annual 1997. Volume 2

    SciTech Connect

    1998-10-01

    The Electric Power Annual 1997, Volume 2 contains annual summary statistics at national, regional, and state levels for the electric power industry, including information on both electric utilities and nonutility power producers. Included are data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold; financial statistics; environmental statistics; power transactions; and demand-side management. Also included are data for US nonutility power producers on installed capacity; gross generation; emissions; and supply and disposition of energy. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with historical data that may be used in understanding US electricity markets. 15 figs., 62 tabs.

  8. Electric power market agent design

    NASA Astrophysics Data System (ADS)

    Oh, Hyungseon

    The electric power industry in many countries has been restructured in the hope of a more economically efficient system. In the restructured system, traditional operating and planning tools based on true marginal cost do not perform well since information required is strictly confidential. For developing a new tool, it is necessary to understand offer behavior. The main objective of this study is to create a new tool for power system planning. For the purpose, this dissertation develops models for a market and market participants. A new model is developed in this work for explaining a supply-side offer curve, and several variables are introduced to characterize the curve. Demand is estimated using a neural network, and a numerical optimization process is used to determine the values of the variables that maximize the profit of the agent. The amount of data required for the optimization is chosen with the aid of nonlinear dynamics. To suggest an optimal demand-side bidding function, two optimization problems are constructed and solved for maximizing consumer satisfaction based on the properties of two different types of demands: price-based demand and must-be-served demand. Several different simulations are performed to test how an agent reacts in various situations. The offer behavior depends on locational benefit as well as the offer strategies of competitors.

  9. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future. PMID:23403587

  10. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  11. Electric power annual 1995. Volume I

    SciTech Connect

    1996-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions.

  12. Power system characteristics for more electric aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1993-01-01

    It should not be suprising that more electric aircraft must meet significantly more difficult electrical power system requirements than were considereed when today's power distribution systems were being developed. Electric power, no longer a secondary system, will become a critical element of the primary control system. Functional reliability requiirements will be extremely stringent and can only be met by controlling element redundancy within a distributed power system. Existing electrical systems were not developed to have both the power system and the control/sensing elements distributed and yet meet the requirements of lighting tolerance and high intensity radio frequency (HIRF). In addition, the operation of electric actuators involves high transient loading and reverse energy flows. Such phenomena were also not anticipated when power quality was specified for either 270 vdc or 400 Hertz ac power systems. This paper will expand upon the issues and discuss some of the technologies involved in their resolution.

  13. Hybrid electric vehicle power management system

    DOEpatents

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  14. Electric auxiliary power unit for Shuttle evolution

    NASA Technical Reports Server (NTRS)

    Meyer, Doug; Weber, Kent; Scott, Walter

    1989-01-01

    The Space Shuttle Orbiter currently uses three hydrazine fueled auxiliary power units (APUs) to provide hydraulic power for the vehicle aerodynamic surface controls, main engine thrust vector control, landing gear, steering, and brakes. Electric auxiliary power units have been proposed as possible replacements to the hydrazine auxiliary power units. Along with the potential advantages, this paper describes an Electric APU configuration and addresses the technical issues and risks associated with the subsystem components. Additionally, characteristics of an Electric APU compared to the existing APU and the direction of future study with respect to the Electric APU is suggested.

  15. 75 FR 23823 - Sixth Northwest Electric Power and Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... POWER AND CONSERVATION PLANNING COUNCIL Sixth Northwest Electric Power and Conservation Plan AGENCY: Pacific Northwest Electric Power and Conservation Planning Council (Northwest Power and Conservation Council; the Council). ACTION: Notice of adoption of the Sixth Northwest Electric Power and...

  16. Electric vehicle system for charging and supplying electrical power

    DOEpatents

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  17. Power quality load management for large spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  18. Superconductivity for electric power systems: Program overview

    SciTech Connect

    Not Available

    1995-02-01

    Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

  19. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  20. Fault-tolerant electrical power system

    NASA Astrophysics Data System (ADS)

    Mehdi, Ishaque S.; Weimer, Joseph A.

    1987-10-01

    An electrical system that will meet the requirements of a 1990s two-engine fighter is being developed in the Fault-Tolerant Electrical Power System (FTEPS) program, sponsored by the AFWAL Aero Propulsion Laboratory. FTEPS will demonstrate the generation and distribution of fault-tolerant, reliable, electrical power required for future aircraft. The system incorporates MIL-STD-1750A digital processors and MIL-STD-1553B data buses for control and communications. Electrical power is distributed through electrical load management centers by means of solid-state power controllers for fault protection and individual load control. The system will provide uninterruptible power to flight-critical loads such as the flight control and mission computers with sealed lead-acid batteries. Primary power is provided by four 60 kVA variable speed constant frequency generators. Buildup and testing of the FTEPS demonstrator is expected to be complete by May 1988.

  1. Three essays on "making" electric power markets

    NASA Astrophysics Data System (ADS)

    Kench, Brian Thomas

    2000-10-01

    Technological change over the past three decades has altered most of the basic conditions in the electric power industry. Because of technical progress, the dominant paradigm has shifted from the provision of electric power by regulated and vertically integrated local natural monopolies to competition and vertical separation. In the first essay I provide a historical context of the electric industry's power current deregulation debate. Then a dynamic model of induced institutional change is used to investigate how endogenous technological advancements have induced radical institutional change in the generation and transmission segments of the electric power industry. Because the Federal Energy Regulatory Commission (FERC) ordered regulated utilities to provide open access to their transmission networks and to separate their generation and transmission functions, transmission networks have been used more intensively and in much different ways then in the past. The second essay tests experimentally the predictions of neoclassical theory for a radial electric power market under two alternative deregulated transmission institutions: financial transmission rights and physical transmission rights. Experimental evidence presented there demonstrates that an electric power market with physical transmission rights governing its transmission network generates more "right" market signals relative to a transmission network governed by financial transmission rights. The move to a greater reliance on markets for electric power is an idea that has animated sweeping and dramatic changes in the traditional business of electric power. The third essay examines two of the most innovative and complex initiatives of making electric power markets in the United States: California and PJM. As those markets mature and others are made, they must revise their governance mechanisms to eliminate rules that create inefficiency and adopt rules that work efficiently elsewhere. I argue that

  2. Electric Power Demand and Emerging Technology in Highly-sophisticated Electric Power Systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Hikita, Masayuki

    In the last few years, the increase of the electric power demand has been remarkable, especially in Asia district. In such trend, the electric power system of Japan has been supplied with high quality, high reliability and highly-stabilized electric power. This is supported by highly-sophisticated electric power system which prides oneself on high voltage and large capacity. In this paper, outlines of these technologies are described. And, newest technology trends such as electric power liberalization, innovation of dispersed power source, effective utilization of natural energy are also explained. In addition, the global standards are important to make the technological level of Japan to be the world one in future.

  3. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  4. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  5. SITE ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E.P. McCann

    1999-04-16

    The Site Electrical Power System receives and distributes utility power to all North Portal site users. The major North Portal users are the Protected Area including the subsurface facility and Balance of Plant areas. The system is remotely monitored and controlled from the Surface Operations Monitoring and Control System. The system monitors power quality and provides the capability to transfer between Off-Site Utility and standby power (including dedicated safeguards and security power). Standby power is only distributed to selected loads for personnel safety and essential operations. Security power is only distributed to essential security operations. The standby safeguards and security power is independent from all other site power. The system also provides surface lighting, grounding grid, and lightning protection for the North Portal. The system distributes power during construction, operation, caretaker, and closure phases of the repository. The system consists of substation equipment (disconnect switches, breakers, transformers and grounding equipment) and power distribution cabling from substation to the north portal switch gear building. Additionally, the system includes subsurface facility substation (located on surface), switch-gear, standby diesel generators, underground duct banks, power cables and conduits, switch-gear building and associated distribution equipment for power distribution. Each area substation distributes power to the electrical loads and includes the site grounding, site lighting and lightning protection equipment. The site electrical power system distributes power of sufficient quantity and quality to meet users demands. The Site Electrical Power System interfaces with the North Portal surface systems requiring electrical power. The system interfaces with the Subsurface Electrical Distribution System which will supply power to the underground facilities from the North Portal. Power required for the South Portal and development side

  6. Computer Power. Part 2: Electrical Power Problems and Their Amelioration.

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1989-01-01

    Describes electrical power problems that affect computer users, including spikes, sags, outages, noise, frequency variations, and static electricity. Ways in which these problems may be diagnosed and cured are discussed. Sidebars consider transformers; power distribution units; surge currents/linear and non-linear loads; and sizing the power…

  7. 35. SITE BUILDING 004 ELECTRIC POWER STATION CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SITE BUILDING 004 - ELECTRIC POWER STATION - CONTROL ROOM OF ELECTRIC POWER STATION WITH DIESEL ENGINE POWERED ELECTRIC GENERATION EQUIPMENT IN BACKGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. Status of high power electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Stone, James R.

    1988-01-01

    The growing emphasis on very challenging missions and the anticipated availability of high power levels in space have led to renewed interest in high power electric propulsion. The status of high power electric propulsion technology and its applicability to various missions are reviewed. The major thruster and system technology issues are identified which must be addressed in a focussed program in order to assure technology readiness for these missions.

  9. Electric power annual 1989. [Contains glossary

    SciTech Connect

    Not Available

    1991-01-17

    This publication presents a summary of electric utility statistics at the national, regional and state levels. The Industry At A Glance'' section presents a profile of the electric power industry ownership and performance; a review of key statistics for the year; and projections for various aspects of the electric power industry through 2010. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; electricity sales, revenue and average revenue per kilowatthour sold; financial statistics; environmental statistics; and electric power transactions. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. 24 figs., 57 tabs.

  10. Research on spacecraft electrical power conversion

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1983-01-01

    The history of spacecraft electrical power conversion in literature, research and practice is reviewed. It is noted that the design techniques, analyses and understanding which were developed make today's contribution to power computers and communication installations. New applications which require more power, improved dynamic response, greater reliability, and lower cost are outlined. The switching mode approach in electronic power conditioning is discussed. Technical aspects of the research are summarized.

  11. Electric power needs in space

    NASA Technical Reports Server (NTRS)

    Waltz, D. M.

    1981-01-01

    The power requirements for specific float zone experiments in space are presented. Power figures for the Space Shuttle and projected available power for advanced vehicles are given. The following power related trends are derived: (1) float zone processing of up to 5 cm diameter silicon and 16.0 cm diameter cadmium telluride can be conducted on a Shuttle pallet mission; (2) float zone processing of up to 8.5 cm diameter silicon for 70% total heating efficiency can be conducted on the initial MEC/space platform; (3) projected available host vehicle power for float zone sample heating; (4) induction heating is found to be the most promising heating method; (5) process control and ease of equipment integration into the host vehicle influence heating method selection.

  12. Electrical Power Generation by Mechanically Modulating Electrical Double Layers

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Moon, Jong Kyun

    2014-11-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system and for understanding the interfacial charge distribution in solid-liquid interfaces in the near future. This work was supported by Center for Soft and Living Matter through IBS prgram in Korea.

  13. Proceedings: Electric Power for Compression Symposium III

    SciTech Connect

    1996-12-01

    In its third year, the symposium brought together more than one hundred and fifty attendees representing gas transmission companies, electric utilities, and service firms to meet at the Omni Houston Hotel in Houston September 12, 1996, and to discuss the value of partnerships targeted on developing electric power to drive gas compressors on gas pipelines and storage facilities.

  14. Concepts for central solar electric power generation

    NASA Technical Reports Server (NTRS)

    Kintigh, J. K.

    1974-01-01

    The investigation reported was conducted to select the best conceptual design of a power plant for the dynamic conversion of solar heat to electricity. Conversion of thermal energy to electricity was to be an accomplished with conventional turbomachinery. Questions of site selection are discussed along with solar energy collection systems, aspects of candidate system definition, and reference systems.

  15. 76 FR 10353 - Locational Exchanges of Wholesale Electric Power

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... Energy Regulatory Commission Locational Exchanges of Wholesale Electric Power AGENCY: Federal Energy... locational exchanges of electric power should be permitted generically and circumstances under which the... seeks comment regarding circumstances in which locational exchanges of electric power should...

  16. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities... CFR Part 1794), and the Western Area Power Administration's (Western) NEPA implementing regulations... environmental impacts of and alternatives to Basin Electric Power Cooperative's (Basin Electric) application...

  17. Electrical power systems for Space Station

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  18. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  19. Propulsion element requirements using electrical power system unscheduled power

    NASA Technical Reports Server (NTRS)

    Zimmermann, Frank; Hodge, Kathy

    1989-01-01

    The suitability of using the electrical energy from the Space Station's Electrical Power System (EPS) during the periods of peak solar insolation which is currently not specifically allocated (unscheduled power) to produce propulsion propellants, gaseous hydrogen, and oxygen by electrolyzing water is investigated. Reboost propellant requirements are emphasized, but the results are more generally relevant because the balance of recurring propellant requirements are an order of magnitude smaller and the nonrecurring requirements are not significant on an average basis.

  20. Educational Electrical Appliance Power Meter and Logger

    ERIC Educational Resources Information Center

    Nunn, John

    2013-01-01

    The principles behind two different designs of inductive power meter are presented. They both make use of the microphone input of a computer which, together with a custom-written program, can record the instantaneous power of a domestic electrical appliance. The device can be built quickly and can be calibrated with reference to a known power…

  1. Wireless Power Transfer for Electric Vehicles

    SciTech Connect

    Scudiere, Matthew B; McKeever, John W

    2011-01-01

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  2. Electrical Power Working Group report

    NASA Technical Reports Server (NTRS)

    Vanommering, Gerrit; Myers, Ira T.

    1986-01-01

    The status of and need for power technologies for Spacecraft 2000 were assessed and development programs required to establish an achievable and competitive technology base for spacecraft of the 21st century were identified. The results are summarized, including the recommendations and the underlying rationale.

  3. Hubble Space Telescope electrical power system model

    NASA Technical Reports Server (NTRS)

    Baggett, Randy; Miller, Jim; Leisgang, Tom

    1988-01-01

    This paper describes one of the most comprehensive models ever developed for a spacecraft electrical power system (EPS). The model was developed for the Hubble Space Telescope (HST) to evaluate vehicle power system performance and to assist in scheduling maintenance and refurbishment missions by providing data needed to forecast EPS power and energy margins for the mission phases being planned. The EPS model requires a specific mission phase description as the input driver and uses a high granularity database to produce a multi-orbit power system performance report. The EPS model accurately predicts the power system response to various mission timelines over the entire operational life of the spacecraft.

  4. World electric power plants database

    SciTech Connect

    2006-06-15

    This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

  5. Fuel cell electric power production

    DOEpatents

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  6. Electrical power integration for lunar operations

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    1992-01-01

    Electrical power for future lunar operations is expected to range from a few kilowatts for an early human outpost to many megawatts for industrial operations in the 21st century. All electrical power must be imported as chemical, solar, nuclear, or directed energy. The slow rotation of the Moon and consequent long lunar night impose severe mass penalties on solar systems needing night delivery from storage. The cost of power depends on the cost of the power systems the cost of its transportation to the Moon, operating cost, and, of course, the life of the power system. The economic feasibility of some proposed lunar ventures depends in part on the cost of power. This paper explores power integration issues, costs, and affordability in the context of the following representative lunar ventures: (1) early human outpost (10 kWe); (2) early permanent lunar base, including experimental ISMU activities (100 kWe); (3) lunar oxygen production serving an evolved lunar base (500 kWe); (4) lunar base production of specialized high-value products for use on Earth (5 kWe); and (5) lunar mining and production of helium-3 (500 kWe). The schema of the paper is to project likely costs of power alternatives (including integration factors) in these power ranges, to select the most economic, to determine power cost contribution to the product or activities, to estimate whether the power cost is economically acceptable, and, finally, to offer suggestions for reaching acceptability where cost problems exist.

  7. Electric Power Research Institute: Environmental Control Technology Center

    SciTech Connect

    1997-03-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month continued with the DOE/PRDA Phase I investigation of the Clear Liquor Scrubbing Process with Anhydrite Production. The DOE/PRDA Phase I testing of the B&W/Condensing Heat Exchanger (CH) was completed this month. This one-year tube wear analysis investigation was completed on 3/10/97, and a final inspection of the unit was made on 3/21/97. The CH unit and its related equipment are currently being removed from the ECTC test configuration, disassembled, and returned to B&W and CH Corp. for additional analyses. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the Carbon Injection System (the Pulse-jet Fabric Filter) remained idle this month in a cold-standby mode and were inspected regularly.

  8. Educational electrical appliance power meter and logger

    NASA Astrophysics Data System (ADS)

    Nunn, John

    2013-09-01

    The principles behind two different designs of inductive power meter are presented. They both make use of the microphone input of a computer which, together with a custom-written program, can record the instantaneous power of a domestic electrical appliance. The device can be built quickly and can be calibrated with reference to a known power device such as an electric kettle. Typical power-versus-time profiles are shown for a kettle, a dishwasher and a fridge-freezer. The components are cheap and the cost may be recouped many times over from the resultant energy saving. Custom software will be made available free of charge to anyone who requests it. It is hoped that students attending poorly resourced schools will be able to make power loggers for educational use.

  9. Power conversion in electrical networks

    NASA Technical Reports Server (NTRS)

    Wood, J. R.

    1974-01-01

    Aspects of dc to dc conversion were studied in terms of a class of switching voltage regulators from a stability viewpoint. Background concepts of nonlinear system theory were considered, including the problem of obtaining suitable realizations for a class of positive operators. It is shown that the state evolution equations for a power conversion network are in general of bilinear form, and that the theory of lie groups and lie algebras is useful in analyzing such systems. The feedback stabilization of a class of bilinear systems whose state space is a manifold is also discussed.

