Science.gov

Sample records for electrical nerve stimulation

  1. Assessment of nerve morphology in nerve activation during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  2. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. PMID:26420473

  3. Transcutaneous Electrical Nerve Stimulation: Research Update.

    ERIC Educational Resources Information Center

    Johns, Florene Carnicelli

    Currently, research is being performed in the area of nonsurgical and nonchemical means for influencing the body's threshold for pain. Today, transcutaneous electrical nerve stimulation (TENS) is being widely used for this purpose. Application of this treatment can be confusing, however, because determining such things as selection of the proper…

  4. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor)...

  5. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor)...

  6. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775 Section 868.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification....

  7. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775 Section 868.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification....

  8. Bladder emptying by intermittent electrical stimulation of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Boggs, Joseph W.; Wenzel, Brian J.; Gustafson, Kenneth J.; Grill, Warren M.

    2006-03-01

    Persons with a suprasacral spinal cord injury cannot empty their bladder voluntarily. Bladder emptying can be restored by intermittent electrical stimulation of the sacral nerve roots (SR) to cause bladder contraction. However, this therapy requires sensory nerve transection to prevent dyssynergic contraction of the external urethral sphincter (EUS). Stimulation of the compound pudendal nerve trunk (PN) activates spinal micturition circuitry, leading to a reflex bladder contraction without a reflex EUS contraction. The present study determined if PN stimulation could produce bladder emptying without nerve transection in cats anesthetized with α-chloralose. With all nerves intact, intermittent PN stimulation emptied the bladder (64 ± 14% of initial volume, n = 37 across six cats) more effectively than either distention-evoked micturition (40 ± 19%, p < 0.001, n = 27 across six cats) or bilateral intermittent SR stimulation (25 ± 23%, p < 0.005, n = 4 across two cats). After bilateral transection of the nerves innervating the urethral sphincter, intermittent SR stimulation voided 79 ± 17% (n = 12 across three cats), comparable to clinical results obtained with SR stimulation. Voiding via intermittent PN stimulation did not increase after neurotomy (p > 0.10), indicating that PN stimulation was not limited by bladder-sphincter dyssynergia. Intermittent PN stimulation holds promise for restoring bladder emptying following spinal injury without requiring nerve transection.

  9. Function electrical stimulation signals generator circuits for the central nerve and the sciatic nerve.

    PubMed

    Wenyuan, Li; Zhenyu, Zhang; Zhi-Gong, Wang

    2005-01-01

    Circuits for the signal generation of the FES (functional electrical stimulation) of the central nerve and the sciatic nerve have been designed. The circuits were implemented by using discrete devices. The FES circuits consist of two or three operational amplifiers. The bandwidths of the circuits are more than 10 kHz and their gains are variable from 20 dB to 60 dB. To a load of several kilo-ohms, according to the microelectrode with the nerve, the circuit for stimulating central nerve can provide a current signal, and the signal value is more than 1mA. The circuit for stimulating sciatic nerve can provide a stimulating voltage signal of more than 10 Vs. The loads of the circuits are microelectrodes contacted with nerves. The circuits can be used with two kinds of microelectrodes: cuff microelectrodes which for stimulating sciatic nerve and shaft microelectrodes which for stimulating central nerve. PMID:17281443

  10. Optic nerve evoked potentials elicited by electrical stimulation.

    PubMed

    Kikuchi, Yasuhiro; Sasaki, Tatsuya; Matsumoto, Masato; Oikawa, Tomoyoshi; Itakura, Takeshi; Kodama, Namio

    2005-07-01

    This study investigated whether the optic nerve evoked potential (ONEP) elicited by electrical stimulation of the optic nerve can serve as a reliable intraoperative indicator of visual function. In the experimental study, two silver-ball stimulating electrodes were placed on the dog optic nerve adjacent to the apex of the orbit and one recording electrode was placed on the optic nerve near the chiasm. The nerve was stimulated with 0.1 to 10 mA rectangular pulses. Stable and reproducible ONEPs were obtained. The ONEPs were not influenced by electromyographic potentials and were recorded more clearly on the optic nerve than on the surrounding tissue. Stepwise incremental transection of the thickness of the nerve resulted in incremental amplitude reduction proportional to the transected area. No response was recorded after complete sectioning of the nerve. In the clinical study, recordings were obtained from 15 patients after craniotomy to treat parasellar tumors or cerebral aneurysms. Reproducible ONEPs were recorded intraoperatively from the electrode placed on the optic nerve near the chiasm in 14 of 15 patients. In the remaining patient, the ONEP, recorded only after tumor removal because the optic nerve was stretched and extremely thin, was remarkably small and the patient developed unilateral blindness postoperatively. These experimental and clinical results suggest the possibility of intraoperative monitoring of visual function in patients undergoing craniotomy for the treatment of lesions near the optic nerve. PMID:16041180

  11. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775 Section 868.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  12. A Computational Framework for Electrical Stimulation of Vestibular Nerve.

    PubMed

    Marianelli, Prisca; Capogrosso, Marco; Bassi Luciani, Lorenzo; Panarese, Alessandro; Micera, Silvestro

    2015-09-01

    The vestibular organs are very important to generate reflexes critical for stabilizing gaze and body posture. Vestibular diseases significantly reduce the quality of life of people who are affected by them. Some research groups have recently started developing vestibular neuroprostheses to mitigate these symptoms. However, many scientific and technological issues need to be addressed to optimise their use in clinical trials. We developed a computational model able to mimic the response of human vestibular nerves and which can be exploited for "in-silico" testing of new strategies to design implantable vestibular prostheses. First, a digital model of the vestibular system was reconstructed from anatomical data. Monopolar stimulation was delivered at different positions and distances from ampullary nerves. The electrical potential induced by the injected current was computed through finite-element methods and drove extra-cellular stimulation of fibers in the vestibular, facial, and cochlear nerves. The electrical activity of vestibular nerves and the resulting eye movements elicited by different stimulation protocols were investigated. A set of electrode configurations was analyzed in terms of selectivity at increasing injected current. Electrode position along the nerve plays a major role in producing undesired activity in other nontargeted nerves, whereas distance from the fiber does not significantly affect selectivity. Indications are provided to minimize misalignment in nonoptimal electrode locations. Eye movements elicited by the different stimulation protocols are calculated and compared to experimental values, for the purpose of model validation. PMID:25751868

  13. Assessment of Neuromuscular Function Using Percutaneous Electrical Nerve Stimulation.

    PubMed

    Rozand, Vianney; Grosprêtre, Sidney; Stapley, Paul J; Lepers, Romuald

    2015-01-01

    Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise. PMID:26436986

  14. Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation

    PubMed Central

    Patel, Yogi A.

    2015-01-01

    Kilohertz electrical stimulation (KES) has been shown to induce repeatable and reversible nerve conduction block in animal models. In this study, we characterized the ability of KES stimuli to selectively block specific components of stimulated nerve activity using in vivo preparations of the rat sciatic and vagus nerves. KES stimuli in the frequency range of 5–70 kHz and amplitudes of 0.1–3.0 mA were applied. Compound action potentials were evoked using either electrical or sensory stimulation, and block of components was assessed through direct nerve recordings and muscle force measurements. Distinct observable components of the compound action potential had unique conduction block thresholds as a function of frequency of KES. The fast component, which includes motor activity, had a monotonically increasing block threshold as a function of the KES frequency. The slow component, which includes sensory activity, showed a nonmonotonic block threshold relationship with increasing KES frequency. The distinct trends with frequency of the two components enabled selective block of one component with an appropriate choice of frequency and amplitude. These trends in threshold of the two components were similar when studying electrical stimulation and responses of the sciatic nerve, electrical stimulation and responses of the vagus nerve, and sensorimotor stimulation and responses of the sciatic nerve. This differential blocking effect of KES on specific fibers can extend the applications of KES conduction block to selective block and stimulation of neural signals for neuromodulation as well as selective control of neural circuits underlying sensorimotor function. PMID:25878155

  15. Right Median Nerve Electrical Stimulation for Acute Traumatic Coma Patients.

    PubMed

    Lei, Jin; Wang, Lei; Gao, Guoyi; Cooper, Edwin; Jiang, Jiyao

    2015-10-15

    The right median nerve as a peripheral portal to the central nervous system can be electrically stimulated to help coma arousal after traumatic brain injury (TBI). The present study set out to examine the efficacy and safety of right median nerve electrical stimulation (RMNS) in a cohort of 437 comatose patients after severe TBI from August 2005 to December 2011. The patients were enrolled 2 weeks after their injury and assigned to the RMNS group (n=221) receiving electrical stimulation for 2 weeks or the control group (n = 216) treated by standard management according to the date of birth in the month. The baseline data were similar. After the 2-week treatment, the RMNS-treated patients demonstrated a more rapid increase of the mean Glasgow Coma Score, although statistical significance was not reached (8.43 ± 4.98 vs. 7.47 ± 5.37, p = 0.0532). The follow-up data at 6-month post-injury showed a significantly higher proportion of patients who regained consciousness (59.8% vs. 46.2%, p = 0.0073). There was a lower proportion of vegetative persons in the RMNS group than in the control group (17.6% vs. 22.0%, p = 0.0012). For persons regaining consciousness, the functional independence measurement (FIM) score was higher among the RMNS group patients (91.45 ± 8.65 vs. 76.23 ± 11.02, p < 0.001). There were no unique complications associated with the RMNS treatment. The current study, although with some limitations, showed that RMNS may serve as an easy, effective, and noninvasive technique to promote the recovery of traumatic coma in the early phase. PMID:25664378

  16. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review

    PubMed Central

    Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara

    2014-01-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS. PMID:25674327

  17. Prolonged electrical stimulation causes no damage to sacral nerve roots in rabbits

    PubMed Central

    Yan, Peng; Yang, Xiaohong; Yang, Xiaoyu; Zheng, Weidong; Tan, Yunbing

    2014-01-01

    Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root remains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9–10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimulation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation. PMID:25206785

  18. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.

    PubMed

    Huang, Jinghui; Zhang, Yongguang; Lu, Lei; Hu, Xueyu; Luo, Zhuojing

    2013-12-01

    The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. PMID:24118464

  19. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  20. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  1. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  2. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  3. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  4. Deqi Sensations of Transcutaneous Electrical Nerve Stimulation on Auricular Points

    PubMed Central

    Wang, Xiaoling; Fang, Jiliang; Zhao, Qing; Fan, Yangyang; Liu, Jun; Hong, Yang; Wang, Honghong; Ma, Yunyao; Xu, Chunhua; Shi, Shan; Kong, Jian; Rong, Peijing

    2013-01-01

    Deqi sensation, a psychophysical response characterized by a spectrum of different needling sensations, is essential for Chinese acupuncture clinical efficacy. Previous research works have investigated the component of Deqi response upon acupuncture on acupoints on the trunk and limbs. However, the characteristics of Deqi sensations of transcutaneous electrical nerve stimulation (TENS) on auricular points are seldom reported. In this study, we investigated the individual components of Deqi during TENS on auricular concha area and the superior scapha using quantitative measurements in the healthy subjects and depression patients. The most striking characteristics of Deqi sensations upon TENS on auricular points were tingling, numbness, and fullness. The frequencies of pressure, warmness, heaviness, and soreness were relatively lower. The dull pain and coolness are rare. The characteristics of Deqi were similar for the TENS on concha and on the superior scapha. PMID:23935663

  5. Sphenopalatine ganglion electrical nerve stimulation implant for intractable facial pain.

    PubMed

    Elahi, Foad; Reddy, Chandan G

    2015-01-01

    Persistent idiopathic facial pain can be extremely difficult and significantly challenging to manage for the patient and the clinician. Pharmacological treatment of these painful conditions is not always successful. It has been suggested that the autonomic reflex plays an important role in the pathophysiology of headaches and facial neuralgia. The key structure in the expression of cranial autonomic symptoms is the sphenopalatine ganglion (SPG), also known as the pterygopalatine ganglion. The role of the SPG in the pathophysiology of headaches and facial pain has become clearer in the past decade. In this case report, we describe a 30 year-old woman with insidious onset of right facial pain. She was suffering from daily pain for more than 9 years prior to her visit at the pain clinic. Her pain was constant with episodic aggravation without a predisposing trigger factor. The patient was evaluated by multiple different specialties and tried multimodal therapy, which included antiepileptic medications, with minimal pain relief. A SPG block using short-acting local anesthetic provided significant temporary pain relief. The second and third attempt of SPG block using different local anesthetic medications demonstrated the same responses. After a thorough psychological assessment and ruling out the presence of a correctable cause for the pain, we decided to proceed with SPG electrical neuromodulation. The patient reported significant pain relief during the electrical nerve stimulation trial. The patient underwent a permanent implant of the neurostimulation electrode in the SPG region. The patient was successfully taken off opioid medication and her pain was dramatically responsive during a 6 month follow-up visit. In this article we describe the SPG nerve stimulation and the technical aspect of pterygopalatine fossa electrode placement. The pterygoplatine fossa is an easily accessible location. This case report will be encouraging for physicians treating intractable

  6. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Special payment rules for transcutaneous electrical nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... § 414.232 Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a)...

