Science.gov

Sample records for electrical degradation ried

  1. Capsule fabrication for in-situ measurement of radiation induced electrical degradation (RIED) of ceramics in HFIR

    SciTech Connect

    Eatherly, W.S.; Heatherly, D.W.; Hurst, M.T.; Qualls, A.L.

    1996-04-01

    A collaborative DOE/Monbusho series of irradiation experiments is being implemented to determine, in situ, the effects of irradiation on the electrical resistivity of ceramic materials. The first experiment, TRIST-ER1, has been designed to irradiate 15 Al{sub 2}O{sub 3} test specimens at 450{degrees}C in an RB position of the High Flux Isotope Reactor (HFIR). Each test specimen is located in a sealed vanadium subcapsule with instrumentation provided to each subcapsule to measure temperature and resistance, and to place a biasing voltage across the specimen. Twelve of the specimens will be biased with 200 V/mm across the sample at all times, while three will not be biased, but can be if so desired during the irradiation. The experiment design, component fabrication, and subcapsule assembly have been completed. A three cycle irradiation, to a fast neutron (E>0.1 MeV) fluence of about 3x10{sup 25}n/m{sup 2} ({approx}3 dpa in Al{sub 2}O{sub 3}), is expected to begin early in March 1996.

  2. Data acquisition system used in radiation induced electrical degradation experiments

    SciTech Connect

    White, D.P.

    1995-04-01

    Radiation induced electrical degradation (RIED) of ceramic materials has recently been reported and is the topic of much research at the present time. The object of this report is to describe the data acquisition system for an experiment designed to study RIED at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory.

  3. Electrical Contact Performance Degradation in Electromechanical Components

    SciTech Connect

    Peebles, D.E.; Dugger, M.T.; Neff, S.G.; Sorroche, E.H.; Robinson, J.A.; Fanska, J.; Ford, M.

    1999-03-23

    Detailed materials evaluations have been performed for MC2969 Intent Stronglink switch monitor circuit parts returned from the field out of retired weapon systems. Evaluations of local contact resistance, surface chemical composition and surface roughness and wear have been determined as a function of component level contact loop resistance testing position. Several degradation mechanisms have been identified and correlated with the component level measurements. Operational degradation produces surface smoothing and wear with each actuation of the monitor circuit, while aging degradation is observed in the segregation of contaminant species and alloy constituent elements to the surface in the stressed wear regions.

  4. Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes

    NASA Astrophysics Data System (ADS)

    D. Kim, S.; I. Jang, D.; J. Lim, B.; B. Lee, S.; S. Mok, Y.

    2013-07-01

    Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, O2, and N2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O2. As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized.

  5. Microbial Electricity Generation Enhances Decabromodiphenyl Ether (BDE-209) Degradation

    PubMed Central

    Yang, Yonggang; Xu, Meiying; He, Zhili; Guo, Jun; Sun, Guoping; Zhou, Jizhong

    2013-01-01

    Due to environmental persistence and biotoxicity of polybrominated diphenyl ethers (PBDEs), it is urgent to develop potential technologies to remediate PBDEs. Introducing electrodes for microbial electricity generation to stimulate the anaerobic degradation of organic pollutants is highly promising for bioremediation. However, it is still not clear whether the degradation of PBDEs could be promoted by this strategy. In this study, we hypothesized that the degradation of PBDEs (e.g., BDE-209) would be enhanced under microbial electricity generation condition. The functional compositions and structures of microbial communities in closed-circuit microbial fuel cell (c-MFC) and open-circuit microbial fuel cell (o-MFC) systems for BDE-209 degradation were detected by a comprehensive functional gene array, GeoChip 4.0, and linked with PBDE degradations. The results indicated that distinctly different microbial community structures were formed between c-MFCs and o-MFCs, and that lower concentrations of BDE-209 and the resulting lower brominated PBDE products were detected in c-MFCs after 70-day performance. The diversity and abundance of a variety of functional genes in c-MFCs were significantly higher than those in o-MFCs. Most genes involved in chlorinated solvent reductive dechlorination, hydroxylation, methoxylation and aromatic hydrocarbon degradation were highly enriched in c-MFCs and significantly positively correlated with the removal of PBDEs. Various other microbial functional genes for carbon, nitrogen, phosphorus and sulfur cycling, as well as energy transformation process, were also significantly increased in c-MFCs. Together, these results suggest that PBDE degradation could be enhanced by introducing the electrodes for microbial electricity generation and by specifically stimulating microbial functional genes. PMID:23940625

  6. Electrical Stimulation of Microbial PCB Degradation in Sediment

    PubMed Central

    Chun, Chan Lan; Payne, Rayford B.; Sowers, Kevin R.; May, Harold D.

    2012-01-01

    Bioremediation of polychlorinated biphenyls (PCBs) has been precluded in part by the lack of a cost-effective method to stimulate microbial degradation in situ. A common limitation is the lack of an effective method of providing electron donors and acceptors to promote in situ PCB biodegradation. Application of an electric potential to soil/sediment could be an effective means of providing electron-donors/-acceptors to PCB dechlorinating and degrading microorganisms. In this study, electrical stimulation of microbial PCB dechlorination/ degradation was examined in sediment maintained under simulated in situ conditions. Voltage was applied to open microcosms filled with PCB-impacted (Aroclor 1242) freshwater sediment from a Superfund site (Fox River, WI). The effect of applied low voltages (1.5 to 3.0V) on the microbial transformation of PCBs was determined with: 1) spiked PCBs, and 2) indigenous weathered PCBs. The results indicate that both oxidative and reductive microbial transformation of the spiked PCBs was stimulated but oxidation was dominant and most effective with higher voltage. Chlorobenzoates were produced as oxidation metabolites of the spiked PCBs, but increasing voltage enhanced chlorobenzoate consumption, indicating that overall degradation was enhanced. In the case of weathered PCBs, the total concentration decreased 40–60% in microcosms exposed to electric current while no significant decrease of PCB concentration was observed in control reactors (0 V or sterilized). Single congener analysis of the weathered PCBs showed significant loss of di- to penta-chlorinated congeners, indicating that microbial activity was not limited to anaerobic dechlorination of only higher chlorinated congeners. Degradation was most apparent with the application of only 1.5 V where anodic O2 was not generated, indicating a mechanism of degradation independent of electrolytic O2. Low voltage stimulation of the microbial degradation of weathered PCBs observed in this

  7. Electrical integrity of oxides in a radiation field

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  8. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  9. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  10. A test and instrumentation system for the investigation of degradation of electrical insulating materials

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The basic test methods of aging and deterioration mechanisms of electrical insulating materials are discussed. A comprehensive test system developed to study the degradation process is described. This system is completely checked, and calibrated with a few insulating material samples.

  11. Electrical degradation of double-Schottky barrier in ZnO varistors

    NASA Astrophysics Data System (ADS)

    He, Jinliang; Cheng, Chenlu; Hu, Jun

    2016-03-01

    Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  12. Correlation of electrical reactor cable failure with materials degradation

    SciTech Connect

    Stuetzer, O.M.

    1986-03-01

    Complete circuit failure (shortout) of electrical cables typically used in nuclear power plant containments is investigated. Failure modes are correlated with the mechanical deterioration of the elastomeric cable materials. It is found that for normal reactor operation, electrical cables are reliable and safe over very long periods. During high temperature excursions, however, cables pulled across corners under high stress may short out due to conductor creep. Severe cracking will occur in short times during high temperatures (>150/sup 0/C) and in times of the order of years at elevated temperatures (100/sup 0/C to 140/sup 0/C). A theoretical treatment of stress distribution responsible for creep and for cracking by J.E. Reaugh of Science Applications, Inc. is contained in the Appendix. 29 refs., 32 figs.

  13. Extrinsic and intrinsic causes of the electrical degradation of AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yulong, Fang; Shaobo, Dun; Bo, Liu; Jiayun, Yin; Shujun, Cai; Zhihong, Feng

    2012-05-01

    Electrical stress experiments under different bias configurations for AlGaN/GaN high electron mobility transistors were performed and analyzed. The electric field applied was found to be the extrinsic cause for the device instability, while the traps were recognized as the main intrinsic factor. The effect of the traps on the device degradation was identified by recovery experiments and pulsed I-V measurements. The total degradation of the devices consists of two parts: recoverable degradation and unrecoverable degradation. The electric field induced traps combined with the inherent ones in the device bulk are mainly responsible for the recoverable degradation.

  14. Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2005-03-01

    Electrical contact resistance testing was performed by hot-switching a simulated gold-platinum metal microelectromechanical systems contact. The experimental objective was to determine the sensitivity of the contact resistance degradation to current level and environment. The contact resistance increased sharply after 100 hot-switched cycles in air. Hot-switching at a reduced current and in nitrogen atmosphere curtailed contact resistance degradation by several orders of magnitude. The mechanism responsible for the resistance degradation was found to be arc-induced decomposition of adsorbed surface contaminants.

  15. Swift heavy ion irradiation induced electrical degradation in deca-nanometer MOSFETs

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Yang, Zhimei; Gong, Min; Gao, Bo; Li, Yun; Lin, Wei; Li, Jinbo; Xia, Zhuohui

    2016-09-01

    In this work, degradation of the electrical characteristics of 65 nm nMOSFETs under swift heavy ion irradiation is investigated. It was found that a heavy ion can generate a localized region of physical damage (ion latent track) in the gate oxide. This is the likely cause for the increased gate leakage current and soft breakdown (SBD) then hard breakdown (HBD) of the gate oxide. Except in the case of HBD, the devices retain their functionality but with degraded transconductance. The degraded gate oxide exhibits early breakdown behavior compatible with the model of defect generation and percolation path formation in the percolation model.

  16. Effect of Direct Electric Current on the Cell Surface Properties of Phenol-Degrading Bacteria

    PubMed Central

    Luo, Qishi; Wang, Hui; Zhang, Xihui; Qian, Yi

    2005-01-01

    The change in cell surface properties in the presence of electric currents is of critical concern when the potential to manipulate bacterial movement with electric fields is evaluated. In this study, the effects of different direct electric currents on the cell surface properties involved in bacterial adhesion were investigated by using a mixed phenol-degrading bacterial culture in the exponential growth phase. The traits investigated were surface hydrophobicity (measured by adherence to n-octane), net surface electrostatic charge (determined by measurement of the zeta potential), and the cell surface shape and polymers (determined by scanning electron microscope analysis). The results showed that a lower current (less than 20 mA) induced no significant changes in the surface properties of phenol-degrading bacteria, that an electric current of 20 mA could increase the surface hydrophobicity and flatten the cell shape, and that a higher current (40 mA) could increase the surface extracellular substances and the net negative surface electrostatic charge. The results also revealed that the electric current effects on cell hydrophobicity varied with the suspending medium. We suggest that an electric current greater than 20 mA is not suitable for use in manipulation of the movement of the phenol-degrading bacteria, although such a current might favor the electrophoretic movement of the bacterial species. PMID:15640217

  17. Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating.

    PubMed

    Jaeschke, Débora Pez; Marczak, Ligia Damasceno Ferreira; Mercali, Giovana Domeneghini

    2016-05-15

    The effect of electric field on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating was evaluated. Ascorbic acid kinetic degradation was evaluated at 80, 85, 90 and 95°C during 60 min of thermal treatment by ohmic and conventional heating. Carotenoid degradation was evaluated at 90 and 95°C after 50 min of treatment. The different temperatures evaluated showed the same effect on degradation rates. To investigate the influence of oxygen concentration on the degradation process, ohmic heating was also carried out under rich and poor oxygen modified atmospheres at 90°C. Ascorbic acid and carotenoid degradation was higher under a rich oxygen atmosphere, indicating that oxygen is the limiting reagent of the degradation reaction. Ascorbic acid and carotenoid degradation was similar for both heating technologies, demonstrating that the presence of the oscillating electric field did not influence the mechanisms and rates of reactions associated with the degradation process. PMID:26775953

  18. Radiation-induced electrical degradation experiments in the Japan materials testing reactor

    SciTech Connect

    Farnum, E.; Scharborough, K.; Shikama, Tatsuo

    1995-04-01

    The objective of this experiment is to determine the extent of degradation during neutron irradiation of electrical and optical properties of candidate dielectric materials. The goals are to identify promising dielectrics for ITER and other fusion machines for diagnostic applications and establish the basis for optimization of candidate materials. An experiment to measure radiation-induced electrical degradation (REID) in sapphire and MgO-insulated cables was conducted at the JMTR light water reactor. The materials were irradiated at about 260 {degree}C to a fluence of 3{times}10{sup 24} n/m{sup 2} (E>1 MeV) with an applied DC electric field between 100 kV/m and 500 kV/m.

  19. Characterization and modeling of electrical stress degradation in STI-based integrated power devices

    NASA Astrophysics Data System (ADS)

    Reggiani, Susanna; Barone, Gaetano; Gnani, Elena; Gnudi, Antonio; Baccarani, Giorgio; Poli, Stefano; Wise, Rick; Chuang, Ming-Yeh; Tian, Weidong; Pendharkar, Sameer; Denison, Marie

    2014-12-01

    Lateral DMOS transistors are widely used in mixed-signal integrated-circuit design as integrated high-voltage switches and drivers. The LDMOS with shallow-trench isolation (STI) is the device of choice to achieve voltage and current capability integrated in the basic CMOS processes. In this review, the electrical characteristics of the STI-based LDMOS transistors are investigated over an extended range of operating conditions through experiments and numerical analysis. The LDMOS high electric-field characteristics are explained to the purpose of investigating the effects on reliability and device performance under hot-carrier stress (HCS) conditions. A review of the HCS modeling is addressed to provide an understanding of the degradation kinetics and mechanisms. TCAD simulations of the degradation are finally proposed to explain the HCS effects on a wide range of biases and temperatures, confirming the experimental results.

  20. Performance of an electrically raised, synchronous satellite when subjected to radiation degradation effects

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Regetz, J. D., Jr.

    1971-01-01

    The use of solar electric propulsion to raise a high-power communication satellite from a low altitude, inclined circular orbit of the geosynchronous orbit is evaluated. Since the satellite ascends through the high intensity radiation belts, the power available from the solar array and therefore to the ion thrusters degrades. The performance of the solar electric stage in combination with the thrust augmented Thor/Delta launch vehicle is evaluated for two thrust steering programs. The transfer times and solar array requirements are presented for total geosynchronous payloads from 450 to 1100 kg.

  1. [Electricity generation and contaminants degradation performances of a microbial fuel cell fed with Dioscorea zingiberensis wastewater].

    PubMed

    Li, Hui; Zhu, Xiu-Ping; Xu, Nan; Ni, Jin-Ren

    2011-01-01

    The electricity generation performance of a microbial fuel cell (MFC) utilizing Dioscorea zingiberensis wastewater was studied with an H-shape reactor. Indexes including pH, conductivity, oxidation peak potential and chemical oxygen demand (COD) of the anolyte were monitored to investigate the contaminants degradation performance of the MFC during the electricity generation process, besides, contaminant ingredients in anodic influent and effluent were analyzed by GC-MS and IR spectra as well. The maximum power density of the MFC could achieve 118.1 mW/m2 and the internal resistance was about 480 omega. Connected with a 1 000 omega external resistance, the output potential was about 0.4 V. Fed with 5 mL Dioscorea zingiberensis wastewater, the electricity generation lasted about 133 h and the coulombic efficiency was about 3.93%. At the end of electricity generation cycle, COD decreased by 90.1% while NH4(+) -N decreased by 66.8%. Furfural compounds, phenols and some other complicated organics could be decomposed and utilized in the electricity generation process, and the residual contaminants in effluent included some long-chain fatty acids, esters, ethers, and esters with benzene ring, cycloalkanes, cycloolefins, etc. The results indicate that MFC, which can degrade and utilize the organic contaminants in Dioscorea zingiberensis wastewater simultaneously, provides a new approach for resource recovery treatment of Dioscorea zingiberensis wastewater. PMID:21404685

  2. Effect of the Electric Field Frequency on Ascorbic Acid Degradation during Thermal Treatment by Ohmic Heating

    PubMed Central

    Mercali, Giovana Domeneghini; Schwartz, Steven; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina; Sastry, Sudhir

    2014-01-01

    In this work, the influence of the electric field frequency and solids content on the degradation kinetics of ascorbic acid during ohmic heating of acerola pulp and acerola serum was investigated. The degradation percentage of ascorbic acid in the pulp after 120 min of heating varied between 12 and 17%. For the serum, the degradation percentage was in the range of 13 and 18%. The results were fitted to the first-order model, and the kinetic rate constants ranged from 1.1 to 1.6 × 10−3 min−1 and from 1.1 to 1.5 × 10−3 min−1 for pulp and serum, respectively. D values ranged between 1480 and 2145 min for the pulp and between 1524 and 1951 min for the serum. A distinct behavior between the kinetic parameters of the pulp and serum in electric field frequencies ranging from 10 to 1000 Hz indicates that the presence of distinct amounts and types of solids might affect the rate of the electron transfer in electrochemical reactions. These variables may also affect the polarization process stimulated by the oscillating electric field. The non-achievement of the equilibrium of the polarization process may have an influence on oxidation reactions, affecting the predisposition to hydrogen donation from the ascorbic acid molecule. PMID:24892902

  3. Effect of the electric field frequency on ascorbic acid degradation during thermal treatment by ohmic heating.

    PubMed

    Mercali, Giovana Domeneghini; Schwartz, Steven; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina; Sastry, Sudhir

    2014-06-25

    In this work, the influence of the electric field frequency and solids content on the degradation kinetics of ascorbic acid during ohmic heating of acerola pulp and acerola serum was investigated. The degradation percentage of ascorbic acid in the pulp after 120 min of heating varied between 12 and 17%. For the serum, the degradation percentage was in the range of 13 and 18%. The results were fitted to the first-order model, and the kinetic rate constants ranged from 1.1 to 1.6×10(-3) min(-1) and from 1.1 to 1.5×10(-3) min(-1) for pulp and serum, respectively. D values ranged between 1480 and 2145 min for the pulp and between 1524 and 1951 min for the serum. A distinct behavior between the kinetic parameters of the pulp and serum in electric field frequencies ranging from 10 to 1000 Hz indicates that the presence of distinct amounts and types of solids might affect the rate of the electron transfer in electrochemical reactions. These variables may also affect the polarization process stimulated by the oscillating electric field. The non-achievement of the equilibrium of the polarization process may have an influence on oxidation reactions, affecting the predisposition to hydrogen donation from the ascorbic acid molecule. PMID:24892902

  4. A model for electrical degradation of insulators due to ionic bombardment

    NASA Astrophysics Data System (ADS)

    González de Vicente, S. M.; Moroño, A.; Hodgson, E. R.

    2011-10-01

    Insulator materials required for ITER and beyond must operate in a significant radiation field, extending well beyond the first wall. As a result, these materials will be subjected not only to neutron and gamma irradiation, but also to particle bombardment, due mainly to ionization of the residual gas and acceleration of the resulting ions by local electric fields. A systematic study was carried out on the main insulating candidate materials for ITER (Al 2O 3, SiO 2, BeO, and AlN), in order to assess this potential surface degradation issue, and clarify possible mechanisms. Severe surface optical and electrical degradation has previously been reported for these materials bombarded with H +, D +, and He + ions, at different energies, temperatures, and dose rates, as well as for electron irradiation. In all cases, dramatic degradation has been found and related to loss of oxygen (nitrogen) from the implanted/irradiated zone due to preferential radiolytic anion sputtering. In the work reported here, a model to explain the surface electrical degradation under ion bombardment will be presented. A mathematical expression for the evolution of the surface conductivity with dose of an insulator or extrinsic semiconductor, in which the temperature effect is taken into account is given. This model allows one to obtain the diffusion activation energy of the anion in an interstitial position under an electronic excitation environment. Experimental data for both silica and alumina bombarded with He ions at different temperatures have been fitted. In both cases, the fits obtained from theoretical predictions are in very good agreement with the experimental observations.

  5. Effect of Mn Addition on dc-Electrical Degradation of Multilayer Ceramic Capacitor with Ni Internal Electrode

    NASA Astrophysics Data System (ADS)

    Morita, Koichiro; Mizuno, Youichi; Chazono, Hirokazu; Kishi, Hiroshi

    2002-11-01

    The effect of Mn addition on the microstructure and electrical properties, especially on the dc-electrical degradation, of the X7R-type multilayer ceramic capacitor with Ni internal electrode (Ni-MLCC) with thin active layers was investigated. As the amount of Mn increased, grain growth was suppressed, and the temperature characteristic (TC) curve was flattened. I-V characteristic measurements revealed that nonlinearity coefficient (α) at a high electric field of more than 10 V/μm was decreased, and the lifetime during the highly accelerated lifetime testing (HALT) under 20 V/μm was improved, as the Mn content increased. It was found that Mn addition caused the change of the electrical properties of the grain boundary (GB). The effect of Mn on dc-electrical degradation during HALT was investigated by introducing impedance measurement at elevated temperatures from the microstructural view point. The roles of Mn on dc-electrical degradation during HALT were proposed.

  6. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    NASA Astrophysics Data System (ADS)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  7. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules

    PubMed Central

    Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro

    2014-01-01

    Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974

  8. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules.

    PubMed

    Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro

    2014-01-01

    Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974

  9. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    SciTech Connect

    Schmidt, Tobias D. Jäger, Lars; Brütting, Wolfgang; Noguchi, Yutaka; Ishii, Hisao

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  10. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell.

    PubMed

    Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Voon, Chun-Hong; Yusuf, Sara Yasina; Yusoff, Nik Athirah; Lee, Sin-Li

    2016-08-01

    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration. PMID:27184147

  11. Pulmonary effects of acute exposure to degradation products of sulphur hexafluoride during electrical cable repair work.

    PubMed Central

    Kraut, A; Lilis, R

    1990-01-01

    Six electrical workers accidentally exposed to degradation products of sulphur hexafluoride (SF6) during electrical repair work were followed up for one year. One degradation product, sulphur tetrafluoride (SF4), was identified from worksite measurements. Unprotected exposure in an underground enclosed space occurred for six hours over a 12 hour period. Initial symptoms included shortness of breath, chest tightness, productive cough, nose and eye irritation, headache, fatigue, nausea, and vomiting. Symptoms subsided when exposure was interrupted during attempts to identify the cause of the problem. Although exposure ended after several hours, four workers remained symptomatic for between one week and one month. Pulmonary radiographic abnormalities included several discrete areas of transitory platelike atelectasis in one worker, and a slight diffuse infiltrate in the left lower lobe of another. One worker showed transient obstructive changes in tests of pulmonary function. Examination at follow up after one year showed no persistent abnormalities. Preliminary data from this paper were presented at the VIIth international pneumoconioses conference. Pittsburgh, PA, August 1988. PMID:2271390

  12. Capacity and peak power degradation of lead-acid battery under simulated electric vehicle operations

    NASA Astrophysics Data System (ADS)

    Lee, J.; Tummillo, A. F.; Miller, J. F.; Hornstra, F.; Christianson, C. C.