  10. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  11. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  12. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  13. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  14. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  15. Growing the Space Station's electrical power plant

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    For over a decade NASA LeRC has been defining, demonstrating, and evaluating power electronic components and multi-kilowatt, multiply redundant, electrical power systems as part of OAST charter. Whether one considers aircraft (commercial transport/military), Space Station Freedom, growth station, launch vehicles, or the new Human Exploration Initiative, the conclusions remain the same: high frequency AC power distribution and control is superior to all other approaches for achieving a fast, smart, safe, versatile, and growable electrical power system that will meet a wide range of mission options. To meet the cost and operability goals of future aerospace missions that require significantly higher electrical power and longer durations, we must learn to integrate multiple technologies in ways that enhance overall system synergisms. The way NASA is doing business in space electric power is challenged and some approaches for evolving large space vehicles and platforms in well constructed steps to provide safe, ground testable, growable, smart systems that provide simple, replicative logic structures, which enable hardware and software verification, validation, and implementation are proposed. Viewgraphs are included.

  16. Galena Electric Power A Situational Analysis

    SciTech Connect

    Robert E. Chaney; Stephen G. Colt; Ronald A. Johnson; Richard W. Wiles; Gregory J. White

    2008-12-31

    The purpose of the investigation is to compare the economics of various electrical power generation options for the City of Galena. Options were assessed over a 30-year project period, beginning in 2010, and the final results were compared on the basis of residential customer electric rates ($/kWh). Galena's electric utility currently generates power using internal combustion diesel engines and generator sets. Nearby, there is an exposed coal seam, which might provide fuel for a power plant. Contributions to the energy mix might come from solar, municipal solid waste, or wood. The City has also been approached by Toshiba, Inc., as a demonstration site for a small (Model 4S) nuclear reactor power plant. The Yukon River is possibly a site for in-river turbines for hydroelectric power. This report summarizes the comparative economics of various energy supply options. This report covers: (1) thermal and electric load profiles for Galena; (2) technologies and resources available to meet or exceed those loads; (3) uses for any extra power produced by these options; (4) environmental and permitting issues and then; and (5) the overall economics of each of the primary energy options.

  17. Method of assembling an electric power

    DOEpatents

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-05-03

    A method of assembling and providing an electric power apparatus. The method uses a heat resistant housing having a structure adapted to accommodate and retain a power circuit card and also including a bracket adapted to accommodate and constrain a rigid conductive member. A power circuit card having an electrical terminal is placed into the housing and a rigid conductive member into the bracket. The rigid conductive member is flow soldered to the electrical terminal, thereby exposing the heat resistant housing to heat and creating a solder bond. Finally, the rigid conductive member is affirmatively connected to the housing. The bracket constrains the rigid conductive member so that the act of affirmatively connecting does not weaken the solder bond.

  18. The inevitable commoditization of electric power markets

    SciTech Connect

    Mango, B.; Woodley, J.A.C.

    1994-11-01

    As competition grows between electric suppliers it is inevitable that a spot market in electricity will evolve. The impetus is the market demand for greater asset productivity. With prices revealed, a commodity market will follow. With spot and commodity markets will come the power to reallocate risk and make capital investment more productive. Given price volatility, separate markets will develop for near- and long-term hedging instruments.

  19. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  20. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  1. Electric power annual 1998. Volume 1

    SciTech Connect

    1999-04-01

    The purpose of this report, Electric Power Annual 1998 Volume 1 (EPAVI), is to provide a comprehensive overview of the electric power industry during the most recent year for which data have been collected, with an emphasis on the major changes that occurred. In response to the changes of 1998, this report has been expanded in scope. It begins with a general review of the year and incorporates new data on nonutility capacity and generation, transmission information, futures prices from the Commodity futures Trading commission, and wholesale spot market prices from the pennsylvania-new Jersey-Maryland Independent System Operator and the California Power Exchange. Electric utility statistics at the Census division and State levels on generation, fuel consumption, stocks, delivered cost of fossil fuels, sales to ultimate customers, average revenue per kilowatthour of electricity sold, and revenues from those retail sales can be found in Appendix A. The EPAVI is intended for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public.

  2. Seismic Retrofit for Electric Power Systems

    SciTech Connect

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection, where seismic hazard stems from the New Madrid seismic zone.

  3. Engineering manual and electric powered wheelchairs.

    PubMed

    Cooper, R A

    1999-01-01

    The sophistication required to develop and properly configure a wheelchair is illustrated by the amount and complexity of the research being conducted. At this time there appears to be between 1.5 and 2.0 million full-time wheelchair users within the United States. The reliance of the user on the wheelchair and the amount of time in the wheelchair provide significant challenges for the wheelchair design engineer. Currently there are a wide variety of wheelchair designs that are commercially available. These wheelchairs accommodate a variety of people's needs, and represent significant progress. The current trend among manufacturers of manual wheelchairs seems to be cost-reduction engineering. The ergonomics of long-term wheelchair use are critical to the advancement of wheelchair design and to the clinical selection of wheelchairs. Electric powered wheelchairs appear to be progressing faster than nearly all other types of wheelchairs. This is due to the availability of computing power with low cost microcontrollers and associated peripherals. The greater range and availability of sensors are also making changes into the design of electric powered wheelchairs. The interaction between an electric powered wheelchair and the user can be extremely complex. In many cases, individual solutions are necessary. One of the more challenging questions is determining the abilities of the user required to drive an electric powered wheelchair effectively. There have been substantial improvements in the engineering of all wheelchairs. However, there remain significant issues to be addressed. PMID:10638849

  4. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized. PMID:17788466

  5. Regression Analysis of Electric Power Price in California Power Exchange

    NASA Astrophysics Data System (ADS)

    Miyauchi, Hajime; Tatsuguchi, Genta; Misawa, Tetsuya

    The liberalization of the electric power industries was executed from April 1998 in California State. Though this liberalization is suspended because of the extremely high bids and the outages, the information of the power price in the power exchange is very variable to investigate its structure and determination factor. From the accessible web site, we obtained the every hour data of the zone prices and the whole demand of California from April 1998 to September 2001, under the deregulation of the electric power industry. We are analyzing the prices by the regression analysis. In this paper, we compose simple regression equations successfully to classify the price data into four time zones. Next, we analyze the prices from June to September 2000 when the price cap of the power price is changed twice. The Chow test shows that the structural changes in the power price are occurred when the price cap is changed. Thus we observe the determining factor of the electric power price by the regression analysis.

  6. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of one... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical power systems....

  7. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of...

  8. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of...

  9. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of...

  10. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of...

  11. Power Processing, Part 1. Electric Machinery Analysis.

    ERIC Educational Resources Information Center

    Hamilton, Howard B.

    This publication was developed as a portion of a two-semester sequence commencing at either the sixth or seventh term of the undergraduate program in electrical engineering at the University of Pittsburgh. The materials of the two courses, produced by a National Science Foundation grant, are concerned with power conversion systems comprising power…

  12. ECONOMIC MODELING OF ELECTRIC POWER SECTOR

    EPA Science Inventory

    CAMD performs a variety of economic modeling analyses to evaluate the impact of air emissions control policies on the electric power sector. A range of tools are used for this purpose including linear programming models, general equilibrium models, and spreadsheet models. Examp...

  13. The Lebanese electric power system operational problems

    SciTech Connect

    Yehia, M.; Saidi, M.; Diab, H.; Kabalan, K. )

    1991-09-01

    This article deals with the analysis of the existing practical problems in the Lebanese electric power system and provides guidelines for future research and strategies for solving the operational problems which are now facing the system. These problems are partly due, first, to the socioeconomic situation in Lebanon after 14 years of a devastating war and second, to the particularity of the Lebanese system.

  14. Flex-gear electrical power transmission

    NASA Technical Reports Server (NTRS)

    Vranish, John; Peritt, Jonathan

    1993-01-01

    This study was conducted to develop an alternative way of transferring electricity across a continuously rotating joint, with little wear and the potential for low electrical noise. The problems with wires, slip rings, electromagnetic couplings, and recently invented roll-rings are discussed. Flex-gears, an improvement of roll-rings, are described. An entire class of flexgear devices is developed. Finally, the preferred flex-gear device is optimized for maximum electrical contact and analyzed for average mechanical power loss and maximum stress. For a device diameter of six inches, the preferred device is predicted to have a total electrical contact area of 0.066 square inches. In the preferred device, a small amount of internal sliding produces a 0.003 inch-pound torque that resists the motion of the device.

  15. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  16. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  17. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  18. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  19. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  20. Carbon Constraints and the Electric Power Industry

    SciTech Connect

    2007-11-15

    The report is designed to provide a thorough understanding of the type of carbon constraints that are likely to be imposed, when they are likely to take effect, and how they will impact the electric power industry. The main objective of the report is to provide industry participants with the knowledge they need to plan for and react to a future in which carbon emissions are restricted. The main goal of the report is to ensure an understanding of the likely restrictions that will be placed on carbon emissions, the methods available for reducing their carbon emissions, and the impact that carbon reductions will have on the electric power industry. A secondary goal of the report is to provide information on key carbon programs and market participants to enable companies to begin participating in the international carbon marketplace. Topics covered in the report include: overview of what climate change and the Kyoto Protocol are; analysis of the impacts of climate change on the U.S. and domestic efforts to mandate carbon reductions; description of carbon reduction mechanisms and the types of carbon credits that can be created; evaluation of the benefits of carbon trading and the rules for participation under Kyoto; Description of the methods for reducing carbon emissions available to the U.S. electric power industry; analysis of the impact of carbon restrictions on the U.S. electric power industry in terms of both prices and revenues; evaluation of the impact of carbon restrictions on renewable energy; overview of the current state of the global carbon market including descriptions of the three major marketplaces; descriptions of the industry and government programs already underway to reduce carbon emissions in the U.S. electric power industry; and, profiles of the major international carbon exchanges and brokers.

  1. Earthquake Triggering by High Power Electric Pulses

    NASA Astrophysics Data System (ADS)

    Novikov, Victor; Konev, Yuri; Zeigarnik, Vladimir

    2010-05-01

    The study carried out by the Joint Institute for High Temperatures in cooperation with the Institute of Physics of the Earth and the Research Station in Bishkek of Russian Academy of Sciences in 1999-2008 showed a response of weak seismicity at field experiments with electric pulsed power systems, as well as acoustic emission of rock specimens under laboratory conditions on high-power electric current pulses applied to the rocks. It was suggested that the phenomenon discovered may be used in practice for partial release of tectonic stresses in the Earth crust for earthquake hazard mitigation. Nevertheless, the mechanism of the influence of man-made electromagnetic field on the regional seismicity is not clear yet. One of possible cause of the phenomenon may be pore fluid pressure increase in the rocks under stressed conditions due to Joule heat generation by electric current injected into the Earth crust. It is known that increase of pore fluid pressure in the fault zone over a critical pressure of about 0.05 MPa is sufficient to trigger an earthquake if the fault is near the critical state due to accumulated tectonic deformations. Detailed 3D-calculaton of electric current density in the Earth crust of the Northern Tien Shan provided by pulsed electric high-power system connected to grounded electric dipole showed that at the depth of earthquake epicenters (over 5 km) the electric current density is lower than 10-7 A/m2 that is not sufficient for increase of pressure in the fluid-saturated porous geological medium due to Joule heat generation, which may provide formation of cracks resulting in the fault propagation and release of tectonic stresses in the Earth crust. Nevertheless, under certain conditions, when electric current will be injected into the fault through the casing pipes of two deep wells with preliminary injection of conductive fluid into the fault, the current density may be high enough for significant increase of mechanic pressure in the porous two

  2. Electric power monthly, July 1996 with data for April 1996

    SciTech Connect

    1996-04-01

    EPUB is an electronic publishing system maintained by the Energy Information Administration (EIA) of the U.S. Department of Energy. EPUB allows the general public to electronically access selected energy data from many of EIA`s statistical reports. The system is a menu-driven, bulletin board type system with extensive online help capabilities that can be accessed free-of-charge 24 hours a day by using a terminal or PC with an asynchronous modem. (EPUB will be taken down briefly at midnight for backup). PC users must provide the following information to their communications software in order to successfully access the EPUB system.

  3. Wax and hydrate control with electrical power

    SciTech Connect

    1997-08-01

    Electrical heating of subsea flowlines is an effective way to prevent wax and hydrate information, especially for long transportation distances and in low-temperature deep water. Systems are available for use in conjunction with bundles, pipe-in-pipe, and wet-thermal-insulation systems. These systems provide environmentally friendly fluid-temperature control without chemicals or flaring for pipeline depressurizing. Enhanced production is achieved because no time is lost by unnecessary depressurizing, pigging, heating-medium circulation, or removal of hydrate and wax blockages. The seabed temperature at 100-m and greater water depths may range from 7 to {minus}1.5 C, causing a rapid cooling of the hot well streams being transported in subsea flowlines. Under these supercooling conditions, vulnerable crude oils and multiphase compositions will deposit wax and asphalts; also the gas/water phase may freeze solid with hydrate particles. The paper discusses thermal-insulated flowlines, heat-loss compensation with electrical power, electrical power consumption and operation, and subsea electrical-power distribution system.

  4. Energy flow for electric power system deregulation

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung

    Over the past few years, the electric power utility industry in North America and other countries has experienced a strong drive towards deregulation. People have considered the necessity of deregulation of electric utilities for higher energy efficiency and energy saving. The vertically integrated monopolistic industry is being transferred into a horizontally integrated competitive structure in some countries. Wheeling charges are a current high priority problem throughout the power industry, for independent power producers, as well as regulators. Nevertheless the present transmission pricing mechanism fails to be adjusted by a customer loading condition. Customer loading is dynamic, but the present wheeling charge method is fixed, not real-time. A real-time wheeling charge method is developed in this dissertation. This dissertation introduces a concept of a power flow network which can be used for the calculation of power contribution factors in a network. The contribution factor is defined as the ratio of the power contributed by a particular source to a line flow or bus load to the total output of the source. Generation, transmission, and distribution companies can employ contribution factors for the calculation of energy cost, wheeling charges, and loss compensation. Based on the concept of contribution factors, a proposed loss allocation method is developed in this dissertation. Besides, counterflow condition will be given a credit in the proposed loss allocation method. A simple 22-bus example was used for evaluating the contribution factors, proposed wheeling charge method, and loss allocation method.

  5. MSFC Skylab electrical power systems mission evaluation

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  6. Carbon pricing, nuclear power and electricity markets

    SciTech Connect

    Cameron, R.; Keppler, J. H.

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  7. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  8. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Emergency source of electrical power. 28.375 Section 28... power. (a) Each vessel must have an emergency source of electrical power which is independent of the main sources of electrical power and which is located outside the main machinery space. (b)...

  9. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  10. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  11. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Emergency source of electrical power. 28.375 Section 28... power. (a) Each vessel must have an emergency source of electrical power which is independent of the main sources of electrical power and which is located outside the main machinery space. (b)...

  12. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Emergency source of electrical power. 28.375 Section 28... power. (a) Each vessel must have an emergency source of electrical power which is independent of the main sources of electrical power and which is located outside the main machinery space. (b)...

  13. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Emergency source of electrical power. 28.375 Section 28... power. (a) Each vessel must have an emergency source of electrical power which is independent of the main sources of electrical power and which is located outside the main machinery space. (b)...

  14. Configuration management; Operating power station electrical systems

    SciTech Connect

    Beavers, R.R.; Sumiec, K.F. )

    1989-01-01

    Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations.

  15. STC-DBS Electrical Power Subsystem

    SciTech Connect

    Peck, S.R.; Callen, P.; Pierce, P.; Wylie, T.

    1984-08-01

    The design of the STC-DBS (Satellite Television Corporation - Direct Broadcast Satellite) Electrical Power Subsystem presently under development at RCA Astro-Electronics is highlighted. To efficiently satisfy the payload power requirements, which are dominated by three 220W TWTAs, while at the same time permitting maximum use of already qualified designs, a dual bus system was selected. The payload bus, which operates during non-eclipse periods, is a shunt-regulated solar array bus at 100 volts. The housekeeping bus is regulated at 35.5 volts when sunlit and varies with the battery voltage during eclipse.

  16. Space nuclear power applied to electric propulsion

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Darooka, D.; Isenberg, L.

    1989-01-01

    Space reactor power systems with characteristics ideal for advanced spacecraft systems applications are discussed. These characteristics are: high power-to-weight ratio (15 to 33 W/kg); high volume density (high ballistic coefficient); no preferential orientation in orbit; long operational life; high reliability; and total launch and operational safety. These characteristics allow the use of electric propulsion to raise spacecraft from low earth parking orbits to operational orbits, greatly increasing the useful orbit payload for a given launch vehicle by eliminating the need for a separation injection stage. A proposed demonstration mission is described.

  17. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  18. Seismic Retrofit for Electric Power Systems

    DOE PAGESBeta

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection,more » where seismic hazard stems from the New Madrid seismic zone.« less

  19. A multipurpose secondary source of electric power

    NASA Astrophysics Data System (ADS)

    Duplin, N. I.; Ivanov, S. R.

    The source can be used as a constant-voltage regulator, a constant-current regulator, a simulator of solar cells and thermoemission oscillators, and a generator of voltage and current pulses of high power. It can also be used in electric welding. The source consists of a series of transforming cells/current regulators in a linear control. The design provides for the automatic connection and disconnection of the required number of cells. The mode of operation is controlled by a switch.

  20. Electric Power From Ambient Energy Sources

    SciTech Connect

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  1. Electric power plant emissions and public health

    SciTech Connect

    O'Connor, A.B.; Roy, C.