  7. Identification of the motor laryngeal nerves - a new electrical stimulation technique.

    PubMed

    Spahn, J G; Bizal, J; Ferguson, S; Lingeman, R E

    1981-11-01

    Head and neck surgeons are familiar with the technique of identifying motor nerves in the head and neck region by using electrical stimulation especially in the identification of the facial and the spinal accessory nerves. The identification of the motor laryngeal nerves by electrical stimulation intra-operatively has been described; but, the difficulty of visualization of intrinsic laryngeal muscle movement has prevented the wide spread use of this technique. This paper will introduce a simple, safe and reliable method to allow the surgeon to recognize true vocal cord movement while stimulating the recurrent laryngeal nerve. The movement of a two inch 27 gauge needle placed through the cricothyroid membrane into the ipsilateral true vocal cord permits identification of intrinsic laryngeal muscle movement during electrical stimulation of the recurrent laryngeal nerve. This method has been successfully used in confirming conductivity of the laryngeal nerve during thyroid surgery, Zenker's diverticulum surgery, cricotracheal trauma and recurrent nerve neurectomy for spasmodic dysphonia. PMID:7300536

  8. Electrical potentials from the eye and optic nerve of Strombus: effects of electrical stimulation of the optic nerve.

    PubMed

    Gillary, H L

    1977-02-01

    1. Photic stimulation of the mature eye of Strombus can evoke in the optic nerve 'on' activity in numerous small afferent fibres and repetitive 'off' bursts of afferent impulses in a smaller number of larger fibres. 2. Synchronous invasion of the eye by electrically evoked impulses in small optic nerve fibres (apparently the 'on' afferents, antidromically activated) can evoke a burst of impulses in the larger 'off' fibres which propagate away from the eye. Invasion of the eye via one branch of optic nerve can evoke an answering burst in another branch. 3. Such electrically evoked bursts are similar to light-evoked 'off' bursts with respect to their impulse composition, their ability to be inhibited by illumination of the eye, and their susceptibility to MgCl2 anaesthesia. 4. Invasion of the eye by a train of repetitive electrically evoked impulses in the absence of photic stimulation can give rise to repetitive 'off' bursts as well as concomitant oscillatory potentials in the eye which are similar to those normally evoked by cessation of a photic stimulus. 5. The electrically evoked 'off' bursts appear to be caused by an excitatory rebound following the cessation of inhibitory synaptic input from photoreceptors which can be antidromically activated by electrical stimulation of the optic nerve. 6. The experimental results suggest that the rhythmic discharge of the 'off' fibres evoked by the cessation of a photic stimulus is mediated by the abrupt decrease of inhibitory synaptic input from the receptors. PMID:192827

  9. Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation.

    PubMed

    Zhang, Zhongli; Li, Xin; Zuo, Songjie; Xin, Jie; Zhang, Peixun

    2014-05-15

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypothesized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, fiber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimulation can promote peripheral nerve repair. PMID:25206762

  10. Transcutaneous Electrical Nerve Stimulation: Mechanisms, Clinical Application and Evidence

    PubMed Central

    2007-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a non-invasive, inexpensive, self-administered technique to relieve pain.There are few side effects and no potential for overdose so patients can titrate the treatment as required.TENS techniques include conventional TENS, acupuncture-like TENS and intense TENS. In general, conventional TENS is used in the first instance.The purpose of conventional TENS is to selectively activate large diameter non-noxious afferents (A-beta) to reduce nociceptor cell activity and sensitization at a segmental level in the central nervous system.Pain relief with conventional TENS is rapid in onset and offset and is maximal when the patient experiences a strong but non-painful paraesthesia beneath the electrodes. Therefore, patients may need to administer TENS throughout the day.Clinical experience suggests that TENS may be beneficial as an adjunct to pharmacotherapy for acute pain although systematic reviews are conflicting. Clinical experience and systematic reviews suggest that TENS is beneficial for chronic pain. PMID:26526976

  11. Use of transcutaneous electrical nerve stimulation for chronic pruritus.

    PubMed

    Mohammad Ali, Basma Mourad; Hegab, Doaa Salah; El Saadany, Hanan Mohammad

    2015-01-01

    Pruritus is a distressing symptom in many dermatological as well as systemic conditions, and it is sometimes very chronic and relapsing. Transcutaneous electrical nerve stimulation (TENS) is an inexpensive form of analgesia that could also ameliorate itching. This study aimed to evaluate TENS efficacy in patients with pruritus due to some types of chronic eczema, and in patients with chronic hepatic disease. Ten patients with atopic dermatitis (AD), 20 patients with lichen simplex chronicus (LSC), and 16 patients with chronic liver disease having chronic distressing pruritus received three sessions of TENS weekly for 12 sessions, and the effect on the visual analogue scale (VAS) scores was recorded after 2 weeks of therapy, at treatment end, and after an additional month for follow up. There was a statistically significant decline in the mean VAS score for studied groups at weeks 2 and 4 of therapy compared to baseline, but the improvement was more significant in patients with AD, and LSC (p < 0.001 for both) than in those with chronic liver disease (p < 0.01) who also showed an early re-elevation of VAS score on follow up. TENS therapy holds promise as a palliative, alternative, safe and inexpensive treatment for patients with some chronic pruritic conditions. PMID:25973931

  12. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... § 414.232 Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a...

  13. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis...

  14. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Surgical Dressings § 414.232 Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS...

  15. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis...

  16. Electrically induced blink reflex and facial motor nerve stimulation in beagles.

    PubMed

    Añor, S; Espadaler, J M; Pastor, J; Pumarola, M

    2000-01-01

    Electrophysiologic assessment of the blink reflex test and the muscle-evoked potentials evoked by stimulation of the facial nerve were performed in 15 healthy adult Beagles before and after supraorbital (trigeminal) and facial anesthetic nerve blocks performed by lidocaine injections. Unilateral electrical stimulation of the supraorbital nerve elicited 2 ipsilateral (R1 and R2) and a contralateral (Rc) reflex muscle potential in orbicularis oculi muscles. Electrical stimulation of the facial nerve elicited 2 muscle potentials (a direct response [D] and a reflex faciofacial response [RF]) in the ipsilateral orbicularis oculi muscle. Anesthetic block of the left supraorbital nerve resulted in bilateral lack of responses upon left supraorbital nerve stimulation, but normal responses in right and left orbicularis oculi muscles upon right supraorbital stimulation. Right facial anesthetic block produced lack of responses in the right orbicularis oculi muscle regardless the side of supraorbital nerve stimulation. Results of this study demonstrate that the blink reflex can be electrically elicited and assessed in dogs. Reference values for the blink reflex responses and for the muscle potentials evoked by direct facial nerve stimulation in dogs are provided. The potential usefulness of the electrically elicited blink reflex test in the diagnosis of peripheral facial and trigeminal dysfunction in dogs was demonstrated. PMID:10935892

  17. Transcutaneous Electrical Nerve Stimulation Improves Exercise Tolerance in Healthy Subjects.

    PubMed

    Tomasi, F P; Chiappa, G; Maldaner da Silva, V; Lucena da Silva, M; Lima, A S C G B; Arena, R; Bottaro, M; Cipriano, G

    2015-07-01

    Transcutaneous electrical nerve stimulation (TENS) increases peripheral blood flow by attenuation of the muscle metaboreflex, improving oxygen supply to working muscles. We tested the hypothesis that application of TENS at ganglion improves exercise performance. 11 subjects underwent constant-work rate tests (CWR) to the limit of tolerance (Tlim) while receiving TENS or placebo. Oxygen uptake (V.O2), carbon dioxide (V.CO2), minute ventilation (V.E), ventilatory equivalent (V.E/V.CO2), heart rate (HR) and oxygen pulse (V.O2/HR) were analyzed at isotime separated by percentile and Tlim. V.O2 was lower and V.CO2 was higher at 100% of isotime during TENS, while there were no differences in V.E and V.E/V.CO2. HR was lower during exercise with TENS, and V.O2/HR increased at peak exercise (17.96±1.9 vs. 20.38±1 ml/min/bpm, P<0.05). TENS increased mechanical efficiency at isotime and Tlim (4.10±0.50 vs. 3.39±0.52%, P<0.05 and 3.95±0.67 vs. 3.77±0.45%, P<0.05) and exercise tolerance compared to P-TENS (390±41 vs. 321±41 s; P<0.05). Our data shows that the application of TENS can potentially increase exercise tolerance and oxygen supply in healthy subjects. PMID:25607523

  18. Transcutaneous electrical nerve stimulation (TENS) for pain management in labour

    PubMed Central

    Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P

    2014-01-01

    Background Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. TENS machines are frequently operated by women, which may increase a sense of control in labour. Objectives To assess the effects of TENS on pain in labour. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (30 April 2011) and reference lists of retrieved papers. Selection criteria Randomised controlled trials comparing women receiving TENS for pain management in labour versus routine care, alternative non-pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Data collection and analysis Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. Main results Seventeen trials with 1466 women contribute data to the review. Thirteen examined TENS applied to the back, two to acupuncture points, and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (average risk ratio 0.41, 95% confidence interval 0.31 to 0.54; measured in two studies). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No

  19. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    PubMed Central

    Ju, Yan-he; Liao, Li-min

    2016-01-01

    Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15–25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function. PMID:27212934

  20. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex.

    PubMed

    Ju, Yan-He; Liao, Li-Min

    2016-04-01

    Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function. PMID:27212934

  1. Electrical stimulation vs. pulsed and continuous-wave optical stimulation of the rat prostate cavernous nerves, in vivo

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.

    2015-07-01

    Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.

  2. Transcutaneous electrical nerve stimulation for chronic post-herpetic neuralgia.

    PubMed

    Ing, Malcolm R; Hellreich, Philip D; Johnson, Douglas W; Chen, John J

    2015-04-01

    Postherpetic neuralgia remains a therapeutic challenge for the clinician. Many modalities have been utilized with limited success. In this pilot randomized study of patients who were refractory to previous medicinal treatment, the patients were treated with transcutaneous nerve stimulation with a biofeedback capability. After every two treatments with the sham and true device, the patients were required to fill out a standard neuropathic pain scale score. The patients were allowed to select the other device after three consecutive treatments if they felt an inadequate decrease in their pain. The true device was chosen over the sham device by all patients. The majority of these patients treated by the true device reported a statistically significant decrease in pain scores (P < 0.001). Further investigation of this Food and Drug Administration, class 2 accepted, electronic device for relief of pain is warranted for patients with a history of recalcitrant postherpetic neuralgia. PMID:25600258

  3. Electrical nerve stimulation method for intraoperative localization of the inferior alveolar nerve within the mandible: a pilot study in rabbits.

    PubMed

    Kuyumcu, F; Erdogan, Ö; Güçlü, B

    2015-11-01

    The efficacy of the electrical nerve stimulation method for localizing the inferior alveolar nerve (IAN) within the mandibular bone was evaluated. Six New Zealand rabbits were used (both sides of the mandible). The IAN was stimulated through the mandibular bone and compound action potentials (CAPs) were recorded proximally from the main trunk of the nerve. Stimulation current pulse widths were set at 0.05, 0.1, 0.3, 0.5, and 1ms. The minimum current magnitude that generated a CAP with a criterion level (300mV peak-to-peak amplitude) was measured in the range of 0.05-5mA. Correlations between the distance of the IAN from the active electrode site and the minimum current magnitudes were studied for each pulse width. The correlation coefficients were 0.678, 0.807, 0.893, 0.851, and 0.890 for the pulse widths of 0.05, 0.1, 0.3, 0.5, and 1ms, respectively. The minimum current producing the criterion CAP response in the IAN was significantly (P<0.0001 for all pulse widths) and highly correlated with the distance between the stimulation site and the nerve. The results suggest that electrical nerve stimulation is a promising method that can be used for the localization of the IAN, especially during mandibular implant surgery. PMID:26116064

  4. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    NASA Technical Reports Server (NTRS)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  5. Comparison of cervical magnetic stimulation and bilateral percutaneous electrical stimulation of the phrenic nerves in normal subjects.