    In a program supported by the Electric Power Research Institute, controlled laboratory tests were conducted at Argonne to evaluate the effects of selected EV application factors on the performance and life of the EV-2300 lead-acid battery. These application factors included simulated driving profile discharges with different levels of peak power demands for vehicle acceleration, long rest times after charge or discharge, and different methods of recharging. The performance and life variations among cells and modules in a full-scale battery pack were also examined. Statistical methods were used to analyze the laboratory test data. The key factors affecting the performance and life of the battery were identified, and the rates of capacity and power degradation were quantified using multiple regression techniques. The analyses show that the most significant factors were peak power demand levels and cell location within the six-cell modules. The effects of charge method and rest times were found to be small.

  13. International Space Station Solar Array Wing On-Orbit Electrical Performance Degradation Measured

    NASA Technical Reports Server (NTRS)

    Gustafson, Eric D.; Kerslake, Thomas W.

    2004-01-01

    The port-side photovoltaic power module (P6) was activated on the International Space Station in December 2000. P6 provides electrical power to channels 2B and 4B to operate ISS power loads. A P6 is shown in the preceding photograph. This article highlights the work done at the NASA Glenn Research Center to calculate the on-orbit degradation of the P6 solar array wings (SAWs) using on-orbit data from December 2000 to February 2003. During early ISS operations, the 82 strings of photovoltaic cells that make up a SAW can provide much more power than is necessary to meet the demand. To deal with excess power, a sequential shunt unit successively shunts the current from the strings. This shunt current was the parameter chosen for the SAW performance degradation study for the following reasons: (1) it is based on a direct shunt current measurement in the sequential shunt unit, (2) the shunt current has a low temperature dependence that reduces the data correction error from using a computationally derived array temperature, and (3) the SSU shunt current is essentially the same as the SAW short-circuit current on a per-string basis.

  14. The Electrical and Structural analysis of degraded Single Junction Amorphous Silicon Solar Modules

    NASA Astrophysics Data System (ADS)

    Osayemwenre, Gilbert; Energy efficiency Team

    2015-03-01

    This paper outline a systematic approach used in evaluating the quality, performance and reliability of single junction amorphous silicon solar modules (a-Si:H). The analytical techniques include an electrical and structural analysis. These techniques were used to obtain a holistic view of the state of affairs of these readily available PV modules for small stand-alone systems. Specifically, current-voltage (I-V) characterization and scanning electron microscopy (SEM) will be presented as diagnostic tools in this article. The SEM (JEOL, JED-2300) was used to study the surface morphology of the affected region, results show structural damage in the affected regions. The experiment shows that the energy output of the modules varies a degradation variation of 2.5% to 25.7%, was observed. The detailed results will be presented in the final paper. In conclusion, this research established the degradation which occurs and correlate it to the morphological damage. The module with the worst case scenario has an efficiency of 59% decrease, this could be unacceptable in a device where stability is of priority. We sincerely thank GMDRC and Eskom for financing this project.

  15. MaRIE Undulator & XFEL Systems

    SciTech Connect

    Nguyen, Dinh Cong; Marksteiner, Quinn R.; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen

    2015-03-23

    The 22 slides in this presentation treat the subject under the following headings: MaRIE XFEL Performance Parameters, Input Electron Beam Parameters, Undulator Design, Genesis Simulations, Risks, and Summary It is concluded that time-dependent Genesis simulations show the MaRIE XFEL can deliver the number of photons within the required bandwidth, provided a number of assumptions are met; the highest risks are associated with the electron beam driving the XFEL undulator; and risks associated with the undulator and/or distributed seeding technique may be evaluated or retired by performing early validation experiments.

  16. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    PubMed

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. PMID:26051524

  17. Evaluation of non-thermal effects of electricity on anthocyanin degradation during ohmic heating of jaboticaba (Myrciaria cauliflora) juice.

    PubMed

    Mercali, Giovana Domeneghini; Gurak, Poliana Deyse; Schmitz, Frederico; Marczak, Ligia Damasceno Ferreira

    2015-03-15

    This study investigated the non-thermal effects of electricity on anthocyanin degradation during ohmic heating of jaboticaba juice. For this, temperature profiles during conventional and ohmic heating processes were matched, and the degradation kinetics of anthocyanins were compared at temperatures ranging from 70 to 90°C. The monomeric anthocyanin content was quantified by UV-Visible spectroscopy using the pH-differential method. Anthocyanin degradation was fitted to a first-order model. The rate constants ranged from 1.7 to 7.5 × 10(-3)min(-1) and from 1.8 to 7.6 × 10(-3)min(-1) for ohmic and conventional heating, respectively. The analysis of variance (α=0.05) showed no significant differences between rate constants of the ohmic and conventional heating at the same temperatures. All kinetic and thermodynamic parameters evaluated showed similar values for both technologies. These results indicate that the presence of the oscillating electric field did not affect the degradation rates of anthocyanins during ohmic heating. PMID:25308660

  18. Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Martel, François; Kelouwani, Sousso; Dubé, Yves; Agbossou, Kodjo

    2015-01-01

    This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

  19. Recovering degraded quasi-solid-state dye-sensitized solar cells by applying electrical pulses

    PubMed Central

    Zhang, Xi; Huang, Xuezhen

    2013-01-01

    We discovered a method of applying forward pulsed bias to recover the degradation of quasi-solid-state dye-sensitized solar cells (DSSCs). Up to 30.7% of the power conversion efficiency (η) of a degraded poly (vinylidene fluoride) (PVDF) based DSSC was recovered by a double-pulse. The recovered η remained higher than that before the double-pulse treatment for at least 28 days. It is deduced that the blocking of ion-transport channels in the quasi-solid-state electrolyte causes degradation of the DSSCs. This study will shed light on the efficiency enhancement and long-term stability of quasi-solid-state DSSCs. PMID:23545782

  20. Degradation of the electrical characteristics of MOS structures with erbium, gadolinium, and dysprosium oxides under the effect of an electric field

    SciTech Connect

    Shalimova, M. B. Sachuk, N. V.

    2015-08-15

    The degradation of the characteristics of silicon metal-oxide-semiconductor (MOS) structures with oxides of rare-earth elements under the effect of electric fields with intensities of 0.1–4 MV/cm during the course of electroforming is studied. A specific feature of electroforming consists in the possibility of multiple switching of the structures from the insulating state to the low-resistivity one and back. The temporal characteristics of the degradation of MOS structures during the course of electroforming are exponential. The current-voltage characteristics follow the power law in the range of 0.2–3 V; the effect of an electric field brings about a variation in the distribution of the energy density of traps responsible for currents limited by space charge. It is established that multiple cycles of electroforming lead to an increase in the density of surface states at the Si-oxide interface and to a variation in the energy position of the trap levels, which affects the charge state of the traps.

  1. Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells.

    PubMed

    Bae, Soohyun; Kim, Seongtak; Lee, Sang-Won; Cho, Kyung Jin; Park, Sungeun; Lee, Seunghun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-08-18

    Perovskite solar cells have great potential for high efficiency generation but are subject to the impact of external environmental conditions such as humidity, UV and sun light, temperature, and electric fields. The long-term stability of perovskite solar cells is an important issue for their commercialization. Various studies on the stability of perovskite solar cells are currently being performed; however, the stability related to electric fields is rarely discussed. Here the electrical stability of perovskite solar cells is studied. Ion migration is confirmed using the temperature-dependent dark current decay. Changes in the power conversion efficiency according to the amount of the external bias are measured in the dark, and a significant drop is observed only at an applied voltage greater than 0.8 V. We demonstrate that perovskite solar cells are stable under an electric field up to the operating voltage. PMID:27462013

  2. Modulated and ordered defect structures in electrically degraded Ni-BaTiO3 multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Yang, G. Y.; Dickey, E. C.; Randall, C. A.; Randall, M. S.; Mann, L. A.

    2003-11-01

    Structural defects formed on {111} planes of BaTiO3 during the degradation of high performance multilayer Ni-BaTiO3 X7R ceramic capacitors are studied using transmission electron microscopy and electron energy loss spectroscopy (EELS). Regular pseudocubic barium titanate grains are present in as-produced (virginal) base-metal electrode capacitors. However, there is a coexistence of regular, modulated, and long-range ordered structures in intentionally electrically degraded devices. The EELS analysis demonstrates that the concentration of oxygen vacancies in barium titanate with modulated or ordered structures is higher than that in the regular perovskite grains. The clustering or accumulation of oxygen vacancies in the structural framework of BaTiO3 gives rise to the formation of new metastable structures. These observations are consistent with earlier models for degradation, but demonstrate that the details of the process may be more complex than originally assumed. Here we introduce new details on the nature of the reduction process and the manner in which the lattice accommodates the enhanced oxygen vacancy concentration towards the failed regions of the capacitors and in the vicinity of the "blocking" cathodic electrodes.

  3. Enhanced hexadecane degradation and low biomass production by Aspergillus niger exposed to an electric current in a model system.

    PubMed

    Velasco-Alvarez, Nancy; González, Ignacio; Damian-Matsumura, Pablo; Gutiérrez-Rojas, Mariano

    2011-01-01

    The effects of an electric current on growth and hexadecane (HXD) degradation by Aspergillus niger growth were determined. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15 g of perlite (inert biomass support) was inoculated with A. niger (2.0×10(7) spores (g of dry inert support)(-1)) and incubated for 12 days (30 °C; constant ventilation). 4.5 days after starting culture a current of 0.42 mA cm(-2) was applied for 24h. The current reduced (52±11%) growth of the culture as compared to that of a culture not exposed to current. However, HXD degradation was 96±1.4% after 8 days whereas it was 81±1.2% after 12 days in control cultures. Carbon balances of cultures not exposed to current suggested an assimilative metabolism, but a non-assimilative metabolism when the current was applied. This change can be related to an increase in total ATP content. The study contributes to the knowledge on the effects of current on the mycelial growth phase of A. niger, and suggests the possibility of manipulating the metabolism of this organism with electric current. PMID:20739180

  4. Enhanced recovery of light-induced degradation on the micromorph solar cells by electric field

    NASA Astrophysics Data System (ADS)

    Sun, H.-C.; Yang, Y.-J.; Chen, J. Y.; Chao, T.-M.; Liu, C. W.; Lin, W.-Y.; Bi, C.-C.; Yeh, C.-H.

    2012-09-01

    The recovery of light-induced degradation of the tandem micromorph solar cell by applying reverse bias is compared with the single-junction amorphous silicon solar cell. The illuminated current density-voltage characteristics and external quantum efficiency show that the degradation of both the micromorph and the amorphous silicon cells can be recovered by applying sufficient reverse bias. The micromorph cell was recovered at smaller reverse bias than amorphous silicon cell. The abundant H in the microcrystalline silicon bottom cell of the micromorph cell can act as a reservoir to repair the defects in the amorphous silicon top cell at the reverse bias. This is responsible for small recovery bias of tandem cells.

  5. Structural defects in electrically degraded 4H-SiC p+/n-/n+ diodes

    NASA Astrophysics Data System (ADS)

    Persson, P. O. A.; Hultman, L.; Jacobson, H.; Bergman, J. P.; Janzen, E.; Molina-Aldareguia, J. M.; Clegg, W. J.; Tuomi, T.

    2002-06-01

    Triangular structural defects are occasionally generated during the long-term operation of 4H-SiC pin diodes and degrade the forward characteristics of the diode. We have used synchrotron white beam x-ray topography, scanning electron microscopy, in situ cathodo luminescence, and transmission electron microscopy to characterize the structure and formation of these defects. It is shown that the defects are stacking faults on the (0001) basal planes, bound by partial dislocations with Burgers vectors 1/3<1010> and 1/3<0110>. These partials are suggested to form by the dissociation of existing dislocations.

  6. dc-Electrical Degradation of the BT-Based Material for Multilayer Ceramic Capacitor with Ni internal Electrode: Impedance Analysis and Microstructure

    NASA Astrophysics Data System (ADS)

    Chazono, Hirokazu; Kishi, Hiroshi

    2001-09-01

    The impedance of a BaTiO3 (BT)-based multilayer ceramic capacitor with a nickel internal electrode (Ni-MLCC) was investigated by measuring the frequency domain at various temperatures. All the obtained impedance data could be successfully fitted to a 4-RC section electrical equivalent network. The 4-RC section electrical equivalent network was successfully correlated to the microstructure: the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. Based on this electrical equivalent network, the electrical properties including the Curie-Weiss law, the current-voltage characteristics, and dc electrical degradation, were well explained. A model for the degradation behavior for BT-based Ni-MLCC with thin active layer thickness was proposed.

  7. Influence of the degradation on the surface states and electrical characteristics of EOS structures

    NASA Astrophysics Data System (ADS)

    Cabruja, E.; Merlos, A.; Cané, C.; Lozano, M.; Bausells, J.; Esteve, J.

    1991-07-01

    The application of ion sensitive field effect transistors (ISFET's) to the measurements of the pH of chemical solutions is one of the most important fields of microelectronic sensors. However, ISFET's still present some problems, such as shifts and drifts of electrical characteristics. In this work a systematic study of the evolution of electrical characteristics of EOS (electrolyte-oxide-semiconductor) and ENOS (electrolyte-nitride-oxide-semiconductor) structures, equivalent to ISFET gates, using the quasi-static C-V method is presented. Results show that the total drift in the flat band voltage can be separated in two terms, one due to immersion in an aqueous ambient and other due to the ionic strength.

  8. Improved fuel cell and electrode designs for producing electricity from microbial degradation.

    PubMed

    Park, Doo Hyun; Zeikus, J Gregory

    2003-02-01

    A new one-compartment fuel cell was composed of a rubber bunged bottle with a center-inserted anode and a window-mounted cathode containing an internal, proton-permeable porcelain layer. This fuel cell design was less expensive and more practical than the conventional two-compartment system, which requires aeration and a ferricyanide solution in the cathode compartment. Three new electrodes containing bound electron mediators including a Mn(4+)-graphite anode, a neutral red (NR) covalently linked woven graphite anode, and an Fe(3+)-graphite cathode were developed that greatly enhanced electrical energy production (i.e., microbial electron transfer) over conventional graphite electrodes. The potentials of these electrodes measured by cyclic voltametry at pH 7.0 were (in volts): +0.493 (Fe(3+)-graphite); +0.15 (Mn(4+)-graphite); and -0.53 (NR-woven graphite). The maximal electrical productivities obtained with sewage sludge as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode were 14 mA current, 0.45 V potential, 1,750 mA/m(2) current density, and 788 mW/m(2) of power density. With Escherichia coli as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode, the maximal electrical productivities obtained were 2.6 mA current, 0.28 V potential, 325 mA/m(2) current density, and 91 mW/m(2) of power density. These results show that the amount of electrical energy produced by microbial fuel cells can be increased 1,000-fold by incorporating electron mediators into graphite electrodes. These results also imply that sewage sludge may contain unique electrophilic microbes that transfer electrons more readily than E. coli and that microbial fuel cells using the new Mn(4+)-graphite anode and Fe(3+)-graphite cathode may have commercial utility for producing low amounts of electrical power needed in remote locations. PMID:12474258

  9. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    SciTech Connect

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  10. [Mechanism of the organic pollutant degradation in water by hybrid gas-liquid electrical discharge].

    PubMed

    Zhu, Li-nan; Ma, Jun; Yang, Shi-dong

    2007-09-01

    The method of hybrid gas-liquid electrical discharge was investigated for the removal of phenol. The results indicate that this new method can remove phenol in water effectively. The removal rate increases with increasing voltage and air aeration. The production quantity of H2O2 and O3 is measured respectively in the discharge region and the production quantity increases with increasing of voltage and air aeration. The energy consumption analysis indicates that with increasing the voltage, the increase extent of the phenol removal rate is smaller than the energy's, so the increase of energy efficiency is very small. Air aeration increases the energy consumption. At the same time, a considerable part of energy in the overall input energy makes the temperature of the solution increase, and more energy is transformed into heat, which leads to the waste of energy. PMID:17990549

  11. MaRIE theory, modeling and computation roadmap executive summary

    SciTech Connect

    Lookman, Turab

    2010-01-01

    The confluence of MaRIE (Matter-Radiation Interactions in Extreme) and extreme (exascale) computing timelines offers a unique opportunity in co-designing the elements of materials discovery, with theory and high performance computing, itself co-designed by constrained optimization of hardware and software, and experiments. MaRIE's theory, modeling, and computation (TMC) roadmap efforts have paralleled 'MaRIE First Experiments' science activities in the areas of materials dynamics, irradiated materials and complex functional materials in extreme conditions. The documents that follow this executive summary describe in detail for each of these areas the current state of the art, the gaps that exist and the road map to MaRIE and beyond. Here we integrate the various elements to articulate an overarching theme related to the role and consequences of heterogeneities which manifest as competing states in a complex energy landscape. MaRIE experiments will locate, measure and follow the dynamical evolution of these heterogeneities. Our TMC vision spans the various pillar science and highlights the key theoretical and experimental challenges. We also present a theory, modeling and computation roadmap of the path to and beyond MaRIE in each of the science areas.

  12. Electrical and structural degradation of GaN high electron mobility transistors under high-power and high-temperature Direct Current stress

    SciTech Connect

    Wu, Y. Alamo, J. A. del; Chen, C.-Y.

    2015-01-14

    We have stressed AlGaN/GaN HEMTs (High Electron Mobility Transistors) under high-power and high-temperature DC conditions that resulted in various levels of device degradation. Following electrical stress, we conducted a well-established three-step wet etching process to remove passivation, gate and ohmic contacts so that the device surface can be examined by SEM and AFM. We have found prominent pits and trenches that have formed under the gate edge on the drain side of the device. The width and depth of the pits under the gate edge correlate with the degree of drain current degradation. In addition, we also found visible erosion under the full extent of the gate. The depth of the eroded region averaged along the gate width under the gate correlated with channel resistance degradation. Both electrical and structural analysis results indicate that device degradation under high-power DC conditions is of a similar nature as in better understood high-voltage OFF-state conditions. The recognition of a unified degradation mechanism provides impetus to the development of a degradation model with lifetime predictive capabilities for a broad range of operating conditions spanning from OFF-state to ON-state.

  13. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products.

    PubMed

    Tantis, Iosif; Bousiakou, Leda; Frontistis, Zacharias; Mantzavinos, Dionissios; Konstantinou, Ioannis; Antonopoulou, Maria; Karikas, George-Albert; Lianos, Panagiotis

    2015-08-30

    Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC-MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7×10(-4)min(-1) under low intensity UVA irradiation of 1.5mWcm(-2) in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6×10(-4)min(-1) by applying a forward bias of +0.6V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC-MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture. PMID:25855613

  14. Reduction of RIE induced damage of GaInAsP/InP DQW lasers fabricated by 2-step growth

    NASA Astrophysics Data System (ADS)

    Plumwongrot, D.; Kurokawa, M.; Okumura, T.; Nishimoto, Y.; Maruyama, T.; Nishiyama, N.; Arai, S.

    2008-02-01

    In order to realize low damage fine structuring processes for the low-dimensional quantum structures, we investigated a process for reducing the degradations of optical properties, which was induced during a reactive-ion-etching (RIE) process with CH 4/H II gas mixture in the quantum-well (QW) structures. Quantitative studies of optical degradation were carried out by photoluminescence (PL) and electroluminescence (EL) measurements. We introduced a thicker upper optical confinement layer (OCL) to protect the QWs from the RIE-plasma. In practical, for the PL measurement, twotypes of strain-compensated single-quantum-well (SC-SQW) structures were prepared for 40-nm-thick- and 80-nmthick- upper OCL wafers and covered by 20-nm-thick SiO II. After the samples were exposed to CH 4/H II-RIE for 5- minutes, a relatively stronger suppression of integral PL intensity as well as a spectral broadening was observed in the sample with 40-nm-thick OCL, while those did not change in the sample with 80-nm-thick OCL. For the EL measurements, using two types of SC-DQW structures, samples were exposed to CH 4/H II-RIE plasma for 5-minute and then re-grown for other layers to form high-mesa stripe laser structures (W s=1.5μm). As a result, the spontaneous emission efficiency of the lasers with 80-nm-thick OCL was almost 2 times higher than that of the lasers with 40-nmthick OCL. In addition, a lower threshold current as well as a higher differential quantum efficiency was obtained for the lasers with 80-nm-thick OCL , while that in lasers with 40-nm-thick OCL indicated poor efficiency and a slightly higher threshold.

  15. Investigation of tow-step electrical degradation behavior in a-InGaZnO thin-film transistors with Sm2O3 gate dielectrics

    NASA Astrophysics Data System (ADS)

    Chen, Fa-Hsyang; Her, Jim-Long; Hung, Meng-Ning; Pan, Tung-Ming

    2013-07-01

    We investigate the electrical stress-induced instability in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with Sm2O3 gate dielectrics. Tow-step electrical degradation behavior in Sm2O3 a-IGZO TFT devices was found under high gate and drain voltage stress during 1000 s. A typical small positive shift followed by an unusual negative shift of threshold voltage is characterized in our TFT devices. We believe that the positive shift of the threshold voltage is due to charge trapping in the gate dielectric and/or at the channel/dielectric interfaces, while the negative shift of threshold voltage can be attributed to the generation of extra electrons from oxygen vacancies in the a-IGZO channel. We suggested that the amount of oxygen vacancies and the quality of the high-κ gate dielectric probably affect the degradation behavior of a-IGZO TFT devices.

  16. PV module degradation-analysis

    NASA Astrophysics Data System (ADS)

    Themelis, M. P.

    1982-06-01

    The energy potential of photovoltaic (PV) components in various test applications were evaluated. Visual and electrical degradation analyses were performed on 47 PV modules. Discoloration, cracking, scratches, and electrical degradation were detected.

  17. Resources in Education (RIE). Volume 36, Number 7.

    ERIC Educational Resources Information Center

    Resources in Education, 2001

    2001-01-01

    "Resources in Education" (RIE) is a monthly abstract journal that announces (catalogs, indexes, abstracts) documents of interest to the educational community (including researchers, teachers, students, school board members, school administrators, counselors, parents, etc.). Each issue announces approximately 1000 documents and provides indexes by…

  18. Resources in Education (RIE). Volume 36, Number 5.

    ERIC Educational Resources Information Center

    Resources in Education, 2001

    2001-01-01

    "Resources in Education" (RIE) is a monthly abstract journal that announces (catalogs, indexes, abstracts) documents of interest to the educational community (including researchers, teachers, students, school board members, school administrators, counselors, parents, etc.). Each issue announces approximately 1000 documents and provides indexes by…

  19. Resources in Education (RIE). Volume 36, Number 9.

    ERIC Educational Resources Information Center

    Resources in Education, 2001

    2001-01-01

    "Resources in Education" (RIE) is a monthly abstract journal that announces (catalogs, indexes, abstracts) documents of interest to the educational community (including researchers, teachers, students, school board members, school administrators, counselors, parents, etc.). Each issue announces approximately 1000 documents and provides indexes by…

  20. Resources in Education (RIE). Volume 36, Number 8.

    ERIC Educational Resources Information Center

    Resources in Education, 2001

    2001-01-01

    "Resources in Education" (RIE) is a monthly abstract journal that announces (catalogs, indexes, abstracts) documents of interest to the educational community (including researchers, teachers, students, school board members, school administrators, counselors, parents, etc.). Each issue announces approximately 1000 documents and provides indexes by…

  1. Activity and viability of polycyclic aromatic hydrocarbon‐degrading Sphingomonas sp. LB126 in a DC‐electrical field typical for electrobioremediation measures

    PubMed Central

    Shi, Lei; Müller, Susann; Loffhagen, Norbert; Harms, Hauke; Wick, Lukas Y.

