Science.gov

Sample records for electric transmission towers

  1. Collapse and pull - down analysis of high voltage electricity transmission towers subjected to cyclonic wind

    NASA Astrophysics Data System (ADS)

    Ahmed, Ammar; Arthur, Craig; Edwards, Mark

    2010-06-01

    Bulk electricity transmission lines are linear assets that can be very exposed to wind effects, particularly where they traverse steep topography or open coastal terrain in cyclonic regions. Interconnected nature of the lattice type towers and conductors also, present complex vulnerabilities. These relate to the direction of wind attack to the conductors and the cascading failure mechanisms in which the failure of a single tower has cascading effects on neighbouring towers. Such behaviour is exacerbated by the finely tuned nature of tower design which serves to minimize cost and reserve strength at design wind speeds. There is a clear need to better quantify the interdependent vulnerabilities of these critical infrastructure assets in the context of the severe wind hazard. This paper presents a novel methodology developed for the Critical Infrastructure Protection Modelling and Analysis (CIPMA) capability for assessing local wind speeds and the likelihood of tower failure for a range of transmission tower and conductor types. CIPMA is a program managed by the Federal Attorney-General's Department and Geoscience Australia is leading the technical development. The methodology then involves the development of heuristically derived vulnerability models that are consistent with Australian industry experience and full-scale static tower testing results, considering isolated tower loss along with three interdependent failure mechanisms to give overall likelihoods of failure.

  2. Effects of transmission towers on orchards and vineyards

    SciTech Connect

    Scott, W.S.

    1980-10-01

    Electric power transmission towers can pose problems for the farm operator in terms of the loss of productive area and interference with the movement of machinery. A study was conducted to evaluate the impact of transmission facilities on orchard and vineyard operations in Ontario, Canada. Economic losses to peach and grape crops were determined. Time loss varied greatly depending on the specific operation and tower location. Economic effects of transmission towers varied widely depending on location and orientation, and whether or not equipment can pass through the base area.

  3. Economic effects of transmission towers on field crops in Ontario

    SciTech Connect

    Scott, W.S.

    1981-03-01

    The effects of various transmission tower sizes and locations on field crops typical to eastern and western Ontario were studied. About 70% of the costs of the towers to farmers was a result of the non-productive area created by the presence of the tower, and the remaining 30% comprised time lost in working around towers, crop damage, and, in some cases, material loss. The best location for towers was observed to be on fence-rows, while towers located in the headland had the greatest impact on operations. The magnitude of the factors involved in the costs to farmers of the presence of transmission towers was related to tower size and location, equipment size, and crop grown.

  4. TRANSMISSION TOWERS WITH LIGHTENING ARRESTORS ON HILL NORTH OF ELWHA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRANSMISSION TOWERS WITH LIGHTENING ARRESTORS ON HILL NORTH OF ELWHA POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  5. 16. GENERAL EXTERIOR VIEW LOOKING NORTHWEST, SHOWING TRANSMISSION TOWERS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. GENERAL EXTERIOR VIEW LOOKING NORTHWEST, SHOWING TRANSMISSION TOWERS ON WEST END OF BRADFORD ISLAND; BRADFORD SLOUGH DOWNSTREAM FROM POWERHOUSE #1 IS IN FOREGROUND. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  6. Wildlife and electric power transmission

    USGS Publications Warehouse

    Ellis, D.H.; Goodwin, J.G., Jr.; Hunt, J.R.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  7. Transmission tower classification based on landslide risk Map generated by Geographical Information System (GIS) at Cameron Highlands

    NASA Astrophysics Data System (ADS)

    K, Hazwani N.; O, Rohayu C.; U, Fathoni; Baharuddin, I. N. Z.; A, Azwin Z.

    2013-06-01

    Transmission tower is usually locates at remote area which is covered by hilly topography. Landslide is mainly occurring at hilly area and causing failure to the tower structure. This phenomenon subsequently will affect the national electricity supply. A landslide risk hazard map is generated using Geographical Information System (GIS). Risk classification is introduced to initiate the monitoring process along Jor-Bintang transmission line, Cameron Highland, Pahang. The classification has been divided into three categories, which are low, medium and high. This method can be applied in slope monitoring activities since all towers have been classified based on their risk level. Therefore, maintenance schedule can be planned smoothly and efficiently.

  8. Transmission tower classification based on landslide risk map generated by Geographical Information System (GIS) at Cameron Highlands

    NASA Astrophysics Data System (ADS)

    K, Hazwani N.; O, Rohayu C.; U, Fathoni; Baharuddin, Inz

    2013-06-01

    Transmission tower is usually locates at remote area which is covered by hilly topography. Landslide is mainly occurring at hilly area and causing failure to the tower structure. This phenomenon subsequently will affect the national electricity supply. A landslide risk hazard map is generated using Geographical Information System (GIS). Risk classification is introduced to initiate the monitoring process along Jor-Bintang transmission line, Cameron Highland, Pahang. The classification has been divided into three categories, which are low, medium and high. This method can be applied in slope monitoring activities since all towers have been classified based on their risk level. Therefore, maintenance schedule can be planned smoothly and efficiently.

  9. 8. SOUTH SIDE OF EAST PHOTO TOWER; ELECTRICAL POWER BOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SOUTH SIDE OF EAST PHOTO TOWER; ELECTRICAL POWER BOX ON RIGHT. LEFT TO RIGHT IN BACKGROUND: A STORAGE SHED (BLDG. 776), METEOROLOGICAL TOWER, PYROTECHNIC SHED (BLDG. 757), AND SLC-3W MST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. 13. INTERIOR OF NORTHEAST PHOTO TOWER WITH WINDOW OPEN; ELECTRICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF NORTHEAST PHOTO TOWER WITH WINDOW OPEN; ELECTRICAL POWER BOX BELOW WINDOW - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 4. VIEW OF WATER TOWER FROM ELECTRICAL TRANSFORMER CAGE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF WATER TOWER FROM ELECTRICAL TRANSFORMER CAGE AT NORTH END OF SECOND FLOOR WAREHOUSE. VIEW TO WEST-NORTHWEST. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  12. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    NASA Astrophysics Data System (ADS)

    Omar, R. C.; Ismail, A.; Khalid, N. H. N.; Din, N. M.; Hussain, H.; Jamaludin, M. Z.; Abdullah, F.; Arazad, A. Z.; Yusop, H.

    2013-06-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300-500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  13. Upward streamers produced by a lightning strike to radio transmission towers

    NASA Technical Reports Server (NTRS)

    Krider, E. Philip; Wetmore, Ralph H.

    1987-01-01

    A lightning strike to the center of three 78-m radio transmission towers produced upward discharges with lengths of 40 and 79 m from each of the neighboring towers. This strike also caused a number of insulators on guy wires that supported the tower to flash over, and the locations of these points and the two-dimensional geometry of the discharge channels are projected onto a vertical plane that is centered on the tower.

  14. Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower

    NASA Astrophysics Data System (ADS)

    Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Bamashmos, Khaled H.

    2016-03-01

    Transmission towers are tall structures, usually a steel lattice tower, used to support an overhead power line. Usually, transmission towers are analyzed as frame-truss systems and the members are assumed to be pin-connected without explicitly considering the effects of joints on the tower behavior. In this research, an engineering example of joint will be analyzed with the consideration of the joint detailing to investigate how it will affect the tower analysis. A static analysis using STAAD Pro was conducted to indicate the joint with the maximum stress. This joint will then be explicitly analyzed in ANSYS using the Finite Element Method. Three approaches were used in the software which are the simple plate model, bonded contact with no bolts, and beam element bolts. Results from the joint analysis show that stress values increased with joint details consideration. This proves that joints and connections play an important role in the distribution of stress within the transmission tower.

  15. The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

    PubMed Central

    Wang, Wenming

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  16. The effect analysis of strain rate on power transmission tower-line system under seismic excitation.

    PubMed

    Tian, Li; Wang, Wenming; Qian, Hui

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  17. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  18. Dynamic responses and vibration control of the transmission tower-line system: a state-of-the-art review.

    PubMed

    Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping

    2014-01-01

    This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers. PMID:25105161

  19. Dynamic Responses and Vibration Control of the Transmission Tower-Line System: A State-of-the-Art Review

    PubMed Central

    Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping

    2014-01-01

    This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers. PMID:25105161

  20. Electrical transmission line diametrical retainer

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  1. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Digital television transmission towers retransmission capability. 10.340 Section 10.340 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.340 Digital television transmission...

  2. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Digital television transmission towers retransmission capability. 10.340 Section 10.340 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.340 Digital television transmission...

  3. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Digital television transmission towers retransmission capability. 10.340 Section 10.340 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.340 Digital television transmission...

  4. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Digital television transmission towers retransmission capability. 10.340 Section 10.340 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.340 Digital television transmission...

  5. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Digital television transmission towers retransmission capability. 10.340 Section 10.340 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.340 Digital television transmission...

  6. Colorado Electrical Transmission Grid

    DOE Data Explorer

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  7. Automatic transmission for electric wheelchairs.

    PubMed

    Reswick, J B

    1985-07-01

    A new infinitely variable automatic transmission called the RESATRAN that automatically changes its speed ratio in response to load torque being transmitted is presented. A prototype has been built and tested on a conventional three-wheeled electric motor propelled wheelchair. It is shown theoretically that more than 50 percent reduction in power during hill climbing may be expected when a transmission-equipped wheelchair is compared to a direct-drive vehicle operating at the same voltage. It is suggested that with such a transmission, wheelchairs can use much smaller motors and associated electronic controls, while at the same time gaining in efficiency that results in longer operating distances for the same battery charge. Design details of the transmission and test results are presented. These results show a substantial reduction in operating current and increased distance of operation over a test course. PMID:3835264

  8. Effects of elevation change on mental stress in high-voltage transmission tower construction workers.

    PubMed

    Hsu, Feng-Wen; Lin, Chiuhsiang Joe; Lee, Yung-Hui; Chen, Hung-Jen

    2016-09-01

    High-voltage transmission tower construction is a high-risk operation due to the construction site locations, extreme climatic factors, elevated working surfaces, and narrow working space. To comprehensively enhance our understanding of the psychophysiological phenomena of workers in extremely high tower constructions, we carried out a series of field experiments to test and compare three working surface heights in terms of frequency-domain heart rate variability (HRV) measurements. Twelve experienced male workers participated in this experiment. The dependent variables, namely, heart rate (HR), normalized low-frequency power (nLF), normalized high-frequency power (nHF), and LF-to-HF power ratio (LF/HF), were measured with the Polar RS800CX heart rate monitor. The experimental results indicated that the task workload was similar between working surface heights. Tower construction workers perceived an increased level of mental stress as working surface height increased. PMID:27184317

  9. PERFORMANCE EVALUATION OF THE BRAINTREE ELECTRIC LIGHT DEPARTMENT DRY COOLING TOWER

    EPA Science Inventory

    The report gives results of a 5-year evaluation of the performance of a dry cooling tower for the 20-MW steam-electric generation portion of an 85-MW combined-cycle power plant. Objectives of the study were to: demonstrate dry cooling tower technology at a Massachusetts seacoast ...

  10. Expert system for first order inelastic analysis of transmission towers

    SciTech Connect

    Miller, M.; Kempner, L. Jr. ); Mueller, W. III )

    1992-01-01

    The concept of an Expert System is not new. It has been around since the days of the early computers when scientists had dreams of robot automation to do everything from washing windows to automobile design. This paper discusses an application of an expert system and addresses software development issues and various levels of expert system development form a structural engineering viewpoint. An expert system designed to aid the structural engineer in first order inelastic analysis of latticed steel transmission powers is presented. The utilization of expert systems with large numerical analysis programs is discussed along with the software development of such a system.

  11. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  12. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  13. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  14. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  15. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  16. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers.

    PubMed

    Oliveira, Valéria M; Lopes-Oliveira, Patrícia F; Passarini, Michel R Z; Menezes, Claudia B A; Oliveira, Walter R C; Rocha, Adriano J; Sette, Lara D

    2011-04-01

    Microbial diversity in corrosion samples from energy transmission towers was investigated using molecular methods. Ribosomal DNA fragments were used to assemble gene libraries. Sequence analysis indicated 10 bacterial genera within the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. In the two libraries generated from corroded screw-derived samples, the genus Acinetobacter was the most abundant. Acinetobacter and Clostridium spp. dominated, with similar percentages, in the libraries derived from corrosion scrapings. Fungal clones were affiliated with 14 genera belonging to the phyla Ascomycota and Basidiomycota; of these, Capnobotryella and Fellomyces were the most abundant fungi observed. Several of the microorganisms had not previously been associated with biofilms and corrosion, reinforcing the need to use molecular techniques to achieve a more comprehensive assessment of microbial diversity in environmental samples. PMID:21563009

  17. Biocide usage in cooling towers in the electric power and petroleum refining industries

    SciTech Connect

    Veil, J.; Rice, J.K.; Raivel, M.E.S.

    1997-11-01

    Cooling towers users frequently apply biocides to the circulating cooling water to control growth of microorganisms, algae, and macroorganisms. Because of the toxic properties of biocides, there is a potential for the regulatory controls on their use and discharge to become increasingly more stringent. This report examines the types of biocides used in cooling towers by companies in the electric power and petroleum refining industries, and the experiences those companies have had in dealing with agencies that regulate cooling tower blowdown discharges. Results from a sample of 67 electric power plants indicate that the use of oxidizing biocides (particularly chlorine) is favored. Quaternary ammonia salts (quats), a type of nonoxidizing biocide, are also used in many power plant cooling towers. The experience of dealing with regulators to obtain approval to discharge biocides differs significantly between the two industries. In the electric power industry, discharges of any new biocide typically must be approved in writing by the regulatory agency. The approval process for refineries is less formal. In most cases, the refinery must notify the regulatory agency that it is planning to use a new biocide, but the refinery does not need to get written approval before using it. The conclusion of the report is that few of the surveyed facilities are having any difficulty in using and discharging the biocides they want to use.

  18. Electrical Transmission on the Lunar Surface. Part 1; DC Transmission

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.

    2001-01-01

    This report summarizes a portion of the results from a grant at Auburn University to study the electrical and thermal energy management for lunar facilities. Over the past year (June 1989 to May 1990) the following topics have been investigated: June 1989 to November 1989 - Literature survey, assessment of lunar power needs, and overview study of the requirements of a lunar power system; November 1989 to April 1990 - Develop models for the study of dc electrical power transmission lines for the lunar surface; March 1990 to May 1990 - Develop models for the study of ac electrical power transmission lines for the lunar surface. Because of the large amount of information in the model development and application to a wide parameter space this report is being bound separately. This report specifically contains the model development and parameter study for dc electrical power transmission lines. The end of the funding year (May 1990) will conclude with an annual report including the literature survey, the overview of the requirements of a lunar power system, and summaries of the dc and ac models of electrical transmission lines.

  19. Cold weather operating guidelines and experience for natural draft cooling towers on the American Electric Power system

    SciTech Connect

    Michell, F.L.; Drew, D.H.

    1996-10-01

    American Electric Power`s more than 30 years of experience in operating natural draft cooling towers during freezing winter weather conditions is discussed in the paper. Design features incorporated into the specifications for major rebuild/repack projects for crossflow and counterflow towers to facilitate cold weather operation are also reviewed.