    2008-02-15

    The generation of electric power is one important source of pollutants such as mercury, sulfur dioxide, nitrogen oxides, and fine particulate matter that can affect the respiratory, cardiovascular, and central nervous systems and cause pregnancy complications. But protecting people from environmental health hazards has become increasingly complex. Air pollutants are often invisible and travel many miles virtually undetected. Nurses can play a critical role in preventive strategies, as well as in the national debate on energy production and dependence on fossil fuels.

  2. TWRS privatization phase 1 electrical power system

    SciTech Connect

    Singh, G.

    1997-05-30

    This document includes Conceptual Design Report (CDR) for a new 11 km (7 miles) 230 kV transmission line and a new 40 MVA substation (A6) which will be located east of Grout Facility in 200E Area tank farm. This substation will provide electrical power up to 20 MW each for two private contractor facilities for immobilization and disposal of low activity waste (LAW).

  3. Solar thermal electric power information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  4. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  5. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  6. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    SciTech Connect

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  7. Patterns of Brain-Electrical Activity during Declarative Memory Performance in 10-Month-Old Infants

    ERIC Educational Resources Information Center

    Morasch, Katherine C.; Bell, Martha Ann

    2009-01-01

    This study of infant declarative memory concurrently examined brain-electrical activity and deferred imitation performance in 10-month-old infants. Continuous electroencephalogram (EEG) measures were collected throughout the activity-matched baseline, encoding (modeling) and retrieval (delayed test) phases of a within-subjects deferred imitation…

  8. Stability analysis of large electric power systems

    SciTech Connect

    Elwood, D.M.

    1993-01-01

    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  9. Photovoltaic conversion of laser power to electrical power

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Photovoltaic laser to electric converters are attractive for use with a space-based laser power station. The results of modeling studies for a silicon vertical junction converter used with a Nd laser are given. A computer code was developed for the model and this code was used to conduct a parametric study for a Si vertical junction converter consisting of one p-n junction irradiated with a Nd laser. These calculations predict an efficiency over 50 percent for an optimized converter.

  10. Dual power, constant speed electric motor system

    DOEpatents

    Kirschbaum, H.S.

    1984-07-31

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

  11. Dual power, constant speed electric motor system

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

  12. Optimization and Control of Electric Power Systems

    SciTech Connect

    Lesieutre, Bernard C.; Molzahn, Daniel K.

    2014-10-17

    The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.

  13. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Astrophysics Data System (ADS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-11-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  14. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  15. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a...

  16. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a...

  17. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a...

  18. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a...

  19. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a...

  20. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Main source of electrical power. 28.850 Section 28.850... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies on electricity to power any of the following essential loads must have...

  1. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Main source of electrical power. 28.850 Section 28.850... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies on electricity to power any of the following essential loads must have...

  2. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Main source of electrical power. 28.850 Section 28.850... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies on electricity to power any of the following essential loads must have...

  3. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Main source of electrical power. 28.355 Section 28.355... Operate With More Than 16 Individuals on Board § 28.355 Main source of electrical power. (a) Applicability. Each vessel that relies on electricity to power any of the following essential loads must have at...

  4. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Main source of electrical power. 28.355 Section 28.355... Operate With More Than 16 Individuals on Board § 28.355 Main source of electrical power. (a) Applicability. Each vessel that relies on electricity to power any of the following essential loads must have at...

  5. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Main source of electrical power. 28.355 Section 28.355... Operate With More Than 16 Individuals on Board § 28.355 Main source of electrical power. (a) Applicability. Each vessel that relies on electricity to power any of the following essential loads must have at...

  6. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Main source of electrical power. 28.850 Section 28.850... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies on electricity to power any of the following essential loads must have...

  7. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Main source of electrical power. 28.355 Section 28.355... Operate With More Than 16 Individuals on Board § 28.355 Main source of electrical power. (a) Applicability. Each vessel that relies on electricity to power any of the following essential loads must have at...

  8. Thermoelectric power generation for hybrid-electric vehicle auxiliary power

    NASA Astrophysics Data System (ADS)

    Headings, Leon M.; Washington, Gregory N.; Midlam-Mohler, Shawn; Heremans, Joseph P.

    2009-03-01

    The plug-in hybrid-electric vehicle (PHEV) concept allows for a moderate driving range in electric mode but uses an onboard range extender to capitalize on the high energy density of fuels using a combustion-based generator, typically using an internal combustion engine. An alternative being developed here is a combustion-based thermoelectric generator in order to develop systems technologies which capitalize on the high power density and inherent benefits of solid-state thermoelectric power generation. This thermoelectric power unit may find application in many military, industrial, and consumer applications including range extension for PHEVs. In this research, a baseline prototype was constructed using a novel multi-fuel atomizer with diesel fuel, a conventional thermoelectric heat exchange configuration, and a commercially available bismuth telluride module (maximum 225°C). This prototype successfully demonstrated the viability of diesel fuel for thermoelectric power generation, provided a baseline performance for evaluating future improvements, provided the mechanism to develop simulation and analysis tools and methods, and highlighted areas requiring development. The improvements in heat transfer efficiency using catalytic combustion were evaluated, the system was redesigned to operate at temperatures around 500 °C, and the performance of advanced high temperature thermoelectric modules was examined.

  9. Multimegawatt potassium Rankine power for nuclear electric power

    NASA Technical Reports Server (NTRS)

    Rovang, Richard D.; Mills, Joseph C.; Baumeister, Ernie B.

    1991-01-01

    A cermet fueled potassium rankine power system concept has been developed for various power ranges and operating lifetimes. This concept utilizes a single primary lithium loop to transport thermal energy from the reactor to the boiler. Multiple, independent potassium loops are employed to achieve the required reliability of 99 percent. The potassium loops are two phase systems which expand heated potassium vapor through multistage turboalternators to produce a 10-kV dc electrical output. Condensation occurs by-way-of a shear-flow condenser, producing a 100 percent liquid potassium stream which is pumped back to the boiler. Waste heat is rejected by an advanced carbon-carbon radiator at approximately 1000 K. Overall system efficiencies of 19.3 percent to 20.5 percent were calculated depending on mission life and power level.

  10. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  11. Electrical power systems (Jamaica). Electrical power systems, July 1992. Export trade information

    SciTech Connect

    Not Available

    1992-07-01

    The United States presently supplies 70% of Jamaica's demand for Electrical Power Systems. Market demand is not limited to the requirements of the National Power Company. There is domestic demand created by the need to have backup or stand-by facilities during load shedding or power outages. Ongoing refurbishing programs and the ultimate need to increase the capacity of the Public Service Company will facilitate an ongoing demand for power systems. The market is very steady and will gain momentum lasting well beyond 1993.

  12. Electric power plant emissions and public health.

    PubMed

    O'Connor, Alane B; Roy, Callista

    2008-02-01

    The generation of electric power is one important source of pollutants such as mercury, sulfur dioxide, nitrogen oxides, and fine particulate matter that can affect the respiratory, cardiovascular, and central nervous systems and cause pregnancy complications. But protecting people from environmental health hazards has become increasingly complex. Air pollutants are often invisible and travel many miles virtually undetected. Nurses can play a critical role in preventive strategies, as well as in the national debate on energy production and dependence on fossil fuels. PMID:18227677

  13. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  14. Electric power system test and verification program

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.; Robinson, Frank, Jr.

    1994-01-01

    Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.

  15. Restructuring the Philippine electric power industry

    SciTech Connect

    Bowden, S.; Ellis, M.

    1995-06-01

    The Philippine electricity industry has shown it can change, and change quickly. In contrast with the crises and changes imposed on it in the past, the industry now has as opportunity to forge a progressive, forward-looking strategy, This opportunity is enhanced by the force of law - the Department of Energy Act of 1992 mandates privatization of the National Power Corporation (NPC) - and by the easing of the power crisis which has significantly diminished political interference. In order to position the industry for growth and rising investment requirements and to support the growing role of the Philippine economy in international markets, that strategy must address the structural deficiencies that continue to plague the industry. By addressing structural changes that need to be made now, it can build on the impetus gained from its privatization mandate to improve accountability, increase efficiency and reduce government risk.

  16. Electric power - Photovoltaic or solar dynamic?

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.

    1985-01-01

    The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.

  17. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  18. 77 FR 65419 - Virginia Electric and Power Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... and Power Company AGENCY: Nuclear Regulatory Commission. ACTION: Partial Director's Decision; issuance... Power Station, Units 1 and 2 (North Anna 1 and 2), by the Virginia Electric and Power Company (VEPCO or... August 23, 2011, Virginia Electric and Power Company (the licensee) should be required to obtain...

  19. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  20. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  1. Photovoltaic conversion of laser power to electrical power

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1986-01-01

    Photovoltaic laser to electric converters are attractive for use with a space-based laser power station. This paper presents the results of modeling studies for a silicon vertical junction converter used with a Nd laser. A computer code was developed for the model and this code was used to conduct a parametric study for a Si vertical junction converter consisting of one p-n junction irradiated with a Nd laser. These calculations predict an efficiency over 50 percent for an optimized converter.

  2. 36. SITE BUILDING 004 ELECTRIC POWER STATION CLOSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. SITE BUILDING 004 - ELECTRIC POWER STATION - CLOSE UP VIEW OF 1200 HORSEPOWER STANDBY POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. 37. SITE BUILDING 004 ELECTRIC POWER STATION ELEVATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SITE BUILDING 004 - ELECTRIC POWER STATION - ELEVATED VIEW OF FIVE (5) 1200 HORSEPOWER STANDBY - POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. Electric Power Research Institute: Environmental Control Technology Center

    SciTech Connect

    1997-02-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month continued with the Phase I DOE/PRDA investigation of the Clear Liquor Scrubbing Process with Anhydrite Production and Chloride Control. The Phase I DOE/PRDA testing of the B&W/Condensing Heat Exchanger (CHE) also continued this month as the inlet particulate control system (installed September 1996) is maintaining the inlet particulate mass loading to the unit at an average value of 0.2 lb./MMBTU. The one-year tube wear analysis project conducted across this unit will be completed in the early part of March. At the completion of testing, a final inspection will be conducted before the unit is cleaned, disassembled, and returned to B&W and CH Corp. for additional analysis. Once the unit is removed from the ECTC, the 0.4 MW Mini-Pilot Wet Scrubber unit will be assembled and configured back into the flue gas path for future testing. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the Carbon Injection System (the Pulse-jet Fabric Filter configuration) remained idle this month in a cold-standby mode and were inspected regularly. In February 1997, the Clear Liquor Scrubbing with Anhydrite Production test block continued. This PRDA project is being jointly funded by the Electric Power Research Institute and the Department of Energy and is part of the DOE`s Advanced Power Systems Program, whose mission is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The pilot portion of the CLS/Anhydrite project is being conducted on the 4.0 MW wet FGD pilot unit at EPRI`s Environmental Control Technology Center (ECTC). The project is designed to develop an advanced FGD process incorporating chloride control, clear liquor scrubbing, and anhydrite (anhydrous calcium sulfate) production. While the three areas of the

  5. Electric Power Esearch Institute: Environmental Control Technology Center

    SciTech Connect

    1996-11-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI Integrated SO{sub x}/NO{sub x} removal process, the DOE PRDA testing of the B&W/Condensing Heat Exchanger (CHX), and support for the Semi-Continuous On-line Mercury Analyzer. The test configuration utilized in the EPRI Integrated SO{sub x}/NO{sub x} removal process included the 4.0 MW Spray Dryer Absorber (SDA), the Pulse-jet Fabric Filter (PJFF), and a new Selective Catalytic Reduction (SCR) reactor installed at the ECTC. During this testing, O&M support was also required to conclude the test efforts under the EPRI Hazardous Air Pollutant (HAP) test block. This included the on-site development efforts for the Semi-Continuous On-line Mercury Analyzer. In the DOE PRDA project with the B&W/Condensing Heat Exchanger (CHX), the effects of the increased particulate loading to the unit were monitored throughout the month. Also, the 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly.

  6. 78 FR 50409 - Kansas Municipal Energy Agency v. Sunflower Electric Power Corporation, Mid-Kansas Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Energy Regulatory Commission Kansas Municipal Energy Agency v. Sunflower Electric Power Corporation, Mid-Kansas Electric Company, LLC, Southwest Power Pool, Inc.; Notice of Complaint Take notice that on August... Municipal Energy Agency (Complainant) filed a formal complaint against Sunflower Electric Power...

  7. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  8. Nuclear reactor power for an electrically powered orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  9. Solar powered Stirling cycle electrical generator

    NASA Astrophysics Data System (ADS)

    Shaltens, Richard K.

    1991-03-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  10. Solar powered Stirling cycle electrical generator

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  11. Rotary-Atomizer Electric Power Generator

    NASA Astrophysics Data System (ADS)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  12. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Electrical power and lighting systems. 434.401 Section 434.401 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434.401 Electrical power and lighting...

  13. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Electrical power and lighting systems. 434.401 Section 434.401 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434.401 Electrical power and lighting...

  14. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Electrical power and lighting systems. 434.401 Section 434.401 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434.401 Electrical power and lighting...

  15. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2010-03-01

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  16. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Electrical power and lighting systems. 434.401 Section 434.401 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434.401 Electrical power and lighting...

  17. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Emergency source of electrical power. 28.870 Section 28.870 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must...

  18. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Emergency source of electrical power. 28.870 Section 28... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must be connected to an independent emergency source of...

  19. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Emergency source of electrical power. 28.870 Section 28... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must be connected to an independent emergency source of...

  20. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Emergency source of electrical power. 28.870 Section 28... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must be connected to an independent emergency source of...

  1. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Emergency source of electrical power. 28.870 Section 28... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.870 Emergency source of electrical power. (a) The following electrical loads must be connected to an independent emergency source of...

  2. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  3. High Power Electric Propulsion for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Polk, Jay

    2011-01-01

    Slide presentation reviews: (1) An Electric Propulsion Primer (2) The Flexible Path and the Electric Path (2a) A New Plan for Human Exploration (2b)The Role of Electric Propulsion (3) High Power Electric Thrusters (3a)Hall Thrusters (3b) Magnetoplasmadynamic Thrusters (4)Challenges for the Next Generation of Advanced Propulsion Technologist

  4. Analysis of electric power industry restructuring

    NASA Astrophysics Data System (ADS)

    Al-Agtash, Salem Yahya

    1998-10-01

    This thesis evaluates alternative structures of the electric power industry in a competitive environment. One structure is based on the principle of creating a mandatory power pool to foster competition and manage system economics. The structure is PoolCo (pool coordination). A second structure is based on the principle of allowing independent multilateral trading and decentralized market coordination. The structure is DecCo (decentralized coordination). The criteria I use to evaluate these two structures are: economic efficiency, system reliability and freedom of choice. Economic efficiency evaluation considers strategic behavior of individual generators as well as behavioral variations of different classes of consumers. A supply-function equilibria model is characterized for deriving bidding strategies of competing generators under PoolCo. It is shown that asymmetric equilibria can exist within the capacities of generators. An augmented Lagrangian approach is introduced to solve iteratively for global optimal operations schedules. Under DecCo, the process involves solving iteratively for system operations schedules. The schedules reflect generators strategic behavior and brokers' interactions for arranging profitable trades, allocating losses and managing network congestion. In the determination of PoolCo and DecCo operations schedules, overall costs of power generation (start-up and shut-down costs and availability of hydro electric power) as well as losses and costs of transmission network are considered. For system reliability evaluation, I examine the effect of PoolCo and DecCo operating conditions on the system security. Random component failure perturbations are generated to simulate the actual system behavior. This is done using Monte Carlo simulation. Freedom of choice evaluation accounts for schemes' beneficial opportunities and capabilities to respond to consumers expressed preferences. An IEEE 24-bus test system is used to illustrate the concepts

  5. Thermionic topping of electric power plants

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. O.; Rasor, N. S.

    1975-01-01

    The most likely use of thermionic conversion is in the form of a topping cycle combined with a steam-turbogenerator plant. A specific reference system is chosen in which the thermionic topping cycle occurs in thermionic heat exchangers referred to as large, modular thermionic units to which heat is transferred from a separate heat source and which reject their heat to a conventional steam turboelectric system. Results of analysis show that the performance and cost criteria for practical thermionic topping of large electric power plants are well within the reach of demonstrated and foreseeable converter capabilities. Thermionic topping has many significant advantages over unconventional cycles proposed for topping applications, including level of demonstrated and projected performance and lifetime, development time, and design simplicity.

  6. Satellite control of electric power distribution

    NASA Technical Reports Server (NTRS)

    Bergen, L.

    1981-01-01

    An L-band frequencies satellite link providing the medium for direct control of electrical loads at individual customer sites from remote central locations is described. All loads supplied under interruptible-service contracts are likely condidates for such control, and they can be cycled or switched off to reduce system loads. For every kW of load eliminated or deferred to off-peak hours, the power company reduces its need for additional generating capacity. In addition, the satellite could switch meter registers so that their readings automatically reflected the time of consumption. The system would perform load-shedding operations during emergencies, disconnecting large blocks of load according to predetermined priorities. Among the distribution operations conducted by the satellite in real time would be: load reconfiguration, voltage regulation, fault isolation, and capacitor and feeder load control.

  7. Efficient Probabilistic Diagnostics for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  8. Spacecraft Electrical Power System (EPS) generic analysis tools and techniques

    NASA Technical Reports Server (NTRS)

    Morris, Gladys M.; Sheppard, Mark A.

    1992-01-01

    An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.

  9. 75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... include a new natural gas-fired combustion turbine set, a heat recovery steam generator (HRSG), and a... generating capacity is driven by the increasing electrical power usage of the Basin Electric...

  10. Launch vehicle and power level impacts on electric GEO insertion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.