    2008-01-01

    Summary There has been growing interest in employing electro‐bioremediation, a hybrid technology of bioremediation and electrokinetics for the treatment of contaminated soil. Knowledge however on the effect of weak electrokinetic conditions on the activity and viability of pollutant‐degrading microorganisms is scarce. Here we present data about the influence of direct current (DC) on the membrane integrity, adenosine triphosphate (ATP) pools, physico‐chemical cell surface properties, degradation kinetics and culturability of fluorene‐degrading Sphingomonas sp. LB126. Flow cytometry was applied to quantify the uptake of propidium iodide (PI) and the membrane potential‐related fluorescence intensities (MPRFI) of individual cells within a population. Adenosine tri‐phosphate contents and fluorene biodegradation rates of bulk cultures were determined and expressed on a per cell basis. The cells' surface hydrophobicity and electric charge were assessed by contact angle and zeta potential measurements respectively. Relative to the control, DC‐exposed cells exhibited up to 60% elevated intracellular ATP levels and yet remained unaffected on all other levels of cellular integrity and functionality tested. Our data suggest that direct current (X = 1 V cm−1; J = 10.2 mA cm−2) as typically used for electrobioremediation measures has no negative effect on the activity of the polycyclic aromatic hydrocarbon (PAH)‐degrading soil microorganism, thereby filling a serious gap of the current knowledge of the electrobioremediation methodology. PMID:21261821

  2. Experimental Physical Sciences Vistas: MaRIE (draft)

    SciTech Connect

    Shlachter, Jack

    2010-09-08

    To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materials science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national security

  3. Impact of continuous and intermittent supply of electric assistance on high-strength 2,4-dichlorophenol (2,4-DCP) degradation in electro-microbial system.

    PubMed

    Cao, Zhanping; Zhang, Minghui; Zhang, Jingli; Zhang, Hongwei

    2016-07-01

    The high-strength 2,4-DCP, which exists in two states: dissolved and colloidal, was studied by a continuously electro-microbial system (CEMS) and an intermittently electro-microbial system (IEMS). The hydrolysis rate of colloidal 2,4-DCP in the IEMS without electric assistance was much higher than that in the CEMS. However, the degradation rate of the dissolved 2,4-DCP and the dissolved intermediates (2-chlorophenol and 4-chlorophenol) in the IEMS without electric assistance were much lower than that in the CEMS. By adjusting the intermittent operation mode, the degradation time of 2,4-DCP was shortened greatly. Microbial characteristics in the CEMS and the IEMS were different. The correlation analysis for the main factors affecting the hydrolysis was performed by SPSS, and it was found that the correlation coefficient (rp) was -0.912 for extracellular polymeric substances (EPS) content, 0.823 for zeta potential and 0.632 for relative hydrophobicity, respectively. PMID:27092992

  4. Insights into ultraviolet-induced electrical degradation of thermally grown SiO{sub 2}/4H-SiC(0001) interface

    SciTech Connect

    Ikeguchi, Daisuke; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji; Nakano, Yuki; Nakamura, Takashi

    2014-01-06

    The harmful impact of ultraviolet (UV) light irradiation on thermally grown SiO{sub 2}/4H-SiC structures was investigated by means of electrical measurements of metal-oxide-semiconductor (MOS) capacitors. Unlike Si-based MOS devices, significant electrical degradation, such as positive flatband voltage (V{sub FB}) shift and hysteresis in the capacitance-voltage (C-V) curves of SiC-MOS capacitors was induced by UV irradiation with a low-pressure mercury lamp. The interfacial fixed charge density increased with UV-irradiation (22.6 mW/cm{sup 2} for 16 h) to 1.7 × 10{sup 12} cm{sup −2}, which was an order of magnitude larger than that of the as-grown SiO{sub 2}/SiC interface. A detailed study based on single wavelength solid-state UV lasers revealed that there was a threshold photon energy at around 5 eV and a moderate dependence of UV-induced degradation on temperature. These experimental findings imply that pre-existing inactive defects accumulated at the thermally grown SiO{sub 2}/SiC interface were transformed to active carrier traps with high-energy UV irradiation through transparent SiO{sub 2} layers.

  5. Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Wen, Qing; Kong, Fanying; Zheng, Hongtao; Yin, Jinling; Cao, Dianxue; Ren, Yueming; Wang, Guiling

    2011-03-01

    A single chamber microbial fuel cell (MFC) with an air-cathode is successfully demonstrated using glucose-ceftriaxone sodium mixtures or ceftriaxone sodium as fuel. Results show that the ceftriaxone sodium can be biodegraded and produce electricity simultaneously. Interestingly, these ceftriaxone sodium-glucose mixtures play an active role in production of electricity. The maximum power density is increased in comparison to 1000 mg L-1 glucose (19 W m-3) by 495% for 50 mg L-1 ceftriaxone sodium + 1000 mg L-1 glucose (113 W m-3), while the maximum power density is 11 W m-3 using 50 mg L-1 ceftriaxone sodium as the sole fuel. Moreover, ceftriaxone sodium biodegradation rate reaches 91% within 24 h using the MFC in comparison with 51% using the traditional anaerobic reactor. These results indicate that some toxic and bio-refractory organics such as antibiotic wastewater might be suitable resources for electricity generation using the MFC technology.

  6. Non-ideal behavior in a model system: Contact degradation in a molecularly doped polymer revealed by variable-temperature electric force microscopy

    NASA Astrophysics Data System (ADS)

    Ng, Tse Nga; Silveira, William R.; Marohn, John A.

    2006-08-01

    We present an electric force microscope and transport study of the degradation of the contact between Au and TPD, a triarylamine widely employed as a hole transporting layer in light emitting diodes. TPD was dispersed into a polystyrene (PS) binder and spin casted onto a quartz substrate with coplanar gold electrodes. Electric force microscopy was used to map the electrostatic potential drop in the device channel while a voltage was applied and the current was measured. Two contact degradation mechanisms were observed. When the TPD-PS film was allowed to age in high vacuum, the TPD crystallized out of solution. We show that the observed loss of current is the result of both a decrease in bulk mobility and a decrease in injection efficiency. The operating temperature of a freshly prepared device was then varied from 296 K to 330 K to simulate heating that might occur during light emitting diode operation. While the current increased in an apparently smooth way as the temperature was raised, electric force microscopy revealed that the underlying injection efficiency had undergone a dramatic change. Above a temperature of 330 K, running current through the device led to a dramatic decrease in injection efficiency which we found was associated with the creation of a dipole layer at the injecting contact. Upon decreasing temperature, we found that a measurable charge remained in the device channel when the applied voltage was switched to zero. The decay of the associated electrostatic potential, which appears to be governed primarily by charge-charge repulsion and not diffusion, provides an estimate the zero-field mobility of the holes in the film.

  7. A new allotropic form of carbon from the ries crater.

    PubMed

    Goresy, A E; Donnay, G

    1968-07-26

    A new allotropic form of carbon occurs in shock-fused graphite gneisses in the Ries Crater, Bavaria. The assemblage in which it occurs consists of hexagonal graphite, rutile, pseudobrookite, magnetite, nickeliferous pyrrhotite, and baddeleyite. Electron-probe analyses indicate that the new phase is pure carbon. It is opaque and much more strongly reflecting than hexagonal graphite. Measurement of x-ray diffraction powder patterns leads to cell dimensions a = 8.948 +/- 0.009, c = 14.078 +/- 0.017 angstroms, with a primitive hexagonal lattice. PMID:17776738

  8. Distal Ejecta from the Ries Crater: Moldavites and Projectile

    NASA Technical Reports Server (NTRS)

    Artemieva, N. A.

    2003-01-01

    Using detailed geological, petrographic, geochemical, and geographical constraints we have performed numerical modeling studies that relate the Steinheim crater (Da = 3.8 km), the Ries crater (D(sub a) = 24 km) in Southern Germany, and the moldavite (tektite) strewn field. The known moldavite strewn field extends from about 200 to 450 km from the center of the Ries to the ENE forming a fan with an angle of about 57 deg. An oblique impact of a binary asteroid from a WSW direction appears to explain the locations of the craters and the formation and distribution of the moldavites. In a presented study we attempt to answer more questions concerning this particular strewn field as well as other questions common for all tektites. What is the maximum 'numerical' size of the moldavite strewn field? How is this size connected with the crater size and the impact conditions? How many tektites may be found theoretically without weathering and surface erosion? What is the size of tektites? Why they are not contaminated by projectile? Where is the projectile material?

  9. Long-term assessment of economic plug-in hybrid electric vehicle battery lifetime degradation management through near optimal fuel cell load sharing

    NASA Astrophysics Data System (ADS)

    Martel, François; Dubé, Yves; Kelouwani, Sousso; Jaguemont, Joris; Agbossou, Kodjo

    2016-06-01

    This work evaluates the performance of a plug-in hybrid electric vehicle (PHEV) energy management process that relies on the active management of the degradation of its energy carriers - in this scenario, a lithium-ion battery pack and a polymer electrolyte membrane fuel cell (PEMFC) - to produce a near economically-optimal vehicle operating profile over its entire useful lifetime. This solution is obtained through experimentally-supported PHEV models exploited by an optimal discrete dynamic programming (DDP) algorithm designed to efficiently process vehicle usage cycles over an extended timescale. Our results demonstrate the economic and component lifetime gains afforded by our strategy when compared with alternative rule-based PHEV energy management benchmarks.

  10. RIES - Rijnland Internet Election System: A Cursory Study of Published Source Code

    NASA Astrophysics Data System (ADS)

    Gonggrijp, Rop; Hengeveld, Willem-Jan; Hotting, Eelco; Schmidt, Sebastian; Weidemann, Frederik

    The Rijnland Internet Election System (RIES) is a system designed for voting in public elections over the internet. A rather cursory scan of the source code to RIES showed a significant lack of security-awareness among the programmers which - among other things - appears to have left RIES vulnerable to near-trivial attacks. If it had not been for independent studies finding problems, RIES would have been used in the 2008 Water Board elections, possibly handling a million votes or more. While RIES was more extensively studied to find cryptographic shortcomings, our work shows that more down-to-earth secure design practices can be at least as important, and the aspects need to be examined much sooner than right before an election.

  11. Fractal Fragmentation triggered by meteor impact: The Ries Crater (Germany)

    NASA Astrophysics Data System (ADS)

    Paredes Marino, Joali; Perugini, Diego; Rossi, Stefano; Kueppers, Ulrich

    2015-04-01

    FRACTAL FRAGMENTATION TRIGGERED BY METEOR IMPACT: THE RIES CRATER (GERMANY) Joali Paredes (1), Stefano Rossi (1), Diego Perugini (1), Ulrich Kueppers (2) 1. Department of Physics and Geology, University of Perugia, Italy 2. Department of Earth and Environmental Sciences, University of Munich, Germany The Nördlinger Ries is a large circular depression in western Bavaria, Germany. The depression was caused by a meteor impact, which occurred about 14.3 million-14.5 million years ago. The original crater rim had an estimated diameter of 24 kilometers. Computer modeling of the impact event indicates that the impact or probably had diameters of about 1.5 kilometers and impacted the target area at an angle around 30 to 50 degrees from the surface in a west- southwest to east-northeast direction. The impact velocity is thought to have been about 20 km/s. The meteor impact generated extensive fragmentation of preexisting rocks. In addition, melting of these rocks also occurred. The impact melt was ejected at high speed provoking its extensive fragmentation. Quenched melt fragments are ubiquitous in the outcrops. Here we study melt fragment size distributions with the aim of understanding the style of melt fragmentation during ejection and to constrain the rheological properties of such melts. Digital images of suevite (i.e. the rock generated after deposition and diagenesis of ash and fragments produced by the meteor impact) were obtained using a high-resolution optical scanner. Successively, melt fragments were traced by image analysis and the images segmented in order to obtain binary images on which impact melt fragments are in black color, embedded on a white background. Hence, the size of fragments was determined by image analysis. Fractal fragmentation theory has been applied to fragment size distributions of melt fragments in the Ries crater. Results indicate that melt fragments follow fractal distributions indicating that fragmentation of melt generated by the

  12. MaRIE: an experimental facility concept revolutionizing materials in extremes

    SciTech Connect

    Barnes, Cris W

    2011-01-07

    The Matter-Radiation Interactions in Extremes (MaRIE) project intends to create an experimental facility that will revolutionize the control of materials in extremes. That control extends to extreme regimes where solid material has failed and begins to flow - the regimes of fluid dynamics and turbulent mixing. This presentation introduces the MaRIE facility concept, demonstrates examples of the science case that determine its functional requirements, and kicks-off the discussion of the decadal scientific challenges of mixing in extremes, including those MaRIE might address.

  13. A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs

    NASA Astrophysics Data System (ADS)

    Anjum, Arshiya; Vinayakprasanna, N. H.; Pradeep, T. M.; Pushpa, N.; Krishna, J. B. M.; Gnana Prakash, A. P.

    2016-07-01

    N-channel depletion MOSFETs were irradiated with 4 MeV Proton and Co-60 gamma radiation in the dose range of 100 krad(Si) to 100 Mrad(Si). The electrical characteristics of MOSFET such as threshold voltage (Vth), density of interface trapped charges (ΔNit), density of oxide trapped charges (ΔNot), transconductance (gm), mobility (μ), leakage current (IL) and drain saturation current (ID Sat) were studied as a function of dose. A considerable increase in ΔNit and ΔNot and decrease in Vth,gm, μ, and ID Sat was observed after irradiation. The results of 4 MeV Proton irradiation were compared with that of Co-60 gamma radiation and it is found that the degradation is more for the devices irradiated with 4 MeV Protons when compared with the Co-60 gamma radiation. This indicates that Protons induce more trapped charges in the field oxide region when compared to the gamma radiation.

  14. Process-oriented investigation of the nitrate-removal-capacity of the aquifers in the Hessian Ried

    NASA Astrophysics Data System (ADS)

    Kludt, Christoph; Weber, Frank-Andreas; Bergmann, Axel; Knipp, Elena; Preiß, Indriani; Schüth, Christoph

    2013-04-01

    The quarternary sediments of the Hessian Ried, a part of the Rhine valley, hold an important groundwater resource for the densely populated Rhine-Main region in germany. Studies related to the implementation of the EU Water Framework Directive (WFD) have shown high nitrate concentrations in the groundwater, especially in the upper parts of the aquifers. Recently, there are signs which indicate that the nitrate-removal-capacity may be exhausted and the denitrification is slowing down. In aquifers, microbial autolitho- and heterotrophic denitrification is coupled to the consumption of the reactive phases pyrite (FeS2) and organic carbon (TOC), respectively. These reducing phases occur often only in trace amounts which makes it difficult to determine their distribution, reactivity and content in the field. However, a process-based knowledge of the occurring reactions and the quantification of the nitrate-removal-capacity and -kinetic is required to predict future nitrate fate. For this aim we combined different methods on a laboratory and field scale to identify the relevant nitrate degradation processes in the Hessian Ried. For determining the reactive phases (TOC and pyrite) in sediment samples, we modified and validated a combination of methods, ranging from sequential combustion for TOC and XRF for elemental and chromium reducible sulphur (CRS) for sulphide/disulphide determination. The analyses of core samples from different field sites in the Hessian Ried (forest and agricultural area) showed that especially the sediments under agricultural areas have much lower pyrite contents. Laboratory batch experiments with these sediment samples showed a much faster denitrification for sediments having higher sulphide content. δ34S isotope analyses of solid-phase sulphide and water-phase sulphate proved to be a good tool for determining the progress of the autolithotrophic denitrification. With in-situ multi-parameter measurements (Eh, pH, nitrate, temperature and

  15. Loss of radiogenic argon from shocked granitic clasts in suevite deposits from the Ries Crater

    NASA Technical Reports Server (NTRS)

    Bogard, Donald; Hoerz, Friedrich; Stoeffler, Dieter

    1988-01-01

    Five granite clasts from the Otting and Aumuehle quarries in the suevite ejecta deposits from the Ries Crater, Germany, were characterized with respect to modal composition, the degree of shock, and the loss of radiogenic Ar. The results were used to estimate the relative fractions of total crater volume, which were characterized by undisturbed K-Ar ages, partly reset ages, and essentially complete gas loss. The results suggest that the loss of Ar form the Ries suevite samples occurred in a 'hot' post-impact ejecta layer. It was estimated that less than 50 percent of the material composing the hot Ries ejecta should show at least partially reset K-Ar ages; such materials compose no more than 5 percent of the total displaced crater volume.

  16. Alkylated phenol series in lacustrine black shales from the Nördlinger Ries, southern Germany.

    PubMed

    Barakat, Assem O; Baumgart, Susan; Brocks, Peter; Scholz-Böttcher, Barbara M; Rullkötter, Jürgen

    2012-08-01

    Several series of alkylated phenols were detected for the first time in the extractable bitumens of organic matter-rich sediments from the Nördlinger Ries (southern Germany). Most abundant and significant constituents comprise those with n-octadecyl, n-eicosanyl, phytanyl, and iso-pentadecyl and anteiso-pentadecyl substituents. The structures of these compounds are suggested from mass spectrometric and retention time data and coinjection with synthetic standards. Diagenetic alteration of phenolic algal lipids is suggested as a possible way to the formation of these compounds in the Nördlinger Ries sediments. PMID:22899507

  17. Final PV module degradation-analysis report

    SciTech Connect

    Themelis, M P

    1982-06-01

    Visual and electrical degradation analyses were performed on 47 modules from: the Natural Bridges National Monument (NBNM) in Utah; Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts; and the University of Nebraska at Mead, Nebraska. Such problems as discoloration, cracking, scratches, and electrical degradation were detected. (LEW)

  18. Lithium and Magnesium Isotopes in Sediments of the Ries Area: Constraints on the Sources of Moldavite Tektites

    NASA Astrophysics Data System (ADS)

    Magna, T.; Žák, K.; Farkaš, J.; Trubač, J.; Rodovská, Z.; Šimeček, M.; Skála, R.; Řanda, Z.; Mizera, J.

    2014-09-01

    New Li and Mg isotope data is presented for sediments from the Ries area, considered sources of moldavite tektites. No direct link can be found between Li and specific lithologies while Mg is isotopically lighter in carbonate-rich samples.

  19. Hybrid generalized Bosbach and Rie c̆ an states on non-commutative residuated lattices

    NASA Astrophysics Data System (ADS)

    Ma, Zhen Ming; Yang, Wei

    2016-08-01

    Generalized Bosbach and Rie c̆ an states, which are useful for the development of an algebraic theory of probabilistic models for commutative or non-commutative fuzzy logics, have been investigated in the literature. In this paper, a new way arising from generalizing residuated lattice-based filters from commutative case to non-commutative one is applied to introduce new notions of generalized Bosbach and Rie c̆ an states, which are called hybrid ones, on non-commutative residuated lattices is provided, and the relationships between hybrid generalized states and those existing ones are studied, examples show that they are different. In particular, two problems from L.C. Ciungu, G. Georgescu, and C. Mure, "Generalized Bosbach States: Part I" (Archive for Mathematical Logic 52 (2013):335-376) are solved, and properties of hybrid generalized states, which are similar to those on commutative residuated lattices, are obtained without the condition "strong".

  20. Sur la présence d'une série molassique (de type série pourprée) au Sud-Est de l'Ahaggar (In Guezzam, Ahaggar, Algérie)Presence of molassic series ('Série pourprée' type) in the Southeast of the Ahaggar (In Guezzam, Ahaggar, Algeria)

    NASA Astrophysics Data System (ADS)

    Djellit, Hamou; Henry, Bernard; Derder, Mohamed E. M.

    In the western Ahaggar shield, the transition between the Precambrian and the Ordovician units is characterised by thick volcano-sedimentary series ('Série pourprée' of the Ahnet). This series, in part of Cambrian age, results from the demolition of the Panafrican belt. Similar series were known in grabens located between the West African craton and the Ahaggar, from the 'Adrar des Iforas', in the south, to the Ougarta belt, in the north. We describe in this study a new formation identical to the 'Série pourprée' of the Ahnet, but cropping out in the far Southeast of the Ahaggar (In Guezzam). This new datum improves the Panafrican belt configuration. To cite this article: H. Djellit et al., C. R. Geoscience 334 (2002) 789-794.

  1. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    SciTech Connect

    Zinkle, S.J.; White, D.P.; Snead, L.L.

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  2. ISEC-3: Results from the third in-situ electrical conductivity test on polycrystaline alumina

    SciTech Connect

    Snead, L.L.; White, D.P.; Eatherly, W.S.; Zinkle, S.J.

    1996-04-01

    An experimental investigation of radiation induced electrical degradation (RIED) has been performed at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. In this study (the third in a series of experiments at the HFBR) the effects of neutron irradiation on the electrical conductivity of Wesgo AL995 polycrystalline alumina has been investigated at approximately 450{degrees}C. The capsule design used in this study is very similiar to a design used in the first two experiments in this series with some improvements made to a design used in the first two experiments in this series with some improvements made in the cable terminations. A guard ring configuration was used on the disk shaped sample. Triaxial mineral insulated cable was used as the data lead from the sputter deposited guard ring and central electrode of the sample, and coaxial mineral insulated cable was used as the sample power lead. No evidence for REID was observed in this series of experiments to a dose level of {approx}1.8 dpa. The effect of neutron irradiation on the electrical properties of two mineral insulated (MgO) cables was also investigated.

  3. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    SciTech Connect

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander; Sheffield, Richard L.

    2015-05-04

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of the different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.

  4. Development of Rie-Textured Silicon Solar Cells

    SciTech Connect

    DAMIANI,B.M.; LUDEMANN,R.; RUBY,DOUGLAS S.; ZAIDI,S.H.; ROHATGI,A.

    2000-12-01

    The Xyce{trademark} Parallel Electronic Simulator has been written to support the simulation needs of the Sandia National Laboratories electrical designers. As such, the development has focused on providing the capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). In addition, they are providing improved performance for numerical kernels using state-of-the-art algorithms, support for modeling circuit phenomena at a variety of abstraction levels and using object-oriented and modern coding-practices that ensure the code will be maintainable and extensible far into the future. The code is a parallel code in the most general sense of the phrase--a message passing parallel implementation--which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved even as the number of processors grows.

  5. Analysis of in-situ electrical conductivity data from the HFIR TRIST-ER1 experiment

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Shikama, T.

