Science.gov

Sample records for electrical mechanical system

  1. Diesel Mechanics: Electrical Systems.

    ERIC Educational Resources Information Center

    Foutes, William; And Others

    This publication is the second in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to electricity and circuitry in a diesel trade. The text contains nine units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested…

  2. Electrical and Mechanical Characterizations of Nanocomposite Insulation for HTS Systems

    SciTech Connect

    Walsh, J K; Fabian, Paul E; Hooker, M W; Lizotte, M J; Tuncer, Enis; Sauers, Isidor

    2011-01-01

    As HTS wire technology continues to advance, a critical need has emerged for dielectric materials that can be used in superconducting components such as terminations, fault current limiters, transformers, and motors. To address this need, CTD is developing nanocomposite insulations based on epoxy and benzoxazine chemistries. Depending on part geometry, some processing methods are more efficient than others. For this reason, CTD is investigating both fiber-reinforced and filled resin systems for use in these applications. A thorough set of electrical testing including AC breakdown, breakdown as a function of thickness, and flashover shows promising performance characteristics. In addition, mechanical testing (short beam shear and compression) indicate that these new materials to have as good or better performance than G10.

  3. Failure analysis for micro-electrical-mechanical systems (MEMS)

    SciTech Connect

    Peterson, K.A.; Tangyunyong, P.; Barton, D.L.

    1997-10-01

    Micro-Electrical Mechanical Systems (MEMS) is an emerging technology with demonstrated potential for a wide range of applications including sensors and actuators for medical, industrial, consumer, military, automotive and instrumentation products. Failure analysis (FA) of MEMS is critically needed for the successful design, fabrication, performance analysis and reliability assurance of this new technology. Many devices have been examined using techniques developed for integrated circuit analysis, including optical inspection, scanning laser microscopy (SLM), scanning electron microscopy (SEM), focused ion beam (FIB) techniques, atomic force microscopy (AFM), infrared (IR) microscopy, light emission (LE) microscopy, acoustic microscopy and acoustic emission analysis. For example, the FIB was used to microsection microengines that developed poor performance characteristics. Subsequent SEM analysis clearly demonstrated the absence of wear on gear, hub, and pin joint bearing surfaces, contrary to expectations. Another example involved the use of infrared microscopy for thermal analysis of operating microengines. Hot spots were located, which did not involve the gear or hub, but indicated contact between comb structures which drive microengines. Voltage contrast imaging proved useful on static and operating MEMS in both the SEM and the FIB and identified electrostatic clamping as a potentially significant contributor to failure mechanisms in microengines. This work describes MEMS devices, FA techniques, failure modes, and examples of FA of MEMS.

  4. Learning Activity Packets for Auto Mechanics II. Section B--Electrical Systems.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Six learning activity packets (LAPs) are provided for the instructional area of electrical systems in the auto mechanics II program. They accompany an instructor's guide available separately. The LAPs outline the study activities and performance tasks for these six units: (1) basic electrical theory, (2) battery service, (3) starting system, (4)…

  5. Electrical Systems. Auto Mechanics Curriculum Guide Module 2. Instructor's Guide.

    ERIC Educational Resources Information Center

    Hevel, David; Donovan, Roger

    This document is one of a series of modules in the Missouri Auto Mechanics Curriculum Guide, which is based on 144 basic auto mechanics competencies identified on the Missouri Auto Mechanics Competency Profile. The instructor's materials in this document are for a 14-unit secondary education course. The following units are included: (1) principles…

  6. Bilingual Skills Training Program. Auto Mechanics. Module 4.0: The Automotive Electrical System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the automotive electrical system is the fourth of six (CE 028 296-301) in the auto mechanics course of a bilingual skills training program (A Vocabulary Development Workbook is available as CE 028 294.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  7. Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…

  8. Burst Firing in the Electrosensory System of Gymnotiform Weakly Electric Fish: Mechanisms and Functional Roles

    PubMed Central

    Metzen, Michael G.; Krahe, Rüdiger; Chacron, Maurice J.

    2016-01-01

    Neurons across sensory systems and organisms often display complex patterns of action potentials in response to sensory input. One example of such a pattern is the tendency of neurons to fire packets of action potentials (i.e., a burst) followed by quiescence. While it is well known that multiple mechanisms can generate bursts of action potentials at both the single-neuron and the network level, the functional role of burst firing in sensory processing is not so well understood to date. Here we provide a comprehensive review of the known mechanisms and functions of burst firing in processing of electrosensory stimuli in gymnotiform weakly electric fish. We also present new evidence from existing data showing that bursts and isolated spikes provide distinct information about stimulus variance. It is likely that these functional roles will be generally applicable to other systems and species. PMID:27531978

  9. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology.

    PubMed

    Tse, Gary; Lai, Eric Tsz Him; Yeo, Jie Ming; Tse, Vivian; Wong, Sunny Hei

    2016-01-01

    The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field. PMID:27303305

  10. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology

    PubMed Central

    Tse, Gary; Lai, Eric Tsz Him; Yeo, Jie Ming; Tse, Vivian; Wong, Sunny Hei

    2016-01-01

    The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field. PMID:27303305

  11. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    SciTech Connect

    Babkin, K. V. Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V.; Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V.

    2015-01-15

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described.

  12. Mechanisms of Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Fisch, Nathaniel J.

    2004-11-01

    The technology of electric propulsion evolved to overcome the high propellant weight associated with propulsion by chemical means. As opposed to ejecting propellant at velocities of kilometers per second, exhaust velocities of plasma at tens of kilometers per second and more could be accomplished through electrical means. Although higher exhaust velocities require higher on-board power, the reduced propellant requirements facilitate a large variety of space transportation missions, such as orbit-raising, station-keeping, or other propulsion missions requiring the conservation of propellant mass such as interplanetary flight. To produce thrust by the application of electric forces, plasma can be accelerated directly, or ions can be accelerated and then neutralized to form flowing neutral plasma. The different mechanisms of acceleration are embodied in such thrust devices as ion thrusters, Hall thrusters, magnetoplasmadynamic thrusters, or arcjets. In each method of electric propulsion, different technological limitations arise from basic plasma properties. This talk reviews the basic acceleration mechanisms at play in contemporary means of electric propulsion within the broader context of accelerating plasma by any means.

  13. A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Enya, K.; Kataza, H.; Bierden, P.

    2009-03-01

    We present our first results on the development and evaluation of a cryogenic deformable mirror (DM) based on Micro Electro Mechanical Systems (MEMS) technology. A MEMS silicon-based DM chip with 32 channels, in which each channel is 300 μm × 300 μm in size, was mounted on a silicon substrate in order to minimize distortion and prevent it from being permanently damaged by thermal stresses introduced by cooling. The silicon substrate was oxidized to obtain electric insulation and had a metal fan-out pattern on the surface. For cryogenic tests, we constructed a measurement system consisting of a Fizeau interferometer, a cryostat cooled by liquid N2, zooming optics, electric drivers. The surface of the mirror at 95 K deformed in response to the application of a voltage, and no significant difference was found between the deformation at 95 K and that at room temperature. The power dissipation by the cryogenic DM was also measured, and we suggest that this is small enough for it to be used in a space cryogenic telescope. The properties of the DM remained unchanged after five cycles of vacuum pumping, cooling, warming, and venting. We conclude that fabricating cryogenic DMs employing MEMS technology is a promising approach. Therefore, we intend to develop a more sophisticated device for actual use, and to look for potential applications including the Space Infrared Telescope for Cosmology & Astrophysics (SPICA), and other missions.

  14. Multiscale analysis of liquid lubrication trends from industrial machines to micro-electrical-mechanical systems.

    PubMed

    Brenner, Donald W; Irving, Douglas L; Kingon, Angus I; Krim, Jacqueline; Padgett, Clifford W

    2007-08-28

    An analytic multiscale expression is derived that yields conditions for effective liquid lubrication of oscillating contacts via surface flow over multiple time and length scales. The expression is a logistics function that depends on two quantities, the fraction of lubricant removed at each contact and a scaling parameter given by the logarithm of the ratio of the contact area to the product of the lubricant diffusion coefficient and the cycle time. For industrial machines the expression confirms the need for an oil mist. For magnetic disk drives, the expression predicts that existing lubricants are sufficient for next-generation data storage. For micro-electrical-mechanical systems, the expression predicts that a bound + mobile lubricant composed of tricresyl phosphate on an octadecyltrichlorosilane self-assembled monolayer will be effective only for temperatures greater than approximately 200 K and up to approximately MHz oscillation frequencies. PMID:17661501

  15. Fabrication and electrical characterization of graphene formed chemically on nickel nano electro mechanical system (NEMS) switch.

    PubMed

    Choe, Byeong-In; Lee, Jung-Kyu; Lee, Bora; Kim, Kwanyong; Choi, Woo Young; Hong, Byung Hee; Lee, Jong-Ho

    2014-12-01

    In this work, we successfully fabricated a reliable nano-electro-mechanical system (NEMS) switch with graphene formed chemically on pre-patterned nickel (Ni) film movable beam. Its electrical characteristics were investigated in terms of current-voltage (I-V) and repetitive switching (on/off) properties. The graphene in the movable beam was selectively formed chemically only on the patterned Ni film. Graphene material may help overcome the stiction and reliability problems in nano-electro-mechanical devices. A study on graphene cantilever already has been reported by using only single or multi-layer of transferred graphene. However, the graphene selectively grown on Ni film has not been reported for NEMS switch. The graphene grown on Ni film by chemical vapor deposition method (CVD) were characterized by Raman spectroscopy. The fabricated lateral NEMS switch has w/l/t = 500 nm/20 μm/150 nm as a Ni dimension and an air-gap of -300 nm in lateral direction. The fabricated graphene movable beam formed chemically on Ni film shows reduced pull-in voltage and improved endurance (extended repetitive switching operations). PMID:25971076

  16. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  17. Electric micropropulsion systems

    NASA Astrophysics Data System (ADS)

    Wright, W. P.; Ferrer, P.

    2015-04-01

    With the development of microspacecraft, the field of electrical micropropulsion is a rapidly expanding discipline. New ideas are being explored constantly and a review of the current state of technological development in the field will be useful. This review deals with electrostatic and electromagnetic micropropulsion systems that are either miniaturization attempts of existing technologies or novel systems in their own right. A brief discussion of the development of microspacecraft and a general overview of the types of micropropulsion are given. The essential mechanism of operation of each electrical micropropulsion system is described and recent progress in the development of these systems is explored, giving latest available data of their performance parameters.

  18. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future. PMID:23403587

  19. Plasmon mechanism of resistance magnetooscillations in a two-dimensional electron system in strong electric fields

    NASA Astrophysics Data System (ADS)

    Volkov, V. A.; Takhtamirov, É. E.

    2007-04-01

    A multielectron approach is developed to explain the resistance magnetooscillations in two-dimensional electron systems that have recently been detected under the action of microwave pumping [1] or a strong dc electric field [23]. A qualitative change in the screened impurity potential in a strong electric field is taken into account for the first time. When considered in the rest frame of the center of the cyclotron orbit, the impurity potential becomes nonstationary and, thus, should be screened dynamically. This fact substantially changes the picture of impurity scattering in a “pure” two-dimensional system: a dissipative current is induced by the excitation of two-dimensional plasmons rather than by one-electron transitions between the Landau levels. In the case of microwave pumping, every period of resistance oscillation in a reciprocal magnetic field is formed by the excitation of the corresponding magnetoplasmon branch, and the fine structure of oscillations is formed by the singularities of the magnetoplasmon density of states. In a “dirty” two-dimensional system, the role of electron-electron interaction weakens, collective excitations cease to exist, and the results transform into the well-known results obtained in terms of a one-electron approach.

  20. Fuel and Electrical Systems Mechanic. Apprenticeship Training Standards = Mecanicien de systemes d'alimentation en carburant et electriques. Normes de formation en apprentissage.

    ERIC Educational Resources Information Center

    Ontario Ministry of Skills Development, Toronto.

    These training standards for fuel and electrical systems mechanics are intended to be used by apprentice/trainees, instructors, and companies in Ontario, Canada, as a blueprint for training or as a prerequisite for prerequisite for accreditation/certification. The training standards identify skills required for this occupation and its related…

  1. Solid electrically tunable dual-focus lens using freeform surfaces and microelectro-mechanical-systems actuator.

    PubMed

    Zou, Yongchao; Zhang, Wei; Chau, Fook Siong; Zhou, Guangya

    2016-01-01

    In this Letter, a miniature solid tunable dual-focus (DF) lens, which is designed using freeform optical surfaces and driven by one microelectro-mechanical-systems rotary actuator, is reported. Such a lens consists of two optical elements, each having a flat surface and one freeform surface optimized by ray-tracing technology. By changing the relative rotation angle of the two lens elements, the lens configuration can form double foci with corresponding focal lengths varied simultaneously, resulting in a tunable DF effect. Results show that one of the focal lengths is tuned from about 30 to 20 mm, while the other one is varied from about 30 to 60 mm, with a maximum rotation angle of about 8.2 deg. PMID:26696143

  2. Electrical Mechanical Maintenance. Instructor's Guide.

    ERIC Educational Resources Information Center

    Santa Clara County Superintendent of Schools, San Jose, CA.

    This instructor's guide describes the development of a sixteen-week postsecondary course in electrical mechanical maintenance. Following introductory sections that provide background information and a course summary, the third section describes the instructional model used in the course. Section 4 presents an overview of instructional media used…

  3. Electrical Power Generation by Mechanically Modulating Electrical Double Layers

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Moon, Jong Kyun

    2014-11-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system and for understanding the interfacial charge distribution in solid-liquid interfaces in the near future. This work was supported by Center for Soft and Living Matter through IBS prgram in Korea.

  4. Electrical and mechanical properties of ZnO doped silver-molybdate glass-nanocomposite system

    NASA Astrophysics Data System (ADS)

    Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    Zno doped silver-molybdate glass-nanocomposites, 0.3 Ag2O - 0.7 [0.075 ZnO - 0.925 MoO3] have been prepared by melt-quenching method. Ionic conductivity of these glass-nanocomposites has been measured in wide temperature and frequency windows. Vicker's hardness methods have been employed to study micro-hardness of the as-prepared samples. Heat-treated counterparts for this glass-nanocomposites system has been analyzed in different temperature to observe the changes in conductivity as well as micro-hardness for that system.

  5. Electrical Transmission Line Diametrical Retention Mechanism

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  6. Electrical system architecture

    DOEpatents

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2008-07-15

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  7. Hawaii electric system reliability.

    SciTech Connect

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  8. 112. VIEW OF SOUTH SIDE OF MECHANICAL AND ELECTRICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. VIEW OF SOUTH SIDE OF MECHANICAL AND ELECTRICAL ROOM (110), LSB (BLDG. 770). VEHICLE MECHANICAL SYSTEMS ROOM (111) AND PNEUMATIC SUPPLY PANEL VISIBLE AT SOUTH END OF MECHANICAL AND ELECTRICAL ROOM (110). PAYLOAD CABLE DISTRIBUTION BOX ON LEFT OF PHOTO, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Electrical Systems. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This electrical systems manual is one of a series of power mechanics texts and visual aids for training in the servicing of electrical systems on mobile machines. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The ten chapters focus on (1) Electricity: How It…

  10. Diesel Electrical Systems. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Sprinkle, Tom; Huston, Jane, Ed.

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains eight instructional units that cover the following topics: (1) introduction to electrical systems; (2) electrical circuits; (3) electrical indicator circuits; (4) storage batteries; (5) starting systems and circuits; (6) ignition circuits; (7)…

  11. Electric motor for laser-mechanical drilling

    DOEpatents

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  12. Electrical Stunning Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation is an overview of the mechanics of electrical stunning of broilers and the physiology associated with stunning, bleeding, and the rapid progression to death. Stunning and bleeding compose a relative short time period in the 6-week life of a commercial broiler, about 2.5 to 3 minut...

  13. Robot drive mechanism uses conventional electric motors

    NASA Astrophysics Data System (ADS)

    Demchenko, I.

    1986-02-01

    The development and use of three phase asynchronous electric motors in robot technology are presented. The mechanical arm of a robot has as many drives as it has joints. Manipulators in use in modern industry must have six to nine degrees of mobility, and experimental prototypes with 18 coordinates of movement are already developed. A simple, common, and inexpensive industrial electric motor is proposed for use in the robots. This motor was previously considered unsuitable for delicate work because of its low precision in executing commands and the difficulty in controlling it. Control methods were developed to overcome this difficulty. Integrated microcircuits and a power converter control the operation of the single motor. A cassette made up of six units controls the operation of the whole mechanical arm. This cassette is linked with the brain of the robot (a microprocessor system or microcomputer).

  14. Preliminary Hazards Assessments for Space Nuclear Electric Propulsion Systems Mechanisms to Quantitatively Ascertain and Address Launch and Operational Risks

    NASA Astrophysics Data System (ADS)

    Lenard, R.

    2002-01-01

    Architectures are analyzed based on several figures of merit, including mass transported to Mars and samples transported from Mars to Earth, potential to reduce Earth contamination, sites on MArs visited, trip time and potential cost trades.A technological variant of a commercial vehicle for near-Earth missions is used as the nuclear electric propulsion system baseline. Several types of Mars landing and ascent vehicles are proposed and assessed.Technology approaches are assessed and analyzed to compare risk to a conventionally fueled Mars Sample Return concept. Also compared are solar electric propelled missions to ascertain cost saving or advantages. Various mission departure dates will be proposed and analyzed.

  15. The mechanical design and electrical characteristics of a 32 m satellite ground station antenna with beam waveguide feed system

    NASA Astrophysics Data System (ADS)

    Leupelt, U.; Thiere, H.

    1980-11-01

    A 32 m Cassegrain antenna with a new beam waveguide feed system is discussed, which handles the increased demands on the electrical characteristics of ground station antennas resulting from the introduction of frequency reuse operation in Intelsat satellites. The design of the antenna and feed system is examined along with the problems associated with polarization discrimination. The antenna operates in the frequency range 3.7 to 4.2 GHz (receiver) and 5925 to 6425 GHz (sender) by opposing circular polarization. In addition to optical adjustment of the antenna and feed system, the electrical fine tuning of the parabolic surface mirror and the collecting reflector is investigated. A flow diagram illustrates measurements using a satellite.

  16. Hydrocarbon disperse systems in electric fields

    SciTech Connect

    Deinega, Y.F.

    1983-07-01

    On the basis of method for regulating the smooth adjustment of the charge of the disperse phase of hydrocarbon systems in electric fields from positive to negative values by means of surfactants, a schematic electrokinetic picture of the behavior of the systems is derived. Changes in the structure of the disperse systems in electric fields have a substantial effect on the rheological properties of the system. The effect of electric fields on the formation of crystallization-condensation structures, the mechanism of electrical conduction with a high rate of deformation, and the many practical applications of electrical effects on hydrocarbon disperse systems are also studied.

  17. US electric power system reliability

    NASA Astrophysics Data System (ADS)

    Electric energy supply, transmission and distribution systems are investigated in order to determine priorities for legislation. The status and the outlook for electric power reliability are discussed.

  18. Solar electric systems

    SciTech Connect

    Warfield, G.

    1984-01-01

    Electricity from solar sources is the subject. The state-of-the-art of photovoltaics, wind energy and solar thermal electric systems is presented and also a broad range of solar energy activities throughout the Arab world is covered. Contents, abridged: Solar radiation fundamentals. Basic theory solar cells. Solar thermal power plants. Solar energy activities at the scientific research council in Iraq. Solar energy program at Kuwait Institute for Scientific Research. Prospects of solar energy for Egypt. Non-conventional energy in Syria. Wind and solar energies in Sudan. Index.

  19. Solar Electric System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.

  20. Active vibration control using mechanical and electrical analogies

    NASA Astrophysics Data System (ADS)

    Torres-Perez, A.; Hassan, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Mechanical-electrical analogous circuit models are widely used in electromechanical system design as they represent the function of a coupled electrical and mechanical system using an equivalent electrical system. This research uses electrical circuits to establish a discussion of simple active vibration control principles using two scenarios: an active vibration isolation system and an active dynamic vibration absorber (DVA) using a voice coil motor (VCM) actuator. Active control laws such as gain scheduling are intuitively explained using circuit analysis techniques. Active vibration control approaches are typically constraint by electrical power requirements. The electrical analogous is a fast approach for specifying power requirements on the experimental test platform which is based on a vibration shaker that provides the based excitation required for the single Degree- of-Freedom (1DoF) vibration model under study.

  1. Basic Electricity in Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This unit of instruction on electricity has been designed especially for teachers to use with freshmen and sophomore vocational agricultural students in Montana. It consists of an outline of the unit and eight lesson plans. The unit outline lists the following components: situation, aims and goals, lesson plans, student activities, teacher…

  2. Electrical and Mechanical Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Graphene is an exciting new atomically-thin two-dimensional (2D) system of carbon atoms organized in a hexagonal lattice structure. This "wonder material" has been extensively studied in the last few years since it's first isolation in 2004. Its rapid rise to popularity in scientific and technological communities can be attributed to a number of its exceptional properties. In this thesis I will present several topics including fabrication of graphene devices, electrical and mechanical properties of graphene. I will start with a brief introduction of electronic transport in nanosclae system including quantum Hall effect, followed by a discussion of fundamental electrical and mechanical properties of graphene. Next I will describe how graphene devices are produced: from the famous "mechnical exfoliation" to our innovative "scratching exfoliation" method, together with the traditional lithography fabrication for graphene devices. We also developed a lithography-free technique for making electrical contacts to suspended graphene devices. Most of the suspended devices presented in this thesis are fabricated by this technique. Graphene has remarkable electrical properties thanks to its crystal and band structures. In Chapter 3, I will first focus on proximity-induced superconductivity in graphene Josephson transistors. In this section we investigate electronic transport in single layer graphene coupled to superconducting electrodes. We observe significant suppression in the critical current I c and large variation in the product IcR n in comparison to theoretic prediction; both phenomena can be satisfactorily accounted for by premature switching in underdamped Josephson junctions. Another focus of our studies is quantum Hall effect and many body physics in graphene in suspended bilayer and trilayer graphene. We demonstrate that symmetry breaking of the first 3 Landau levels and fractional quantum Hall states are observed in both bilayer and trilayer suspended graphene

  3. Electrical Connector Mechanical Seating Sensor

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Captain, Janine; Youngquist, Robert

    2011-01-01

    A sensor provides a measurement of the degree of seating of an electrical connector. This sensor provides a number of discrete distances that a plug is inserted into a socket or receptacle. The number of measurements is equal to the number of pins available in the connector for sensing. On at least two occasions, the Shuttle Program has suffered serious time delays and incurred excessive costs simply because a plug was not seated well within a receptacle. Two methods were designed to address this problem: (1) the resistive pin technique and (2) the discrete length pins technique. In the resistive pin approach, a standard pin in a male connector is replaced with a pin that has a uniform resistivity along its length. This provides a variable resistance on that pin that is dependent on how far the pin is inserted into a socket. This is essentially a linear potentiometer. The discrete approach uses a pin (or a few pins) in the connector as a displacement indicator by truncating the pin length so it sits shorter in the connector than the other pins. A loss of signal on this pin would indicate a discrete amount of displacement of the connector. This approach would only give discrete values of connector displacement, and at least one pin would be needed for each displacement value that would be of interest.

  4. TOPEX electrical power system

    NASA Technical Reports Server (NTRS)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  5. Trouble shooting system for an electric vehicle

    SciTech Connect

    Horiuchi, M.

    1986-01-14

    This patent describes a trouble shooting system for an electric vehicle. The electric vehicle contains a driving mechanism, a driving operation part and a control device. The driving mechanism includes a power source, an electric motor and a modality for controlling output level from the power supply to the electric motor in response to the driving operation part. The control device includes a microprocessor which receives commands from the driving operation part and supplies a control signal to the driving mechanism in response to a stored drive control program. The trouble shooting system consists of control device storage mechanisms for storing trouble shooting programs for various parts of the vehicle which are executed by the microprocessor. This system also includes a command generating modality responsive to manual operation for supplying a command to the microprocessor to initiate the execution and read out of a selected trouble shooting program and a method by which the microprocessor may display the program being processed.

  6. Electric vehicle drive systems

    NASA Astrophysics Data System (ADS)

    Appleyard, M.

    1992-01-01

    New legislation in the State of California requires that 2% of vehicles sold there from 1998 will be 'zero-emitting'. This provides a unique market opportunity for developers of electric vehicles but substantial improvements in the technology are probably required if it is to be successfully exploited. There are around a dozen types of battery that are potentially relevant to road vehicles but, at the present, lead/acid and sodium—sulphur come closest to combining acceptable performance, life and cost. To develop an efficient, lightweight electric motor system requires up-to-date techniques of magnetics design, and the latest power-electronic and microprocessor control methods. Brushless machines, coupled with solid-state inverters, offer the most economical solution for mass production, even though their development costs are higher than for direct-current commutator machines. Fitted to a small car, even the highest energy-density batteries will only provide around 200 km average range before recharging. Therefore, some form of supplementary on-board power generation will probably be needed to secure widespread acceptance by the driving public. Engine-driven generators of quite low power can achieve useful increases in urban range but will fail to qualify as 'zero-emitting'. On the other hand, if the same function could be economically performed by a small fuel-cell using hydrogen derived from a methanol reformer, then most of the flexibility provided by conventional vehicles would be retained. The market prospects for electric cars would then be greatly enhanced and their dependence on very advanced battery technology would be reduced.

  7. Optimizing the performance of Ice-storage Systems in Electricity Load Management through a credit mechanism. An analytical work for Jiangsu, China

    SciTech Connect

    Han, Yafeng; Shen, Bo; Hu, Huajin; Fan, Fei

    2015-01-12

    Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme and the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.

  8. Optimizing the performance of Ice-storage Systems in Electricity Load Management through a credit mechanism. An analytical work for Jiangsu, China

    DOE PAGESBeta

    Han, Yafeng; Shen, Bo; Hu, Huajin; Fan, Fei

    2015-01-12

    Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme andmore » the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.« less

  9. Electrically induced mechanical precompression of ferroelectric plates

    DOEpatents

    Chen, P.J.