  20. Electrical Transmission Line Diametrical Retention Mechanism

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  1. Essays on electricity transmission investment and financial transmission rights

    NASA Astrophysics Data System (ADS)

    Shang, Wenzhuo

    The U.S. electric power industry has been going through fundamental restructuring and realignment since the 1990's. Many issues and problems have emerged during the transition, and both economists and engineers have been looking for the solutions fervently. In this dissertation, which consists primarily of three essays, we apply economics theory and techniques to the power industry and address two related issues, transmission investment and financial transmission rights (FTRs). The first essay takes the decentralized perspective and investigates the efficiency attribute of market-based transmission investment under perfect competition. We clarify, for the first time, the nature of the externality created by loop flows that causes transmission investment to be inefficient. Our findings have important implications for better understanding of transmission market design and creating incentives for efficient transmission investment. In the second essay, we define several rules for allocating transmission investment cost within the framework of cooperative game theory. These rules provide fair, stable or efficient cost allocations in theory and are good benchmarks against which the allocation mechanism in practice can be compared and improved upon. In the last essay, we make exploratory efforts in analyzing and assessing empirically the performance of the Midwest independent system operator (MISO) FTR auction market. We reveal some stylized facts about this young market and find that it is not efficient under the risk-neutrality assumption. We also point out and correct the drawbacks in previous related work and suggest about more complete empirical work in future. In all, this dissertation makes both theoretic and empirical analysis of the two hot issues related to the power industry and comes up with findings that have important implications for the development of this industry.

  2. Discontinuities detection using transmission electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Lesparre, Nolwenn; Cabrera, Justo; Boyle, Alistair; Grychtol, Bartłomiej; Adler, Andy

    2015-04-01

    In the context of nuclear waste storage, low permeability clays are investigated as potential geological barrier. Discontinuities in such formations might facilitate the radionuclide transport to the environment. The underground platform of Tournemire (Aveyron, France) presents the opportunity to perform in-situ experiments to evaluate the potential of geophysical methods to detect and characterize the presence of discontinuities in the sub-surface. In this work, we apply transmission electrical resistivity tomography to image the medium surrounding a regional fault. A specific array of electrodes were set up, adapted for the characterization of the fault. Electrodes were placed along the tunnel as well as at the surface above the tunnel on both sides of the fault. The objective of a such geometry is to acquire data in transmission across the massif in addition to classical protocol such as Schlumberger or dipole-dipole in order to better cover the sounded medium. 3D models considering the gallery geometry, the topography and the injection of current in transmission through the massif were developed for the analysis of such particular data sets. For the reconstruction of the medium electrical resistivity, the parametrization of the inverse problem was adapted to the geometry of the experience in a scope to reduce the inversion under-determination. The resulting image obtained with classical protocols and transmission current injection is compared to an image obtained using only classical protocols to better highlight the interest of a transmission experiment in terms of resolution and penetration depth. The addition of protocols in transmission allows a better coverage of the sounded medium so the resulting image presents a better resolution at higher depths than the image resulting from a single profile of electrodes. The proposed configuration of electrical resistivity measurements in transmission is then promising for hydrogeophysical studies, in particular for

  3. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  4. Extraordinary terahertz transmission through electrically small particles

    NASA Astrophysics Data System (ADS)

    AlShareef, Mohammed R.; Ramahi, Omar

    2015-09-01

    An array composed of six electrically small resonators and a transmission line is proposed to enhance terahertz (THz) wave transmittance. Silver is the metal of choice for the proposed array. Three thousand of the proposed arrays are fabrication on an intrinsic double-side polished silicon wafer using nano-technology tools, followed by THz time-domain spectroscopy (THZ-TDS) measurement, to validate the numerical findings experimentally.

  5. Aeolic vibration of aerial electricity transmission cables

    NASA Astrophysics Data System (ADS)

    Avila, A.; Rodriguez-Vera, Ramon; Rayas, Juan A.; Barrientos, Bernardino

    2005-02-01

    A feasibility study for amplitude and frequency vibration measurement in aerial electricity transmission cable has been made. This study was carried out incorporating a fringe projection method for the experimental part and horizontal taut string model for theoretical one. However, this kind of model ignores some inherent properties such as cable sag and cable inclination. Then, this work reports advances on aeolic vibration considering real cables. Catenary and sag are considered in our theoretical model in such a way that an optical theodolite for measuring has been used. Preliminary measurements of the catenary as well as numerical simulation of a sagged cable vibration are given.

  6. Overhead electric power transmission line jumpering system for bundles of five or more subconductors

    DOEpatents

    Winkelman, Paul F.

    1982-01-01

    Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

  7. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    SciTech Connect

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these

  8. Electricity transmission congestion costs: A review of recent reports

    SciTech Connect

    Lesieutre, Bernard C.; Eto, Joseph H.

    2003-10-01

    Recently, independent system operators (ISOs) and others have published reports on the costs of transmission congestion. The magnitude of congestion costs cited in these reports has contributed to the national discussion on the current state of U.S. electricity transmission system and whether it provides an adequate platform for competition in wholesale electricity markets. This report reviews reports of congestion costs and begins to assess their implications for the current national discussion on the importance of the U.S. electricity transmission system for enabling competitive wholesale electricity markets. As a guiding principle, we posit that a more robust electricity system could reduce congestion costs; and thereby, (1) facilitate more vibrant and fair competition in wholesale electricity markets, and (2) enable consumers to seek out the lowest prices for electricity. Yet, examining the details suggests that, sometimes, there will be trade-offs between these goals. Therefore, it is essential to understand who pays, how much, and how do they benefit in evaluating options (both transmission and non-transmission alternatives) to address transmission congestion. To describe the differences among published estimates of congestion costs, we develop and motivate three ways by which transmission congestion costs are calculated in restructured markets. The assessment demonstrates that published transmission congestion costs are not directly comparable because they have been developed to serve different purposes. More importantly, critical information needed to make them more comparable, for example in order to evaluate the impacts of options to relieve congestion, is sometimes not available.

  9. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  10. Trends In U.S. Electric Power Transmission

    SciTech Connect

    2007-11-15

    The report provides an overview of the changes that are occurring in the industry to implement the goals of improved reliability and reduced congestion costs. As the electric industry works to become a more efficient market, transmission stands as a key link between the competitive generation and the regulated distribution sectors. In this role as a key link, transmission is a major focus of government efforts to improve reliability and reduce congestion costs. The scope of the report is to analyze the dominant reliability, investment, siting, and competition/open access trends that are occurring in the domestic electric transmission industry. Topics covered include: the impact of the 2003 Northeast blackout on reliability rules; the move from voluntary to mandatory reliability standards; the advent of real-time transmission system monitoring; ISO/RTO efforts to improve system reliability; the drivers of government intervention in transmission investment; the move towards incentive-based rates for transmission investment; legislative and regulatory efforts to spur transmission investment to support renewable energy resources; the emergence of merchant transmission; the need for federal backstop authority on regional transmission projects; the designation of national interest electric transmission corridors; FERC Orders on siting transmission; the need for changes in open access and competition regulations; FERC efforts to increase open access and competition; legislative efforts to increase competition; and, current competitive issues in the industry.

  11. Electrical and Biological Effects of Transmission Lines: A Review.

    SciTech Connect

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  12. Transmission Pricing Issues for Electricity Generation From Renewable Resources

    EIA Publications

    1999-01-01

    This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

  13. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity

    PubMed Central

    Pereda, Alberto E.; Curti, Sebastian; Hoge, Gregory; Cachope, Roger; Flores, Carmen E.; Rash, John E.

    2012-01-01

    The term synapse applies to cellular specializations that articulate the processing of information within neural circuits by providing a mechanism for the transfer of information between two different neurons. There are two main modalities of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of the properties and modifiability of chemical transmission, less is still known regarding the plastic properties of electrical synapses, whose structural correlate is the gap junction. A wealth of data indicates that, rather than passive intercellular channels, electrical synapses are more dynamic and modifiable than was generally perceived. This article will discuss the factors determining the strength of electrical transmission and review current evidence demonstrating its dynamic properties. Like their chemical counterparts, electrical synapses can also be plastic and modifiable. PMID:22659675

  14. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ...OSHA solicits public comments concerning its request for an extension of the information collection requirements specified in its standards on Electrical Protective Equipment (29 CFR 1910.137) and Electric Power Generation, Transmission, and Distribution (29 CFR...

  15. Flex-gear electrical power transmission

    NASA Technical Reports Server (NTRS)

    Vranish, John; Peritt, Jonathan

    1993-01-01

    This study was conducted to develop an alternative way of transferring electricity across a continuously rotating joint, with little wear and the potential for low electrical noise. The problems with wires, slip rings, electromagnetic couplings, and recently invented roll-rings are discussed. Flex-gears, an improvement of roll-rings, are described. An entire class of flexgear devices is developed. Finally, the preferred flex-gear device is optimized for maximum electrical contact and analyzed for average mechanical power loss and maximum stress. For a device diameter of six inches, the preferred device is predicted to have a total electrical contact area of 0.066 square inches. In the preferred device, a small amount of internal sliding produces a 0.003 inch-pound torque that resists the motion of the device.

  16. Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower

    NASA Astrophysics Data System (ADS)

    Zhou, Helin; Diendorfer, Gerhard; Thottappillil, Rajeev; Pichler, Hannes; Mair, Martin

    2012-04-01

    We examine in detail the simultaneous lightning current waveforms, close electric field changes, and lightning location system data for upward lightning discharges initiated from the Gaisberg Tower (GBT) from 2005 to 2009. Out of 205 upward flashes, most of them (87% or 179/205) were initiated from the tower top without any nearby preceding lightning activity (called "self-initiated"), whereas 26 upward flashes (13%) were initiated from the tower top with immediately preceding nearby lightning activity (called "nearby-lightning-triggered"), including 15 positive ground flashes, one negative ground flashes, and 10 cloud discharges. The possible reasons for self-initiated upward flashes dominating at the GBT could be the field enhancement due to the Gaisberg Mountain above the surrounding terrain and low altitude of charge region during non-convective season (September to March), since we note that self-initiated lightning at the GBT occurred predominantly (79% or 142/179) during non-convective season. On the other hand the majority (85% or 22/26) of nearby-lightning-triggered upward flashes at the GBT occurring during convective season (April to August) and 80 nearby-lightning-triggered upward flashes out of 81 upward flashes observed at the ten tall towers in Rapid City in South Dakota of USA occurring during summer seasons, could be due to the result of high altitude of charge region. The triggering flashes were detected to be within 1 and 18 km distance and the time intervals between them and upward lightning initiation are in the range of 0.3 to 90.7 ms.

  17. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the

  18. Impacts of Climate Change on Electric Transmission Capacity and Peak Electricity Load in the United States

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M. D.; Eisenberg, D. A.; Gorman, B.; Johnson, N.

    2015-12-01

    Climate change may hinder future electricity reliability by reducing electric transmission capacity while simultaneously increasing electricity demand. This study estimates potential climate impacts to electric transmission capacity and peak electricity load in the United States. Electric power cables suffer decreased transmission capacity as they get hotter; similarly, during the summer peak period, electricity demand typically increases with hotter ambient air temperatures due to increased cooling loads. As atmospheric carbon concentrations increase, higher air temperatures may strain power infrastructure by reducing transmission capacity and increasing peak electricity loads. Taken together, these coincident impacts may have unpredictable consequences for electric power reliability. We estimate the effects of climate change on both the rated capacity of transmission infrastructure and expected electricity demand for 120 electrical utilities across the United States. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with downscaled CMIP5 temperature projections to determine the relative change in rated ampacity over the twenty-first century. Next, we assess the impact of climate change on electricity demand by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We use downscaled temperature projections from 11 CMIP5 GCM models under 3 atmospheric carbon scenarios. We find that by mid-century (2040-2060), climate change may reduce average summertime transmission capacity by 4-6% relative to the 1990-2010 reference period. At the same time, peak summertime loads may rise by roughly 2-12% on average due to increases in daily maximum air temperature. In the absence of energy efficiency gains, demand-side management programs

  19. Advanced continuously variable transmissions for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  20. Electric transmission line flashover prediction system

    NASA Astrophysics Data System (ADS)

    Amarh, Felix

    Near industrial, agricultural, or coastal areas, contamination is a frequent cause of insulator flashover, most cases of which result in lengthy service interruptions. Utilities spend significant amounts of money on insulator washing and cleaning before the restoration of the service. Laboratory studies and industrial experience have shown that both contamination and wetting of insulator surfaces, which initiate the flow of leakage current, are required for insulator flashover. The leakage current leading to flashover has distinctive stages of development. Flashover is preceded by dry-band arcing and extension of the arc to bridge the insulator. This combination significantly modifies both the magnitude and shape of the leakage current. A condition-based monitoring (CBM) system that monitors the easily measurable insulator leakage current as a means of assessing pollution severity and would possibly predict an approaching flashover could prove beneficial to utilities. The overall aim of this project is the development of a system that monitors pollution build-up through the signature changes in the leakage current and alerts an operator when there is a danger of flashover. The operator can, in turn, order maintenance personnel to wash the insulators. This will safeguard against unforeseen flashovers, since the system is constantly being monitored and diagnosed. Additionally, the washing cycles of insulators will be optimized, saving money and eventually rendering the power transmission system more reliable.

  1. Impacts of Demand-Side Resources on Electric Transmission Planning

    SciTech Connect

    Hadley, Stanton W.; Sanstad, Alan H.

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  2. Fiber optic transmissions in electrical utility applications

    NASA Astrophysics Data System (ADS)

    Lamarche, Louis

    2000-12-01

    The application of optic and photonic technology in electric networks in many cases is subject to constraints that differ from telecommunication or commercial applications. Starting by an overview of the quality of service (QoS) needed, in the first part of this paper we summarise some issues that confronted Hydro-Quebec in applying fibre optic technologies to its network. We explore by presenting lab and field trials some issues related to optical ground wires (OPGW) design and network architecture. We present temperature, vibration, ageing and short circuit current effects. We submit the results and analysis of a first field trial of and OC-48 link over a 265 km OPGW line, PMD measurements and an overview of the final design that is being implemented presently using Raman amplification. In the last section of the paper, we will discuss shortly of non-conventional photonic based technologies, local and distributed sensors and optical phenomenon that are used or have been discovered in utilities optical networks.

  3. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  4. Transmission Lines: An Overview of Electrical Properties and Environmental Effects.

    SciTech Connect

    United States. Bonneville Power Administration. Biological Studies Task Team.

    1982-03-01

    A brief overview is provided of environmental and biological effects of high-voltage power transmission lines. Paragraph length descriptions of electric fields, induced voltage and currents, biological effects, magnetic fields, corona, radio and television interference, and ozone are given. 13 figs.

  5. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  6. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  7. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  8. Vulnerability of electricity transmission infrastructure to natural hazards

    NASA Astrophysics Data System (ADS)

    Komendantova, Nadejda

    2016-04-01

    Electricity transmission system is a very complex system, which consists of several elements, such as overhead lines, substations and transformers, covers wide areas, is interconnected with several networks with numerous inter-dependencies. This highly integrated system is exposed to several hazards, leading to interruption of power supply. Natural hazards, such as an increased frequency of extreme weather events, including storms, icing, wet snow deposits, lighting, floods, avalanches, rock falls and landslides or changing air temperature have effects on transmission and lead to destruction of this infrastructure, which is also critical for society as it guarantees functioning of vital for society services. The reliability of critical electricity transmission infrastructure depends on its ability to ensure normal operation, to limit number of incidents and to avoid major incidents and to limit consequences of major incidents. The concept of reliability is closely connected with the concept of resilience, which is understood, in general, as the ability of a system to react and recover from anticipated disturbances and events. In regards to electricity transmission resilience is the ability of the power system to adapt, self-organize and recover or achieve the level even higher than those before the shock. This paper reviews three major natural hazards disasters, which resulted in significant blackouts in Europe. The first one is the 2003 blackout in Italy, which was caused by flash-over from trees. The second one is the 2003 blackout in Sweden, which was caused by rainstorms. The third one is the 2005 blackout in Germany, which was caused by wet snow. The inter-comparative analysis of these events allowed us to develop recommendations on electricity transmission network resilience.