    1997-08-01

    The current vs. applied voltage data generated from the HFIR TRIST-ER1 experiment have been analyzed to determine the electrical conductivity of the 15 aluminum oxide specimens and the MgO-insulated electrical cables as a function of irradiation dose. With the exception of the 0.05%Cr-doped sapphire (ruby) specimen, the electrical conductivity of the alumina specimens remained at the expected radiation induced conductivity (RIC) level of <10{sup -6} S/m during full-power reactor irradiation (10-16 kGy/s) at 450-500{degrees}C up to a maximum dose of {approximately}3 dpa. The ruby specimen showed a rapid initial increase in conductivity to {approximately}2 x 10{sup -4} S/m after {approximately}0.1 dpa, followed by a gradual decrease to <1 x 10{sup -6} S/m after 2 dpa. Nonohmic electrical behavior was observed in all of the specimens, and was attributed to preferential attraction of ionized electrons in the capsule gas to the unshielded low-side bare electrical leads emanating from the subcapsules. The electrical conductivity was determined from the slope of the specimen current vs. voltage curve at negative voltages, where the gas ionization effect was minimized. Dielectric breakdown tests performed on unirradiated mineral-insulated coaxial cables identical to those used in the high voltage coaxial cables during the 3-month irradiation is attributable to thermal dielectric breakdown in the glass seals at the end of the cables, as opposed to a radiation-induced electrical degradation (RIED) effect.

  6. Study on Optical Properties of Nanostructured NiCr Film Prepared by Magnetron Sputtering and RIE for Terahertz Applications

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Wang, Jun; Li, Weizhi; Gu, Deen; Jiang, Yadong

    2015-09-01

    Nanoscale NiCr thin film has been proven to be an effective metallic terahertz (THz) absorption layer. To prepare NiCr film with a small thickness and enhanced THz absorption, a combined process of magnetron sputtering and reactive ion etching (RIE) is suggested to obtain nanostructured NiCr film with different thicknesses by precise control of process parameters and etch time. Optical characteristics tests show that both transmission and reflection of NiCr film are weakened by the RIE treatment. NiCr absorption layer is prepared in 80 × 60 infrared focal plane arrays (IRFPAs) by a combination of substrate modification process and RIE thinning process. THz absorption is effectively enhanced by RIE processes applied to the dielectric substrate and NiCr film, which generates nanoscale structures on upper and lower surfaces of NiCr absorption film for an increased specific surface area. The noise equivalent power (NEP) of the THz detection unit achieves 162.8 pW/Hz1/2, which is suitable for the application of active THz imaging. The results indicate that nanostructured NiCr film is an effective THz absorption layer for applications in thermal sensing and its absorption performance can be further improved by RIE.

  7. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    NASA Astrophysics Data System (ADS)

    Song, P.; Liu, J. Y.; Yuan, H. M.; Oliullah, Md.; Wang, F.; Wang, Y.

    2016-09-01

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I-V characteristics. The theoretically predicted short-circuit current density (Jsc), and open-circuit voltage (Voc) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of Jsc and Voc of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  8. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

    SciTech Connect

    Carlsten, Bruce E.; Barnes, Cris W.; Bishofberger, Kip A.; Duffy, Leanne D.; Heath, Cynthia E.; Marksteiner, Quinn R.; Nguyen, Dinh Cong; Russell, Steven J.; Ryne, Robert D.; Sheffield, Richard L.; Simakov, Evgenya I.; Yampolsky, Nikolai A.

    2011-01-01

    The proposed Matter-Radiation Interactions in Extremes (MaRIE) facility at the Los Alamos National Laboratory will include a 50-keV X-Ray Free-Electron Laser (XFEL), a significant extension from planned and existing XFEL facilities. To prevent an unacceptably large energy spread arsing from energy diffusion, the electron beam energy should not exceed 20 GeV, which puts a significant constraint on the beam emittance. A 100-pC baseline design is presented along with advanced technology options to increase the photon flux and to decrease the spectral bandwidth through pre-bunching the electron beam.

  9. Mid-Infrared Studies of Impact Rocks: Suevite from the Nördlinger Ries Crater, Germany

    NASA Astrophysics Data System (ADS)

    Morlok, A.; Ahmedi, M.; Hiesinger, H.; Helbert, J.

    2014-04-01

    Bulk suevites, impact rocks from the Ries impact crater, are very similar in their mid-infrared spectra. Red suevite exhibits a higher content of crystalline fragments compared to the Ottingen suevite. The Christiansen Feature (CF) reflects the felsic composition of the basement rocks in the area of the impact, mainly granite and gneiss. The shift of the CF in the smallest size fraction may indicate small differences in the composition of the finest fraction e.g. due to smaller grain sizes or greater strength of a (mafic ?) mineral fraction.

  10. Low-Power RIE of SiO2 in CHF3 To Obtain Steep Sidewalls

    NASA Technical Reports Server (NTRS)

    Turner, Tasha; Wu, Chi

    2003-01-01

    A reactive-ion etching (RIE) process has been developed to enable the formation of holes with steep sidewalls in a layer of silicon dioxide that covers a silicon substrate. The holes in question are through the thickness of the SiO2 and are used to define silicon substrate areas to be etched or to be built upon through epitaxial deposition of silicon. The sidewalls of these holes are required to be vertical in order to ensure that the sidewalls of the holes to be etched in the substrate or the sidewalls of the epitaxial deposits, respectively, also turn out to be vertical.

  11. Discovery of the most distal Ries tektites found in Lower Silesia, southwestern Poland

    NASA Astrophysics Data System (ADS)

    Brachaniec, Tomasz; Szopa, Krzysztof; Karwowski, ŁUkasz

    2014-08-01

    We report the first occurrence of moldavites in Poland. This discovery confirms the hypothesis that moldavites could have been distributed up to 500 km from the Ries crater in Germany. The tektites were reworked from Middle Miocene sediments and redeposited in Late Miocene (Pannonian) fluvial deposits of the Gozdnicka Formation in Lower Silesia. The Polish moldavites are represented by nine (<8 mm) fragments with a total of 0.471 g. The lack of the autochthonous tektites indicates that tektites investigated here had to be redeposited in a fluvial environment, probably from the Lusatian area. The chemical composition of the Polish moldavites plots in the same area with those from other localities.

  12. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  13. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  14. Radiation-induced degradation of DNA bases

    NASA Astrophysics Data System (ADS)

    Douki, T.; Delatour, T.; Martini, R.; Cadet, J.

    1999-01-01

    Radio-induced degradation of DNA involves radical processes. A series of lesions among the major bases degradation products has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. Quantification of the modified bases showed that guanine is the preferential target. This can be explained by its lower oxidation potential and charge transfer phenomena. La décomposition radio-induite de l'ADN fait intervenir des processus radicalaires. Une série de lésions choisies parmi les produits majeurs de dégradation des bases a été mesurée dans de l'ADN isolé exposé au rayonnement en solution aqueuse aérée. Les modifications sont alors dues aux radicaux hydroxyles produits par la radiolyse de l'eau (effet indirect) et les quatre bases sont efficacement dégradées. L'arrachement d'électrons aux bases par photosensibilisation pour produire leur radical cation, a été utilisé comme modèle de l'effet direct. La quantification des bases modifiées montre que la guanine est préférentiellement dégradée. Cette observation peut s'expliquer par le plus faible potentiel d'oxydation de cette base ainsi que par les phénomènes de transfert de charge vers les guanines.

  15. Aquisição de Estreptococos Mutans e Desenvolvimento de Cárie Dental em Primogênitos

    PubMed Central

    NOCE, Erica; RUBIRA, Cassia Maria Fischer; da Silva ROSA, Odila Pereira; da SILVA, Salete Moura Bonifácio; BRETZ, Walter Antonio

    2011-01-01

    Objetivo Avaliar o momento de aquisição de estreptococos mutans (EM), desenvolvimento de cárie dental e as variáveis a eles associadas no decorrer de 23 meses, em primogênitos de famílias de baixo nível socioeconômico, desde os sete meses de idade. Método A amostra foi selecionada com base em mães densamente colonizadas por EM, incluindo todos os membros de 14 famílias que conviviam na mesma casa. Foram envolvidos no estudo 14 mães, pais e primogênitos e 8 parentes, na maioria avós. Exames clínicos e radiográficos iniciais determinaram os índices de cárie e condição periodontal dos adultos. Contagens de EM foram feitas em todos os adultos nas duas primeiras visitas. Nas crianças foram avaliados os níveis de EM, o número de dentes e de cáries, em quatro visitas. Resultados A prevalência de EM nos adultos foi alta, estando ausente em apenas um dos pais. EM foram detectados em 1, 2, 3 e 10 crianças, respectivamente nas visitas #1, 2, 3 e 4. A cárie dental foi detectada em apenas três crianças na última visita (aos 30 meses de idade), as quais apresentaram escores de EM significantemente maiores que as crianças sem cárie, na mesma visita. Conclusão Exclusivamente a condição social de baixa renda e mães densamente colonizadas por EM não são sinônimo de colonização precoce e alta atividade de cárie em crianças cuidadas em casa. O desenvolvimento de cárie está significantemente associado a escores elevados de EM nas crianças. PMID:22022218

  16. HAZARDOUS WASTE DEGRADATION BY WOOD DEGRADING FUNGI

    EPA Science Inventory

    The persistence and toxicity of many hazardous waste constituents indicates that the environment has limited capacity to degrade such materials. he competence and presence of degrading organisms significantly effects our ability to treat and detoxify these hazardous waste chemica...

  17. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  18. Understanding degradation phenomena in organic electronic devices

    NASA Astrophysics Data System (ADS)

    A. K., Jagdish; Pavankumar, G.; Ramamurthy, Praveen C.; Roy Mahapatra, D.; Hegde, Gopalkrishna

    2015-03-01

    This study addresses a unique degradation mechanism in organic electronic devices occurring due to combined effects of electric field and temperature. A simple polymer diode structure consisting of a semiconducting polymer sandwiched between two electrodes (ITO and Al) is considered for degradation studies. It is observed that voltages beyond a certain value lead to fracture of polymer and aluminium films. As characterized, these defects show that the degradation nucleates in the form of a chain-like pattern consisting of alternating polymer fracture sites (hinges) and aluminium rupture sites (links). A mechanism is hypothesized based on experimental observations to explain the phenomenon. This is further validated by an analytical model for stress at degradation sites due to electric field and temperature. The model is used to develop a failure criteria based on device geometry, operating voltage and temperature. Experiments and modelling predict that this mechanism might be unique to soft thin film electronic devices.

  19. Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater

    NASA Astrophysics Data System (ADS)

    Morlok, Andreas; Stojic, Aleksandra; Dittmar, Isabelle; Hiesinger, Harald; Tiedeken, Manuel; Sohn, Martin; Weber, Iris; Helbert, Joern

    2016-01-01

    This study is part of an effort to build a mid-infrared database (7-14 μm) of spectra for MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer), an instrument onboard of the ESA/JAXA BepiColombo space probe to be launched to Mercury in 2017. Mercury was exposed to abundant impacts throughout its history. This study of terrestrial impactites can provide estimates of the effects of shock metamorphism on the mid-infrared spectral properties of planetary materials. In this study, we focus on the Nördlinger Ries crater in Southern Germany, a well preserved and easily accessible impact crater with abundant suevite impactites. Suevite and melt glass bulk samples from Otting and Aumühle, as well as red suevite from Polsingen were characterized and their reflectance spectra in mid-infrared range obtained. In addition, in-situ mid-infrared spectra were made from glasses and matrix areas in thin sections. The results show similar, but distinguishable spectra for both bulk suevite and melt glass samples, as well as in-situ measurements. Impact melt glass from Aumühle and Otting have spectra dominated by a Reststrahlen band at 9.3-9.6 μm. Bulk melt rock from Polsingen and bulk suevite and fine-grained matrix have their strongest band between 9.4 and 9.6 μm. There are also features between 8.5 and 9 μm, and 12.5-12.8 μm associated with crystalline phases. There is evidence of weathering products in the fine-grained matrix, such as smectites. Mercury endured many impacts with impactors of all sizes over its history. So spectral characteristics observed for impactites formed only in a single impact like in the Ries impact event can be expected to be very common on planetary bodies exposed to many more impacts in their past. We conclude that in mid-infrared remote sensing data the surface of Mercury can be expected to be dominated by features of amorphous materials.

  20. Study of ICP-RIE etching on CdZnTe substrate

    NASA Astrophysics Data System (ADS)

    Xu, Pengxiao; Qiao, Hui; Wang, Ren; Lan, Tianyi; Liu, Shijia; Wang, Nili; Zhou, Qin; Xu, Bin; Liu, Xiujuan; Lu, Yidan; Wang, Li-wei; Chang, Chao; Zhang, Kefeng; Li, Xiangyang

    2014-11-01

    CdZnTe is the most suitable epitaxial substrate material of HgCdTe infrared detectors, because its lattice constant is able to achieve full match with HgCdTe's lattice constant. It is always needed to etch CdZnTe substrate during the process of device separation or when we want to fabricate micro optical device on CdZnTe substrate. This paper adopts the more advanced method, Inductive Coupled Plasma-Reactive Ion Etching(ICP-RIE). The etching conditions of ICP-RIE on CdZnTe substrate are explored and researched. First of all, a set of comparative experiments is designed. All of CdZnTe samples with the same component are polished by chemical mechanical polishing before etching. Then all samples are etched by different types of etching gases(CH4/H2/N2/Ar) and different ratios of gases as we designed. The etching time is all set to 30 minutes. After that, the surface roughness, etching rate, etching damage and the profile of etched mesas are tested and characterized by optical microscope, step profiler and confocal laser scanning microscope (CLSM), respectively. It is found that, Ar gas plays the role of physical etching, but the etching rate will decline when the concentration of Ar gas is too high. The results also show that, the introduction of N2 causes more etching damage. Finally, combination of CH4/H2/Ar is used to etch CdZnTe substrate. The ratio of these gases is 2sccm/2sccm/10sccm. The testing results of optimized etching show that, the maximum etching rate reaches up to 20μm/h and the etched CdZnTe surface is smooth with very low etching damage. At last, aimed at the shortcoming of photoresist's degeneration after long-time etching, the ICP etching process of CdZnTe deep mesa is studied. Double-layer or triple-layer photoresist are spin-coated on CdZnTe substrate during the process of lithography. Then ICP etching is carried out with the optimized condition. It is seen that there is no more phenomena of degeneration.

  1. Ries crater and suevite revisited—Observations and modeling Part I: Observations

    NASA Astrophysics Data System (ADS)

    Stöffler, Dieter; Artemieva, Natalia A.; Wünnemann, Kai; Reimold, W. Uwe; Jacob, Juliane; Hansen, Birgit K.; Summerson, Iona A. T.

    2013-04-01

    We report results of an interdisciplinary project devoted to the 26 km-diameter Ries crater and to the genesis of suevite. Recent laboratory analyses of "crater suevite" occurring within the central crater basin and of "outer suevite" on top of the continuous ejecta blanket, as well as data accumulated during the past 50 years, are interpreted within the boundary conditions imposed by a comprehensive new effort to model the crater formation and its ejecta deposits by computer code calculations (Artemieva et al. 2013). The properties of suevite are considered on all scales from megascopic to submicroscopic in the context of its geological setting. In a new approach, we reconstruct the minimum/maximum volumes of all allochthonous impact formations (108/116 km3), of suevite (14/22 km3), and the total volume of impact melt (4.9/8.0 km3) produced by the Ries impact event prior to erosion. These volumes are reasonably compatible with corresponding values obtained by numerical modeling. Taking all data on modal composition, texture, chemistry, and shock metamorphism of suevite, and the results of modeling into account, we arrive at a new empirical model implying five main consecutive phases of crater formation and ejecta emplacement. Numerical modeling indicates that only a very small fraction of suevite can be derived from the "primary ejecta plume," which is possibly represented by the fine-grained basal layer of outer suevite. The main mass of suevite was deposited from a "secondary plume" induced by an explosive reaction ("fuel-coolant interaction") of impact melt with water and volatile-rich sedimentary rocks within a clast-laden temporary melt pool. Both melt pool and plume appear to be heterogeneous in space and time. Outer suevite appears to be derived from an early formed, melt-rich and clast-poor plume region rich in strongly shocked components (melt ≫ clasts) and originating from an upper, more marginal zone of the melt pool. Crater suevite is obviously

  2. Long-term degradation of the ionic electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Punning, Andres; Must, Indrek; Põldsalu, Inga; Vunder, Veiko; Kaasik, Friedrich; Temmer, Rauno; Aabloo, Alvo

    2015-04-01

    The research is focused on lifetime and degradation of ionic electroactive polymer actuators (IEAP). The lifetime measurements were carried out using identical methodology upon the different IEAP types. The experiment conducted with large number of samples shows that two types of degradation have serious effect to the IEAPs: degradation during operation and spontaneous self-degradation. Additionally, two ways of occasional damage decrease their overall reliability. In the scope of the current paper we describe degradation of two different types of IEAP actuators: with carbonaceous electrodes and with conducting polymer electrodes. Nevertheless, the common evolutionary trends, rather than the comparative data analysis or formal statistics of all particular samples, are given. Analyzing the electromechanical and electrical impedances of the samples during their whole lifetime, we have found that observing the electric current gives adequate information about the degradation level of any IEAP actuator. Moreover, tracking this electrically measurable parameter enables detecting the occasional damage of an actuator.

  3. Mineral-produced high-pressure striae and clay polish: Key evidence for nonballistic transport of ejecta from Ries crater

    USGS Publications Warehouse

    Chao, E.C.T.

    1976-01-01

    Recently discovered mineral-produced, deeply incised striae and mirror-like polish on broken surfaces of limestone fragments from the sedimentary ejecta of the Ries impact crater of southern Germany are described. The striae and polish were produced under high confining pressures during high-velocity nonballistic transport of the ejecta mass within the time span of the cratering event (measured in terms of seconds). The striae on these fragments were produced by scouring by small mineral grains embedded in the surrounding clay matrix, and the polish was formed under the same condition, by movements of relatively fragment-free clay against the fragment surfaces. The occurrence of these striae and polish is key evidence for estimating the distribution and determining the relative importance of nonballistic and ballistic transport of ejecta from the shallow Ries stony meteorite impact crater.

  4. Characteristics of microcracks in samples from the drill hole Noerdlingen 1973 in the Ries crater, Germany. [similarities to lunar rocks

    NASA Technical Reports Server (NTRS)

    Padovani, E. R.; Batzle, M. L.; Simmons, G.

    1978-01-01

    Samples from the Noerdlingen 1973 drill core contain abundant shock-induced microfractures which exhibit varying amounts of healing and sealing. Many of the microcracks resemble morphologically the open microcracks present in returned lunar samples. Data derived from petrography, scanning electron microscopy, and differential strain analysis indicate that fewer microcracks were formed at greater depths and crack sealing processes are more effective for cracks associated with planar elements. Although the microcracks in the Ries core are now sealed, they are valid analogues of the open shock-induced cracks of lunar rocks and demonstrate that open cracks do form in rocks at depth during a naturally-occurring shock event. The healing of the shock-induced cracks in the Ries core also precludes their use for laboratory measurements of physical properties intended to be used as analogue measurements of lunar samples in situ.

  5. Geochemical studies of the SUBO 18 (Enkingen) drill core and other impact breccias from the Ries crater, Germany

    NASA Astrophysics Data System (ADS)

    Reimold, Wolf Uwe; McDonald, Iain; Schmitt, Ralf-Thomas; Hansen, Birgit; Jacob, Juliane; Koeberl, Christian

    2013-09-01

    Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within-crater and out-of-crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate-impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment-clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic-granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum-group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near-chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1-0.2% chondrite-equivalent.

  6. The Science of Battery Degradation.

    SciTech Connect

    Sullivan, John P; Fenton, Kyle R; El Gabaly Marquez, Farid; Harris, Charles Thomas; Hayden, Carl C.; Hudak, Nicholas; Jungjohann, Katherine Leigh; Kliewer, Christopher Jesse; Leung, Kevin; McDaniel, Anthony H.; Nagasubramanian, Ganesan; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M; Zavadil, Kevin R.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  7. PEM fuel cell degradation

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

  8. Putative Bioalteration Textures Hosted Within Impact Melt Glasses From the Ries Crater, Germany

    NASA Astrophysics Data System (ADS)

    Sapers, H. M.; Osinski, G. R.; Banerjee, N. R.

    2009-05-01

    Impact cratering is a ubiquitous geological process on solid bodies. Any hypervelocity impact into a H2O- rich target has the potential to generate hydrothermal systems [1]. Recent research has suggested that such impact-induced environments may be conducive to microbial colonization [e.g., 2]. Bioalteration of terrestrial basaltic glasses produces characteristic tubular and granular aggregate textures. Such bioalteration textures preserved in Archean greenstone belts constitute one of the oldest records of life on Earth [3]. Our examination of glasses from the Ries crater in Germany has revealed tubular textures with remarkably similar morphologies to those seen in volcanic glasses. The hyperthermophilic root of the 16S phylogenic tree of life suggests an essential role for thermophilic environments in the origin or the early evolutionary history of life on Earth. Previous work has associated primitive life on Earth with submarine volcanic activity suggesting that submarine hydrothermal settings may have played an essential role in the origin of life [e.g., 4]. Impact-induced hydrothermal systems share many characteristics with submarine volcanic hydrothermal systems including the presence of chemical and thermal energy for microbial metabolism. Interestingly, the Late Heavy Bombardment period, during which life purportedly arose on Earth, was characterized by a high impact flux. Thus, impact-generated habitats were likely much more common on Earth than submarine hydrothermal systems suggesting the former as a more statistically probable habitat for the origin of life. Here we present preliminary data characterizing the putative bioalteration structures hosted within the Ries impact glasses. Establishing the biogenecity of the alteration structures observed in these glasses may have significant astrobiological implications: impact glasses share many similarities with volcanic glasses, however, fundamental differences make impact glasses unique geochemical systems

  9. Target delamination by spallation and ejecta dragging: An example from the Ries crater's periphery

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Ivanov, Boris A.

    2006-11-01

    Subhorizontal shear planes (detachments) are observed in bedded limestones in the periphery of the Ries impact crater, Germany. These detachments occur at 0.8-1.8 crater radii distance from the crater center beneath deposits of the continuous ejecta blanket. Striations on detachment planes and offsets of markers indicate top-outward shearing with radial slip vectors. Detachments were found at depths between a few meters and more than 50 m beneath the target surface. The displacements along these faults range from meters to decameters and decrease with increasing depth and distance from the crater center. With increasing crater distance, detachment horizons tend to climb to shallower levels. Cross-cutting relationships to faults associated with the crater collapse indicate that detachment faulting started prior to the collapse but continued during crater modification. Numerical modeling of the cratering process shows that near-surface deformation outside the transient crater is induced by two separate mechanisms: (i) weak spallation by interference of shock and release waves near the target surface and (ii) subsequent dragging by the deposition of the ejecta curtain. Spallation causes an upward and outward directed motion of target material that increases in magnitude toward the target surface. It leads to decoupling of the uppermost target layers in the early cratering stage without totally disintegrating the rock. The subsequent arrival of the oblique impact shower of the ejecta curtain at the target surface delivers a horizontal momentum to the uppermost target area and results in a second horizontal displacement increment by dragging. With increasing depth this effect vanishes rapidly. Spallation decoupling and subsequent ejecta dragging of near-surface rocks is probably a general cratering mechanism around craters in layered targets with weak interbeds.