    1987-03-02

    A method of electrically inducing mechanical precompression of ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion. 2 figs.

  10. Electrically induced mechanical precompression of ferroelectric plates

    DOEpatents

    Chen, Peter J.

    1987-01-01

    A method of electrically inducing mechanical precompression of a ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion.

  11. 49 CFR 236.308 - Mechanical or electric locking or electric circuits; requisites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Mechanical or electric locking or electric..., AND APPLIANCES Interlocking Standards § 236.308 Mechanical or electric locking or electric circuits; requisites. Mechanical or electric locking or electric circuits shall be installed to prevent signals...

  12. 49 CFR 236.308 - Mechanical or electric locking or electric circuits; requisites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Mechanical or electric locking or electric..., AND APPLIANCES Interlocking Standards § 236.308 Mechanical or electric locking or electric circuits; requisites. Mechanical or electric locking or electric circuits shall be installed to prevent signals...

  13. 49 CFR 236.308 - Mechanical or electric locking or electric circuits; requisites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Mechanical or electric locking or electric..., AND APPLIANCES Interlocking Standards § 236.308 Mechanical or electric locking or electric circuits; requisites. Mechanical or electric locking or electric circuits shall be installed to prevent signals...

  14. 49 CFR 236.308 - Mechanical or electric locking or electric circuits; requisites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Mechanical or electric locking or electric..., AND APPLIANCES Interlocking Standards § 236.308 Mechanical or electric locking or electric circuits; requisites. Mechanical or electric locking or electric circuits shall be installed to prevent signals...

  15. 49 CFR 236.308 - Mechanical or electric locking or electric circuits; requisites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Mechanical or electric locking or electric..., AND APPLIANCES Interlocking Standards § 236.308 Mechanical or electric locking or electric circuits; requisites. Mechanical or electric locking or electric circuits shall be installed to prevent signals...

  16. Mechanical vs electric drive: which to choose

    SciTech Connect

    Smiley, C.H.

    1983-03-01

    In the highly competitive 85 to 120 ton haul truck market, mechanical drive units have become increasingly popular because of their lower initial investment costs. But when total ownership costs over the life of the vehicle are considered, electric drive remains highly competitive.

  17. High density electrical card connector system

    SciTech Connect

    Haggard, J.E.; Trotter, G.R.

    2000-02-29

    An electrical circuit board card connection system is disclosed which comprises a wedge-operated locking mechanism disposed along an edge portion of the printed circuit board. An extrusion along the edge of the circuit board mates with an extrusion fixed to the card cage having a plurality of electrical connectors. The connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned and the wedge inserted. The disclosed connection system is a simple solution to the need for a greater number of electrical signal connections.

  18. High density electrical card connector system

    DOEpatents

    Haggard, J. Eric; Trotter, Garrett R.

    2000-01-01

    An electrical circuit board card connection system is disclosed which comprises a wedge-operated locking mechanism disposed along an edge portion of the printed circuit board. An extrusion along the edge of the circuit board mates with an extrusion fixed to the card cage having a plurality of electrical connectors. The connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned and the wedge inserted. The disclosed connection system is a simple solution to the need for a greater number of electrical signal connections.

  19. Promising Electric Aircraft Drive Systems

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.

    2010-01-01

    An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.

  20. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.

    1991-01-01

    model enables one to calculate the flow direction and local density of the charge exchange plasma, and indicates the degree to which this plasma can flow upstream of the thruster exhaust plane. A continuing effort to investigate the most desirable throttling technique for noble gas ion thrusters concentrated this year on experimentally determining the fixed flow rate throttling range of a 30-cm dia. thruster with a two-grid accelerator system. These experiments demonstrated a throttling capability which covers a 2.8 to 1 variation in input power. This throttling range is 55 percent greater than expected, and is due to better accelerator system performance at low net-to-total voltage ratios than indicated in the literature. To facilitate the development of large, higher power ion thrusters several brief studies were performed. These include the development of a technique which simulates ion thruster operation without beam extraction, the development of an optical technique to measure ion thruster grid distortion due to thermal expansion, tests of a capacitance measurement technique to quantify the accelerator system grid separation, and the development of a segmented thruster geometry which enables near term development of ion thrusters at power levels greater than 100 kW. Finally, a paper detailing the benefits of electric propulsion for the Space Exploration Initiative was written.

  1. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen; Brotz, Jay Kristoffer

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  2. Wind farm electrical system

    DOEpatents

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  3. High slot utilization systems for electric machines

    SciTech Connect

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  4. A semi-implantable multichannel telemetry system for continuous electrical, mechanical and hemodynamical recordings in animal cardiac research.

    PubMed

    Kong, Wei; Huang, Jian; Rollins, Dennis L; Ideker, Raymond E; Smith, William M

    2007-03-01

    We have developed an eight-channel telemetry system for studying experimental models of chronic cardiovascular disease. The system is an extension of a previous device that has been miniaturized, reduced in power consumption and provided with increased functionality. We added sensors for ventricular dimension, and coronary artery blood flow and arterial blood pressure that are suitable for use with the system. The telemetry system consists of a front end, a backpack and a host PC. The front end is a watertight stainless steel case with all sensor electronics sealed inside; it acquires dimension, flow, pressure and five cardiac electrograms from selected locations on the heart. The backpack includes a control unit, Bluetooth radio, and batteries. The control unit digitizes eight channels of data from the front end and forwards them to the host PC via Bluetooth link. The host PC has a receiving Bluetooth radio and Labview programs to store and display data. The whole system was successfully tested on the bench and in an animal model. This telemetry system will greatly enhance the ability to study events leading to spontaneous sudden cardiac arrest. PMID:17322590

  5. Electric-Power System Simulator

    NASA Technical Reports Server (NTRS)

    Caldwell, R. W.; Grumm, R. L.; Biedebach, B. L.

    1984-01-01

    Shows different combinations of generation, storage, and load components: display, video monitor with keyboard input to microprocessor, and video monitor for display of load curves and power generation. Planning tool for electric utilities, regulatory agencies, and laymen in understanding basics of electric-power systems operation.

  6. Electric propulsion system technology

    NASA Astrophysics Data System (ADS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-11-01

    kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements. systems-level issue is the potential for spacecraft contamination. Subsequent experimental and theoretical efforts should be directed toward verifying the performance and lifetime gains and characterizing the thruster flow field to assess its impact on spacecraft surfaces. Consequently, we have begun the design and development of a new facility to study engine

  7. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-01-01

    kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements. These propellants are also condensible at room temperature, substantially reducing test facility pumping requirements. The most significant systems-level issue is the potential for spacecraft contamination. Subsequent experimental and theoretical efforts should be directed toward verifying the performance and lifetime gains and characterizing the thruster flow field to assess its impact on spacecraft surfaces. Consequently, we have begun the design and development of a new facility to study engine operation

  8. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  9. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  10. Nuclear electric propulsion systems overview

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear propulsion background; schedule for the nuclear electric propulsion (NEP) project; NEP for the Space Exploration Initiative; NEP on-going systems tasks; 20KWe mission/system study; and agenda.

  11. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  12. Electrical power systems for Mars

    NASA Technical Reports Server (NTRS)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  13. Electrical power systems for Mars

    NASA Astrophysics Data System (ADS)

    Giudici, Robert J.

    1986-05-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  14. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1991-06-01

    The technical progress in four investigations which make up the project 'Support of Research Projects for Electrical Energy Systems,' funded by the U.S. Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST) is discussed. These investigations include measurements of magnetic fields in support of epidemiological and in vitro studies of biological field effects; development of a technique to measure trace amounts of S2F10 in the presence of SF6 and the development of an improved stochastic analyzer for pulsating phenomena; optical and electrical measurements of negative streamers preceding electric breakdown in liquid dielectrics; and the development of a reference resistive divider for high voltage impulse measurements.

  15. Electrical power system WP-04

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  16. Electric design of wind-electric water pumping systems

    SciTech Connect

    Muljadi, E.; Flowers, L.; Green, J.; Bergey, M.

    1995-09-01

    Wind turbine technology has been used to pump water since ancient history. Direct mechanically coupled wind turbines are the most common method for pumping water to farm croplands and livestock. Many more recent wind turbines are electrically coupled, with the water pump connected to the wind turbine via a motor-generator connection. With electrical coupling, the distance and location of the water pump is independent of the location of the wind turbine. Therefore, the wind turbine can be located at an optimal wind energy site while the water pump is close to the water well or water tank. This paper analyzes a water-pumping system consisting of a wind turbine, a permanent magnet synchronous generator, an induction motor, and centrifugal-type water pump.

  17. Electricity Market Complex Adaptive System

    SciTech Connect

    2004-10-14

    EMCAS is a model developed for the simulation and analysis of electricity markets. As power markets are relatively new and still continue to evolve, there is a growing need for advanced modeling approaches that simulate the behavior of electricity markets over time and how market participants may act and react to the changing economic, financial, and regulatory environments in which they operate. A new and rather promising approach applied in the EMCAS software is to model the electricity market as a complex adaptive system using an agent-based modeling and simulation scheme. With its unique combination of various novel approaches, the Agent Based Modeling System (ABMS) provides the ability to capture and investigate the complex interactions between the physical infrastructures (generation, transmission, and distribution) and the economic behavior of market participants that are a trademark of the newly emerging markets.

  18. Electricity Market Complex Adaptive System

    Energy Science and Technology Software Center (ESTSC)

    2004-10-14

    EMCAS is a model developed for the simulation and analysis of electricity markets. As power markets are relatively new and still continue to evolve, there is a growing need for advanced modeling approaches that simulate the behavior of electricity markets over time and how market participants may act and react to the changing economic, financial, and regulatory environments in which they operate. A new and rather promising approach applied in the EMCAS software is tomore » model the electricity market as a complex adaptive system using an agent-based modeling and simulation scheme. With its unique combination of various novel approaches, the Agent Based Modeling System (ABMS) provides the ability to capture and investigate the complex interactions between the physical infrastructures (generation, transmission, and distribution) and the economic behavior of market participants that are a trademark of the newly emerging markets.« less

  19. 44. LOCK, ELECTRICAL SYSTEM, HAULAGE ENGINES, ELECTRICAL DETAILS AND LOCATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. LOCK, ELECTRICAL SYSTEM, HAULAGE ENGINES, ELECTRICAL DETAILS AND LOCATION. February 1938 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 17, Upper Mississippi River, New Boston, Mercer County, IL

  20. Dust-Tolerant Intelligent Electrical Connection System

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  1. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1993-10-01

    This report documents the technical progress in the two investigations which make up the project 'Support of Research Projects for Electrical Energy Systems,' Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. During 1992, the derivation of equations which predict differences between the average magnetic flux density using circular coil probes and the flux density at the center of the probe, assuming a dipole magnetic field, were completed. The information gained using these equations allows the determination of measurement uncertainty due to probe size when magnetic fields from many electrical appliances are characterized. Consultations with various state and federal organizations and the development of standards related to electric and magnetic field measurements continued. The second investigation is concerned with two different activities related to compressed-gas insulated high voltage systems: the measurement of dissociative electron attachment cross sections and negative ion production in S2F10, S2OF10, and S2O2F10, and Monte-Carlo simulations of ac-generated partial-discharge pulses that can occur in SF6-insulated power systems and can be sources of gas decomposition.

  2. Shunt regulation electric power system

    NASA Technical Reports Server (NTRS)

    Wright, W. H.; Bless, J. J. (Inventor)

    1971-01-01

    A regulated electric power system having load and return bus lines is described. A plurality of solar cells interconnected in a power supplying relationship and having a power shunt tap point electrically spaced from the bus lines is provided. A power dissipator is connected to the shunt tap point and provides for a controllable dissipation of excess energy supplied by the solar cells. A dissipation driver is coupled to the power dissipator and controls its conductance and dissipation and is also connected to the solar cells in a power taping relationship to derive operating power therefrom. An error signal generator is coupled to the load bus and to a reference signal generator to provide an error output signal which is representative of the difference between the electric parameters existing at the load bus and the reference signal generator. An error amplifier is coupled to the error signal generator and the dissipation driver to provide the driver with controlling signals.

  3. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  4. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  5. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1992-06-01

    This report documents the technical progress in the four investigations which make up the project 'Support of Research Projects for Electrical Energy Systems', Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. The second investigation is concerned with two different activities: the production of S2F10 in negative corona in SF6 and the measurement of electron scattering and dissociative electron attachment cross sections for SF6 and its electrical by-products. The third investigation is also concerned with tvo different activities: several liquids that are currently used or have potential for use as high voltage dielectrics are studied using conventional impulse breakdown measurement techniques and high-speed photography and advances in partial discharge measurement techniques are presented. The last investigation is concerned with the evaluation and improvement of methods for measuring fast transients in electrical power systems such as might be associated with an electromagnetic impulse.

  6. A simple electrical-mechanical model of the heart applied to the study of electrical-mechanical alternans

    NASA Technical Reports Server (NTRS)

    Clancy, Edward A.; Smith, Joseph M.; Cohen, Richard J.

    1991-01-01

    Recent evidence has shown that a subtle alternation in the surface ECG (electrical alternans) may be correlated with the susceptibility to ventricular fibrillation. In the present work, the author presents evidence that a mechanical alternation in the heartbeat (mechanical alternans) generally accompanies electrical alternans. A simple finite-element computer model which emulates both the electrical and the mechanical activity of the heart is presented. A pilot animal study is also reported. The computer model and the animal study both found that (1) there exists a regime of combined electrical-mechanical alternans during the transition from a normal rhythm towards a fibrillatory rhythm, (2) the detected degree of alternation is correlated with the relative instability of the rhythm, and (3) the electrical and mechanical alternans may result from a dispersion in local electrical properties leading to a spatial-temporal alternation in the electrical conduction process.

  7. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  8. Mechanical vs electric drive: which to choose

    SciTech Connect

    Smiley, C.H.

    1983-03-01

    One of the more basic decisions in haul truck selection is whether to buy a mechanical drive unit with transmission, torque converter, and propeller shaft or a unit with alternator, rectifier, and wheel drive motors. Both drives offer advantages and disadvantages for 85- to 120-ton trucks. The amount of horsepower actually available to the wheel via the 2 drive modes is discussed. It is suggested that an accurate comparison of life and cost of maintenance should be based on the number of tons of material moved as well as hours of service. Mechanical systems do have an advantage on very sharp grades (16% or more) at very low speeds and on gentle grades of 6% or less at speeds in excess of 30 mph. Between those 2 extremes, performance is nearly equal.

  9. LDEF mechanical systems

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry

    1991-01-01

    Following the Long Duration Exposure Facility (LDEF), the Systems Special Investigation Group (SIG) was involved in a considerable amount of testing of mechanical hardware flown on the LDEF. The primary objectives were to determine the effects of the long term exposure on: (1) mechanisms employed both on the LDEF or as part of individual experiments; (2) structural components; and (3) fasteners. Results of testing the following LDEF hardware are presented: LDEF structure, fasteners, trunnions, end support beam, environment exposure control cannisters, motors, and lubricants. A limited discussion of PI test results is included. The lessons learned are discussed along with the future activities of the System SIG.

  10. Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction

    SciTech Connect

    McRae, Terry G.; Lee, Kwan H.; Harris, Glen I.; Knittel, Joachim; Bowen, Warwick P.

    2010-08-15

    A cavity optoelectromechanical system is reported which combines the ultrasensitive transduction of cavity optomechanical systems with the electrical actuation of nanoelectromechanical systems. Ultrasensitive mechanical transduction is achieved via optomechanical coupling. Electrical gradient forces as large as 0.40 {mu}N are realized, facilitating strong actuation with ultralow dissipation. A scanning probe microscope is implemented, capable of characterizing the mechanical modes. The integration of electrical actuation into optomechanical devices is an enabling step toward the regime of quantum nonlinear dynamics and provides capabilities for quantum control of mechanical motion.

  11. Manned spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  12. Electric utility engineer`s FGD manual -- Volume 2: Major mechanical equipment; FGD proposal evaluations; Use of FGDPRISM in FGD system modification, proposal, evaluation, and design; FGD system case study. Final report

    SciTech Connect

    1996-03-04

    Part 2 of this manual provides the electric utility engineer with detailed technical information on some of the major mechanical equipment used in the FGD system. The objectives of Part 2 are the following: to provide the electric utility engineer with information on equipment that may be unfamiliar to him, including ball mills, vacuum filters, and mist eliminators; and to identify the unique technique considerations imposed by an FGD system on more familiar electric utility equipment such as fans, gas dampers, piping, valves, and pumps. Part 3 provides an overview of the recommended procedures for evaluating proposals received from FGD system vendors. The objectives are to provide procedures for evaluating the technical aspects of proposals, and to provide procedures for determining the total costs of proposals considering both initial capital costs and annual operating and maintenance costs. The primary objective of Part 4 of this manual is to provide the utility engineer who has a special interest in the capabilities of FGDPRISM [Flue Gas Desulfurization PRocess Integration and Simulation Model] with more detailed discussions of its uses, requirements, and limitations. Part 5 is a case study in using this manual in the preparation of a purchase specification and in the evaluation of proposals received from vendors. The objectives are to demonstrate how the information contained in Parts 1 and 2 can be used to improve the technical content of an FGD system purchase specification; to demonstrate how the techniques presented in Part 3 can be used to evaluate proposals received in response to the purchase specification; and to illustrate how the FGDPRISM computer program can be used to establish design parameters for the specification and evaluate vendor designs.

  13. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  14. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  15. Diesel Mechanics: Fuel Systems.

    ERIC Educational Resources Information Center

    Foutes, William

    This publication is the third in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to fuel injection systems in a diesel trade. The text contains eight units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities…

  16. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  17. Apollo Lunar Module Electrical Power System Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.

  18. Research for Electric Energy Systems

    SciTech Connect

    Anderson, W.E.

    1991-06-01

    This report documents the technical progress in investigations. The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. NIST cohosted a workshop on exposure and biological parameters that should be considered during the vitro studies with extremely low frequency (ELF) magnetic and electric fields. Also, equations were developed to predict the magnetic field in a parallel plate magnetic field exposure system. The second investigation is concerned with two different activities: the detection of trace levels of S{sub 2}F{sub 10} in SF{sub 6} and the development of an improved stochastic analyzer for pulsating phenomena (SAPP). The detection of S{sub 2}F{sub 10} in the presence of SF{sub 6} using mass-spectrometric detection coupled to a gas chromatograph is difficult because of the similar mass spectra. A technique is described that enables the detection of S{sub 2}F{sub 10} in gaseous SF{sub 6} down to the ppb level using a modified gas chromatograph-mass spectrometer. The new system was applied to an investigation of the stochastic behavior of negative corona (Trichel pulses) and the effect of a dielectric barrier on these discharges. The third investigation is concerned with breakdown and prebreakdown phenomena in liquid dielectrics. The activity reported here was a study of negative steamers preceding electric breakdown in hexanes. Using the image preserving optical delay, the growth of the streamers associated with partial discharges at a point cathode are photographed at high magnification. The last investigation is concerned with the evaluation and improvement of methods for measuring fast transients in electrical power systems such as might be associated with an electromagnetic impulse. A compact resistive divider, NIST4, was designed. It is anticipated that this divider together with some Kerr electro-optical devices will be used as the reference system at NIST.

  19. ELECTRICAL SUPPORT SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    S. Roy

    2004-06-24

    The purpose of this revision of the System Design Description (SDD) is to establish requirements that drive the design of the electrical support system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience/users are design engineers. This type of SDD both ''leads'' and ''trails'' the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to electrical support systems are obtained from the ''Project Functional and Operational Requirements'' (F&OR) (Siddoway 2003). Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), and fire hazards analyses. The above-mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canon and Leitner 2003) requirements. This SDD contains several appendices that include supporting information. Appendix B lists key system charts, diagrams, drawings, and lists, and Appendix C includes a list of system procedures.

  20. Mechanical strains and electric fields applied to topologically imprinted elastomers

    NASA Astrophysics Data System (ADS)

    Burridge, D. J.; Mao, Y.; Warner, M.

    2006-08-01

    We analyze and predict the behavior of a chirally imprinted elastomer under a mechanical strain and an electric field, applied along the helical axis. As the strain and/or field increases, the system is deformed from a conical or transverse imprinted state towards an ultimately nematic one. At a critical strain and/or field there is a first-order transition to a low imprinting efficiency state. This transition is accompanied by a discontinuous global rotation of the director toward the axis of the imprinted helix, measured by the cone angle, θ . We show that the threshold electric field required for switching this transition can be conveniently low, provided an appropriate prestrain is imposed. We suggest that these properties may give rise to a “chiral pump.”

  1. 107. OVERHEAD REFRIGERANT PIPING AND ELECTRICAL TERMINALS FOR SYSTEM 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. OVERHEAD REFRIGERANT PIPING AND ELECTRICAL TERMINALS FOR SYSTEM 2 CONTROLS IN MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Mechanical, Electrical, and Environmental Evaluation of Nano-Miniature Connectors

    SciTech Connect

    Hilton, J.W.

    2001-07-30

    Because of their small size (0.025-inch spacing), nano-miniature connectors have been chosen for JTA telemetry applications. At the time they were chosen, extensive testing had not been done to determine the mechanical, electrical, and environmental characteristics of these connectors at the levels required for use by weapon systems. Since nano-miniature connectors use some unique plating and wire crimping processes not used in most design agency connectors, it was decided that these properties should be tested thoroughly. This report describes the results of that testing.

  3. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  4. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  5. Ignitor Electrical Power Supply System

    NASA Astrophysics Data System (ADS)

    Coletti, Alberto; Coletti, Roberto; Costa, Pietro; Maffia, Giuseppe; Ramogida, Giuseppe; Roccella, Massimo; Santinelli, Maurizio; Starace, Fabio

    2004-11-01

    An iterative optimization process to reduce the total installed electrical power required for Ignitor has been performed, bringing its value down to about 70% of that estimated originally. Ignitor is planned to be installed within the 400 kV Station of Rondissone (near Turin). The required electrical power (1000 MVA / 320 MVAr, including 480 MVAr locally compensated through static system, SVC) has been demonstrated by the technical authority GRTN to be compatible with the Grid capability. The magnet systems of Ignitor are supplied by means of a set of 14, 12 pulse, current regulated, sequentially or internal freewheeling controlled, fully static power amplifier units which are installed inside standard, outdoor-kind containers, located near to the related step-down transformers. Each container can house up to 100 MW, 2x12 pulse power amplifier units. The connection between the power amplifiers and the machine is performed by means of coaxial, outdoor-kind, segregated bus-bars. These choices make the whole power supply system as flexible as possible in terms of the overall layout of the Ignitor plant.

  6. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  7. Designing Crane Controls with applied Mechanical and Electrical Safety Features

    NASA Technical Reports Server (NTRS)

    Lytle, Bradford P.; Walczak, Thomas A.; Delgado, H. (Technical Monitor)

    2002-01-01

    The use of overhead traveling bridge cranes in many varied applications is common practice. In particular, the use of cranes in the nuclear, military, commercial, aerospace, and other industries can involve safety critical situations. Considerations for Human Injury or Casualty, Loss of Assets, Endangering the Environment, or Economic Reduction must be addressed. Traditionally, in order to achieve additional safety in these applications, mechanical systems have been augmented with a variety of devices. These devices assure that a mechanical component failure shall reduce the risk of a catastrophic loss of the correct and/or safe load carrying capability. ASME NOG-1-1998, (Rules for Construction of Overhead and Gantry Cranes, Top Running Bridge, and Multiple Girder), provides design standards for cranes in safety critical areas. Over and above the minimum safety requirements of todays design standards, users struggle with obtaining a higher degree of reliability through more precise functional specifications while attempting to provide "smart" safety systems. Electrical control systems also may be equipped with protective devices similar to the mechanical design features. Demands for improvement of the cranes "control system" is often recognized, but difficult to quantify for this traditionally "mechanically" oriented market. Finite details for each operation must be examined and understood. As an example, load drift (or small motions) at close tolerances can be unacceptable (and considered critical). To meet these high functional demands encoders and other devices are independently added to control systems to provide motion and velocity feedback to the control drive. This paper will examine the implementation of Programmable Electronic Systems (PES). PES is a term this paper will use to describe any control system utilizing any programmable electronic device such as Programmable Logic Controllers (PLC), or an Adjustable Frequency Drive (AID) 'smart' programmable

  8. Electrical system for a motor vehicle

    DOEpatents

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  9. Electrical system for a motor vehicle

    DOEpatents

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  10. Mechanical design and driving mechanism of an isokinetic functional electrical stimulation-based leg stepping trainer.

    PubMed

    Hamzaid, N A; Fornusek, C; Ruys, A; Davis, G M

    2007-12-01

    The mechanical design of a constant velocity (isokinetic) leg stepping trainer driven by functional electrical stimulation-evoked muscle contractions was the focus of this paper. The system was conceived for training the leg muscles of neurologically-impaired patients. A commercially available slider crank mechanism for elliptical stepping exercise was adapted to a motorized isokinetic driving mechanism. The exercise system permits constant-velocity pedalling at cadences of 1-60 rev x min(-1). The variable-velocity feature allows low pedalling forces for individuals with very weak leg muscles, yet provides resistance to higher pedalling effort in stronger patients. In the future, the system will be integrated with a computer-controlled neuromuscular stimulator and a feedback control unit to monitor training responses of spinal cord-injured, stroke and head injury patients. PMID:18274073

  11. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance...

  12. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance...

  13. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance...

  14. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance...

  15. Theoretical Modeling of Mechanical-Electrical Coupling of Carbon Nanotubes

    SciTech Connect

    Lu, Jun-Qiang; Jiang, Hanqiang

    2008-01-01

    Carbon nanotubes have been studied extensively due to their unique properties, ranging from electrical, mechanical, optical, to thermal properties. The coupling between the electrical and mechanical properties of carbon nanotubes has emerged as a new field, which raises both interesting fundamental problems and huge application potentials. In this article, we will review our recently work on the theoretical modeling on mechanical-electrical coupling of carbon nanotubes subject to various loading conditions, including tension/compression, torsion, and squashing. Some related work by other groups will be also mentioned.