  9. Design studies of continuously variable transmissions for electric vehicles

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Loewenthal, S. H.; Fischer, G. K.

    1981-01-01

    Preliminary design studies were performed on four continuously variable transmission (CVT) concepts for use with a flywheel equipped electric vehicle of 1700 kg gross weight. Requirements of the CVT's were a maximum torque of 450 N-m (330 lb-ft), a maximum output power of 75 kW (100 hp), and a flywheel speed range of 28,000 to 14,000 rpm. Efficiency, size, weight, cost, reliability, maintainability, and controls were evaluated for each of the four concepts which included a steel V-belt type, a flat rubber belt type, a toroidal traction type, and a cone roller traction type. All CVT's exhibited relatively high calculated efficiencies (68 percent to 97 percent) over a broad range of vehicle operating conditions. Estimated weight and size of these transmissions were comparable to or less than equivalent automatic transmission. The design of each concept was carried through the design layout stage.

  10. American lifelines alliance efforts to improve electric power transmission reliability

    USGS Publications Warehouse

    Nishenko, S.P.; Savage, W.U.; Honegger, D.G.; McLane, T.R.

    2002-01-01

    A study was performed on American Lifelines Alliance (ALA) efforts to improve electric power transmission reliability. ALA is a public-private partnership project, with the goal of reducing risks to lifelines from natural hazards and human threat events. The mechanism used by ALA for developing national guidelines for lifeline systems is dependent upon using existing Standards Developing Organizations (SDO) accredited by the American National Standards Institute (ANSI) as means to achieve national consensus.

  11. 75 FR 53687 - Southern Montana Electric Generation & Transmission Cooperative, Inc. v. NorthWestern Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Montana Electric Generation & Transmission Cooperative, Inc. v... Electric Generation & Transmission Cooperative, Inc. (Complainant) filed a complaint against...

  12. 76 FR 44323 - National Grid Transmission Services Corporation; Bangor Hydro Electric Company; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Energy Regulatory Commission National Grid Transmission Services Corporation; Bangor Hydro Electric... Services Corporation and Bangor Hydro Electric Company (collectively, NEL Parties) filed a petition for... current transmission line, the Northeast Energy Link, in order that First Wind may deliver energy...

  13. 77 FR 68117 - Electric Transmission Texas, LLC; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Energy Regulatory Commission Electric Transmission Texas, LLC; Notice of Petition for Declaratory Order... Commission's (Commission) Rules of Practice and Procedure 18 CFR 385.207(a)(2), Electric Transmission Texas... Act (FPA) jurisdiction over (1) the transmission lines that ETT, an electric utility in the...

  14. (Hydroelectric project in Costa Rican rural electric generation and transmission)

    SciTech Connect

    Waddle, D.B.

    1989-11-28

    On November 6, 1989, I left for San Jose, Costa Rica. My visit was set to accomplish two activities. The first activity was a follow-on mission to gather additional information on a newly identified small hydroelectric project, in support of a rural electric generation and transmission cooperative performed for the Renewable Energy Applications and Training project. Data on stream flows, soils, geologic, and topographic information was gathered for Rio San Lorenzo, near Quesada. A reconnaissance level survey was performed for Rio Naranjillo, a river near San Marcos. The second part of the visit was dedicated to interaction with ICE, the electric utility, discussing plans to establish a comprehensive efficiency program in Costa Rica. I returned to Oak Ridge on November 16, 1989.

  15. 77 FR 65545 - Tri-State Generation and Transmission Association, Inc. v. Western Electric Coordinating Council...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Energy Regulatory Commission Tri-State Generation and Transmission Association, Inc. v. Western Electric Coordinating Council and North American Electric Reliability Corporation; Notice of Complaint Take notice that... petition requesting resolution of the conflict between Western Electric Coordinating Council and...

  16. Collapsible Towers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    NASA needed a means of orbiting a large radio telescope antenna. Astro Research Corporation developed a new structure that was strong, lightweight, folded into a small storage space, and could be erected by rotation. Later they adapted it to commercial use. Today the "Astromast" tower consists of tubular aluminum alloy and stainless steel members that deploy into small three-sided bays, each made rigid by six diagonal cables. All joints are flexible to permit folding and unfolding. Tower packs into container 5% of its height, can be erected without tools and is reusable. Tower has won "Design of the Year" award from Machine Design. Variations include portable emergency bridges and commercial scaffolding.

  17. 5. View of south tower, facing northnortheast from south bank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of south tower, facing north-northeast from south bank of the Columbia River. Center tower and north tower in background, lower right. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  18. Discussions on a long gap discharge to an EHV transmission tower by a rocket triggered lightning experiment

    NASA Technical Reports Server (NTRS)

    Nakamura, Koichi; Wada, Atsushi; Horii, Kenji

    1991-01-01

    The triggered lightning experiments using a rocket have been carried out on a winter mountain in Japan since 1986. For the four years from 1986 to 1989, 39 rockets were launched and 19 of them triggered lightning strikes. The emphasis here is on the methodology for triggering lightning to the transmission system. Completed experiments are discussed. The failure of lightning protection and the striking distance are noted.

  19. Solar thermal power towers

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Meyer, R. T.

    1984-07-01

    The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550 C are currently achievable, and technology developments are underway to reach 1100 C. Six solar power towers are now under construction or in test operation in five countries around the world.

  20. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that

  1. 76 FR 75875 - Plan for Conduct of 2012 Electric Transmission Congestion Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... regional workshops and request for written comments in connection with the preparation of a study of electric transmission congestion pursuant to section 216(a)(1) of the Federal Power Act (76 FR 70122). This... for Conduct of 2012 Electric Transmission Congestion Study AGENCY: Office of Electricity Delivery...

  2. Mitigating failure risk in an aging electric power transmission system

    NASA Astrophysics Data System (ADS)

    Enders, Johannes

    As the electric transmission system in the U.S. ages, mitigating the risk of high-voltage transformer failures becomes an increasingly important issue for transmission owners and operators. This thesis addresses the problem of allocating high-voltage transformers throughout the electric grid in order to mitigate this risk. We introduce two models that investigate different characteristics of the problem. The first model focusses on the spatial allocation of transformers in a static, two-stage context. Algorithmically, this model investigates the use of approximate dynamic programming (ADP) for solving large scale stochastic facility location problems. The ADP algorithms that we develop consistently obtain near optimal solutions for problems where the optimum is computable and outperform a standard heuristic on more complex problems. Our computational results show that the ADP methodology can be applied to stochastic facility location problems that cannot be solved with exact algorithms. The second model optimizes the acquisition and the deployment of high-voltage transformers dynamically over time. We formulate the problem as a Markov Decision Process which cannot be solved for realistic problem instances. Instead we solve the problem using approximate dynamic programming using a number of different value function approximations, which are compared against an optimal solution for a simplified version of the problem. The best-performing approximation produces solutions within a few percent of the optimum with very fast convergence. The results show that ADP can used to solve large scale resource allocation problems when resources have long lead times. This thesis emphasizes numerical work. We apply our best performing algorithms to realistic problem instances based on a real-world transformer population, which gives insights into a broad range of transformer management issues of practical interest. We also analyze existing transformer management policies and show

  3. Preliminary assessment of the tradeoffs between the electric motor and the transmission in electric vehicles

    NASA Technical Reports Server (NTRS)

    Levi, E.

    1983-01-01

    The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.

  4. Extragalactic Jets as Electrical Circuits and Transmission Lines

    NASA Astrophysics Data System (ADS)

    Kronberg, Philipp

    2014-10-01

    I describe the first attempt to measure a current in an extended radio galaxy jet: ~1018A at ~50 kpc from the elliptical galaxy's ultra-compact nucleus. This class of jet is known to transport its magnetic energy ``intact'', up to supragalactic scales. I discuss plasma parameters for 3C303 and recent attempts to measure its jet axial current. I discuss analogies with both electrical circuits, - and transmission lines. Power is delivered into a ``load'', whose impedance, Z, is close to that of free space, and the jet power flow I2 Z is ~1035 erg s-1 - broadly consistent with astronomically measured total power outputs, luminosities and lifetimes of AGN-powered radio lobes.The current and power levels are also consistent with SMBH accretion disk model predictions by Stirling Colgate, H. Li, V. Pariev, J. Finn, and others, beginning with Lovelace 1976 (Nature). A further analogy with transmission lines shows how the supragalactic power flows can be disrupted by a complex impedance in the ``circuit.'' Reactive components in space, i.e. a complex Z, can disrupt, reflect or deflect the power flow. This could explain the wide variety of magneto-plasma configurations seen in these systems. Funded by NSERC Discovery Grant A5713.

  5. Solar power towers

    SciTech Connect

    Not Available

    1998-04-01

    The high desert near Barstow, California, has witnessed the development of this country`s first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

  6. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  7. Electronic control system for control of electronic electric shift apparatus for manual transmission

    SciTech Connect

    Tury, E.L.; Thoe, G.A.

    1989-04-18

    An electrical control apparatus is described for control of a manual transmission apparatus in a motor vehicle having a plurality of transmission states selected by the position of a shift select lever, the electrical control apparatus comprising: a first electric motor; means drive by the first electric motor and operative in response to energization of the first electric motor to move the shift select lever laterally between left, center, and right locations; a second electric motor; means driven by the second electric motor and operative in response to energization of the second electric motor to move the shift select lever longitudinally between forward, neutral, and rearward locations; operator input means operative to generate a desired transmission sate signal corresponding to manual operator input; a first transmission state sensing means for indicating the left, center, or right location of the shift select lever; a second transmission state sensing means for indicating the forward, neutral or rearward location of the shift select lever; and a logic control unit connected to the operator input means and the first and second transmission state sensing means for generation of a sequence of motor drive signals corresponding to the sequence of motions required for movement of the shift select lever from the present transmission state to the desired transmission state when the desired transmission state differs from the present transmission state, the motor drive signals including a clockwise motor drive signal, a counter-clockwise motor drive signal, a shift up motor drive signal and a shift down motor drive signal.

  8. 76 FR 37809 - The Connecticut Transmission Municipal Electric Energy Cooperative; Notice of Request for Waiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission The Connecticut Transmission Municipal Electric Energy Cooperative; Notice... Municipal Electric Energy Cooperative filed a petition requesting full waiver or exemption from...

  9. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect

    Alphenaar, Bruce

    2009-06-30

    , it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver

  10. 1. View of north tower, facing northwest from dike on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of north tower, facing northwest from dike on north bank of the Columbia River. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  11. Rapunzel's Tower

    ERIC Educational Resources Information Center

    Depp, Sheryl

    2007-01-01

    Children's literature often inspires the author's lessons, and reading to her primary students motivates their participation. In this article, the author presents and describes her lesson which is based on the book "Falling for Rapunzel" by Leah Wilcox. Students created a fairy tale tower in this lesson, which took place over three class periods.…

  12. Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels

    SciTech Connect

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

    1994-11-01

    This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

  13. Electrical Power Transmission and Distribution Safety. Module SH-40. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on electrical power transmission and distribution safety is one of 50 modules concerned with job safety and health. This module focuses on some of the general safety rules, techniques, and procedures that are essential in establishing a safe environment for the electrical power transmission worker. Following the introduction,…

  14. 75 FR 66083 - Michigan Electric Transmission Company, LLC; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Energy Regulatory Commission Michigan Electric Transmission Company, LLC; Notice of Petition for Declaratory Order October 20, 2010. Take notice that on October 18, 2010, Michigan Electric Transmission... Commission (Commission): (1) Find that due to the operation of the Commission's no loss policy with regard...

  15. Electric Utility Transmission and Distribution Line Engineering Program

    SciTech Connect

    Peter McKenny

    2010-08-31

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working

  16. Study on Planar Antennas for Wireless Power Transmission of Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Horiuchi, Toshikazu; Kawashima, Kazumasa

    Wireless electric power transmission systems are suitable to spread electric vehicles, because non-contact charging systems are convenient tools. Such charging systems recharge automatically without intervention from drivers. In this paper, the results of experiments on the transmitting and receiving antennas of the wireless power transmission systems are presented. To study wireless power transmission efficiency, horn antennas, patch antennas, and array antennas were fabricated and evaluated.

  17. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  18. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  19. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  20. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  1. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  2. Virtual Tower

    SciTech Connect

    Wayne, R.A.

    1997-08-01

    The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems.

  3. 78 FR 70163 - Communication of Operational Information between Natural Gas Pipelines and Electric Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Corporation (NERC), Pacific Gas and Electric Company (PG&E), Process Gas Consumers (PGC), Public Utilities... Operational Information Between Natural Gas Pipelines and Electric Transmission Operators, 78 FR 44900 (July... in 2011). \\4\\ See, e.g., North American Electric Reliability Corporation, 2013 Special...

  4. Electrical performance of a Portable Protective Gap (PPG) in a compact 550-kV tower. Final report

    SciTech Connect

    Gela, G.; Lux, A.E.

    1994-11-01

    This report presents the results of a research project by Western Area Power Administration (Western) on the application of a Portable Protective Gap (PPG) to live working, on Western`s upgraded compact 550 kV tower type 51S. The objective of the project was to provide experimental evidence that confirms the needed coordination of the PPG sparkover characteristics with those of the 51S tower during live working conditions. These conditions include the presence of damaged porcelain cap-and-pin insulators, the worker, and live working tools and equipment in normal work positions. The tested PPG is a portable rod-rod 1.04 m (41 inches) gap, which would be installed on the tower adjacent to the worksite. The purpose of the PPG is to protect the worker by providing positive control of the transient overvoltage (TOV) at the worksite. That is, the PPG must operate (spark over) at a TOV level which is lower then the level that would cause a disruptive discharge (sparkover or flashover) at the worksite. The worksite disruptive discharge level. or conversely the worksite withstand level is dependent on a large number of factors, including presence and location of the worker, presence and location of live working tools and equipment, and number and location of damaged porcelain (cap-and-pin) insulators at the worksite. The PPG must not spark over at the system`s normal AC operating, voltage, i.e. its AC withstand level must be higher than AC stresses expected at the worksite.

  5. A study of electric power transmission lines for use on the lunar surface

    SciTech Connect

    Gordon, L.B.; Gaustad, K.L. )

    1991-01-10

    Analytical models have been developed to study the operating characteristics of electrical transmission lines for use on the lunar surface. Important design considerations for a transmission line operating on the lunar surface are mass, temperature, and efficiency. Transmission line parameters which impact these considerations include voltage, power loss, and waveform. The electrical and thermal models developed are used to calculate transmission line mass, size, and temperature as a function of voltage, geometry, waveform, location, and efficiency. The analyses include AC and DC for above and below ground operation. Geometries studied include a vacuum-insulated, two-wire transmission line and a solid-dielectric insulated, coaxial transmission line. A brief discussion of design considerations and the models developed is followed by results for parameter studies for both DC and AC transmission lines.