  10. The distribution of megablocks in the Ries crater, Germany: Remote sensing, field investigation, and statistical analyses

    NASA Astrophysics Data System (ADS)

    Sturm, Sebastian; Kenkmann, Thomas; Willmes, Malte; PöSges, Gisela; Hiesinger, Harald

    2015-01-01

    The Ries crater is a well-preserved, complex impact crater that has been extensively used in the study of impact crater formation processes across the solar system. However, its geologic structure, especially the megablock zone, still poses questions regarding crater formation mechanics. The megablock zone, located between the inner crystalline ring and outer, morphologic crater rim, consists of allochthonous crystalline and sedimentary blocks, Bunte Breccia deposits, patches of suevite, and parautochthonous sedimentary blocks that slumped into the crater during crater modification. Our remote sensing detection method in combination with a shallow drilling campaign and geoelectric measurements at two selected megablocks proved successful in finding new megablock structures (>25 m mean diameter) within the upper approximately 1.5 m of the subsurface in the megablock zone. We analyzed 1777 megablocks of the megablock zone, 81 of which are new discoveries. In our statistical analysis, we also included 2318 ejecta blocks >25 m beyond the crater rim. Parautochthonous megablocks show an increase in total area and size toward the final crater rim. The sizes of allochthonous megablocks generally decrease with increasing radial range, but inside the megablock zone, the coverage with postimpact sediments obscures this trend. The size-frequency distribution of all megablocks obeys a power-law distribution with an exponent between approximately -1.7 and -2.3. We estimated a total volume of 95 km3 of Bunte Breccia and 47 km3 of megablocks. Ejecta volume calculations and a palinspastic restoration of the extension within the megablock zone indicate that the transient cavity diameter was probably 14-15 km.

  11. Targeted polypeptide degradation

    DOEpatents

    Church, George M.; Janse, Daniel M.

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  12. Suevite superposition on the Bunte breccia in Noerdlinger Ries, Germany: New findings on the transport mechanism of impactites

    NASA Technical Reports Server (NTRS)

    Bringemeier, D.

    1992-01-01

    Research undertaken in the last decades in Noerdlinger Ries, Germany, has repeatedly emphasized the sharp contact between Bunte breccia and suevite. However, extensive investigations into this layer boundary have not yet been possible due to insufficient outcrop ratios. New outcrops enabled an in-depth investigation into the superposition of suevite on the Bunte breccia, which is assigned a key role in interpreting the transport mechanisms of ejecta of large impact. In two quarries lying several kilometers east and south-southwest of the crater, the contact between the suevite and Bunte breccia was recorded in detailed sections on outcrops of over 50 m in length.

  13. Fluidization and hydrothermal alteration of the suevite deposit at the Ries Crater, West Germany, and implications for Mars

    NASA Technical Reports Server (NTRS)

    Newsom, Horton E.; Sewards, Terry; Keil, Klaus; Graup, Guenther

    1986-01-01

    The emplacement, cooling, and alteration of the suevite at the Ries Crater are discussed. The clay mineralogy of the suevite is examined in terms of the cooling of the suevite and the importance of hydrothermal alteration. It is observed that the suevite contains large number of chimneylike degassing pipes, and that the suevite outside of the crater rim contains about 15 wt pct clay. The vertical channels or degassing pipes related to the fall-out of suevite are described. The relationship between the formation of the impact deposits on earth and Mars and the origin of Martian soil, and the emplacement and alteration of impact ejecta is studied.

  14. Chemistry of Tertiary sediments in the surroundings of the Ries impact structure and moldavite formation revisited

    NASA Astrophysics Data System (ADS)

    Žák, Karel; Skála, Roman; Řanda, Zdeněk; Mizera, Jiří; Heissig, Kurt; Ackerman, Lukáš; Ďurišová, Jana; Jonášová, Šárka; Kameník, Jan; Magna, Tomáš

    2016-04-01

    Moldavites, tektites of the Central European strewn field, have been traditionally linked with the Ries impact structure in Germany. They are supposed to be derived mainly from the near-surface sediments of the Upper Freshwater Molasse of Miocene age that probably covered the target area before the impact. Comparison of the chemical composition of moldavites with that of inferred source materials requires recalculation of the composition of sediments to their water-, organic carbon- and carbon dioxide-free residuum. This recalculation reflects the fact that these compounds were lost almost completely from the target materials during their transformation to moldavites. Strong depletions in concentrations of many elements in moldavites relative to the source sediments (e.g., Mo, Cu, Ag, Sb, As, Fe) contrast with enrichments of several elements in moldavites (e.g., Cs, Ba, K, Rb). These discrepancies can be generally solved using two different approaches, either by involvement of a component of specific chemical composition, or by considering elemental fractionation during tektite formation. The proposed conceptual model of moldavite formation combines both approaches and is based on several steps: (i) the parent mixture (Upper Freshwater Molasse sediments as the dominant source) contained also a minor admixture of organic matter and soils; (ii) the most energetic part of the ejected matter was converted to vapor (plasma) and another part produced melt directly upon decompression; (iii) following further adiabatic decompression, the expanding vapor phase disintegrated the melt into small melt droplets and some elements were partially lost from the melt because of their volatility, or because of the volatility of their compounds, such as carbonyls of Fe and other transition metals (e.g., Ni, Co, Mo, Cr, and Cu); (iv) large positively charged ions such as Cs+, Ba2+, K+, Rb+ from the plasma portion were enriched in the late-stage condensation spherules or condensed

  15. A data science approach to understanding photovoltaic module degradation

    NASA Astrophysics Data System (ADS)

    Wheeler, Nicholas R.; Gok, Abdulkerim; Peshek, Timothy J.; Bruckman, Laura S.; Goel, Nikhil; Zabiyaka, Davis; Fagerholm, Cara L.; Dang, Thomas; Alcantara, Christopher; Terry, Mason L.; French, Roger H.

    2015-09-01

    The expected lifetime performance and degradation of photovoltaic (PV) modules is a major issue facing the levelized cost of electricity of PV as a competitive energy source. Studies that quantify the rates and mechanisms of performance degradation are needed not only for bankability and adoption of these promising technologies, but also for the diagnosis and improvement of their mechanistic degradation pathways. Towards this goal, a generalizable approach to degradation science studies utilizing data science principles has been developed and applied to c-Si PV modules. By combining domain knowledge and data derived insights, mechanistic degradation pathways are indicated that link environmental stressors to the degradation of PV module performance characteristics. Targeted studies guided by these results have yielded predictive equations describing rates of degradation, and further studies are underway to achieve this for additional mechanistic pathways of interest.

  16. 40Ar-39Ar step-heating of impact glasses from the Nördlinger Ries impact crater—Implications on excess argon in impact melts and tektites

    NASA Astrophysics Data System (ADS)

    Schwarz, Winfried H.; Lippolt, Hans J.

    2014-06-01

    Seven impact melts from various places in the Nördlinger Ries were dated by 40Ar-39Ar step-heating. The aim of these measurements was to increase the age data base for Ries impact glasses directly from the Ries crater, because there is only one Ar-Ar step-heating spectrum available in the literature. Almost all samples display saddle-shaped age spectra, indicating the presence of excess argon in most Ries glass samples, most probably inherited argon from incompletely degassed melt and possibly also excess argon incorporated during cooling from adjacent phases. In contrast, moldavites usually contain no inherited argon, probably due to their different formation process implying solidification during ballistic transport. The plateau age of the only flat spectrum is 14.60 ± 0.16 (0.20) Ma (2σ), while the total age of this sample is 14.86 ± 0.20 (0.22) Ma (isochron age: 14.72 ± 0.18 [0.22] Ma [2σ]), proofing the chronological relationship of the Ries impact and moldavites. The total ages of the other samples range between 15.77 ± 0.52 and 20.4 ± 1.0 Ma (2σ), implying approximately 2-40% excess 40Ar (compared to the nominal age of the Ries crater) in respective samples. Thus, the age of 14.60 ± 0.16 (0.20) (2σ) (14.75 ± 0.16 [0.20 Ma] [2σ], calculated using the most recent suggestions for the K decay constants) can be considered as reliable and is within uncertainties indistinguishable from the most recent compilation for the age of the moldavite tektites.

  17. MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging

    SciTech Connect

    Barnes, Cris William; Barber, John L.; Kober, Edward Martin; Lookman, Turab; Sandberg, Richard L.; Shlachter, Jack S.; Sheffield, Richard L.

    2015-02-23

    The Matter-Radiation Interactions in Extremes project will build the experimental facility for the time-dependent control of dynamic material performance. An x-ray free electron laser at up to 42-keV fundamental energy and with photon pulses down to sub-nanosecond spacing, MaRIE 1.0 is designed to meet the challenges of time-dependent mesoscale materials science. Those challenges will be outlined, the techniques of coherent diffractive imaging and dynamic polycrystalline diffraction described, and the resulting requirements defined for a coherent x-ray source. The talk concludes with the role of the MaRIE project and science in the future.

  18. ERIC Clearinghouse and Support Contractor Publications, 1999. An Annotated Bibliography of Digests, Information Analysis Products, and Other Major Publications of the ERIC Clearinghouses and Support Contractors Announced in "Resources in Education" (RIE) January-December 1999.

    ERIC Educational Resources Information Center

    Brandhorst, Ted, Ed.

    This annotated bibliography of ERIC clearinghouse and support contractor publications covers 248 documents announced in RIE (Resources in Education) from January through December 1999. The format and arrangement of citations in this bibliography conform to that in the original announcement in RIE. Citations are arranged by clearinghouse, and…

  19. ERIC Clearinghouse and Support Contractor Publications, 1998. An Annotated Bibliography of Digests, Information Analysis Products, and Other Major Publications of the ERIC Clearinghouses and Support Contractors Announced in "Resources in Education" (RIE) January-December 1998.

    ERIC Educational Resources Information Center

    Weller, Carolyn R., Ed.; Brandhorst, Ted, Ed.

    This annotated bibliography of ERIC clearinghouse and support contractor publications covers 224 documents announced in "Resources in Education" (RIE) from January through December 1998. The format and arrangement of citations in this bibliography conform to that in the original announcement in RIE. Citations are arranged by clearinghouse. Within…

  20. Degradations and Rearrangement Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  1. Degradation Kinetics of VX

    SciTech Connect

    Gary S. Groenewold

    2010-12-01

    O-ethyl S-(2-diisopropylaminoethyl)phosphonothiolate (VX) is the most toxic of the conventional chemical warfare agents. It is a persistent compound, an attribute derived from its relative involatility and slow rates of hydrolysis. These properties suggest that VX can linger in an exposed environment for extended periods of time long after the air has cleared. Concern over prolonged risk from VX exposure is exacerbated by the fact that it poses a dermal contact hazard. Hence a detailed understanding of volatilization rates, and degradation pathways and rates occurring in various environments is needed. Historically, volatilization has not been considered to be an important mechanism for VX depletion, but recent studies have shown that a significant fraction of VX may volatilize, depending on the matrix. A significant body of research has been conducted over the years to unravel VX degradation reaction pathways and to quantify the rates at which they proceed. Rigorous measurement of degradation rates is frequently difficult, and thus in many cases the degradation of VX has been described in terms of half lives, while in fewer instances rate constants have been measured. This variable approach to describing degradation kinetics reflects uncertainty regarding the exact nature of the degradation mechanisms. In this review, rates of VX degradation are compared on the basis of pseudo-first order rate constants, in order to provide a basis for assessing likelihood of VX persistence in a given environment. An issue of specific concern is that one VX degradation pathway produces S-2-(diisopropylaminoethyl) methylphosphonothioic acid (known as EA2192), which is a degradation product that retains much of the original toxicity of VX. Consequently degradation pathways and rates for EA2192 are also discussed.

  2. Evaluation of the performance degradation at PAFC effect of catalyst degradation on electrode performance

    SciTech Connect

    Nishizaki, K.; Uchida, H.; Watanabe, M.

    1996-12-31

    Aiming commercialization of Phosphoric Acid Fuel Cell (PAFC) power plant, many researches and developments have been contributed. Over 20000 hours operations have been demonstrated by many PAFC power plants. But there is no effective method for the estimation of lifetime of electrochemical cells without a practical long-term operation. Conducted by New Energy and Industrial Technology Development Organization (NEDO), cooperative research projects aiming development of PAFC lifetime estimation method have started since 1995 FY in Japan. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and PAFC manufacturers (Toshiba Co., Mitsubishi Electric Co, Fuji Electric Co.). Among several main causes of the cell performance degradation, effects of catalyst degradation (reduction in metal surface area, dealloying, changes in catalyst support) on PAFC cathode performances are discussed in this work.

  3. Silk structure and degradation.

    PubMed

    Liu, Bin; Song, Yu-wei; Jin, Li; Wang, Zhi-jian; Pu, De-yong; Lin, Shao-qiang; Zhou, Chan; You, Hua-jian; Ma, Yan; Li, Jin-min; Yang, Li; Sung, K L Paul; Zhang, Yao-guang

    2015-07-01

    To investigate the structure of silk and its degradation properties, we have monitored the structure of silk using scanning electron microscopy and frozen sections. Raw silk and degummed raw silk were immersed in four types of degradation solutions for 156 d to observe their degradation properties. The subcutaneous implants in rats were removed after 7, 14, 56, 84, 129, and 145 d for frozen sectioning and subsequent staining with hematoxylin and eosin (H.E.), DAPI, Beta-actin and Collagen I immunofluorescence staining. The in vitro weight loss ratio of raw silk and degummed raw silk in water, PBS, DMEM and DMEM containing 10% FBS (F-DMEM) were, respectively, 14%/11%, 12.5%/12.9%, 11.1%/14.3%, 8.8%/11.6%. Silk began to degrade after 7 d subcutaneous implantation and after 145 d non-degraded silk was still observed. These findings suggest the immunogenicity of fibroin and sericin had no essential difference. In the process of in vitro degradation of silk, the role of the enzyme is not significant. The in vivo degradation of silk is related to phagocytotic activity and fibroblasts may be involved in this process to secrete collagen. This study also shows the developing process of cocoons and raw silk. PMID:25982316

  4. Accelerated degradation testing of a photovoltaic module

    NASA Astrophysics Data System (ADS)

    Charki, Abdérafi; Laronde, Rémi; Bigaud, David

    2013-01-01

    There are a great many photovoltaic (PV) modules installed around the world. Despite this, not enough is known about the reliability of these modules. Their electrical power output decreases with time mainly as a result of the effects of corrosion, encapsulation discoloration, and solder bond failure. The failure of a PV module is defined as the point where the electrical power degradation reaches a given threshold value. Accelerated life tests (ALTs) are commonly used to assess the reliability of a PV module. However, ALTs provide limited data on the failure of a module and these tests are expensive to carry out. One possible solution is to conduct accelerated degradation tests. The Wiener process in conjunction with the accelerated failure time model makes it possible to carry out numerous simulations and thus to determine the failure time distribution based on the aforementioned threshold value. By this means, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated.

  5. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.

  6. MECHANISMS OF PESTICIDE DEGRADATION

    EPA Science Inventory

    This research project was initiated with the overall objective of determining (1) the chemical structures of toxic components of toxaphene, (2) to study anaerobic metabolism to degrade toxaphene and other pesticides, and (3) to understand toxic action mechanism of chlordimeform. ...

  7. Process for degrading hypochlorite

    SciTech Connect

    Huxtable, W.P.; Griffith, W.L.; Compere, A.L.

    1989-05-12

    It is an object of the present invention to provide an improved means and method for the degradation of hypochlorite in alkali waste solutions. It is a further object of the present invention to provide a more effective and less costly method for the degradation of hypochlorite. The foregoing objects and others are accomplished in accordance with the present invention, generally speaking, by providing a process to degrade hypochlorite into chloride and oxygen which includes contacting an aqueous hypochlorite basic solution with a catalyst comprising about 1--10 w/w % cobalt oxide and about 1--15 w/w % molybdenum oxide on a suitable substrate. In another embodiment a similar process for degrading lithium hypochlorite is provided in which waste solution concentration is lowered in order to minimize carbonate precipitation. 6 tabs.

  8. Conceptualizing Forest Degradation.

    PubMed

    Ghazoul, Jaboury; Burivalova, Zuzana; Garcia-Ulloa, John; King, Lisa A

    2015-10-01

    Forest degradation is a global environmental issue, but its definition is problematic. Difficulties include choosing appropriate reference states, timescales, thresholds, and forest values. We dispense with many such ambiguities by interpreting forest degradation through the frame of ecological resilience, and with reference to forest dynamics. Specifically, we define forest degradation as a state of anthropogenically induced arrested succession, where ecological processes that underlie forest dynamics are diminished or severely constrained. Metrics of degradation might include those that reflect ecological processes shaping community dynamics, notably the regeneration of plant species. Arrested succession implies that management intervention is necessary to recover successional trajectories. Such a definition can be applied to any forest ecosystem, and can also be extended to other ecosystems. PMID:26411619

  9. Purex diluent degradation

    SciTech Connect

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO/sub 3/ system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO/sub 2/) molecule, not HNO/sub 3/ as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO/sub 3/ concentration and the temperature. The rate was decreased by argon sparging to remove NO/sub 2/ and by the addition of butanol, which probably acts as a NO/sub 2/ scavenger. 13 references, 11 figures.

  10. The Ries impact crater described as an analogue for a Martian double-layered ejecta crater on Earth

    NASA Astrophysics Data System (ADS)

    Sturm, Sebastian; Wulf, Gerwin; Jung, Dietmar; Kenkmann, Thomas

    2014-05-01

    The Ries impact crater (~26 km-diameter) is described as a relatively pristine, complex impact crater in southern Germany. The oblique impact occurred during the Miocene (14.9 Ma) and hit into a two-layered target material that consists of ~650 m partly water-saturated and subhorizontally layered sediments (limestones, sandstones, shales) of Triassic to Tertiary ages underlain by crystalline basement rocks (mainly gneisses, granites and amphibolites) [1, 2, 3, 4]. The continuous and well-preserved ejecta blanket reaches up to a distance of 45 km from the crater center. It is built up by so called Bunte Breccia material that is described as a polymict lithic breccia. Bunte Breccia mainly consists of unshocked to weakly shocked sedimentary target clasts including a minority of crystalline basement clasts and reworked surfical sediments (e.g., Upper Freshwater Molasses or Upper Seawater Molasses) [5, 6]. Here we present our final interpolation results of the morphology of the paleo-surface and the thickness variations of the continuous ejecta blanket (Bunte Breccia) with radial range outside of the Ries impact crater. Our results were then compared with ejecta distribution characteristics of Martian complex double-layered ejecta craters (DLE) [7]. We combined digital elevation data (ASTER DEM) and geologic information of the recent geologic map [8], in addition with nine NASA Drillings [6], and up to 40 Bavarian Environment Agency drillings in ArcGIS (ESRI) and RockWorks14 (RockWare) to interpolate the elevation of the lower contact plane ("paleo-surface") and the contact between the Bunte breccia and the overlain Suevite deposits to reconstruct the Bunte Breccia thickness variation outside of the Ries impact crater [7]. Our final interpolation results of the paleo-surface and Bunte Breccia top surface provide an increasing Bunte breccia thickness with increasing distance from the crater center. The ejecta thickness distribution clearly deviates from a steady decrease

  11. A case of Charcotian grande hystérie: observation by Julien Offray de La Mettrie in 1738.

    PubMed

    Walusinski, Olivier

    2012-01-01

    Julien Offray de La Mettrie (1709-1751) is a French philosopher who owes his fame to his materialist ideas. He was also a provocative atheist who used his scathing pen to defend the first concept of a theory of mind. We offer here one of his little-known works, reporting on a case of grande hystérie, as Jean-Martin Charcot (1825-1893) and his student Paul Richer (1849-1933) would describe the condition 150 years later. After discussing how La Mettrie interpreted this observation, we will compare it to interpretations developed during the 19th century, in particular by the La Salpêtrière school. PMID:22236737

  12. [Degradation of succinylcholine chloride].

    PubMed

    Németh, G; Török, I; Paál, T

    1993-05-01

    Quantitative thin-layer chormatographic method has been developed for the investigation of the degradation of injection formulations containing succinylcholinium chloride. The method is based on the denistometric determination of the main degradation product, choline at 430 nm after visualization with iodine vapour. The stability of the injection was investigated under various storage conditions and it has been stated that considerable decomposition takes place during as short a period as one week. PMID:8362654

  13. Self-aligned single-mask fabrication process for electro-thermal microactuators using ICP-RIE

    NASA Astrophysics Data System (ADS)

    Alamin Dow, Ali B.; Gougam, Adel; Kherani, Nazir P.; Rangelow, I. W.

    2013-05-01

    Advances in the miniaturization of semiconductor devices have been made possible by new methods of microfabrication techniques . These advances have stimulated the birth of Micro Electro Mechanical Systems (MEMS) technology which enable the fabrication of a wide variety of sensing and actuating devices of microscopic dimensions . Of particular interest are thermal microactuators which provide large deflections and are compatible with existing IC technologies. In MEMS technology, a well controlled etching process is critical for the fabrication of structures with specific geometry and properties. Increasing demand for intricate semiconductor devices has fueled and motivated researches to develop high precision micromachining techniques . Inductively coupled plasma- Reactive ion etching (ICP-RIE) is capable of producing features with high aspect ratio as high as 90:1. Taking advantage of the notching effect when making a structure from silicon on insulator (SOI), structure release without the use of HF acid has been demonstrated. We report on the development of a self-aligned single-mask process for the fabrication of released and movable MEMS devices. ICP-RIE was used to realize the structures directly out of single crystal silicon. Applying side wall passivation, controlling the ratio of ion flux and radical flux, smooth etching profile can be obtained with high aspect ratio. No wet etching process is required to release the structures as is the case with SOI wafers. This approach overcomes the stiction limitation associated with wet etching and yields good thickness uniformity over the entire structure. Electrothermal microactuators with integrated microgrippers were designed, fabricated and characterized. harvesters.