  16. Hybrid electric vehicle power management system

    DOEpatents

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  17. Electrical and mechanical design criteria for EHV and UHV: overhead transmission lines

    SciTech Connect

    Not Available

    1980-06-01

    The results are presented of a program devoted to the selection of electrical and mechanical design criteria and parameters for overhead power transmission lines for ac systems rated at from 345 to 1100 kV and for dc systems rated at from 600 to 1200 kV. Information is included on the environmental effects, i.e., audible noise and electric fields, of the lines, mechanical and economic requirements, safety, failures, grounding, and lightning protection. (LCL)

  18. Electric vehicle system for charging and supplying electrical power

    DOEpatents

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  19. 31. Closeup view of the electrical and mechanical rail connections ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Closeup view of the electrical and mechanical rail connections between the two spans facing north; 'pins' and electrical connection. Both spans are down and locked. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  20. 7. Detail view of electrical box and gear mechanism ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of electrical box and gear mechanism - Mississippi River 9-Foot Channel, Lock & Dam No. 1, In Mississippi River at Mississippi Boulevard, below Ford Parkway Bridge, Saint Paul, Ramsey County, MN

  1. 8. QUENCHING MECHANISM FOR THE CONTINUOUS ELECTRIC FURNACE HEAT TREATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. QUENCHING MECHANISM FOR THE CONTINUOUS ELECTRIC FURNACE HEAT TREATING LINE AT THE HEAT TREATMENT PLANT OF THE DUQUESNE WORKS. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  2. Mechanical and Electrical Properties of Aluminum/Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dong, Lina; Zhou, Wenying; Sui, Xuezhen; Wang, Zijun; Cai, Huiwu; Wu, Peng; Zhang, Yating; Zhou, Anning

    2016-07-01

    Surface-modified self-passivated aluminum (Al) nanoparticles were used for reinforcing epoxy (EP) resin, and the curing behavior, mechanical and electrical properties of the Al/EP nanocomposites were investigated. The incorporation of Al nanoparticles into EP significantly decreases the cure reaction enthalpy of the nancomposites, and the apparent activation energy of Al/EP systems is 64.96 kJ/mol. The coefficient of thermal expansion of the nanocomposites decreases with increasing the Al loading due to the strong interaction between the Al and the EP matrix. The storage modulus of the nanocomposites increases continuously with Al content, whereas, the glass transition temperature declines slightly. With increasing the Al content, the tensile modulus, flexural modulus and compressive modulus of the nanocomposites increase continuously compared with the neat one. The mechanical properties are improved by Al nanoparticles at low Al contents. The best overall dielectric and electrical performance are achieved about at 1 wt.% of Al concentration. The enhanced dielectric breakdown strength is mainly related to the insulating alumina shell on the surface of core Al and the strong interfacial interactions.

  3. Orientational mechanisms in liquid crystalline systems. 2. The contribution to solute ordering from the reaction field interaction between the solute electric quadrupole moment and the solvent electric field gradient.

    PubMed

    Celebre, Giorgio; Ionescu, Andreea

    2010-01-14

    In the previous paper of this issue, [Celebre, G.; Ionescu, A. J. Phys. Chem. B doi: 10.1021/jp907310g], following a generalized reaction field approach in the linear response approximation, we were successful in obtaining an analytical compact expression for the mean-field anisotropic orientational potential U(Q-EFG) theoretically experienced by a highly idealized nonionic and apolar solute, considered as a point quadrupole immersed in a uniaxial polarizable continuum medium (model of a nematic solvent comprised of dipolar mesogenic molecules). The term U(Q-EFG) describes the electrostatic interaction between the electric quadrupole of the solute and the electric field gradient induced at the solute by the surrounding medium polarized by the distribution of electric charges representing the quadrupolar solute itself. In the present paper, the obtained potential has been considered as an additional orientational interaction contributing to the solute ordering, besides the well-recognized and very effective "short-range" (size-and-shape-dictated) mechanisms. Since in our theory the solvent is characterized by its dielectric tensor, the model has been widely tested by taking as references the experimental order parameters of several uniaxial and biaxial different small rigid probe molecules (H(2), N(2), acetylene, allene, propyne, benzene, hexafluorobenzene, 1,4-difluorobenzene, and norbornadiene) dissolved in the nematic solvents ZLI1132 (Deltaepsilon > 0) and EBBA (Deltaepsilon < 0); moreover, the order parameters of the same solutes in the so-called nematic "magic mixture" (45 wt % EBBA + 55 wt % ZLI1132), where the short-range orientational effects are commonly believed to be very dominant, have been conventionally assumed as reference of the absence of electrostatic orientational effects. The experimental order parameters of the treated solutes, obtained in the past by liquid crystal NMR and available from literature, have been then compared with those

  4. Electrical self-healing of mechanically damaged zinc oxide nanobelts.

    PubMed

    Zang, Jianfeng; Xu, Zhi-Hui; Webb, Richard A; Li, Xiaodong

    2011-01-12

    We report the observation of remarkable electrical self-healing in mechanically damaged ZnO nanobelts. Nanoindentation into intrinsically defect-free ZnO nanobelts induces deformation and crack damage, causing a dramatic electrical signal decrease. Two self-healing regimes in the nanoindented ZnO nanobelts are revealed. The physical mechanism for the observed phenomena is analyzed in terms of the nanoindentation-induced dislocations, the short-range atomic diffusion in nanostructures, and the local heating of the dislocation zone in the electrical measurement. PMID:21121680

  5. Thermally actuated mechanical systems

    NASA Astrophysics Data System (ADS)

    Sul, Onejae

    This thesis will discuss the generation of controlled sub-micron motions using novel micro actuators. Our research focuses on the development of an arm-type actuator and a free-motion locomotive walking device. Nano-science and nano-technology focuses on the creation of novel functional materials and also at the development of new fabrication techniques incorporating them. In the fields of novel fabrication techniques, manipulations of micron or sub-micron objects by micro actuators have been suggested in the science and engineering societies for mainly two reasons. From a scientific standpoint, new tools enable new prospective sciences, as is evident from the development of the atomic force microscope. From an engineering standpoint, the miniaturization of manipulation tools will require less material and less energy during a material's production. In spite of such importance, progress in the actuator miniaturization is in a primitive state, especially for the micro mobile devices. The thesis will be a key step in pursuit of this goal with an emphasis on generating motions. Our static actuator uses the excellent elastic properties of multiwall carbon nanotubes as a template for a bimorph system. Deflections in response to temperature variations are demonstrated. The mobile device itself is a bimorph system consisting of thin metal films. Control mechanisms for its velocity and steering are discussed. Finally, fundamental limits on the capabilities of the two devices in a more general sense are discussed under via laws of physics.

  6. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  7. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  8. Power system characteristics for more electric aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1993-01-01

    It should not be suprising that more electric aircraft must meet significantly more difficult electrical power system requirements than were considereed when today's power distribution systems were being developed. Electric power, no longer a secondary system, will become a critical element of the primary control system. Functional reliability requiirements will be extremely stringent and can only be met by controlling element redundancy within a distributed power system. Existing electrical systems were not developed to have both the power system and the control/sensing elements distributed and yet meet the requirements of lighting tolerance and high intensity radio frequency (HIRF). In addition, the operation of electric actuators involves high transient loading and reverse energy flows. Such phenomena were also not anticipated when power quality was specified for either 270 vdc or 400 Hertz ac power systems. This paper will expand upon the issues and discuss some of the technologies involved in their resolution.

  9. Superconductivity for electric power systems: Program overview

    SciTech Connect

    Not Available

    1995-02-01

    Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

  10. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  11. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  12. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  13. Electrical resonance with voltage-gated ion channels: perspectives from biophysical mechanisms and neural electrophysiology

    PubMed Central

    Ge, Lin; Liu, Xiao-dong

    2016-01-01

    Electrical resonance, providing selective signal amplification at preferred frequencies, is a unique phenomenon of excitable membranes, which has been observed in the nervous system at the cellular, circuit and system levels. The mechanisms underlying electrical resonance have not been fully elucidated. Prevailing hypotheses attribute the resonance to voltage-gated ion channels on the membrane of single neurons. In this review, we follow this line of thinking to summarize and analyze the biophysical/molecular mechanisms, and also the physiological relevance of channel-mediated electrical resonance. PMID:26725736

  14. Electrical insulation systems for the ITER CS modules

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Martovetsky, N. N.

    2014-01-01

    For the U.S. fabricated ITER Central Solenoid (CS), six, almost identical, modules will be fabricated, then stacked together. The electrical insulation systems of the CS modules consist of turn, layer, and ground insulation. These electrical systems also serve to bond the coil conductors together. For this purpose, an epoxy resin is transferred into the coil assembly using a carefully designed vacuum-pressure impregnation process. The most important testing procedures, data, and design criteria for the key low-temperature, mechanical, and electrical properties are reviewed. Design of these systems is discussed.

  15. (Wind electric systems). Final report

    SciTech Connect

    Sencenbaugh, J.R.

    1981-06-01

    This report details the results of a demonstration project, the design and testing of a low power, high reliability wind electric system for remote, stand-alone locations. The study consisted of two basic areas. An engineering redesign of a sucessful preproduction prototype to determine best material usage in castings and manufacturing time, in addition to evaluating performance vs cost tradeoffs in design. The second stage of the program covered actual field testing of the redesigned machine in remote areas. After field testing, the machine was to undertake a final redesign to correct any weak areas found during the field evaluation period. Three machines of this design were tested throughout various regions of the United States. These units were located in Nederland, Colorado, Whidbey Island, Washington and Fort Cronkite, San Francisco, CA. The results obtained from prolonged testing were both varied and valuable. A detailed structural analysis was done during the preliminary redesign and final design stages of this program. This report is organized in chronological order.

  16. 49 CFR 238.225 - Electrical system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Conductors. Conductor sizes shall be selected on the basis of current-carrying capacity, mechanical strength... produce electrical noise that affects the safe performance of train line control and communications...

  17. 49 CFR 238.225 - Electrical system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Conductors. Conductor sizes shall be selected on the basis of current-carrying capacity, mechanical strength... produce electrical noise that affects the safe performance of train line control and communications...

  18. Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: Equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact

    NASA Astrophysics Data System (ADS)

    Garg, Rohini; Rao, Badari Narayana; Senyshyn, Anatoliy; Krishna, P. S. R.; Ranjan, Rajeev

    2013-07-01

    The structure-property correlation in the lead-free piezoelectric (1-x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0electric field, and mechanical impact by Raman scattering, ferroelectric, piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc)+rhombohedral (R3c) for the precritical compositions, 0≤x≤0.05, (ii) cubiclike for 0.06≤x≤0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07≤x<0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (˜50 Å) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.

  19. Coupling of electrical and mechanical switching in nanoscale ferroelectrics

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Li, Qian; Chen, Long-Qing; Kalinin, Sergei V.

    2015-11-01

    While electric field induced ferroelectric switching has been extensively studied and broadly utilized, pure mechanical switching via flexoelectric effect has recently opened up an alternative method for domain writing due to their highly localized, electrically erasable and electric damage free characteristics. Thus far, few studies have been made on the coupling effect of electro-mechanical switching in ferroelectric materials, likely due to the experimental difficulty in the accurate definition of the tip-surface contact area and in the identification of mechanical contribution from electrical effect. Here, we employed self-consistent phase-field modeling to investigate the bi-polar switching behavior of (001) oriented Pb(Zr0.2Ti0.8)O3 thin film under concurrent electric and strain field created via a piezoresponse force microscope probe. By separating the effects from electric field, homogeneous strain and strain gradient, we revealed that the homogeneous strain suppresses the spontaneous polarization and accordingly increases the coercive field, and the strain gradient favors unipolar switching and inhibit it in the reverse direction, thus causing lateral offset of the hysteresis loop. The uncertainty of flexoelectric coefficients and the influence of flexocoupling coefficients on switching have also been discussed. Our study could necessitate further understanding of the electric, piezoelectric, and flexoelectric contribution to the switching behavior in nanoscale ferroelectric oxides.

  20. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing

    PubMed Central

    Reid, Brian; Zhao, Min

    2014-01-01

    Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358

  1. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will be designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations

  2. A flight simulator control system using electric torque motors

    NASA Technical Reports Server (NTRS)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  3. 49 CFR 238.425 - Electrical system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electrical system. 238.425 Section 238.425 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER EQUIPMENT SAFETY STANDARDS Specific Requirements for Tier II Passenger Equipment § 238.425 Electrical system....

  4. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS

    PubMed Central

    Patel, Kevin; Golemi-Kotra, Dasantila

    2016-01-01

    The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of cidABC and lrgAB operons, the gene products of which are involved in programmed cell death and lysis. In vivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the in vivo observations that regulation of the lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS. PMID:27127614

  5. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS.

    PubMed

    Patel, Kevin; Golemi-Kotra, Dasantila

    2015-01-01

    The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of cidABC and lrgAB operons, the gene products of which are involved in programmed cell death and lysis. In vivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the in vivo observations that regulation of the lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS. PMID:27127614

  6. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity

    PubMed Central

    Pereda, Alberto E.; Curti, Sebastian; Hoge, Gregory; Cachope, Roger; Flores, Carmen E.; Rash, John E.

    2012-01-01

    The term synapse applies to cellular specializations that articulate the processing of information within neural circuits by providing a mechanism for the transfer of information between two different neurons. There are two main modalities of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of the properties and modifiability of chemical transmission, less is still known regarding the plastic properties of electrical synapses, whose structural correlate is the gap junction. A wealth of data indicates that, rather than passive intercellular channels, electrical synapses are more dynamic and modifiable than was generally perceived. This article will discuss the factors determining the strength of electrical transmission and review current evidence demonstrating its dynamic properties. Like their chemical counterparts, electrical synapses can also be plastic and modifiable. PMID:22659675

  7. Emulation of quantum mechanical billiards by electrical resonance circuits.

    PubMed

    Bengtsson, Olof; Larsson, Johan; Berggren, Karl-Fredrik

    2005-05-01

    We propose that a two-dimensional electric network may be used for fundamental studies of wave function properties, transport, and related statistics. Using Kirchhoff's current law and the j omega method we find that the network is analogous to a discretized Schrödinger equation for quantum billiards and dots. Thus complex electric potentials play the role of quantum mechanical wave functions. Ways of realizing the electric network are discussed briefly. The role of symmetries is outlined, and a direct way of selecting states with a given symmetry is presented. PMID:16089633

  8. Simulation of Electrical Transport in Rocks under Mechanical Action

    NASA Astrophysics Data System (ADS)

    Salgueiro da Silva, M. A.; Seixas, T. M.

    2015-12-01

    Rock's electrical properties can be changed by mechanical action, especially when deformation is accompanied by micro-fracturing processes. Knowing how electrical charge is generated in inelastically deformed rocks, the nature and properties of the generated charge carriers, and their spatial distribution and propagation is crucial to gain insight into the origin of seismo-electromagnetic signals. In this work, we describe briefly a model for the numerical simulation of electrical transport in rocks under mechanical action, assuming that high and low mobility charge carriers of opposite signs can be simultaneously generated by micro-fracturing processes and recombine, diffuse and drift across the sample rock. The electrical behavior can then be described using an adaptation of the formalism applied to semiconductors. We provide simulation results on a one-dimensional lattice using finite-difference discretization. Our results show that a large mobility contrast among charge carriers allows charge separation inside the deformation region, which leads to the formation of charged layers of alternate signs. Inside these layers, rapid electric field variations are observed which can lead to the emission of electromagnetic radiation. With proper positioning of current electrodes inside the deformation region, it is possible to collect electrical current even without any applied voltage. We discuss our results in the light of available experimental results on the generation of electrical and electromagnetic signals in deformed rocks.

  9. Electrical and Mechanical Strategies to Enable Cardiac Repair and Regeneration

    PubMed Central

    Cao, Hung; Kang, Bong Jin; Lee, Chia-An; Shung, K. Kirk; Hsiai, Tzung K.

    2015-01-01

    Inadequate replacement of lost ventricular myocardium from myocardial infarction leads to heart failure. Investigating the regenerative capacity of mammalian hearts represents an emerging direction for tissue engineering and cell-based therapy. Recent advances in stem cells hold promise to restore cardiac functions. However, embryonic or induced pluripotent stem cell-derived cardiomyocytes lack functional phenotypes of the native myocardium, and transplanted tissues are not fully integrated for synchronized electrical and mechanical coupling with the host. In this context, this review highlights the mechanical and electrical strategies to promote cardiomyocyte maturation and integration, and to assess the functional phenotypes of regenerating myocardium. Simultaneous micro-electrocardiogram and high-frequency ultrasound techniques will also be introduced to assess electrical and mechanical coupling for small animal models of heart regeneration. PMID:25974948

  10. Fault-tolerant electrical power system

    NASA Astrophysics Data System (ADS)

    Mehdi, Ishaque S.; Weimer, Joseph A.

    1987-10-01

    An electrical system that will meet the requirements of a 1990s two-engine fighter is being developed in the Fault-Tolerant Electrical Power System (FTEPS) program, sponsored by the AFWAL Aero Propulsion Laboratory. FTEPS will demonstrate the generation and distribution of fault-tolerant, reliable, electrical power required for future aircraft. The system incorporates MIL-STD-1750A digital processors and MIL-STD-1553B data buses for control and communications. Electrical power is distributed through electrical load management centers by means of solid-state power controllers for fault protection and individual load control. The system will provide uninterruptible power to flight-critical loads such as the flight control and mission computers with sealed lead-acid batteries. Primary power is provided by four 60 kVA variable speed constant frequency generators. Buildup and testing of the FTEPS demonstrator is expected to be complete by May 1988.

  11. Captured key electrical safety lockout system

    DOEpatents

    Darimont, D.E.

    1995-10-31

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member`s second position corresponds to the preselected position at which the key can be removed from and inserted into the lock. 7 figs.

  12. Captured key electrical safety lockout system

    DOEpatents

    Darimont, Daniel E.

    1995-01-01

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member's second position corresponds to the preselected position at which the key can be removed from and inserted into the lock.

  13. Mechanical and electrical anisotropy in Mimosa pudica pulvini

    PubMed Central

    Foster, Justin C; Baker, Kara D; Markin, Vladislav S

    2010-01-01

    Thigmonastic or seismonastic movements in Mimosa pudica, such as the response to touch, appear to be regulated by electrical, hydrodynamical and chemical signal transduction. The pulvinus of Mimosa pudica shows elastic properties, and we found that electrically or mechanically induced movements of the petiole were accompanied by a change of the pulvinus shape. As the petiole falls, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of water between the upper and lower parts of the pulvinus. This hydroelastic process is reversible. During the relaxation of the petiole, the volume of the lower part of the pulvinus increases and the volume of the upper part decreases. Redistribution of ions between the upper and lower parts of a pulvinus causes fast transport of water through aquaporins and causes a fast change in the volume of the motor cells. Here, the biologically closed electrochemical circuits in electrically and mechanically anisotropic pulvini of Mimosa pudica are analyzed using the charged capacitor method for electrostimulation at different voltages. Changing the polarity of electrodes leads to a strong rectification effect in a pulvinus and to different kinetics of a capacitor discharge if the applied initial voltage is 0.5 V or higher. The electrical properties of Mimosa pudica's pulvini were investigated and the equivalent electrical circuit within the pulvinus was proposed to explain the experimental data. The detailed mechanism of seismonastic movements in Mimosa pudica is discussed. PMID:20855975

  14. Safety of high speed guided ground transportation systems: An overview of biological effects and mechanisms relevant to EMF exposures from mass transit and electric rail systems. Final report, October 1991-July 1993

    SciTech Connect

    Goldberg, R.B.; Creasey, W.A.; Foster, K.R.

    1993-08-01

    The U.S. has implemented a national initiative to develop maglev (magnetic levitation) and other high-speed rail (HSR) systems. There are concerns for potential adverse health effects of the Extremely Low Frequency (3-3,000 Hz) electric and magnetic fields (EMF) produced by these systems. The Environmental Protection Agency's Office of Radiation Programs is assisting the Federal Railroad Administration address these concerns; this comprehensive review is part of that effort. It outlines magnetic field exposure measurements of the TR07 German maglev system compared with other HSR and conventional systems.

  15. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical systems. 127.1107 Section 127.1107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical...

  16. Conservation of Mechanical and Electric Energy: Simple Experimental Verification

    ERIC Educational Resources Information Center

    Ponikvar, D.; Planinsic, G.

    2009-01-01

    Two similar experiments on conservation of energy and transformation of mechanical into electrical energy are presented. Both can be used in classes, as they offer numerous possibilities for discussion with students and are simple to perform. Results are presented and are precise within 20% for the version of the experiment where measured values…

  17. 132. WEST SIDE OF MECHANICAL AND ELECTRICAL ROOM (210), LSB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    132. WEST SIDE OF MECHANICAL AND ELECTRICAL ROOM (210), LSB (BLDG. 751), QUALITY CONTROL BOARD ON LEFT. SOUTH SIDE OF TRANSFORMER ROOM (212) ON RIGHT SIDE OF PHOTOGRAPH, THROUGH OPEN DOORS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 113. VIEW OF NORTH SIDE OF MECHANICAL AND ELECTRICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. VIEW OF NORTH SIDE OF MECHANICAL AND ELECTRICAL ROOM (110), LSB (BLDG. 770). QUALITY ASSURANCE ROOM (106A) ON RIGHT SIDE OF PHOTO; CABLE TRAYS OVERHEAD AT TOP; STAIRS TO LSB (BLDG. 770) ADDITION (ROOMS 117 THROUGH 120) IN CENTER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. 28. View of the electrical and mechanical rail connections between ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. View of the electrical and mechanical rail connections between the two spans. View is from the south span looking north at the north span which is not fully down. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  20. Minimum Check List for Mechanical and Electrical Plans & Specifications.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of School Facility Services.

    This is the fifth revision of the Minimum Check List since its origin in 1960 by North Carolina's School Planning. The checklist was developed to serve as a means of communication between school agencies and design professionals and has been widely used in the development and review of mechanical and electrical plans and specifications by…

  1. Automotive Electricity: Automotive Mechanics Instructional Program. Block 3.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The third of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive electricity at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  2. Bus bar electrical feedthrough for electrorefiner system

    DOEpatents

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2013-12-03

    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  3. Electromagnetic interference filter for automotive electrical systems

    DOEpatents

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  4. Flow aeroacoustic damping using coupled mechanical-electrical impedance in lined pipeline

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Huang, Yi-Yong; Chen, Xiao-Qian; Bai, Yu-Zhu; Tan, Xiao-Dong

    2015-05-01

    We report a new noise-damping concept which utilizes a coupled mechanical-electrical acoustic impedance to attenuate an aeroacoustic wave propagating in a moving gas confined by a cylindrical pipeline. An electrical damper is incorporated to the mechanical impedance, either through the piezoelectric, electrostatic, or electro-magnetic principles. Our numerical study shows the advantage of the proposed methodology on wave attenuation. With the development of the micro-electro-mechanical system and material engineering, the proposed configuration may be promising for noise reduction. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404405, 91216201, 51205403, and 11302253).

  5. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  6. 72. LOCK ELECTRICAL SYSTEM CONTROL SWITCH CABINET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. LOCK - ELECTRICAL SYSTEM - CONTROL SWITCH CABINET - PANEL ARRANGEMENT AND DETAILS (ML-5-29/33-FS), March 1934 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam No. 5, Minneiska, Winona County, MN

  7. Effect of Ar Ion Beam Pre-Treatment of Poly(ethylene terephthalate) Substrate on the Mechanical and Electrical Stability of Flexible InSnO Films Grown by Roll-to-Roll Sputtering System

    NASA Astrophysics Data System (ADS)

    Choi, Kwang-Hyuk; Kim, Han-Ki

    2013-10-01

    We investigated the effects of Ar ion beam irradiation on a flexible poly(ethylene terephthalate) (PET) substrate as surface pre-treatment method in the roll-to-roll (R2R) sputtering system and its contribution to the electrical durability of flexible InSnO (ITO) electrode upon that the flexible PET substrate under repeated mechanical stresses. It was found that the Ar ion beam irradiation of the flexible PET surface could improve an adhesion between R2R sputter-grown ITO film and the PET substrate. X-ray photoelectron spectroscopy results showed that the Ar ion beam irradiation lead to an increase of hydrophilic functional groups when the working pressure, Ar ion beam power, and exposure time increases. Repetitive bending stresses for the flexible ITO/PET film which fabricated through the surface pre-treatment by Ar ion beam irradiation showed more stable electrical durability than those of ITO films on the wet-cleaned PET substrate due to enhanced interfacial adhesion between the ITO film and PET surface. This suggests that the Ar ion beam pre-treatment before sputtering of ITO film in R2R sputtering system is an effective technique to improve the adhesion between ITO film and PET substrate.

  8. Electric propulsion system for wheeled vehicles

    SciTech Connect

    Ramos, J.A.

    1981-11-03

    An electric propulsion system for a wheeled vehicle has a generator and motor connected to a drive shaft and an electrical system for charging a battery during all conditions of power transfer from the wheels of the vehicle to the generator to minimize energy required for propulsion. A variable speed power coupling unit connecting the motor to the drive shaft has sprockets revolving about a belt connected sun sprocket with speed control effected by varying the rate of satellite sprocket rotation.