    PubMed

    Wragg, S; Aquilina, R; Moran, J; Ridding, M; Hamnegard, C; Fearn, T; Green, M; Moxham, J

    1994-10-01

    Cervical magnetic stimulation is a new technique for stimulating the phrenic nerves, and may offer an alternative to percutaneous electrical stimulation for assessing diaphragmatic strength in normal subjects and patients in whom electrical stimulation is technically difficult or poorly tolerated. We compared cervical magnetic stimulation with conventional supramaximal bilateral percutaneous electrical stimulation in nine normal subjects. We measured oesophageal pressure (Poes), gastric pressure (Pgas) and transdiaphragmatic pressure (Pdi). The maximal relaxation rate (MRR) was also measured. The mean magnetic twitch Pdi was 36.5 cmH2O (range 27-48 cmH2O), significantly larger than electrical twitch Pdi, mean 29.7 cmH2O (range 22-40 cmH2O). The difference in twitch Pdi was explained entirely by twitch Poes, and it is possible that the magnetic technique stimulates some of the nerves to the upper chest wall muscles as well as the phrenic nerves. We compared bilateral, rectified, integrated, diaphragm surface electromyographic (EMG) responses in three subjects and found results within 10% in each subject, indicating similar diaphragmatic activation. The within occasion coefficient of variation, i.e. same subject/same session, was 6.7% both for magnetic and electrical twitch Pdi. The between occasion coefficient of variation, i.e. same subject/different days, was 6.6% for magnetic stimulation and 8.8% for electrical. There was no difference between relaxation rates measured with either technique. We conclude that magnetic stimulation is a reproducible and acceptable technique for stimulating the phrenic nerves, and that it provides a potentially useful alternative to conventional electrical stimulation as a nonvolitional test of diaphragm strength. PMID:7828686

  6. Detection of a diabetic sural nerve from the magnetic field after electric stimulation

    NASA Astrophysics Data System (ADS)

    Hayami, Takehito; Iramina, Keiji; Hyodo, Akira; Chen, Xian; Sunagawa, Kenji

    2009-04-01

    In this study, we proposed a new diagnostic technique for diabetic neuropathy using biomagnetic measurement. Peripheral neuropathy is one of the most common complications of diabetes. To examine the injury, the skin potential around the nerve is often measured after electric stimulation. However, measuring the magnetic field may reveal precise condition of the injury. To evaluate the effect of measuring the magnetic field, a simulation study was performed. A diabetic sural nerve was simulated as a bundle of myelinated nerve fibers. Each fiber was modeled as an electric cable of Ranvier's nodes. Anatomical data were used to determine the number of nerve fibers and distribution of nerve fiber diameters. The electric potential and the magnetic field on the skin after electric stimulation were computed to the boundary element method. Biphasic time courses were obtained as the electric potential and the magnetic flux density at measurement points. In diabetic nerves, the longer interpeak latency of the electric potential wave and the shorter interpeak latency of the magnetic flux wave were obtained. Measuring both the electric potential and the magnetic flux density seemed to provide a noninvasive and objective marker for diabetic neuropathy.

  7. Near-infrared signals associated with electrical stimulation of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  8. A flexible platform for biofeedback-driven control and personalization of electrical nerve stimulation therapy.

    PubMed

    Ward, Matthew P; Qing, Kurt Y; Otto, Kevin J; Worth, Robert M; John, Simon W M; Irazoqui, Pedro P

    2015-05-01

    Electrical vagus nerve stimulation is a treatment alternative for many epileptic and depressed patients whose symptoms are not well managed with pharmaceutical therapy. However, the fixed stimulus, open loop dosing mechanism limits its efficacy and precludes major advances in the quality of therapy. A real-time, responsive form of vagus nerve stimulation is needed to control nerve activation according to therapeutic need. This personalized approach to therapy will improve efficacy and reduce the number and severity of side effects. We present autonomous neural control, a responsive, biofeedback-driven approach that uses the degree of measured nerve activation to control stimulus delivery. We demonstrate autonomous neural control in rats, showing that it rapidly learns how to most efficiently activate any desired proportion of vagal A, B, and/or C fibers over time. This system will maximize efficacy by minimizing patient response variability and by minimizing therapeutic failures resulting from longitudinal decreases in nerve activation with increasing durations of treatment. The value of autonomous neural control equally applies to other applications of electrical nerve stimulation. PMID:25167554

  9. Ex Vivo Assay of Electrical Stimulation to Rat Sciatic Nerves: Cell Behaviors and Growth Factor Expression.

    PubMed

    Du, Zhiyong; Bondarenko, Olexandr; Wang, Dingkun; Rouabhia, Mahmoud; Zhang, Ze

    2016-06-01

    Neurite outgrowth and axon regeneration are known to benefit from electrical stimulation. However, how neuritis and their surroundings react to electrical field is difficult to replicate by monolayer cell culture. In this work freshly harvested rat sciatic nerves were cultured and exposed to two types of electrical field, after which time the nerve tissues were immunohistologically stained and the expression of neurotrophic factors and cytokines were evaluated. ELISA assay was used to confirm the production of specific proteins. All cell populations survived the 48 h culture with little necrosis. Electrical stimulation was found to accelerate Wallerian degeneration and help Schwann cells to switch into migratory phenotype. Inductive electrical stimulation was shown to upregulate the secretion of multiple neurotrophic factors. Cellular distribution in nerve tissue was altered upon the application of an electrical field. This work thus presents an ex vivo model to study denervated axon in well controlled electrical field, bridging monolayer cell culture and animal experiment. It also demonstrated the critical role of electrical field distribution in regulating cellular activities. PMID:26516696

  10. Effects of acute selective pudendal nerve electrical stimulation after simulated childbirth injury

    PubMed Central

    Gill, Bradley C.; Dissaranan, Charuspong; Zutshi, Massarat; Balog, Brian M.; Lin, Danli; Damaser, Margot S.

    2013-01-01

    During childbirth, a combinatorial injury occurs and can result in stress urinary incontinence (SUI). Simulated childbirth injury, consisting of vaginal distension (VD) and pudendal nerve crush (PNC), results in slowed recovery of continence, as well as decreased expression of brain-derived neurotrophic factor (BDNF), a regenerative cytokine. Electrical stimulation has been shown to upregulate BDNF in motor neurons and facilitate axon regrowth through the increase of βII-tubulin expression after injury. In this study, female rats underwent selective pudendal nerve motor branch (PNMB) stimulation after simulated childbirth injury or sham injury to determine whether such stimulation affects bladder and anal function after injury and whether the stimulation increases BDNF expression in Onuf's nucleus after injury. Rats received 4 h of VD followed by bilateral PNC and 1 h of subthreshold electrical stimulation of the left PNMB and sham stimulation of the right PNMB. Rats underwent filling cystometry and anal pressure recording before, during, and after the stimulation. Bladder and anal contractile function were partially disrupted after injury. PNMB stimulation temporarily inhibited bladder contraction after injury. Two days and 1 wk after injury, BDNF expression in Onuf's nucleus of the stimulated side was significantly increased compared with the sham-stimulated side, whereas βII-tubulin expression in Onuf's nucleus of the stimulated side was significantly increased only 1 wk after injury. Acute electrical stimulation of the pudendal nerve proximal to the crush site upregulates BDNF and βII-tubulin in Onuf's nucleus after simulated childbirth injury, which could be a potential preventive option for SUI after childbirth injury. PMID:23152293

  11. Transcutaneous Electrical Nerve Stimulation (TENS) A Possible Aid for Pain Relief in Developing Countries?

    PubMed Central

    Tashani, O; Johnson, MI

    2009-01-01

    Transcutaneous electrical nerve stimulation (TENS) refers to the delivery of electrical currents through the skin to activate peripheral nerves. The technique is widely used in developed countries to relieve a wide range of acute and chronic pain conditions, including pain resulting from cancer and its treatment. There are many systematic reviews on TENS although evidence is often inconclusive because of shortcomings in randomised control trials methodology. In this overview the basic science behind TENS will be discussed, the evidence of its effectiveness in specific clinical conditions analysed and a case for its use in pain management in developing countries will be made. PMID:21483510

  12. Electrical Nerve Stimulation Enhances Perilesional Branching after Nerve Grafting but Fails to Increase Regeneration Speed in a Murine Model.

    PubMed

    Witzel, Christian; Brushart, Thomas M; Koulaxouzidis, Georgios; Infanger, Manfred

    2016-07-01

    Background Electrical stimulation immediately following nerve lesion helps regenerating axons cross the subsequently grafted nerve repair site. However, the results and the mechanisms remain open to debate. Some findings show that stimulation after crush injury increases axonal crossing of the repair site without affecting regeneration speed. Others show that stimulation after transection and fibrin glue repair doubles regeneration distance. Methods Using a sciatic-nerve-transection-graft in vivo model, we investigated the morphological behavior of regenerating axons around the repair site after unilateral nerve stimulation (20 Hz, 1 hour). With mice expressing axonal fluorescent proteins (thy1-YFP), we were able to calculate the following at 5 and 7 days: percentage of regenerating axons and arborizing axons, branches per axon, and regeneration distance and speed. Results Brief stimulation significantly increases the percentage of regenerating axons (5 days: 35.5 vs. 27.3% nonstimulated, p < 0.05; 7 days: 43.3 vs. 33.9% nonstimulated, p < 0.05), mainly by increasing arborizing axons (5 days: 49.3 [4.4] vs. 33.9 [4.1]% [p < 0.001]; 7 days: 42.2 [5.6] vs. 33.2 [3.1]% [p < 0.001]). Neither branches per arborizing axon nor regeneration speed were affected. Conclusion Our morphological data analysis revealed that electrical stimulation in this model increases axonal crossing of the repair site and promotes homogeneous perilesional branching, but does not affect regeneration speed. PMID:26975563

  13. Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation.

    PubMed

    Yan, Lu; Zhao, Bingxin; Liu, Xiaohong; Li, Xuan; Zeng, Chao; Shi, Haiyan; Xu, Xiaoxue; Lin, Tong; Dai, Liming; Liu, Yong

    2016-03-23

    The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes. PMID:26926578

  14. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    PubMed

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients. PMID:21265597

  15. Enhancement of peripheral nerve regeneration due to treadmill training and electrical stimulation is dependent on androgen receptor signaling.

    PubMed

    Thompson, Nicholas J; Sengelaub, Dale R; English, Arthur W

    2014-05-01

    Moderate exercise in the form of treadmill training and brief electrical nerve stimulation both enhance axon regeneration after peripheral nerve injury. Different regimens of exercise are required to enhance axon regeneration in male and female mice (Wood et al.: Dev Neurobiol 72 (2012) 688-698), and androgens are suspected to be involved. We treated mice with the androgen receptor blocker, flutamide, during either exercise or electrical stimulation, to evaluate the role of androgen receptor signaling in these activity-based methods of enhancing axon regeneration. The common fibular (CF) and tibial (TIB) nerves of thy-1-YFP-H mice, in which axons in peripheral nerves are marked by yellow fluorescent protein (YFP), were transected and repaired using CF and TIB nerve grafts harvested from non-fluorescent donor mice. Silastic capsules filled with flutamide were implanted subcutaneously to release the drug continuously. Exercised mice were treadmill trained 5 days/week for 2 weeks, starting on the third day post-transection. For electrical stimulation, the sciatic nerve was stimulated continuously for 1 h prior to nerve transection. After 2 weeks, lengths of YFP+ profiles of regenerating axons were measured from harvested nerves. Both exercise and electrical stimulation enhanced axon regeneration, but this enhancement was blocked completely by flutamide treatments. Signaling through androgen receptors is necessary for the enhancing effects of treadmill exercise or electrical stimulation on axon regeneration in cut peripheral nerves. PMID:24293191

  16. A point process framework for modeling electrical stimulation of the auditory nerve.

    PubMed

    Goldwyn, Joshua H; Rubinstein, Jay T; Shea-Brown, Eric

    2012-09-01

    Model-based studies of responses of auditory nerve fibers to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for providing sound information to cochlear implant users. To accomplish this, models must accurately describe spiking activity while avoiding excessive complexity that would preclude large-scale simulations of populations of auditory nerve fibers and obscure insight into the mechanisms that influence neural encoding of sound information. In this spirit, we develop a point process model of individual auditory nerve fibers that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the proposed model consists of a cascade of linear and nonlinear stages. We show how each of these stages can be associated with biophysical mechanisms and related to models of neuronal dynamics. Moreover, we derive a semianalytical procedure that uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation. Throughout, we compare model predictions to published physiological data of response to high and low pulse rate stimulation. We find that the model, although constructed to fit data from single and paired pulse experiments, can accurately predict responses to unmodulated and modulated pulse train stimuli. We close by performing an ideal observer analysis of simulated spike trains in response to sinusoidally amplitude modulated stimuli and find that carrier pulse rate does not affect modulation detection thresholds. PMID:22673331

  17. Electrical stimulation applied to bone and nerve injuries in the upper extremity.

    PubMed

    Osterman, A L; Bora, F W

    1986-07-01

    In conclusion, electrical stimulation of bone has advanced from the laboratory to clinical reality. Despite the lack of good double-blind clinical studies, it is impossible to ignore the excellent results reported from numerous multicenter trials. Doubts and controversies will and should continue. Electrical stimulation has a definite place in the treatment of scaphoid nonunion as well as other failures of osteogenic biology in the upper extremity. The future may realize the enormous potential of electrical stimulation in areas of nerve repair, wound healings, or osteoporosis. The hand surgeon may soon be operating in the age of biophysics where he or she can charge by the kilowatt hour. Yet one should not become a mere technician, but understand the basic science of what one is doing and, above all, maintain a balanced and critical approach. PMID:3526231

  18. Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise.