  6. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOEpatents

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  7. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  8. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  9. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  10. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  11. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  12. Nonlinear waves propagating in the electrical transmission line

    NASA Astrophysics Data System (ADS)

    Duan, W.-S.

    2004-04-01

    A coupled Zakharov-Kuznetsov (ZK) equation is derived for a nonlinear transmission line in which the nonlinear capacitance C is of a general form C = C0(1 + k1V + k2V2 + ...). For a solitary-wave solution of the ZK equation, there is an instability region which is given numerically in this paper. It is in agreement with the analytical results for special cases.

  13. How dangerous are mobile phones, transmission masts, and electricity pylons?

    PubMed

    Wood, A W

    2006-04-01

    Electrical power and mobile communications deliver enormous benefit to society, but there are concerns whether the electric and magnetic field (EMF) emissions associated with the delivery of this benefit are linked to cancer or other health hazards. This article reviews the strength of the available epidemiological and laboratory evidence and notes that this falls short of what is normally required to establish a causal link. However, because of scientific uncertainty a cautious approach is often advocated, but here, too, there may be a tendency to judge these risks more harshly than those in other areas with similar strength of evidence. PMID:16551794

  14. How dangerous are mobile phones, transmission masts, and electricity pylons?

    PubMed Central

    Wood, A W

    2006-01-01

    Electrical power and mobile communications deliver enormous benefit to society, but there are concerns whether the electric and magnetic field (EMF) emissions associated with the delivery of this benefit are linked to cancer or other health hazards. This article reviews the strength of the available epidemiological and laboratory evidence and notes that this falls short of what is normally required to establish a causal link. However, because of scientific uncertainty a cautious approach is often advocated, but here, too, there may be a tendency to judge these risks more harshly than those in other areas with similar strength of evidence. PMID:16551794

  15. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  16. Optimal Inflatable Space Towers of High Height

    NASA Astrophysics Data System (ADS)

    Bolonkin, Alexander

    2002-01-01

    Author provides theory and computations for building inflatable space towers up to a hundred km in height. These towers can be used for tourism; scientific observation of space, earth's surface, weather, top atmosphere, as well as for radio, television, and communication transmissions. These towers can also be used to launch space ships and Earth satellites. These projects are not expensive and do not require rockets. They require thin strong films composed from artificial fibers and fabricated by current industry. Towers can be built using present technology. Towers can be used (for tourism, communication, etc.) during the construction process and provide self-financing for further construction. The tower design does not require work at high altitudes; all construction can be done at the earth's surface. The transport system for this tower consists a small engine (used only for friction compensation) located at the earth's surface. The tower is separated into sections and has special protection mechanism in case of a damage. Problems involving security, control, repair, and stability of the proposed towers are addressed in subsequent publications. The author is prepared to discuss these and other problems with serious organizations desiring to research and develop these projects.

  17. Optimal inflatable space towers of high height

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    Author suggested, developed theory, and computed some projects of an optimal inflatable space tower of the heights some hundreds km. These towers can be used for tourism, scientist observation of space, Earth surface, Earth weather, Earth top atmosphere, and for radio, TV, communication transmissions. These towers can be used for launching of the space ships and Earth s atellites. The computed projects not expensive, do not request rockets. They need only in thin strong films composed from the artificial fibers and fabricated by a current industry. Towers can be built by a current technology. Towers can be explored (for tourism, communication, etc.) in a time of the construction process and give a profit, self- financing for further constriction. They can permanent increase their height. The tower design does not request a work at the high altitudes. All construction works will be making at the Earth surface. Author suggests the transport system for this tower of a high capability, which does not request a power energy issue. The small engine (only for a friction compensation) is located at the Earth surface. The tower is separated on sections and has a special protection of a case of a damage. It is considered also the problems of security, control, repair, etc. of the suggested towers. The author has also solved additional problems, which appear in these projects and which can look as difficult for the given proposal and current technology. The author is prepared to discuss the problems with serious organizations, which want to research and develop these projects.

  18. Millikelvin thermal and electrical performance of lossy transmission line filters

    SciTech Connect

    Slichter, Daniel; Naaman, Ofer; Siddiqi, Irfan

    2009-03-11

    We report on the scattering parameters and Johnson noise emission of low-pass stripline filters employing a magnetically loaded silicone dielectric down to 25 mK. The transmission characteristic of a device with f-3dB=1.3 GHz remains essentially unchanged upon cooling. Another device with f-edB=0.4 GHz, measured in its stopband, exhibits a steady state noise power emission consistent with a temperature difference of a few mK relative to a well-anchored cryogenic microwave attenuator at temperatures down to 25 mK, thus presenting a matched thermal load.

  19. Comparison of electrically driven lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.

    1988-01-01

    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  20. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  1. Flexural self-damping in overhead electrical transmission conductors

    NASA Astrophysics Data System (ADS)

    Rawlins, Charles B.

    2009-06-01

    Internal damping of tensioned cables during flexure by transverse vibration is analyzed. The flexure causes relative movements between the wires or strands of the cable, movements which are constrained by friction between them. Under conditions common to vibration of overhead transmission line conductors the friction is great enough to prevent gross sliding. However, there is microslip at the edges of the interstrand contacts, so there is frictional dissipation. In addition, the frictional forces cause shear strains at the contacts with resulting material damping. An analysis is presented that connects the bodily flexure of the conductor with the internal interstrand movements and forces, and with the amounts of dissipation that occur—self-damping. Comparison of estimates based on the analysis with measured data on self-damping reveals reasonable agreement, for a limited range. Cases lying outside that range appear to be associated with treatments applied to cable samples involved in the measurements prior to testing. Possible mechanisms activated by these treatments are discussed.

  2. WET/DRY COOLING AND COOLING TOWER BLOWDOWN DISPOSAL IN SYNTHETIC FUEL AND STEAM-ELECTRIC POWER PLANTS

    EPA Science Inventory

    This report extends the results of a previous study dealing with the detailed determination of consumptive water use and wet-solids residuals for coal and oil shale conversion plants and coal-fired steam-electric power generation plants located in the western United States. The p...

  3. The electric field change caused by a ground flash with multiple channels

    NASA Technical Reports Server (NTRS)

    Nakano, Minoru; Takagi, Nobuyuki; Arima, Izumi; Kawasaki, Zen-Ichiro; Takeuti, Tosio

    1991-01-01

    The electric field and the magnetic flux changes caused by a ground flash with multiple channels are measured near the electric power transmission lines during winter thunderstorms. Triggered lightning strokes and the following associated strokes to the transmission line towers produce characteristic waveforms of the field changes. A few examples of the waveforms and a brief discussion are given.

  4. A study of electric transmission lines for use on the lunar surface

    NASA Astrophysics Data System (ADS)

    Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.

    1994-09-01

    The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.

  5. A study of electric transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.

    1994-01-01

    The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.

  6. The design of an electro-hydraulically controlled, manual transmission for a hybrid electric vehicle

    SciTech Connect

    Davis, G.W.; Hoff, C.J.

    1998-07-01

    An electro-hydraulically controlled, manual transmission has been developed for the Department of Energy's FutureCar Challenge. This project which is jointly sponsored by the DOE and the Partnership for a New Generation of Vehicles (PNGV) seeks to modify a production mid-size car to reach 80 mpg, yet still maintain the safety and consumer acceptability of the original vehicle. To meet this challenge, a 1996 Ford Taurus has been modified into a parallel drive, hybrid electric vehicle. The propulsion system of this vehicle is based on a DC electric motor, which is coupled via a belt drive, in parallel, with a 1.9 liter turbo-charged, direct injection diesel engine. Both propulsion units are then coupled to the transmission. The OEM automatic transmission has been replaced with a five-speed, manual transmission, which was adapted from an earlier model year production Taurus SHO vehicle. This transmission is both lighter and more mechanically efficient than the automatic transmission. In order to provide the automatic transmission shifting capabilities expected by the consumer for a vehicle of this size, an electro-hydraulic control unit was designed and built. This unit automatically engages the clutch and shifts gears as required during vehicle operation. Gear selection is controlled by a programmable logic controller (PLC), which utilizes throttle and vehicle speed input signals. Additionally, the driver may select gears using a modified steering-column PRNDL selector. This paper discusses the final design of this system and provides an evaluation of its performance.

  7. A 10 Gbit/s OCDMA system based on electric encoding and optical transmission

    NASA Astrophysics Data System (ADS)

    Li, Chuan-qi; Hu, Jin-lin; He, Dong-dong; Chen, Mei-juan; Wang, Da-chi; Chen, Yan

    2013-11-01

    An electric encoded/optical transmission system of code division multiple access (CDMA) is proposed. It encodes the user signal in electric domain, and transfers the different code slice signals via the different wavelengths of light. This electric domain encoder/decoder is compared with current traditional encoder/decoder. Four-user modulation/demodulation optical CDMA (OCDMA) system with rate of 2.5 Gbit/s is simulated, which is based on the optical orthogonal code (OCC) designed in our laboratory. The results show that the structure of electric encoding/optical transmission can encode/decode signal correctly, and can achieve the chip rate equal to the user data rate. It can overcome the rate limitation of electronic bottleneck, and bring some potential applications in the electro-optical OCDMA system.

  8. Transmission cost minimization strategies for wind-electric generating facilities

    SciTech Connect

    Gonzalez, R.

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  9. Energy efficiency of information transmission by electrically coupled neurons.

    PubMed

    Torrealdea, Francisco J; Sarasola, Cecilia; d'Anjou, Alicia; Moujahid, Abdelmalik; de Mendizábal, N Vélez

    2009-07-01

    The generation of spikes by neurons is energetically a costly process. This paper studies the consumption of energy and the information entropy in the signalling activity of a model neuron both when it is supposed isolated and when it is coupled to another neuron by an electrical synapse. The neuron has been modelled by a four-dimensional Hindmarsh-Rose type kinetic model for which an energy function has been deduced. For the isolated neuron values of energy consumption and information entropy at different signalling regimes have been computed. For two neurons coupled by a gap junction we have analyzed the roles of the membrane and synapse in the contribution of the energy that is required for their organized signalling. Computational results are provided for cases of identical and nonidentical neurons coupled by unidirectional and bidirectional gap junctions. One relevant result is that there are values of the coupling strength at which the organized signalling of two neurons induced by the gap junction takes place at relatively low values of energy consumption and the ratio of mutual information to energy consumption is relatively high. Therefore, communicating at these coupling values could be energetically the most efficient option. PMID:19397950

  10. Electrical and mechanical design criteria for EHV and UHV: overhead transmission lines

    SciTech Connect

    Not Available

    1980-06-01

    The results are presented of a program devoted to the selection of electrical and mechanical design criteria and parameters for overhead power transmission lines for ac systems rated at from 345 to 1100 kV and for dc systems rated at from 600 to 1200 kV. Information is included on the environmental effects, i.e., audible noise and electric fields, of the lines, mechanical and economic requirements, safety, failures, grounding, and lightning protection. (LCL)

  11. Towers for Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kurian, V. J.; Narayanan, S. P.; Ganapathy, C.

    2010-06-01

    Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings, for better efficiency, turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate, the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today, more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines, offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases, the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore, turbines build father

  12. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

  13. Cellular Phone Towers

    MedlinePlus

    ... the call. How are people exposed to the energy from cellular phone towers? As people use cell ... where people can be exposed to them. The energy from a cellular phone tower antenna, like that ...

  14. Industry market research, China: Electrical power systems. Transmission equipment market. Export trade information

    SciTech Connect

    Not Available

    1993-01-01

    The market survey covers the electric power transmission equipment market in China. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Chinese consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information.

  15. 76 FR 77432 - Coordination of Federal Authorizations for Electric Transmission Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ...The Department of Energy (DOE) proposes to amend its regulations for the timely coordination of Federal authorizations for proposed interstate electric transmission facilities pursuant to section 216(h) of the Federal Power Act (FPA). The proposed rule would require permitting entities to inform DOE of requests for authorizations required under Federal law for Qualifying Projects as defined in......

  16. Improving Electricity Resource-Planning Processes by Consideringthe Strategic Benefits of Transmission

    SciTech Connect

    Budhraja, Vikram; Mobasheri, Fred; Ballance, John; Dyer, Jim; Silverstein, Alison; Eto, Joseph

    2009-03-02

    Current methods of evaluating the economic impacts of new electricity transmission projects fail to capture the many strategic benefits of these projects, such as those resulting from their long life, dynamic changes to the system, access to diverse fuels, and advancement of public policy goals to integrate renewable-energy resources and reduce greenhouse gas emissions.

  17. Transmission line switch design for the investigation of sub-nanosecond electrical breakdown

    NASA Astrophysics Data System (ADS)

    Dick, A. R.; MacGregor, S. J.; Pate, R. C.

    2002-04-01

    Ultrafast plasma closing switches rely on sub-nanosecond electrical breakdown of the insulating gas. Until recently, little information was available on gas breakdown occurring within this timescale, because of the difficulties in designing an experimental system for such a study. Recently published papers have reported on the results of studies carried out using two devices designed specifically for the investigation of fast (sub-nanosecond) electrical breakdown processes. The devices are essentially modified transmission line plasma closing switches, and in this paper we describe their structure and operation. Because electromagnetic wave behaviour plays a significant role in sub-nanosecond switching, especially reflections from impedance mismatches, the design of the devices is based on transmission line concepts, rather than those of lumped parameters. One of the switches has a conical transmission line topology and is designed for the study of fast switch closure at insulating gas pressures less than 0.6 MPa. The second has a hybrid radial transmission line/conical transmission line topology and is designed for the study of fast switch closure at pressures up to 10 MPa. The paper also includes details of the D-dot monitors used to investigate sub-nanosecond processes in the two transmission line plasma devices.

  18. Understanding Cognitive and Collaborative Work: Observations in an Electric Transmission Operations Control Center

    SciTech Connect

    Obradovich, Jodi H.

    2011-09-30

    This paper describes research that is part of an ongoing project to design tools to assist in the integration of renewable energy into the electric grid. These tools will support control room dispatchers in real-time system operations of the electric power transmission system which serves much of the Western United States. Field observations comprise the first phase of this research in which 15 operators have been observed over various shifts and times of day for approximately 90 hours. Findings describing some of the cognitive and environmental challenges of managing the dynamically changing electric grid are presented.

  19. Opportunities for Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    SciTech Connect

    Jackson, Roderick K.; Onar, Omer C.; Kirkham, Harold; Fisher, Emily; Burkes, Klaehn; Starke, Michael R.; Mohammed, Olama; Weeks, George

    2015-04-01

    Since 2000, more than 172 quads of electricity have been transmitted on the US transmission and distribution (T&D) grid. Given this significant amount of energy flow, establishing and maintaining an efficient T&D grid is paramount. As shown in the figure below, the total percentage of overall losses in the US electric grid is approximately 6% (5.12% in 2012) (30% lower than the world average since 2000). While these efficiency losses appear to be relatively small from a percentage perspective, the total estimated electricity loss during this time is 10.8 quads.

  20. Flexible gas insulated transmission line having regions of reduced electric field

    DOEpatents

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  1. Electrical transmission lines in Montana: Mitigation of impacts to soil and biological sources

    SciTech Connect

    McCollough, S.A.; Ring, T.W.