  9. SITE ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E.P. McCann

    1999-04-16

    The Site Electrical Power System receives and distributes utility power to all North Portal site users. The major North Portal users are the Protected Area including the subsurface facility and Balance of Plant areas. The system is remotely monitored and controlled from the Surface Operations Monitoring and Control System. The system monitors power quality and provides the capability to transfer between Off-Site Utility and standby power (including dedicated safeguards and security power). Standby power is only distributed to selected loads for personnel safety and essential operations. Security power is only distributed to essential security operations. The standby safeguards and security power is independent from all other site power. The system also provides surface lighting, grounding grid, and lightning protection for the North Portal. The system distributes power during construction, operation, caretaker, and closure phases of the repository. The system consists of substation equipment (disconnect switches, breakers, transformers and grounding equipment) and power distribution cabling from substation to the north portal switch gear building. Additionally, the system includes subsurface facility substation (located on surface), switch-gear, standby diesel generators, underground duct banks, power cables and conduits, switch-gear building and associated distribution equipment for power distribution. Each area substation distributes power to the electrical loads and includes the site grounding, site lighting and lightning protection equipment. The site electrical power system distributes power of sufficient quantity and quality to meet users demands. The Site Electrical Power System interfaces with the North Portal surface systems requiring electrical power. The system interfaces with the Subsurface Electrical Distribution System which will supply power to the underground facilities from the North Portal. Power required for the South Portal and development side

  10. High density printed electrical circuit board card connection system

    DOEpatents

    Baumbaugh, Alan E.

    1997-01-01

    A zero insertion/extraction force printed circuit board card connection system comprises a cam-operated locking mechanism disposed along an edge portion of the printed circuit board. The extrusions along the circuit board mate with an extrusion fixed to the card cage having a plurality of electrical connectors. The card connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned. The card connection system provides a simple solution to the need for a greater number of electrical signal connections.

  11. High density printed electrical circuit board card connection system

    DOEpatents

    Baumbaugh, A.E.

    1997-05-06

    A zero insertion/extraction force printed circuit board card connection system comprises a cam-operated locking mechanism disposed along an edge portion of the printed circuit board. The extrusions along the circuit board mate with an extrusion fixed to the card cage having a plurality of electrical connectors. The card connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned. The card connection system provides a simple solution to the need for a greater number of electrical signal connections. 12 figs.

  12. Electrical aspects of photovoltaic-system simulation

    NASA Astrophysics Data System (ADS)

    Hart, G. W.; Raghuraman, P.

    1982-06-01

    A TRNSYS simulation was developed to simulate the performance of utility interactive residential photovoltaic energy systems. The PV system is divided into major functional components, which are individually described with computer models. The results of simulation and actual measured data are compared. The electrical influences on the design of such photovoltaic energy systems are given particular attention.

  13. The Lebanese electric power system operational problems

    SciTech Connect

    Yehia, M.; Saidi, M.; Diab, H.; Kabalan, K. )

    1991-09-01

    This article deals with the analysis of the existing practical problems in the Lebanese electric power system and provides guidelines for future research and strategies for solving the operational problems which are now facing the system. These problems are partly due, first, to the socioeconomic situation in Lebanon after 14 years of a devastating war and second, to the particularity of the Lebanese system.

  14. Electric fish as natural models for technical sensor systems

    NASA Astrophysics Data System (ADS)

    von der Emde, Gerhard; Bousack, Herbert; Huck, Christina; Mayekar, Kavita; Pabst, Michael; Zhang, Yi

    2009-05-01

    Instead of vision, many animals use alternative senses for object detection. Weakly electric fish employ "active electrolocation", during which they discharge an electric organ emitting electrical current pulses (electric organ discharges, EOD). Local EODs are sensed by electroreceptors in the fish's skin, which respond to changes of the signal caused by nearby objects. Fish can gain information about attributes of an object, such as size, shape, distance, and complex impedance. When close to the fish, each object projects an 'electric image' onto the fish's skin. In order to get information about an object, the fish has to analyze the object's electric image by sampling its voltage distribution with the electroreceptors. We now know a great deal about the mechanisms the fish use to gain information about objects in their environment. Inspired by the remarkable capabilities of weakly electric fish in detecting and recognizing objects with their electric sense, we are designing technical sensor systems that can solve similar sensing problems. We applied the principles of active electrolocation to devices that produce electrical current pulses in water and simultaneously sense local current densities. Depending on the specific task, sensors can be designed which detect an object, localize it in space, determine its distance, and measure certain object properties such as material properties, thickness, or material faults. We present first experiments and FEM simulations on the optimal sensor arrangement regarding the sensor requirements e. g. localization of objects or distance measurements. Different methods of the sensor read-out and signal processing are compared.

  15. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  16. Mechanical and electrical tuning in a tonotopically organized insect ear

    NASA Astrophysics Data System (ADS)

    Hummel, Jennifer; Schöneich, Stefan; Hedwig, Berthold; Kössl, Manfred; Nowotny, Manuela

    2015-12-01

    The high-frequency hearing organ of bushcrickets - the crista acustica (CA) - is tonotopically organized. Details about the mechano-electrical transduction mechanisms within the sensory-cell complex, however, remain unknown. In the recent study, we investigated and compared the anatomical, mechanical and electrophysiological properties of the CA and reveal a strong correlation of the mechanical and neuronal frequency tuning, which is supported by an anatomical gradient along the CA. Only in the distal high-frequency region of the CA a discrepancy between a strong mechanical response to low frequencies <30 kHz and a neuronal response that was restricted to frequencies >30 kHz was found. Therefore, we suggest that there might be additional intrinsic tuning mechanisms in the sensory cells of the distal region to distinguish the frequency content of sound.

  17. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  18. System performance predictions for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.

    1993-01-01

    Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.

  19. The Dynamic Balancer electrical safety systems

    SciTech Connect

    Konkel, H.

    1997-12-01

    The Pantex Plant Dynamic Balancer is used to identify physical imbalance in some weapon systems. This study was conducted at the request of the US Department of Energy/Albuquerque Operations Office (USDOE/AL) Dynamic Balancer Project Team to identify the electrical conditions required for motor over-speed to occur and to discuss the functions of the various electrical protective features associated with the Dynamic Balancer (DB). As is shown through the development of a fault tree, numerous electrical and human failures are required for over-speed conditions to occur. As directed by the Project Team, no effort was made to develop detailed fault trees for all electrical systems, to quantify basic events in the fault tree, or to develop accident scenarios leading to or resulting from over-speed. The Pantex Building 12-60, Bay 2, facility electrical circuits and grounding are described, and potential hazards are discussed. DB motor over-speed is a safety concern, and therefore, the controls that limit this condition are described and discussed in detail. Other safety-significant electrical circuits are discussed as well. These safety systems also are described in the facility Basis for Interim Operation. A potential for a motor over-speed that is not sensed by the standard safety protective systems does exist. This fault pathway is discussed, and recommendations to mitigate its effect are made.

  20. Green electricity: Tracking systems for environmental disclosure

    SciTech Connect

    Biewald, B.E.; Ramey, J.A.

    1997-12-31

    For the first time, electricity consumers in the US are beginning to choose their generation providers. One of the opportunities created by the introduction of retail choice in electricity is the chance for customers to influence the mix of generating resources through their purchasing decisions. Some environmentally aware consumers will want {open_quotes}clean,{close_quotes} {open_quotes}green,{close_quotes} or renewable power. While some suppliers will attempt to differentiate themselves according to their environmental performance, such claims for green electricity can be particularly difficult to verify given the complexity of the interconnected electric system. Because electricity is delivered over an integrated transmission grid and kilowatt-hours at the point of retail sale are indistinguishable from each other; disclosure requires tracking protocols to attribute generation at power plants to sales at the customers` meters. Fortunately, it is possible to implement a workable disclosure system. Some states have already included disclosure requirements in their electric industry restructuring orders and legislation. In this paper, a set of design criteria for an environmental disclosure system are presented along with two methods for disclosure: the company approach and the product approach. In addition, the authors discuss of power pools, data availability issues, and propose a company-based disclosure system using a {open_quotes}wholesale sales first{close_quotes} approach to transaction accounting.

  1. Supercomputers in mechanical systems research

    NASA Astrophysics Data System (ADS)

    Soni, A. H.

    The state of the art in supercomputers is examined vis a vis mechanical systems research. A list of 40 Class VI supercomputers is given, with sites, purposes and computer type specified; purposes include weapons research, reactor research, military, atmospheric science, aerodynamics, oceanography, engineering research, geophysics, petroleum engineering, and jet engine simulation. The availability of such machines has motivated scientists and engineers to explore and formulate new research problems previously considered completely intractable. Six problems in the area of robot mechanisms, suitable for research with supercomputers, are examined: generalized Burmester theory in space, analysis and synthesis of a general 6-R, dimensional synthesis of mechanisms, generation of new design concepts, kineto-elasto dynamic synthesis of mechanical systems, and dynamic response analysis of mechanical systems with emphasis on design.

  2. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  3. Probabilistic analysis of mechanical systems

    SciTech Connect

    Priddy, T.G.; Paez, T.L.; Veers, P.S.

    1993-09-01

    This paper proposes a framework for the comprehensive analysis of complex problems in probabilistic structural mechanics. Tools that can be used to accurately estimate the probabilistic behavior of mechanical systems are discussed, and some of the techniques proposed in the paper are developed and used in the solution of a problem in nonlinear structural dynamics.

  4. The renewable electric plant information system

    SciTech Connect

    Sinclair, K.

    1995-12-01

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  5. Mechanisms of Ventricular Arrhythmias: From Molecular Fluctuations to Electrical Turbulence

    PubMed Central

    Qu, Zhilin; Weiss, James N.

    2015-01-01

    Ventricular arrhythmias have complex causes and mechanisms. Despite extensive investigation involving many clinical, experimental, and computational studies, effective biological therapeutics are still very limited. In this article, we review our current understanding of the mechanisms of ventricular arrhythmias by summarizing the state of knowledge spanning from the molecular scale to electrical wave behavior at the tissue and organ scales and how the complex nonlinear interactions integrate into the dynamics of arrhythmias in the heart. We discuss the challenges that we face in synthesizing these dynamics to develop safe and effective novel therapeutic approaches. PMID:25340965

  6. Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence.

    PubMed

    Qu, Zhilin; Weiss, James N

    2015-01-01

    Ventricular arrhythmias have complex causes and mechanisms. Despite extensive investigation involving many clinical, experimental, and computational studies, effective biological therapeutics are still very limited. In this article, we review our current understanding of the mechanisms of ventricular arrhythmias by summarizing the state of knowledge spanning from the molecular scale to electrical wave behavior at the tissue and organ scales and how the complex nonlinear interactions integrate into the dynamics of arrhythmias in the heart. We discuss the challenges that we face in synthesizing these dynamics to develop safe and effective novel therapeutic approaches. PMID:25340965

  7. Electrical power systems for Space Station

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  8. Thermionic reactor electric propulsion system requirements.

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Sawyer, C. D.; Schaupp, R. W.

    1972-01-01

    Results of mission analysis, system analysis and mission engineering studies to find a single nuclear electric propulsion (NEP) system which would be applicable for a broad range of unmanned outer planet missions. The NEP system studied uses an in-core nuclear thermionic reactor as the electric power source and mercury bombardment ion engines for propulsion. Many requirements, which are imposed on the NEP system by the mission, were determined from the studies in the process of trying to find a single NEP system for many missions. It is concluded that a single thermionic reactor NEP system could be useful for a broad range of unmanned outer planet missions. The thermionic reactor NEP system should have a power level in the range from 70 to 120 kWe, a system specific weight of approximately 30 kg/kWe, and a full power output capability of 20,000 hr.

  9. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  10. Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets

    NASA Astrophysics Data System (ADS)

    Han, Tao; Reneker, Darrell H.

    2007-03-01

    The electrospinning jet was a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension. The jet moved straight away from the tip and then became unstable and bent into coils. This phenomenon is the electrical bending instability [1]. When the distance between the tip and collector was reduced to less than the maximal straight segment length, the electrical bending instability did not occur. The periodic buckling of a fluid jet incident onto a surface is a striking fluid mechanical instability [2]. When axial compressive stress along the jet reached a sufficient value, it produced the fluid mechanics analogue to the buckling of a slender solid column. In the electrospinning, the buckling instability occurred just above the collector where the jet was compressed as it encountered the collector. The buckling frequencies of these jets are in the range of 10^4 to 10^5 Hz. The buckling lengths of these jets are in the range of 10 to 100μm. *Reneker,D.H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000 *Tchavdarov B.; Yarin, A. L.; Radev S., Journal of Fluid Mechanics; 253, 593,1993

  11. electric dipole superconductor in bilayer exciton system

    NASA Astrophysics Data System (ADS)

    Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.

    Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.

  12. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  13. Direct drive options for electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    1995-01-01

    Power processing units (PPU's) in an electric propulsion system provide many challenging integration issues. The PPU must provide power to the electric thruster while maintaining compatibility with all of the spacecraft power and data systems. Inefficiencies in the power processor produce heat, which must be radiated to the environment in order to ensure reliable operation. Although PPU efficiencies are generally greater than 0.9, heat loads are often substantial. This heat must be rejected by thermal control systems which generally have specific masses of 15-30 kg/kW. PPU's also represent a large fraction of the electric propulsion system dry mass. Simplification or elimination of power processing in a propulsion system would reduce the electric propulsion system specific mass and improve the overall reliability and performance. A direct drive system would eliminate all or some of the power supplies required to operate a thruster by directly connecting the various thruster loads to the solar array. The development of concentrator solar arrays has enabled power bus voltages in excess of 300 V which is high enough for direct drive applications for Hall thrusters such as the Stationary Plasma Thruster (SPT). The option of solar array direct drive for SPT's is explored to provide a comparison between conventional and direct drive system mass.

  14. Secondary-Postsecondary Curriculum Development in Automotive Mechanics. Automotive Electrical Competencies. Final Report.

    ERIC Educational Resources Information Center

    Hoepner, Ronald

    Developed as part of a competency-based curriculum in automotive mechanics which is usable by students at both the secondary and postsecondary levels, this learning package focuses on automotive electrical systems. It is the first unit to be published in a series of eight which will cover the eight subject areas on the national certification…

  15. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  16. Systems of fuzzy equations in structural mechanics

    NASA Astrophysics Data System (ADS)

    Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej

    2008-08-01

    Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series, , Texas Research Report No. 2007-01, 2007].

  17. Decentralized energy systems for clean electricity access

    NASA Astrophysics Data System (ADS)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  18. Configuration management; Operating power station electrical systems

    SciTech Connect

    Beavers, R.R.; Sumiec, K.F. )

    1989-01-01

    Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations.

  19. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  20. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  1. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  2. MW-Class Electric Propulsion System Designs

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  3. Electrical system for a large cogeneration plant

    SciTech Connect

    Arvay, G.J. ); Smith, R.T. )

    1992-01-01

    The electrical system, interface, commissioning, and operations requirements of a major multiunit cogeneration plant interconnected with a large utility system through a 230-kV sulfur hexafluoride (SF{sub 6}) gas-insulated substation (GIS) are complex and demanding. This paper describes the electrical requirements, including utility interfaces, engineering, and on-site testing, as applied to the execution of a large, multiunit turnkey cogeneration project in California. The benefits of careful engineering efforts are shown to result in timely and cost effective completion of engineering, manufacturing, installation, testing, and commercial operation.

  4. MSFC Skylab electrical power systems mission evaluation

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  5. Seismic Retrofit for Electric Power Systems

    SciTech Connect

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection, where seismic hazard stems from the New Madrid seismic zone.

  6. Perception of electrical and mechanical stimulation of the skin: implications for electrotactile feedback

    NASA Astrophysics Data System (ADS)

    Marcus, Patrick L.; Fuglevand, Andrew J.

    2009-12-01

    Spinal cord injury is often accompanied by impaired tactile and proprioceptive sensations. Normally, somatosensensory information derived from such sensations is important in the formation of voluntary motor commands. Therefore, as a preliminary step toward the development of an electrotactile feedback system to restore somatosensation, psychophysical methods were used to characterize perceptual attributes associated with electrical stimulation of the skin on the back of the neck in human subjects. These data were compared to mechanical stimulation of the skin on the back of neck and on the distal pad of the index finger. Spatial acuity of the neck, evaluated using two-point thresholds, was not significantly different for electrical (37 ± 14 mm) or mechanical stimulation (39 ± 10 mm). The exponent (β) of the best fitting power function relating perceived intensity to applied stimulus strength was used to characterize perceptual sensitivity to mechanical and electrical stimuli. For electrical stimuli, both current amplitude-modulated and frequency-modulated trains of pulses were tested. Perceptual sensitivity was significantly greater for current amplitude modulation (β = 1.14 ± 0.37) compared to frequency modulation (β = 0.57 ± 0.24) and mechanical stimulation (0.51 ± 0.12). Finally, based on the data gathered here, we derive a transfer function that could be used in the future to convert mechanical stimuli detected with artificial sensors placed on the fingers into electrotactile signals that evoke perceptions similar to those arising from normal mechanical stimulation of the skin.

  7. Mechanical and electrical properties of ZnO/Ag nanocomposites.

    SciTech Connect

    Hayashi, Y.

    1998-08-27

    Effects of Ag particle dispersions on microstructural development and some properties were investigated for ZnO/Ag nanocomposites. They were fabricated by Pulse Electric Current Sintering (PECS) Process to achieve finer and densified microstructure. ZnO/Ag nanocomposites with novel microstructure which were prepared by a reduction process using Ag{sub 2}O fine powders were compared with microcomposites prepared by mixing of Ag and ZnO powders. SEM observation indicated that fine Ag particles were homogeneously dispersed within the ZnO matrix grains and at the grain boundaries for ZnO/Ag nanocomposites prepared by the reduction process using Ag{sub 2}O fine powder. Hardness and fracture toughness increased with increasing the Ag volume fraction. Linear resistivity was decreased with increasing Ag volume fraction. However, the mechanical and electrical properties appeared to the significantly different for composites prepared by two different powder processes.

  8. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  9. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  10. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  11. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  12. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  13. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  14. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  15. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  16. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  17. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  18. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  19. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  20. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  1. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  2. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  3. 49 CFR 238.425 - Electrical system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment § 238.425 Electrical system. (a) Circuit protection. (1) The main propulsion power line shall be... that purpose with the arc chute vented directly to outside air. (2) Head end power, including trainline power distribution, shall be provided with both overload and ground fault protection. (3) Circuits...

  4. 49 CFR 238.425 - Electrical system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment § 238.425 Electrical system. (a) Circuit protection. (1) The main propulsion power line shall be... that purpose with the arc chute vented directly to outside air. (2) Head end power, including trainline power distribution, shall be provided with both overload and ground fault protection. (3) Circuits...

  5. 49 CFR 238.425 - Electrical system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment § 238.425 Electrical system. (a) Circuit protection. (1) The main propulsion power line shall be... that purpose with the arc chute vented directly to outside air. (2) Head end power, including trainline power distribution, shall be provided with both overload and ground fault protection. (3) Circuits...

  6. 49 CFR 238.425 - Electrical system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment § 238.425 Electrical system. (a) Circuit protection. (1) The main propulsion power line shall be... that purpose with the arc chute vented directly to outside air. (2) Head end power, including trainline power distribution, shall be provided with both overload and ground fault protection. (3) Circuits...

  7. MEASUREMENT OF SMALL MECHANICAL VIBRATIONS OF BRAIN TISSUE EXPOSED TO EXTREMELY-LOW-FREQUENCY ELECTRIC FIELDS

    EPA Science Inventory

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...

  8. Real-time analysis of mechanical and electrical resonances with open-source sound card software

    NASA Astrophysics Data System (ADS)

    Makan, G.; Kopasz, K.; Gingl, Z.

    2014-01-01

    We present an easily reproducible, open-source, sound card based experimental set-up to support transfer function measurement. Our system is able to visualize the signals of mechanical and electrical resonances and their spectra in real time. We give a brief description of the system, and show some examples of electrical and mechanical resonance experiments that are supported by the system. The theoretical background, experimental set-up, component selection and digital signal processing are all discussed, and more detailed information (building instructions, software download) is provided on a dedicated web page (www.noise.inf.u-szeged.hu/edudev/RealTimeAnalysisOfResonances/). The experimental set-up can support the undergraduate and graduate education of students of physics, physics education and engineering by means of experimental demonstrations and laboratory exercises. The very low cost, high efficiency and transparent system provides a scalable experimental environment that can be easily built in several instances.

  9. A test and instrumentation system for the investigation of degradation of electrical insulating materials

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The basic test methods of aging and deterioration mechanisms of electrical insulating materials are discussed. A comprehensive test system developed to study the degradation process is described. This system is completely checked, and calibrated with a few insulating material samples.

  10. Electrical system options for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.; Cull, Ronald C.

    1991-01-01

    The need for a space power utility concept is discussed and the impact of this concept on the engineering of space power systems is examined. Experiences gained from Space Station Freedom and SEI systems studies are used to discuss the factors that may affect the choice of frequency standards on which to build such a space power utility. Emphasis is given to electrical power control, conditioning, and distribution subsystems.

  11. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  12. Solar-Electric Dish Stirling System Development

    SciTech Connect

    Mancini, T.R.

    1997-12-31

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  13. 77 FR 39857 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of Procedure...; ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission 18 CFR Part 40 Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of Procedure AGENCY: Federal Energy...

  14. 78 FR 29209 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... to Electric Reliability Organization Definition of Bulk Electric System and Rules of Procedure; Final...; ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission 18 CFR Part 40 Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of Procedure AGENCY: Federal Energy...

  15. Mechanically refuelable zinc/air electric vehicle cells

    NASA Astrophysics Data System (ADS)

    Noring, J.; Gordon, S.; Maimoni, A.; Spragge, M.; Cooper, J. F.

    1992-12-01

    Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells, and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration - factors which define the essential functions of common automobiles. Such an electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.

  16. Mechanically refuelable zinc/air electric vehicle cells

    SciTech Connect

    Noring, J.; Gordon, S.; Maimoni, A.; Spragge, M.; Cooper, J.F.

    1992-12-01

    Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration -- factors which define the essential functions of common automobiles. Such a electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described in this report focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.

  17. Multimegawatt electric propulsion system design considerations

    NASA Technical Reports Server (NTRS)

    Gilland, J. H.; Myers, Roger M.; Patterson, Michael J.

    1991-01-01

    Piloted Mars Mission Requirements of relatively short trip times and low initial mass in Earth orbit as identified by the NASA Space Exploration Initiative, indicate the need for multimegawatt electric propulsion systems. The design considerations and results for two thruster types, the argon ion, and hydrogen magnetoplasmadynamic thrusters, are addressed in terms of configuration, performance, and mass projections. Preliminary estimates of power management and distribution for these systems are given. Some assessment of these systems' performance in a reference Space Exploration Initiative piloted mission are discussed. Research and development requirements of these systems are also described.

  18. Hubble Space Telescope electrical power system model

    NASA Technical Reports Server (NTRS)

    Baggett, Randy; Miller, Jim; Leisgang, Tom

    1988-01-01

    This paper describes one of the most comprehensive models ever developed for a spacecraft electrical power system (EPS). The model was developed for the Hubble Space Telescope (HST) to evaluate vehicle power system performance and to assist in scheduling maintenance and refurbishment missions by providing data needed to forecast EPS power and energy margins for the mission phases being planned. The EPS model requires a specific mission phase description as the input driver and uses a high granularity database to produce a multi-orbit power system performance report. The EPS model accurately predicts the power system response to various mission timelines over the entire operational life of the spacecraft.

  19. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment

    PubMed Central

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor. PMID:26671673

  20. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment.

    PubMed

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor. PMID:26671673

  1. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment

    NASA Astrophysics Data System (ADS)

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-12-01

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor.

  2. Long-term impacts of battery electric vehicles on the German electricity system

    NASA Astrophysics Data System (ADS)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  3. Micro electromechanical systems (MEMS) for mechanical engineers

    SciTech Connect

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  4. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  5. Multi-frequency and edge localized modes in mechanical and electrical lattices

    NASA Astrophysics Data System (ADS)

    English, Lars; Palmero, Faustino; Kevrekidis, Panayotis

    We present experimental evidence for the existence of a type of dynamical, self-localized mode called a multi-frequency breather in both a mechanical lattice of pendula and an electrical lattice. These modes were excited and stabilized by subharmonic driving. We also experimentally characterize dynamical modes that are localized on the edges of the pendulum chain, as well as in 2D electrical lattices. In the latter system, we briefly discuss the role of lattice topology in the stability of such modes.

  6. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    SciTech Connect

    Nutaro Kalyan Perumalla, James Joseph

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flow data, and sample models of discrete sensors and controllers.

  7. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    Energy Science and Technology Software Center (ESTSC)

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flowmore » data, and sample models of discrete sensors and controllers.« less

  8. Opto-mechanical door locking system

    NASA Astrophysics Data System (ADS)

    Patil, Saurabh S.; Rodrigues, Vanessa M.; Patil, Ajeetkumar; Chidangil, Santhosh

    2015-09-01

    We present an Opto-mechanical Door Locking System which is an optical system that combines a simple combination of a coherent light source (Laser) and a photodiode based sensor with focus toward security applications. The basic construct of the KEY comprises a Laser source in a cylindrical enclosure that slides perfectly into the LOCK. The Laser is pulsed at a fixed encrypted frequency unique to that locking system. Transistor-transistor logic (TTL) circuitry is used to achieve encryption. The casing of the key is designed in such a way that it will power the pulsing laser only when the key is inserted in the slot provided for it. The Lock includes a photo-sensor that will convert the detected light intensity to a corresponding electrical signal by decrypting the frequency. The lock also consists of a circuit with a feedback system that will carry the digital information regarding the encryption frequency code. The information received from the sensor is matched with the stored code; if found a perfect match, a signal will be sent to the servo to unlock the mechanical lock or to carry out any other operation. This technique can be incorporated in security systems for residences and safe houses, and can easily replace all conventional locks which formerly used fixed patterns to unlock. The major advantage of this proposed optomechanical system over conventional ones is that it no longer relies on a solid/imprinted pattern to perform its task and hence makes it almost impossible to tamper with.