    PubMed

    Gordon, Tessa; English, Arthur W

    2016-02-01

    Enhancing the regeneration of axons is often considered to be a therapeutic target for improving functional recovery after peripheral nerve injury. In this review, the evidence for the efficacy of electrical stimulation (ES), daily exercise and their combination in promoting nerve regeneration after peripheral nerve injuries in both animal models and in human patients is explored. The rationale, effectiveness and molecular basis of ES and exercise in accelerating axon outgrowth are reviewed. In comparing the effects of ES and exercise in enhancing axon regeneration, increased neural activity, neurotrophins and androgens are considered to be common requirements. Similarly, there are sex-specific requirements for exercise to enhance axon regeneration in the periphery and for sustaining synaptic inputs onto injured motoneurons. ES promotes nerve regeneration after delayed nerve repair in humans and rats. The effectiveness of exercise is less clear. Although ES, but not exercise, results in a significant misdirection of regenerating motor axons to reinnervate different muscle targets, the loss of neuromuscular specificity encountered has only a very small impact on resulting functional recovery. Both ES and exercise are promising experimental treatments for peripheral nerve injury that seem to be ready to be translated to clinical use. PMID:26121368

  19. Comparison of skin sensory thresholds using pre-programmed or single-frequency transcutaneous electrical nerve stimulation

    PubMed Central

    Kang, Jong Ho

    2015-01-01

    [Purpose] The purpose of the present study was to compare the sensory thresholds of healthy subjects using pre-programmed or single-frequency transcutaneous electrical nerve stimulation. [Subjects] Ninety healthy adult subjects were randomly assigned to pre-programmed or single-frequency stimulation groups, each consisting of 45 participants. [Methods] Sensory thresholds were measured in the participants’ forearms using von Frey filaments before and after pre-programmed or single-frequency transcutaneous electrical nerve stimulation, and the result in values were analyzed. [Results] Significant increases in sensory threshold after stimulation were observed in both groups. However, there were no significant differences between the two groups in sensory thresholds after stimulation or in the magnitude of threshold increases following stimulation. [Conclusion] Our results show that there are no differences between sensory threshold increases induced by pre-programmed and single-frequency transcutaneous electrical nerve stimulation. PMID:26834358

  20. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.

    PubMed

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B; Klis, Sjaak F L; Grolman, Wilko

    2015-03-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to characterize the recovery of the electrically stimulated auditory nerve, as well as to evaluate possible changes caused by deafness-induced degeneration. To this end we studied temporal responsiveness of the auditory nerve in a guinea pig model of sensorineural hearing loss. Using masker-probe and pulse train paradigms we compared electrically evoked compound action potentials (eCAPs) in normal-hearing animals with those in animals with moderate (two weeks after ototoxic treatment) and severe (six weeks after ototoxic treatment) loss of spiral ganglion cells (SGCs). Masker-probe interval and pulse train inter-pulse interval was varied from 0.3 to 16 ms. Whereas recovery assessed with masker-probe was roughly similar for normal-hearing and both groups of deafened animals, it was considerably faster for six weeks deaf animals (τ ≈ 1.2 ms) than for two weeks deaf or normal-hearing animals (τ ≈ 3-4 ms) when 100-ms pulse trains were applied. Latency increased with decreasing inter-pulse intervals, and this was more pronounced with pulse trains than with masker-probe stimulation. With high frequency pulse train stimulation eCAP amplitudes were modulated for deafened animals, meaning that amplitudes for odd pulse numbers were larger than for even pulses. The relative refractory period (τ) and the modulation depth of the eCAP amplitude for pulse trains, as well as the latency increase for both paradigms significantly correlated with quantified measures of auditory nerve degeneration (size and packing density of SGCs). In addition to these findings, separate masker-probe recovery functions for the eCAP N1 and N2 peaks displayed a robust non-monotonic or shoulder

  1. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold

    PubMed Central

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-01-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion. PMID:27190439

  2. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    PubMed

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion. PMID:27190439

  3. Transcutaneous Electrical Nerve Stimulation Improves Walking Performance in Patients With Intermittent Claudication.

    PubMed

    Seenan, Chris; McSwiggan, Steve; Roche, Patricia A; Tan, Chee-Wee; Mercer, Tom; Belch, Jill J F

    2016-01-01

    The purpose of this study was to investigate the effects of 2 types of transcutaneous electrical nerve stimulation (TENS) on walking distance and measures of pain in patients with peripheral arterial disease (PAD) and intermittent claudication (IC). In a phase 2a study, 40 participants with PAD and IC completed a graded treadmill test on 2 separate testing occasions. Active TENS was applied to the lower limb on the first occasion; and placebo TENS, on the second. The participants were divided into 2 experimental groups. One group received high-frequency TENS; and the other, low-frequency TENS. Measures taken were initial claudication distance, functional claudication distance, and absolute claudication distance. The McGill Pain Questionnaire (MPQ) vocabulary was completed at the end of the intervention, and the MPQ-Pain Rating Index score was calculated. Four participants were excluded from the final analysis because of noncompletion of the experimental procedure. Median walking distance increased with high-frequency TENS for all measures (P < .05, Wilcoxon signed rank test, all measures). Only absolute claudication distance increased significantly with low-frequency TENS compared with placebo (median, 179-228; Ws = 39; z = 2.025; P = .043; r = 0.48). No difference was observed between reported median MPQ-Pain Rating Index scores: 21.5 with placebo TENS and 21.5 with active TENS (P = .41). Transcutaneous electrical nerve stimulation applied to the lower limb of the patients with PAD and IC was associated with increased walking distance on a treadmill but not with any reduction in pain. Transcutaneous electrical nerve stimulation may be a useful adjunctive intervention to help increase walking performance in patients with IC. PMID:27299758

  4. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  5. Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury.

    PubMed

    Pei, Bao-An; Zi, Jin-Hua; Wu, Li-Sheng; Zhang, Cun-Hua; Chen, Yun-Zhen

    2015-10-01

    Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 mA and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers. PMID:26692864

  6. Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury

    PubMed Central

    Pei, Bao-an; Zi, Jin-hua; Wu, Li-sheng; Zhang, Cun-hua; Chen, Yun-zhen

    2015-01-01

    Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 mA and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers. PMID:26692864

  7. Morphometric data of canine sacral nerve roots with reference to electrical sacral root stimulation.

    PubMed

    Rijkhoff, N J; Koldewijn, E L; d'Hollosy, W; Debruyne, F M; Wijkstra, H

    1996-01-01

    Experiments to investigate restoration of lower urinary tract control by electrical stimulation of the sacral nerve roots are mostly performed on dogs, yet little morphometric data (such as canine root and fiber diameter distributions) are available. The aim of this study was to acquire morphometric data of the intradural canine sacral dorsal and ventral roots (S1-S3). Cross-sections of sacral roots of two beagle dogs were analyzed using a light microscope and image processing software. The cross-sectional area of each root was measured. The diameters of the fibers and the axons in the cross-sections of the S2 and S3 roots were measured and used to construct nerve fiber diameter frequency distribution histograms. The results show a unimodal diameter distribution for the dorsal roots and a bimodal distribution for the ventral roots. In addition the average ratio g of the axon diameter to fiber diameter was calculated for each root. PMID:8732990

  8. The Role of Transcutaneous Electrical Nerve Stimulation in the Management of Temporomandibular Joint Disorder.

    PubMed

    Awan, Kamran Habib; Patil, Shankargouda

    2015-12-01

    Temporomandibular joint disorders (TMD) constitutes of a group of diseases that functionally affect the masticatory system, including the muscles of mastication and temporomandibular joint (TMJ). A number of etiologies with specific treatment have been identified, including the transcutaneous electrical nerve stimulation (TENS). The current paper presents a literature review on the use of TENS in the management of TMD patients. Temporomandibular joint disorder is very common disorder with approximately 75% of people showing some signs, while more than quarter (33%) having at least one symptom. An attempt to treat the pain should be made whenever possible. However, in cases with no defined etiology, starting with less intrusive and reversible techniques is prescribed. Transcutaneous electrical nerve stimulation is one such treatment modality, i.e. useful in the management of TMD. It comprises of controlled exposure of electrical current to the surface of skin, causing hyperactive muscles relaxation and decrease pain. Although the value of TENS to manage chronic pain in TMD patients is still controversial, its role in utilization for masticatory muscle pain is significant. However, an accurate diagnosis is essential to minimize its insufficient use. Well-controlled randomized trials are needed to determine the utilization of TENS in the management of TMD patients. PMID:27018034

  9. [Exploration Research of Treatment Effect Improvement of Transcutaneous Electrical Nerve Stimulation Using Parameter-changing Chaotic Signal].

    PubMed

    Zheng, Jincun; Zhang, Hui; Qin, Binyi; Wang, Hai; Nie, Guochao; Chen, Tiejun

    2015-10-01

    This article presents a transcutaneous electric stimulator that is based on chaotic signal. Firstly, we in the study used the MATLAB platform in the PC to generate chaotic signal through the chaos equation, and then we transferred the signal out by data acquisition equipment of USB-6251 manufactured by NI Company. In order to obtain high-power signal for transcutaneous electric stimulator, we used the chip of LM3886 to amplify the signal. Finally, we used the power-amplified chaotic signal to stimulate the internal nerve of human through the electrodes fixed on the skin. We obtained different stimulation effects of transcutaneous electric stimulator by changing the parameters of chaotic model. The preliminary test showed that the randomness of chaotic signals improved the applicability of electrical stimulation and the rules of chaos ensured that the stimulation was comfort. The method reported in this paper provides a new way for the design of transcutaneous electric stimulator. PMID:26964307

  10. Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains

    NASA Astrophysics Data System (ADS)

    Litvak, Leonid M.; Delgutte, Bertrand; Eddington, Donald K.

    2003-10-01

    Rubinstein et al. [Hearing Res. 127, 108-118 (1999)] suggested that the representation of electric stimulus waveforms in the temporal discharge patterns of auditory-nerve fiber (ANF) might be improved by introducing an ongoing, high-rate, desynchronizing pulse train (DPT). To test this hypothesis, activity of ANFs was studied in acutely deafened, anesthetized cats in response to 10-min-long, 5-kpps electric pulse trains that were sinusoidally modulated for 400 ms every second. Two classes of responses to sinusoidal modulations of the DPT were observed. Fibers that only responded transiently to the unmodulated DPT showed hyper synchronization and narrow dynamic ranges to sinusoidal modulators, much as responses to electric sinusoids presented without a DPT. In contrast, fibers that exhibited sustained responses to the DPT were sensitive to modulation depths as low as 0.25% for a modulation frequency of 417 Hz. Over a 20-dB range of modulation depths, responses of these fibers resembled responses to tones in a healthy ear in both discharge rate and synchronization index. This range is much wider than the dynamic range typically found with electrical stimulation without a DPT, and comparable to the dynamic range for acoustic stimulation. These results suggest that a stimulation strategy that uses small signals superimposed upon a large DPT to encode sounds may evoke temporal discharge patterns in some ANFs that resemble responses to sound in a healthy ear.

  11. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control

    NASA Astrophysics Data System (ADS)

    Lin, C.-C. K.; Liu, W.-C.; Chan, C.-C.; Ju, M.-S.

    2012-04-01

    The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal.

  12. Evaluation of Transcutaneous Electrical Nerve Stimulation as a Treatment of Neck Pain due to Musculoskeletal Disorders

    PubMed Central

    Maayah, Mikhled; Al-Jarrah, Mohammed

    2010-01-01

    Background This study was designed to evaluate transcutaneous electrical nerve stimulation (TENS) as a treatment for neck pain due to musculoskeletal disorders within the context of a physiotherapy treatment. Methods Thirty subjects with neck pain were randomly allocated to two groups, treated with either TENS (n = 15) or placebo (n = 15). Each subject received one session for one hour. All subjects were evaluated before, during treatment, after switch off and again a week after by using Myometer machine. All subjects completed the follow-up assessment. Subjects referred for out-subjects' physiotherapy department, fulfilling the inclusion and exclusion criteria, took part in the study. Results The assessments were compared and used to measure outcome treatment. Improvement in their condition was measured in terms of a reduction in the individual's level of pain during the week after the end of the first session. At the end of the first session, the study showed that 11 subjects (73%) in the treatment and 7 subjects (43%) in the control groups had gained marked improvement. These results are statistically highly significant, (P = 0.01) at the end of the follow-up assessment. Conclusions A conclusion could be drawn that a single intense TENS treatment is an effective treatment for neck pain due to musculoskeletal disorders. On the other hand, TENS showed an effective pain relief with subjects who have a mild neck pain rather than those with severe symptoms. Keywords Musculoskeletal disorders; Transcutaneous electrical nerve stimulation; Neck pain PMID:21629525

  13. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control.

    PubMed

    Lin, C-C K; Liu, W-C; Chan, C-C; Ju, M-S

    2012-04-01

    The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal. PMID:22422279

  14. The use of brief post-surgical low frequency electrical stimulation to enhance nerve regeneration in clinical practice.