  14. DDE remediation and degradation.

    PubMed

    Thomas, John E; Ou, Li-Tse; All-Agely, Abid

    2008-01-01

    DDT and its metabolites, DDD and DDE, have been shown to be recalcitrant to degradation. The parent compound, DDT, was used extensively worldwide starting in 1939 and was banned in the United States in 1973. The daughter compound, DDE, may result from aerobic degradation, abiotic dehydrochlorination, or photochemical decomposition. DDE has also occurred as a contaminant in commercial-grade DDT. The p,p'-DDE isomer is more biologically active than the o,p-DDE, with a reported half-life of -5.7 years. However, when DDT was repeatedly applied to the soil, the DDE concentration may remain unchanged for more than 20 yr. Remediation of DDE-contaminated soil and water may be done by several techniques. Phytoremediation involves translocating DDT, DDD, and DDE from the soil into the plant, although some aquatic species (duckweed > elodea > parrot feather) can transform DDT into predominantly DDD with some DDE being formed. Of all the plants that can uptake DDE, Cucurbita pepo has been the most extensively studied, with translocation values approaching "hyperaccumulation" levels. Soil moisture, temperature, and plant density have all been documented as important factors in the uptake of DDE by Cucurbita pepo. Uptake may also be influenced positively by amendments such as biosurfactants, mycorrhizal inoculants, and low molecular weight organic acids (e.g., citric and oxalic acids). DDE microbial degradation by dehalogenases, dioxygenases, and hydrolases occurs under the proper conditions. Although several aerobic degradation pathways have been proposed, none has been fully verified. Very few aerobic pure cultures are capable of fully degrading DDE to CO2. Cometabolism of DDE by Pseudomonas sp., Alicaligens sp., and Terrabacter sp. grown on biphenyl has been reported; however, not all bacterial species that produce biphenyl dioxygenase degraded DDE. Arsenic and copper inhibit DDE degradation by aerobic microorganisms. Similarly, metal chelates such as EDTA inhibit the

  15. Degradation of chlorpyrifos in tropical rice soils.

    PubMed

    Das, Subhasis; Adhya, Tapan K

    2015-04-01

    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothioate] is used worldwide as an agricultural insecticide against a broad spectrum of insect pests of economically important crops including rice, and soil application to control termites. The insecticide mostly undergoes hydrolysis to diethyl thiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP), and negligible amounts of other intermediate products. In a laboratory-cum-greenhouse study, chlorpyrifos, applied at a rate of 10 mg kg(-1) soil to five tropical rice soils of wide physico-chemical variability, degraded with a half-life ranging from 27.07 to 3.82 days. TCP was the major metabolite under both non-flooded and flooded conditions. Chlorpyrifos degradation had significant negative relationship with electrical conductivity (EC), cation exchange capacity (CEC), clay and sand contents of the soils under non-flooded conditions. Results indicate that degradation of chlorpyrifos was accelerated with increase in its application frequency, across the representative rice soils. Management regimes including moisture content and presence or absence of rice plants also influenced the process. Biotic factors also play an important role in the degradation of chlorpyrifos as demonstrated by its convincing degradation in mineral salts medium inoculated with non-sterile soil suspension. PMID:25617866

  16. PEM Degradation Investigation Final Technical Report

    SciTech Connect

    Dan Stevenson; Lee H Spangler

    2007-11-02

    The objectives of this paper are: (1) Develop a system capable of measuring current and voltage performance for each membrane in a Polymer Electrolyte Membranes (PEM) fuel cell stack and record the performance of each individual cell; (2) Develop a single cell PEM FC to allow in situ synchrotron x-ray measurements of the cell in operation and to perform spatially resolved x-ray measurements on fuel cell elements before and after degradation; and (3) Perform initial magnetic resonance microimaging experiments on membrane materials. The Montana State University PEM Membrane Degradation program is geared towards determining how and why membranes in fuel cells degrade and fail. By monitoring every individual membrane in a fuel cell 2000 times/sec while the cell is subjected to real-world type use, we hope to: (1) cause the types of degradation users see, but in a controlled environment; (2) determine an electrical signature that will identify what causes failure, or at least warns of impending failure; (3) allows us to perform advanced x-ray and MRI characterization of the degraded membranes to provide information that may result in improvements of the membrane material; and (4) perhaps allow design of electronic control systems that will prevent fuel cells from operating under conditions where damage is likely to occur.

  17. Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.

    PubMed

    Carapezzi, Stefania; Castaldini, Antonio; Mancarella, Fulvio; Poggi, Antonella; Cavallini, Anna

    2016-04-27

    Silicon nanowires (Si NWs) are widely investigated nowadays for implementation in advanced energy conversion and storage devices, as well as many other possible applications. Black silicon (BSi)-NWs are dry etched NWs that merge the advantages related to low-dimensionality with the special industrial appeal connected to deep reactive ion etching (RIE). In fact, RIE is a well established technique in microelectronics manufacturing. However, RIE processing could affect the electrical properties of BSi-NWs by introducing deep states into their forbidden gap. This work applies deep level transient spectroscopy (DLTS) to identify electrically active deep levels and the associated defects in dry etched Si NW arrays. Besides, the successful fitting of DLTS spectra of BSi-NWs-based Schottky barrier diodes is an experimental confirmation that the same theoretical framework of dynamic electronic behavior of deep levels applies in bulk as well as in low dimensional structures like NWs, when quantum confinement conditions do not occur. This has been validated for deep levels associated with simple pointlike defects as well as for deep levels associated with defects with richer structures, whose dynamic electronic behavior implies a more complex picture. PMID:26979506

  18. Drift Degradation Analysis

    SciTech Connect

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  19. Microbial degradation of herbicides.

    PubMed

    Singh, Baljinder; Singh, Kashmir

    2016-03-01

    Herbicides remain the most effective, efficient and economical way to control weeds; and its market continues to grow even with the plethora of generic products. With the development of herbicide-tolerant crops, use of herbicides is increasing around the world that has resulted in severe contamination of the environment. The strategies are now being developed to clean these substances in an economical and eco-friendly manner. In this review, an attempt has been made to pool all the available literature on the biodegradation of key herbicides, clodinafop propargyl, 2,4-dichlorophenoxyacetic acid, atrazine, metolachlor, diuron, glyphosate, imazapyr, pendimethalin and paraquat under the following objectives: (1) to highlight the general characteristic and mode of action, (2) to enlist toxicity in animals, (3) to pool microorganisms capable of degrading herbicides, (4) to discuss the assessment of herbicides degradation by efficient microbes, (5) to highlight biodegradation pathways, (6) to discuss the molecular basis of degradation, (7) to enlist the products of herbicides under degradation process, (8) to highlight the factors effecting biodegradation of herbicides and (9) to discuss the future aspects of herbicides degradation. This review may be useful in developing safer and economic microbiological methods for cleanup of soil and water contaminated with such compounds. PMID:25159042

  20. Degraded document image enhancement

    NASA Astrophysics Data System (ADS)

    Agam, G.; Bal, G.; Frieder, G.; Frieder, O.

    2007-01-01

    Poor quality documents are obtained in various situations such as historical document collections, legal archives, security investigations, and documents found in clandestine locations. Such documents are often scanned for automated analysis, further processing, and archiving. Due to the nature of such documents, degraded document images are often hard to read, have low contrast, and are corrupted by various artifacts. We describe a novel approach for the enhancement of such documents based on probabilistic models which increases the contrast, and thus, readability of such documents under various degradations. The enhancement produced by the proposed approach can be viewed under different viewing conditions if desired. The proposed approach was evaluated qualitatively and compared to standard enhancement techniques on a subset of historical documents obtained from the Yad Vashem Holocaust museum. In addition, quantitative performance was evaluated based on synthetically generated data corrupted under various degradation models. Preliminary results demonstrate the effectiveness of the proposed approach.

  1. Motor degradation prediction methods

    SciTech Connect

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  2. Steam generator performance degradation

    SciTech Connect

    Lovett, J.T.; Dow, B.L. )

    1991-09-01

    A survey was conducted to determine the range and severity of steam generator performance degradation effects experienced by PWRs in the United States. The survey results were tabulated and correlated with steam generator age and design. Operating experience at several PWRs was examined in detail. The operating experience at US PWRs was compared to that of PWRs in Japan and Germany. Possible causes for the performance degradation were postulated and evaluated. The sensitivity of steam generator output pressure to changes in various parameters (such as fouling factor, average reactor coolant temperature, and percentage of steam generator tubes plugged) was calculated. These calculations were used in the evaluation of possible causes of steam generator performance degradation. Several deposit exfoliation scenarios were evaluated in terms of the calculated effect on fouling factor trends and associated steam generator output pressure trends. 15 refs., 32 figs., 7 tabs.

  3. Photovoltaic Degradation Risk: Preprint

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  4. Antifoam degradation testing

    SciTech Connect

    Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.; Williams, M. S.

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  5. Electrical injury

    MedlinePlus

    ... damage, especially to the heart, muscles, or brain. Electric current can cause injury in three ways: Cardiac arrest ... How long you were in contact with the electricity How the electricity moved through your body Your ...

  6. New modeling results of the Bunte breccia ejecta morphology and thickness variations outside the Ries impact crater, southern Germany

    NASA Astrophysics Data System (ADS)

    Sturm, S.; Wulf, G.; Jung, D.; Kenkmann, T.

    2012-04-01

    The Ries impact crater with a diameter of ~25 km represents a relatively pristine, complex impact crater in southern Germany that was formed during the Miocene (14.34+-0.08 Ma) [1, 2]. The impact occurred into a two-layered target that consists of ~650 m partly water-saturated and subhorizontally layered sediments (limestones, sandstones, shales) of Triassic to Tertiary ages underlain by crystalline basement rocks (mainly gneisses, granites and amphibolites) [3, 4]. The continuous ejecta blanket of the crater ejected up to a distance of 45 km from the crater center is built up by so called Bunte breccias, a polymict lithic breccia. The ejected breccia material mainly consists of unshocked to weakly shocked sedimentary target clasts in addition to a minority of crystalline basement clasts and reworked surfical sediments (e.g., Upper Freshwater Molasses or Upper Seawater Molasses) [5, 6]. Here we present new results of the morphology of the (i) paleo-relief and (ii) the thickness variations of the continuous ejecta blanket with radial range. For this study we combined digital elevation data and geologic information of the recent geologic map [7] in ArcGIS (ESRI) and RockWorks14 (RockWare) to extract the elevation of the lower contact plane ("paleo-surface") and the contact between the Bunte breccia and the overlain Suevite deposits. In detail, we extracted the mapping information of the autochthonous-allochthonous ("Bunte breccia base") and allochthonous-suevite ("Bunte breccia top") intersections from the geologic map [7], descriptions of nine NASA drilling sites [6], and included up to 40 drillings carried out by the Bavarian Environment Agency to interpolate the morphology and thickness variation of the Bunte breccia ejecta outside the Ries impact crater. Due to the highest data density and the widespread occurrence of Bunte breccia deposits as well as Suevite, the southwestern part of the ejecta blanket was selected for the study and delivered a more or less

  7. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    SciTech Connect

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  8. Diagnosing Abiotic Degradation

    EPA Science Inventory

    The abiotic degradation of chlorinated solvents in ground water can be difficult to diagnose. Under current practice, most of the “evidence” is negative; specifically the apparent disappearance of chlorinated solvents with an accumulation of vinyl chloride, ethane, ethylene, or ...

  9. Detection of pump degradation

    SciTech Connect

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  10. MaRIE 1.0: A briefing to Katherine Richardson-McDaniel, Staff Member for U. S. Senator Martin Heinrich (D-NM)

    SciTech Connect

    Barnes, Cris William

    2015-02-24

    At the request of Katherine Richardson-McDaniel, Staff Member to U.S. Senator Martin Heinrich (D-NM), a high-level briefing was requested about MaRIE 1.0, the Matter-Radiation Interactions in Extremes effort at Los Alamos National Laboratory. What it would be, the mission need motivation, the scientific challenge, and the current favorable impact on both programs and people are shown in viewgraph form.

  11. Evidence of the impacting body of the Ries crater - the discovery of Fe-Cr-Ni veinlets below the crater bottom

    USGS Publications Warehouse

    El, Goresy A.; Chao, E.C.T.

    1976-01-01

    Fe-Cr-Ni particles and veinlets have been discovered in the top 15 m of the compressed zone with abundant shatter cones below the bottom of the Ries crater. The metallic particles are less than a few microns across. They occur in various minerals along healed intergranular and locally in intragranular microfractures in quartz diorite, amphibolite and chloritized granite of the basement crystalline rocks. The particles consist of major Fe, Cr, and Ni with minor Si and Ca. Origin due to contamination is absolutely ruled out. We believe that these Fe-Cr-Ni particles are probably condensed from the vaporized impacting body which produced the Ries crater. These particles were injected with high velocity into microfractures near the top of the compressed zone, implanted in and across various minerals before these microfractures were resealed. The presence of Si and Ca as well as the fact that the Cr content is nearly twice that of Ni, led us to conclude that the Ries impacting body is very likely not an iron meteorite but a stony meteorite. ?? 1976.

  12. Degradation of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; Banks, Bruce; deGroh, Kim; Miller, Sharon

    2004-01-01

    This chapter includes descriptions of specific space environmental threats to exterior spacecraft materials. The scope will be confined to effects on exterior spacecraft surfaces, and will not, therefore, address environmental effects on interior spacecraft systems, such as electronics. Space exposure studies and laboratory simulations of individual and combined space environemntal threats will be summarized. A significant emphasis is placed on effects of Earth orbit environments, because the majority of space missions have been flown in Earth orbits which have provided a significant amount of data on materials effects. Issues associated with interpreting materials degradation results will be discussed, and deficiencies of ground testing will be identified. Recommendations are provided on reducing or preventing space environmental degradation through appropriate materials selection.

  13. Nylon separators. [thermal degradation

    NASA Technical Reports Server (NTRS)

    Lim, H. S.

    1977-01-01

    A nylon separator was placed in a flooded condition in K0H solution and heated at various high temperatures ranging from 60 C to 110 C. The weight decrease was measured and the molecular weight and decomposition product were analyzed to determine: (1) the effect of K0H concentration on the hydrolysis rate; (2) the effect of K0H concentration on nylon degradation; (3) the activation energy at different K0H concentrations; and (4) the effect of oxygen on nylon degradation. The nylon hydrolysis rate is shown to increase as K0H concentration is decreased 34%, giving a maximum rate at about 16%. Separator hydrolysis is confirmed by molecular weight decrease in age of the batteries, and the reaction of nylon with molecular oxygen is probably negligible, compared to hydrolysis. The extrapolated rate value from the high temperature experiment correlates well with experimental values at 35 degrees.

  14. TALSPEAK Solvent Degradation

    SciTech Connect

    Leigh R. Martin; Bruce J. Mincher

    2009-09-01

    Understanding the radiolytic degradation behavior of organic molecules involved in new or existing schemes for the recycle of used nuclear fuels is of significant interest for sustaining a closed nuclear fuel cycle. Here we have conducted several lines of investigation to begin understanding the effects of radiolysis on the aqueous phase of the TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides. Using the 60-Co irradiator at the INL, we have begun to quantify the effects of radiation on the aqueous phase complexants used in this separation technique, and how this will affect the actinide lanthanide separation factor. In addition we have started to develop methodologies for stable product identification, a key element in determining the degradation pathways. We have also introduced a methodology to investigate the effects of alpha radiolysis that has previously received limited attention.

  15. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  16. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  17. Microbial degradation of hydrazine

    SciTech Connect

    Ou, L.T.

    1987-07-01

    Hydrazine is toxic to many forms of bacteria. The activities of the autotrophic nitrifiers Nitrosomonas and Nitrobacter, denitrifying bacteria, and anaerobic methanogens were inhibited by the chemical. In addition, hydrazine prolonged the lag phase of growth as well as inhibited growth of the soil bacterium Enterobacter cloacae. Due to rapid disappearance in soil, hydrazine at 100 ..mu..g/g exhibited only temporary inhibition on soil bacterial populations. However, hydrazine at 500 ..mu..g/g caused a significant reduction of soil bacterial populations, although fungal populations in soil were enhanced by the presence of hydrazine. Despite its toxicity to soil bacteria, hydrazine in small quantities was cometabolically degraded to nitrogen gas by Nitrosomonas. An enzyme system of nitrogen-fixing heterotrophic bacteria was able to convert hydrazine to ammonia. However, it was not clear that the bacteria could utilize hydrazine as a sole source of nitrogen for growth. In the present study, the authors describe the isolation of an Achromobacter sp. from soil that had a high capacity to degrade hydrazine. Attempts to establish degradation pathways are also reported.

  18. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    EPA Science Inventory

    The main objective of this study was to assess the performance and the associated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. ther objectives were to identify the major products formed during degradation ...

  19. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    EPA Science Inventory

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  20. An overview of degradable polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials, ...

  1. An overview of degradable polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials...

  2. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeanedeAbreuSa, Tatiana; deSouzaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2004-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  3. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeaneDeAbreuSa, Tatiana; deSpozaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2003-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  4. Organic chemical degradation by remote study of the redox conditions

    NASA Astrophysics Data System (ADS)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  5. Outdoor PV Degradation Comparison

    SciTech Connect

    Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

  6. Protease degradable electrospun fibrous hydrogels

    PubMed Central

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-01-01

    Electrospun nanofibers are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases (MMPs). Here, we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fiber populations support selective fiber degradation based on individual fiber degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications. PMID:25799370

  7. Electric emissions from electrical appliances.

    PubMed

    Leitgeb, N; Cech, R; Schröttner, J

    2008-01-01

    Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intracorporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration. PMID:18083998

  8. Nördlinger Ries campaign on Soil Emissions (NORISE) - DOAS measurements of NO2 and HCHO in an agricultural region

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Remmers, Julia; Dörner, Steffen; Eger, Philipp; Pöhler, Denis; Behrendt, Thomas; Meixner, Franz; Penning de Vries, Marloes; Wagner, Thomas

    2015-04-01

    Soil is a major source of total nitrogen oxide (NOx = NO + NO2) emissions with a fraction of about 15% on a global basis. Soil emissions, stemming from bacterial emissions of NO, are controlled by abiotic and microbiological processes which themselves depend on ambient environmental conditions like soil type, moisture content, temperature as well as agricultural management practices such as fertilization. In recent laboratory experiments it was found that dry soils also exhibit enhanced emissions of several volatile organic compounds (VOC) including HCHO when first wetted. A campaign dedicated to the analysis of trace gases emitted by soils was organized in the Nördlinger Ries in Bavaria, Germany, a 25 km wide circular plain, formed by a meteor impact about 14.5 million years ago and nowadays dominated by arable land. The main objective of the NORISE campaign is to characterize trace gas levels in a highly agricultural environment. The time frame, consequently, comprises a whole growing season from April 2014 to January 2015. The focus is on trace gases which can be measured using the DOAS approach in the UV/VIS spectral range, i.e. NO2 and HCHO, using two mini-MAX-DOAS instruments and one long-path DOAS instrument. The retrieved NO2 and HCHO column densities are examined for long-term variations over the entire growing season and short-term events which are both linked to environmental conditions like precipitation patterns and temperature changes. In addition, the analysis of soil samples taken from fields, distinguished between organic and conventional cultivation, gives further insights into soil activities.

  9. Double-layered ejecta craters on Mars: morphology, formation, and a comparison with the Ries ejecta blanket

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Wulf, Gerwin; Sturm, Sebastian; Pietrek, Alexa

    2015-04-01

    The ejecta blankets of impact craters in volatile-rich environments often show characteristic layered ejecta morphologies. The so-called double-layer ejecta (DLE) craters are probably the most confusing crater types showing two ejecta layers with distinct morphologies. A phenomenological ejecta excavation and emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim - a textbook like, pristine DLE crater - and studies of other DLE craters [1]. The observations show that DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice. The deposits of the ejecta curtain are wet in the distal part and dryer in composition in the proximal part. As a result, the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a fluid saturated debris flow mode after landing overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits. This slide overruns and superimposes parts of the outer ejecta layer. Basal melting of the ice components of the ejecta volumes at the transient crater rim is induced by frictional heating and the enhanced pressure at depth. The results indicate similar processes also for other planetary bodies with volatile-rich environments, such as Ganymede, Europa or the Earth. The Ries crater on Earth has a similar ejecta thickness distribution as DLE craters on Mars [2]. Here basal sliding and fluidization of the ejecta increases outward by the entrainment of locally derived Tertiary sands and clays, that are saturated with groundwater. References: [1] Wulf, G. & Kenkmann, T. (2015) Met. Planet. Sci. (in press); [2] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013) Geology 41, 531-534.

  10. Electrical Generation.

    ERIC Educational Resources Information Center

    Science and Children, 1990

    1990-01-01

    Described are two activities designed to help children investigate electrical charges, electric meters, and electromagnets. Included are background information, a list of materials, procedures, and follow-up questions. Sources of additional information are cited. (CW)

  11. Photochemical degradation of benzotriazole.

    PubMed

    Hem, Lars J; Hartnik, Thomas; Roseth, Roger; Breedveld, Gijs D

    2003-03-01

    Benzotriazole is a commonly used additive in aircraft de-icing fluids. As a result of extensive de-icing activities the compound is detected in the groundwater below de-icing platforms at several international airports. The compound is toxic, and not biodegradable. Laboratory tests have been performed to study if UV irradiation can degrade the compound and reduce the aquatic toxicity. Benzotriazole can be degraded by UV irradiation at pH values below 7. Approximately 65% reduction in the benzotriazole concentration was achieved at a dose of 320 mWs/cm2, and almost 90% reduction was achieved at 1070 mWs/cm2, with an apparent first order relation between the logarithm to the UV dose and the reduction. Benzotriazole is not significantly mineralised by UV irradiation, but transformed into other compounds, of which aniline and phenazine were identified. The metabolites show toxic effects, but they are not as toxic as benzotriazole, resulting in a general decrease in toxicity as a result of UV irradiation. PMID:12680576

  12. Unraveling Curcumin Degradation

    PubMed Central

    Gordon, Odaine N.; Luis, Paula B.; Sintim, Herman O.; Schneider, Claus

    2015-01-01

    Curcumin is a dietary anti-inflammatory and chemopreventive agent consisting of two methoxyphenol rings connected by a conjugated heptadienedione chain. Curcumin is unstable at physiological pH and rapidly degrades in an autoxidation reaction to a major bicyclopentadione product in which the 7-carbon chain has undergone oxygenation and double cyclization. Early degradation products (but not the final bicyclopentadione) mediate topoisomerase poisoning and possibly many other activities of curcumin, but it is not known how many and what autoxidation products are formed, nor their mechanism of formation. Here, using [14C2]curcumin as a tracer, seven novel autoxidation products, including two reaction intermediates, were isolated and identified using one- and two-dimensional NMR and mass spectrometry. The unusual spiroepoxide and vinylether reaction intermediates are precursors to the final bicyclopentadione product. A mechanism for the autoxidation of curcumin is proposed that accounts for the addition and exchange of oxygen that have been determined using 18O2 and H218O. Several of the by-products are formed from an endoperoxide intermediate via reactions that are well precedented in lipid peroxidation. The electrophilic spiroepoxide intermediate formed a stable adduct with N-acetylcysteine, suggesting that oxidative transformation is required for biological effects mediated by covalent adduction to protein thiols. The spontaneous autoxidation distinguishes curcumin among natural polyphenolic compounds of therapeutic interest; the formation of chemically diverse reactive and electrophilic products provides a novel paradigm for understanding the polypharmacological effects of curcumin. PMID:25564617

  13. Characterization of voltage degradation in dynamic field gradient focusing

    PubMed Central

    Burke, Jeffrey M.; Ivory, Cornelius F.