    1990-12-31

    In Montana, the routing and construction of large electrical transmission lines are regulated by the Montana Major Facility Siting Act. Under this act, impacts to resources are minimized through avoidance by routing, where possible, and by mitigating remaining impacts. Land disturbed by the construction of transmission lines considered in this paper ranges from 1681 acres for a 500-kV line across 156 miles of mountainous terrain to 11 acres for a 100-kV line across 27 miles of nearly level terrain. Line access accounts for most of the disturbance, especially when graded roads are built in mountainous terrain. Land disturbed by transmission line construction is susceptible to soil erosion and weed infestation. These problems are addressed through revegetation, erosion control, and herbicide application. Transmission lines can displace wildlife from critical habitats by disruptive construction activities or by improving human access to previously secure range. Wildlife impacts can be reduced by restricting construction periods and gating roads.

  2. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  3. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  4. 75 FR 41895 - Emerson Power Transmission, a Division of Emerson Electric Co., Including On-Site Leased From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Corners, Ithaca, New York. The notice was published in the Federal Register on May 28, 2010 (75 FR 30067... Employment and Training Administration Emerson Power Transmission, a Division of Emerson Electric Co..., 2010, applicable to workers of Emerson Power Transmission, a Division of Emerson Electric...

  5. Rebuild cooling tower after partial collapse

    SciTech Connect

    Michell, F.L.; Demjanenko, W.

    1995-07-01

    When this tower suddenly went down, it forced the associated powerplant out of service. To restore operation required a quick assessment of the damage and fast action to reconstruct the tower. The partial collapse and prompt rebuild of a cooling tower at Columbus Southern Co`s Conesville station Unit 4 is a story of what can go wrong and what can be done to set matters right -- in a hurry. The utility is one of seven operating companies in American Electric Power Co`s system. Unit 4 is jointly owned with Cincinnati Gas and Electric Co and Dayton Power and Light Co. The 780-MW coal-fired unit`s closed-loop cooling-water system is served by two double-flow, seven-cell, mechanical-draft cooling towers (4A and 4B). The design basis calls for operating all 14 cells to maintain full load in the summer months.

  6. Cartographic Analysis of Antennas and Towers: A Novel Approach to Improving the Implementation and Data Transmission of mHealth Tools on Mobile Networks

    PubMed Central

    Ibitoye, Mobolaji; Bakken, Suzanne; Schnall, Rebecca; Balán, Iván; Frasca, Timothy; Carballo-Diéguez, Alex

    2015-01-01

    Background Most mHealth tools such as short message service (SMS), mobile apps, wireless pill counters, and ingestible wireless monitors use mobile antennas to communicate. Limited signal availability, often due to poor antenna infrastructure, negatively impacts the implementation of mHealth tools and remote data collection. Assessing the antenna infrastructure prior to starting a study can help mitigate this problem. Currently, there are no studies that detail whether and how the antenna infrastructure of a study site or area is assessed. Objective To address this literature gap, we analyze and discuss the use of a cartographic analysis of antennas and towers (CAAT) for mobile communications for geographically assessing mobile antenna and tower infrastructure and identifying signal availability for mobile devices prior to the implementation of an SMS-based mHealth pilot study. Methods An alpha test of the SMS system was performed using 11 site staff. A CAAT for the study area’s mobile network was performed after the alpha test and pre-implementation of the pilot study. The pilot study used a convenience sample of 11 high-risk men who have sex with men who were given human immunodeficiency virus test kits for testing nonmonogamous sexual partners before intercourse. Product use and sexual behavior were tracked through SMS. Message frequency analyses were performed on the SMS text messages, and SMS sent/received frequencies of 11 staff and 11 pilot study participants were compared. Results The CAAT helped us to successfully identify strengths and weaknesses in mobile service capacity within a 3-mile radius from the epicenters of four New York City boroughs. During the alpha test, before CAAT, 1176/1202 (97.84%) text messages were sent to staff, of which 26/1176 (2.21%) failed. After the CAAT, 2934 messages were sent to pilot study participants and none failed. Conclusions The CAAT effectively illustrated the research area’s mobile infrastructure and signal

  7. Cryo-delivery Systems for the Co-transmission of Chemical and Electrical Power

    NASA Astrophysics Data System (ADS)

    Grant, Paul M.

    2006-04-01

    We present a novel concept for the simultaneous transport of chemical power in the form of natural gas or hydrogen in a cryogenic state along with the simultaneous transmission of electrical power over via superconductivity. This concept could impact future efforts to tap and deliver methane from distant geographic resources over conventional pipelines with part of the chemical potential energy converted directly to electricity at the wellhead and the remaining gas cooled cryogenically to increase volumetric density and provide the necessary support of a superconducting cable housed within the same packaging. As the fossil reserve becomes depleted, nuclear power plants would be constructed at the former remote wellhead sites to co-generate electricity and cryocooled hydrogen, the latter replacing natural gas and also serving to operate the already installed superconducting electrical service line.

  8. Electrical signal transmission in a bone cell network: the influence of a discrete gap junction

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Weinbaum, S.; Cowin, S. C.

    1998-01-01

    A refined electrical cable model is formulated to investigate the role of a discrete gap junction in the intracellular transmission of electrical signals in an electrically coupled system of osteocytes and osteoblasts in an osteon. The model also examines the influence of the ratio q between the membrane's electrical time constant and the characteristic time of pore fluid pressure, the circular, cylindrical geometry of the osteon, and key simplifying assumptions in our earlier continuous cable model (see Zhang, D., S. C. Cowin, and S. Weinbaum. Electrical signal transmission and gap junction regulation in a bone cell network: A cable model for an osteon. Ann. Biomed. Eng. 25:379-396, 1997). Using this refined model, it is shown that (1) the intracellular potential amplitude at the osteoblastic end of the osteonal cable retains the character of a combination of a low-pass and a high-pass filter as the corner frequency varies in the physiological range; (2) the presence of a discrete gap junction near a resting osteoblast can lead to significant modulation of the intracellular potential and current in the osteoblast for measured values of the gap junction coupling strength; and (3) the circular, cylindrical geometry of the osteon is well simulated by the beam analogy used in Zhang et al.

  9. In situ probing electrical response on bending of ZnO nanowires inside transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Gao, P.; Xu, Z.; Bai, X. D.; Wang, E. G.

    2008-05-01

    In situ electrical transport measurements on individual bent ZnO nanowires have been performed inside a high-resolution transmission electron microscope, where the crystal structures of ZnO nanowires were simultaneously imaged. A series of consecutively recorded current-voltage (I-V) curves along with an increase in nanowire bending show the striking effect of bending on their electrical behavior. The bending-induced changes of resistivity, electron concentration, and carrier mobility of ZnO nanowires have been retrieved based on the experimental I-V data, which suggests the applications of ZnO nanowires as nanoelectromechanical sensors.

  10. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2003-08-27

    Tucson Electric Power Company (TEP) has applied to the U.S. Department of Energy (DOE) for a Presidential Permit to construct and operate a double-circuit, 345,000-volt (345-kV) electric transmission line across the United States border with Mexico. Under Executive Order (EO) 10485 of September 3, 1953, as amended by EO 12038 of February 3, 1978, a Presidential Permit is required to construct, connect, operate, or maintain facilities at the U.S. international border for the transmission of electric energy between the United States and a foreign country. DOE has determined that the issuance of a Presidential Permit to TEP for the proposed project would constitute a major Federal action that may have a significant impact on the environment within the meaning of the ''National Environmental Policy Act of 1969'' (NEPA) 42 United States Code (U.S.C.) {section}4321 et seq. For this reason, DOE has prepared this Draft Environmental Impact Statement (EIS) to evaluate potential environmental impacts from the proposed Federal action (granting a Presidential Permit for the proposed transmission facilities) and reasonable alternatives, including the No Action Alternative. This EIS was prepared in accordance with Section 102(2)(c) of NEPA, Council of Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508), and DOE NEPA Implementing Procedures (10 CFR 1021). DOE is the lead Federal Agency, as defined by 40 CFR 1501.5. The U.S. Department of Agriculture Forest Service (USFS), the Bureau of Land Management (BLM) of the U.S. Department of the Interior, and the U.S. Section of the International Boundary and Water Commission, U.S. and Mexico (USIBWC), are cooperating agencies. Each of these organizations will use the EIS for its own NEPA purposes, as described in the Federal Agencies' Purpose and Need and Authorizing Actions section of this summary. The 345-kV double-circuit transmission line would consist of twelve transmission line wires, or

  11. Electrical short pulses generation using a resonant tunneling diode nonlinear transmission line

    NASA Astrophysics Data System (ADS)

    Essimbi, B. Z.; Jäger, D.

    2012-03-01

    In this paper, the generation of short electrical pulses based on nonlinear active wave propagation effects along the resonant tunneling diode transmission line is studied. The principle of operation is discussed and it is shown by computer experiments that an input rectangular pulse as well as a sinusoidal input signal can be converted into a set of output spikes, suitable for A/D conversion at millimeter wave frequencies.

  12. Exact Solutions and Bifurcations of a Modulated Equation in a Discrete Nonlinear Electrical Transmission Line (III)

    NASA Astrophysics Data System (ADS)

    Li, Jibin; Chen, Fengjuan

    In this paper, we consider a modulated equation in a discrete nonlinear electrical transmission line. This model is an integrable planar dynamical system having three singular straight lines. By using the theory of singular systems to investigate the dynamical behavior for this system, we obtain bifurcations of phase portraits under different parameter conditions. Corresponding to some special level curves, we derive exact explicit parametric representations of solutions (including smooth solitary wave solutions, peakons, compactons, periodic cusp wave solutions) under different parameter conditions.

  13. Using ozone to treat cooling tower water

    SciTech Connect

    Webster, L.

    1995-07-01

    Ozone is a controversial but promising alternative to chemicals for treating water in cooling towers. A powerful disinfectant, ozone can prevent biofouling of heat exchange surfaces, and may mitigate scale and corrosion. Ozone treatment of cooling towers can cut costs for energy, water, sewage, and regulatory compliance. Ozone treatment is an electrotechnology, but ozone equipment represents only a small electric load. Although ozone has provided excellent results in some cooling tower applications, its effectiveness has not been proven conclusively. Less than 1,000 cooling towers use ozone water treatment in the United States. Acceptance of this technology is increasing, however, as indicated by its use by such large firms as IBM, AT and T, DuPont, and Xerox, and by its adoption by some chemical water treatment suppliers. The energy efficiency implications of ozone treatment are being researched. Southern California Edison found that in some systems, ozone treatment improved chiller efficiency up to 20 percent due to cleaner heat exchange surfaces.

  14. 30-MJ superconducting magnetic energy storage for electric-transmission stabilization

    SciTech Connect

    Turner, R.D.; Rogers, J.D.

    1981-01-01

    The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

  15. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  16. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  17. Management of the geomagnetically induced current risks on the national grid company's electric power transmission system

    NASA Astrophysics Data System (ADS)

    Erinmez, I. Arslan; Kappenman, John G.; Radasky, William A.

    2002-03-01

    The National Grid Company plc (NGC) is the owner and operator of one of the world's largest privatised high-voltage electric power transmission systems in England and Wales at 400 and 275kV. As owner operator it is responsible for the secure and reliable delivery of electrical energy to all the 25 million electricity supply customers in England and Wales. The transmission and distribution systems in UK have experienced significant effects during past geomagnetic storm events especially during solar cycles 21 and 22. These effects included generator reactive power output swings, voltage dips, negative sequence alarms and transformer failures. Geomagnetically induced current (GIC) monitoring was installed in 1989 and operational procedures were put in place based on global solar weather forecasts. These measures were not capable of delivering reliable information and thus gave many false operational alarms. Their only real use was for post event forensic purposes. Since the cycle 22 solar peak activity the UK transmission system has developed to become more meshed, heavily loaded and dependent on the availability of reactive compensation equipment for voltage control. NGC carried out GIC impact risk assessment in 1998. This reviewed available options for managing this risk including investigation of blocking measures, a reliable local GIC forecast, GIC monitoring, a review of transmission equipment capabilities to withstand GIC conditions and operational procedures to manage the risk. As a result of the risk assessment NGC completed installation of a Metatech Spacecast/Powercast space weather forecasting system in May 1999. EPRI Sunburst 2000 based transformer monitoring systems were fully integrated in January 2000 in time for peak solar storm activity in solar cycle 23. This paper will describe the risk analysis undertaken, the risk management processes put in place and the performance of the forecasting and monitoring systems, respectively.

  18. 43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  19. 37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  20. 19. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  1. 47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY NORTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  2. 36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  3. 40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. 18. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST BY WEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  5. Area-Specific Marginal Costing for Electric Utilities: a Case Study of Transmission and Distribution Costs

    NASA Astrophysics Data System (ADS)

    Orans, Ren

    1990-10-01

    Existing procedures used to develop marginal costs for electric utilities were not designed for applications in an increasingly competitive market for electric power. The utility's value of receiving power, or the costs of selling power, however, depend on the exact location of the buyer or seller, the magnitude of the power and the period of time over which the power is used. Yet no electric utility in the United States has disaggregate marginal costs that reflect differences in costs due to the time, size or location of the load associated with their power or energy transactions. The existing marginal costing methods used by electric utilities were developed in response to the Public Utilities Regulatory Policy Act (PURPA) in 1978. The "ratemaking standards" (Title 1) established by PURPA were primarily concerned with the appropriate segmentation of total revenues to various classes-of-service, designing time-of-use rating periods, and the promotion of efficient long-term resource planning. By design, the methods were very simple and inexpensive to implement. Now, more than a decade later, the costing issues facing electric utilities are becoming increasingly complex, and the benefits of developing more specific marginal costs will outweigh the costs of developing this information in many cases. This research develops a framework for estimating total marginal costs that vary by the size, timing, and the location of changes in loads within an electric distribution system. To complement the existing work at the Electric Power Research Institute (EPRI) and Pacific Gas and Electric Company (PGandE) on estimating disaggregate generation and transmission capacity costs, this dissertation focuses on the estimation of distribution capacity costs. While the costing procedure is suitable for the estimation of total (generation, transmission and distribution) marginal costs, the empirical work focuses on the geographic disaggregation of marginal costs related to electric

  6. Confusion at the Tower

    ERIC Educational Resources Information Center

    Li, Loretta F.

    2014-01-01

    This study will explore the omission of the Tower of Babel narrative from middle and secondary school world history, world studies, and world geography textbooks and will consider what might be learned from inclusion of the story in the curriculum. A total of 17 textbooks are analyzed. The Tower of Babel narrative is examined within the context of…

  7. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  8. Mitigating the Detrimental Impacts of Solar PV Penetration on Electric Power Transmission Systems

    NASA Astrophysics Data System (ADS)

    Prakash, Nitin

    At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO 2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.

  9. One-dimensional pressure transfer models for acoustic-electric transmission channels

    NASA Astrophysics Data System (ADS)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  10. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  11. ETR COOLING TOWER. PUMP HOUSE (TRA645) IN SHADOW OF TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COOLING TOWER. PUMP HOUSE (TRA-645) IN SHADOW OF TOWER ON LEFT. AT LEFT OF VIEW, HIGH-BAY BUILDING IS ETR. ONE STORY ATTACHMENT IS ETR ELECTRICAL BUILDING. STACK AT RIGHT IS ETR STACK; MTR STACK IS TOWARD LEFT. CAMERA FACING NORTHEAST. INL NEGATIVE NO. 56-3799. Jack L. Anderson, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Potential benefits of long-distance electricity transmission in China for air quality and climate

    NASA Astrophysics Data System (ADS)

    Peng, W.; Mauzerall, D. L.; Yuan, J.; Zhao, Y.; Lin, M.; Zhang, Q.