  9. Seismic Retrofit for Electric Power Systems

    DOE PAGESBeta

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection,more » where seismic hazard stems from the New Madrid seismic zone.« less

  10. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Supported on a lift fixture, this radioisotope thermoelectric generator (RTG), at center, is hoisted from its storage base using the airlock crane in the Payload Hazardous Servicing Facility (PHSF). Jet Propulsion Laboratory (JPL) workers are preparing to install the RTG onto the Cassini spacecraft, in background at left, for mechanical and electrical verification testing. The three RTGs on Cassini will provide electrical power to the spacecraft on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  11. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lockheed Martin Missile and Space Co. employees Joe Collingwood, at right, and Ken Dickinson retract pins in the storage base to release a radioisotope thermoelectric generator (RTG) in preparation for hoisting operations. This RTG and two others will be installed on the Cassini spacecraft for mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by NASA's Jet Propulsion Laboratory.

  12. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) workers prepare the installation cart (atop the platform) for removal of a radioisotope thermoelectric generator (RTG) from the adjacent Cassini spacecraft. This is the second of three RTGs being removed from Cassini after undergoing mechanical and electrical verification tests in the Payload Hazardous Servicing Facility. The third RTG to be removed is in background at left. The three RTGs will then be temporarily stored before being re-installed for flight. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  13. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This radioisotope thermoelectric generator (RTG), at center, will undergo mechanical and electrical verification testing now that it has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. A handling fixture, at far left, is still attached. Three RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by the Jet Propulsion Laboratory.

  14. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) workers Dan Maynard and John Shuping prepare to install a radioisotope thermoelectric generator (RTG) on the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF). The three RTGs which will provide electrical power to Cassini on its mission to the Saturnian system are undergoing mechanical and electrical verification testing in the PHSF. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  15. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) workers use a borescope to verify pressure relief device bellows integrity on a radioisotope thermoelectric generator (RTG) which has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. The activity is part of the mechanical and electrical verification testing of RTGs during prelaunch processing. RTGs use heat from the natural decay of plutonium to generate electric power. The three RTGs on Cassini will enable the spacecraft to operate far from the Sun where solar power systems are not feasible. They will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  16. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) workers carefully roll into place a platform with a second radioisotope thermoelectric generator (RTG) for installation on the Cassini spacecraft. In background at left, the first of three RTGs already has been installed on Cassini. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. The power units are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  17. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) workers David Rice, at left, and Johnny Melendez rotate a radioisotope thermoelectric generator (RTG) to the horizontal position on a lift fixture in the Payload Hazardous Servicing Facility. The RTG is one of three generators which will provide electrical power for the Cassini spacecraft mission to the Saturnian system. The RTGs will be installed on the powered-up spacecraft for mechanical and electrical verification testing. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  18. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) worker Mary Reaves mates connectors on a radioisotope thermoelectric generator (RTG) to power up the Cassini spacecraft, while quality assurance engineer Peter Sorci looks on. The three RTGs which will be used on Cassini are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  19. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) employees Norm Schwartz, at left, and George Nakatsukasa transfer one of three radioisotope thermoelectric generators (RTGs) to be used on the Cassini spacecraft from the installation cart to a lift fixture in preparation for returning the power unit to storage. The three RTGs underwent mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  20. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers in the Payload Hazardous Servicing Facility remove the storage collar from a radioisotope thermoelectric generator (RTG) in preparation for installation on the Cassini spacecraft. Cassini will be outfitted with three RTGs. The power units are undergoing mechanical and electrical verification tests in the PHSF. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle.

  1. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) employees bolt a radioisotope thermoelectric generator (RTG) onto the Cassini spacecraft, at left, while other JPL workers, at right, operate the installation cart on a raised platform in the Payload Hazardous Servicing Facility (PHSF). Cassini will be outfitted with three RTGs. The power units are undergoing mechanical and electrical verification tests in the PHSF. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  2. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Carrying a neutron radiation detector, Fred Sanders (at center), a health physicist with the Jet Propulsion Laboratory (JPL), and other health physics personnel monitor radiation in the Payload Hazardous Servicing Facility after three radioisotope thermoelectric generators (RTGs) were installed on the Cassini spacecraft for mechanical and electrical verification tests. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  3. Electrical conduction mechanism of poly(3,4-ethylenedioxythiophene) nanofiber bundles at low temperature

    NASA Astrophysics Data System (ADS)

    Chutia, P.; Kumar, A.

    2015-09-01

    The nature of charge transport mechanism in poly(3,4-ethylenedioxythiophene) nanofiber bundles has been studied as a function of temperature, magnetic field and AC electric field. High-resolution transmission electron micrographs show the formation of nanofibers with an average diameter of 14 nm. X-ray diffraction analysis depicts the enhancement of polymer chains ordering with increasing dopant concentration. Analysis of the temperature dependence of resistivity reveals a three-dimensional variable range hopping electrical conduction mechanism in the synthesized nanofibers system. A large positive magnetoresistance has been observed at low temperature, which shows a decreasing trend with increasing temperature as well as dopant concentration. The high value of positive magnetoresistance at low temperature has been explained by the wave function shrinkage model. The decrease in frequency exponent s with increasing temperature suggests that the AC conduction takes place through correlated barrier hopping mechanism.

  4. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph...

  5. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph...

  6. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph...

  7. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph...

  8. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph...

  9. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric utilization systems. 1910.302 Section 1910.302 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization...

  10. Power quality issues and interactions in modern electrical distribution systems.

    PubMed

    Moss, T P

    1996-12-01

    With the increasing rate of electronic equipment installation, there is a greater need for understanding how equipment affects and is affected by the electrical system that serves it. This document addresses these issues as well as principles of electricity magnetism and electrical system construction as they apply to potential problems. The document is geared for those without an electrical engineering background but do have a basic knowledge of electrical systems and terms. PMID:10162570

  11. Electrical and mechanical properties of graphene oxide on flexible substrate

    NASA Astrophysics Data System (ADS)

    Kang, Shao-Hui; Fang, Te-Hua; Hong, Zheng-Han

    2013-12-01

    Graphene oxide (GO) was deposited via the electrophoretic deposition (EPD) method to lower the oxygen concentration of graphene sheets for large-scale production. In addition, the direct synthesis of large-scale GO films using transfer processes on a polydimethylsiloxane (PDMS) substrate was conducted. The thickness of the GO films was controlled to adjust the optical, electrical, and mechanical properties. The Young's modulus values of films with thicknesses of 100-200 nm were 324-529 GPa. Moreover, the GO films exhibited excellent conductivity, with a sheet resistance of 276-2024 Ω/sq at 23-77% transparency. Experiments show that transfer processes for flexible substrates can produce high-quality cost-effective transparent conductive films.

  12. Detection of Alkylating Agents using Electrical and Mechanical Means

    NASA Astrophysics Data System (ADS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  13. Structure Formation Mechanisms and Electrical Properties of PVD Fluoropolymer Films

    NASA Astrophysics Data System (ADS)

    Luchnikov, P. A.

    2015-01-01

    The mechanisms of forming fluoropolymer coatings on silicon substrates via condensation from an active gas phase using directed flows of accelerated electrons and ions are studied. It is demonstrated that electrical properties of the resulting fluoropolymer films strongly depend on the technological parameters of the deposition process. Their most optimal properties are reported when condensation takes place at the temperatures within ~373-386 K. It is shown that thermal annealing of the films in vacuum at 430-470 K improves their electrophysical parameters by re-evaporating the low-molecular complexes from the structure and decreasing the concentration of defects and spin-radicals, while annealing in air gives rise to formation of additional polar groups.

  14. 10 CFR 434.403 - Building mechanical systems and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Building mechanical systems and equipment. 434.403 Section 434.403 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and...

  15. 10 CFR 434.403 - Building mechanical systems and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Building mechanical systems and equipment. 434.403 Section 434.403 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and...

  16. Electric power system test and verification program

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.; Robinson, Frank, Jr.

    1994-01-01

    Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.

  17. Electricity Storage Systems and the Grid

    NASA Astrophysics Data System (ADS)

    Howes, Ruth

    2007-04-01

    Demand for electricity varies seasonally, daily, and on much shorter time scales. Renewable energy sources such as solar or wind power are naturally intermittent. Nuclear power plants can respond to a narrow range of fluctuating demand quickly and to larger fluctuations in hours. However, they are most efficient when operated at a constant power output. Thus implementing either nuclear power as baseline power or power from renewables requires either a system for storage of electrical energy that can respond quickly to demand or a back-up power source, usually a gas turbine plant that has a quick response time. We have studied six technologies for storing electrical energy from the grid: pumped hydropower, compressed air storage, batteries, flywheels, superconducting magnetic energy storage, and electrochemical capacitors. In addition, the power conversion systems (PCS) that connect storage to the grid are both expensive and critical to the success of a storage technology. Each of these six technologies offers different benefits, is at a different stage of readiness for commercial use, and offers opportunities for research. Advantages and disadvantages for each of the technologies and PCS will be discussed.

  18. Stability analysis of large electric power systems

    SciTech Connect

    Elwood, D.M.

    1993-01-01

    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  19. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  20. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  1. The physical mechanism of the solar variability influence on electrical and climatic characteristics of the troposphere

    NASA Astrophysics Data System (ADS)

    Zherebtsov, G. A.; Kovalenko, V. A.; Molodykh, S. I.

    Possible mechanisms of solar-climatic connections, which may be of importance over short and long time intervals, are discussed. The variations of energetic balance of Earth's climatic system for the last 50 years are estimated. It is ascertained that the imbalance between the flux of solar energy that comes to the Earth and radiates to space is of 0.1% for the last ten years. The significance is analyzed for the possible influence of variations of solar constant upon the energetic balance of the atmosphere. The physical mechanism of the influence of solar activity on climatic characteristics and the atmospheric circulation is suggested and theoretically substantiated. The mechanism is based on the redistribution in lower-troposphere of condensation nuclei by the vertical electric field. This electric field is determined by the ionosphere-Earth electric potential, which in the Polar Regions is controlled not only by tropical thunderstorms and by the galactic cosmic-ray intensity but also by solar cosmic-ray fluxes. The height redistribution in the atmosphere of condensation nuclei with a change of the electric field of the atmosphere is accompanied by a change in total latent heat (phase transition of water vapor), by changes in radiation balance, and by subsequent changes of the thermobaric field of troposphere. The results of analysis of thermobaric field variations for the periods of invasion of abnormally powerful solar cosmic ray fluxes and magnetic storms confirm the reality of manifestation of heliogeophysical disturbances.

  2. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology was demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  3. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    SciTech Connect

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  4. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  5. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.

    1988-04-12

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.

  6. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, William B.; McNeilly, David R.

    1988-01-01

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples.

  7. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  8. Built-in Electric Field Induced Mechanical Property Change at the Lanthanum Nickelate/Nb-doped Strontium Titanate Interfaces

    NASA Astrophysics Data System (ADS)

    Chien, Teyu; Liu, Jian; Yost, Andrew J.; Chakhalian, Jak; Freeland, John W.; Guisinger, Nathan P.

    2016-01-01

    The interactions between electric field and the mechanical properties of materials are important for the applications of microelectromechanical and nanoelectromechanical systems, but relatively unexplored for nanoscale materials. Here, we observe an apparent correlation between the change of the fractured topography of Nb-doped SrTiO3 (Nb:STO) within the presence of a built-in electric field resulting from the Schottky contact at the interface of a metallic LaNiO3 thin film utilizing cross-sectional scanning tunneling microscopy and spectroscopy. The change of the inter-atomic bond length mechanism is argued to be the most plausible origin. This picture is supported by the strong-electric-field-dependent permittivity in STO and the existence of the dielectric dead layer at the interfaces of STO with metallic films. These results provided direct evidence and a possible mechanism for the interplay between the electric field and the mechanical properties on the nanoscale for perovskite materials.

  9. 76 FR 16263 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Organization Definition of Bulk Electric System, Order No. 743, 75 FR 72910 (Nov. 26, 2010), 133 FERC ] 61,150... Energy Regulatory Commission 18 CFR Part 40 Revision to Electric Reliability Organization Definition of Bulk Electric System AGENCY: Federal Energy Regulatory Commission, DOE. ACTION: Order on...

  10. Integrated Electrical Wire Insulation Repair System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven

    2013-01-01

    An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available

  11. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the

  12. A transition in mechanisms of size dependent electrical transport at nanoscale metal-oxide interfaces

    SciTech Connect

    Hou, Jiechang; Nonnenmann, Stephen S.; Qin, Wei; Bonnell, Dawn A.

    2013-12-16

    As device miniaturization approaches nanoscale dimensions, interfaces begin to dominate electrical properties. Here the system archetype Au/SrTiO{sub 3} is used to examine the origin of size dependent transport properties along metal-oxide interfaces. We demonstrate that a transition between two classes of size dependent electronic transport mechanisms exists, defined by a critical size ε. At sizes larger than ε an edge-related tunneling effect proportional to 1/D (the height of the supported Au nanoparticle) is observed; interfaces with sizes smaller than ε exhibit random fluctuations in current. The ability to distinguish between these mechanisms is important to future developments in nanoscale device design.

  13. Searching for Electrical Properties, Phenomena and Mechanisms in the Construction and Function of Chromosomes

    PubMed Central

    Kanev, Ivan; Mei, Wai-Ning; Mizuno, Akira; DeHaai, Kristi; Sanmann, Jennifer; Hess, Michelle; Starr, Lois; Grove, Jennifer; Dave, Bhavana; Sanger, Warren

    2013-01-01

    Our studies reveal previously unidentified electrical properties of chromosomes: (1) chromosomes are amazingly similar in construction and function to electrical transformers; (2) chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3) chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a) electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b) electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c) mechanisms demonstrating heterochromatin to be electrically active and genetically important. PMID:24688715

  14. 46 CFR 28.855 - Electrical distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  15. 46 CFR 28.855 - Electrical distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  16. 49 CFR 228.313 - Electrical system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electrical system requirements. 228.313 Section... § 228.313 Electrical system requirements. (a) All heating, cooking, ventilation, air conditioning, and... its compliance with that standard. (b) All electrical systems installed, including external...

  17. 46 CFR 28.360 - Electrical distribution systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  18. 46 CFR 28.855 - Electrical distribution systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  19. 46 CFR 28.855 - Electrical distribution systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  20. 46 CFR 28.360 - Electrical distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  1. 46 CFR 28.360 - Electrical distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  2. 46 CFR 28.360 - Electrical distribution systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  3. 49 CFR 228.313 - Electrical system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electrical system requirements. 228.313 Section... § 228.313 Electrical system requirements. (a) All heating, cooking, ventilation, air conditioning, and... its compliance with that standard. (b) All electrical systems installed, including external...

  4. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... manufacturer's maximum current rating. In progressing from zero to maximum, the ammeter indication shall...

  5. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... manufacturer's maximum current rating. In progressing from zero to maximum, the ammeter indication shall...

  6. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... manufacturer's maximum current rating. In progressing from zero to maximum, the ammeter indication shall...

  7. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... manufacturer's maximum current rating. In progressing from zero to maximum, the ammeter indication shall...

  8. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... manufacturer's maximum current rating. In progressing from zero to maximum, the ammeter indication shall...

  9. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of one... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical power systems....

  10. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of...

  11. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of...

  12. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of...

  13. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of...

  14. Integrated gasification iron-air electrical system

    SciTech Connect

    Brown, J.T.

    1988-05-17

    An integrated, gasification, iron-air electrical system, capable of generating electrical energy from a carbonaceous material is described comprising: (A) a gasification means for carbonaceous materials comprising at least one gasification reactor, where a carbonaceous material is contacted and reacted with a gaseous medium containing steam and air, at a temperature and for a time effective to gasify the carbonaceous material and produce a hot gaseous reaction product comprising CO and H/sub 2/; (B) an iron-air cell containing at least one discharged iron electrode; (C) means to remove the discharged iron electrode from the cell of (B), and contact it with the gaseous reaction product produced in (A); (D) the discharged iron electrode removed from the cell of (B), containing material consisting essentially of Fe and Fe(OH)/sub 2/, which electrode is contacted with the hot gaseous reaction product produced in the gasification reactor of (A), directly, at a temperature of from about 450/sup 0/C to about 700/sup 0/C, for a time effective to convert, by reduction, discharged iron compounds consisting essentially of Fe and Fe(OH)/sub 2/ to charge iron compounds in the electrode and provide a recharged iron electrode; (E) an iron-air cell into which the recharged iron electrode provided in (D) is placed; (F) means to transport the recharged iron electrode provided in (D) to the iron-air cell of (E); and (G) electrical connection means attached to the iron-air cell of (E), providing the cell with capability of generating electrical energy.

  15. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  16. Optimal management of batteries in electric systems

    DOEpatents

    Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  17. Classical mechanics of nonconservative systems.

    PubMed

    Galley, Chad R

    2013-04-26

    Hamilton's principle of stationary action lies at the foundation of theoretical physics and is applied in many other disciplines from pure mathematics to economics. Despite its utility, Hamilton's principle has a subtle pitfall that often goes unnoticed in physics: it is formulated as a boundary value problem in time but is used to derive equations of motion that are solved with initial data. This subtlety can have undesirable effects. I present a formulation of Hamilton's principle that is compatible with initial value problems. Remarkably, this leads to a natural formulation for the Lagrangian and Hamiltonian dynamics of generic nonconservative systems, thereby filling a long-standing gap in classical mechanics. Thus, dissipative effects, for example, can be studied with new tools that may have applications in a variety of disciplines. The new formalism is demonstrated by two examples of nonconservative systems: an object moving in a fluid with viscous drag forces and a harmonic oscillator coupled to a dissipative environment. PMID:23679733

  18. Fatigue Response of a PZT Multilayer Actuator under High-Field Electric Cycling with Mechanical Preload

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system has been developed for piezoelectric actuator with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator (MLA) with a plate-through electrode configuration have been studied under an electric field (1.7 times that of a coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 1.0x10^9 cycles were carried out. Variations in charge density and mechanical strain under a high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized by using FFT (Fast Fourier Transformation). It has been observed that both the dielectric and the piezoelectric coefficients underwent a monotonic decrease prior to 2.86x10^8 cycles under the relevant preload, and then fluctuated to a certain extent. Both the dielectric loss tangent and the piezoelectric loss tangent also exhibited the fluctuations after a certain amount of drop but at different levels relative to the pre-fatigue. And finally, the results were discussed with respect to domain wall mobility, microcracking, and other pre-existing anomalies.

  19. Mechanical and Electrical Performance of Thermally Stable Au-ZnO films

    SciTech Connect

    Schoeppner, Rachel L.; Goeke, Ronald S.; Moody, Neville R.; Bahr, David F.

    2015-03-28

    The mechanical properties, thermal stability, and electrical performance of Au–ZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350 °C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanical softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. Furthermore, the addition of 1–2% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 nΩ-m. Our results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardness–resistivity relationship that is relatively independent of the particular ODS chemistry.

  20. Energy flow for electric power system deregulation

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung

    Over the past few years, the electric power utility industry in North America and other countries has experienced a strong drive towards deregulation. People have considered the necessity of deregulation of electric utilities for higher energy efficiency and energy saving. The vertically integrated monopolistic industry is being transferred into a horizontally integrated competitive structure in some countries. Wheeling charges are a current high priority problem throughout the power industry, for independent power producers, as well as regulators. Nevertheless the present transmission pricing mechanism fails to be adjusted by a customer loading condition. Customer loading is dynamic, but the present wheeling charge method is fixed, not real-time. A real-time wheeling charge method is developed in this dissertation. This dissertation introduces a concept of a power flow network which can be used for the calculation of power contribution factors in a network. The contribution factor is defined as the ratio of the power contributed by a particular source to a line flow or bus load to the total output of the source. Generation, transmission, and distribution companies can employ contribution factors for the calculation of energy cost, wheeling charges, and loss compensation. Based on the concept of contribution factors, a proposed loss allocation method is developed in this dissertation. Besides, counterflow condition will be given a credit in the proposed loss allocation method. A simple 22-bus example was used for evaluating the contribution factors, proposed wheeling charge method, and loss allocation method.

  1. Garrett Electric Boosting Systems (EBS) Program

    SciTech Connect

    Steve Arnold; Craig Balis; Pierre Barthelet; Etienne Poix; Tariq Samad; Greg Hampson; S. M. Shahed

    2005-03-31

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-Turbo{trademark} designs do both The purpose of this project is to design and develop an electrically assisted turbocharger, e-Turbo{trademark}, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-Turbo{trademark} can be used to generate modest amounts of electrical power and supplement the alternator under

  2. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  3. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  4. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  5. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  6. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  7. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  8. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  9. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  10. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  11. Interaction of mechanical and electrical oscillations and sensitivity in a model of sensory hair cell

    NASA Astrophysics Data System (ADS)

    Amro, Rami M.; Neiman, Alexander B.

    2013-03-01

    Sensory hair cells are the first stage in conveying the mechanical stimuli into the electrical signals in auditory and vestibular organs of vertebrates. Experiments showed that hair cells rely on active processes in hair bundles to achieve high selective sensitivity, e.g. due to myosin molecular motors inside stereocilia. In lower vertebrates these active processes result in spontaneous oscillations of hair bundles which can be accompanied by oscillations of the cells' membrane potentials. We use modeling to study how the dynamics of both the membrane potential and the hair bundle interact to produce coherent self-sustained oscillations and how this interaction contributes to the cell's sensitivity to external mechanical perturbations. The model incorporates a mechanical stochastic hair bundle system coupled to a Hodgkin-Huxley type system for the membrane potential. We show that oscillatory regimes result in enhanced sensitivity and selectivity to harmonic stimuli.

  12. Characterization of interdigitated electrode piezoelectric fiber composites under high electrical and mechanical loading

    NASA Astrophysics Data System (ADS)

    Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.

    1996-05-01

    The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.

  13. Analysis of electric-submersible-pumping systems

    SciTech Connect

    Nolen, K.B.; Gibbs, S.G.

    1989-05-01

    This paper presents a field-proven analytical method of evaluating electric-submersible-pumping equipment and well performance jointly. A computerized mathematical model that considers the effects of free gas, pump speed (variable-frequency drives), and pump tapering is described. The method allows accurate calculations of important downhole parameters, including pump intake pressure, pump intake volume (including free gas), pump pressure, and fluid density profile. Lifting cost parameters - such as pump and motor power requirements, monthly power consumption, pump and motor performance, and overall system efficiency - are also determined. Once operating conditions are known, decisions can be made on ways to increase production (if additional potential exists) or to reduce operating costs. Thus, the same basic goals that often justify frequent analysis of rod pumping systems can be applied to submersible pumping.

  14. Optimization and Control of Electric Power Systems

    SciTech Connect

    Lesieutre, Bernard C.; Molzahn, Daniel K.

    2014-10-17

    The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.

  15. Workshop on electric utility systems modeling

    SciTech Connect

    Prasad, R.; Kittur, R.; Walker, R.; Marten, D.

    1992-01-01

    The primary objective of this workshop is to obtain a clear understanding of the various details involved in developing electric utility models from public-domain information. The workshop is aimed at providing a thorough tutorial and a hands-on exercise in developing a set of relational databases that can be used to analyze the behavior of selected power systems. Because of several modeling details that can be utility-specific, issues that are common among all systems need to be addressed. These common issues include: Data collection from public-domain sources; generation of connectivity diagrams; generation/load/tie-line MW assignments; parameter database creation (.DAT); development of one-line database (.OL); development of geographic database (.GEO); error-checking between databases; development of power-flow data files (.DCD and IEE); and power-flow analysis

  16. Workshop on electric utility systems modeling

    SciTech Connect

    Prasad, R.; Kittur, R.; Walker, R.; Marten, D.

    1992-12-31

    The primary objective of this workshop is to obtain a clear understanding of the various details involved in developing electric utility models from public-domain information. The workshop is aimed at providing a thorough tutorial and a hands-on exercise in developing a set of relational databases that can be used to analyze the behavior of selected power systems. Because of several modeling details that can be utility-specific, issues that are common among all systems need to be addressed. These common issues include: Data collection from public-domain sources; generation of connectivity diagrams; generation/load/tie-line MW assignments; parameter database creation (.DAT); development of one-line database (.OL); development of geographic database (.GEO); error-checking between databases; development of power-flow data files (.DCD and IEE); and power-flow analysis

  17. Electric System Intra-hour Operation Simulator

    Energy Science and Technology Software Center (ESTSC)

    2014-03-07

    ESIOS is a software program developed at Pacific Northwest National Laboratory (PNNL) that performs intra-hour dispatch and automatic generation control (AGC) simulations for electric power system frequency regulation and load/variable generation following. The program dispatches generation resources at minute interval to meet control performance requirements, while incorporating stochastic models of forecast errors and variability with generation, load, interchange and market behaviors. The simulator also contains an operator model that mimics manual actions to adjust resourcemore » dispatch and maintain system reserves. Besides simulating generation fleet intra-hour dispatch, ESIOS can also be used as a test platform for the design and verification of energy storage, demand response, and other technologies helping to accommodate variable generation.« less

  18. Quantum mechanics in complex systems

    NASA Astrophysics Data System (ADS)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown

  19. Gain control mechanisms in the nociceptive system.

    PubMed

    Treede, Rolf-Detlef

    2016-06-01

    The "gate control theory of pain" of 1965 became famous for integrating clinical observations and the understanding of spinal dorsal horn circuitry at that time into a testable model. Although it became rapidly clear that spinal circuitry is much more complex than that proposed by Melzack and Wall, their prediction of the clinical efficacy of transcutaneous electrical nerve stimulation and spinal cord stimulation has left an important clinical legacy also 50 years later. In the meantime, it has been recognized that the sensitivity of the nociceptive system can be decreased or increased and that this "gain control" can occur at peripheral, spinal, and supraspinal levels. The resulting changes in pain sensitivity can be rapidly reversible or persistent, highly localized or widespread. Profiling of spatio-temporal characteristics of altered pain sensitivity (evoked pain to mechanical and/or heat stimuli) allows implications on the mechanisms likely active in a given patient, including peripheral or central sensitization, intraspinal or descending inhibition. This hypothesis generation in the diagnostic process is an essential step towards a mechanism-based treatment of pain. The challenge now is to generate the rational basis of multimodal pain therapy algorithms by including profile-based stratification of patients into studies on efficacy of pharmacological and nonpharmacological treatment modalities. This review outlines the current evidence base for this approach. PMID:26817644

  20. The Architect's Guide to Mechanical Systems.

    ERIC Educational Resources Information Center

    Andrews, F. T.