    2010-01-01

    Dynamic field gradient focusing (DFGF) is an equilibrium gradient method that utilizes an electric field gradient to simultaneously separate and concentrate charged analytes based on their individual electrophoretic mobilities. This work describes the use of a 2-D nonlinear, numerical simulation to examine the impact of voltage loss from the electrodes to the separation channel, termed voltage degradation, and distortions in the electric field on the performance of DFGF. One of the design parameters that has a large impact on the degree of voltage degradation is the placement of the electrodes in relation to the separation channel. The simulation shows that a distance of about 3 mm from the electrodes to the separation channel gives the electric field profile with least amount of voltage degradation. The simulation was also used to describe the elution of focused protein peaks. The simulation shows that elution under constant electric field gradient gives better performance than elution through shallowing of the electric field. Qualitative agreement between the numerical simulation and experimental results is shown. The simulation also illustrates that the presence of a defocusing region at the cathodic end of the separation channel causes peak dispersion during elution. The numerical model is then used to design a system that does not suffer from a defocusing region. Peaks eluted under this design experienced no band broadening in our simulations. Preliminary experimental results using the redesigned chamber are shown. PMID:18306183

  14. Degradability of Polymers for Implantable Biomedical Devices

    PubMed Central

    Lyu, SuPing; Untereker, Darrel

    2009-01-01

    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  15. Induction of PAH degradation in a phenanthrene-degrading pseudomonad

    SciTech Connect

    Stringfellow, W.T.; Chen, S.H.; Aitken, M.D.

    1995-12-31

    Recent evidence suggests that different polycyclic aromatic hydrocarbon (PAH) substrates are metabolized by common enzymes in PAH-degrading bacteria, implying that inducers for low-molecular-weight PAH degradation may coinduce for the metabolism of higher-molecular-weight compounds. The authors have tested this hypothesis with a well-characterized PAH-degrading bacterium, Pseudomonas saccharophila P-15. Growth of P-15 on salicylate, a metabolite of phenanthrene degradation, and a known inducer for naphthalene degradation, induced the metabolism of both substrates. Several potential inducers were then tested for their effects on metabolism of the four-ring compounds pyrene and fluoranthene, neither of which is a growth substrate for P-15, but both of which can be metabolized by this organism. Incubation of P-15 in the presence of phenanthrene or salicylate induced the metabolism of pyrene and fluoranthene in resting-cell assays. Catechol, another intermediate of naphthalene and phenanthrene degradation, did not induce the metabolism of either compound and interfered with the inducing effect of salicylate. These results have implications for strategies designed to maintain PAH degradation in contaminated environments, particularly for compounds that are degraded slowly or are degraded only by nongrowth metabolism.

  16. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  17. Oil degradation in soil.

    PubMed Central

    Raymond, R L; Hudson, J O; Jamison, V W

    1976-01-01

    The environmental effects of adding certain selected petroleum products to field soils at widely separated geographical locations under optimum conditions for biodegradation were studied. The locations selected for study of soil biodegradation of six oils (used crankcase oil from cars, used crankcase oil from trucks, an Arabian Heavy crude oil, a Coastal Mix crude oil, a home heating oil no. 2, and a residual fuel oil no. 6) were Marcus Hook, Pennsylvania, Tulsa, Oklahoma, and Corpus Christi, Texas. The investigative process, covering a period of 1 year at each location, was conducted in 14 fields plots (1.7 by 3.0 m) to which the oils were added in a single application at a rate of 11.9 m3/4 X 10(3) m2. One-half of the plots at each location were fertilized, and the incorporation of the oils and fertilizers was accomplished with rototillers to a depth of 10 to 15 cm. Concentrations of all oils decreased significantly at all locations. The average reduction ranged from 48.5 to 90.0% depending upon the type of oil and location. Rates of degradation did not exceed 2.4 m3/4 X 10(3) m2 per month. Compositional changes in the oil with time were investigated using silica gel fractionation, gas chromatography, and ultraviolet absorbance. With the possible exception of the two fuel oils, the compositional changes were generally in the same direction for all of the oils. The silica gel fractionation and gravimetric data on residual oils show that all classes of compounds were degraded, but the more polar type degrade more slowly. Analysis of runoff water, leachate, and soils indicated that at the concentration applied no oil less was observed from these plots via water movement. No significant movement of lead compounds added to the soils in the used crankcase oils was observed. Significant increases in hydrocarbon-utilizing microorganisms were demonstrated in all treated plots using either the pure hydrocarbon, n-hexadecane, or the applied oils as the growth substrate

  18. Exploring bacterial lignin degradation.

    PubMed

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. PMID:24780273

  19. Thermal battery degradation mechanisms

    SciTech Connect

    Missert, Nancy A.; Brunke, Lyle Brent

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  20. Radiation degradation of cellulose

    NASA Astrophysics Data System (ADS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Hübert, S.

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20 % up to about 80 %. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given.

  1. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  2. Degraded Crater Rim

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  3. Nördlinger Ries campaign on Soil Emissions (NORISE) - DOAS measurements of NO2 and HCHO in an agricultural region

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Remmers, Julia; Dörner, Steffen; Wang, Yang; Eger, Philipp; Pöhler, Dennis; Behrendt, Thomas; Meixner, Franz; Penning de Vries, Marloes; Wagner, Thomas

    2016-04-01

    Soil is a major source of total nitrogen oxide (NOx = NO + NO2) emissions with a fraction of about 15% on a global basis. Soil emissions, stemming from bacterial emissions of NO, are controlled by abiotic and microbiological processes which themselves depend on ambient environmental conditions like soil type, moisture content, temperature as well as agricultural management practices such as fertilization. In recent laboratory experiments it was found that dry soils also exhibit enhanced emissions of several volatile organic compounds (VOC) including HCHO when first wetted. At present, studies on soil emissions in humid climates are limited to point samples and laboratory measurements. Thus, a campaign was organized that is dedicated to the analysis of trace gases which are potentially emitted from soils over an entire area using ground based mini-MAX-DOAS measurements. Since soil emissions are assumed to be highest from lands predominantly used for agriculture, the Nördlinger Ries in Bavaria, Germany, a 25 km wide circular plain formed by a meteor impact about 14.5 million years ago, was chosen which nowadays is dominated by arable land. The main objective of the NORISE campaign was to characterize trace gas levels in a highly agricultural environment. The time frame, consequently, covered a whole growing season from April 2014 to January 2015. The focus was on trace gases which can be measured using the DOAS approach in the UV/VIS spectral range, i.e. NO2 and HCHO, using two mini-MAX-DOAS instruments and one long-path DOAS instrument. The retrieved NO2 and HCHO column densities were examined for long-term variations over the entire growing season and short-term events which are both linked to environmental conditions like precipitation patterns and temperature changes. In addition, the analysis of soil samples taken from fields, distinguished between organic and conventional cultivation, gives further insights into soil activities. In this work, we present

  4. Electrical stator

    DOEpatents

    Fanning, Alan W.; Olich, Eugene E.

    1994-01-01

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  5. Progressive activation of degradation processes in solid oxide fuel cell stacks: Part II: Spatial distribution of the degradation

    NASA Astrophysics Data System (ADS)

    Nakajo, Arata; Mueller, Fabian; Brouwer, Jacob; Van herle, Jan; Favrat, Daniel

    2012-10-01

    Solid oxide fuel cell (SOFC) stack design must yield the highest performance, reliability and durability to achieve the lowest cost of electricity delivered to end-users. Existing modelling tools can cope with the first aim, but cannot yet provide sufficient quantitative guidance in the two others. Repeating unit models, with as degradation processes the decrease in ionic conductivity of the electrolyte, metallic interconnect corrosion, anode nickel particles coarsening and cathode chromium contamination are used to investigate their distribution, evolution and interactions in a stack. The spatial distribution of the degradation is studied for the operating conditions optimised in Part I for the highest system electrical efficiency during long-term operation under constant system power output. Current-voltage characterisations performed at different times underestimate the degradation. In the present conditions, the degradation of the cathode dominates. The lower and more uniform cathode overpotential in counter-flow configuration, combined with the beneficial effect of internal reforming on reducing the air-fuel ratio yields the highest lifetime, because it alleviates chromium contamination and interactions between the degradation processes. Increasing the operating temperature alleviates cathode chromium contamination. The beneficial decreases of the cathode overpotential exceed the detrimental higher release rate of chromium species from the metallic interconnect.

  6. Cellular senescence and protein degradation

    PubMed Central

    Deschênes-Simard, Xavier; Lessard, Frédéric; Gaumont-Leclerc, Marie-France; Bardeesy, Nabeel; Ferbeyre, Gerardo

    2014-01-01

    Autophagy and the ubiquitin–proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells. PMID:24866342

  7. HMD cueing mode degradation

    NASA Astrophysics Data System (ADS)

    Speck, Richard P.; Fidopiastis, Cali M.; Herz, Norman E., Jr.

    2003-09-01

    Pilot cueing is a valuable use of Head Mounted Displays (HMDs) as it greatly helps the user to visually locate electronically identified targets. It is well known that a target which is hard to spot in the sky can be easily tracked and studied after it has been visually located. Transients, including sun glint, can reveal much about distant targets as they are visually studied. This is implicit in the "Visual Rules of Engagement". The term "Virtual Beyond Visual Range" has been coined to reflect the fact that optimized HMD cueing can extend visual identification to ranges previously covered only by radar data. The visual acquisition range can drop by a factor of three, however, when HMD image correlation errors expand the uncertainty zone a pilot must visually search. We have demonstrated that system errors, tolerable for off axis missile targeting, can produce this large drop in operational effectiveness. Studies using the Spectron SE1430 HMD analysis system have shown that errors of this magnitude can develop in current HMD models, and that these errors were neither identified by "ready room" tests nor were they correctable in the cockpit. The focus of this study was to develop affordable techniques to quantify the relationship of combat effectiveness to HMD defects for this and other advanced operating modes. When combined with field monitoring of HMD degradation, this makes economic optimization of the HMD supply/maintenance model possible while fulfilling operational mission requirements.

  8. Cause and Effects of Fluorocarbon Degradation in Electronics and Opto-Electronic Systems

    NASA Technical Reports Server (NTRS)

    Predmore, Roamer E.; Canham, John S.

    2002-01-01

    Trace degradation of fluorocarbon or halocarbon materials must be addressed in their application in sensitive systems. As the dimensions and/or tolerances of components in a system decrease, the sensitivity of the system to trace fluorocarbon or halocarbon degradation products increases. Trace quantities of highly reactive degradation products from fluorocarbons have caused a number of failures of flight hardware. It is of utmost importance that the risk of system failure, resulting from trace amounts of reactive fluorocarbon degradation products be addressed in designs containing fluorocarbon or halocarbon materials. Thermal, electrical, and mechanical energy input into the system can multiply the risk of failure.

  9. Remote inhibition of polymer degradation.

    SciTech Connect

    Clough, Roger Lee; Celina, Mathias Christopher

    2005-08-01

    Polymer degradation has been explored on the basis of synergistic infectious and inhibitive interaction between separate materials. A dual stage chemiluminescence detection system with individually controlled hot stages was applied to probe for interaction effects during polymer degradation in an oxidizing environment. Experimental confirmation was obtained that volatile antioxidants can be transferred over a relatively large distance. The thermal degradation of a polypropylene (PP) sample receiving traces of inhibitive antioxidants from a remote source is delayed. Similarly, volatiles from two stabilized elastomers were also capable of retarding a degradation process remotely. This observation demonstrates inhibitive cross-talk as a novel interactive phenomenon between different polymers and is consequential for understanding general polymer interactions, fundamental degradation processes and long-term aging effects of multiple materials in a single environment.

  10. Accelerated degradation of silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing.

  11. Technology and Climate Trends in PV Module Degradation: Preprint

    SciTech Connect

    Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-10-01

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  12. Technology and Climate Trends in PV Module Degradation (Presentation)

    SciTech Connect

    Jordan, D.; Wohlgemuth, J.; Kurtz, S.

    2012-10-01

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this presentation we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  13. Degradation of Dye Wastewater by ns-Pulse DBD Plasma

    NASA Astrophysics Data System (ADS)

    Gao, Jin; Gu, Pingdao; Yuan, Li; Zhong, Fangchuan

    2013-09-01

    Two plasma reactors have been developed and used to degrade dye wastewater agents. The configuration of one plasma reactor is a comb-like extendable unit module consisting of 5 electrodes covered with a quartz tube and the other one is an array reactor which is extended from the unit module. The decomposition of wastewater by ns pulse dielectric barrier discharge (DBD) plasma have been carried out by atomizing the dyeing solutions into the reactors. During experiments, the indigo carmine has been treated as the waste agent. The measurements of UV-VIS absorption spectroscopy and the chemical oxygen demand (COD) are carried out to demonstrate the decomposition effect on the wastewater. It shows that the decoloration rate of 99% and the COD degradation rate of 65% are achieved with 15 min treatment in the unit reactor. The effect of electrical parameters on degradation has been studied in detail. Results from the array reactor indicate that it has a better degradation effect than the unit one. It can not only totally remove the chromogenic bond of the indigo carmine solution, but also effectively degrade unsaturated bonds. The decoloration rate reaches 99% after 10 min treatment, the decomposition rate of the unsaturated bond reaches 83% after 60 min treatment, and the COD degradation rate is nearly 74%.

  14. Electric avenues

    SciTech Connect

    Stone, P.; Chang, A.

    1994-12-31

    Highly efficient electric drive technology developed originally for defense applications is being applied to the development of all electric shuttle buses for the San Jose International Airport. An innovative opportunity charging system using induction chargers will be incorporated to extend operation hours. The project, if successful, is expected to reduce pollution at the airport and generate jobs for displaced defense workers.

  15. Electric machine

    DOEpatents

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  16. Performance Degradation of LSCF Cathodes

    SciTech Connect

    Alinger, Matthew

    2013-09-30

    This final report summarizes the progress made during the October 1, 2008 - September 30, 2013 period under Cooperative Agreement DE-NT0004109 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled “Performance Degradation of LSCF Cathodes”. The primary objective of this program is to develop a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). Strategies to mitigate performance degradation are developed and implemented. In addition, thermal spray manufacturing of SOFCs is explored. Combined, this work establishes a basis for cost-effective SOFC cells.

  17. Electric moped

    SciTech Connect

    Ferschl, M.S.

    1981-02-26

    Two electrically powered mopeds were designed and built. These vehicles offer single-person transportation which is convenient, quiet, low-cost, smooth, and pollution-free. The first moped has a 12 volt electrical system. The second has a 24 volt electrical system. They both have top speeds of about 20 miles per hour. They both use transistorized speed controls and deep-discharge, lead-acid batteries. These mopeds were put through a 750 mile test program. In this program, the 12 volt bike had an average range of nine miles. The 24 volt bike, with a smaller battery capacity, had an average range of six miles.

  18. Electrical connector

    DOEpatents

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  19. Degradation of cyanotoxins (microcystin) in drinking water using photoelectrooxidation.

    PubMed

    Garcia, A C A; Rodrigues, M A S; Xavier, J L N; Gazulla, V; Meneguzzi, A; Bernardes, A M

    2015-05-01

    The discharge of sewage and industrial effluents containing high concentrations of pollutants in water bodies increases eutrophication. Cyanobacteria, some of the organisms whose growth is promoted by high nutrient concentrations, are resistant and produce several types of toxins, known as cyanotoxins, highly harmful to human beings. Current water treatment systems for the public water supply are not efficient in degradation of toxins. Advanced oxidation processes (AOP) have been tested for the removal of cyanotoxins, and the results have been positive. This study examines the application of photoelectrooxidation in the degradation of cyanotoxins (microcystins). The performance of the oxidative processes involved was evaluated separately: Photocatalysis, Electrolysis and Photoelectrooxidation. Results showed that the electrical current and UV radiation were directly associated with toxin degradation. The PEO system is efficient in removing cyanotoxins, and the reduction rate reached 99%. The final concentration of toxin was less than 1 µg/L of microcystin in the treated solution. PMID:26270212

  20. Compositional Effects on Electromechanical Degradation of RAINBOW Actuators

    NASA Technical Reports Server (NTRS)

    Dausch, David E.; Wise, Stephanie A.

    1998-01-01

    The effect of ceramic composition on the electromechanical displacement degradation of RAINBOW (Reduced and Internally Biased Oxide Wafer) actuators was investigated. RAINBOWs were fabricated from commercially available PZT-5H and PZT-5A piezoelectric disks as well as from tape cast PLZT piezoelectric 7/65/35 and electrostrictive 9/65/35 compositions. Displacement properties were measured at low electric fields (10 to 13 kV/cm) under loads of 0 to 500 g, and displacement degradation as a function of time was observed over 107 cycles. The PZT-5A and PLZT 9/65/35 compositions exhibited minimal decrease in displacement when load was applied. Furthermore, these compositions retained approximately 65 percent of their initial displacement after 10(exp 7) cycles under a load of 300 g. PZT-5H and PLZT 7/65/35 degraded completely under these conditions.

  1. International ultraviolet explorer solar array power degradation

    NASA Technical Reports Server (NTRS)

    Day, J. H., Jr.

    1983-01-01

    The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

  2. Reliability evaluation of a photovoltaic module using accelerated degradation model

    NASA Astrophysics Data System (ADS)

    Laronde, Rémi; Charki, Abdérafi; Bigaud, David; Excoffier, Philippe

    2011-09-01

    Many photovoltaic modules are installed all around the world. However, the reliability of this product is not enough really known. The electrical power decreases in time due mainly to corrosion, encapsulation discoloration and solder bond failure. The failure of a photovoltaic module is obtained when the electrical power degradation reaches a threshold value. Accelerated life tests are commonly used to estimate the reliability of the photovoltaic module. However, using accelerated life tests, few data on the failure of this product are obtained and the realization of this kind of tests is expensive. As a solution, an accelerated degradation test can be carried out using only one stress if parameters of the acceleration model are known. The Wiener process associated with the accelerated failure time model permits to carry out many simulations and to determine the failure time distribution when the threshold value is reached. So, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated.

  3. Gamma radiation induced degradation in PE-PP block copolymer

    NASA Astrophysics Data System (ADS)

    Ravi, H. R.; Sreepad, H. R.; Ahmed, Khaleel; Govindaiah, T. N.

    2012-06-01

    In the present investigation, effect of gamma irradiation on the PP-PE block copolymer has been studied. The polymer has been subjected to gamma irradiation from 100 to 500 Mrad dosages. Characterization of the polymer using XRD and FTIR was done both before irradiation and after irradiation in each step. Effect of irradiation on the electrical properties of the material has also been studied. FTIR study shows that the sample loses C - C stretching mode of vibration but gains C=C stretching mode of vibration after irradiation. Present investigation clearly indicates that though the electrical conductivity increases in the material, it undergoes degradation and shows brittleness due to irradiation.

  4. Gamma radiation induced degradation in PE-PP block copolymer

    SciTech Connect

    Ravi, H. R.; Sreepad, H. R.; Ahmed, Khaleel; Govindaiah, T. N.

    2012-06-05

    In the present investigation, effect of gamma irradiation on the PP-PE block copolymer has been studied. The polymer has been subjected to gamma irradiation from 100 to 500 Mrad dosages. Characterization of the polymer using XRD and FTIR was done both before irradiation and after irradiation in each step. Effect of irradiation on the electrical properties of the material has also been studied. FTIR study shows that the sample loses C - C stretching mode of vibration but gains C=C stretching mode of vibration after irradiation. Present investigation clearly indicates that though the electrical conductivity increases in the material, it undergoes degradation and shows brittleness due to irradiation.

  5. Correlation between degradation and broadness of the transition in CICC

    NASA Astrophysics Data System (ADS)

    Martovetsky, Nicolai

    2013-10-01

    Cable in conduit conductor (CICC) performance is characterized in terms of relationships involving the electric field (E), voltage (V), temperature (T), current (I), magnetic field (B) and strain. Development of the electrical field in the V-T or V-I transitions in CICCs is exponential. These transitions plotted in the coordinates log E versus T or log E versus I look like straight lines. ITER Nb3Sn CICCs show degradation of properties versus load cycles that could be attributed to plastic deformation of the Nb3Sn strands or fracture of the superconducting filaments. The degradation is expressed in terms of the reduction of the current sharing temperature Tcs or critical current Ic, respectively. It was noticed long ago that degradation is accompanied by a significant broadening of the V-T or V-I transition, that looks like a change in the slope in the semi-log coordinate plot. This paper presents some systematic observations of correlations between the critical parameters and broadness of the transition in many CICCs. In most cases, the broadness of the transition seems to be a more sensitive indicator of the conductor damage even in cases where Tcs degradation is not clearly seen. Tcs degradation typically becomes obvious later in the cycling, especially after warm-up and following cool-down and more cycling. In some cases, a CICC manifests temporary or even a permanent growth of Tcs with load cycles, especially in the latest measurements of the CS conductors with short twist pitches. A possible mechanism of degradation that allows qualitative explanation of this phenomenon is discussed and is supported by the voltage measurements on the cable in the TFUS1 sample with the voltage taps penetrating the jacket to the cable.

  6. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  7. Electrical injury

    MedlinePlus

    ... wiring Flashing of electric arcs from high-voltage power lines Lightning Machinery or occupational-related exposures Young ... a passenger in a vehicle struck by a power line, remain in it until help arrives unless ...

  8. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  9. Photon degradation effects in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Brandhorst, H. W.; Broder, J. D.; Hart, R. E.; Lamneck, J. H.

    1978-01-01

    A certain type of photon degradation effect has been observed experimentally in n(+)/p solar cells. It is found that this effect is caused by a recombination center, the formation of which requires the simultaneous presence of a lattice defect and a silver atom or complex of atoms. The center is electrically active in its equilibrium state; the energy level of the inactive center is located in the band gap, 0.37 eV below the conduction band. Conversion to an active recombination center can be brought about either by raising the minority carrier quasi-Fermi level to coincide with the position of the latent center level in the band gap or by the direct excitation of electrons from the valence band to the latent center level. Photon degradation can be prevented either by preventing the introduction of silver through the use of a clean diffusion system and clean initial material or by eliminating lattice damage through sufficient surface material removal prior to diffusion while at the same time restricting diffusion temperatures to 875 C or below.