    2015-12-01

    China is expanding west-to-east long-distance electricity transmission capacity with the aim of reducing eastern coal power production and resulting air pollution. In addition to coal power, this new grid capacity can be used to transport renewable-generated electricity with resulting climate co-benefits. Here we use an integrated assessment to evaluate the air quality and climate benefits of twelve proposed transmission lines in China, and compare two energy-by-wire strategies that transmit 1) only coal power (Coal-by-wire, CbW) or 2) combined renewable plus coal power (Renewable and coal-by-wire, (RE+C)bW), with 3) the current practice of transporting coal by rail for conversion to electricity near eastern demand centers (Coal-by-rail, CbR). Based on a regional atmospheric chemistry model, WRF-Chem, electricity transmission through the proposed lines leads to 2-3 μg/m3 (2-7%) reduction in the annual mean concentrations of fine particulate matter (PM2.5) in the eastern provinces relative to 2010 levels, roughly ~1 μg/m3 greater than the reduction achieved in CbR where dirty coal units are locally replaced with efficient ones. Although the eastern air quality improvement is similar irrespective of the fuel source to power the lines, adding coal generation results in up to 3% increase in annual mean PM2.5 levels in some exporting provinces, whereas such increase is not observed when most added capacity is renewable-based. Counting both the economic value of reduced carbon emissions and the health-related air quality benefits can significantly improve the cost-effectiveness of transmitting both renewable and coal power. Comparing (RE+C)bW with the two coal-based options, we find not only 20% larger reduction in air-pollution-related deaths, but also three times greater reduction in CO2 emissions. Our study hence demonstrates the significance of coordinating renewable energy planning with transmission planning to simultaneously tackle air pollution and climate

  13. Low frequency electric field variations during HF transmissions on a mother-daughter rocket

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Maynard, M. C.; Holtet, J. A.; Karlsen, N. O.; Egeland, A.; Moe, T. E.; Troim, J.

    1977-01-01

    HF wave propagation experiments were conducted on Mother-Daughter rockets in the polar ionosphere. Swept frequency transmissions from the Mother, nominally covering the range from 0.5 to 5 MHz in both CW and pulse modes, are received by the Daughter. In the most recent rocket of the series, the Mother also contained an AC electric field spectrometer covering the frequency range from 10 Hz to 100 kHz in four decade bands. The low frequency response of the ionosphere with respect to waves emitted from the onboard HF transmitter is examined.

  14. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  15. 7. SOUTHWEST CORNER OF EAST PHOTO TOWER. CLOSED WINDOW ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SOUTHWEST CORNER OF EAST PHOTO TOWER. CLOSED WINDOW ON WEST SIDE; ELECTRICAL POWER BOX ON EAST SIDE OF PHOTO TOWER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. In Hot Water: A Cooling Tower Case Study

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…

  17. In Hot Water: A Cooling Tower Case Study. Instructor's Manual

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…

  18. Installation of electric field electron beam blanker in high-resolution transmission electron microscopy

    SciTech Connect

    Hayashida, Misa; Kimura, Yoshihide; Taniguchi, Yoshifumi; Otsuka, Masayuki; Takai, Yoshizo

    2006-11-15

    We have newly installed an electric field electron beam blanker in a transmission electron microscopy, which chops an electron beam very quickly without the effect of hysteresis. The electric field, which is generated by the electron beam blanker, deflects the electron beam, and the electron beam is intercepted by an aperture. The response time of the beam blanker is 50 {mu}s. Therefore, a very short pulsed electron beam enables a charge-coupled device camera to directly expose an electron beam spot or diffraction pattern. Moreover, we measured the response of a deflector coil, which is usually used as an electron beam blanker, using our electron beam blanker. Our beam blanker will become a key component in a computer-assisted minimal dose system, which enables us to reduce the electron dose of the sample.

  19. [Electric power generation and transmission: the impact on indigenous peoples in Brazil].

    PubMed

    Koifman, S

    2001-01-01

    This paper presents an overview of the effects of electric power generation and transmission on indigenous communities in Brazil. According to data from FUNAI (the Brazilian government's Board of Indian Affairs), there are 156 cases of direct impact, present or future, of the electric power sector on Indian settlements geographically distributed throughout Brazil, 65% of which are located in the Northern Region of the country. The principal complaints by indigenous communities relate to the direct effects of flooding following construction of hydroelectric dams, destruction of sacred sites like cemeteries, mosquito proliferation, and health-related hazards such as malaria and other infectious diseases, decrease in game for hunting, crowding out of farm land, and increased invasion of indigenous lands. Future perspectives include a scenario with further construction of hydroelectric dams, especially in the Amazon region, with possible similar effects on indigenous communities. PMID:11283772

  20. Electrically controlled infrared optical transmission and reflection through metallic grating using NEMS technology

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kenzo; Fujii, Masamitsu

    2015-12-01

    The enhanced optical properties of metallic subwavelength gratings with very narrow slits have recently been extensively studied in the field of plasmonics. The optical transmission and reflection of such nanostructures, which act as nano-electro-mechanical systems (NEMS) actuators, can be electrically controlled by varying their geometrical parameters, giving them great flexibility for numerous applications in photonics, opto-electronics, and sensing. The previous challenges in controlling the optical properties were overcome by forming a metallic subwavelength grating with an NEMS actuator in mid-air, allowing the grating to be physically moved with the bias voltage. The device can shift the plasmon resonance wavelength with an electrical signal. The resonance wavelength for Wood's anomaly at the infrared region is predicted through simulations to shift by approximately 150 nm. We discuss the effect of polarization on the optical properties and grating mechanism. The reported effect may be used to achieve active spectral tuning and switching in a wide range of applications.

  1. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.

    2016-05-01

    Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.

  2. Drop Tower Physics

    NASA Astrophysics Data System (ADS)

    Dittrich, William A. Toby

    2014-10-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in The Physics Teacher1 in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at the drop tower in Bremen, Germany. Using these drop towers, one can briefly investigate various physical systems operating in this near zero-g environment. The resulting "Drop Tower Physics" is a new and exciting way to challenge students with a physical example that requires solid knowledge of many basic physics principles, and it forces them to practice the scientific method. The question is, "How would a simple toy, like a pendulum, behave when it is suddenly exposed to a zero-g environment?" The student must then postulate a particular behavior, test the hypothesis against physical principles, and if the hypothesis conforms to these chosen physical laws, the student can formulate a final conclusion. At that point having access to a drop tower is very convenient, in that the student can then experimentally test his or her conclusion. The purpose of this discussion is to explain the response of these physical systems ("toys") when the transition is made to a zero-g environment and to provide video demonstrations of this behavior to support in-class discussions of Drop Tower Physics.

  3. Extensible Wind Towers

    NASA Astrophysics Data System (ADS)

    Sinagra, Marco; Tucciarelli, Tullio

    The diffusion of wind energy generators is restricted by their strong landscape impact. The PERIMA project is about the development of an extensible wind tower able to support a wind machine for several hundred kW at its optimal working height, up to more than 50 m. The wind tower has a telescopic structure, made by several tubes located inside each other with their axis in vertical direction. The lifting force is given by a jack-up system confined inside a shaft, drilled below the ground level. In the retracted tower configuration, at rest, tower tubes are hidden in the foundation of the telescopic structure, located below the ground surface, and the wind machine is the only emerging part of the system. The lifting system is based on a couple of oleodynamic cylinders that jack-up a central tube connected to the top of the tower by a spring, with a diameter smaller than the minimum tower diameter and with a length a bit greater than the length of the extended telescopic structure. The central tube works as plunger and lifts all telescopic elements. The constraint between the telescopic elements is ensured by special parts, which are kept in traction by the force of the spring and provide the resisting moment. The most evident benefit of the proposed system is attained with the use of a two-blade propeller, which can be kept horizontal in the retracted tower configuration.

  4. Transmission Line Security Monitor: Final Report

    SciTech Connect

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  5. European Sail Tower SPS concept

    NASA Astrophysics Data System (ADS)

    Seboldt, W.; Klimke, M.; Leipold, M.; Hanowski, N.

    2001-03-01

    Based on a DLR-study in 1998/99 on behalf of ESA/ESTEC called "System Concepts, Architectures and Technologies for Space Exploration and Utilization (SE&U)" a new design for an Earth-orbiting Solar Power Satellite (SPS) has been developed. The design is called "European Sail Tower SPS" and consists mainly of deployable sail-like structures derived from the ongoing DLR/ESA solar sail technology development activity. Such a SPS satellite features an extremely light-weight and large tower-like orbital system and could supply Europe with significant amounts of electrical power generated by photovoltaic cells and subsequently transmitted to Earth via microwaves. In order to build up the sail tower, 60 units - each consisting of a pair of square-shaped sails - are moved from LEO to GEO with electric propulsion and successively assembled in GEO robotically on a central strut. Each single sail has dimensions of 150m × 150 m and is automatically deployed, using four diagonal light-weight carbon fiber (CFRP) booms which are initially rolled up on a central hub. The electric thrusters for the transport to GEO could also be used for orbit and attitude control of the assembled tower which has a total length of about 15 km and would be mainly gravity gradient stabilized. Employing thin film solar cell technology, each sail is used as a solar array and produces an electric power in orbit of about 3.7 MW e. A microwave antenna with a diameter of 1 km transmits the power to a 10 km rectenna on the ground. The total mass of this 450 MW SPS is about 2100 tons. First estimates indicate that the costs for one kWh delivered in this way could compete with present day energy costs, if launch costs would decrease by two orders of magnitude. Furthermore, mass production and large numbers of installed SPS systems must be assumed in order to lower significantly the production costs and to reduce the influence of the expensive technology development. The paper presents the technical concept

  6. Tower Camera Handbook

    SciTech Connect

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  7. Analytical modeling of a sandwiched plate piezoelectric transformer-based acoustic-electric transmission channel.

    PubMed

    Lawry, Tristan J; Wilt, Kyle R; Scarton, Henry A; Saulnier, Gary J

    2012-11-01

    The linear propagation of electromagnetic and dilatational waves through a sandwiched plate piezoelectric transformer (SPPT)-based acoustic-electric transmission channel is modeled using the transfer matrix method with mixed-domain two-port ABCD parameters. This SPPT structure is of great interest because it has been explored in recent years as a mechanism for wireless transmission of electrical signals through solid metallic barriers using ultrasound. The model we present is developed to allow for accurate channel performance prediction while greatly reducing the computational complexity associated with 2- and 3-dimensional finite element analysis. As a result, the model primarily considers 1-dimensional wave propagation; however, approximate solutions for higher-dimensional phenomena (e.g., diffraction in the SPPT's metallic core layer) are also incorporated. The model is then assessed by comparing it to the measured wideband frequency response of a physical SPPT-based channel from our previous work. Very strong agreement between the modeled and measured data is observed, confirming the accuracy and utility of the presented model. PMID:23192811

  8. Design and control of a novel two-speed Uninterrupted Mechanical Transmission for electric vehicles

    NASA Astrophysics Data System (ADS)

    Fang, Shengnan; Song, Jian; Song, Haijun; Tai, Yuzhuo; Li, Fei; Sinh Nguyen, Truong

    2016-06-01

    Conventional all-electric vehicles (EV) adopt single-speed transmission due to its low cost and simple construction. However, with the adoption of this type of driveline system, development of EV technology leads to the growing performance requirements of drive motor. Introducing a multi-speed or two-speed transmission to EV offers the possibility of efficiency improvement of the whole powertrain. This paper presents an innovative two-speed Uninterrupted Mechanical Transmission (UMT), which consists of an epicyclic gearing system, a centrifugal clutch and a brake band, allowing the seamless shifting between two gears. Besides, driver's intention is recognized by the control system which is based on fuzzy logic controller (FLC), utilizing the signals of vehicle velocity and accelerator pedal position. The novel UMT shows better dynamic and comfort performance in compare with the optimized AMT with the same gear ratios. Comparison between the control strategy with recognition of driver intention and the conventional two-parameter gear shifting strategy is presented. And the simulation and analysis of the middle layer of optimal gearshift control algorithm is detailed. The results indicate that the UMT adopting FLC and optimal control method provides a significant improvement of energy efficiency, dynamic performance and shifting comfort for EV.

  9. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN,EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-48 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  10. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN, EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-21 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  11. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate.

    PubMed

    Lam, Michelle; Mitsui, Retsu; Hashitani, Hikaru

    2016-01-01

    Prostatic smooth muscle develops spontaneous myogenic tone which is modulated by autonomic neuromuscular transmission. This study aimed to investigate the role of purinergic transmission in regulating electrical activity of prostate smooth muscle and whether its contribution may be altered with age. Intracellular recordings were simultaneously made with isometric tension recordings in smooth muscle preparations of the guinea-pig prostate. Immunostaining for P2X1 receptors on whole mount preparations was also performed. In prostate preparations which generated spontaneous slow waves, electrical field stimulation (EFS)-evoked excitatory junction potentials (EJPs) which were abolished by guanethidine (10 μM), α-β-methylene ATP (10 μM) or pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (PPADS, 10 μM) but not phentolamine (1 μM). Consistently, immunostaining revealed the expression of P2X1 receptors on prostatic smooth muscle. EJPs themselves did not cause contractions, but EJPs could sum to trigger a slow wave and associated contraction. Yohimbine (1 μM) and 3,7-dimethyl-1-propargylxanthine (DMPX, 10 μM) but not propranolol (1 μM) potentiated EJPs. Although properties of EJPs were not different between young and aging guinea-pig prostates, ectoATPase inhibitor ARL 67156 (100 μM) augmented EJP amplitudes by 64.2 ± 29.6% in aging animals, compared to 22.1 ± 19.9% in young animals. These results suggest that ATP released from sympathetic nerves acts on P2X1 purinoceptors located on prostate smooth muscle to evoke EJPs, while pre-junctional α2-adrenergic and adenosine A2 receptors may play a role in preventing excessive transmitter release. Age-related up-regulation of enzymatic ATP breakdown may be a compensatory mechanism for the enhanced purinergic transmission which would cause hypercontractility arising from increased ATP release in older animals. PMID:26657181

  12. Wind power development in the United States: Effects of policies and electricity transmission congestion

    NASA Astrophysics Data System (ADS)

    Hitaj, Claudia

    In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations

  13. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    NASA Astrophysics Data System (ADS)

    Perez, Marc J. R.

    /south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar

  14. Optimal Inflatable Space Towers with 3 - 100 km Height

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2003-01-01

    Theory and computations are provided for building inflatable space towers up to one hundred kilometers in height. These towers can be used for tourism, scientific observation of space, observation of the Earth's surface, weather and upper atmosphere, and for radio, television, and communication transmissions. These towers can also be used to launch space ships and Earth satellites. These projects are not expensive and do not require rockets. They require thin strong films composed from artificial fibers and fabricated by current industry. The towers can be built using present technology. The towers can be used (for tourism, communication, etc.) during the construction process and provide self-financing for further construction. The tower design does not require work at high altitudes; all construction can be done at the Earth's surface. The transport system for a tower consists of a small engine (used only for friction compensation) located at the Earth's surface. The tower is separated into sections and has special protection mechanisms in case of damage. Problems involving security, control, repair, and stability of the proposed towers are addressed in other publications. The author is prepared to discuss these and other problems with serious organizations desiring to research and develop these projects.