    The principles and problems of designing new building mechanical systems are discussed in this reference source in the light of data on the functions and operation of mechanical systems. As a practical guide to understanding mechanical systems it describes system types, functions, space requirements, weights, installation, maintenance and…

  1. Method and system for managing an electrical output of a turbogenerator

    DOEpatents

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2010-08-24

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  2. Method and system for managing an electrical output of a turbogenerator

    DOEpatents

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2009-06-02

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  3. Experimental Identification of Electric Field Excitation Mechanisms in a Structural Transition of Tokamak Plasmas.

    PubMed

    Kobayashi, T; Itoh, K; Ido, T; Kamiya, K; Itoh, S-I; Miura, Y; Nagashima, Y; Fujisawa, A; Inagaki, S; Ida, K; Hoshino, K

    2016-01-01

    Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt "radial" electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson's equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude. PMID:27489128

  4. Experimental Identification of Electric Field Excitation Mechanisms in a Structural Transition of Tokamak Plasmas

    PubMed Central

    Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.

    2016-01-01

    Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt “radial” electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude. PMID:27489128

  5. Experimental Identification of Electric Field Excitation Mechanisms in a Structural Transition of Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.

    2016-08-01

    Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt “radial” electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude.

  6. Liquid Bismuth Feed System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.

    2006-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.

  7. Operating health analysis of electric power systems

    NASA Astrophysics Data System (ADS)

    Fotuhi-Firuzabad, Mahmud

    The required level of operating reserve to be maintained by an electric power system can be determined using both deterministic and probabilistic techniques. Despite the obvious disadvantages of deterministic approaches there is still considerable reluctance to apply probabilistic techniques due to the difficulty of interpreting a single numerical risk index and the lack of sufficient information provided by a single index. A practical way to overcome difficulties is to embed deterministic considerations in the probabilistic indices in order to monitor the system well-being. The system well-being can be designated as healthy, marginal and at risk. The concept of system well-being is examined and extended in this thesis to cover the overall area of operating reserve assessment. Operating reserve evaluation involves the two distinctly different aspects of unit commitment and the dispatch of the committed units. Unit commitment health analysis involves the determination of which unit should be committed to satisfy the operating criteria. The concepts developed for unit commitment health, margin and risk are extended in this thesis to evaluate the response well-being of a generating system. A procedure is presented to determine the optimum dispatch of the committed units to satisfy the response criteria. The impact on the response wellbeing being of variations in the margin time, required regulating margin and load forecast uncertainty are illustrated. The effects on the response well-being of rapid start units, interruptible loads and postponable outages are also illustrated. System well-being is, in general, greatly improved by interconnection with other power systems. The well-being concepts are extended to evaluate the spinning reserve requirements in interconnected systems. The interconnected system unit commitment problem is decomposed into two subproblems in which unit scheduling is performed in each isolated system followed by interconnected system evaluation

  8. High Power, High Voltage Electric Power System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  9. Quantum mechanics in complex systems

    NASA Astrophysics Data System (ADS)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown

  10. International Space Station Electric Power System Performance Code-SPACE

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey; McKissock, David; Fincannon, James; Green, Robert; Kerslake, Thomas; Delleur, Ann; Follo, Jeffrey; Trudell, Jeffrey; Hoffman, David J.; Jannette, Anthony; Rodriguez, Carlos

    2005-01-01

    The System Power Analysis for Capability Evaluation (SPACE) software analyzes and predicts the minute-by-minute state of the International Space Station (ISS) electrical power system (EPS) for upcoming missions as well as EPS power generation capacity as a function of ISS configuration and orbital conditions. In order to complete the Certification of Flight Readiness (CoFR) process in which the mission is certified for flight each ISS System must thoroughly assess every proposed mission to verify that the system will support the planned mission operations; SPACE is the sole tool used to conduct these assessments for the power system capability. SPACE is an integrated power system model that incorporates a variety of modules tied together with integration routines and graphical output. The modules include orbit mechanics, solar array pointing/shadowing/thermal and electrical, battery performance, and power management and distribution performance. These modules are tightly integrated within a flexible architecture featuring data-file-driven configurations, source- or load-driven operation, and event scripting. SPACE also predicts the amount of power available for a given system configuration, spacecraft orientation, solar-array-pointing conditions, orbit, and the like. In the source-driven mode, the model must assure that energy balance is achieved, meaning that energy removed from the batteries must be restored (or balanced) each and every orbit. This entails an optimization scheme to ensure that energy balance is maintained without violating any other constraints.

  11. Interfacial Phenomena in Silver-Copper Sliding Electrical Contact System.

    NASA Astrophysics Data System (ADS)

    Garshasb, Masoud

    Copper-silver sliding electrical contact systems have been investigated using modern surface science and microstructural characterization methods. The experiments involve current carrying metallic brushes sliding on a sputter cleaned rotating slip ring in an ultra high vacuum system. The ambient (and lubricant) of the experiment was water saturated CO(,2) at atmospheric pressure. The characterization techniques included Auger electron spectroscopy (AES), scanning electron microscopy (SEM), x-ray energy spectroscopy (XES), reflection high energy electron diffraction (RHEED), x-ray diffraction (XRD), and in-situ measurements of contact resistance. The electrical contact systems that were studied included homogeneous contacts (Cu/Cu, Ag/Ag) and heterogeneous contacts (Cu/Ag, Ag/Cu). Contact currents ranging from 0 to 50 A were used. In each case the wear particles were characterized by their shape and composition. For the case of heterogeneous contacts, the slip ring surface composition was determined by AES and the concentrations of the elements in the wear debris were plotted versus the contact current to determine the role of current in the Cu-Ag system. Based on the AES and SEM/XES results, some of the characteristic features of the most frequently occurring wear particles are explained and the mechanisms for metal transfer across the interface and wear particle formation are discussed. X-ray diffraction analyses of the mean crystallite size, the non uniform strain and the average lattice parameter of the debris from Cu-Cu systems are presented as a function of contact current. The dependence of the x-ray parameter on current reflects the annealing that takes place at higher currents. This result was supported by RHEED analyses of the wear particles. These various studies have clarified many of the complex mechanisms involved in electrical contact processes.

  12. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  13. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  14. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  15. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  16. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  17. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  18. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Electrical power and lighting systems. 434.401 Section 434.401 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434.401 Electrical power and lighting...

  19. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Electrical power and lighting systems. 434.401 Section 434.401 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434.401 Electrical power and lighting...

  20. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Electrical power and lighting systems. 434.401 Section 434.401 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434.401 Electrical power and lighting...

  1. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system. The location and the electrical rating of all stationary electric apparatus in connection with the mine electric system, including permanent cables, switchgear, rectifying substations, transformers, permanent pumps, and trolley wires and trolley feeder wires, and settings of all direct-current...

  2. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system. The location and the electrical rating of all stationary electric apparatus in connection with the mine electric system, including permanent cables, switchgear, rectifying substations, transformers, permanent pumps, and trolley wires and trolley feeder wires, and settings of all direct-current...

  3. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system. The location and the electrical rating of all stationary electric apparatus in connection with the mine electric system, including permanent cables, switchgear, rectifying substations, transformers, permanent pumps, and trolley wires and trolley feeder wires, and settings of all direct-current...

  4. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system. The location and the electrical rating of all stationary electric apparatus in connection with the mine electric system, including permanent cables, switchgear, rectifying substations, transformers, permanent pumps, and trolley wires and trolley feeder wires, and settings of all direct-current...

  5. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system. The location and the electrical rating of all stationary electric apparatus in connection with the mine electric system, including permanent cables, switchgear, rectifying substations, transformers, permanent pumps, and trolley wires and trolley feeder wires, and settings of all direct-current...

  6. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Electrical power and lighting systems. 434.401 Section 434.401 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434.401 Electrical power and lighting...

  7. 46 CFR 28.845 - General requirements for electrical systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false General requirements for electrical systems. 28.845 Section 28.845 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.845 General requirements for electrical systems. (a) Electrical...

  8. 46 CFR 28.845 - General requirements for electrical systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false General requirements for electrical systems. 28.845 Section 28.845 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.845 General requirements for electrical systems. (a) Electrical...

  9. 46 CFR 28.845 - General requirements for electrical systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false General requirements for electrical systems. 28.845 Section 28.845 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.845 General requirements for electrical systems. (a) Electrical...

  10. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Electrical Systems.

    ERIC Educational Resources Information Center

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, diagnosis, repair, and adjustment of automotive electrical systems. The course is comprised of six units: (1) Fundamentals of Electrical Systems, (2) Battery Servicing, (3) Starting Systems, (4) Charging Systems, (5) Ignition Systems,…

  11. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) engineers examine the interface surface on the Cassini spacecraft prior to installation of the third radioisotope thermoelectric generator (RTG). The other two RTGs, at left, already are installed on Cassini. The three RTGs will be used to power Cassini on its mission to the Saturnian system. They are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  12. An Investigation on the Coupled Thermal-Mechanical-Electrical Response of Automobile Thermoelectric Materials and Devices

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Mu, Yu; Zhai, Pengcheng; Li, Guodong; Zhang, Qingjie

    2013-07-01

    Thermoelectric (TE) materials, which can directly convert heat to electrical energy, possess wide application potential for power generation from waste heat. As TE devices in vehicle exhaust power generation systems work in the long term in a service environment with coupled thermal-mechanical-electrical conditions, the reliability of their mechanical strength and conversion efficiency is an important issue for their commercial application. Based on semiconductor TE devices wih multiple p- n couples and the working environment of a vehicle exhaust power generation system, the service conditions of the TE devices are simulated by using the finite-element method. The working temperature on the hot side is set according to experimental measurements, and two cooling methods, i.e., an independent and shared water tank, are adopted on the cold side. The conversion efficiency and thermal stresses of the TE devices are calculated and discussed. Numerical results are obtained, and the mechanism of the influence on the conversion efficiency and mechanical properties of the TE materials is revealed, aiming to provide theoretical guidance for optimization of the design and commercial application of vehicle TE devices.

  13. Efficient Probabilistic Diagnostics for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  14. Mechanical and Electrical Performance of Thermally Stable Au-ZnO films

    DOE PAGESBeta

    Schoeppner, Rachel L.; Goeke, Ronald S.; Moody, Neville R.; Bahr, David F.

    2015-03-28

    The mechanical properties, thermal stability, and electrical performance of Au–ZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350 °C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanicalmore » softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. Furthermore, the addition of 1–2% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 nΩ-m. Our results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardness–resistivity relationship that is relatively independent of the particular ODS chemistry.« less

  15. Mechanical and Electrical Characterization of Piezoelectric Artificial Cochlear Device and Biocompatible Packaging

    PubMed Central

    Jung, Youngdo; Kwak, Jun-Hyuk; Kang, Hanmi; Kim, Wan Doo; Hur, Shin

    2015-01-01

    This paper presents the development of a piezoelectric artificial cochlea (PAC) device capable of analyzing vibratory signal inputs and converting them into electrical signal outputs without an external power source by mimicking the function of human cochlea within an audible frequency range. The PAC consists of an artificial basilar membrane (ABM) part and an implantable packaged part. The packaged part provides a liquid environment through which incoming vibrations are transmitted to the membrane part. The membrane part responds to the transmitted signal, and the local area of the ABM part vibrates differently depending on its local resonant frequency. The membrane was designed to have a logarithmically varying width from 0.97 mm to 8.0 mm along the 28 mm length. By incorporating a micro-actuator in an experimental platform for the package part that mimics the function of a stapes bone in the middle ear, we created a similar experimental environment to cochlea where the human basilar membrane vibrates. The mechanical and electrical responses of fabricated PAC were measured with a laser Doppler vibrometer and a data acquisition system, and were compared with simulation results. Finally, the fabricated PAC in a biocompatible package was developed and its mechanical and electrical characteristics were measured. The experimental results shows successful frequency separation of incoming mechanical signal from micro-actuator into frequency bandwidth within the 0.4 kHz–5 kHz range. PMID:26263995

  16. Understanding the Heart's Electrical System and EKG Results

    MedlinePlus

    ... on Twitter. Understanding the Heart's Electrical System and EKG Results Doctors use a test called an EKG ( ... of an electrical signal's journey through the heart. EKG The image shows the standard setup for an ...

  17. Electrical noise control in e-beam processing systems

    SciTech Connect

    Gunn, R.

    1996-12-31

    Electrical noise can be a problem in any system. The risk rises when the system contains an energetic noise source like an e-beam. Relief is more certain when facts about noise propagation are fresh in mind and this is a practical over-view of just these things. Though known singly by technical people, these effects are now brought together and related to one another. This discussion cites the practical importance of skin effect, conductor self-inductance, and the four coupling mechanisms including the justly feared conductively coupled {open_quotes}ground loop{close_quotes}. A look at the valuable yet inexpensive single Faraday-shield transformer leads to system concepts like incidental returns and the often overlooked need for intentional noise-abatement conductors. The wrap-up addresses practical matters like noise propagation through power wiring, followed by specific suggestions and examples of system layouts that inherently avoid harmful noise couplings.

  18. Analysis of components, designs, and operation for electric propulsion and integrated electrical system

    SciTech Connect

    Arrington, J.W.

    1998-09-01

    The surface combatant of the 21st century will be designed to support a myriad of tasks requiring greater flexibility and endurance while keeping construction, maintenance and operating costs to a minimum. As a result the design of a surface combatant will depart from today`s standards and philosophies. One option is the use of an electric propulsion system that can be integrated with the other ship`s electrical loads. Electric propulsion operating with an Integrated Electrical System has many advantages that will fulfill the requirements of future surface combatants. This study provides the historical background, the supporting issues, components, and architecture of electric propulsion systems and the Integrated Electrical System. Technical information on various component types and issues that influence the design considerations of an electric propulsion system and Integrated Electrical System to meet the requirements of a surface combatant are addressed. The areas of study are prime movers, generators, frequency converters, motors, ship`s service electrical distribution, auxiliary electrical loads, and system control.

  19. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  20. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-06-15

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  1. Electric Power Demand and Emerging Technology in Highly-sophisticated Electric Power Systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Hikita, Masayuki

    In the last few years, the increase of the electric power demand has been remarkable, especially in Asia district. In such trend, the electric power system of Japan has been supplied with high quality, high reliability and highly-stabilized electric power. This is supported by highly-sophisticated electric power system which prides oneself on high voltage and large capacity. In this paper, outlines of these technologies are described. And, newest technology trends such as electric power liberalization, innovation of dispersed power source, effective utilization of natural energy are also explained. In addition, the global standards are important to make the technological level of Japan to be the world one in future.

  2. Development of a DC propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  3. Quantum mechanics of open systems

    NASA Astrophysics Data System (ADS)

    Melikidze, Akakii

    In quantum mechanics, there is a set of problems where the system of interest interacts with another system, usually called "environment". This interaction leads to the exchange of energy and information and makes the dynamics of the system of interest essentially non-unitary. Such problems often appeared in condensed matter physics and attracted much attention after recent advances in nanotechnology. As broadly posed as they are, these problems require a variety of different approaches. This thesis is an attempt to examine several of these approaches in applications to different condensed matter problems. The first problem concerns the so-called "Master equation" approach which is very popular in quantum optics. I show that analytic properties of environmental correlators lead to strong restrictions on the applicability of the approach to the strong-coupling regime of interest in condensed matter physics. In the second problem, I use path integrals to treat the localization of particles on attractive short-range potentials when the environment produces an effective viscous friction force. I find that friction changes drastically the localization properties and leads to much stronger localization in comparison to the non-dissipative case. This has implications for the motion of heavy particles in fermionic liquids and, as will be argued below, is also relevant to the problem of high-temperature superconductivity. Finally, the third problem deals with the interplay of geometric phases and energy dissipation which occurs in the motion of vortices in superconductors. It is shown that this interplay leads to interesting predictions for vortex tunneling in high-temperature superconductors which have been partially confirmed by experiments.

  4. The Tractor Electrical System. A Teaching Reference.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    The fundamental principles underlying the application of electricity to tractors and farm equipment are presented. An understanding of the material in the basic manual will enable the service man to understand better the service procedures covered in service manuals on electrical equipment. Topics dealt with are fundamentals of electricity,…

  5. Dual power, constant speed electric motor system

    DOEpatents

    Kirschbaum, H.S.

    1984-07-31

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

  6. Dual power, constant speed electric motor system

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

  7. Electrical system architecture having high voltage bus

    DOEpatents

    Hoff, Brian Douglas; Akasam, Sivaprasad

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  8. Advanced Electric Traction System Technology Development

    SciTech Connect

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  9. Transcutaneous Electrical Nerve Stimulation: Mechanisms, Clinical Application and Evidence

    PubMed Central

    2007-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a non-invasive, inexpensive, self-administered technique to relieve pain.There are few side effects and no potential for overdose so patients can titrate the treatment as required.TENS techniques include conventional TENS, acupuncture-like TENS and intense TENS. In general, conventional TENS is used in the first instance.The purpose of conventional TENS is to selectively activate large diameter non-noxious afferents (A-beta) to reduce nociceptor cell activity and sensitization at a segmental level in the central nervous system.Pain relief with conventional TENS is rapid in onset and offset and is maximal when the patient experiences a strong but non-painful paraesthesia beneath the electrodes. Therefore, patients may need to administer TENS throughout the day.Clinical experience suggests that TENS may be beneficial as an adjunct to pharmacotherapy for acute pain although systematic reviews are conflicting. Clinical experience and systematic reviews suggest that TENS is beneficial for chronic pain. PMID:26526976

  10. Electrical system/environment interactions on the planet Mars

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Hillard, G. B.; Ferguson, D. C.

    1991-01-01

    The Martian environment is a diverse environment with which systems will interact in numerous ways. Preliminary thoughts on electrical system/environment interactions which might be of interest to system designers at all stages of system design are presented. These interactions are primarily related to electrical charging, contamination, and Martian surface sand and dust.

  11. Crystalline electric fields in mixed valent systems

    SciTech Connect

    Shapiro, S.M.

    1980-01-01

    The inelastic neutron studies of rare-earth-based mixed valent systems have all shown remarkably similar results: a broad quasielastic line with half width on the order of 10 MeV. This width exhibits a strong temperature dependence in those systems which undergo a valence transition and is only weakly temperature dependent in those systems which show no transition. A surprising result was the absence of crystalline electric field (CEF) excitations. Recent measurements on the alloy Ce/sub .9-x/La/sub x/Th/sub .1/ have revealed the existence of CEF excitations. For x = 0, the valence transition is strongly first order and occurs near T/sub 0/ approx. 150 K. The inelastic spectra exhibit the typical broad quasielastic scattering. As x increases, T/sub 0/ decreases due to internal pressure effects, and a well-defined, but broad, excitation appears near E = 15 MeV. This is interpreted as a CEF excitation between the GAMMA/sub 7/ and GAMMA/sub 8/ levels of the Ce/sup 3/+ ion. For x = 0.40, the valence transition is almost completely suppressed and the excitation becomes even sharper.

  12. Optimizing the Electrical Power in an Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Coccolo, Mattia; Litak, Grzegorz; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing, can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes resonate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that can convert environmental kinetic energy into electrical energy, that is, an energy harvester. Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequencies, that are not always easy to adjust and change. Here, we study the VR generated by tuning another parameter that is possible to manipulate when the forcing values depend on the environmental conditions. We have investigated the dependence of the maximum response due to the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have plotted color coded figures in the space of the two forcing amplitudes, in which it is possible to appreciate different patterns in the electrical power generated by the system. These patterns provide useful information on the forcing amplitudes in order to produce the optimal electrical power.

  13. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  14. AC propulsion system for an electric vehicle, phase 2

    NASA Astrophysics Data System (ADS)

    Slicker, J. M.

    1983-06-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  15. Design of an Electric Propulsion System for SCEPTOR

    NASA Technical Reports Server (NTRS)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  16. Advanced electric propulsion system concept for electric vehicles. Addendum 1: Voltage considerations

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1980-01-01

    The two electric vehicle propulsion systems that best met cost and performance goals were examined to assess the effect of battery pack voltage on system performance and cost. A voltage range of 54 to 540 V was considered for a typical battery pack capacity of 24 k W-hr. The highest battery specific energy (W-hr/kg) and the lowest cost ($/kW-hr) were obtained at the minimum voltage level. The flywheel system traction motor is a dc, mechanically commutated with shunt field control, and due to the flywheel the traction motor and the battery are not subject to extreme peaks of power demand. The basic system uses a permanent-magnet motor with electronic commutation supplied by an ac power control unit. In both systems battery cost were the major factor in system voltage selection, and a battery pack with the minimum voltage of 54 V produced the lowest life-cycle cost. The minimum life-cycle cost for the basic system with lead-acid batteries was $0.057/km and for the flywheel system was $0.037/km.

  17. Simulation Tool to Assess Mechanical and Electrical Stresses on Wind Turbine Generators: Preprint

    SciTech Connect

    Singh, M.; Muljadi, E.; Gevorgian, V.; Jonkman, J.

    2013-10-01

    Wind turbine generators (WTGs) consist of many different components to convert kinetic energy of the wind into electrical energy for end users. Wind energy is accessed to provide mechanical torque for driving the shaft of the electrical generator. The conversion from wind power to mechanical power is governed by the aerodynamic conversion. The aerodynamic-electrical-conversion efficiency of a WTGis influenced by the efficiency of the blades, the gearbox, the generator, and the power converter. This paper describes the use of MATLAB/Simulink to simulate the electrical and grid-related aspects of a WTG coupled with the FAST aero-elastic wind turbine computer-aided engineering tool to simulate the aerodynamic and mechanical aspects of a WTG. The combination of the two enables studiesinvolving both electrical and mechanical aspects of a WTG. This digest includes some examples of the capabilities of the FAST and MATLAB coupling, namely the effects of electrical faults on the blade moments.

  18. Some aspects of coupled electrical-mechanical effects in dielectric materials

    NASA Astrophysics Data System (ADS)

    Teyssedre, Gilbert; Berquez, Laurent; Laurent, Christian

    2015-05-01

    The propensity of electrically insulating materials to generate/store electrical charges leads to a panel of electromechanical phenomena that can be either exploited in applications relevant to electrical engineering, or represent limitations in the performance of insulating materials. The aim of this contribution is to describe various features of these electrical-mechanical coupling phenomena with focus on the field-induced strain measurement of charged polymers, on the charge distribution measurement by pulsed electroacoustic method and on the contribution of electromechanical effects in electrical ageing phenomena. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  19. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sabet, Maziyar; Soleimani, Hassan

    2014-08-01

    Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research.

  20. Electrically induced spontaneous emission in open electronic system

    NASA Astrophysics Data System (ADS)

    Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration

    A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.

  1. Jumping Mechanism for Asteroid Rover with the Use of Resonance and Electrical Stiffness Switching

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoshiki; Mizuguchi, Kou; Kobayashi, Nobuyuki

    It is not easy for asteroid rover with wheels to move on the surface of asteroids because such an astral body has two special features. One feature is that there is no air and it induces vacuum metalizing of metal slide components. The other feature is that their quite small gravity induces bad controllability of rover with wheels which requires enough frictional force between ground and wheels. Therefore, it is preferable for rover to use jumping mechanism without metal slide component and with low energy consumption. In this paper, a jumping mechanism is proposed and the mechanism uses a energy which is stored by resonance of flexible part. However, simply giving resonance results in low height of jumping. Therefore, electrical stiffness switching system is implemented to realize a effective jumping. Electrical stiffness switching is realized by piezoelectric element and external capacitor which is connected to them. Two method of stiffness switching are introduced. One is stiffness hardening and the other is stiffness softening which solve the problem of stiffness hardening. To validate the proposed mechanisms, numerical analyses are carried out and feasibilities of application for asteroid rover are studied.

  2. Control of cardiac alternans by mechanical and electrical feedback

    NASA Astrophysics Data System (ADS)

    Yapari, Felicia; Deshpande, Dipen; Belhamadia, Youssef; Dubljevic, Stevan

    2014-07-01

    A persistent alternation in the cardiac action potential duration has been linked to the onset of ventricular arrhythmia, which may lead to sudden cardiac death. A coupling between these cardiac alternans and the intracellular calcium dynamics has also been identified in previous studies. In this paper, the system of PDEs describing the small amplitude of alternans and the alternation of peak intracellular Ca2+ are stabilized by optimal boundary and spatially distributed actuation. A simulation study demonstrating the successful annihilation of both alternans on a one-dimensional cable of cardiac cells by utilizing the full-state feedback controller is presented. Complimentary to these studies, a three variable Nash-Panfilov model is used to investigate alternans annihilation via mechanical (or stretch) perturbations. The coupled model includes the active stress which defines the mechanical properties of the tissue and is utilized in the feedback algorithm as an independent input from the pacing based controller realization in alternans annihilation. Simulation studies of both control methods demonstrate that the proposed methods can successfully annihilate alternans in cables that are significantly longer than 1 cm, thus overcoming the limitations of earlier control efforts.

  3. HEMP emergency planning and operating procedures for electric power systems

    SciTech Connect

    Reddoch, T.W.; Markel, L.C. )

    1991-01-01

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E[sub 1] (steep-front pulse) component and the late time E[sub 3] (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council's regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  4. Spin-controlled mechanics in nanoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Radić, D.

    2015-03-01

    We consider a dc-electronic tunneling transport through a carbon nanotube suspended between normal-metal source and arbitrarily spin-polarized drain lead in the presence of an external magnetic field. We show that magnetomotive coupling between electrical current through the nanotube and its mechanical vibrations may lead to an electromechanical instability and give an onset of self-excited mechanical vibrations depending on spin polarization of the drain lead and frequency of vibrations. The self-excitation mechanism is based on correlation between the occupancy of quantized Zeeman-split electronic states in the nanotube and the direction of velocity of its mechanical motion. It is an effective gating effect by the presence of electron in the spin state which, through the Coulomb blockade, permits tunneling of electron to the drain predominantly only during a particular phase of mechanical vibration thus coherently changing mechanical momentum and leading into instability if mechanical damping is overcome.