    1996-01-01

    Solar Electric Propulsion (SEP) has been shown to increase net geosynchronous spacecraft mass when used for station keeping and final orbit insertion. The impact of launch vehicle selection and power level on the benefits of this approach were examined for 20 and 25 kW systems launched using the Ariane 5, Atlas IIAR, Long March, Proton, and Sea Launch vehicles. Two advanced on-board propulsion technologies, 5 kW ion and Hall thruster systems, were used to establish the relative merits of the technologies and launch vehicles. GaAs solar arrays were assumed. The analysis identifies the optimal starting orbits for the SEP orbit raising/plane changing while considering the impacts of radiation degradation in the Van Allen belts, shading, power degradation, and oblateness. This use of SEP to provide part of the orbit insertion results in net mass increases of 15 - 38% and 18 - 46% for one to two month trip times, respectively, over just using SEP for 15 years of north/south station keeping. SEP technology was shown to have a greater impact on net masses of launch vehicles with higher launch latitudes when avoidance of solar array and payload degradation is desired. This greater impact of SEP could help reduce the plane changing disadvantage of high latitude launch sites. Comparison with results for 10 and 15 kW systems show clear benefits of incremental increases in SEP power level, suggesting that an evolutionary approach to high power SEP for geosynchronous spacecraft is possible.

  11. Reserve valuation in electric power systems

    NASA Astrophysics Data System (ADS)

    Ruiz, Pablo Ariel

    Operational reliability is provided in part by scheduling capacity in excess of the load forecast. This reserve capacity balances the uncertain power demand with the supply in real time and provides for equipment outages. Traditionally, reserve scheduling has been ensured by enforcing reserve requirements in the operations planning. An alternate approach is to employ a stochastic formulation, which allows the explicit modeling of the sources of uncertainty. This thesis compares stochastic and reserve methods and evaluates the benefits of a combined approach for the efficient management of uncertainty in the unit commitment problem. Numerical studies show that the unit commitment solutions obtained for the combined approach are robust and superior with respect to the traditional approach. These robust solutions are especially valuable in areas with a high proportion of wind power, as their built-in flexibility allows the dispatch of practically all the available wind power while minimizing the costs of operation. The scheduled reserve has an economic value since it reduces the outage costs. In several electricity markets, reserve demand functions have been implemented to take into account the value of reserve in the market clearing process. These often take the form of a step-down function at the reserve requirement level, and as such they may not appropriately represent the reserve value. The value of reserve is impacted by the reliability, dynamic and stochastic characteristics of system components, the system operation policies, and the economic aspects such as the risk preferences of the demand. In this thesis, these aspects are taken into account to approximate the reserve value and construct reserve demand functions. Illustrative examples show that the demand functions constructed have similarities with those implemented in some markets.

  12. Comprehensive evaluation of cost effectiveness of solar electric power plants

    NASA Astrophysics Data System (ADS)

    Ibragimov, D. Y.; Filatov, A. I.

    1984-02-01

    The cost effectiveness of constructing a solar heating and electric power plant is evaluated on the basis of a compatibility analysis of its combination with a thermal electric power plant and a boiler-type heating plant, taking into account comprehensively economic factors as well as power requirements. Two variants of such a combination are considered and compared, assuming equal heating power and equal electric power respectively. Equations are set up for each variant covering fixed and variable costs of generating electric power and generating heat, as basis for comparing the two variants and optimizing them with respect to normalized annual total cost. Nomograms plotted for convenient numerical calculation of maximum economically worthwhile capital investment in a solar heating and electric power plant, depending on changes in various operating parameters, reveal that, as the time for constructing such a plant becomes longer, this maximum worthwhile investment in it increases for variant 1 and decreases for variant 2.

  13. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... thermoelectric generating stations. Increased demands for electric power throughout the East Coast can be... and thermoelectric generation. The direct and indirect effects of existing and proposed...

  14. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... thermoelectric generating stations. Increased demands for electric power throughout the East Coast can be... and thermoelectric generation. The direct and indirect effects of existing and proposed...

  15. Intelligent vehicle electrical power supply system with central coordinated protection

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-05-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  16. Electric power annual 1994. Volume 2, Operational and financial data

    SciTech Connect

    1995-11-28

    This year, the annual is published in two volumes. Volume I focused on US electric utilities and contained final 1994 data on net generation, fossil fuel consumption, stocks, receipts, and cost. This Volume II presents annual 1994 summary statistics for the electric power industry, including information on both electric utilities and nonutility power producers. Included are preliminary data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold (based on form EIA-861) and for electric utility financial statistics, environmental statistics, power transactions, and demand- side management. Final 1994 data for US nonutility power producers on installed capacity and gross generation, as well as supply and disposition information, are also provided in Volume II. Technical notes and a glossary are included.

  17. 14. SITE BUILDING 004 ELECTRIC POWER STATION VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. SITE BUILDING 004 - ELECTRIC POWER STATION - VIEW IS LOOKING NORTH 70 EAST AT SW CORNER OF BUILDING. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 1. Shown in the electric motor which powered the belts ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Shown in the electric motor which powered the belts and drive shafts. This power system drove the tumblers which cleaned chain in building #7. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  19. 38. SITE BUILDING 004 ELECTRIC POWER STATION AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. SITE BUILDING 004 - ELECTRIC POWER STATION AT INTERIOR - OBLIQUE VIEW AT FLOOR LEVEL SHOWING DIESEL ENGINE/GENERATOR SET NUMBER 5. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. ELECTRICAL SWITCHBOARD IN UPPER LEVEL OF HYDROELECTRIC POWER HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRICAL SWITCHBOARD IN UPPER LEVEL OF HYDROELECTRIC POWER HOUSE - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  1. 14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  2. 9. Interior view, west side of power plant, electrical panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view, west side of power plant, electrical panels in place in center of photograph, looking northwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  3. Results of an electrical power system fault study (CDDF)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, N. R.; Johnson, Y. B.

    1993-01-01

    This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.

  4. Results of an electrical power system fault study

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  5. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  6. Results of an electrical power system fault study

    NASA Astrophysics Data System (ADS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  7. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ...OSHA solicits public comments concerning its request for an extension of the information collection requirements specified in its standards on Electrical Protective Equipment (29 CFR 1910.137) and Electric Power Generation, Transmission, and Distribution (29 CFR...

  8. Apollo Lunar Module Electrical Power System Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.

  9. Diversity modelling for electrical power system simulation

    NASA Astrophysics Data System (ADS)

    Sharip, R. M.; Abu Zarim, M. A. U. A.

    2013-12-01

    This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios.

  10. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    SciTech Connect

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W.; Tesche, F.M.; Vance, E.F.

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  11. Electricity: From Tabletop to Power Plant

    ERIC Educational Resources Information Center

    Moran, Timothy

    2009-01-01

    While electricity is central to our daily lives, it remains "black box" technology to most students. They know that electricity is produced somewhere and that it costs money, but they do not have personal experience with the operation and scale of the machines that provide it. Fortunately, electricity generation can be added to the more basic…

  12. Conceptual design of a solar electric advanced Stirling power system

    NASA Astrophysics Data System (ADS)

    White, M. A.; Brown, A. T.

    1987-02-01

    The objective is to develop a high confidence conceptual design for a free-piston Stirling engine based system designed to deliver 25 kW of three-phase electric power to a utility grid when coupled to the 11 meter Test Bed Concentrator (TBC) at SNLA. Further objectives include a design life of 60,000 hours, minimum life cycle cost and dynamic balancing. The approach used to achieve these objectives is to utilize a hermetically sealed Stirling hydraulic concept based on technology developed to an advanced level during the past 19 years for an artificial heart power source. Such engines and critical metal bellows components have demonstrated operating times in the desired range. This approach provides full film hydraulic lubrication of all sliding parts, simple construction with conventional manufacturing tolerances, proven hydraulically coupled counterbalancing, and simple but effective power control to follow insolation variations. Other advantages include use of commercially available hydraulic motors and rotary alternators which can be placed on the ground to minimize suspended weight. The output from several engine/concentrator modules can be directed to one large motor/alternator for further cost savings. Three monthly progress reports for the same period, January 1 to January 31, 1987, are compiled within this document.

  13. Electric power management for the International Space Station experiment racks

    SciTech Connect

    Burcham, M.; Darty, M.A.; Thibodeau, P.E.; Coe, R.; Dunn, M.

    1995-12-31

    An intelligent, all solid state, electric power management system for International Space Station experiment racks is described. This power system is implemented via redundant internal microcomputers, controlling hybridized solid state power controllers in response to 1553B data bus commands. The solid state power controllers are programmable for current trip level and for normally-open or normally-closed operation.

  14. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  15. Electrical power generating system. [for windpowered generation

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  16. HEMP emergency planning and operating procedures for electric power systems

    SciTech Connect

    Reddoch, T.W.; Markel, L.C. )

    1991-01-01

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E[sub 1] (steep-front pulse) component and the late time E[sub 3] (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council's regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  17. Unalaska geothermal exploration project. Electrical power generation analysis. Final report

    SciTech Connect

    Not Available

    1984-04-01

    The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

  18. Restrictive loads powered by separate or by common electrical sources

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.

    1989-01-01

    In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.

  19. Annual Outlook for US Electric Power, 1985

    SciTech Connect

    Not Available

    1985-08-12

    This report provides a history and projections of US electric utility markets. It includes summary information on the production of electricity, its distribution to end-use sectors, and on electricity, its distribution to end-use sectors, and on electricity costs and prices. Further, this publication describes the ownership structure of the industry and the operations of utility systems and outlines basic electricity generating technologies. The historical information covers the period from 1882 through 1984, while projections extend from 1985 through 1995. 9 figs., 8 tabs.

  20. 1. RUINS OF THE ELECTRIC POWER STATION (NOTE PART OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RUINS OF THE ELECTRIC POWER STATION (NOTE PART OF THE CONTROL PANEL VISIBLE THROUGH THE DOORWAY), VIEW TO THE NORTHWEST). - Foster Gulch Mine, Electric Power Station Ruins, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  1. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  2. 46 CFR 28.850 - Main source of electrical power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Main source of electrical power. 28.850 Section 28.850 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.850 Main source of electrical power. (a) Applicability: Each vessel that relies...

  3. 77 FR 18872 - Availability of Electric Power Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... on September 24, 2010 (75 FR 5844) for a 60 day public comment period. The public comment period... COMMISSION Availability of Electric Power Sources AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory... 1 of Regulatory Guide (RG) 1.93, ``Availability of Electric Power Sources.'' This guide...

  4. 75 FR 18201 - Wisconsin Electric Power Company; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Wisconsin Electric Power Company; Notice of Filing April 2, 2010. Take notice that on March 26, 2010, Wisconsin Electric Power Company filed counterpart signature pages to...

  5. Challenges of electric power industry restructuring for fuel suppliers

    SciTech Connect

    1998-09-01

    The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

  6. Electric propulsion applications enabled by space nuclear power

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Brewer, L.; Gore, R.

    1989-01-01

    Electric propulsion promises the advantage of providing high Isp's for placing payloads into their assigned orbits. This translates into heavier payloads using a given lift capability or, conversely, the use of smaller boosters. To accomplish this, high electric powers are required. Space reactor power systems such as SP-100 enable this technology. The electric propulsion requirements needed, namely, their power requirements and the resulting payload masses and time-to-orbit, are shown. Also indicated are the missions most benefitting from the use of electric propulsion. An Interim Reference Mission is described, synthesizing the results shown, for demonstration purposes.

  7. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  8. Operating health analysis of electric power systems

    NASA Astrophysics Data System (ADS)

    Fotuhi-Firuzabad, Mahmud

    The required level of operating reserve to be maintained by an electric power system can be determined using both deterministic and probabilistic techniques. Despite the obvious disadvantages of deterministic approaches there is still considerable reluctance to apply probabilistic techniques due to the difficulty of interpreting a single numerical risk index and the lack of sufficient information provided by a single index. A practical way to overcome difficulties is to embed deterministic considerations in the probabilistic indices in order to monitor the system well-being. The system well-being can be designated as healthy, marginal and at risk. The concept of system well-being is examined and extended in this thesis to cover the overall area of operating reserve assessment. Operating reserve evaluation involves the two distinctly different aspects of unit commitment and the dispatch of the committed units. Unit commitment health analysis involves the determination of which unit should be committed to satisfy the operating criteria. The concepts developed for unit commitment health, margin and risk are extended in this thesis to evaluate the response well-being of a generating system. A procedure is presented to determine the optimum dispatch of the committed units to satisfy the response criteria. The impact on the response wellbeing being of variations in the margin time, required regulating margin and load forecast uncertainty are illustrated. The effects on the response well-being of rapid start units, interruptible loads and postponable outages are also illustrated. System well-being is, in general, greatly improved by interconnection with other power systems. The well-being concepts are extended to evaluate the spinning reserve requirements in interconnected systems. The interconnected system unit commitment problem is decomposed into two subproblems in which unit scheduling is performed in each isolated system followed by interconnected system evaluation

  9. Electric Power Research Institute: Environmental Control Technology Center

    SciTech Connect

    1996-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber and the Pulse-jet Fabric Filter). Testing also continued across the B&W/CHX Heat Exchanger this month as the effects of increased particulate loading are being studied. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. Testing in October at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC) included tests from the Pilot Trace Elements Removal (TER) test block as part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions. The 1996 program is being performed on the 4.0 MW wet FGD pilot unit and the spray dryer/pulse jet fabric filter (SDA/PJFF) pilot units. The 1996 Trace Elements Removal (TER) test block is a continuation of the 1995 TER test block and will focus on up to five research areas, depending on experimental results. These areas are: (1) Mercury speciation methods; (2) Effect of FGD system operating variables on mercury removal; (3) Novel methods for elemental mercury control; (4) Catalytic methods for converting elemental mercury to oxidized mercury; and (5) Electrostatic charging of particulate material in the FGD inlet flue gas stream. The work during October continued to focus on catalytic oxidation of elemental mercury. These tests included the evaluation of two different loadings of catalyst CT-9 (carbon-based material) over extended periods (8-10 days) and an evaluation of FAB-2B (bulk bituminous fly ash taken from the first hopper of the

  10. Spacecraft Impacts with Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Oleson, Steven R.

    2000-01-01

    A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.

  11. Annual outlook for US electric power, 1986

    SciTech Connect

    Not Available

    1986-04-24

    This document includes summary information on the ownership structure of the US electric utility industry, a description of electric utility regulation, and identification of selected factors likely to affect US electricity markets from 1985 through 1995. This Outlook expands upon projections first presented in the Annual Energy Outlook 1985, offering additional discussion of projected US electricity markets and regional detail. It should be recognized that work on the Annual Energy Outlook 1985 had been completed prior to the sharp reductions in world oil prices experienced early in 1986.

  12. 75 FR 2564 - Virginia Electric and Power Company D/B/A Dominion Virginia Power and Old Dominion Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... significant effect on the quality of the human environment (74 FR 65161). This exemption is effective upon... COMMISSION Virginia Electric and Power Company D/B/A Dominion Virginia Power and Old Dominion Electric Cooperative; Combined License Application for North Anna Unit 3; Exemption 1.0 Background Virginia...

  13. Generator powered electrically heated diesel particulate filter

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  14. Electrical Prototype Power Processor for the 30-cm Mercury electric propulsion engine

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Frye, R. J.

    1978-01-01

    An Electrical Prototpye Power Processor has been designed to the latest electrical and performance requirements for a flight-type 30-cm ion engine and includes all the necessary power, command, telemetry and control interfaces for a typical electric propulsion subsystem. The power processor was configured into seven separate mechanical modules that would allow subassembly fabrication, test and integration into a complete power processor unit assembly. The conceptual mechanical packaging of the electrical prototype power processor unit demonstrated the relative location of power, high voltage and control electronic components to minimize electrical interactions and to provide adequate thermal control in a vacuum environment. Thermal control was accomplished with a heat pipe simulator attached to the base of the modules.

  15. Power Play: Calculating Home Electricity Consumption

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2007-01-01

    With both energy usage and energy costs rising rapidly, people can benefit from paying closer attention to their consumption of energy. Students can gain greater awareness of their personal use of electricity and get some excellent experience with the practical application of mathematics by studying their families' consumption of electricity. A…

  16. Electrical Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1998-02-18

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI/ADA Technologies dry sorbent sampling unit and the testing of Hg catalysts/sorbents in this low-flow, temperature controlled system. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  17. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1997-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  18. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1998-01-12

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini-Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  19. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee, July 1996

    SciTech Connect

    1996-11-15

    Operations and maintenance continued this month at the Electric Power Research Institute's Environmental Control Technology Center. Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber System and the Pulse Jet Fabric Filter). Testing also continued across the B and W/CHX Heat Exchanger project. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode. Inspections of these idled systems were conducted this month.

  20. Electric power distribution and load transfer system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)

    1989-01-01

    A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.

  1. Toward an electrical power utility for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.

    1989-01-01

    Future electrical power requirements for space exploration are discussed. Megawatts of power with enough reliability for multi-year missions and with enough flexibility to adapt to needs unanticipated at design time are some of the criteria which space power systems must be able to meet. The reasons for considering the power management and distribution in the various systems, from a total mission perspective rather than simply extrapolating current spacecraft design practice, are discussed. A utility approach to electric power integrating requirements from a broad selection of current development programs, with studies in which both space and terrestrial technologies are conceptually applied to exploration mission scenarios, is described.

  2. Application of Laser Ablation Processing in Electric Power System Industries

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Sano, Yuji; Nittoh, Koichi; Kuwako, Akira

    The present status of laser ablation processing applied in electric power system industries is reviewed. High average power LD-pumped Nd:YAG lasers with Q-switch have been developed and currently introduced into various applications. Optical fiber based laser beam delivery systems for Q-switched pulse laser are also being developed these years. Based on such laser and beam delivery technology, laser ablation processes are gradually introduced in maintenance of nuclear power plant, thermal power plant and electrical power distribution system. Cost effectiveness, robustness and reliability of the process is highly required for wide utilization in these fields.