    PubMed

    Chan, K M; Curran, M W T; Gordon, T

    2016-07-01

    Despite efforts to enhance peripheral nerve regeneration, there has been little progress in improving clinical outcomes. Recently, a method of brief post-surgical low frequency electrical stimulation of surgically repaired nerves has been developed. It was shown to accelerate axon outgrowth across the repair site and it hastened target reinnervation. In this brief review, we describe the mechanistic insights and functional impacts of the post-surgical electrical stimulation that have been gained through animal studies. Brain-derived neurotrophic factor, cyclic AMP and regeneration-associated genes play a vital role in expediting the outgrowth of axons across the injury site. The method of stimulation has also been shown to be effective in patients with severe compressive neuropathy as well as those with digital nerve laceration. Its clinical feasibility and positive impact open the door of further clinical translation in other peripheral nerve injuries. PMID:26864594

  15. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats

    NASA Astrophysics Data System (ADS)

    Lu, Yiliang; Yan, Yan; Chai, Xinyu; Ren, Qiushi; Chen, Yao; Li, Liming

    2013-06-01

    Objective. A visual prosthesis based on penetrating electrode stimulation within the optic nerve (ON) is a potential way to restore partial functional vision for blind patients. We investigated the retinotopic organization of ON stimulation and its spatial resolution. Approach. A five-electrode array was inserted perpendicularly into the ON or a single electrode was advanced to different depths within the ON (˜1-2 mm behind the eyeball, 13 cats). A sparse noise method was used to map ON electrode position and the visual cortex. Cortical responses were recorded by a 5 × 6 array. The visuotopic correspondence between the retinotopic position of the ON electrode was compared with the visual evoked cortical map and the electrical evoked potentials elicited in response to ON stimulation. Main results. Electrical stimulation with penetrating ON electrodes elicited cortical responses in visuotopographically corresponding areas of the cortex. Stimulation of the temporal side of the ON elicited cortical responses corresponding to the central visual field. The visual field position shifted from the lower to central visual field as the electrode penetrated through the depth of the ON. A spatial resolution of ˜ 2° to 3° within a limited cortical visuotopic representation could be obtained by this approach. Significance. Visuotopic electrical stimulation with a relatively fine spatial resolution can be accomplished using penetrating electrodes implanted at multiple sites and at different depths within the ON just behind the globe. This study also provides useful experimental data for the design of electrode density and the distribution of penetrating ON electrodes for a visual prosthesis.

  16. Electrical Stimulation to Conductive Scaffold Promotes Axonal Regeneration and Remyelination in a Rat Model of Large Nerve Defect

    PubMed Central

    Zhang, Yongguang; Liang, Wei; Wu, Siyu; Luo, Zhuojing

    2012-01-01

    Background Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. Methodology/Findings In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. Conclusions/Significance Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect. PMID:22737243

  17. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    PubMed Central

    Feng, Zhen; Zhong, Ying-jun; Wang, Liang; Wei, Tian-qi

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation. PMID:26170820

  18. Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status.

    PubMed

    Shepherd, R K; Javel, E

    1997-06-01

    The purpose of the present study was to evaluate evoked potential and single fibre responses to biphasic current pulses in animals with varying degrees of cochlear pathology, and to correlate any differences in the physiological response with status of the auditory nerve. Six cats, whose cochleae ranged from normal to a severe neural loss (< 5% spiral ganglion survival), were used. Morphology of the electrically evoked auditory brainstem response (EABR) was similar across all animals, although electrophonic responses were only observed from the normal animal. In animals with extensive neural pathology, EABR thresholds were elevated and response amplitudes throughout the dynamic range were moderately reduced. Analysis of single VIIIth nerve fibre responses were based on 207 neurons. Spontaneous discharge rates among fibres depended on hearing status, with the majority of fibres recorded from deafened animals exhibiting little or no spontaneous activity. Electrical stimulation produced a monotonic increase in discharge rate, and a systematic reduction in response latency and temporal jitter as a function of stimulus intensity for all fibres examined. Short-duration current pulses elicited a highly synchronous response (latency < 0.7 ms), with a less well synchronized response sometimes present (0.7-1.1 ms). There were, however, a number of significant differences between responses from normal and deafened cochleae. Electrophonic activity was only present in recordings from the normal animal, while mean threshold, dynamic range and latency of the direct electrical response varied with cochlear pathology. Differences in the ability of fibres to follow high stimulation rates were also observed; while neurons from the normal cochlea were capable of 100% entrainment at high rates (600-800 pulses per second (pps)), fibres recorded from deafened animals were often not capable of such entrainment at rates above 400 pps. Finally, a number of fibres in deafened animals showed

  19. Nerve Conduction Block Using Combined Thermoelectric Cooling and High Frequency Electrical Stimulation

    PubMed Central

    Ackermann, D. Michael; Foldes, Emily L.; Bhadra, Niloy; Kilgore, Kevin L.

    2010-01-01

    Conduction block of peripheral nerves is an important technique for many basic and applied neurophysiology studies. To date, there has not been a technique which provides a quickly initiated and reversible “on-demand” conduction block which is both sustainable for long periods of time and does not generate activity in the nerve at the onset of the conduction block. In this study we evaluated the feasibility of a combined method of nerve block which utilizes two well established nerve blocking techniques in a rat and cat model: nerve cooling and electrical block using high frequency alternating currents (HFAC). This combined method effectively makes use of the contrasting features of both nerve cooling and electrical block using HFAC. The conduction block was initiated using nerve cooling, a technique which does not produce nerve “onset response” firing, a prohibitive drawback of HFAC electrical block. The conduction block was then readily transitioned into an electrical block. A long-term electrical block is likely preferential to a long-term nerve cooling block because nerve cooling block generates large amounts of exhaust heat, does not allow for fiber diameter selectivity and is known to be unsafe for prolonged delivery. PMID:20705099

  20. A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties

    PubMed Central

    Horne, Colin D. F.; Sumner, Christian J.; Seeber, Bernhard U.

    2016-01-01

    We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability) under both monophasic and cathodic-anodic biphasic stimulation, without changing the model's parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG) of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions. Our work extends the stochastic leaky integrate and fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model. PMID:26903850

  1. Etofenamate and transcutaneous electrical nerve stimulation treatment of painful spinal syndromes.

    PubMed

    Coletta, R; Maggiolo, F; Di Tizio, S

    1988-01-01

    Thirty patients suffering from painful syndromes of the spine were admitted to a randomized controlled clinical trial. They were divided into two groups and treated either with transcutaneous electrical nerve stimulation (TENS), one application every other day, for 20 days or with TENS and an ointment containing etofenamate 10% gel, 3-5 cm daily on the day of TENS therapy, and the same dose twice daily on the other days. The associated therapy achieved, when compared with TENS alone, a statistically significant better outcome. Furthermore a marked improvement of symptoms was observed in a shorter period of time. Therapy was well tolerated and in only four cases mild, self-limiting, skin reactions were observed. On the basis of these results the use of etofenamate and TENS could represent a viable alternative to systemic nonsteroidal antiinflammatory drug therapy. PMID:2972631

  2. The renal response to electrical stimulation of renal efferent sympathetic nerves in the anaesthetized greyhound.

    PubMed

    Poucher, S M; Karim, F

    1991-03-01

    1. The effect of direct electrical stimulation of the renal efferent nerves upon renal haemodynamics and function was studied in greyhounds anaesthetized with chloralose and artificially ventilated. The left kidney was neurally and vascularly isolated, and perfused with blood from one of the femoral arteries at a constant pressure of 99 +/- 1 mmHg. Renal blood flow was measured with a cannulating electromagnetic flow probe placed in the perfusion circuit, glomerular filtration rate by creatinine clearance, urinary sodium excretion by flame photometry and solute excretion by osmometry. Beta-Adrenergic receptor activation was blocked by the infusion of dl-propranolol (17 micrograms kg-1 min-1). The peripheral ends of the ligated renal nerves were stimulated at 0.5, 1.0, 1.5 and 2.0 Hz. 2. At 0.5 Hz frequency only osmolar excretion was significantly reduced (10.3 +/- 3.2%, P less than 0.05, n = 6). Reductions in sodium excretion (53.6 +/- 8.5%, P less than 0.01, n = 6) and water excretion (26.9 +/- 8.0%, P less than 0.05, n = 6) and further reductions of osmolar excretion (20.7 +/- 3.7%, P less than 0.01, n = 6) were observed at 1.0 Hz; however, these were observed in the absence of significant changes in renal blood flow and glomerular filtration rate. Significant reductions were observed in glomerular filtration rate at 1.5 Hz (16.3 +/- 4.1%, P less than 0.02, n = 5) and in renal blood flow at 2.0 Hz (13.1 +/- 4.0%, P less than 0.05, n = 5). Further reductions in urine flow and sodium excretion were also observed at these higher frequencies. 3. These results clearly show that significant changes in renal tubular function can occur in the absence of changes in renal blood flow and glomerular filtration rate when the renal nerves are stimulated electrically from a zero baseline activity up to a frequency of 1.5 Hz. Higher frequencies caused significant changes in both renal haemodynamics and function. PMID:2023113

  3. Evaluation of the effect of transcutaneous electrical nerve stimulation (TENS) on whole salivary flow rate

    PubMed Central

    Pal-Singh, Mohit; Mathur, Hemant; Astekar, Sowmya; Gulati, Pranay; Lakhani, Shruta

    2015-01-01

    Background: Saliva plays a critical role in maintaining oral homeostasis; it modulates the ecosystem through lubrication of the alimentary bolus, protection against microorganisms, buffer and repair of the oral mucosa, and helps in dental re-mineralization. Various local and systemic factors such as medications, radiation therapy, systemic conditions, etc. can lead to reduction in salivary flow. A decrease in salivary function, known as Xerostomia, increases a patient’s risk for caries and other oral infections. Palliative management of Xerostomia includes wetting agents such as ice chips, drugs and saliva substitutes. Systemic agents stimulate salivary flow but often have unfavorable side effects. Newer modalities like transcutaneous electrical nerve stimulation (TENS), which has fewer side effects, have been used to stimulate salivary flow. The aim of the present study was to assess and evaluate the effect of TENS on whole salivary flow rates in healthy adult subjects. Study design: A total of 80 healthy adult subjects were enrolled in the study. Unstimulated and stimulated saliva (using TENS) was collected for 5 minutes and the mean salivary flow rates were calculated. Data obtained was analyzed using the SPSS (Statistical package for social sciences) version 15. Students ‘t’ test was employed for comparative analysis. Results: Sixty-five of the 80 subjects demonstrated an increase in the salivary flow rate on application of TENS. Twelve subjects demonstrated a mild reduction in the salivary flow rates. Seven subjects experienced transient mild twitching of facial musculature as side effects. Conclusion: Significant increase in salivary flow rates was observed on application of TENS with minimal or no side effects. Key words:Stimulated saliva, whole salivary flow, TENS. PMID:25810824

  4. Transcutaneous electrical nerve stimulation offers partial relief in notalgia paresthetica patients with a relevant spinal pathology.

    PubMed

    Savk, Ekin; Savk, Oner; Sendur, Faruk

    2007-05-01

    There is yet no established mode of curative treatment for notalgia paresthetica (NP). We had previously shown a correlation of NP localization with relevant spinal changes which led us to speculate on the possible role of spinal nerve impingement in the pathogenesis of this entity. Based on these findings we aimed to investigate the possible effect of physical therapy in selected cases of NP. Fifteen NP patients with a relevant spinal pathology (four men and 11 women) were included in the study. The mean age was 52.80 +/- 8.83 years (+/- SD; range, 39-73). NP duration was 8.9 +/- 8.13 years (range, 1.5-30). All patients received 10 conventional transcutaneous electrical nerve stimulation (TENS) sessions in the symptomatic area of 20 min duration and high frequency (50-100 Hz). From an initial pruritus score of 10, the mean score by the end of first week was 7.67 +/- 2.02 (range, 5-10) and by the end of second week it was 6.80 +/- 2.73 (range, 4-11). The differences between the pretreatment and post-treatment scores were statistically significant. There was no correlation of therapeutic benefit with age or disease duration. We believe that the partial therapeutic benefit of TENS in NP patients is of importance and further research on the effects of various physical therapeutic modalities would be worthwhile. PMID:17408440

  5. A good preoperative response to transcutaneous electrical nerve stimulation predicts a better therapeutic effect of implanted occipital nerve stimulation in pharmacologically intractable headaches.

    PubMed

    Nguyen, Jean-Paul; Nizard, Julien; Kuhn, Emmanuelle; Carduner, Florence; Penverne, Frédérique; Verleysen-Robin, Marie-Christine; Terreaux, Luc; de Gaalon, Solène; Raoul, Sylvie; Lefaucheur, Jean-Pascal

    2016-02-01

    Occipital nerve stimulation (ONS) is a surgical approach to treat patients with medically intractable chronic headache disorders. However, no preoperative test has been yet validated to allow candidates to be selected for implantation. In this study, the analgesic efficacy of transcutaneous electrical nerve stimulation (TENS) was tested for 1 to 3 months in 41 patients with pharmacologically intractable headache disorders of various origins, using a new technique of electrode placement over the occipital nerve. ONS electrodes were subsequently implanted in 33 patients (occipital neuralgia [n=15], cervicogenic headache [n=7], cluster headache [n=6], chronic migraine [n=5]) who had responded at least moderately to TENS. Assessment was performed up to five years after implantation (three years on average), based on the mean and maximum daily pain intensity scored on a 0-10 visual analogue scale and the number of headache days per month. Both TENS and chronic ONS therapy were found to be efficacious (57-76% improvement compared to baseline on the various clinical variables). The efficacy of ONS was better in cases of good or very good preoperative response to TENS than in cases of moderate response to TENS. Implanted ONS may be a valuable therapeutic option in the long term for patients with pharmacologically intractable chronic headache. Although we cannot conclude in patients with poor or no response to TENS, a good or very good response to TENS can support the indication of ONS therapy. This preoperative test could particularly be useful in patients with chronic migraine, in whom it may be difficult to indicate an invasive technique of cranial neurostimulation. PMID:26895733

  6. Effect of Transcutaneous Electrical Nerve Stimulation on Sensation Thresholds in Patients with Painful Diabetic Neuropathy: An Observational Study

    ERIC Educational Resources Information Center

    Moharic, Metka

    2010-01-01

    Transcutaneous electrical nerve stimulation (TENS) is one of the therapies for painful neuropathy. Its analgesic mechanisms probably involve the gate control theory, the physiological block and the endogenous pain inhibitory system. The aim of the study was to determine whether TENS improves small fibre function diminished because of painful…

  7. Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair.