  15. Aquarius: Tower Rollback

    NASA Video Gallery

    The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California is being moved away from the ULA Delta II rocket with the Aquarius/SAC-D spacecraft atop, in preparati...

  16. Connexin35 mediates electrical transmission at mixed synapses on Mauthner cells.

    PubMed

    Pereda, A; O'Brien, J; Nagy, J I; Bukauskas, F; Davidson, K G V; Kamasawa, N; Yasumura, T; Rash, J E

    2003-08-20

    Auditory afferents terminating as "large myelinated club endings" on goldfish Mauthner cells are identifiable "mixed" (electrical and chemical) synaptic terminals that offer the unique opportunity to correlate physiological properties with biochemical composition and specific ultrastructural features of individual synapses. By combining confocal microscopy and freeze-fracture replica immunogold labeling (FRIL), we demonstrate that gap junctions at these synapses contain connexin35 (Cx35). This connexin is the fish ortholog of the neuron-specific human and mouse connexin36 that is reported to be widely distributed in mammalian brain and to be responsible for electrical coupling between many types of neurons. Similarly, connexin35 was found at gap junctions between neurons in other brain regions, suggesting that connexin35-mediated electrical transmission is common in goldfish brain. Conductance of gap junction channels at large myelinated club endings is known to be dynamically modulated by the activity of their colocalized glutamatergic synapses. We show evidence by confocal microscopy for the presence of the NR1 subunit of the NMDA glutamate receptor subtype, proposed to be a key regulatory element, at these large endings. Furthermore, we also show evidence by FRIL double-immunogold labeling that the NR1 subunit of the NMDA glutamate receptor is present at postsynaptic densities closely associated with gap junction plaques containing Cx35 at mixed synapses across the goldfish hindbrain. Given the widespread distribution of electrical synapses and glutamate receptors, our results suggest that the plastic properties observed at these identifiable junctions may apply to other electrical synapses, including those in mammalian brain. PMID:12930787

  17. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  18. Propagation of Epileptiform Activity Can Be Independent of Synaptic Transmission, Gap Junctions, or Diffusion and Is Consistent with Electrical Field Transmission

    PubMed Central

    Zhang, Mingming; Ladas, Thomas P.; Qiu, Chen; Shivacharan, Rajat S.; Gonzalez-Reyes, Luis E.

    2014-01-01

    The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission. PMID:24453330

  19. Mycobacteria in Finnish cooling tower waters.

    PubMed

    Torvinen, Eila; Suomalainen, Sini; Paulin, Lars; Kusnetsov, Jaana

    2014-04-01

    Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination. PMID:23937212

  20. 8. North elevation of electric relay station showing electrical cable ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. North elevation of electric relay station showing electrical cable connection to tower. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  1. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    PubMed

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-01-01

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions. PMID:25658390

  2. 24. DETAIL VIEW IN COAL TOWER No. 1 OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL VIEW IN COAL TOWER No. 1 OF THE LEVERS THAT MANIPULATE THE COAL BUCKETS, LOOKING OVER THE BOOM - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  3. 39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. 1 (WEST) (NOTE: COAL CARS No. 9 & 5 IN BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  4. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  5. 5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. #2 TRANSMISSION LINES, MARCH 7, 1916. SCE drawing no. 4932. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  6. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    SciTech Connect

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  7. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk.

    PubMed

    Calderón-Miranda, M L; Barbosa-Cánovas, G V; Swanson, B G

    1999-10-01

    Pulsed electric fields (PEF) is a nonthermal food preservation process where organoleptic and nutritional properties of the food are maintained. PEF is known to inactivate microorganisms by causing dielectric breakdown of the cell membrane, thus altering the functionality of the membrane as a semipermeable barrier. The extent of damage of the cell membrane, whether visible in the form of a pore or as loss of membrane functionality leads to the inactivation of the microorganism. The objective of this study was to investigate under transmission electron microscopy (TEM) the morphological changes on Listerit innocua as a result of PEF treatment in skimmed milk containing nisin. L. innocua was subjected to PEF at selected electric field intensities of 30, 40, and 50 kV/cm. L. innocua was treated by PEF in both skimmed milk with and without 37 IU nisin/ml. L. innocua treated by PEF in skimmed milk exhibited an increase in the cell wall roughness. cytoplasmic clumping, leakage of cellular material, and rupture of the cell walls and cell membranes. L. innocua subjected to PEF in skimmed milk containing 37 IU nisin/ml exhibited an increased cell wall width. At the highest electric field intensity, 50 kV/cm, elongation of the cell length was observed. There were no morphological differences between cells treated by PEF in skimmed milk with or without nisin. The combination of PEF and nisin exhibit an additive effect in the morphological damage observed on L. innocua. Pore formation was observed on L. innocua for an electric field intensity of 40 kV/cm. The inactivation of L. innocua was a consequence of rupture of the cell membrane and loss of cell membrane functionality. PMID:10563461

  8. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  9. Wet cells and dry cells: In situ transmission electron microscopy of electrically-driven, dynamical processes

    NASA Astrophysics Data System (ADS)

    White, Edward Robert, IV

    Recent developments in nanofabrication techniques allow thin, wet systems to be imaged with high spatial and temporal resolution in the electron microscope. Coupling this ability with simultaneous, measured, electrical control, we cycle processes in liquid systems representing different electrochemical battery components. Dynamic processes imaged with these techniques, which represent a new state-of-the-art, include nanobubble collapse, dendrite growth, ion diffusion, and graphite intercalation. We also develop a sensitive system for measuring electron beam induced currents (EBIC) in the transmission electron microscope and apply it to graphene-MoS2 heterostructures. This new hybrid material has strong light-matter interactions, and the EBIC measurements map the minority carrier diffusion length, which we observe to decrease with increasing radiation damage. These results have direct implications for the function and service lifetime of solar cells based on molybdenum disulfide.

  10. The design of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Gretz, J.

    The conversion of solar energy into electricity in solar thermal tower power plants is examined. Mirrors attached to mobile, sun-following heliostats concentrate solar rays into the opening of a receiver mounted on a tower. In the receiver, the radiant energy is absorbed by a system of pipes filled with a flowing material which is heated and drives a turbogenerator directly or via a heat exchanger. It is shown that the optics involved in this concept preclude the optimization of the pipe material, since the local distribution of rays in the heater of tower power plants varies diurnally and annually. This requires each pipe section to be designed for maximum stress, even though that stress occurs only at brief intervals during the day.

  11. Planar micro-nano-coils for electrically driving liquid crystal microlenses based on wireless power transmission

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Hu, Wei; Luo, Jun; Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-12-01

    In this paper, the planar micro-nano-coils (PMNCs) with diverse planar spiral structures are designed for electrically driving and controlling liquid crystal microlenses (LCMs) based on wireless power transmission approaches. The PMNCs with different basic shapes are fabricated, including typical micro-triangle, micro-square, micro-pentagon, micro-hexagon, and micro-circle. According to the designed microstructures, using loop iterative approximation means based on Greenhouse algorithm, the inductance values of the microcoils can be calculated through combining self-inductance with mutual-inductance. In experiments, both the wet and dry etching technologies are adapted to obtain the desired PMNCs over aluminum-coated glass substrates. The etching technologies utilized by us are implemented on initial glass substrates spread by photoresist mask, which has been processed by common ultraviolet lithography. And the wet and dry etching technologies are different in the way of eroding aluminum film. Usually, the wet etching is a kind of the chemical reaction of alkali element in the developing liquid used, but the dry etching is a type of physical etching process such as the ion beam etching so as to fabricate microstructures with smaller size than that of wet etching. After the fabrication of the PMNCs, the electrical testing circuit for the inductance of the PMNCs is built to obtain their actual inductance values. By comparing inductances with theoretical prediction, the improved PMNCs are proposed for driving and controlling LCMs, which demonstrates enhanced light transmission efficiency of the PMNCs, and makes it more efficient to adjust LCMs developed by us.

  12. Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line.

    PubMed

    Sato, M; Mukaide, T; Nakaguchi, T; Sievers, A J

    2016-07-01

    The experimental properties of intrinsic localized modes (ILMs) have long been compared with theoretical dynamical lattice models that make use of nonlinear onsite and/or nearest-neighbor intersite potentials. Here it is shown for a one-dimensional lumped electrical transmission line that a nonlinear inductive component in an otherwise linear parallel capacitor lattice makes possible a new kind of ILM outside the plane wave spectrum. To simplify the analysis, the nonlinear inductive current equations are transformed to flux transmission line equations with analog onsite hard potential nonlinearities. Approximate analytic results compare favorably with those obtained from a driven damped lattice model and with eigenvalue simulations. For this mono-element lattice, ILMs above the top of the plane wave spectrum are the result. We find that the current ILM is spatially compressed relative to the corresponding flux ILM. Finally, this study makes the connection between the dynamics of mass and force constant defects in the harmonic lattice and ILMs in a strongly anharmonic lattice. PMID:27575139

  13. Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line

    NASA Astrophysics Data System (ADS)

    Sato, M.; Mukaide, T.; Nakaguchi, T.; Sievers, A. J.

    2016-07-01

    The experimental properties of intrinsic localized modes (ILMs) have long been compared with theoretical dynamical lattice models that make use of nonlinear onsite and/or nearest-neighbor intersite potentials. Here it is shown for a one-dimensional lumped electrical transmission line that a nonlinear inductive component in an otherwise linear parallel capacitor lattice makes possible a new kind of ILM outside the plane wave spectrum. To simplify the analysis, the nonlinear inductive current equations are transformed to flux transmission line equations with analog onsite hard potential nonlinearities. Approximate analytic results compare favorably with those obtained from a driven damped lattice model and with eigenvalue simulations. For this mono-element lattice, ILMs above the top of the plane wave spectrum are the result. We find that the current ILM is spatially compressed relative to the corresponding flux ILM. Finally, this study makes the connection between the dynamics of mass and force constant defects in the harmonic lattice and ILMs in a strongly anharmonic lattice.

  14. Analysis of the reasons for accidents and of protective measures against induced voltage on aerial electrical transmission lines

    SciTech Connect

    Misrikhanov, M. Sh.; Mirzaabdullaev, A. O.

    2009-01-15

    The problem of safety during work on aerial transmission lines under an induced voltage is examined. Results are presented from a study of the causes of accidents over the last 20 years in electrical grids in this country. A determination of different levels of induced voltage on disconnected aerial transmission lines as a function of their grounding scheme is proposed. The order of magnitudes for each level are given, along with approximate expressions for calculating them.

  15. Salt water cooling tower retrofit experience

    SciTech Connect

    Rittenhouse, R.C.

    1994-06-01

    This article describes the experience of engineers at Atlantic Electric Co. with a recent cooling tower fill retrofit at the company's B.L. England Station, Unit 3. Note that this tower is unique. It is the first natural draft salt water tower to be built in the United States. Unit 3's closed-loop saltwater cooling system features a double condenser and two 50% capacity horizontal circulating water pumps. A natural draft cooling tower rejects heat to the atmosphere through evaporation and sensible heat transfer. The tower is 180 ft in diameter at the base and 208 ft high, and features a counterflow design. It was designed to cool 63,500 gpm of circulating salt water through a range of 26 F with an approach of 19.2 degrees at an ambient wet bulb temperature of 76 F and 60% relative humidity. A drift rate of 0.002% of circulating water flow was specified to avoid excessive salt water carryover.

  16. Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line.

    PubMed

    Kengne, E; Lakhssassi, A; Liu, W M

    2015-06-01

    We study analytically the dynamics of modulated waves in a dissipative modified Noguchi nonlinear electrical network. In the continuum limit, we use the reductive perturbation method in the semidiscrete limit to establish that the propagation of modulated waves in the network is governed by a dissipative nonlinear Schrödinger (NLS) equation. Motivated with a solitary wave type of solution to the NLS equation, we use both the direct method and the Weierstrass's elliptic function method to present classes of bright, kink, and dark solitary wavelike solutions to the dissipative NLS equation of the network. Through the exact solitary wavelike solutions to the dissipative NLS equation, we investigate the effects of the dissipative elements of the network on wave propagation. We show that the wave amplitude decreases and its width increases when the dissipative element of the network increases. It has been also found that the dissipative element of the network can be used to manipulate the motion of solitary waves through the network. This work presents a good analytical approach of investigating the propagation of solitary waves through discrete electrical transmission lines and is very important for studying modulational instability. PMID:26172780

  17. Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line

    NASA Astrophysics Data System (ADS)

    Kengne, E.; Lakhssassi, A.; Liu, W. M.

    2015-06-01

    We study analytically the dynamics of modulated waves in a dissipative modified Noguchi nonlinear electrical network. In the continuum limit, we use the reductive perturbation method in the semidiscrete limit to establish that the propagation of modulated waves in the network is governed by a dissipative nonlinear Schrödinger (NLS) equation. Motivated with a solitary wave type of solution to the NLS equation, we use both the direct method and the Weierstrass's elliptic function method to present classes of bright, kink, and dark solitary wavelike solutions to the dissipative NLS equation of the network. Through the exact solitary wavelike solutions to the dissipative NLS equation, we investigate the effects of the dissipative elements of the network on wave propagation. We show that the wave amplitude decreases and its width increases when the dissipative element of the network increases. It has been also found that the dissipative element of the network can be used to manipulate the motion of solitary waves through the network. This work presents a good analytical approach of investigating the propagation of solitary waves through discrete electrical transmission lines and is very important for studying modulational instability.

  18. Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Sattar, Golam Shabbir; Keramat, Mumnunul; Shahid, Shamsuddin

    2016-03-01

    The vertical electrical soundings (VESs) are carried out in 24 selective locations of Chapai-Nawabganj area of northwest Bangladesh to determine the transmissivity and hydraulic conductivity of the aquifer. Initially, the transmissivity and hydraulic conductivity are determined from the pumping data of nearby available production wells. Afterwards, the T and K are correlated with geoelectrical resistance and the total resistivity of the aquifer. The present study deciphers the functional analogous relations of the geoelectrical resistance with the transmissivity and the total resistivity with the hydraulic conductivity of the aquifer in northwest Bangladesh. It has been shown that the given equations provide reasonable values of transmissivity and hydraulic conductivity where pumping test information is unavailable. It can be expected that the aquifer properties viz. transmissivity and hydraulic conductivity of geologically similar area can be determined with the help of the obtained equations by conducting VES experiments.

  19. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  20. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER TWO, WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER TWO, WITH TOWERS THREE,FOUR, FIVE AND SIX IN DISTANCE, LOOKING NORTHEAST. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  1. 8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, RIGHT. VIEW LOOKING NORTH SHOWING AERIAL WIRE DESIGN WITH VERTICAL 'TOP HAT' WIRES IN CENTER. - Chollas Heights Naval Radio Transmitting Facility, 6410 Zero Road, San Diego, San Diego County, CA

  2. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  3. 46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING NORTHWEST, WITH WEST WING ROOF - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. 42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  5. 41. SOUTHEAST TOWER & EAST WING FROM SOUTH TOWER ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. SOUTHEAST TOWER & EAST WING FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  6. View of the north tower porte cochere and flag tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the north tower porte cochere and flag tower, looking southwest (duplicate of HABS No. DC-141-19) - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  7. 45. OCTAGONAL, WEST & NORTHWEST TOWERS FROM SOUTH TOWER ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. OCTAGONAL, WEST & NORTHWEST TOWERS FROM SOUTH TOWER ROOF, LOOKING WEST BY NORTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  8. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  9. Legionella in cooling towers.