  3. 76 FR 23846 - Virginia Electric Power Company, LLC, North Anna Power Station, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Virginia Electric Power Company, LLC, North Anna Power Station, Unit No. 1; Exemption 1.0 Background Virginia Electric Power Company (VEPCO, the licensee) is the holder of Facility Operating License No. NPF-4, which authorizes operation of...

  4. 76 FR 58844 - Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption 1.0 Background Virginia Electric and Power Company (VEPCO, the licensee) is the holder of Facility Operating License Nos. DPR-32 and DRP-37, which...

  5. Reducing Electrical Power Use with a Performance Based Incentive

    SciTech Connect

    M. Kathleen Nell

    2004-07-01

    This Departmental Energy Management Program (DEMP) funded Model Program Study developed out of a potential DOE-ID Performance Based Incentive for the Idaho National Engineering and Environmental Laboratory (INEEL), lasting from October 2001 through May 2002, which stressed reductions in electrical usage. An analysis of demand usage obtained from monthly INEEL Power Management electric reports revealed reductions in demand from a majority of the site areas. The purpose of this Model Program study was to determine the methods and activities that were used at these site areas to achieve the reductions in demand and to develop these demand reduction methods and activities into a Model Program that could be shared throughout the INEEL and DOE complex-wide for additional demand savings. INEEL Energy Management personnel interviewed contacts from the eight areas which had achieved a consistent reduction in demand during the study period, namely, Idaho Nuclear Technology and Engineering Center (INTEC), Test Area North (TAN), Power Burst Facility (PBF), Test Reactor Area (TRA) including Advanced Test Reactor ATR), Engineering Test Reactor (ETR), and Materials Test Reactor (MTR) areas, Central Facilities Area (CFA), Specific Manufacturing Capability (SMC), Radioactive Waste Management Complex (RWMC), and Argonne National Laboratory-West (ANLW). The information that resulted from the interviews indicated that more than direct demand and energy reduction actions were responsible for the recorded reductions in demand. INEEL Energy Management identified five categories of actions or conditions that contributed to the demand reduction. These categories are Decontamination and Decommissioning (D&D), employee actions, improvements, inactivation for maintenance, and processes. The following information details the findings from the study.

  6. Thermionic reactor power conditioner design for nuclear electric propulsion.

    NASA Technical Reports Server (NTRS)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  7. Job Grading Standard for Electric Power Controller WG-5407.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard is used to grade nonsupervisory jobs involved in controlling the generation or distribution of electric power. The jobs are located at power generating plants, power distribution centers, and substations. The work requires ability to anticipate load changes due to work schedules, weather, and other variables, in order to engage or cut…

  8. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    NASA Technical Reports Server (NTRS)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  9. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  10. Equilibrium pricing in electricity markets with wind power

    NASA Astrophysics Data System (ADS)

    Rubin, Ofir David

    Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 to 2009. Moreover, according to their predictions, by the end of 2010 global wind power capacity will reach 190 GW. Since electricity is a unique commodity, this remarkable expansion brings forward several key economic questions regarding the integration of significant amount of wind power capacity into deregulated electricity markets. The overall dissertation objective is to develop a comprehensive theoretical framework that enables the modeling of the performance and outcome of wind-integrated electricity markets. This is relevant because the state of knowledge of modeling electricity markets is insufficient for the purpose of wind power considerations. First, there is a need to decide about a consistent representation of deregulated electricity markets. Surprisingly, the related body of literature does not agree on the very economic basics of modeling electricity markets. That is important since we need to capture the fundamentals of electricity markets before we introduce wind power to our study. For example, the structure of the electric industry is a key. If market power is present, the integration of wind power has large consequences on welfare distribution. Since wind power uncertainty changes the dynamics of information it also impacts the ability to manipulate market prices. This is because the quantity supplied by wind energy is not a decision variable. Second, the intermittent spatial nature of wind over a geographical region is important because the market value of wind power capacity is derived from its statistical properties. Once integrated into the market, the distribution of wind will impact the price of electricity produced from conventional sources of energy. Third, although wind power forecasting has improved in recent years, at the time of trading short-term electricity forwards, forecasting

  11. Power Systems Evaluated for Solar Electric Propulsion Vehicles

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Gefert, Leon P.

    2000-01-01

    Solar electric propulsion (SEP) mission architectures are applicable to a wide range NASA missions including the robotic exploration of the outer planets in the next decade and the human exploration of Mars within the next 2 decades. SEP enables architectures that are very mass efficient with reasonable power levels (1-MW class) aerobrake and cryogenic upper-stage transportation technologies are utilized. In this architecture, the efficient SEP stage transfers the payload from low Earth orbit (LEO) High Energy Elliptical Parking Orbit (HEEPO) within a period of 6 to 12 months. highthrust, cryogenic upper stage and payload then separate from the SEP vehicle for injection to the planetary target, allowing for fast heliocentric trip times. This mission architecture offers a potential reduction in mass to LEO in comparison to alternative all-chemical nuclear propulsion schemes. Mass reductions may allow launch vehicle downsizing enable missions that would have been grounded because of cost constraints. The preceding figure illustrates a conceptual SEP stage design for a human Mars mission. Researchers at the NASA Glenn Research Center at Lewis Field designed conceptual SEP vehicle, conceived the mission architecture to use this vehicle, and analyzed the vehicle s performance. This SEP stage has a dry mass of 35 metric tons (MT), 40 MT of xenon propellant, and a photovoltaic array that spans 110 m, providing power to a cluster of eight 100-kW Hall thrusters. The stage can transfer an 80-MT payload and upper stage to the desired HEEPO. Preliminary packaging studies show this space-station-class SEP vehicle meets the proposed "Magnum" launch vehicle and volume requirements with considerable margin. An SEP vehicle for outer planetary missions, such as the Europa Mapper Mission, would be dramatically smaller than human Mars mission SEP stage. In this mission architecture, the SEP power system with the payload to provide spacecraft power throughout the mission. Several

  12. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  13. Market power in electric power markets: Indications of competitiveness in spatial prices for wholesale electricity

    NASA Astrophysics Data System (ADS)

    Denton, Michael John

    The issue of market delineation and power in the wholesale electric energy market is explored using three separate approaches: two of these are analyses of spatial pricing data to explore the functional size of the markets, and the third is a series of experimental tests of the effects of different cost structures and market mechanisms on oligopoly strength in those markets. An equilibrium model of spatial network competition is shown to yield linear relationships between spatial prices. A data set comprising two years of spatial weekly peak and off-peak prices and weather for 6 locations in the Western States Coordinating Council and the Southwest Power Pool is subjected to a pairwise cointegration analysis. The use of dummy variables to account the the flow directions is found to significantly improve model performance. The second analytical technique utilizes the extraction of principal components from a spatial price correlation matrix to identify the extent of natural markets. One year of daily price observations for eleven locations within the WSCC is compiled and eigenvectors are extracted and subjected to oblique rotation, each of which is then interpreted as representing a separate geographic market. The results show that two distinct natural markets, correlated at 84%, account for over 96% of the variation in the spatial prices in the WSSC. Together, the findings support the assertion that the wholesale electricity market in the Western U.S. is large and highly competitive. The experimental analysis utilizes a radial three node network in which suppliers located at the outer nodes sell to buyers located at the central node. The parameterization captures the salient characteristics of the existing bulk power markets, and includes cyclical demand, transmission losses, as well as fixed and avoidable fixed costs for all agents. Treatments varied the number of sellers, the avoidable fixed cost structures, and the trading mechanism. Results indicated that

  14. Solar Electric Power System Analyses for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Kohout, Lisa L.

    1999-01-01

    The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.

  15. 78 FR 1252 - Schneider Electric, U.S.A., Subsidiary of Schneider Electric, Power Business Unit, Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... published in the Federal Register on February 28, 2012 (77 FR 12083). At the request of a company official... Business Unit, Power Solutions Division, Including On-Site Leased Workers From Volt Workforces Solutions... Electric, Power Business Unit, Power Solutions Division, including on-site leased workers from...

  16. Electrical Power Station Theory. A Course of Technical Information for Electrical Power Station Wireman Apprentices. Revised Edition.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This third-year course for electrical power station wirer apprentices is a foundation for the study of all aspects of installation and maintenance of power station equipment. It also provides a good technical background as well as the general knowledge essential to power station operator trainees. The course is intended to be equivalent to a…

  17. Comparison of electrically driven lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.

    1988-01-01

    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  18. Concept of electric propulsion realization for high power space tug

    NASA Astrophysics Data System (ADS)

    Zakharenkov, L. E.; Semenkin, A. V.; Solodukhin, A. E.

    2016-07-01

    Popular at the beginning of the Space Age, ambitious projects aimed at Moon, Mars, and other space objects exploration, have returned with new technology and design level. High power space tug with electric propulsion system (EPS) is mainly considered as a transport vehicle for such missions. Modern high power space tugs projects as well as their spacecraft (SC) power and propulsion systems are reviewed in the paper. The main technologies and design solutions needed for high-power EPS realization are considered.

  19. Automated electric power management and control for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Mellor, Pamela A.; Kish, James A.

    1990-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. It strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. An integrated approach to the power system command and control problem is defined and used to direct technology development in: diagnosis, security monitoring and analysis, battery management, and cooperative problem-solving for resource allocation. The prototype automated power system is developed using simulations and test-beds.

  20. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.

  1. Changing Structure of the Electric Power Industry: Selected Issues, 1998

    EIA Publications

    1998-01-01

    Provides an analytical assessment of the changes taking place in the electric power industry, including market structure, consumer choice, and ratesetting and transition costs. Also presents federal and state initiatives in promoting competition.

  2. A guide to onboard checkout. Volume 3: Electrical power

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The baseline electrical power subsystem for a space station is considered. The subsystem was anlayzed in order to define onboard checkout requirements. Reliability, failure effects, and maintenance are discussed.

  3. 47. BASE OF UMBILICAL MAST, WITH ELECTRICAL POWER CABLES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. BASE OF UMBILICAL MAST, WITH ELECTRICAL POWER CABLES ON LEFT; AIR-CONDITIONER DUCTS ON RIGHT - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Measuring Power Flow in Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Griffin, Daniel C., Jr; Wiker, G. A.

    1983-01-01

    Instrument accommodates fast rise and fall times of waveforms characteristic of modern, efficient power controllers. Power meter multiplies analog signals proportional to voltage and current, and converts resulting signal to frequency. Two mechanical counters provided: one for charging, one for discharging.

  5. Precise time and time interval applications to electric power systems

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1992-01-01

    There are many applications of precise time and time interval (frequency) in operating modern electric power systems. Many generators and customer loads are operated in parallel. The reliable transfer of electrical power to the consumer partly depends on measuring power system frequency consistently in many locations. The internal oscillators in the widely dispersed frequency measuring units must be syntonized. Elaborate protection and control systems guard the high voltage equipment from short and open circuits. For the highest reliability of electric service, engineers need to study all control system operations. Precise timekeeping networks aid in the analysis of power system operations by synchronizing the clocks on recording instruments. Utility engineers want to reproduce events that caused loss of service to customers. Precise timekeeping networks can synchronize protective relay test-sets. For dependable electrical service, all generators and large motors must remain close to speed synchronism. The stable response of a power system to perturbations is critical to continuity of electrical service. Research shows that measurement of the power system state vector can aid in the monitoring and control of system stability. If power system operators know that a lightning storm is approaching a critical transmission line or transformer, they can modify operating strategies. Knowledge of the location of a short circuit fault can speed the re-energizing of a transmission line. One fault location technique requires clocks synchronized to one microsecond. Current research seeks to find out if one microsecond timekeeping can aid and improve power system control and operation.

  6. NASA requirements and applications environments for electrical power wiring

    NASA Technical Reports Server (NTRS)

    Stavnes, Mark W.; Hammond, Ahmad N.

    1992-01-01

    While a large data base for electrical arc track-resistant wire insulation exists for aircraft electrical power systems, comparable spacecraft-pertinent data are in limited supply. Existing insulation systems have been found to arc-track at potentials as low as 28 V dc. An account is presently given of the electrical, thermal, mechanical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications.

  7. Electrical Power Distribution and Control Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Fu, Johnny S.; Liffring, Mark; Mehdi, Ishaque S.

    2001-01-01

    This slide presentation reviews the use of Electrical Power Distribution and Control (EPD&C) Modeling and how modeling can support analysis. The presentation discusses using the EASY5 model to simulate and analyze the Space Shuttle Electric Auxiliary Power Unit. Diagrams of the model schematics are included, as well as graphs of the battery cell impedance, hydraulic load dynamics, and EPD&C response to hydraulic load variations.

  8. Electric field in media with power-law spatial dispersion

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2016-04-01

    In this paper, we consider electric fields in media with power-law spatial dispersion (PLSD). Spatial dispersion means that the absolute permittivity of the media depends on the wave vector. Power-law type of this dispersion is described by derivatives and integrals of non-integer orders. We consider electric fields of point charge and dipole in media with PLSD, infinite charged wire, uniformly charged disk, capacitance of spherical capacitor and multipole expansion for PLSD-media.

  9. Power electronics and electric machinery challenges and opportunities in electric and hybrid vehicles

    SciTech Connect

    Adams, D.J.; Hsu, J.S.; Young, R.W.; Peng, F.Z.

    1997-06-01

    The development of power electronics and electric machinery presents significant challenges to the advancement of electric and hybrid vehicles. Electronic components and systems development for vehicle applications have progressed from the replacement of mechanical systems to the availability of features that can only be realized through interacting electronic controls and devices. Near-term applications of power electronics in vehicles will enable integrated powertrain controls, integrated chassis system controls, and navigation and communications systems. Future applications of optimized electric machinery will enable highly efficient and lightweight systems. This paper will explore the areas where research and development is required to ensure the continued development of power electronics and electric machines to meet the rigorous demands of automotive applications. Additionally, recent advances in automotive related power electronics and electric machinery at Oak Ridge National Laboratory will be explained. 3 refs., 5 figs.

  10. 77 FR 26321 - Virginia Electric and Power Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... COMMISSION [Docket Nos. 50-338 and 50-339; NRC-2012-0051; License Nos. NPF-4 and NPF-7] Virginia Electric and... Electric and Power Company (VEPCO or the licensee). The petition requested that the NRC: (1) Take escalated... lack of free field instrumentation, issues associated with conversion of analog data to digital...

  11. Identifying electrical loads which can use direct photovoltaic dc power

    SciTech Connect

    Goff, H.C.; Chan, T.S.; Allred, R.; Dale, D.W.; Nichols, J.A.

    1981-11-01

    The major results are presented of a study for identifying electrical loads which can utilize direct current electricity. Also presented are conceptual designs for photovoltaic systems to provide dc power for a reverse osmosis water desalination system, a commercial/industrial fluorescent lighting system, and a telephone circuit switching application.

  12. 78 FR 46616 - Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... COMMISSION Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station... the Emergency Plan, ``Conditions of licenses,'' for North Anna Power Station, Units 1 and 2 (NAPS), for Renewed Facility Operating License Nos. NPF-4 and NPF-7, and Surry Power Station, Units 1 and...

  13. Productivity, electricity, science: Powering a green future

    SciTech Connect

    Ausubel, J.H.

    1996-04-01

    Science and technology offer the opportunity for environmental and social improvement, while providing the higher levels of services and goods that people seek. Notwithstanding efficiency gains, markets for electricity will grow because of the multiplication of population and devices and the deeper penetration of the transport sector.

  14. Unlocking Electric Power in the Oceans.

    ERIC Educational Resources Information Center

    Hurwood, David L.

    1985-01-01

    Cruising or stationary ocean thermal plants could convert the vast heat energy of the ocean into electricity for islands and underdeveloped countries. This approach to energy conservation is described with suggestions for design and outputs of plants. A model project operating in Hawaii is noted. (DH)

  15. Electric power, melatonin, and breast cancer

    SciTech Connect

    Stevens, R.G.

    1987-08-01

    In this paper, the epidemiology of breast cancer will be discussed, followed by a brief description of the effect of electric fields on melatonin and the relation of melatonin to mammary cancer in rats. Finally, there will be a consideration of factors such as alcohol that affect melatonin and their relation to breast cancer risk. 55 refs.

  16. Application of Superconducting Power Cables to DC Electric Railway Systems

    NASA Astrophysics Data System (ADS)

    Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru

    For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.

  17. Power supply sharing in the Apollo telescope mount electrical power system

    NASA Technical Reports Server (NTRS)

    Lanier, R., Jr.; Kapustka, R.

    1977-01-01

    A modular dc power supply power sharing technique was developed for the Apollo telescope mount electrical power sytem on Skylab. The advantages and disadvantages of various techniques used are reviewed and compared. The new technique design is discussed, and results of its implementation in the power system are reviewed.

  18. 77 FR 26001 - Southwest Power Pool; Western Area Power Administration; Basin Electric Cooperative; Heartland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Energy Regulatory Commission Southwest Power Pool; Western Area Power Administration; Basin Electric Cooperative; Heartland Consumers Power District; Notice of Petition for Declaratory Order Take notice that on...) Rules of Practice and Procedure, 18 CFR 385.207, Southwest Power Pool (SPP), Western Area...

  19. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    SciTech Connect

    Walkowicz, K.; Lammert, M.; Curran, P.

    2012-08-01

    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

  20. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    SciTech Connect

    Reddoch, T.W.; Markel, L.C.

    1991-12-31

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  1. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  2. More on duel purpose solar-electric power plants

    NASA Astrophysics Data System (ADS)

    Hall, F. F.

    Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.