  5. Electrical Systems. FOS: Fundamentals of Service. Fifth Edition.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This manual, which is part of a series on agricultural and industrial machinery, deals with electrical systems. Special attention is paid to electricity as it is commonly used on mobile machines. The following topics are covered in the individual chapters: electricity and how it works (current, voltage, and resistance; types of circuits;…

  6. Relation between mechanical dynamic processes and the accompanying electric fields

    NASA Astrophysics Data System (ADS)

    Bivin, Yu. K.

    2015-06-01

    The dependence of the electric field in the plane of motion of a nylon string on the string velocity is experimentally studied. The shape and number of the charges that accompany the motion of solid bodies, which have various geometric parameters, in air up to transonic velocities are determined. The formation and shape of electric charges of different signs in an initially neutral dielectric rod are investigated during the motion of a deformation pulse of the same sign along the rod.

  7. Electrical conductivity of microwave heated polyaniline nanotubes and possible mechanism of microwave absorption by materials.

    PubMed

    Murai, Takahiro; Fukasawa, Ryo; Muraoka, Tohru; Takauchi, Hiroyuki; Gotoh, Yasuo; Takizawa, Tokihiro; Matsuse, Takehiro

    2009-01-01

    In the course of experiments to perform deprotonation and carbonization of doped polyaniline (PANI) nanotubes (NTs) by irradiating directly 2.45 GHz microwave (MW) in our microwave heating system (MWHS), we have discovered that the PANI-NTs self heat by absorbing the MW but the temperature of the PANI-NTs stops rising around 300 degrees C in spite of the heightened MW power Furthermore, we have found that the MW irradiated PANI-NTs have transferred from electrical conductor to insulator depending on the temperature of the PANI-NTs. By measuring electron spin resonance (ESR) spectra of the MW heated PANI-NTs, the existence of the unpaired electrons is shown to have a strong correlation between the degree of MW absorption and the transition in the electrical conductivities. In order to deprotonate and carbonize further the PANI-NTs, we have performed heat treatment for the PANI-NTs up to a temperature (T(HT)) of about 1200 degrees C in the same MWHS using carbon fiber which self heats by absorbing MW. The chemical transformations in the PANI-NTs induced by the heat treatments are discussed by measuring the X-ray photoelectron spectroscopy (XPS) spectra. Finally, the temperature dependence of electrical conductivities of the PANI-NTs are measured in order to investigate the mechanism of electrical conduction of the heat treated PANI-NTs. PMID:21384721

  8. 75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Reliability Organization Definition of Bulk Electric System, Notice of Proposed Rulemaking, 75 FR 14097 (Mar... Electric System, Notice of Proposed Rulemaking, 75 FR 14097 (Mar. 24, 2010), FERC Stats. & Regs. ] 32,654... the NOPR in this Final Rule, as described below. \\26\\ See 75 FR 14097 (Mar. 24, 2010). \\27\\ A list...

  9. Solar electric propulsion system /SEPS/ program plans and system definition

    NASA Technical Reports Server (NTRS)

    Austin, R. E.; Kisko, W. A.

    1979-01-01

    The status of the NASA Solar Electric Propulsion System (SEPS) program is reviewed. The plans for SEPS definition and development include the initiation of the SEPS definition phase, the procurement for full-scale development in 1980, delivery of the SEPS for integration and tests with the comet rendezvous spacecraft in 1984, and a launch in 1985 that involves a flyby of Halley's comet in 1985 and a subsequent rendezvous with the comet Tempel 2 in 1988. In preparation for this, the acquisition process for SEPS has been initiated based on mission requirements rather than system requirements.

  10. System for the co-production of electricity and hydrogen

    DOEpatents

    Pham, Ai Quoc; Anderson, Brian Lee

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  11. Spacecraft Electrical Power System (EPS) generic analysis tools and techniques

    NASA Technical Reports Server (NTRS)

    Morris, Gladys M.; Sheppard, Mark A.

    1992-01-01

    An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.

  12. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XX, TROUBLESHOOTING ELECTRICAL SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO ACQUAINT THE TRAINEE WITH TROUBLESHOOTING PROCEDURES FOR DIESEL ENGINE ELECTRICAL SYSTEMS. TOPICS ARE (1) TROUBLESHOOTING ELECTRICAL SYSTEMS (INTRODUCTION), (2) TOOLS AND INSTRUMENTS FOR TROUBLESHOOTING, (3) THE BATTERY, (4) PERIODIC BATTERY SERVICING, (5) THE DC CHARGING SYSTEM, (6) PERIODIC…

  13. Intelligent vehicle electrical power supply system with central coordinated protection

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-05-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  14. Automating a spacecraft electrical power system using expert systems

    NASA Technical Reports Server (NTRS)

    Lollar, L. F.

    1991-01-01

    Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.

  15. Polychlorinated biphenyls (PCBs) in transit system electrical equipment

    NASA Astrophysics Data System (ADS)

    1984-05-01

    The legislative history and current regulatory requirements concerning the continued use of PolyChlorinated Biphenyls PCBs in transit system electrical equipment are presented. The recent rule-making by the EPA is presented in summary form to aid the reader in following the chronology of requirements affecting the continued operation, servicing, marking, and disposal of transit system electrical equipment which contains PCB materials. Types of transit system electrical equipment regulated by the EPA are identified and future regulatory requirements concerning allowable PCB concentration levels of specific electrical equipment are outlined. Transit system procedures for the handling of electrical equipment containing PCBs are presented and recommendations to assist transit systems in eliminating PCBs from electrical equipment are provided.

  16. Mechanical sensitivity reveals evolutionary dynamics of mechanical systems

    PubMed Central

    Anderson, P. S. L.; Patek, S. N.

    2015-01-01

    A classic question in evolutionary biology is how form–function relationships promote or limit diversification. Mechanical metrics, such as kinematic transmission (KT) in linkage systems, are useful tools for examining the evolution of form and function in a comparative context. The convergence of disparate systems on equivalent metric values (mechanical equivalence) has been highlighted as a source of potential morphological diversity under the assumption that morphology can evolve with minimal impact on function. However, this assumption does not account for mechanical sensitivity—the sensitivity of the metric to morphological changes in individual components of a structure. We examined the diversification of a four-bar linkage system in mantis shrimp (Stomatopoda), and found evidence for both mechanical equivalence and differential mechanical sensitivity. KT exhibited variable correlations with individual linkage components, highlighting the components that influence KT evolution, and the components that are free to evolve independently from KT and thereby contribute to the observed pattern of mechanical equivalence. Determining the mechanical sensitivity in a system leads to a deeper understanding of both functional convergence and morphological diversification. This study illustrates the importance of multi-level analyses in delineating the factors that limit and promote diversification in form–function systems. PMID:25716791

  17. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  18. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N.; Burress, B.A.; Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  19. Spacelab Life Sciences-1 electrical diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Kao, C. Y.; Morris, W. S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  20. Spacelab Life Sciences-1 electrical diagnostics expert system

    NASA Technical Reports Server (NTRS)

    Kao, Cheng Y.; Morris, William S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  1. Transformers and the Electric Utility System

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2005-01-01

    For electric energy to get from the generating station to a home, it must pass through a transformer, a device that can change voltage levels easily. This article describes how transformers work, covering the following topics: (1) the magnetism-electricity link; (2) transformer basics; (3) the energy seesaw; (4) the turns ratio rule; and (5)…

  2. Illuminating Systems: Edison and Electrical Incandescence.

    ERIC Educational Resources Information Center

    Sanford, Greg

    1989-01-01

    Traces the life and inventions of Thomas A. Edison up to the invention of electrical incandescent lighting in 1881. Focuses on the process that Edison followed in developing incandescent lighting, including financial aspects, other competitors in the field, and the eventual establishment of the Edison Electric Light Companies. (RW)

  3. New controller for functional electrical stimulation systems.

    PubMed

    Fisekovic, N; Popovic, D B

    2001-07-01

    A novel, self-contained controller for functional electrical stimulation systems has been designed. The development was motivated by the need to have a general purpose, easy to use controller capable of stimulating many muscle groups, thus restoring complex motor functions (e.g. standing, walking, reaching, and grasping). The designed controller can regulate the frequency, pulse duration, and charge balance on up to 16 channels, and execute pre-programmed and sensory-driven control operations. The controller supports up to eight analog and six digital sensors, and comprises a memory block for including history of the sensory data (time series). Five independent timers provide the basis for the multi-modal and multi-level control of movement. The PC compatible interface is realised via an IR serial communication channel. The PC based software is user friendly and fully menu driven. This paper also presents a case study where the controller was implemented to restore walking in a paraplegic subject. The assistive system comprised the novel controller, the power and output stages of an eight-channel FES system (IEEE Trans Rehabil Eng, TRE-2 (1994) 234), ankle-foot orthoses, and a rolling walker. Stimulation was applied with surface electrodes positioned over the motoneurons that innervate muscles responsible for the hip and knee flexion and extension. The sensory system included goniometers at knee and hip joints, force-sensing resistors built in the shoe insoles, and digital accelerometers at the hips. A rule-based control algorithm was generated following a two-step procedure: (1) simulation and (2) machine learning as described in earlier studies (IEEE Trans Rehab Eng, TRE-7 (1999) 69). The paraplegic subject walked faster, and with less physiological effort, when automatic control was applied as compared to hand-control. This case study, as well as a previous one for assisting grasping (The design and testing of a new programmable electronic stimulator. N

  4. Electrical power systems (Jamaica). Electrical power systems, July 1992. Export trade information

    SciTech Connect

    Not Available

    1992-07-01

    The United States presently supplies 70% of Jamaica's demand for Electrical Power Systems. Market demand is not limited to the requirements of the National Power Company. There is domestic demand created by the need to have backup or stand-by facilities during load shedding or power outages. Ongoing refurbishing programs and the ultimate need to increase the capacity of the Public Service Company will facilitate an ongoing demand for power systems. The market is very steady and will gain momentum lasting well beyond 1993.

  5. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates...

  6. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates...

  7. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates...

  8. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates...

  9. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates...

  10. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  11. Reserve valuation in electric power systems

    NASA Astrophysics Data System (ADS)

    Ruiz, Pablo Ariel

    Operational reliability is provided in part by scheduling capacity in excess of the load forecast. This reserve capacity balances the uncertain power demand with the supply in real time and provides for equipment outages. Traditionally, reserve scheduling has been ensured by enforcing reserve requirements in the operations planning. An alternate approach is to employ a stochastic formulation, which allows the explicit modeling of the sources of uncertainty. This thesis compares stochastic and reserve methods and evaluates the benefits of a combined approach for the efficient management of uncertainty in the unit commitment problem. Numerical studies show that the unit commitment solutions obtained for the combined approach are robust and superior with respect to the traditional approach. These robust solutions are especially valuable in areas with a high proportion of wind power, as their built-in flexibility allows the dispatch of practically all the available wind power while minimizing the costs of operation. The scheduled reserve has an economic value since it reduces the outage costs. In several electricity markets, reserve demand functions have been implemented to take into account the value of reserve in the market clearing process. These often take the form of a step-down function at the reserve requirement level, and as such they may not appropriately represent the reserve value. The value of reserve is impacted by the reliability, dynamic and stochastic characteristics of system components, the system operation policies, and the economic aspects such as the risk preferences of the demand. In this thesis, these aspects are taken into account to approximate the reserve value and construct reserve demand functions. Illustrative examples show that the demand functions constructed have similarities with those implemented in some markets.

  12. Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus

    PubMed Central

    Güth, Robert; Pinch, Matthew; Unguez, Graciela A.

    2013-01-01

    Summary Animals perform a remarkable diversity of movements through the coordinated mechanical contraction of skeletal muscle. This capacity for a wide range of movements is due to the presence of muscle cells with a very plastic phenotype that display many different biochemical, physiological and morphological properties. What factors influence the maintenance and plasticity of differentiated muscle fibers is a fundamental question in muscle biology. We have exploited the remarkable potential of skeletal muscle cells of the gymnotiform electric fish Sternopygus macrurus to trans-differentiate into electrocytes, the non-contractile electrogenic cells of the electric organ (EO), to investigate the mechanisms that regulate the skeletal muscle phenotype. In S. macrurus, mature electrocytes possess a phenotype that is intermediate between muscle and non-muscle cells. How some genes coding for muscle-specific proteins are downregulated while others are maintained, and novel genes are upregulated, is an intriguing problem in the control of skeletal muscle and EO phenotype. To date, the intracellular and extracellular factors that generate and maintain distinct patterns of gene expression in muscle and EO have not been defined. Expression studies in S. macrurus have started to shed light on the role that transcriptional and post-transcriptional events play in regulating specific muscle protein systems and the muscle phenotype of the EO. In addition, these findings also represent an important step toward identifying mechanisms that affect the maintenance and plasticity of the muscle cell phenotype for the evolution of highly specialized non-contractile tissues. PMID:23761472

  13. Operationalizing clean development mechanism baselines: A case study of China's electrical sector

    NASA Astrophysics Data System (ADS)

    Steenhof, Paul A.

    The global carbon market is rapidly developing as the first commitment period of the Kyoto Protocol draws closer and Parties to the Protocol with greenhouse gas (GHG) emission reduction targets seek alternative ways to reduce their emissions. The Protocol includes the Clean Development Mechanism (CDM), a tool that encourages project-based investments to be made in developing nations that will lead to an additional reduction in emissions. Due to China's economic size and rate of growth, technological characteristics, and its reliance on coal, it contains a large proportion of the global CDM potential. As China's economy modernizes, more technologies and processes are requiring electricity and demand for this energy source is accelerating rapidly. Relatively inefficient technology to generate electricity in China thereby results in the electrical sector having substantial GHG emission reduction opportunities as related to the CDM. In order to ensure the credibility of the CDM in leading to a reduction in GHG emissions, it is important that the baseline method used in the CDM approval process is scientifically sound and accessible for both others to use and for evaluation purposes. Three different methods for assessing CDM baselines and environmental additionality are investigated in the context of China's electrical sector: a method based on a historical perspective of the electrical sector (factor decomposition), a method structured upon a current perspective (operating and build margins), and a simulation of the future (dispatch analysis). Assessing future emission levels for China's electrical sector is a very challenging task given the complexity of the system, its dynamics, and that it is heavily influenced by internal and external forces, but of the different baseline methods investigated, dispatch modelling is best suited for the Chinese context as it is able to consider the important regional and temporal dimensions of its economy and its future development

  14. Mechanical tension and electrical conductivity of liquid crystal filaments

    NASA Astrophysics Data System (ADS)

    Kress, Oliver H.

    During the NSF funded IRES internship at the Otto-von-Geuricke Univeristy in Magdeburg, Germany, I studied the optical properties and mechanical behavior in the form of line tension of bent-core liquid crystal fiber bundles and verified previously published tension values and temperature dependent behavior. Then, carbon nanotubes were added and it as found that the tension in the fibers decreased by a factor of two instead of increasing as was hoped. A new device for pulling fibers and measuring tension by deflection due to the adhesion of glass beads was built at the LCI. The device was meant to improve upon the device used at O.v.G. Improvements included a smaller heating chamber with better insulation, temperature control, large viewing windows, more stable mounting interface, easier disassembly and the option to quickly modify the device in order to perform a variety of other experiments such as observing behavior due to acoustic driving (based on previous literature), observing optical behavior under a polarizing microscope and introducing probes to measure the electrical properties of fibers. The platform remains modular and makes the addition of new components for carrying out new experiments very simple and straightforward. The addition of carbon nanotubes has scattered results regarding the modulation of fiber tension. It seems that the addition of CNTs to BLC1571 may slightly be decreasing tension while the addition to BLC1688 may be increasing it. In both mesogens, 10wt% CNT yielded the highest tension value above the theoretical surface tension contribution. A reversal of temperature dependence was observed for fibers containing CNT; their tension increased with temperature instead of decreased. A driving rod attached to a speaker was used to acoustically drive a filament of pure BLC1571 in an attempt to replicate the tension values in a different way. The movement of the fiber and the driving rod were captured using a high-speed camera and MATLAB code

  15. Low-Heat-Leak Electrical Leads For Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Hooker, Matthew W.

    1994-01-01

    Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.

  16. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-09-01

    In order to better understand the behavior of lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, electrical and thermal response is presented for predicting short-circuit under external crush. The combined mechanical-electrical-thermal response is simulated in a commercial finite element software LS-DYNA® using a representative-sandwich finite-element model, where electrical-thermal modeling is conducted after an instantaneous mechanical crush. The model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under quasi-static indentation. Model predictions show good agreement with experiments: the fracture of the battery structure under an indentation test is accurately predicted. The electrical-thermal simulation predicts the current density and temperature distribution in a reasonable manner. Whereas previously reported models consider the mechanical response exclusively, we use the electrical contact between active materials following the failure of the separator as a criterion for short-circuit. These results are used to build a lumped representative sandwich model that is computationally efficient and captures behavior at the cell level without resolving the individual layers.

  17. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    NASA Astrophysics Data System (ADS)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  18. Refrigeration Controls: Electrical & Mechanical; Appliance Repair 3: 9027.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This booklet outlines a course designed to equip major appliance service students with the fundamental knowledge and understanding of procedures, basic electrical circuitry, and nomenclatures of components necessary in successfully tracing a circuit and repairing or replacing a malfunctioning component. Course content includes goals, specific…

  19. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  20. Mechanisms for generating temporal filters in the electrosensory system.

    PubMed

    Rose, G J; Fortune, E S

    1999-05-01

    Temporal patterns of sensory information are important cues in behaviors ranging from spatial analyses to communication. Neural representations of the temporal structure of sensory signals include fluctuations in the discharge rate of neurons over time (peripheral nervous system) and the differential level of activity in neurons tuned to particular temporal features (temporal filters in the central nervous system). This paper presents our current understanding of the mechanisms responsible for the transformations between these representations in electric fish of the genus Eigenmannia. The roles of passive and active membrane properties of neurons, and frequency-dependent gain-control mechanisms are discussed. PMID:10210668

  1. Results of an electrical power system fault study

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  2. Results of an electrical power system fault study

    NASA Astrophysics Data System (ADS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  3. Primary electric propulsion technology study. [for thruster wear-out mechanisms

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Beattie, J. R.

    1979-01-01

    An investigation of the 30-cm engineering-model-thruster technology with emphasis placed on the development of models for understanding and predicting the operational characteristics and wear-out mechanisms of the thruster as a function of operating or design parameters is presented. The task studies include: (1) the wear mechanisms and wear rates that determine the useful lifetime of the thruster discharge chamber; (2) cathode lifetime as determined by the depletion of barium from the barium-aluminate-impregnated-porous-tungsten insert that serves as a barium reservoir; (3) accelerator-grid-system technology; (4) a verification of the high-voltage propellant-flow-electrical-isolator design developed under NASA contract NAS3-20395 for operation at 10-kV applied voltage and 10-A equivalent propellant flow with mercury and argon propellants. A model was formulated for predicting performance.

  4. A Testing System for Diagnosing Misconceptions in DC Electric Circuits.

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Liu, Sei-Hua; Chen, Sei-Wang

    1998-01-01

    Outlines a test-based diagnosis system for misconceptions in DC electric circuits and its three parts: problem library, problem selector and diagnoser. Discusses misconception discrimination and diagnosis theories, and reports the system supports satisfactory diagnosis. Includes an analysis of nine student misconceptions about electrical circuits…

  5. 46 CFR 28.360 - Electrical distribution systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Construction on or After or Which Undergo a Major Conversion Completed on or After September 15, 1991, and That... electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor grounded. (b) A grounded electrical distribution system must have only one connection to ground....

  6. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1981-01-01

    An electric propulsion thrust system has the capability of providing a high specific impulse for long duration scientific missions in space. The EMI from the elements of an ion engine was characterized. The compatibility of ion drive electric propulsion systems with typical interplanetary spacecraft engineering was predicted.

  7. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  8. Results of an electrical power system fault study (CDDF)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, N. R.; Johnson, Y. B.

    1993-01-01

    This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.

  9. Stopping mechanism for capsule endoscope using electrical stimulus.

    PubMed

    Woo, Sang Hyo; Kim, Tae Wan; Cho, Jin Ho

    2010-01-01

    An ingestible capsule, which has the ability to stop at certain locations in the small intestine, was designed and implemented to monitor intestinal diseases. The proposed capsule can contract the small intestine by using electrical stimuli; this contraction causes the capsule to stop when the maximum static frictional force (MSFF) is larger than the force of natural peristalsis. In vitro experiments were carried out to verify the feasibility of the capsule, and the results showed that the capsule was successfully stopped in the small intestine. Various electrodes and electrical stimulus parameters were determined on the basis of the MSFF. A moderate increment of the MSFF (12.7 +/- 4.6 gf at 5 V, 10 Hz, and 5 ms) and the maximum increment of the MSFF (56.5 +/- 9.77 gf at 20 V, 10 Hz, and 5 ms) were obtained, and it is sufficient force to stop the capsule. PMID:19911212

  10. Impact of electric vehicle loads on electric power distribution systems

    NASA Astrophysics Data System (ADS)

    Buchh, Tariq Aslam

    The voltages and currents on four distribution sites (FPLsb-1 to FPLsb-4) have been monitored. The load behavior with and without the EV load has been recorded. By performing laboratory tests on the GMC EV1 charger charging a fully discharged battery, the characteristics of the charger have been determined. The harmonic spectrum of the transformer current charging a fully discharged battery has been determined. The snap shots of the current and voltage waveforms have been recorded and studied. Based on the laboratory data a computer model of the charger and the distribution system has been developed. Comparing the simulation results to the laboratory results and the field data the simulation results have been validated. The simulated currents are roughly 4 to 10% away from the field recorded currents, in their magnitude and distortion. Based on the field data, laboratory results and the simulation results the derating of the distribution transformer has been calculated. The two methods suggested for the calculation of derating have been presented and compared. The maximum and minimum limits of derating have been suggested. Using the first method the maximum derating is 20% and the minimum value is 99%. Using the modified method the derating remains close to 99% throughout the charging cycle. (11 must be noted here, that a derating to 20% means that the transformer can safely handle only 20% of its full rated load. Likewise a derating to 99% means that the transformer can handle 99% of its full rated capacity. Thus, a transformer derated to 20% is highly derated and a transformer derated to 99% is slightly derated.) After establishing the reliability of the simulation, by comparing the simulation results with the field data and laboratory results, a charging scenario with shorter charging times (45 minutes and 1.2 hours) has been simulated. The distribution transformer derating corresponding to these short-charging times has been calculated and presented

  11. Modelling a Simple Mechanical System.

    ERIC Educational Resources Information Center

    Morland, Tim

    1999-01-01

    Provides an example of the modeling power of Mathematics, demonstrated in a piece of A-Level student coursework which was undertaken as part of the MEI Structured Mathematics scheme. A system of two masses and two springs oscillating in one dimension is found to be accurately modeled by a system of linear differential equations. (Author/ASK)

  12. Fast Simulation of Mechanical Heterogeneity in the Electrically Asynchronous Heart Using the MultiPatch Module

    PubMed Central

    Walmsley, John; Arts, Theo; Derval, Nicolas; Bordachar, Pierre; Cochet, Hubert; Ploux, Sylvain; Prinzen, Frits W.; Delhaas, Tammo; Lumens, Joost

    2015-01-01

    Cardiac electrical asynchrony occurs as a result of cardiac pacing or conduction disorders such as left bundle-branch block (LBBB). Electrically asynchronous activation causes myocardial contraction heterogeneity that can be detrimental for cardiac function. Computational models provide a tool for understanding pathological consequences of dyssynchronous contraction. Simulations of mechanical dyssynchrony within the heart are typically performed using the finite element method, whose computational intensity may present an obstacle to clinical deployment of patient-specific models. We present an alternative based on the CircAdapt lumped-parameter model of the heart and circulatory system, called the MultiPatch module. Cardiac walls are subdivided into an arbitrary number of patches of homogeneous tissue. Tissue properties and activation time can differ between patches. All patches within a wall share a common wall tension and curvature. Consequently, spatial location within the wall is not required to calculate deformation in a patch. We test the hypothesis that activation time is more important than tissue location for determining mechanical deformation in asynchronous hearts. We perform simulations representing an experimental study of myocardial deformation induced by ventricular pacing, and a patient with LBBB and heart failure using endocardial recordings of electrical activation, wall volumes, and end-diastolic volumes. Direct comparison between simulated and experimental strain patterns shows both qualitative and quantitative agreement between model fibre strain and experimental circumferential strain in terms of shortening and rebound stretch during ejection. Local myofibre strain in the patient simulation shows qualitative agreement with circumferential strain patterns observed in the patient using tagged MRI. We conclude that the MultiPatch module produces realistic regional deformation patterns in the asynchronous heart and that activation time is more

  13. Fast Simulation of Mechanical Heterogeneity in the Electrically Asynchronous Heart Using the MultiPatch Module.

    PubMed

    Walmsley, John; Arts, Theo; Derval, Nicolas; Bordachar, Pierre; Cochet, Hubert; Ploux, Sylvain; Prinzen, Frits W; Delhaas, Tammo; Lumens, Joost

    2015-07-01

    Cardiac electrical asynchrony occurs as a result of cardiac pacing or conduction disorders such as left bundle-branch block (LBBB). Electrically asynchronous activation causes myocardial contraction heterogeneity that can be detrimental for cardiac function. Computational models provide a tool for understanding pathological consequences of dyssynchronous contraction. Simulations of mechanical dyssynchrony within the heart are typically performed using the finite element method, whose computational intensity may present an obstacle to clinical deployment of patient-specific models. We present an alternative based on the CircAdapt lumped-parameter model of the heart and circulatory system, called the MultiPatch module. Cardiac walls are subdivided into an arbitrary number of patches of homogeneous tissue. Tissue properties and activation time can differ between patches. All patches within a wall share a common wall tension and curvature. Consequently, spatial location within the wall is not required to calculate deformation in a patch. We test the hypothesis that activation time is more important than tissue location for determining mechanical deformation in asynchronous hearts. We perform simulations representing an experimental study of myocardial deformation induced by ventricular pacing, and a patient with LBBB and heart failure using endocardial recordings of electrical activation, wall volumes, and end-diastolic volumes. Direct comparison between simulated and experimental strain patterns shows both qualitative and quantitative agreement between model fibre strain and experimental circumferential strain in terms of shortening and rebound stretch during ejection. Local myofibre strain in the patient simulation shows qualitative agreement with circumferential strain patterns observed in the patient using tagged MRI. We conclude that the MultiPatch module produces realistic regional deformation patterns in the asynchronous heart and that activation time is more

  14. Electric Bike Sharing--System Requirements and Operational Concepts

    SciTech Connect

    Cherry, Christopher; Worley, Stacy; Jordan, David

    2010-08-01

    Bike sharing is an exciting new model of public-private transportation provision that has quickly emerged in the past five years. Technological advances have overcome hurdles of early systems and cities throughout the globe are adopting this model of transportation service. Electric bikes have simultaneously gained popularity in many regions of the world and some have suggested that shared electric bikes could provide an even higher level of service compared to existing systems. There are several challenges that are unique to shared electric bikes: electric-assisted range, recharging protocol, and bike and battery checkout procedures. This paper outlines system requirements to successfully develop and deploy an electric bike sharing system, focusing on system architecture, operational concepts, and battery management. Although there is little empirical evidence, electric bike sharing could be feasible, depending on demand and battery management, and can potentially improve the utility of existing bike sharing systems. Under most documented bike sharing use scenarios, electric bike battery capacity is insufficient for a full day of operation, depending on recharging protocol. Off-board battery management is a promising solution to address this problem. Off-board battery management can also support solar recharging. Future pilot tests will be important and allow empirical evaluation of electric bikesharing system performance. (auth)

  15. Monitoring the mechanical behaviour of electrically conductive polymer nanocomposites under ramp and creep conditions.