    PubMed

    Vivó, Meritxell; Puigdemasa, Antoni; Casals, Laura; Asensio, Elena; Udina, Esther; Navarro, Xavier

    2008-05-01

    We have studied whether electrical stimulation immediately after nerve injury may enhance axonal regeneration and modulate plastic changes at the spinal cord level underlying the appearance of hyperreflexia. Two groups of adult rats were subjected to sciatic nerve section followed by suture repair. One group (ES) received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h after injury. A second group served as control (C). Nerve conduction, H reflex, motor evoked potentials, and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. The electrophysiological results showed higher levels of reinnervation, and histological results a significantly higher number of regenerated myelinated fibers in the distal tibial nerve in group ES in comparison with group C. The monosynaptic H reflex was facilitated in the injured limb, to a higher degree in group C than in group ES. The amplitudes of motor evoked potentials were similar in both groups, although the MEP/M ratio was increased in group C compared to group ES, indicating mild central motor hyperexcitability. Immunohistochemical labeling of sensory afferents in the spinal cord dorsal horn showed prevention of the reduction in expression of substance P at one month postlesion in group ES. In conclusion, brief electrical stimulation applied after sciatic nerve injury promotes axonal regeneration over a long distance and reduces facilitation of spinal motor responses. PMID:18316076

  8. Asymmetric wavefront aberrations and pupillary shapes induced by electrical stimulation of ciliary nerve in cats measured with compact wavefront aberrometer.

    PubMed

    Miyagawa, Suguru; Mihashi, Toshifumi; Kanda, Hiroyuki; Hirohara, Yoko; Endo, Takao; Morimoto, Takeshi; Miyoshi, Tomomitsu; Fujikado, Takashi

    2014-01-01

    To investigate the changes in the wavefront aberrations and pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. Seven eyes of seven cats were studied under general anesthesia. Trains of monophasic pulses (current, 0.1 to 1.0 mA; duration, 0.5 ms/phase; frequency, 5 to 40 Hz) were applied to the lateral or medial branch of the short ciliary nerve near the posterior pole of the eye. A pair of electrodes was hooked onto one or both branch of the short ciliary nerve. The electrodes were placed about 5 mm from the scleral surface. The wavefront aberrations were recorded continuously for 2 seconds before, 8 seconds during, and for 20 seconds after the electrical stimulation. The pupillary images were simultaneously recorded during the stimulation period. Both the wavefront aberrations and the pupillary images were obtained 10 times/sec with a custom-built wavefront aberrometer. The maximum accommodative amplitude was 1.19 diopters (D) produced by electrical stimulation of the short ciliary nerves. The latency of the accommodative changes was very short, and the accommodative level gradually increased up to 4 seconds and reached a plateau. When only one branch of the ciliary nerve was stimulated, the pupil dilated asymmetrically, and the oblique astigmatism and one of the asymmetrical wavefront terms was also altered. Our results showed that the wavefront aberrations and pupillary dilations can be measured simultaneously and serially with a compact wavefront aberrometer. The asymmetric pupil dilation and asymmetric changes of the wavefront aberrations suggest that each branch of the ciliary nerve innervates specific segments of the ciliary muscle and dilator muscle of the pupil. PMID:25144536

  9. Vagus nerve electrical stimulation inhibits serum levels of S100A8 protein in septic shock rats.

    PubMed

    Lei, Ming; Liu, Xin-Xin

    2016-05-01

    The vagus nerve and the released acetylcholine exert anti-inflammatory effects and inhibit septic shock. However, their detailed mechanisms remain to be elucidated. The present study aimed to investigate the effects of vagus nerve electrical stimulation on serum S100A8 levels in septic shock rats. A total of 36 male Sprague-Dawley rats were randomly divided into six equal groups: i) Sham group, receiving sham operation; ii) CLP group, subjected to cecal ligation and puncture (CLP) to establish a model of polymicrobial sepsis; iii) VGX group, subjected to CLP and bilateral cervical vagotomy; iv) STM group, subjected to CLP, bilateral cervical vagotomy and electrical stimulation on the left vagus nerve trunk; v) α‑bungarotoxin (BGT) group was administered α‑BGT prior to electrical stimulation; vi) Anti‑receptor for advanced glycation end products (RAGE) group, administered intraperitoneal injection of anti‑RAGE antibody prior to electrical stimulation. The right carotid artery was cannulated to monitor mean artery pressure (MAP). The serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured to assess the liver function. Serum S100A8 and advanced glycation end product (AGE) levels were measured using enzyme‑linked immunosorbent assays. The expression of hepatic RAGE was determined by western blotting. The present study revealed that Sprague‑Dawley rats exhibited progressive hypotension and significantly increased serum AST and ALT levels following CLP challenge compared with the sham group. The levels of S100A8 and AGEs, and the protein expression of hepatic RAGE were significantly increased following CLP compared with the sham group. Vagus nerve electrical stimulation significantly prevented the development of CLP‑induced hypotension, alleviated the hepatic damage, reduced serum S100A8 and AGEs production, and reduced the expression of hepatic RAGE. The inhibitory effect of vagus nerve electrical

  10. Enhancement of the antiemetic action of metoclopramide against cisplatin-induced emesis by transdermal electrical nerve stimulation.

    PubMed

    Saller, R; Hellenbrecht, D; Bühring, M; Hess, H

    1986-02-01

    In a double-blind sequential trial, the influence of transdermal electrical nerve stimulation (TENS) was studied in patients who were treated with total infusions of metoclopramide 3.5 mg/kg to counter the emetic action of cisplatin 60-90 mg/m2. Transdermal electrical nerve stimulation further reduced the emetic episodes in ten of 11 treatment pairs (2 alpha = .10). This effect was blocked by naloxone. More surprisingly, TENS reduced the incidence of extrapyramidal effects of metoclopramide (i.e., akathisia and dystonia). These effects may be explained by the involvement of central nervous and peripheral TENS-induced production of opioid neuromodulators. An alternate hypothesis is the stimulation of serotonergic mechanisms via neuromodulation by opioid peptides, or by involvement of both systems. PMID:3512620

  11. Transcutaneous electrical nerve stimulation for phantom pain and stump pain in adult amputees.

    PubMed

    Mulvey, Matthew R; Radford, Helen E; Fawkner, Helen J; Hirst, Lynn; Neumann, Vera; Johnson, Mark I

    2013-04-01

    Following amputation, 50% to 90% of individuals experience phantom and/or stump pain. Transcutaneous electrical nerve stimulation (TENS) may prove to be a useful adjunct analgesic intervention, although a recent systematic review was unable to judge effectiveness owing to lack of quality evidence. The aim of this pilot study was to gather data on the effect of TENS on phantom pain and stump pain at rest and on movement. Ten individuals with a transtibial amputation and persistent moderate-to-severe phantom and/or stump pain were recruited. Inclusion criteria was a baseline pain score of ≥3 using 0 to 10 numerical rating scale (NRS). TENS was applied for 60 minutes to generate a strong but comfortable TENS sensation at the site of stump pain or projected into the site of phantom pain. Outcomes at rest and on movement before and during TENS at 30 minutes and 60 minutes were changes in the intensities of pain, nonpainful phantom sensation, and prosthesis embodiment. Mean (SD) pain intensity scores were reduced by 1.8 (1.6) at rest (P < 0.05) and 3.9 (1.9) on movement (P < 0.05) after 60 minutes of TENS. For five participants, it was possible to project TENS sensation into the phantom limb by placing the electrodes over transected afferent nerves. Nonpainful phantom sensations and prosthesis embodiment remained unchanged. This study has demonstrated that TENS has potential for reducing phantom pain and stump pain at rest and on movement. Projecting TENS sensation into the phantom limb might facilitate perceptual embodiment of prosthetic limbs. The findings support the delivery of a feasibility trial. PMID:22935086

  12. ELECTRICAL STIMULATION OF THE VAGUS NERVE DERMATOME IN THE EXTERNAL EAR IS PROTECTIVE IN RAT CEREBRAL ISCHEMIA

    PubMed Central

    Ay, Ilknur; Napadow, Vitaly; Ay, Hakan

    2014-01-01

    Background Although cervical vagus nerve stimulation is effective for reducing infarct volume in rats, it is not feasible for acute human stroke as it requires surgical incision of the neck. We hypothesized that stimulation of the dermatome in the external ear innervated by the vagus nerve (auricular vagus nerve stimulation; aVNS) reduces infarct volume after transient focal ischemia in rats. Methods Animals were randomized to active aVNS or sham stimulation. For aVNS, electrical stimulation of the left cavum concha (1 hour duration) using percutaneous needles was initiated 30 min after induction of ischemia. Behavioral and tissue outcome were measured 24 hours after induction of ischemia. In a separate experimental dataset, c-Fos immunohistochemistry was performed to identify the brain regions activated after the stimulation. Results Stimulation of the left cavum concha resulted in bilateral c-Fos staining in the nuclei tractus solitarii and the loci coerulei in all animals. There was no c-Fos staining in any part of the brainstem in sham control animals. The mean infarct volume (SD) as calculated by indirect method was 44.20 ± 7.58% in controls and 31.65 ± 9.67% in treated animals (p<0.0001). The effect of aVNS on tissue outcome was associated with better neurological scores at 24 hours after ischemia (p<0.0001). Conclusions Electric stimulation of the vagus nerve dermatome in the external ear activates brainstem afferent vagal nuclei and reduces infarct volume in rats. This finding has potential to facilitate the development of treatments that leverage the brain’s endogenous neuroprotective pathways at the setting of acute ischemic stroke. PMID:25312600

  13. Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury

    PubMed Central

    Butler, Jane E.; Godfrey, Sharlene; Thomas, Christine K.

    2016-01-01

    Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury. PMID:27049521

  14. Selective control of physiological responses by temporally-patterned electrical stimulation of the canine vagus nerve.

    PubMed

    Yoo, Paul B; Hincapie, Juan G; Hamann, Jason J; Ruble, Stephen B; Wolf, Patrick D; Grill, Warren M

    2011-01-01

    Vagus nerve stimulation (VNS) is effective for treating epilepsy and depression, and has emerging indications for anxiety and heart failure. However, stimulation-evoked side effects remain a challenge for long-term compliance. We investigated the feasibility of reducing VNS side effects by using a temporally-modified stimulation pattern. In 4 anesthetized canines, we measured changes in both the heart rate and evoked laryngeal muscle activity. Compared to baseline, we found that a 5% duty cycle (measured by the number of pulses per second of stimulation) could still evoke a 21% reduction in heart rate; whereas compared to continuous stimulation (3 mA, 300 μs pulsewidth, 20 Hz) the same 5% duty cycle reduced the evoked laryngeal muscle activity by 90%. The results of this study indicate that temporally-patterned stimulation may provide an effective tool for optimizing VNS therapy. PMID:22254997

  15. Comparison of Transcutaneous Electrical Nerve Stimulation and Parasternal Block for Postoperative Pain Management after Cardiac Surgery

    PubMed Central

    Ozturk, Nilgun Kavrut; Baki, Elif Dogan; Kavakli, Ali Sait; Sahin, Ayca Sultan; Ayoglu, Raif Umut; Karaveli, Arzu; Emmiler, Mustafa; Inanoglu, Kerem; Karsli, Bilge

    2016-01-01

    Background. Parasternal block and transcutaneous electrical nerve stimulation (TENS) have been demonstrated to produce effective analgesia and reduce postoperative opioid requirements in patients undergoing cardiac surgery. Objectives. To compare the effectiveness of TENS and parasternal block on early postoperative pain after cardiac surgery. Methods. One hundred twenty patients undergoing cardiac surgery were enrolled in the present randomized, controlled prospective study. Patients were assigned to three treatment groups: parasternal block, intermittent TENS application, or a control group. Results. Pain scores recorded 4 h, 5 h, 6 h, 7 h, and 8 h postoperatively were lower in the parasternal block group than in the TENS and control groups. Total morphine consumption was also lower in the parasternal block group than in the TENS and control groups. It was also significantly lower in the TENS group than in the control group. There were no statistical differences among the groups regarding the extubation time, rescue analgesic medication, length of intensive care unit stay, or length of hospital stay. Conclusions. Parasternal block was more effective than TENS in the management of early postoperative pain and the reduction of opioid requirements in patients who underwent cardiac surgery through median sternotomy. This trial is registered with Clinicaltrials.gov number NCT02725229. PMID:27445610

  16. Effects of transcutaneous electrical nerve stimulation on quadriceps function in individuals with experimental knee pain.