  3. 2005 UDI directory of electric power producers and distributors

    SciTech Connect

    2005-07-01

    The directory contains profiles of over 4,000 energy-related companies across the USA and Canada. This includes executives and other key personnel at: regulated electric utilities and holding companies; non-utility generators and service companies; associations; power pools and independent system operators, architects, engineers, consultants, agencies and commissions. The directory covers such essential business information as: electric customer classifications; revenues and sales for utilities; number of employees; electric production and delivery system design; performance data; major interconnections; sources of purchased power; and service territories.

  4. 2006 UDI directory of electric power producers and distributors

    SciTech Connect

    2005-07-01

    The directory contains profiles of nearly 5,000 energy-related companies across the USA and Canada. This includes over 17,000 executives and other key personnel at: 3,600 regulated electric utilities and holding companies; 700 non-utility generators and service companies; 350 associations; power pools and independent system operators, architects, engineers, consultants, agencies and commissions. The directory covers such essential business information as: electric customer classifications; revenues and sales for utilities; number of employees; electric production and delivery system design; performance data; major interconnections; sources of purchased power; and service territories.

  5. Electrolysis: Information and Opportunities for Electric Power Utilities

    SciTech Connect

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  6. Electric utility companies and geothermal power

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  7. Overview of electrochemical power sources for electric and hybrid-electric vehicles.

    SciTech Connect

    Dees, D. W.

    1999-02-12

    Electric and hybrid-electric vehicles are being developed and commercialized around the world at a rate never before seen. These efforts are driven by the prospect of vehicles with lower emissions and higher fuel efficiencies. The widespread adaptation of such vehicles promises a cleaner environment and a reduction in the rate of accumulation of greenhouse gases, Critical to the success of this technology is the use of electrochemical power sources such as batteries and fuel cells, which can convert chemical energy to electrical energy more efficiently and quietly than internal combustion engines. This overview will concentrate on the work being conducted in the US to develop advanced propulsion systems for the electric and hybrid vehicles, This work is spearheaded by the US Advanced Battery Consortium (USABC) for electric vehicles and the Partnership for a New Generation of Vehicle (PNGV) for hybrid-electric vehicles, both of which can be read about on the world wide web (www.uscar.tom). As is commonly known, electric vehicles rely strictly on batteries as their source of power. Hybrid-electric vehicles, however, have a dual source of power. An internal combustion engine or eventually a fuel cell supplies the vehicle with power at a relatively constant rate. A battery pack (much smaller than a typical electric-vehicle battery pack) provides the vehicle with its fast transient power requirements such as during acceleration. This hybrid arrangement maximizes vehicle fuel efficiency. Electric and hybrid-electric vehicles will also be able to convert the vehicle's change in momentum during braking into electrical energy and store it in its battery pack (instead of lose the energy as heat). This process, known as regenerative braking, will add to the vehicle's fuel efficiency in an urban environment.

  8. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.

  9. Lunar Module Electrical Power System Design Considerations and Failure Modes

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the design and redesign considerations of the Apollo lunar module electrical power system. Included in the work are graphics showing the lunar module power system. It describes the in-flight failures, and the lessons learned from these failures.

  10. 15. SITE BUILDING 004 ELECTRIC POWER STATION VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SITE BUILDING 004 - ELECTRIC POWER STATION - VIEW IS LOOKING SOUTH 55° EAST AT FIVE DIESEL ENGINE/ GENERATOR SILENCER SYSTEM EXHAUST STACKS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. 82. ROOSEVELT POWER CANAL, SUGGESTED ARRANGEMENT FOR ELECTRICAL OPERATION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. ROOSEVELT POWER CANAL, SUGGESTED ARRANGEMENT FOR ELECTRICAL OPERATION OF SLUICE GATES AND CANAL INTAKE GATES AT DIVERSION DAM Courtesy of Dept. of the Interior, Bureau of Reclamation, Salt River Project, Arizona - Roosevelt Power Canal & Diversion Dam, Parallels Salt River, Roosevelt, Gila County, AZ

  12. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOEpatents

    Liu, Yan; Garces, Luis Jose

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  13. Limiting electric fields of HVDC overhead power lines.

    PubMed

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths. PMID:24573710

  14. Electromagnetic interference of power conditioners for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.; Macie, T. W.

    1973-01-01

    Electrical, multikilowatt power conditioning (PC) equipment needed on board a spacecraft utilizing solar electric propulsion creates an electromagnetic environment that is potentially deterimental to the science, navigation, and radio communication hardware. Within the scope of the solar electric propulsion system technology program, three lightweight, 2.5-kW PCs were evaluated in terms of their electromagnetic characteristics. It was found that the levels of radiated and conducted interference exceeded the levels anticipated for a solar electric propulsion mission. These noise emissions, however, were the result of deficient interference design in these models, rather than a basic inability to control interference in this type of PC.

  15. Power costs of thirteen electric generation technologies

    SciTech Connect

    Lang, R.C.; Doyle, J.F.

    1983-01-01

    This paper reports on a study performed for the Bonneville Power Administration (BPA) to estimate as consistently as possible the cost of future generating technologies using renewable and conventional resources and highly fuel-efficient systems. The primary objective of the study was to evaluate future generating technologies by calculating the 30-yr. levelized busbar power costs of each technology on a consistent basis. Esimates for capital costs, operating costs, project schedules, fuel costs, annual energy generation and cost uncertainty were developed for the busbar power cost analysis. The study was designed to produce the most objective and consistent cost estimates possible for all of the generating technologies. The analysis of the uncertainty in capital cost and project schedule shows that there is a high level of uncertainty in the future costs for the developing technologies. Includes 5 tables.

  16. Small geothermal electric systems for remote powering

    SciTech Connect

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  17. Nuclear-electric power in space

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.; Davis, H. S.

    1984-01-01

    Prospective missions requiring large power supplies that might be satisfied with space nuclear reactors (SNR) are discussed, along with design concepts and problems and other potential high-power space systems. Having a minimum economic output of 10 kWe, SNR seem well-suited as the power sources for DBS systems, space-based ATC systems manned planetary missions, an expanding Space Station, materials processing, and outer planets missions. SNR avoid the large area problems of solar cell arrays, short lifetimes of thermionic converters, and vibration and heat control in Stirling engines. Design problems exist for SNR in the heat transfer and rejection systems, radioactive emissions and degradation of reactor materials, and size. The latter is a function of Shuttle payload constaints and raises the possibility of having to load the fuel while in orbit. The earliest operational date of SNRs is projected for the early 1990s, if progress is good in the current SP-100 program.

  18. Power processing requirements for solar electric propulsion.

    NASA Technical Reports Server (NTRS)

    Macie, T. W.; Costogue, E. N.

    1971-01-01

    The successful integration of a light-weight, high-efficiency power conditioning (PC) unit with an electron bombardment ion thruster using a hollow cathode at JPL has been reported recently. This paper summarizes the presently conceived requirements by which the next generation of PCs should be judged and evaluated. The requirements are formulated in terms of a deep space mission, which implies that the characteristics of the solar source will vary in terms of output power and output voltage. The requirements identified by practical experience during long-term evaluation between 1968-1970 are described and explained.

  19. Inductive High Power Transfer Technologies for Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Tonchev, Anton T.

    2014-03-01

    Problems associated with "how to charge the battery pack of the electric vehicle" become more important every passing day. Most logical solution currently is the non-contact method of charge, possessing a number of advantages over standard contact methods for charging. This article focuses on methods for Inductive high power contact-less transfer of energy at relatively small distances, their advantages and disadvantages. Described is a developed Inductive Power Transfer (IPT) system for fast charging of electric vehicles with nominal power of 30 kW over 7 to 9 cm air gap.

  20. Development of Electric Power Units Driven by Waste Heat

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi

    For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.

  1. Influence of Power System Technology on Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1995-01-01

    Electric propulsion (EP) thruster technology, with efficient lightweight power systems can provide substantial reductions in propulsion system wet mass due to the high specific impulse (Isp) of the thrusters. Historically, the space power systems are too massive for many potential orbital missions. The objective of this paper is to show the impact of current power system technology on EP mission performance and determine what technology advancements are needed to make EP beneficial for earth orbital applications. The approach of the paper is to model the electric propulsion system and orbital mission using a partial parametric method. Various missions are analyzed from orbit maintenance to orbit transfer. Results portray the relationship between mission performance and power technology level. Conclusions show which mission applications currently have acceptable power technology, and which mission applications require power technology improvements.

  2. Electric versus pneumatic power in hand prostheses for children.

    PubMed

    Plettenburg, D H

    1989-01-01

    Most externally powered hand prostheses for children with a unilateral congenital below-elbow amputation are myoelectrically controlled. All of them are electrically powered. Despite the success of fitting children with this kind of prostheses, there are some disadvantages: prosthetic weight is high, operating speed is low, the system is vulnerable and its size prohibits fitting it to patients with a long fore-arm stump. It will be shown that pneumatic power can overcome most of these disadvantages. PMID:2733004

  3. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  4. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  5. Space station electric power system requirements and design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1987-01-01

    An overview of the conceptual definition and design of the space station Electric Power System (EPS) is given. Responsibilities for the design and development of the EPS are defined. The EPS requirements are listed and discussed, including average and peak power requirements, contingency requirements, and fault tolerance. The most significant Phase B trade study results are summarized, and the design selections and rationale are given. Finally, the power management and distribution system architecture is presented.

  6. Electricity distribution network power quality regulation

    NASA Astrophysics Data System (ADS)

    Lopez Sanchez, Jose Maria

    The regulation of the electricity distribution utilities has evolved to a scenario based on competition and cost-effectiveness. This cost reduction may affect the quality performance. A quality regulatory proposal based on yardstick competition is presented in this Ph.D. thesis. The proposal focuses on the continuity of supply in the electricity distribution networks. The competition is against objective values of the selected zonal quality indices that are computed using a probabilistic model that takes into account the historical behavior of the distribution network and considers the quality indices as random variables. A monitoring scheme has been developed to obtain the basic reliability indices from the rough data. A methodology to segment the supplied area is proposed. The implementation plan of the regulatory proposal and the incentive/penalty scheme to encourage utilities to improve their quality indices, are also presented. An implementation study case of the scheme is shown. The conceptual framework of this proposal and the different regulations of the continuity of supply of several countries are also reviewed in detail.

  7. Private wind powered electricity generators for industry in the UK

    NASA Astrophysics Data System (ADS)

    Thabit, S. S.; Stark, J.

    This paper investigates the impact of the provisions of the new Energy Act, 1983 on industrial wind-powered private generators of electricity and the effects of published tariffs on various industrial working patterns. Up to 30 percent savings can be achieved in annual electricity bill costs for an industrial generator/user of electricity working a single daily shift, if located in a favorable, 7 m/s mean annual wind speed regime. Variation of the availability charge between Electricity Boards about a base value of 0.70 pounds sterling/kVA was found to have insignificant (+ or - 1.3 percent) impact on total electricity bill costs. It was also shown that for industrial users of electricity, the simpler two-rate purchase terms were commercially adequate when compared with the four-rate alternative where expensive metering becomes necessary.

  8. Integrating plug-in electric vehicles into the electric power system

    NASA Astrophysics Data System (ADS)

    Wu, Di

    This dissertation contributes to our understanding of how plug-in hybrid electric vehicles (PHEVs) and plug-in battery-only electric vehicles (EVs)---collectively termed plug-in electric vehicles (PEVs)---could be successfully integrated with the electric power system. The research addresses issues at a diverse range of levels pertaining to light-duty vehicles, which account for the majority of highway vehicle miles traveled, energy consumed by highway travel modes, and carbon dioxide emissions from on-road sources. Specifically, the following topics are investigated: (i) On-board power electronics topologies for bidirectional vehicle-to-grid and grid-to-vehicle power transfer; (ii) The estimation of the electric energy and power consumption by fleets of light-duty PEVs; (iii) An operating framework for the scheduling and dispatch of electric power by PEV aggregators; (iv) The pricing of electricity by PHEV aggregators and how it affects the decision-making process of a cost-conscious PHEV owner; (v) The impacts on distribution systems from PEVs under aggregator control; (vi) The modeling of light-duty PEVs for long-term energy and transportation planning at a national scale.

  9. Environmental effects of interstate power trading on electricity consumption mixes

    SciTech Connect

    Joe Marriott; H. Scott Matthews

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. The authors create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these 'consumption mixes' can provide a more accurate assessment of electricity use in life-cycle analyses. It is concluded that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy - such as resource extraction and material processing sectors - are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses. 16 refs., 7 figs., 2 tabs.

  10. Electric propulsion device for high power applications

    NASA Technical Reports Server (NTRS)

    Roy, Subrata (Inventor)

    2009-01-01

    An electric propulsion device is disclosed having an anode and a cathode. The propulsion device includes a discharge annulus having the anode adjacent an end region thereof. At least one inlet aperture is adjacent the anode, the aperture(s) having propellant gas flow therethrough into the discharge annulus. The propellant gas has an ionization potential. Opposed, dielectric walls define the annulus, with at least one of the opposed dielectric walls having pores therein, the pores having cooling gas flow therethrough into the discharge annulus and substantially adjacent the opposed dielectric wall(s). The cooling gas has an ionization potential higher than the ionization energy of the propellant gas. The cooling gas is adapted to substantially prevent at least one of secondary electron emission and sputtering of the dielectric walls.

  11. Review of the Coal and Electric Sections in the Monthly Energy Review and an Overall Review of Office of Energy Data Operations Publications

    SciTech Connect

    Not Available

    1981-04-01

    This Review of the Coal and Electric Sections of the Monthly Energy Review and an Overall Review of OEDO Publications is comprised of two sections. The first, Review of Coal and Electric Power Data in the Monthly Energy Review consists of a detailed analysis of content and data presentation issues. The major findings of this section are summarized below: the coal and electric power data in the Monthly Energy Review (MER) represent the major functions of the respective industries; coal data by rank are inconsistently presented in the MER; coal value or coal cost and quality data are not adequately represented in the MER; the presentation of two or more units of measurement on the same table in MER may invite incorrect comparisons unless properly separated (e.g., - double line separation); to improve the timeliness of the data in the MER, the increased use of estimated, preliminary, and/or projected data should be considered; and the table and graphic formats used in the MER present the data clearly and concisely. The second section of the report, An Overall Review of OEDO Publications, contains the results of an analysis of data presentation in forty-six coal, gas, electric, oil and consolidated publications. A summary of our findings and recommendations is listed below: where practical, a scope of publication section and executive summary should be included in OEDO publications; table formats, including titles and endnotes should be uniform; more detailed guidelines for titling should be established by the Energy Information Administration (EIA); and a more detailed set of standards for footnotes, notes and source notes should be established by EIA.

  12. Electric Power Research Institute, Environmental Control Technology Center report to the Steering Committee. Final technical report

    SciTech Connect

    1995-07-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block, and a simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). At the end of the month, a series of Duct Injection tests began in a study to determine the efficiencies of alkaline injection for removing trace elements (mercury). On the Cold-Side Selective Catalytic Reduction (SCR) unit, low temperature performance testing continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the catalysts installed in the SCR reactor. This report describes the status of the facilities and test activities at the pilot and mini-pilot plants.

  13. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1997-11-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  14. DC/DC Power Converter for Super-Capacitor Supplied by Electric Power Splitter

    NASA Astrophysics Data System (ADS)

    Haubert, T.; Mindl, P.

    The aim of the article is design of DC/DC converter and discussing of problematic supply using electric power splitter. The electric power splitter with AC/DC converter is source for the DC/DC converter, which is dedicated for charging and discharging of hybrid car drive super-capacitor energy storage. The electric power splitter is synchronous machine with two rotating parts. First rotor contains permanent magnet and the second rotor contains three-phase windings. The amplitude of output voltage depends on difference between first and second rotor speed. The main role of the DC/DC converter is to optimize energy content in super-capacitor storage used to acceleration and deceleration driving period of the passenger car with hybrid electric vehicle (HEV) drive system using electric power splitter.

  15. Communications and control for electric power systems

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Goettsche, A.; Niebur, D.; Friend, H.; Johnston, A.

    1991-01-01

    The first section of the report describes the AbNET system, a hardware and software communications system designed for distribution automation (it can also find application in substation monitoring and control). The topology of the power system fixes the topology of the communications network, which can therefore be expected to include a larger number of branch points, tap points, and interconnections. These features make this communications network unlike any other. The network operating software has to solve the problem of communicating to all the nodes of a very complex network in as reliable a way as possible even if the network is damaged, and it has to do so with minimum transmission delays and at minimum cost. The design of the operating protocols is described within the framework of the seven-layer Open System Interconnection hierarchy of the International Standards Organization. Section 2 of the report describes the development and testing of a high voltage sensor based on an electro-optic polymer. The theory of operation is reviewed. Bulk fabrication of the polymer is discussed, as well as results of testing of the electro-optic coefficient of the material. Fabrication of a complete prototype sensor suitable for use in the range 1-20 kV is described. The electro-optic polymer is shown to be an important material for fiber optic sensing applications. Appendix A is theoretical support for this work. The third section of the report presents the application of an artificial neural network, Kohonen's self-organizing feature map, for the classification of power system states. This classifier maps vectors of an N-dimensional space to a 2-dimensional neural net in a nonlinear way preserving the topological order of the input vectors. These mappings are studied using a nonlinear power system model.

  16. Nuclear electric power for multimegawatt orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Casagrande, R. D.

    1987-01-01

    Multimegawatt nuclear propulsion is an attractive option for orbit transfer vehicles. The masses of these platforms are expected to exceed the capability of a single launch from Earth necessitating assembly in space in a parking orbit. The OTV would transfer the platform from the parking orbit to the operational orbit and then return for the next mission. Electric propulsion is advantageous because of the high specific impulse achieved by the technology, 1000 to 5000 s and beyond, to reduce the propellant required. Nuclear power is attractive as the power system because of the weight savings over solar systems in the multimegawatt regime, and multimegawatts of power are required. A conceptual diagram is shown of an OTV with a command control module using electric thrusters powered from an SP-100 class nuclear reactor power system.