  10. Tunable protein degradation in bacteria.

    PubMed

    Cameron, D Ewen; Collins, James J

    2014-12-01

    Tunable control of protein degradation in bacteria would provide a powerful research tool. Here we use components of the Mesoplasma florum transfer-messenger RNA system to create a synthetic degradation system that provides both independent control of steady-state protein level and inducible degradation of targeted proteins in Escherichia coli. We demonstrate application of this system in synthetic circuit development and control of core bacterial processes and antibacterial targets, and we transfer the system to Lactococcus lactis to establish its broad functionality in bacteria. We create a 238-member library of tagged essential proteins in E. coli that can serve as both a research tool to study essential gene function and an applied system for antibiotic discovery. Our synthetic protein degradation system is modular, does not require disruption of host systems and can be transferred to diverse bacteria with minimal modification. PMID:25402616

  11. Hydrazine degradation by ultrasonic irradiation.

    PubMed

    Nakui, Hiroyuki; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokurou

    2007-07-31

    The influence of pH on the degradation of hydrazine with a concentration of 0.1mmol/L was investigated under the stirring (300rpm) and ultrasonic irradiation conditions (200kHz, 200W) in the pH range of 1-9. It was found that the hydrazine degradation depended greatly upon pH under the ultrasonic irradiation condition, while it did not take place over the whole pH range under the stirring condition. Although it has been known that OH radicals and hydrogen peroxide are sonochemically formed from water, it was considered that the OH radicals played an important role of the hydrazine degradation, but not hydrogen peroxide. The pH dependence of the hydrazine degradation was discussed in terms of the relationship between the chemical structure and the basic dissociation constants of hydrazine. PMID:17513042

  12. Reductive Degradation: Versatile, Low Cost.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article discusses the use of reductive degradation as an economical and effective treatment of chlorinated hydrocarbons. Comparisons with activated carbon treatment show lower capital equipment and treatment costs. (CS)

  13. Plant biomass degradation by fungi.

    PubMed

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi. PMID:25192611

  14. Degradation monitoring using probabilistic inference

    NASA Astrophysics Data System (ADS)

    Alpay, Bulent

    In order to increase safety and improve economy and performance in a nuclear power plant (NPP), the source and extent of component degradations should be identified before failures and breakdowns occur. It is also crucial for the next generation of NPPs, which are designed to have a long core life and high fuel burnup to have a degradation monitoring system in order to keep the reactor in a safe state, to meet the designed reactor core lifetime and to optimize the scheduled maintenance. Model-based methods are based on determining the inconsistencies between the actual and expected behavior of the plant, and use these inconsistencies for detection and diagnostics of degradations. By defining degradation as a random abrupt change from the nominal to a constant degraded state of a component, we employed nonlinear filtering techniques based on state/parameter estimation. We utilized a Bayesian recursive estimation formulation in the sequential probabilistic inference framework and constructed a hidden Markov model to represent a general physical system. By addressing the problem of a filter's inability to estimate an abrupt change, which is called the oblivious filter problem in nonlinear extensions of Kalman filtering, and the sample impoverishment problem in particle filtering, we developed techniques to modify filtering algorithms by utilizing additional data sources to improve the filter's response to this problem. We utilized a reliability degradation database that can be constructed from plant specific operational experience and test and maintenance reports to generate proposal densities for probable degradation modes. These are used in a multiple hypothesis testing algorithm. We then test samples drawn from these proposal densities with the particle filtering estimates based on the Bayesian recursive estimation formulation with the Metropolis Hastings algorithm, which is a well-known Markov chain Monte Carlo method (MCMC). This multiple hypothesis testing

  15. Ultraviolet-Induced Mirror Degradation

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T. T.; Cleland, E. L.

    1982-01-01

    Recent tests of second-surface mirrors show that ultraviolet radiation penetrates glass and metalized zone and impinges upon backing paint. According to report, many backing materials are degraded by ultraviolet radiation. Mirror corrosion is a serious problem in solar-energy collection systems. Effects of UV on polymeric materials have been studied, and in general, all are degraded by UV. Polymers most resistant to UV radiation are polyimides.

  16. Electric generator

    DOEpatents

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  17. Trypsin-Catalyzed Deltamethrin Degradation

    PubMed Central

    Xiong, Chunrong; Fang, Fujin; Chen, Lin; Yang, Qinggui; He, Ji; Zhou, Dan; Shen, Bo; Ma, Lei; Sun, Yan; Zhang, Donghui; Zhu, Changliang

    2014-01-01

    To explore if trypsin could catalyze the degradation of non-protein molecule deltamethrin, we compared in vitro hydrolytic reactions of deltamethrin in the presence and absence of trypsin with ultraviolet-visible (UV/Vis) spectrophotometry and gas chromatography-mass spectrometry (GC/MS). In addition, acute oral toxicity of the degradation products was determined in Wistar rats. The results show that the absorption peak of deltamethrin is around 264 nm, while the absorption peaks of deltamethrin degradation products are around 250 nm and 296 nm. In our GC setting, the retention time of undegraded deltamethrin was 37.968 min, while those of deltamethrin degradation products were 15.289 min and 18.730 min. The LD50 of deltamethrin in Wistar rats is 55 mg/kg, while that of deltamethrin degradation products is 3358 mg/kg in female rats and 1045 mg/kg in male rates (61-fold and 19-fold reductions in toxicity), suggesting that trypsin could directly degrade deltamethrin, which significantly reduces the toxicity of deltamethrin. These results expand people's understanding of the functions of proteases and point to potential applications of trypsin as an attractive agent to control residual pesticides in the environment and on agricultural products. PMID:24594869

  18. Working session 1: Tubing degradation

    SciTech Connect

    Kharshafdjian, G.; Turluer, G.

    1997-02-01

    A general introductory overview of the purpose of the group and the general subject area of SG tubing degradation was given by the facilitator. The purpose of the session was described as to {open_quotes}develop conclusions and proposals on regulatory and technical needs required to deal with the issues of SG tubing degradation.{close_quotes} Types, locations and characteristics of tubing degradation in steam generators were briefly reviewed. The well-known synergistic effects of materials, environment, and stress and strain/strain rate, subsequently referred to by the acronym {open_quotes}MESS{close_quotes} by some of the group members, were noted. The element of time (i.e., evolution of these variables with time) was emphasized. It was also suggested that the group might want to consider the related topics of inspection capabilities, operational variables, degradation remedies, and validity of test data, and some background information in these areas was provided. The presentation given by Peter Millet during the Plenary Session was reviewed; Specifically, the chemical aspects and the degradation from the secondary side of the steam generator were noted. The main issues discussed during the October 1995 EPRI meeting on secondary side corrosion were reported, and a listing of the potential SG tube degradations was provided and discussed.

  19. Degradation and resilience of soils

    PubMed Central

    Lal, R.

    1997-01-01

    Debate on global soil degradation, its extent and agronomic impact, can only be resolved through understanding of the processes and factors leading to establishment of the cause-effect relationships for major soils, ecoregions, and land uses. Systematic evaluation through long-term experimentation is needed for establishing quantitative criteria of (i) soil quality in relation to specific functions; (ii) soil degradation in relation to critical limits of key soil properties and processes; and (iii) soil resilience in relation to the ease of restoration through judicious management and discriminate use of essential input. Quantitative assessment of soil degradation can be obtained by evaluating its impact on productivity for different land uses and management systems. Interdisciplinary research is needed to quantify soil degradation effects on decrease in productivity, reduction in biomass, and decline in environment quality throught pollution and eutrophication of natural waters and emission of radiatively-active gases from terrestrial ecosystems to the atmosphere. Data from long-term field experiments in principal ecoregions are specifically needed to (i) establish relationships between soil quality versus soil degradation and soil quality versus soil resilience; (ii) identify indicators of soil quality and soil resilience; and (iii) establish critical limits of important properties for soil degradation and soil resilience. There is a need to develop and standardize techniques for measuring soil resilience.

  20. Application de l’analyse des séries chronologiques à la projection d’effectifs de population scolaire par la méthode des composantes

    PubMed Central

    Smith, Herbert L.

    2016-01-01

    Cet article veut montrer qu’on peut réécrire des modèles démographiques en vue de réaliser des projections par cohorte, en les transposant dans un modèle économétrique vecteur autoré-gressif (VAR). De cette façon, la méthode des composantes se dote d’un cadre stochastique qui étend son envergure. Le potentiel de cette perspective est illustré à travers l’exemple d’une projection d’effectifs de population scolaire. Il met en valeur une série d’équations qui permet de vérifier la validité de plusieurs choix de modélisations habituellement utilisées dans le domaine de la prévision. PMID:27346921

  1. Études des propriétés électro-optiques d'une série de diphtalocyanines de terres rares

    NASA Astrophysics Data System (ADS)

    Videlot, C.; Fichou, D.; Garnier, F.

    1998-06-01

    In this work, we describe the study of photovoltaic cells for a series of rare earth diphthalocyanines. This p type organic compounds have been used in Schottky and pn configurations. Current-voltage curves and action spectra show different replies in energy's conversion according to the rare earth of the diphthalocyanine. Dans ce travail, nous décrivons l'étude de cellules photovoltaïques pour une série de diphtalocyanines de terres rares. Ces composés organiques de type p ont été étudiés dans des configurations Schottky et hétérojonction pn. Les courbes de courant-tension et les spectres d'action montrent des réponses différentes dans la conversion de l'énergie suivant la terre rare de la diphtalocyanine.

  2. Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump

    NASA Astrophysics Data System (ADS)

    Furuya, Akinori; Shimokawa, Fusao; Matsuura, Tohru; Sawada, Renshi

    1996-09-01

    Magnetically controlled reactive ion etching (MC-RIE) of a fluorinated polyimide substrate achieved etching selectivity of up to 2600, resulting in a smoothly etched surface and structures hundreds of micrometers high having good perpendicularity. This technique is useful for three-dimensional microfabrication. As an example of a typical application, we fabricated an ion drag integrated micropump with microgrid sets consisting of 0960-1317/6/3/003/img1 high pole-shaped counter-electrode elements arranged like a pair of interleaved combs by using a fluorinated polyimide as the structural material, metallization, and lift-off using a ZnO sacrificial layer. This micropump moved ethanol with a flow rate of about 0960-1317/6/3/003/img2 when 200 V was applied to the counter electrodes.

  3. Nonuniformity of carrier injection and the degradation of blue LEDs

    SciTech Connect

    Bochkareva, N. I. Efremov, A. A.; Rebane, Yu. T.; Gorbunov, R. I.; Klochkov, A. V.; Shreter, Yu. G.

    2006-01-15

    The distribution of electroluminescence (EL) intensity over the area and in the course of time before and after the optical degradation of blue InGaN/GaN LEDs is studied. Current-voltage characteristics have been recorded. It is found that the initially bright luminescence near the region of metallization of the p-contact turns weak after the degradation of an LED. The time delay of {approx}20-40 ns is observed in the distribution of EL intensity over the area of LEDs after their degradation. We suppose that a rise in the excess current after degradation is due to the density increasing of the InGaN/GaN interface states and the formation of an electrical dipole, which lowers the potential barriers in p-GaN and n-GaN layers. The corresponding increase of capacitance leads to a time delay in the spreading of the injection current and in the distribution of the emission brightness over the area. The lateral nonuniformity of the carrier injection into the quantum, well before and after optical degradation, is attributed to diffusion and electromigration of hydrogen, induced by mechanical stress. The metallization of the p-contact may be the source of mechanical stress.

  4. Mechanism-based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials

    SciTech Connect

    Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.

    2013-02-01

    Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material hinges upon the availability of quantitative statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more representative than 2D models in general, they are usually computationally expensive and difficult to be reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability of reproducing the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes.

  5. Wood-degrading fungi as degraders of hazardous waste

    SciTech Connect

    Glaser, J.A.

    1988-11-01

    The biological detoxification of hazardous waste is largely an underdeveloped technology. Bacterial species are known to possess a variety of detoxification skills, apparently associated with the need to survive. Single bacterial species may not have the ability to convert a toxicant to carbon dioxide and water. With the use of bacterial communities, there is the feature that each species of the consortium plays a role in the overall degradation of the waste with the inadequacies of one covered by the abilities of another. The stability of such consortia is of some concern since there may be environmental effects that permit the selection of certain members over others resulting in the loss or slowing of the degradation process. The use of fungi to degrade waste materials has not been investigated to any extent until recently. From the perspective of sewage treatment, filamentous fungi were to be avoided due to processing problems and in some cases fungi found in sewage can be pathogenic.

  6. Electricity tommorrow

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The critical issues for the electricity sector in California were presented. Adopted level of electricity demand and adopted policies and supply criteria are included. These form the basis for planning and certification of electric generation and transmission facilities by the energy commission. Estimates of the potential contributions of conservation and various conventional and alternative supply sources, critiques of utility supply plans, and determinations of how much new capacity is required are also included. Policy recommendations for directing public and private investments into preferred energy options, for spreading the benefits and costs of these options broadly and fairly among California's citizens, and for removing remaining obstacles to the development of all acceptable energy sources are presented.

  7. Degraded water reuse: an overview.

    PubMed

    O'Connor, G A; Elliott, H A; Bastian, R K

    2008-01-01

    Communities around the world face increasingly severe fresh water supply shortages, largely due to expanding populations and associated food supply, economic development, and health issues. Intentional reuse of degraded waters (e.g., wastewater effluents, irrigation return flows, concentrated animal feeding operations [CAFO] effluents, stormwater, and graywater) as substitutes for fresh waters could be one solution to the challenge. We describe the various degraded water types and reuse options and limitations and restrictions to their use. Emphasis is given to reuse scenarios involving degraded water applications to soil. The potential for degraded water reuse is enormous, but significant barriers exist to widespread adoption. Barriers include research questions (some addressable by traditional soil science approaches, but others requiring novel techniques and advanced instrumentation), the lack of unifying national regulations, and public acceptance. Educational programs, based on hard science developed from long-term field studies, are imperative to convince the public and elected officials of the wisdom and safety of reusing degraded waters. PMID:18765762

  8. Imine Hydrogels with Tunable Degradability

    PubMed Central

    Boehnke, Natalie; Cam, Cynthia; Bat, Erhan; Segura, Tatiana; Maynard, Heather D.

    2015-01-01

    A shortage of available organ donors has created a need for engineered tissues. In this context, polymer-based hydrogels that break down inside the body are often used as constructs for growth factors and cells. Herein, we report imine cross-linked gels where degradation is controllable by the introduction of mixed imine cross-links. Specifically, hydrazide-functionalized poly(ethylene glycol) (PEG) reacts with aldehyde-functionalized PEG (PEG-CHO) to form hydrazone linked hydrogels that degrade quickly in media. The time to degradation can be controlled by changing the structure of the hydrazide group or by introducing hydroxylamines to form non-reversible oxime linkages. Hydrogels containing adipohydrazide-functionalized PEG (PEG-ADH) and PEG-CHO were found to degrade more rapidly than gels formed from carbodihydrazide-functionalized PEG (PEG-CDH). Incorporating oxime linkages via aminooxy-functionalized PEG (PEG-AO) into the hydrazone cross-linked gels further stabilized the hydrogels. This imine crosslinking approach should be useful for modulating the degradation characteristics of 3D cell culture supports for controlled cell release. PMID:26061010

  9. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics.

    PubMed

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-01-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as "degradation inhibitor" for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas. PMID:27338622

  10. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-06-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as “degradation inhibitor” for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas.

  11. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics

    PubMed Central

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-01-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as “degradation inhibitor” for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas. PMID:27338622

  12. Electrically powered hand tool

    DOEpatents

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  13. Clad Degradation - FEPs Screening Arguments

    SciTech Connect

    E. Siegmann

    2004-03-17

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796]).

  14. Electrical Injuries

    MedlinePlus

    ... your injuries are depends on how strong the electric current was, what type of current it was, how it moved through your body, and how long you were exposed. Other factors include how ... you should see a doctor. You may have internal damage and not realize it.

  15. Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells.

    PubMed

    Guerrero, Antonio; You, Jingbi; Aranda, Clara; Kang, Yong Soo; Garcia-Belmonte, Germà; Zhou, Huanping; Bisquert, Juan; Yang, Yang

    2016-01-26

    The stability of perovskite solar cells is one of the major challenges for this technology to reach commercialization, with water believed to be the major degradation source. In this work, a range of devices containing different cathode metal contacts in the configuration ITO/PEDOT:PSS/MAPbI3/PCBM/Metal are fully electrically characterized before and after degradation caused by steady illumination during 4 h that induces a dramatic reduction in power conversion efficiency from values of 12 to 1.8%. We show that a decrease in performance and generation of the S-shape is associated with chemical degradation of the metal contact. Alternatively, use of Cr2O3/Cr as the contact enhances the stability, but modification of the energetic profile during steady illumination takes place, significantly reducing the performance. Several techniques including capacitance-voltage, X-ray diffraction, and optical absorption results suggest that the properties of the bulk perovskite layer are little affected in the device degradation process. Capacitance-voltage and impedance spectroscopy results show that the electrical properties of the cathode contact are being modified by generation of a dipole at the cathode that causes a large shift of the flat-band potential that modifies the interfacial energy barrier and impedes efficient extraction of electrons. Ionic movement in the perovskite layer changes the energy profile close to the contacts, modifying the energy level stabilization at the cathode. These results provide insights into the degradation mechanisms of perovskite solar cells and highlight the importance to further study the use of protecting layers to avoid the chemical reactivity of the perovskite with the external contacts. PMID:26679510

  16. Cellobiose dehydrogenase in cellulose degradation

    SciTech Connect

    Eriksson, L.; Igarashi, Kiyohiko; Samejima, Masahiro

    1996-10-01

    Cellobiose dehydrogenase is produced by a variety of fungi. Although it was already discovered during the 70`s, it`s role in cellulose and lignin degradation is yet ambiguous. The enzyme contains both heme and FAD as prosthetic groups, and seems to have a domain specifically designed to bind the enzyme to cellulose. It`s affinity to amorphous cellulose is higher than to crystalline cellulose. We will report on the binding behavior of the enzyme, its usefulness in elucidation of cellulose structures and also, possibilities for applications such as its use in measuring individual and synergistic mechanisms for cellulose degradation by endo- and exo-glucanases.

  17. DNA degradation and its defects.

    PubMed

    Kawane, Kohki; Motani, Kou; Nagata, Shigekazu

    2014-06-01

    DNA is one of the most essential molecules in organisms, containing all the information necessary for organisms to live. It replicates and provides a mechanism for heredity and evolution. Various events cause the degradation of DNA into nucleotides. DNA also has a darker side that has only recently been recognized; DNA that is not properly degraded causes various diseases. In this review, we discuss four deoxyribonucleases that function in the nucleus, cytosol, and lysosomes, and how undigested DNA causes such diseases as cancer, cataract, and autoinflammation. Studies on the biochemical and physiological functions of deoxyribonucleases should continue to increase our understanding of cellular functions and human diseases. PMID:24890510

  18. Redox control of protein degradation

    PubMed Central

    Pajares, Marta; Jiménez-Moreno, Natalia; Dias, Irundika H.K.; Debelec, Bilge; Vucetic, Milica; Fladmark, Kari E.; Basaga, Huveyda; Ribaric, Samo; Milisav, Irina; Cuadrado, Antonio

    2015-01-01

    Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies. PMID:26381917

  19. DNA Degradation and Its Defects

    PubMed Central

    Kawane, Kohki; Motani, Kou; Nagata, Shigekazu

    2014-01-01

    DNA is one of the most essential molecules in organisms, containing all the information necessary for organisms to live. It replicates and provides a mechanism for heredity and evolution. Various events cause the degradation of DNA into nucleotides. DNA also has a darker side that has only recently been recognized; DNA that is not properly degraded causes various diseases. In this review, we discuss four deoxyribonucleases that function in the nucleus, cytosol, and lysosomes, and how undigested DNA causes such diseases as cancer, cataract, and autoinflammation. Studies on the biochemical and physiological functions of deoxyribonucleases should continue to increase our understanding of cellular functions and human diseases. PMID:24890510

  20. Degradation of Glycine and Alanine on Irradiated Quartz

    NASA Astrophysics Data System (ADS)

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P.

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  1. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions.

    PubMed

    Li, Fengmei; Guo, Shuhai; Hartog, Niels; Yuan, Ye; Yang, Xuelian

    2016-02-01

    Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg(-1). Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0% in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs. PMID:26615425

  2. Identification of degradation mechanisms of blue InGaN/GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Wen, P. Y.; Zhang, S. M.; Li, D. Y.; Liu, J. P.; Zhang, L. Q.; Zhou, K.; Feng, M. X.; Tian, A. Q.; Zhang, F.; Gao, X. D.; Zeng, C.; Yang, H.

    2015-10-01

    A comprehensive analysis of the degradation mechanism of blue InGaN/GaN laser diodes (LDs) is carried out by investigating the electrical and optical characteristics. The increase in the leakage current as well as decrease in the slope efficiency is observed. The luminescence properties of the active region at different aging stages are studied by means of cathodoluminescence. Significant degradation of the active region is observed on the room temperature cathodoluminescence while the low temperature cathodoluminescence shows almost no degradation, indicating that the degradation of the LDs is due to generation of low temperature frozen point defects. Furthermore, the generation of the defects follows a kinetic mechanism enhanced by electron-hole non-radiative recombination which explains the acceleration of time degradation in our LDs.

  3. Haem degradation in abnormal haemoglobins.

    PubMed Central

    Brown, S B; Docherty, J C

    1978-01-01

    The coupled oxidation of certain abnormal haemoglobins leads to different bile-pigment isomer distributions from that of normal haemoglobin. The isomer pattern may be correlated with the structure of the abnormal haemoglobin in the neighbourhood of the haem pocket. This is support for haem degradation by an intramolecular reaction. PMID:708385

  4. Methods of degrading napalm B

    DOEpatents

    Tyndall, R.L.; Vass, A.

    1995-09-12

    Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates are deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

  5. Environmental Degradation of Solar Reflectors

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1985-01-01

    Report presents results of study of atmospheric degradation of large solar reflectors for power generators. Three general types of reflective surfaces investigated. Report also describes computer buildup and removal (by rain and dew) of contamination from reflectors. Data used to determine effects of soil buildup and best method and frequency of washing at various geographic locations.

  6. The Degradation of a Nation.

    ERIC Educational Resources Information Center

    Morozova, Galina Fedorouna

    1995-01-01

    Maintains that the process of national degradation is a real danger and concern of all Russian society. Discusses environmental concerns, such as water, soil, and air pollution; falling birth rates; aging of the population; crime; and decline in moral values. Concludes that it is imperative for all citizens to stop and reverse these trends. (CFR)

  7. Pesticide Degradation in Thermal Foggers.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal foggers are used in many parts of the world for vector control. Since thermal foggers use heat to create and help propel adulticide clouds, there is reason to examine the stability of pesticides in both diesel and water-based formulations. This study examined the degradation of 5 pesticide...

  8. Methods of degrading napalm B

    DOEpatents

    Tyndall, Richard L.; Vass, Arpad

    1995-01-01

    Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates include is deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

  9. Photothermal degradation studies of encapsulants

    NASA Technical Reports Server (NTRS)

    Liang, R. H.

    1984-01-01

    The reliability physics program at JPL is outlined. The overall objectives and approaches are given in the program. The objectives, approaches and conclusions are given for two specific parts of the programs. These two parts are mechanistic studies of photothermal degradation and performance characteristics of materials with respect to photothermal stresses.

  10. How the osteoclast degrades bone.

    PubMed

    Blair, H C

    1998-10-01

    Osteoclasts are multinucleated monocyte-macrophage derivatives that degrade bone. Their specialized role is central to a process that continuously removes and replaces segments of the skeleton in the higher vertebrates. Osteoclasts allow skeletal mineral to be used to manage extracellular calcium activity, which is an important adaptation for life on land, and solid skeletal structure to be replaced by hollow architecture that has a superior strength-to-weight ratio. Degrading bone also allows periodic repair and remodeling for ordered growth and efficient response to mechanical loads. A fairly comprehensive view of osteoclastic ontogeny and function is emerging from recent studies. Osteoclasts dissolve bone mineral by massive acid secretion and secrete specialized proteinases that degrade the organic matrix, mainly type I collagen, in this acidic milieu. The site of bone dissolution is a high-calcium environment; removal of degradation products by transcytosis of membrane vesicles allows the osteoclast to maintain a normal intracellular calcium. Osteoclastic differentiation is normally balanced with bone formation, although bone formation is the function of unrelated stromal cell-derived osteoblasts. Interactions between osteoclast precursors and bone-forming cells are believed to control osteoclast differentiation under most circumstances, preserving bone architecture over many cycles of bone replacement. PMID:9819571