    PubMed

    Son, S J; Kim, H; Seeley, M K; Feland, J B; Hopkins, J T

    2016-09-01

    Knee joint pain (KJP) is a cardinal symptom in knee pathologies, and quadriceps inhibition is commonly observed among KJP patients. Previously, KJP independently reduced quadriceps strength and activation. However, it remains unknown how disinhibitory transcutaneous electrical nerve stimulation (TENS) will affect inhibited quadriceps motor function. This study aimed at examining changes in quadriceps maximum voluntary contraction (MVC) and central activation ratio (CAR) before and after sensory TENS following experimental knee pain. Thirty healthy participants were assigned to either the TENS or placebo groups. All participants underwent three separate data collection sessions consisting of two saline infusions and one no infusion control in a crossover design. TENS or placebo treatment was administered to each group for 20 min. Quadriceps MVC and CAR were measured at baseline, infusion, treatment, and post-treatment. Perceived knee pain intensity was measured on a 100-mm visual analogue scale. Post-hoc analysis revealed that hypertonic saline infusion significantly reduced the quadriceps MVC and CAR compared with control sessions (P < 0.05). Sensory TENS, however, significantly restored inhibited quadriceps motor function compared with placebo treatment (P < 0.05). There was a negative correlation between changes in MVC and knee pain (r = 0.33, P < 0.001), and CAR and knee pain (r = 0.62, P < 0.001), respectively. PMID:26346597

  17. Effects of auricular transcutaneous electrical nerve stimulation on distal extremity pain: a pilot study.

    PubMed

    Longobardi, A G; Clelland, J A; Knowles, C J; Jackson, J R

    1989-01-01

    The purpose of this pilot study was to determine the effectiveness of auricular acupuncture-like transcutaneous electrical nerve stimulation on pain. Fifteen subjects (6 men, 9 women) experiencing distal extremity pain received either one placebo pill or a 10-minute treatment of acupuncture-like TENS bilaterally to five acupuncture points on the auricle. Pain levels were measured before treatment and at 0, 10, and 30 minutes posttreatment using the visual analogue scale (VAS) and the pain rating index (PRI) of the McGill Pain Questionnaire. The VAS showed no statistically significant differences between Experimental Group (n = 8) and Control Group (n = 7) means at pretreatment or posttreatment; however, both groups showed a reduction in VAS means over time. The Experimental and Control Group means on the PRI were significantly different (p less than .05) at all three posttreatment measurements, but not at pretreatment baseline measurement. These results suggest that auricular acupuncture-like TENS could be an alternative for relief of distal extremity pain. Additional clinical studies are necessary to validate the results of this study. PMID:2783492

  18. Transcutaneous Electrical Nerve Stimulation for Management of Limb Spasticity: A Systematic Review.

    PubMed

    Mills, Patricia Branco; Dossa, Farhana

    2016-04-01

    The purpose of this systematic review was to summarize the effect of transcutaneous electrical nerve stimulation (TENS) for management of limb spasticity. Randomized controlled trials were searched using electronic databases through July 2015. Fourteen randomized controlled trials were included, involving 544 participants. Intervention protocols fit within three categories: 1) TENS vs. no TENS or placebo TENS (n = 7), 2) TENS vs. another TENS protocol or another intervention for spasticity management (n = 7), and 3) TENS as an adjunct to another intervention for spasticity management (n = 4). There was level 1 and 2 evidence for TENS improving spasticity-related outcome measures within the International Classification of Functioning, Disability, and Health domains of body structure and function (e.g., Modified Ashworth Scale) as well as activity (e.g., gait). Better responses in outcome measures in the International Classification of Functioning, Disability, and Health activity domain were seen when TENS was used in combination with active therapy (e.g., exercise and task-related training) vs. as a single therapeutic modality. PMID:26829077

  19. Low Intensity Laser Therapy (LILT) Versus Transcutaneous Electrical Nerve Stimulation On Microcirculation In Diabetic Neuropathy

    NASA Astrophysics Data System (ADS)

    Battecha, Kadria H.; Atya, Azza M.

    2011-09-01

    Reduced microcirculation is a morbid element of neuropathy and one of the most common complications of uncontrolled diabetes. Many physical modalities have gained a considerable attention for enhancing cutaneous microcirculation in diabetic patients and prevent its serious complications. Accordingly, the present study was conducted to compare between the effect of low intensity laser therapy (LILT) and transcutaneous electrical nerve stimulation (TENS) on microcirculation in diabetic neuropathy. Thirty diabetic polyneuropathic patients ranged in age from 45-60 years participated in this study. They were randomly divided into two groups of equal number; patients in group (A) received LILT on plantar surface of foot with a dose of 3 J/cm2 and wavelength (904 nm), while those in group (B) received TENS on lower leg for 30 minutes with frequency (2 HZ). Treatment was conducted 3 times/week for 6 weeks. The cutaneous microcirculation was evaluated by Laser Doppler flowmetry at the baseline and at the end of treatment. Results revealed that group (A) showed statistically significant increase in the cutaneous microcirculation compared with group (B). So, it was concluded that LILT has to be more efficient than TENS in increasing cutaneous microcirculation in patients with diabetic neuropathy.

  20. Continuous Electrical Stimulation as a Helpful Adjunct During Intraoperative Facial Nerve Monitoring

    PubMed Central

    Herbert, Silverstein; White, David W.

    1991-01-01

    Routine intraoperative monitoring of facial function has been used since 1985. An adaptor has been developed for continuous stimulation (SACS) to be used with the new WR-S8, Monitor/Stimulation The SACS allows the microsurgical instruments and air drills to be electrified and to function as probe tips during surgical dissection. The new WR-S8 Monitor/Stimulator has an ultrasensitive strain gauge that detects facial movement before it is palpable. The remote probe allows an assistant to adjust the current easily. The routine use of facial nerve monitoring with SACS has decreased surgical time, has helped prevent iatrogenic injuries, and has improved our ability to save the facial nerve during otologic and neuro-otologic surgery. ImagesFigure 1Figure 2 PMID:17170834

  1. Influence of different frequencies of transcutaneous electrical nerve stimulation on the threshold and pain intensity in young subjects

    PubMed Central

    Gomes, Adriana de Oliveira; Silvestre, Ana Caroline; da Silva, Cristina Ferreira; Gomes, Mariany Ribeiro; Bonfleur, Maria Lúcia; Bertolini, Gladson Ricardo Flor

    2014-01-01

    Objective To investigate the effects of different transcutaneous electrical nerve stimulation frequencies in nociception front of a pressure pain threshold and cold in healthy individuals. Methods Twenty healthy subjects were divided into four groups, all of which have gone through all forms of electrical stimulation at different weeks. Assessments were pre and post-therapy, 20 and 60 minutes after stimulation. To evaluate the pressure pain threshold, an algometer was used with one tapered tip, pressing the hypothenar region until voluntary report the word “pain”. Cold pain intensity was assessed by immersion in water at 5°C for 30 seconds; at the end, the subject was asked to quantify the pain intensity on a Visual Analog Scale for Pain. For electrical stimulation, two electrodes were used near the elbow, for 20 minutes, with an intensity strong, but not painful. The frequency was in accordance with the group: 0Hz (placebo); 7Hz; 100Hz; and 255Hz. Results Both for the assessment of pressure pain threshold as the cold pain intensity, there was no significant difference (p>0.05). Conclusion We conclude that the use of transcutaneous electrical nerve stimulation on dermatomes C6 to C8 produced no significant change in pressure pain threshold or cold discomfort. PMID:25295453

  2. Material properties and electrical stimulation regimens through polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits

    PubMed Central

    Moroder, Philipp; Wang, Huan; Ruesink, Terry; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.; Runge, M. Brett

    2010-01-01

    Mechanical and electrical properties of polycaprolactone fumarate-polypyrrole (PCLF-PPy) scaffolds were studied under physiological conditions to evaluate their ability to maintain material properties necessary for application as conductive nerve conduits. PC12 cells cultured on PCLF-PPy scaffolds were stimulated with regimens of 10 μA of constant or 20 Hz frequency current passed through the scaffolds for 1 h/day. PC12 cellular morphologies were analyzed by fluorescence microscopy after 48 h. PCLF-PPy scaffolds exhibited excellent mechanical properties at 37°C which would allow suturing and flexibility. The surface resistivity of the scaffolds was 2kΩ and the scaffolds were electrically stable during application of electrical stimulation (ES). In vitro studies showed significant increases in percentage of neurite bearing cells, number of neurites per cell and neurite length in the presence of ES compared to no ES. Additionally, extending neurites were observed to align in the direction of the applied current. This study shows that electrically conductive PCLF-PPy scaffolds possess material properties necessary for application as nerve conduits. Additionally, the capability to significantly enhance and direct neurite extension by passing electrical current through PCLF-PPy scaffolds renders them even more promising as future therapeutic treatments for severe nerve injuries. PMID:20965280

  3. Do the Effects of Transcutaneous Electrical Nerve Stimulation on Knee Osteoarthritis Pain and Function Last?

    PubMed

    Cherian, Jeffrey Jai; Harrison, Paige E; Benjamin, Samantha A; Bhave, Anil; Harwin, Steven F; Mont, Michael A

    2016-08-01

    Transcutaneous electrical nerve stimulation (TENS) has been shown to decrease pain associated with knee osteoarthritis, which potentially leads to better function, improved quality of life, and postpones the need for surgical intervention. The purpose of this study was to perform a 1-year follow-up of a previous prospective group of patients with knee osteoarthritis, randomized to TENS or standard of care, who were asked to rate their changes in: (1) patient pain perception; (2) subjective medication use; (3) subjective functional abilities; (4) quality of life; (5) device use; and (6) conversion to TKA. A population of 70 patients were randomized to receive either a TENS device or a standard conservative therapy regimen. Patients were evaluated based on various subjective outcomes at minimum 1-year (mean, 19 months) follow-up. The TENS cohort had lower visual analog pain scores compared with the matching cohort. Subjective functional outcomes, as well as functional and activity scores, were also greater in the TENS cohort. Patients in TENS cohort showed significant improvements in their subjective and functional outcomes as compared with their initial status, while the control group did not show significant change. A majority of the TENS patients were able to reduce the amount of pain medications. Additionally, a large portion of the patients assigned to the TENS group continue to use the device, after completion of the trial. This study demonstrated the benefit of TENS for improving subjective outcomes in patients with pain due to knee osteoarthritis, compared with standard conservative treatments. The results of the study suggest that TENS is a safe and effective adjunct as part of the spectrum of current nonoperative treatment methods for knee osteoarthritis. PMID:26540652

  4. Characterization of evoked tactile sensation in forearm amputees with transcutaneous electrical nerve stimulation

    NASA Astrophysics Data System (ADS)

    Chai, Guohong; Sui, Xiaohong; Li, Si; He, Longwen; Lan, Ning

    2015-12-01

    Objective. The goal of this study is to characterize the phenomenon of evoked tactile sensation (ETS) on the stump skin of forearm amputees using transcutaneous electrical nerve stimulation (TENS). Approach. We identified the projected finger map (PFM) of ETS on the stump skin in 11 forearm amputees, and compared perceptual attributes of the ETS in nine forearm amputees and eight able-bodied subjects using TENS. The profile of perceptual thresholds at the most sensitive points (MSPs) in each finger-projected area was obtained by modulating current amplitude, pulse width, and frequency of the biphasic, rectangular current stimulus. The long-term stability of the PFM and the perceptual threshold of the ETS were monitored in five forearm amputees for a period of 11 months. Main results. Five finger-specific projection areas can be independently identified on the stump skin of forearm amputees with a relatively long residual stump length. The shape of the PFM was progressively similar to that of the hand with more distal amputation. Similar sensory modalities of touch, pressure, buzz, vibration, and numb below pain sensation could be evoked both in the PFM of the stump skin of amputees and in the normal skin of able-bodied subjects. Sensory thresholds in the normal skin of able-bodied subjects were generally lower than those in the stump skin of forearm amputees, however, both were linearly modulated by current amplitude and pulse width. The variation of the MSPs in the PFM was confined to a small elliptical area with 95% confidence. The perceptual thresholds of thumb-projected areas were found to vary less than 0.99 × 10-2 mA cm-2. Significance. The stable PFM and sensory thresholds of ETS are desirable for a non-invasive neural interface that can feed back finger-specific tactile information from the prosthetic hand to forearm amputees.