    PubMed

    Witherell, L E; Novick, L F; Stone, K M; Duncan, R W; Orciari, L A; Kappel, S J; Jillson, D A

    1986-01-01

    Legionellosis (Legionnaires' disease and Pontiac fever) outbreaks have been associated with aerosols ejected from contaminated cooling towers--wet-type heat rejection units (WTHRUs) used to dissipate unwanted heat into the atmosphere. The Vermont Department of Health undertook a program to inventory, inspect, and sample all WTHRUs in Vermont from April 1981 to April 1982. All WTHRUs were sampled for Legionella pneumophila and data were obtained for location, design, construction, and operating characteristics. Of the 184 WTHRUs operating, statistical analyses were performed on those 130 which were sampled for L. pneumophila only once during the study period. Of these, 11 (8.5%) were positive for L. pneumophila. Sources of makeup water and period of operation had significant association with the recovery of L. pneumophila. Five out of 92 towers (5.4%) utilizing surface water sources for cooling were positive for L. pneumophila, in contrast to 6 positive towers of the 38 units (15.8%) which obtained makeup water from ground water sources (p = .054 by chi-square test). Nearly 15% of the 54 units which operated throughout the year were positive, compared to less than 4% of the 76 towers operating seasonally (p = .03 by chi-square test). The mean pH of the cooling water in units where L. pneumophila was recovered (8.3) was significantly higher than the mean pH of 7.9 in units testing negative (p less than .05 by t-test). In addition, the mean log-transformed turbidity of positive towers, 0.03 nephelometric units (ntu), was significantly lower than the mean of log turbidity of negative towers, 0.69 ntu (p less than .02 by t-test). PMID:10281778

  10. THE TOWER HOUSE, LOOKING WEST. The tower house provided a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THE TOWER HOUSE, LOOKING WEST. The tower house provided a water tank on the second floor that gravity fed water to the Kineth house and farm buildings. The one-story addition to the west of the tower provided workshop space. The hog shed is seen on the left of the image and the concrete foundation of the upright silo is in the foreground on the right. - Kineth Farm, Tower House, 19162 State Route 20, Coupeville, Island County, WA

  11. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  12. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  13. Evaluation of IR technology applied to cooling tower performance

    NASA Astrophysics Data System (ADS)

    MacNamara, Neal A.; Zayicek, Paul A.

    1999-03-01

    Infrared thermography (IR) is widely used by electric utilities as an integral part of their predictive maintenance program. IR is utilized for inspection of a variety of plant mechanical and electrical components. Additionally, IR can be used to provide thermal performance information for other key plant systems, including assessment of cooling towers. Cooling tower performance directly affects availability and heat rate in fossil and nuclear power plants. Optimal tower performance contributes to efficient turbine operation and maximum power output. It is estimated that up to half of the cooling towers installed have failed to meet their design performance specifications. As a result, any additional degradation of tower performance resulting from fouling, valve degradation, unbalanced flow, or a poor maintenance practice has a direct effect on generation output. We have collected infrared thermography images of mechanical draft cooling towers, as part of Evaluation of IR Technology Applied to Cooling Tower Performance. IR images have been analyzed to provide information regarding general performance conditions and identification of operational deficiencies related to thermal performance. Similarly, IR can be implemented for monitoring of tower flow balance activities and for post-maintenance surveillance. To date, IR images have been used to identify areas of general flow imbalance, flooding or limited flow in individual cells, missing or broken tower fill material, fan performance and other problems related to maintenance or operational issues. Additionally, an attempt is being made to use quantitative thermal data, provided by the IR image analysis software, in conjunction with condenser input/output site ambient information, to evaluate and compare individual tower cell performance.

  14. Individual welfare maximization in electricity markets including consumer and full transmission system modeling

    NASA Astrophysics Data System (ADS)

    Weber, James Daniel

    1999-11-01

    This dissertation presents a new algorithm that allows a market participant to maximize its individual welfare in the electricity spot market. The use of such an algorithm in determining market equilibrium points, called Nash equilibria, is also demonstrated. The start of the algorithm is a spot market model that uses the optimal power flow (OPF), with a full representation of the transmission system. The OPF is also extended to model consumer behavior, and a thorough mathematical justification for the inclusion of the consumer model in the OPF is presented. The algorithm utilizes price and dispatch sensitivities, available from the Hessian matrix of the OPF, to help determine an optimal change in an individual's bid. The algorithm is shown to be successful in determining local welfare maxima, and the prospects for scaling the algorithm up to realistically sized systems are very good. Assuming a market in which all participants maximize their individual welfare, economic equilibrium points, called Nash equilibria, are investigated. This is done by iteratively solving the individual welfare maximization algorithm for each participant until a point is reached where all individuals stop modifying their bids. It is shown that these Nash equilibria can be located in this manner. However, it is also demonstrated that equilibria do not always exist, and are not always unique when they do exist. It is also shown that individual welfare is a highly nonconcave function resulting in many local maxima. As a result, a more global optimization technique, using a genetic algorithm (GA), is investigated. The genetic algorithm is successfully demonstrated on several systems. It is also shown that a GA can be developed using special niche methods, which allow a GA to converge to several local optima at once. Finally, the last chapter of this dissertation covers the development of a new computer visualization routine for power system analysis: contouring. The contouring algorithm is

  15. Ivory Basements and Ivory Towers

    ERIC Educational Resources Information Center

    Fitzgerald, Tanya

    2012-01-01

    The metaphors of the ivory tower and ivory basement are used in this chapter to reflect how many women understand and experience the academy. The ivory tower signifies a place that is protected, a place of privilege and authority and a place removed from the outside world (and consequently the rigours of the market place). The ivory tower, by…

  16. The Ivory Tower Revisited

    ERIC Educational Resources Information Center

    Chantler, Abigail

    2016-01-01

    The corollary of the concept of the "ivory tower", as reflected in the writings of Plato and Newman amongst others, was, paradoxically, the vital importance of the university for wider society. Nevertheless from the mid-twentieth century, the esteem in which a "liberal" university education was held was diminished by rising…

  17. Cell Towers and Songbirds

    ERIC Educational Resources Information Center

    Klosterman, Michelle; Mesa, Jennifer; Milton, Katie

    2009-01-01

    This article describes how our common addiction to cell phones was used to launch a discussion about their use, impacts on the environment, and connections to issues of civic concern. By encouraging middle school science students to adopt the perspectives of special-interest groups debating communication tower restrictions designed to protect…

  18. COOLING TOWER PLUME MODEL

    EPA Science Inventory

    A review of recently reported cooling tower plume models yields none that is universally accepted. The entrainment and drag mechanisms and the effect of moisture on the plume trajectory are phenomena which are treated differently by various investigators. In order to better under...

  19. Talking Towers, Making Withs.

    ERIC Educational Resources Information Center

    Lemke, J. L.

    The notion of a linguistic "register" is useful in posing questions about how the ways language is used differ from one kind of human activity to another. This paper analyzes a videotaped segment of male grade 4/5 students (n=3) who are talking as they work to build a tower from plastic drinking straws and pins. Discussion of the analysis…

  20. Engineering photochemical smog through convection towers

    SciTech Connect

    Elliott, S.; Prueitt, M.L.; Bossert, J.E.; Mroz, E.J.; Krakowski, R.A.; Miller, R.L.; Jacobson, M.Z.; Turco, R.P. |

    1995-02-01

    Reverse convection towers have attracted attention as a medium for cleansing modern cities. Evaporation of an aqueous mist injected at the tower opening could generate electrical power by creating descent, and simultaneously scavenge unsightly and unhealthful particulates. The study offered here assesses the influence to tower water droplets on the photochemical component of Los Angeles type smog. The primary radical chain initiator OH is likely removed into aqueous phases well within the residence time of air in the tower, and then reacts away rapidly. Organics do not dissolve, but nighttime hydrolysis of N{sub 2}O{sub 5} depletes the nitrogen oxides. A lack of HOx would slow hydrocarbon oxidation and so also ozone production. Lowering of NOx would also alter ozone production rates, but the direction is uncertain. SO{sub 2} is available in sufficient quantities in some urban areas to react with stable oxidants, and if seawater were the source of the mist, the high pH would lead to fast sulfur oxidation kinetics. With an accommodation coefficient of 10{sup {minus}3}, however, ozone may not enter the aqueous phase efficiently. Even if ozone is destroyed or its production suppressed, photochemical recovery times are on the order of hours, so that tower processing must be centered on a narrow midday time window. The cost of building the number of structures necessary for this brief turnover could be prohibitive. The increase in humidity accompanying mist evaporation could be controlled with condensers, but might otherwise counteract visibility enhancements by recreating aqueous aerosols. Quantification of the divergent forcings convection towers must exert upon the cityscape would call for coupled three dimensional modeling of transport, microphysics, and photochemistry. 112 refs.

  1. Specific features of attenuated light transmission by liquid-crystal twist cells in constant and alternating electric fields

    NASA Astrophysics Data System (ADS)

    Konshina, E. A.; Amosova, L. P.

    2012-07-01

    Optical transmission characteristics of dual-frequency nematic liquid crystal (NLC) twist cells with different alignment layers (rubbed polyimide and obliquely deposited cerium dioxide) have been studied in constant and alternating electric fields. It has been established that a change in the optical (twist effect) threshold and dynamic range of attenuated transmission depend both on the boundary conditions (that influence the screening of applied voltage) and on the parameters of the applied electric field. The maximum dynamic range (49.5 dB) has been obtained in the cell with a CeO2 alignment layer controlled by a constant potential. In the case of an alternating electric field, the dynamic range decreases because of reduced effective voltage.

  2. Dynamics and properties of waves in a modified Noguchi electrical transmission line.

    PubMed

    Pelap, F B; Kamga, J H; Yamgoue, S B; Ngounou, S M; Ndecfo, J E

    2015-02-01

    We consider a modified Noguchi electrical transmission line and examine the effects of a linear capacitance C(s) on the wave characteristics while considering the semidiscrete approximation. It appears that wave modulations in the network are governed by a dispersive nonlinear Schrödinger equation whose coefficients are shown to be a function of C(s). We show that the use of this linear capacitance makes the filter more selective. We also show that the width of the unstable regions increases while that of the stable regions decreases with C(s) adding consequently the width of the frequency domain where bright solitons exist. Furthermore, we establish the existence of one more region (compared to the work of Marquié et al. [Marquié et al., Phys. Rev. E 49, 828 (1994)]) in the dispersion curve that allows the motion of envelope solitons of higher frequency in the system. Numerical and experimental investigations done on the model confirm our analytical predictions. PMID:25768587

  3. Helium Scanning Transmission Ion Microscopy and Electrical Characterization of Glass Nanocapillaries with Reproducible Tip Geometries.

    PubMed

    Zweifel, Ludovit P; Shorubalko, Ivan; Lim, Roderick Y H

    2016-02-23

    Nanopores fabricated from glass microcapillaries are used in applications ranging from scanning ion conductance microscopy to single-molecule detection. Still, evaluating the nanocapillary tip by a noninvasive means remains challenging. For instance, electron microscopy characterization techniques can charge, heat, and contaminate the glass surface and typically require conductive coatings that influence the final tip geometry. Per contra, electrical characterization by the means of ion current through the capillary lumen provides only indirect geometrical details of the tips. Here, we show that helium scanning transmission ion microscopy provides a nondestructive and precise determination of glass nanocapillary tip geometries. This enables the reproducible fabrication of axially asymmetric blunt, bullet, and hourglass-shaped tips with opening diameters from 20 to 400 nm by laser-assisted pulling. Accordingly, this allows for an evaluation of how tip shape, pore diameter, and opening angle impact ionic current rectification behavior and the translocation of single molecules. Our analysis shows that current drops and translocation dwell times are dominated by the pore diameter and opening angles regardless of nanocapillary tip shape. PMID:26783633

  4. Transmission Line Security Monitor

    SciTech Connect

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  5. Transmission Line Security Monitor

    ScienceCinema

    None

    2013-05-28

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  6. Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy

    PubMed Central

    Shibata, Naoya; Findlay, Scott D.; Sasaki, Hirokazu; Matsumoto, Takao; Sawada, Hidetaka; Kohno, Yuji; Otomo, Shinya; Minato, Ryuichiro; Ikuhara, Yuichi

    2015-01-01

    Precise measurement and characterization of electrostatic potential structures and the concomitant electric fields at nanodimensions are essential to understand and control the properties of modern materials and devices. However, directly observing and measuring such local electric field information is still a major challenge in microscopy. Here, differential phase contrast imaging in scanning transmission electron microscopy with segmented type detector is used to image a p-n junction in a GaAs compound semiconductor. Differential phase contrast imaging is able to both clearly visualize and quantify the projected, built-in electric field in the p-n junction. The technique is further shown capable of sensitively detecting the electric field variations due to dopant concentration steps within both p-type and n-type regions. Through live differential phase contrast imaging, this technique can potentially be used to image the electromagnetic field structure of new materials and devices even under working conditions. PMID:26067359

  7. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    SciTech Connect

    Eto, Joseph; Stovall, John P.

    2003-04-01

    The California Energy Commission directed the Consortium for Electric Reliability Technology Solutions to analyze possible future scenarios for the California electricity system and assess transmission research and development (R&D) needs, with special emphasis on prioritizing public-interest R&D needs, using criteria developed by the Energy Commission. The scenarios analyzed in this report are not predictions, nor do they express policy preferences of the project participants or the Energy Commission. The public-interest R&D needs that are identified as a result of the analysis are one input that will be considered by the Energy Commission's Public Interest Energy Research staff in preparing a transmission R&D plan.

  8. Puget Sound Area Electric Reliability Plan. Appendix E: Transmission Reinforcement Analysis : Draft Environmental Impact Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1991-09-01

    Five transmission line options and several reactive (voltage support) options are presently being considered as possible solutions to the PSAERP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. These options were derived from earlier study work that was summarized in Puget Sound Reinforcement Transmission Options'' and New Cross Mountain Transmission Line Alternative: The Crosstie'', which are attached. The initial Transmission Options study report recognized the value to system performance of adding an entirely new circuit rather than rebuilding an existing one. However, siting realities require that rebuild options be considered. Typically, the most attractive rebuild options would be the lowest capacity (lowest voltage) circuits. But because of corridor location, length and terminal proximity, the rebuild options listed below appear to be the most promising. Schematic diagrams and QV Curves of each option are also attached. It should be noted that Snoqualmie and Echo Lake refer to the same station east of Puget Sound and Naneum and Kittitas refer to the same station in the Ellensburg area. 100 figs., 20 tabs.

  9. Incorporating a Time Horizon in Rate-of-Return Estimations: Discounted Cash Flow Model in Electric Transmission Rate Cases

    SciTech Connect

    Chatterjee, Bishu; Sharp, Peter A.

    2006-07-15

    Electric transmission and other rate cases use a form of the discounted cash flow model with a single long-term growth rate to estimate rates of return on equity. It cannot incorporate information about the appropriate time horizon for which analysts' estimates of earnings growth have predictive powers. Only a non-constant growth model can explicitly recognize the importance of the time horizon in an ROE calculation. (author)

  10. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    NASA Astrophysics Data System (ADS)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.