  17. Electric Power Delivery Testing Feasibility Study Task 6 Final Report

    SciTech Connect

    Thomas Tobin

    2009-07-01

    This Final Report is covers the completion of the Electric Power Delivery Testing Feasibility Study. The objective of this project was to research, engineer, and demonstrate high-power laboratory testing protocols to accurately reproduce the conditions on the electric power grid representing both normal load switching and abnormalities such as short-circuit fault protection. Test circuits, equipment, and techniques were developed and proven at reduced power levels to determine the feasibility of building a large-scale high-power testing laboratory capable of testing equipment and systems at simulated high-power conditions of the U.S. power grid at distribution levels up through 38 kiloVolts (kV) and transmission levels up through 230 kV. The project delivered demonstrated testing techniques, high-voltage test equipment for load testing and synthetic short-circuit testing, and recommended designs for future implementation of a high-power testing laboratory to test equipment and systems, enabling increased reliability of the electric transmission and distribution grid.

  18. Airport electric vehicle powered by fuel cell

    NASA Astrophysics Data System (ADS)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  19. Evaluation of all-electric secondary power for transport aircraft

    NASA Technical Reports Server (NTRS)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  20. Electric power industry in Korea: Past, present, and future

    SciTech Connect

    Lee, Hoesung

    1994-12-31

    Electrical power is an indispensable tool in the industrialization of a developing country. An efficient, reliable source of electricity is a key factor in the establishment of a wide range of industries, and the supply of energy must keep pace with the increasing demand which economic growth creates in order for that growth to be sustained. As one of the most successful of all developing countries, Korea has registered impressive economic growth over the last decade, and it could be said that the rapid growth of the Korean economy would not have been possible without corresponding growth in the supply of electric power. Power producers in Korea, and elsewhere in Asia, are to be commended for successfully meeting the challenge of providing the necessary power to spur what some call an economic miracle. The future continues to hold great potential for participants in the electrical power industry, but a number of important challenges must be met in order for that potential to be fully realized. Demand for electricity continues to grow at a staggering rate, while concerns over the environmental impact of power generating facilities must not be ignored. As it becomes increasingly difficult to finance the rapid, and increasingly larger-scale expansion of the power industry through internal sources, the government must find resources to meet the growing demand at least cost. This will lead to important opportunities for the private sector. It is important, therefore, for those interested in participating in the power production industry and taking advantage of the newly emerging opportunities that lie in the Korean market, and elsewhere in Asia, to discuss the relevant issues and become informed of the specific conditions of each market.

  1. Evaluation of all-electric secondary power for transport aircraft

    NASA Astrophysics Data System (ADS)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  2. 78 FR 66785 - Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... COMMISSION Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation AGENCY: Nuclear... APR1400 Standard Plant Design submitted by Korea Hydro and Nuclear Power Co., Ltd. (KHNP) and Korea... documents at the NRC's PDR, Room O1-F21, One White Flint North, 11555 Rockville Pike, Rockville,...

  3. Proposal of an Innovative Electric Power Distribution System based on Packet Power Transactions

    NASA Astrophysics Data System (ADS)

    Inoue, Jun; Fujii, Yasumasa

    Recently, the introduction of decentralized generators, such as photovoltaic power generations, has been promoted rapidly. In the future, extensive use of PV is thought to give rise to the daytime surplus electricity, and a household will manage the surplus electricity rationally. The purpose of this research is to propose an innovative electric power distribution system based on packet power transactions. First, this paper explains distributed markets of which the price can easily reflect the geographical diversity of renewable energy availability and load curve characteristic within the local area. Second, this paper exemplifies the specific electronic circuit that makes pulse-shaped power transmission to develop the packet power distribution system. Finally, this paper shows the results of multi-agent simulations of electricity trading to evaluate the usefulness of the proposed system.

  4. Electrical power requirements analysis. Single failure tolerant entry

    NASA Technical Reports Server (NTRS)

    Pipher, M. D.; Green, P. A.; Wolfgram, D. F.

    1977-01-01

    The results of an analysis of the orbiter electrical power system for the case of a single failure tolerant (SFT) entry are presented. The analysis was performed using the shuttle electrical power system analysis computer program. It was performed to permit assessment of the capability of the orbiter systems to support the proposed entry configuration and to provide the data necessary to identify potential constraints and limitations. Three contingency modes have been identified which would require an SFT entry. This analysis addresses an SFT entry resulting from the loss of two fuel cell powerplants, while on orbit. The results of the analysis indicate that, even under near optimum conditions, the fuel cell power demand will exceed the tested operating capacity of 16 kw, and that various electrical components may experience voltages below 24 VDC.

  5. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  6. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  7. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  8. Advanced power electronics and electric machinery program

    SciTech Connect

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  9. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric and hydraulic power supply. 111.97-5 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the...

  10. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric and hydraulic power supply. 111.97-5 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the...

  11. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric and hydraulic power supply. 111.97-5 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the...

  12. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric and hydraulic power supply. 111.97-5 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the...

  13. Electrical power system design for the US space station

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.; Bernatowicz, Daniel T.

    1986-01-01

    The multipurpose, manned, permanent space station will be our next step toward utilization of space. A multikilowatt electrical power system will be critical to its success. The power systems for the space station manned core and platforms that have been selected in definition studies are described. The system selected for the platforms uses silicon arrays and Ni-H2 batteries. The power system for the manned core is a hybrid employing arrays and batteries identical to those on the platform along with solar dynamic modules using either Brayton or organic Rankine engines. The power system requirements, candidate technologies, and configurations that were considered, and the basis for selection, are discussed.

  14. A novel visualization technique for electric power grid analytics.

    PubMed

    Wong, Pak Chung; Schneider, Kevin; Mackey, Patrick; Foote, Harlan; Chin, George; Guttromson, Ross; Thomas, Jim

    2009-01-01

    The application of information visualization holds tremendous promise for the electric power industry, but its potential has so far not been sufficiently exploited by the visualization community. Prior work on visualizing electric power systems has been limited to depicting raw or processed information on top of a geographic layout. Little effort has been devoted to visualizing the physics of the power grids, which ultimately determines the condition and stability of the electricity infrastructure. Based on this assessment, we developed a novel visualization system prototype, GreenGrid, to explore the planning and monitoring of the North American Electricity Infrastructure. The paper discusses the rationale underlying the GreenGrid design, describes its implementation and performance details, and assesses its strengths and weaknesses against the current geographic-based power grid visualization. We also present a case study using GreenGrid to analyze the information collected moments before the last major electric blackout in the Western United States and Canada, and a usability study to evaluate the practical significance of our design in simulated real-life situations. Our result indicates that many of the disturbance characteristics can be readily identified with the proper form of visualization. PMID:19282548

  15. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  16. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew F.; Mclallin, Kerry L.; Zernic, Michael J.

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased space station user requirements and advancing technologies. The space station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial space station systems such as guidance navigation and control, external thermal, truss structural stiffness, computational capabilities and storage which must be planned-in in order to facilitate the addition of the solar dynamic modules.

  17. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  18. Application of the Villari effect to electric power harvesting

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Lord, D. G.

    2006-04-01

    Transducers utilizing the Villari effect (inverse-magnetostrictive effect) consist of a coil wound on a core of magnetostrictive material. In this paper, a linear magnetomechanical coupling model is developed to analytically calculate the potential electrical power such transducers can generate when subjected to applied harmonic mechanical vibration. Two vibration modes, force driven and displacement driven, are distinguished. The eddy current effect in the magnetostrictive core material and the leakage inductance of the coil are taken into account. Comparisons of output electrical power are presented for Terfenol-D and Galfenol magnetostrictive cores.

  19. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01

    California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity

  20. 30 CFR 56.12016 - Work on electrically-powered equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on electrically-powered equipment. 56... Electricity § 56.12016 Work on electrically-powered equipment. Electrically powered equipment shall be deenergized before mechanical work is done on such equipment. Power switches shall be locked out or...

  1. 30 CFR 56.12016 - Work on electrically-powered equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on electrically-powered equipment. 56... Electricity § 56.12016 Work on electrically-powered equipment. Electrically powered equipment shall be deenergized before mechanical work is done on such equipment. Power switches shall be locked out or...

  2. 30 CFR 56.12016 - Work on electrically-powered equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on electrically-powered equipment. 56... Electricity § 56.12016 Work on electrically-powered equipment. Electrically powered equipment shall be deenergized before mechanical work is done on such equipment. Power switches shall be locked out or...

  3. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used...

  4. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used...

  5. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used...

  6. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used...

  7. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used...

  8. Exposure assessment for power frequency electric and magnetic fields.

    PubMed

    Bracken, T D

    1993-04-01

    environment. Utility job categories with the highest exposures are generation facility workers, substation operators, utility linemen, and utility electricians. There are also higher exposures among traditional "electrical worker" job categories. Outside the electrical utility industry, potential sources of high occupational magnetic field exposures at ELF are induction furnaces, welding machines, electrical transportation systems, and electrical distribution vaults. However, the use of low power electrical equipment such as small motors in close proximity to workers and possibly for long periods of time could also lead to high exposure situations. Handheld survey instruments are available to perform area measurements of electric and magnetic fields at power frequencies but not aat all frequencies within the ELF range. Sophisticated personal computer-based instruments are available to characterize areas and sources across the entire frequency range.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8480632

  9. Communications and control for electric power systems

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    1992-01-01

    A long-term strategy for the integration of new control technologies for power generation and delivery is proposed: the industry would benefit from an evolutionary approach that would adapt to its needs future technologies as well as those that it has so far not heeded. The integrated operation of the entire system, including the distribution system, was proposed as a future goal. The AbNET communication protocols are reviewed, and additions that were made in 1991 are described. In the original network, traffic was controlled by polling at the master station, located at the substation, and routed by a flooding algorithm. In a revised version, the polling and flooding are modified. The question of interfacing low-energy measurement transducers or instrument transformers is considered. There is presently little or no agreement on what the output of optical current transducers (CT's) should be. Appendices deal with the calibration of current transducers; with Delta modulation, a simple means of serially encoding the output of an OCT; and with noise shaping, a method of digital signal processing that trades off the number of bits in a digital sample for a higher number of samples.

  10. MHD conversion of solar energy. [space electric power system

    NASA Technical Reports Server (NTRS)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  11. How can monthly to seasonal forecasts help to better manage power systems? (Invited)

    NASA Astrophysics Data System (ADS)

    Dubus, L.; Troccoli, A.

    2013-12-01

    The energy industry increasingly depends on weather and climate, at all space and time scales. This is especially true in countries with volunteer renewable energies development policies. There is no doubt that Energy and Meteorology is a burgeoning inter-sectoral discipline. It is also clear that the catalyst for the stronger interaction between these two sectors is the renewed and fervent interest in renewable energies, especially wind and solar power. Recent progress in meteorology has led to a marked increase in the knowledge of the climate system and in the ability to forecast climate on monthly to seasonal time scales. Several studies have already demonstrated the effectiveness of using these forecasts for energy operations, for instance for hydro-power applications. However, it is also obvious that scientific progress on its own is not sufficient to increase the value of weather forecasts. The process of integration of new meteorological products into operational tools and decision making processes is not straightforward but it is at least as important as the scientific discovery. In turn, such integration requires effective communication between users and providers of these products. We will present some important aspects of energy systems in which monthly to seasonal forecasts can bring useful, if not vital, information, and we will give some examples of encouraging energy/meteorology collaborations. We will also provide some suggestions for a strengthened collaboration into the future.

  12. Electric power from offshore wind via synoptic-scale interconnection.

    PubMed

    Kempton, Willett; Pimenta, Felipe M; Veron, Dana E; Colle, Brian A

    2010-04-20

    World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464

  13. Electric power from offshore wind via synoptic-scale interconnection

    PubMed Central

    Kempton, Willett; Pimenta, Felipe M.; Veron, Dana E.; Colle, Brian A.

    2010-01-01

    World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464

  14. Apollo experience report: Lunar module electrical power subsystem

    NASA Technical Reports Server (NTRS)

    Campos, A. B.

    1972-01-01

    The design and development of the electrical power subsystem for the lunar module are discussed. The initial requirements, the concepts used to design the subsystem, and the testing program are explained. Specific problems and the modifications or compromises (or both) imposed for resolution are detailed. The flight performance of the subsystem is described, and recommendations pertaining to power specifications for future space applications are made.

  15. Wind power forecasting in U.S. Electricity markets

    SciTech Connect

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  16. Interface requirements for electric propulsion power processing equipment

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Schoenfeld, A. D.; Goldin, D. S.; Shank, J. H.

    1973-01-01

    Power processor interfaces, internal functions, and design techniques established for the 30-cm ion engine power processor are discussed. The interfaces include the ion engine interface, the spacecraft interface, source/load interactions, protection, and optimization criteria. In the analysis, particular attention is given to the interaction and protection aspects. A breadbord system designed and built for the 30-cm ion engine is discussed which will be used as an engineering tool to establish guidelines for electric propulsion systems.

  17. A comparative study of electric power distribution systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.

    1990-01-01

    The electric power distribution systems for spacecraft are compared concentrating on two interrelated issues: the choice between dc and high frequency ac, and the converter/inverter topology to be used at the power source. The relative merits of dc and ac distribution are discussed. Specific converter and inverter topologies are identified and analyzed in detail for the purpose of detailed comparison. Finally, specific topologies are recommended for use in dc and ac systems.

  18. Power feature required for PEFC powered electric propulsion ship

    SciTech Connect

    Yoshida, Isao; Oka, Masaru

    1996-12-31

    This report covers part of a joint study on a PEFC system for ship propulsion, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns an analysis of the load-following performance required and estimated of a PEFC system to power the envisaged ship. The analysis proved that difficulty should be expected of the fuel supply circuit in following with adequate rapidity the sharp changes of load on fuel cell under certain conditions. Further integrated experiments and simulation exercises are currently in progress to further analyze the response characteristics of the fuel supply circuit-particularly of the methanol reformer and gas reservoir-to determine the best measure to be adopted for overcoming the expected difficulty.

  19. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  20. The US space station and its electric power system

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald L.

    1988-01-01

    The United States has embarked on a major development program to have a space station operating in low earth orbit by the mid-1990s. This endeavor draws on the talents of NASA and most of the aerospace firms in the U.S. Plans are being pursued to include the participation of Canada, Japan, and the European Space Agency in the space station. From the start of the program these was a focus on the utilization of the space station for science, technology, and commercial endeavors. These requirements were utilized in the design of the station and manifest themselves in: pressurized volume; crew time; power availability and level of power; external payload accommodations; microgravity levels; servicing facilities; and the ability to grow and evolve the space station to meet future needs. President Reagan directed NASA to develop a permanently manned space station in his 1984 State of the Union message. Since then the definition phase was completed and the development phase initiated. A major subsystem of the space station is its 75 kW electric power system. The electric power system has characteristics similar to those of terrestrial power systems. Routine maintenance and replacement of failed equipment must be accomplished safely and easily and in a minimum time while providing reliable power to users. Because of the very high value placed on crew time it is essential that the power system operate in an autonomous mode to minimize crew time required. The power system design must also easily accommodate growth as the power demands by users are expected to grow. An overview of the U.S. space station is provided with special emphasis on its electrical power system.

  1. Hybrid-powered wheelchair: a combination of arm force and electrical power for propelling a wheelchair.

    PubMed

    Cremers, G B

    1989-01-01

    Many of the handicapped who could use a hand-driven wheelchair do not have sufficient arm force, arm movement and/or endurance for proper propulsion. Furthermore, there are users of electric wheelchairs who still have some arm functions and strength. In some cases a hand-driven chair, which can be propelled with reduced arm power, could be a better solution. By means of simulation, a study has been carried out to investigate the possibility of propelling a wheelchair by means of hybrid powering. Hybrid powering can be defined as a combination of arm force and electrical power. Using this hybrid principle, the necessary arm force can be decreased. PMID:2733008

  2. Novel Multiple DC-Inputs Direct Electric-Power Converter

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kantaro; Takahashi, Kouji; Okushima, Keiji; Tani, Kazuhiko

    A new multiple dc-inputs direct electric-power converter (D-EPC) has been developed. It is placed between multiple dc power sources and an ac motor, thereby eliminating the need for a dc/dc converter that is generally used in conventional converter/inverter systems. D-PEC can improve the efficiency of a motor drive system with a more compact size. Its power distribution control is carried out by allotting voltage ratios to each of the two different dc power sources on a time average basis. A new pulse width modulation (PWM) generation technique to drive the switching devices in D-EPC has also been developed. Tests have verified that the three-phase ac motor can be operated by controlling the power distribution between the two power sources.

  3. Electrical Properties and Power Considerations of a Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jordan, T.; Ounaies, Z.; Tripp, J.; Tcheng, P.

    1999-01-01

    This paper assesses the electrical characteristics of piezoelectric wafers for use in aeronautical applications such as active noise control in aircraft. Determination of capacitive behavior and power consumption is necessary to optimize the system configuration and to design efficient driving electronics. Empirical relations are developed from experimental data to predict the capacitance and loss tangent of a PZT5A ceramic as nonlinear functions of both applied peak voltage and driving frequency. Power consumed by the PZT is the rate of energy required to excite the piezoelectric system along with power dissipated due to dielectric loss and mechanical and structural damping. Overall power consumption is thus quantified as a function of peak applied voltage and driving frequency. It was demonstrated that by incorporating the variation of capacitance and power loss with voltage and frequency, satisfactory estimates of power requirements can be obtained. These relations allow general guidelines in selection and application of piezoelectric actuators and driving electronics for active control applications.