    PubMed

    Pedrazzoli, D; Dorigato, A; Pegoretti, A

    2012-05-01

    Various amounts of carbon black (CB) and carbon nanofibres (CNF) were dispersed in an epoxy resin to prepare nanocomposites whose mechanical behaviour, under ramp and creep conditions, was monitored by electrical measurements. The electrical resistivity of the epoxy resin was dramatically reduced by both nanofillers after the percolation threshold (1 wt% for CB and 0.5 wt% for CNF), reaching values in the range of 10(3)-10(4) omega . cm for filler loadings higher than 2 wt%. Due to the synergistic effects between the nanofillers, an epoxy system containing a total nanofiller amount of 2 wt%, with a relative CB/CNF ratio of 90/10 was selected for the specific applications. A direct correlation between the tensile strain and the increase of the electrical resistance was observed over the whole experimental range, and also the final failure of the samples was clearly detected. Creep tests confirmed the possibility to monitor the various deformational stages under constant loads, with a strong dependency from the temperature and the applied stress. The obtained results are encouraging for a possible application of nanomodified epoxy resin as a matrix for the preparation of structural composites with sensing (i.e., damage-monitoring) capabilities. PMID:22852352

  16. Rate dependence of electrical and mechanical properties of conductive polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Foley, J. R.; Stilson, C. L.; Smith, K. K. G.; McKinion, C. M.; Chen, C.; Ganguli, S.; Roy, A. K.

    2015-09-01

    Conductive polymer nanocomposites with enhanced electrical and thermal properties show promise as an alternative solution for electronic materials. For example, electronic interconnect materials will have comparable electrical and thermal conductivity to solder with an increased operating range of strain and temperature. This paper documents the fabrication and experimental evaluation of a prototype conductive polymer nanocomposite. Material selection, fabrication processes, and initial characterization of a low Tg polymer with a high fill ratio of carbon nanotubes is presented. The electrical and thermal properties of the composite are measured and compared with predictions. The mechanical properties are measured using dynamic mechanical analysis (DMA) over a wide temperature range. The mechanical and electrical responses of the conductive polymer composite are simultaneously measured at higher strain rates using a modified split Hopkinson pressure bar (SHPB) apparatus. The dynamic stress-strain response is obtained using traditional analytic methods (e.g., two- and three-wave analysis). The electrical response is observed using constant current excitation with high bandwidth (>500 kHz) instrumentation. The dynamic compression data implies the change in electrical resistance is solely a function of the material deformation, i.e., the material exhibits constant electrical conductivity and is insensitive to the applied loads. DMA and SHPB dynamic data are used to estimate the parameters in a Mulliken-Boyce constitutive model, and the resulting behavior is critically evaluated. Finally, progress towards improving the polymer composite's mechanical, electrical, and thermal properties are discussed.

  17. Electron-deformation mechanism of photoexcitation of hypersound in semiconductors in a dc electric field

    SciTech Connect

    Chigarev, N V

    2002-09-30

    The effect of a dc electric field on photoexcitation of a hypersonic pulse in a semiconductor via an electron-deformation mechanism is studied. The profiles of acoustic pulses are simulated for different directions of the electric field. (laser applications and other topics in quantum electronics)

  18. How to Transform Mechanical Work into Electrical Energy Using a Capacitor

    ERIC Educational Resources Information Center

    Skumiel, A.

    2011-01-01

    In this paper the method of converting mechanical work into electrical energy with the participation of a preliminarily charged condenser while the electrodes are sliding in it is presented. Using this method, we can obtain a considerable increase of converted electrical power, depending on the initial energy of the charged condenser, distance…

  19. ARGOS laser system mechanical design

    NASA Astrophysics Data System (ADS)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  20. Electrical stimulation systems for cardiac tissue engineering

    PubMed Central

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures. PMID:19180087

  1. Thermionic reactor systems for electric propulsion.

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.

    1972-01-01

    This paper summarizes the preliminary design studies of unmanned electric propulsion spacecraft, with primary emphasis on the in-core thermionic reactor power subsystem. A 70-kWe power subsystem, with an external-fuel thermionic reactor, is shown integrated into a large L/D (about 20) electric propulsion spacecraft. The 70-kWe spacecraft is designed for launch to earth escape with a Titan-Centaur. Two 300-kWe reactor designs (external-fuel and flashlight designs from Atomic Energy Commission contracted studies) are integrated into 270-kWe electric propulsion spacecraft. The 270-kWe spacecraft are designed for launch to a 700-nmi earth orbit with a Titan III-C/7 booster. The 70-kWe thermionic reactor power subsystem is also conceptually shown as a space base power plant.

  2. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOEpatents

    Liu, Yan; Garces, Luis Jose

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  3. A complete electrical hazard classification system and its application

    SciTech Connect

    Gordon, Lloyd B; Cartelli, Laura

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of

  4. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine...

  5. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine...

  6. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine...

  7. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine...

  8. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine...

  9. Lather (Interior Systems Mechanic). Occupational Analyses Series.

    ERIC Educational Resources Information Center

    Chapman, Mike; Chapman, Carol; MacLean, Margaret

    This analysis covers tasks performed by a lather, an occupational title some provinces and territories of Canada have also identified as drywall and acoustical mechanic; interior systems installer; and interior systems mechanic. A guide to analysis discusses development, structure, and validation method; scope of the occupation; trends; and…

  10. Biosensor regeneration via substrate electric potential: A physical mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Rui-Bin; Lei, U.

    2010-06-01

    Literatures showed that the immune type biosensors can be regenerated by applying a voltage (ΔΦ) across the combined macromolecules but the underlying physics was not clarified. By incorporating an electric double layer force and a van der Waals force into a weight-ensemble Brownian dynamics simulation, we found that the dissociation rate constant for biotin-streptavidin increases exponentially with ΔΦ, and reaches 418-fold when ΔΦ equals 1 V. Macroscopic diffusion simulations using such enhanced dissociation rate constants agree with the previous experiments, and explain quantitatively the finding that the regeneration using square-wave voltage is superior to that using saw-tooth voltage.

  11. Electricity/Electronics Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Sutherland, Barbara, Ed.

    This electricity/electronics guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 35 modules on the following topics: electrical…

  12. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  13. Build-in Electric Field Induced Mechanical Property Change

    NASA Astrophysics Data System (ADS)

    Chien, Te-Yu; Liu, Jian; Yost, Andrew J.; Chakhalian, Jacques; Freeland, John W.; Guisinger, Nathan P.

    Mechanical properties describe how materials respond to external stress. Microscopically, many intrinsic and extrinsic factors, such as bond length and strength (intrinsic) and grain boundaries (extrinsic), may affect the mechanical property of the materials. In this study, we observed a change of fracturing behavior of Nb-doped SrTiO3 in a Schottky barrier near the interfaces with metallic LaNiO3 films. Through cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) experiments and theoretical analysis, the observed fractured topography could be explained by the change of the bond length caused alternation of mechanical property inside the Schottky barrier. Same model could also explain the widely observed dielectric dead layer for SrTiO3 in contact with metal electrodes.

  14. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification

    NASA Astrophysics Data System (ADS)

    Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Zheng, Yuejiu; Li, Zhe

    2014-04-01

    When lithium-ion batteries age with cycling, the battery capacity decreases and the resistance increases. The aging mechanism of different types of lithium-ion batteries differs. The loss of lithium inventory, loss of active material, and the increase in resistance may result in battery aging. Generally, analysis of the battery aging mechanism requires dismantling of batteries and using methods such as X-ray diffraction and scanning electron microscopy. These methods may permanently damage the battery. Therefore, the methods are inappropriate for the battery management system (BMS) in an electric vehicle. The constant current charging curves while charging the battery could be used to get the incremental capacity and differential voltage curves for identifying the aging mechanism; the battery state-of-health can then be estimated. This method can be potentially used in the BMS for online diagnostic and prognostic services. The genetic algorithm could be used to quantitatively analyze the battery aging offline. And the membership function could be used for onboard aging mechanism identification.

  15. The electrical, thermal conductivity, microstructure and mechanical properties of Al-Sn-Pb ternary alloys

    NASA Astrophysics Data System (ADS)

    Alper Billur, C.; Gerçekcioglu, E.; Bozoklu, M.; Saatçi, B.; Ari, M.; Nair, F.

    2015-08-01

    The structural, thermal, electrical and mechanical properties and micro-hardness of four different samples of Al-Sn-Pb ternary alloys (Al-[x] wt. % Sn-10 wt. % Pb) (x = 40, 30, 20 and 10) with constant lead concentrations were investigated for four different samples. Electrical resistivity and conductivity were measured by using (four-point probe measurement techniques) 4PPT techniques. The variations of thermal conductivity were determined by Wiedemann-Franz law (W-F) and Smith-Palmer (S-P) equation using the data obtained from electrical properties. The mechanical properties of the same alloys were obtained by the tensile test and the Vickers micro-hardness test.

  16. Some Electrical and Mechanical Devices to Illustrate Biological Principles

    ERIC Educational Resources Information Center

    Kramer, L. M. J.

    1971-01-01

    Describes the use of metal construction toys (erector sets) to build laboratory equipment (to compare rates of decay, record small mammal activity, stir solutions, and function as a kymograph) and to build analogue models of skeletal joints, and feedback mechanisms responding to external stimuli. (AL)

  17. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling.

    PubMed

    Quinn, T Alexander; Kohl, Peter

    2016-07-01

    Cardiac auto-regulation involves integrated regulatory loops linking electrics and mechanics in the heart. Whereas mechanical activity is usually seen as 'the endpoint' of cardiac auto-regulation, it is important to appreciate that the heart would not function without feed-back from the mechanical environment to cardiac electrical (mechano-electric coupling, MEC) and mechanical (mechano-mechanical coupling, MMC) activity. MEC and MMC contribute to beat-by-beat adaption of cardiac output to physiological demand, and they are involved in various pathological settings, potentially aggravating cardiac dysfunction. Experimental and computational studies using rabbit as a model species have been integral to the development of our current understanding of MEC and MMC. In this paper we review this work, focusing on physiological and pathological implications for cardiac function. PMID:27208698

  18. Basics of a Solar Electric System: Better Buildings Series Solar Electric Fact Sheet

    SciTech Connect

    Not Available

    2002-07-01

    Today's solar technologies are more efficient and versatile than ever before, adding to the appeal of an already desirable energy source. This fact sheet provides information on the basics of a solar electric system, including components of a system, how to choose solar modules, and how to choose a solar system.

  19. Numerical test concerning bone mass apposition under electrical and mechanical stimulus

    PubMed Central

    2012-01-01

    This article proposes a model of bone remodeling that encompasses mechanical and electrical stimuli. The remodeling formulation proposed by Weinans and collaborators was used as the basis of this research, with a literature review allowing a constitutive model evaluating the permittivity of bone tissue to be developed. This allowed the mass distribution that depends on mechanical and electrical stimuli to be obtained. The remaining constants were established through numerical experimentation. The results demonstrate that mass distribution is altered under electrical stimulation, generally resulting in a greater deposition of mass. In addition, the frequency of application of an electric field can affect the distribution of mass; at a lower frequency there is more mass in the domain. These numerical experiments open up discussion concerning the importance of the electric field in the remodeling process and propose the quantification of their effects. PMID:22578031

  20. Survey of electrical submersible systems design, application, and testing

    SciTech Connect

    Durham, M.O.; Lea, J.F.

    1996-05-01

    The electrical submersible pump industry has numerous recommended practices and procedures addressing various facets of the operation. Ascertaining the appropriate technique is tedious. Seldom are all the documents available at one location. This synopsis of all the industry practices provides a ready reference for testing, design, and application of electrical submersible pumping systems. An extensive bibliography identifies significant documents for further reference.

  1. 46 CFR 28.845 - General requirements for electrical systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false General requirements for electrical systems. 28.845... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.845 General requirements for electrical... waterproof or watertight, or enclosed in a watertight housing. (b) Aluminum must not be used for...

  2. 46 CFR 28.845 - General requirements for electrical systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false General requirements for electrical systems. 28.845... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.845 General requirements for electrical... waterproof or watertight, or enclosed in a watertight housing. (b) Aluminum must not be used for...

  3. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  4. Ash reduction system using electrically heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  5. Study of Electrical Conduction Mechanism of Organic Double-Layer Diode Using Electric Field Induced Optical Second Harmonic Generation Measurement.

    PubMed

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    By using electric field induced optical second harmonic generation (EFISHG) and current voltage (I-V) measurements, we studied the electrical transport mechanism of organic double-layer diodes with a structure of Au/N, N'-di-[(1-naphthyl)-N, N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine (a-NPD)/poly(methyl methacrylate) (PMMA)/indium zinc oxide (IZO). Here the α-NPD is a carrier transport layer and the PMMA is an electrical insulating layer. The current level was very low, but the I-V characteristics showed a rectifying behavior. The EFISHG measurement selectively and directly probed the electric field across the α-NPD layer, and showed that the electric field across the a-NPD layer is completely relaxed owing to the charge accumulation at the a-NPD/PMMA interface in the region V > 0, whereas the carrier accumulation was not significant in the region V < 0. On the basis of these experimental results, we proposed a model of the rectification. Further, by coupling the I-V characteristics with the EFISHG measurement, the I-V characteristics of the diodes were well converted into the current-electric field (I-E) characteristics of the α-NPD layer and the PMMA layer. The I-E characteristics suggested the Schottky-type conduction governs the carrier transport. We conclude that the I-V measurement coupled with the EFISHG measurement is very useful to study carrier transport mechanism of the organic double-layer diodes. PMID:27451633

  6. TWRS privatization phase 1 electrical power system

    SciTech Connect

    Singh, G.

    1997-05-30

    This document includes Conceptual Design Report (CDR) for a new 11 km (7 miles) 230 kV transmission line and a new 40 MVA substation (A6) which will be located east of Grout Facility in 200E Area tank farm. This substation will provide electrical power up to 20 MW each for two private contractor facilities for immobilization and disposal of low activity waste (LAW).

  7. Electron radiation effects on the electrical and mechanical properties of polypropylene

    SciTech Connect

    Hammoud, A.N.; Laghari, J.R.; Krishnakumar, B.

    1987-12-01

    Capacitor-grade polypropylene film was irradiated in air with a 1 MeV electron beam to different doses up to 10/sup 8/ rads and the post-irradiation effects on the electrical and mechanical properties of the film were evaluated. The electrical properties included the 60 Hz a.c. breakdown voltage, dielectric constant and dissipation factor. The dielectric constant and dissipation factor were obtained at five frequencies ranging from 50 Hz to 10 kHz. The tensile properties comprised the Young's modulus, elongation-at-break and tensile strength. While the electrical and tensile properties were evaluated at room temperature, the dynamic mechanical properties were determined at a frequency of 110 Hz in a temperature range of 12/sup 0/C to 120/sup 0/C. The results obtained indicate that while the electrical properties remain relatively stable at doses up to 10/sup 7/ rads, the mechanical properties exhibit a steady decline even at lower dose levels.

  8. A simple method to characterize the electrical and mechanical properties of micro-fibres

    NASA Astrophysics Data System (ADS)

    Castellanos-Gomez, A.

    2013-11-01

    A procedure to characterize the electrical and mechanical properties of micro-fibres is presented here. As the required equipment can be found in many teaching laboratories, it can be carried out by physics and mechanical/electrical engineering students. The electrical resistivity, mass density and Young's modulus of carbon micro-fibres have been determined using this procedure, obtaining values in very good agreement with the reference values. Young's modulus has been obtained by measuring the resonance frequency of carbon fibre-based cantilevers. In this way, one can avoid common approaches based on tensile or bending tests which are difficult to implement for microscale materials. Despite the simplicity of the experiments proposed here, they can be used to trigger in the students interest regarding the electrical and mechanical properties of microscale materials.

  9. Simulation of linear mechanical systems

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.

    1993-01-01

    A dynamics and controls analyst is typically presented with a structural dynamics model and must perform various input/output tests and design control laws. The required time/frequency simulations need to be done many times as models change and control designs evolve. This paper examines some simple ways that open and closed loop frequency and time domain simulations can be done using the special structure of the system equations usually available. Routines were developed to run under Pro-Matlab in a mixture of the Pro-Matlab interpreter and FORTRAN (using the .mex facility). These routines are often orders of magnitude faster than trying the typical 'brute force' approach of using built-in Pro-Matlab routines such as bode. This makes the analyst's job easier since not only does an individual run take less time, but much larger models can be attacked, often allowing the whole model reduction step to be eliminated.

  10. Electrical stimuli in the central nervous system microenvironment.

    PubMed

    Thompson, Deanna M; Koppes, Abigail N; Hardy, John G; Schmidt, Christine E

    2014-07-11

    Electrical stimulation to manipulate the central nervous system (CNS) has been applied as early as the 1750s to produce visual sensations of light. Deep brain stimulation (DBS), cochlear implants, visual prosthetics, and functional electrical stimulation (FES) are being applied in the clinic to treat a wide array of neurological diseases, disorders, and injuries. This review describes the history of electrical stimulation of the CNS microenvironment; recent advances in electrical stimulation of the CNS, including DBS to treat essential tremor, Parkinson's disease, and depression; FES for the treatment of spinal cord injuries; and alternative electrical devices to restore vision and hearing via neuroprosthetics (retinal and cochlear implants). It also discusses the role of electrical cues during development and following injury and, importantly, manipulation of these endogenous cues to support regeneration of neural tissue. PMID:25014787

  11. Electric railroads and trolley systems: past, present, and future

    SciTech Connect

    Treat, N.L.

    1984-03-01

    Because of its unique attributes, electricity has played and will continue to play an important role in the development of certain modes of transportation. Although dominated by fossil fuels as a direct source of energy for motive power, transportation has relied upon electricity for particular situations. This report discusses the role of electricity in transportation, including the history of electrified transportation, its current status, and prospects for the future. The historical coverage includes early city transit development, the evolution of the electric streetcar, and the progression of railroad electrification in the United States. Railroads are now the dominant mode of transportation that uses electricity; as such, most of the attention given to the current status of electrified transportation concerns this mode. Railroad electrifications throughout the world are compared, and the current situation regarding railroad electrification in the United States is noted. Future development of electrified transportation may include new rail rapid transit systems and reemployment of electric trolley buses. 43 references, 7 tables.

  12. OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS

    SciTech Connect

    Cutler, Roy I; Peplov, Vladimir V; Wezensky, Mark W; Norris, Kevin Paul; Barnett, William E; Hicks, Jim; Weaver, Joey T; Moss, John; Rust, Kenneth R; Mize, Jeffery J; Anderson, David E

    2011-01-01

    SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

  13. Lunar Dust Chemical, Electrical, and Mechanical Reactivity: Simulation and Characterization

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2008-01-01

    Lunar dust is recognized to be a highly reactive material in its native state. Many, if not all Constellation systems will be affected by its adhesion, abrasion, and reactivity. A critical requirement to develop successful strategies for dealing with lunar dust and designing tolerant systems will be to produce similar material for ground-based testing.

  14. Power quality load management for large spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  15. PEGASUS: A multi-megawatt nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Coomes, Edmund P.; Cuta, Judith M.; Webb, Brent J.; King, David Q.; Patterson, Mike J.; Berkopec, Frank

    1986-01-01

    A propulsion system (PEGASUS) consisting of an electric thruster driven by a multimegawatt nuclear power system is proposed for a manned Mars mission. Magnetoplasmadynamic and mercury-ion thrusters are considered, based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Both thrusters are capable of meeting the mission parameters. Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The power for the PEGASUS system is supplied by a boiling liquid-metal fast reactor. The power system consists of the reactor, reactor shielding, power conditioning subsystems, and heat rejection subsystems. It is capable of providing a maximum of 8.5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, leaving 1.5 megawatts available for inflight mission applications.

  16. Electrical and dielectric properties of bovine trabecular bone - relationships with mechanical properties and mineral density

    NASA Astrophysics Data System (ADS)

    Sierpowska, J.; Töyräs, J.; Hakulinen, M. A.; Saarakkala, S.; Jurvelin, J. S.; Lappalainen, R.

    2003-03-01

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  17. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  18. Electrical and mechanical switching of ferroelectric polarization in the 70 nm BiFeO3 film.

    PubMed

    Chen, Liufang; Cheng, Zhihao; Xu, Wenting; Meng, Xiangjian; Yuan, Guoliang; Liu, Junming; Liu, Zhiguo

    2016-01-01

    Ferroelectric polarization switching and its domain evolution play a key role on the macroscopic electric properties of ferroelectric or piezoelectric devices. Mechanical switching has been reported recently in ~5 nm BaTiO3 and PbZr0.2Ti0.8O3 epitaxial films; however it is still a challenge for a mechanical force to switch polarization of a slightly thicker film in the same way as an electric field. Here, we report that the polarization of a 70 nm BiFeO3 epitaxial film can be completely switched by a mechanical force, and its domain evolution is similar to that observed with electrical switching. With the gradual increase of the field/force, new domains nucleate preferentially at domain boundaries, the μm-size domains commonly decompose to a mass of nm-size domains, and finally they may reorganize to μm-size domains which undergo 180(°) polarization switching through multi steps. Importantly, the complete mechanical switching of polarization was also established in the (0 0 1) film with a smooth surface. Furthermore, either upward or downward polarization can be read out nondestructively by a constant current. Our study sheds light on prospective applications of ferroelectrics in the absence of an electric field, such as memory devices and other micro-electromechanical systems. PMID:26752105

  19. Electrical and mechanical switching of ferroelectric polarization in the 70 nm BiFeO3 film

    PubMed Central

    Chen, Liufang; Cheng, Zhihao; Xu, Wenting; Meng, Xiangjian; Yuan, Guoliang; Liu, Junming; Liu, Zhiguo

    2016-01-01

    Ferroelectric polarization switching and its domain evolution play a key role on the macroscopic electric properties of ferroelectric or piezoelectric devices. Mechanical switching has been reported recently in ~5 nm BaTiO3 and PbZr0.2Ti0.8O3 epitaxial films; however it is still a challenge for a mechanical force to switch polarization of a slightly thicker film in the same way as an electric field. Here, we report that the polarization of a 70 nm BiFeO3 epitaxial film can be completely switched by a mechanical force, and its domain evolution is similar to that observed with electrical switching. With the gradual increase of the field/force, new domains nucleate preferentially at domain boundaries, the μm-size domains commonly decompose to a mass of nm-size domains, and finally they may reorganize to μm-size domains which undergo 180o polarization switching through multi steps. Importantly, the complete mechanical switching of polarization was also established in the (0 0 1) film with a smooth surface. Furthermore, either upward or downward polarization can be read out nondestructively by a constant current. Our study sheds light on prospective applications of ferroelectrics in the absence of an electric field, such as memory devices and other micro-electromechanical systems. PMID:26752105

  20. Built-in Electric Field Induced Mechanical Property Change at the Lanthanum Nickelate/Nb-doped Strontium Titanate Interfaces

    PubMed Central

    Chien, TeYu; Liu, Jian; Yost, Andrew J.; Chakhalian, Jak; Freeland, John W.; Guisinger, Nathan P.

    2016-01-01

    The interactions between electric field and the mechanical properties of materials are important for the applications of microelectromechanical and nanoelectromechanical systems, but relatively unexplored for nanoscale materials. Here, we observe an apparent correlation between the change of the fractured topography of Nb-doped SrTiO3 (Nb:STO) within the presence of a built-in electric field resulting from the Schottky contact at the interface of a metallic LaNiO3 thin film utilizing cross-sectional scanning tunneling microscopy and spectroscopy. The change of the inter-atomic bond length mechanism is argued to be the most plausible origin. This picture is supported by the strong-electric-field-dependent permittivity in STO and the existence of the dielectric dead layer at the interfaces of STO with metallic films. These results provided direct evidence and a possible mechanism for the interplay between the electric field and the mechanical properties on the nanoscale for perovskite materials. PMID:26743875