  4. Energy regeneration model of self-consistent field of electron beams into electric power*

    NASA Astrophysics Data System (ADS)

    Kazmin, B. N.; Ryzhov, D. R.; Trifanov, I. V.; Snezhko, A. A.; Savelyeva, M. V.

    2016-04-01

    We consider physic-mathematical models of electric processes in electron beams, conversion of beam parameters into electric power values and their transformation into users’ electric power grid (onboard spacecraft network). We perform computer simulation validating high energy efficiency of the studied processes to be applied in the electric power technology to produce the power as well as electric power plants and propulsion installation in the spacecraft.

  5. Evaluation of cryogenic power conditioning subsystems for electric propulsion spacecraft

    SciTech Connect

    Das, R.S.L.; Krauthamer, S.; Frisbee, R.H.

    1996-12-31

    The power requirement of vehicles designed to transport cargo supporting a piloted expedition to Mars is in the range of megawatts. Therefore, it is imperative that the megawatt-class power processing unit designed for high-power nuclear electric propulsion vehicles using turboalternators and advanced magnetoplasmadynamic (MPD) thrusters should be such that the overall system efficiency is as high as possible with minimum system specific mass. This paper examines the use of cryogenic power conditioning subsystems to achieve that goal since they have very high efficiency. However, in the past, cryogenic power conditioning subsystems have shown complexity of design and implementation and were costly and somewhat uncertain. With recent advances in materials, devices used in power conversion and cooling methods, further improvements in efficiency and specific mass are realizable. Cryogenically cooled MOSFETs and MCTs are considered for power conversion and two configurations have been examined. It is found that a system efficiency of 92.67% and specific mass of 9.99 kg/kW{sub e} can be realized using MOSFET-based cryogenic power conditioning systems for electric propulsion spacecraft using MPD thrusters. With cryogenically cooled MCTs, the specific mass decreases to 9.77 kg/kW{sub e}, but the efficiency also decreases to 90.94%.

  6. A method to estimate the environmental impact of an electric city car during six months of testing in an Italian city

    NASA Astrophysics Data System (ADS)

    Donateo, T.; Ingrosso, F.; Licci, F.; Laforgia, D.

    2014-12-01

    The present investigation describes the results of a research project (P.R.I.M.E.) aimed at testing the performance and the environmental impact of an electric city car in Italian cities. The vehicle considered in the project is the Daimler AG Smart ForTwo Electric Drive. A Smart ED vehicle was tested at the University of Salento for six months over different driving conditions (routes, traffic, use of auxiliaries). A data acquisition system has been designed on purpose and assembled on board to provide information about driving cycle and energy flows. The system was also used to evaluate the losses of energy during recharges due to the battery cooling system. The experimental tests were used to identify the average, minimum and maximum consumption of electricity in the Smart ED in Lecce according to driving conditions and in particular according to the usage of auxiliaries. The measured data of electric consumption have been used to quantify the emissions of CO2 and pollution of the vehicle using information about the Italian electricity production mix of each recharging event and the emissions factors of the Italian power plants with an innovative and comprehensive methodology.

  7. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  8. Road electric generation system with use of solar power

    SciTech Connect

    Meiarashi, S.; Ohara, Toshimasa

    1997-09-01

    The temperature of road pavement surface becomes more than 70 C because of the solar power in summer. The characteristics of asphalt pavement on heat transfer and the relatively huge occupation with urban area have caused the heat-island phenomena. The phenomena increase the temperature and the energy consumption for conditioners. Road administrators have to keep the road pavement surface out of freezing in winter. For the purpose, the use of dusting powder becomes popular in recent days. However, the negative influence of the huge amount of the powder could not be ignored, for instance, corrosion of steel bridge and cars, water pollution, and soil pollution. Another way is a road heating system. The enormous electric energy consumption prevents the system from becoming popular. The authors have devised the new system that generates electric power and works as a road heating system. The authors call the system as ``Road Electric Generation System (REGS).`` The basic principal of the electric generation and road heating is Seebeck and Pertier effect, respectively. In this paper, the authors have calculated the electric power generated by the system, road surface temperature after introducing the system, and the heat radiation from the road surface.

  9. Performance issues for a changing electric power industry

    SciTech Connect

    Not Available

    1995-01-01

    Extremely cold weather created record demands for electricity in the eastern two-thirds of the United States during the week of January 16, 1994. Fuel-related problems, mostly the result of transportation constraints resulting from ice accumulation on roads and water-ways, and unexpected generating capacity outages at utilities and nonutilities resulted in demand not being met. Some utilities asked nonessential customers along with State governments and a portion of the Federal Government to shut down. Two electric control areas, the Pennsylvania-New Jersey-Maryland Interconnection (PJM) and Virginia Electric & Power Company (VEPCO), instituted rolling blackouts. This disturbance was reported widely in the press and, along with other disturbances, peaked renewed interest in the reliability of the electric power system. The renewed interest in reliability has coincided with substantial changes that are beginning to occur in the structure and competitiveness of the electric power industry. Juxtaposing the question of reliability and the issue of changing industry structure leads to the central concern of this report: What effect, if any, will the changing structure of the industry have on the reliability of the system?

  10. Changing Structure of the Electric Power Industry: 1970-1991

    EIA Publications

    1993-01-01

    The purpose of this report is to provide a comprehensive overview of the ownership of the U.S. electric power industry over the past two decades, with emphasis on the major changes that have occurred, their causes, and their effects.

  11. Engineering study for the phase 1 privatization facilities electrical power

    SciTech Connect

    Singh, G., Westinghouse Hanford

    1996-07-18

    This engineering study evaluates the availability of electric power from the existing 13.8 kV substation, BPA 115 kV system,and RL 230 kV transmission line; for supporting the Privatization Phase I Facilities. 230 kV system is a preferable alternative.

  12. Performance Issues for a Changing Electric Power Industry

    EIA Publications

    1995-01-01

    Provides an overview of some of the factors affecting reliability within the electric bulk power system. Historical and projected data related to reliability issues are discussed on a national and regional basis. Current research on economic considerations associated with reliability levels is also reviewed.

  13. VIEW OF SHEAR (ELECTRIC POWERED), SCALE HOUSE TO LEFT. BARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SHEAR (ELECTRIC POWERED), SCALE HOUSE TO LEFT. BARS ARE PLACED ON WEIGHING SCALE SHOWN LOWER LEFT. 15-TON CLEVELAND CRANE HANDLES BARS FOR FINAL LOADING INTO RAILROAD CARS (12" BAY) AND FOR MOVING FROM TABLE TO SHEAR TABLE. - Cambria Iron Company, Gautier Works, 12" Mill, Clinton Street & Little Conemaugh River, Johnstown, Cambria County, PA

  14. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  15. 8. SOUTH SIDE OF EAST PHOTO TOWER; ELECTRICAL POWER BOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SOUTH SIDE OF EAST PHOTO TOWER; ELECTRICAL POWER BOX ON RIGHT. LEFT TO RIGHT IN BACKGROUND: A STORAGE SHED (BLDG. 776), METEOROLOGICAL TOWER, PYROTECHNIC SHED (BLDG. 757), AND SLC-3W MST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Laboratory Manual for Power Processing, Part 1. Electric Machinery Analysis.

    ERIC Educational Resources Information Center

    Hamilton, Howard B.

    This publication was developed as a portion of a two-semester sequence commencing at either the sixth or seventh term of the undergraduate program in electrical engineering at the University of Pittsburgh. The materials of the two courses, produced by a National Science Foundation grant, are concerned with power conversion systems comprising power…

  17. Automatic detection of electric power troubles (AI application)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint

    1987-01-01

    The design goals for the Automatic Detection of Electric Power Troubles (ADEPT) were to enhance Fault Diagnosis Techniques in a very efficient way. ADEPT system was designed in two modes of operation: (1) Real time fault isolation, and (2) a local simulator which simulates the models theoretically.

  18. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  19. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    Johnson, F. D.; Heins, C. F.

    1974-01-01

    Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.

  20. Problem Manual for Power Processing, Part 1. Electric Machinery Analysis.

    ERIC Educational Resources Information Center

    Hamilton, Howard B.

    This publication was developed as a portion of a two-semester sequence commencing at either the sixth or seventh term of the undergraduate program in electrical engineering at the University of Pittsburgh. The materials of the two courses, produced by a National Science Foundation grant, are concerned with power conversion systems comprising power…

  1. 78 FR 29159 - Electric Power Research Institute; Seismic Evaluation Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing an endorsement letter of Electric Power Research Institute (EPRI) Report, ``Seismic Evaluation Guidance: EPRI Guidance for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic,'' Draft Report, hereafter referred to as the EPRI...

  2. Process for electric power production using a biogas

    SciTech Connect

    Archer, D.H.; Bauer, F.I.; Vidt, E.J.

    1987-01-27

    A process is described for the production of electric power with a biogas used as a fuel for an electric power producing combustion turbine which drives a generator. The turbine will accept such a biogas only at a temperature below a predetermined temperature, wherein a biomass is gasified to produce a hot stream of a biogas. The biogas is at temperatures of between about 650/sup 0/-875/sup 0/C and contains vaporized tar components and solid particulate matter. It is characterized in that: the hot stream of biogas, consisting essentially of a biogas, vaporized tars and solid particulate matter, has water injected thereto partially cool the biogas to a temperature below the predetermined temperature by vaporization of the water. However, the biogas is above a temperature at which the vaporized tars in the biogas would condense out of the stream; filtering the partially cooled biogas to remove the particulate matter; and directly charging the partially cooled, filtered biogas containing the vaporized water and vaporized tars to an electric power producing combustion turbine to produce electric power.

  3. Electrical and reliability characterization of Schottky power diodes

    NASA Astrophysics Data System (ADS)

    Gift, F. M.; Yarbrough, D.; Koslover, M.; Borst, D.; Pelly, B.

    1981-04-01

    This program examined the barrier materials which were available in late 1978. Screening, electrical characterization and step stress testing were performed on six different processes power Schottky rectifiers. The proposed drafts of MIL-S-19500 detail specifications were prepared as part of this project. The data, proposed limits and related discussions are presented in this report.

  4. 34. SOUTH PLANT NORTHCENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT (BUILDING 325) AT LEFT AND CELL BUILDING (BUILDING 242) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  5. 29. ELECTRICAL EQUIPMENT. PLAN FOR POWER HOUSE, SANTA ANA RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. ELECTRICAL EQUIPMENT. PLAN FOR POWER HOUSE, SANTA ANA RIVER P. H. NO. 3, JUNE 23, 1943; REVISIONS, MAR. 14, 1945 AND MAY 17, 1954. SCE drawing no. 523219-2. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  6. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Emergency source of electrical power. 28.375 Section 28.375 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar Stage of Construction on or After or...

  7. 46 CFR 28.355 - Main source of electrical power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Main source of electrical power. 28.355 Section 28.355 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar Stage of Construction on or After or Which Undergo...

  8. Electrical Power and Illumination Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  9. Simulation of electric vehicles with hybrid power systems

    SciTech Connect

    Burke, A.F.; Cole, G.H.

    1990-01-01

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics. 2 refs., 7 figs., 14 tabs.

  10. Remote Electric Power Transfer Between Spacecrafts by Infrared Beamed Energy

    NASA Astrophysics Data System (ADS)

    Chertok, Boris E.; Evdokimov, Roman A.; Legostaev, Victor P.; Lopota, Vitaliy A.; Sokolov, Boris A.; Tugaenko, Vjacheslav Yu.

    2011-11-01

    High efficient wireless electric energy transmission (WET) technology between spacecrafts by laser channel is proposed. WET systems could be used for remote power supplying of different consumers in space. First of all, there are autonomous technology modules for microgravity experiments, micro and nano satellites, different equipment for explorations of planetary surfaces, space transport vehicles with electric rocket propulsion systems. The main components of the WET technology consist of radiation sources on the base of semiconductor IR laser diodes; systems for narrow laser beam creation; special photovoltaic receivers for conversion of monochromatic IR radiation with high energy density to electric power. The multistage space experiment for WET technology testing is described. During this experiment energy will be transmitted from International Space Station to another spacecrafts like cargo transport vehicles (Progress or/and ATV) and micro satellites.

  11. Thrust stand for high-power electric propulsion devices

    NASA Technical Reports Server (NTRS)

    Haag, T. W.

    1991-01-01

    This paper describes a new high-power thrust stand developed for use with high-power (up to 250 kW) magnetoplasmadynamic (MPD) thrusters, which is installed in a high-vacuum MPD facility at Lewis Research Center. The design of the stand is based on inverted pendulum configuration, with the result of large displacements and high resolution. Calibration results showed that thrust measurements were linear and repeatable to within a fraction of 1 percent. The thrust stand was used for testing water-cooled MPD thrusters at power levels up to 125 kW. The thruster, however, is quite well suited for testing other types of electric propulsion devices.

  12. Simulation test beds for the Space Station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are respnsible for developing the electrical power system on the Space Station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  13. Simulation test beds for the space station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are responsible for developing the electrical power system on the space station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  14. 25 CFR 175.13 - Procedures for adjusting electric power rates to reflect changes in the cost of purchased power...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... changes in the cost of purchased power or energy. 175.13 Section 175.13 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Service Fees, Electric Power Rates... purchased power or energy. Whenever the cost of purchased power or energy changes, the effect of the...

  15. 25 CFR 175.13 - Procedures for adjusting electric power rates to reflect changes in the cost of purchased power...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... changes in the cost of purchased power or energy. 175.13 Section 175.13 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Service Fees, Electric Power Rates... purchased power or energy. Whenever the cost of purchased power or energy changes, the effect of the...

  16. 25 CFR 175.13 - Procedures for adjusting electric power rates to reflect changes in the cost of purchased power...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... changes in the cost of purchased power or energy. 175.13 Section 175.13 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Service Fees, Electric Power Rates... purchased power or energy. Whenever the cost of purchased power or energy changes, the effect of the...

  17. High Power Electric Propulsion for Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.

    2003-01-01

    Focused technology trade studies for Nuclear Electric Propulsion vehicle concepts for outer planet missions are presented; representative mission, vehicle and technology characterizations illustrate samples of work done under the NASA Marshall Space Flight Center-Boeing-SAIC In-Space Technology Assessment (ISTA) contract. An objective of ISTA is to identify and present sound technical and programtic options for the formulation and implementation of advanced electric and chemical propulsion solar system exploration missions. Investigations to date include a variety of outer planet destinations, trip times, science payload allotments, orbital capture techniques, all conducted to illustrate how advanced technology would maximize mission benefits. Architecture wide optimizations that facilitate good propulsion technology investments for advanced electric and chemical propulsion systems were conducted, including those relevant to the nuclear system initiative. Representative analyses of vehicles utilizing fission reactors with advanced power generation, Conversion, processing and electric propulsion systems, which would enable scientifically rich robotic exploration missions, are presented.

  18. Improving Functional Performance and Muscle Power 4-to-6 Months After Anterior Cruciate Ligament Reconstruction.

    PubMed

    Souissi, Sabrine; Wong, Del P; Dellal, Alexandre; Croisier, Jean-Louis; Ellouze, Zied; Chamari, Karim

    2011-01-01

    The purpose of this study was to examine the effects of 8-week retraining programs, with either two or three training sessions per week, on measures of functional performance and muscular power in athletes with anterior cruciate ligament reconstruction (ACLR). Sixteen male athletes were randomly assigned to two groups after ACLR: a functional training group (FTG, n = 8) training 2 intense sessions per week (4hrs/week), and a control group (CG, n = 8) training 3 sessions per week with moderate intensity (6hrs/week). The two groups were assessed at four and six months post-ACLR and the effects of retraining were measured using the following assessments: the functional and the muscular power tests, and the agility T-test. After retraining, the FTG had improved more than the CG in the operated leg in the single leg hop test (+34.64% vs. +10.92%; large effect), the five jump test (+8.87% vs. +5.03%; medium effect), and single leg triple jump (+32.15% vs. +16.05%; medium effect). For the agility T-test, the FTG had larger improvements (+17.26% vs. +13.03%, medium effect) as compared to the CG. For the bilateral power tests, no significant training effects were shown for the two groups in the squat jump (SJ), the counter movement jump (CMJ) and the free arms CMJ (Arm CMJ). On the other hand, the unilateral CMJ test with the injured and the uninjured legs showed a significant increase for the FTG with respect to CG (p < 0.05). The present study introduces a new training modality in rehabilitation after ACLR that results in good recovery of the operated limb along with the contra-lateral leg. This may allow the athletes to reach good functional and strength performance with only two physical training sessions per week, better preparing them for a return to sport activity at 6 months post- ACLR and eventually sparing time for a possible progressive introduction of the sport specific technical training. Key pointsFunctional training (plyometrics, neuromuscular, proprioceptive

  19. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans

    SciTech Connect

    Lammert, M.

    2009-12-01

    Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

  20. Stability and bifurcation of equilibria in electric power networks

    SciTech Connect

    Yu Xiaoming.

    1991-01-01

    This research seeks the qualitative and quantitative characterization of instability mechanisms of power networks with various combinations of load models, and develops computer aided analysis tools to examine power system behavior near stability limits. The local structure of energy functions for electric power networks are considered near points (parameter values) of incipient flutter instability. Previous work by several investigators clearly indicate the subtle nature of energy functions and energy-like Lyapunov functions when the system exhibits such an instability mechanism. In fact, the question of existence of an energy function under these circumstances has been raised. It is shown here that a local energy function does exist in a sense consistent with the inverse problem of analytical mechanisms. A computational tool that supports the bifurcation analysis of electrical power networks is developed. This integrated software package provides a user-friendly working environment to apply the bifurcation theory to the system. With this program, one can have a clear picture to the local bifurcation phenomena in the electrical power networks and analyze its influence on the system stability.