  5. Skin impedance is not a factor in transcutaneous electrical nerve stimulation effectiveness

    PubMed Central

    Vance, Carol GT; Rakel, Barbara A; Dailey, Dana L; Sluka, Kathleen A

    2015-01-01

    Objective Transcutaneous electrical nerve stimulation (TENS) is a nonpharmacological intervention used to manage pain using skin surface electrodes. Optimal electrode placement is unclear. We hypothesized that better analgesia would occur if electrodes were placed over sites with lower skin impedance. Optimal site selection (OSS) and sham site selection (SSS) electrode sites on the forearm were identified using a standard clinical technique. Methods Experiment 1 measured skin impedance in the forearm at OSS and SSS. Experiment 2 was a crossover design double-blind randomized controlled trial comparing OSS-TENS, SSS-TENS, and placebo TENS (P-TENS) to confirm differences in skin impedance between OSS and SSS, and measure change in pressure pain threshold (PPT) following a 30-minute TENS treatment. Healthy volunteers were recruited (ten for Experiment 1 [five male, five female] and 24 for Experiment 2 [12 male, 12 female]). TENS was applied for 30 minutes at 100 Hz frequency, 100 µs pulse duration, and “strong but nonpainful” amplitude. Results Experiment 1 results demonstrate significantly higher impedance at SSS (17.69±1.24 Ω) compared to OSS (13.53±0.57 Ω) (P=0.007). For Experiment 2, electrode site impedance was significantly higher over SSS, with both the impedance meter (P=0.001) and the TENS unit (P=0.012) compared to OSS. PPT change was significantly greater for both OSS-TENS (P=0.024) and SSS-TENS (P=0.025) when compared to P-TENS. PPT did not differ between the two active TENS treatments (P=0.81). Conclusion Skin impedance is lower at sites characterized as optimal using the described technique of electrode site selection. When TENS is applied at adequate intensities, skin impedance is not a factor in attainment of hypoalgesia of the forearm in healthy subjects. Further investigation should include testing in patients presenting with painful conditions. PMID:26316808

  6. Using independent component analysis to remove artifacts in visual cortex responses elicited by electrical stimulation of the optic nerve

    NASA Astrophysics Data System (ADS)

    Lu, Yiliang; Cao, Pengjia; Sun, Jingjing; Wang, Jing; Li, Liming; Ren, Qiushi; Chen, Yao; Chai, Xinyu

    2012-04-01

    In visual prosthesis research, electrically evoked potentials (EEPs) can be elicited by one or more biphasic current pulses delivered to the optic nerve (ON) through penetrating electrodes. Multi-channel EEPs recorded from the visual cortex usually contain large stimulus artifacts caused by instantaneous electrotonic current spread through the brain tissue. These stimulus artifacts contaminate the EEP waveform and often make subsequent analysis of the underlying neural responses difficult. This is particularly serious when investigating EEPs in response to electrical stimulation with long duration and multi-pulses. We applied independent component analysis (ICA) to remove these electrical stimulation-induced artifacts during the development of a visual prosthesis. Multi-channel signals were recorded from visual cortices of five rabbits in response to ON electrical stimulation with various stimulus parameters. ON action potentials were then blocked by lidocaine in order to acquire cortical potentials only including stimulus artifacts. Correlation analysis of reconstructed artifacts by ICA and artifacts recorded after blocking the ON indicates successful removal of artifacts from electrical stimulation by the ICA method. This technique has potential applications in studies designed to optimize the electrical stimulation parameters used by visual prostheses.

  7. Responses of bone and joint blood vessels in cats and rabbits to electrical stimulation of nerves supplying the knee.

    PubMed Central

    Ferrell, W R; Khoshbaten, A; Angerson, W J

    1990-01-01

    1. Experiments were performed to assess the extent to which knee joint blood flow in cats and rabbits is affected by electrical stimulation of the nerve supply to the knee. 2. Absolute changes in blood flow were measured using the radiolabelled microsphere (approximately 15 microns) technique whilst relative changes in blood flow were assessed using laser Doppler flowmetry. 3. Despite deep general anaesthesia, sympathetic nerve fibres innervating cat knee joint blood vessels showed marked 'tone'. 4. Blood flow to the joint capsule (synovium and overlying fibrous and areolar tissues) was substantially reduced (by approximately 90% in the cat and approximately 45% in the rabbit) during electrical stimulation of the articular nerve supply. 5. The percentage change in the laser Doppler flowmeter signal did not differ significantly from the percentage change in blood flow measured by microsphere technique. 6. Blood vessels in the cancellous bone of the distal femur (condyles) and proximal tibia (plateau) appear to be innervated by vasoconstrictor fibres which reach their effectors via the articular nerves. However, the cortical bone and red marrow of the diaphysis of the femur do not receive such innervation. 7. The potency of the vasoconstrictor influences acting on joint blood vessels could be of relevance in the pathogenesis of inflammatory joint diseases. PMID:2100317

  8. Short-term effect of electrical nerve stimulation on spinal reciprocal inhibition during robot-assisted passive stepping in humans.

    PubMed

    Obata, Hiroki; Ogawa, Tetsuya; Kitamura, Taku; Masugi, Yohei; Takahashi, Miho; Kawashima, Noritaka; Nakazawa, Kimitaka

    2015-09-01

    The purpose of this study was to investigate the effect of electrical stimulation to the common peroneal nerve (CPN) on the spinal reflex and reciprocal inhibition (RI) during robot-assisted passive ground stepping (PGS) in healthy subjects. Five interventions were applied for 30 min in healthy subjects: PGS alone; strong CPN stimulation [50% of the maximal tibialis anterior (TA) M-wave, functional electrical stimulation (FES)] alone; weak CPN stimulation [just above the MT for the TA muscle, therapeutic electrical stimulation (TES)] alone; PGS with FES; and PGS with TES. FES and TES were applied intermittently to the CPN at 25 Hz. The soleus (Sol) H-reflex and RI, which was assessed by conditioning the Sol H-reflex with CPN stimulation, were investigated before (baseline), and 5, 15 and 30 min after each intervention. The amplitudes of the Sol H-reflex were not significantly different after each intervention as compared with the baseline values. The amounts of RI were significantly decreased 5 min after PGS with FES as compared with the baseline values, whereas they were significantly increased 5 and 15 min after PGS with TES. The other interventions did not affect the amount of RI. These results suggest that interventions that combined PGS with CPN stimulation changed the spinal RI in an intensity-dependent manner. PMID:26108136

  9. Two Cases of Transcutaneous Electrical Nerve Stimulation of the Common Peroneal Nerve Successfully Treating Refractory, Multifactorial Leg Edema

    PubMed Central

    Ingves, Matthew V.

    2014-01-01

    The treatment of leg edema often involves promoting venous blood flow but can be difficult in patients with comorbidities that prevent traditional management strategies such as limb elevation or mechanical compression devices. The geko device is a self-contained neuromuscular stimulation device that adheres to skin over the common peroneal nerve and delivers a low-voltage stimulus that activates the lower-leg musculature resulting in enhanced superficial femoral vein blood flow and velocity. Here we report 2 cases of multifactorial and refractory leg edema successfully treated with the geko device over a period of 4 to 16 weeks. The device also improved pain and chronic wound healing. Although the geko device is costly, it was well tolerated and may provide another treatment strategy for resistant leg swelling. PMID:26425629

  10. Electrical Stimulation of the Vagus Nerve Enhances Cognitive and Motor Recovery following Moderate Fluid Percussion Injury in the Rat

    PubMed Central

    SMITH, DOUGLAS C.; MODGLIN, ARLENE A.; ROOSEVELT, RODNEY W.; NEESE, STEVEN L.; JENSEN, ROBERT A.; BROWNING, RONALD A.; CLOUGH, RICHARD W.

    2006-01-01

    Intermittent, chronically delivered electrical stimulation of the vagus nerve (VNS) is an FDA-approved procedure for the treatment of refractory complex/partial epilepsy in humans. Stimulation of the vagus has also been shown to enhance memory storage processes in laboratory rats and human subjects. Recent evidence suggests that some of these effects of VNS may be due to the activation of neurons in the nucleus locus coeruleus resulting in the release of norepinephrine (NE) throughout the neuraxis. Because antagonism of NE systems has been shown to delay recovery of function following brain damage, it is possible that enhanced release of NE in the CNS may facilitate recovery of function. To evaluate this hypothesis the lateral fluid percussion injury (LFP) model of traumatic brain injury was used and a variety of motor and cognitive behavioral tests were employed to assess recovery in pre-trained stimulated, control, and sham-injured laboratory rats. Two hours following moderate LFP, vagus nerve stimulation (30.0-sec trains of 0.5 mA, 20.0 Hz, biphasic pulses) was initiated. Stimulation continued in each animal’s home cage at 30-min intervals for a period of 14 days, with the exception of brief periods when the animals were disconnected for behavioral assessments. Motor behaviors were evaluated every other day following LFP and tests included beam walk, locomotor placing, and skilled forelimb reaching. In each measure an enhanced rate of recovery and/or level of final performance was observed in the VNS-LFP animals compared to non-stimulated LFP controls. Behavior in the Morris water maze was assessed on days 11–14 following injury. Stimulated LFP animals showed significantly shorter latencies to find the hidden platform than did controls. Despite these behavioral effects, neurohistological examination did not reveal significant differences in lesion extent, density of fluorojade positive neurons, reactive astrocytes or numbers of spared neurons in the CA3

  11. Optical stimulation of the cavernous nerves in the rat prostate

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Lagoda, Gwen A.; Scott, Nicholas J.; Su, Li-Ming; Burnett, Arthur L.

    2008-02-01

    Laser nerve stimulation has recently been studied as an alternative to electrical stimulation in neuroscience. Advantages include non-contact stimulation, improved spatial selectivity, and elimination of electrical stimulation artifacts. This study explores laser stimulation of the rat cavernous nerves, as a potential alternative to electrical nerve mapping during nerve-sparing radical prostatectomy. The cavernous nerves were surgically exposed in a total of 10 male rats. A Thulium fiber laser stimulated the nerves, with a wavelength of 1870 nm, pulse energy of 7.5 mJ, radiant exposure of 1 J/cm2, pulse duration of 2.5 ms, pulse rate of 10 Hz, and 1-mm laser spot diameter, for a stimulation time of 60 s. A significant increase in the intracavernosal pressure was detected upon laser stimulation, with pressure returning to baseline levels after stimulation. This study demonstrates the feasibility of non-contact laser stimulation of the cavernous nerves using near-infrared laser radiation.

  12. Occipital nerve stimulation.

    PubMed

    Mammis, Antonios; Agarwal, Nitin; Mogilner, Alon Y

    2015-01-01

    Occipital nerve stimulation (ONS) is a form of neuromodulation therapy aimed at treating intractable headache and craniofacial pain. The therapy utilizes neurostimulating electrodes placed subcutaneously in the occipital region and connected to a permanently implanted programmable pulse generator identical to those used for dorsal column/spinal cord stimulation. The presumed mechanisms of action involve modulation of the trigeminocervical complex, as well as closure of the physiologic pain gate. ONS is a reversible, nondestructive therapy, which can be tailored to a patient's individual needs. Typically, candidates for successful ONS include those patients with migraines, Chiari malformation, or occipital neuralgia. However, recent MRSA infections, unrealistic expectations, and psychiatric comorbidities are generally contraindications. As with any invasive procedure, complications may occur including lead migration, infection, wound erosion, device failure, muscle spasms, and pain. The success of this therapy is dependent on careful patient selection, a preimplantation trial, meticulous implantation technique, programming strategies, and complication avoidance. PMID:25411143

  13. Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat

    PubMed Central

    Ollivier-Lanvin, Karen; Krupka, Alexander J.; AuYong, Nicholas; Miller, Kassi; Prilutsky, Boris I.

    2011-01-01

    Sensory feedback plays a crucial role in the control of locomotion and in the recovery of function after spinal cord injury. Investigations in reduced preparations have shown that the locomotor cycle can be modified through the activation of afferent feedback at various phases of the gait cycle. We investigated the effect of phase-dependent electrical stimulation of a cutaneous afferent nerve on the locomotor pattern of trained spinal cord-injured cats. Animals were first implanted with chronic nerve cuffs on the sural and sciatic nerves and electromyographic electrodes in different hindlimb muscles. Cats were then transected at T12 and trained daily to locomote on a treadmill. We found that electrical stimulation of the sural nerve can enhance the ongoing flexion phase, producing higher (+129%) and longer (+17.4%) swing phases of gait even at very low threshold of stimulation. Sural nerve stimulation can also terminate an ongoing extension and initiate a flexion phase. A higher prevalence of early switching to the flexion phase was observed at higher stimulation levels and if stimulation was applied in the late stance phase. All flexor muscles were activated by the stimulation. These results suggest that electrical stimulation of the sural nerve may be used to increase the magnitude of the swing phase and control the timing of its onset after spinal cord injury and locomotor training. PMID:21389308

  14. Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat.

    PubMed

    Ollivier-Lanvin, Karen; Krupka, Alexander J; AuYong, Nicholas; Miller, Kassi; Prilutsky, Boris I; Lemay, Michel A

    2011-05-01

    Sensory feedback plays a crucial role in the control of locomotion and in the recovery of function after spinal cord injury. Investigations in reduced preparations have shown that the locomotor cycle can be modified through the activation of afferent feedback at various phases of the gait cycle. We investigated the effect of phase-dependent electrical stimulation of a cutaneous afferent nerve on the locomotor pattern of trained spinal cord-injured cats. Animals were first implanted with chronic nerve cuffs on the sural and sciatic nerves and electromyographic electrodes in different hindlimb muscles. Cats were then transected at T12 and trained daily to locomote on a treadmill. We found that electrical stimulation of the sural nerve can enhance the ongoing flexion phase, producing higher (+129%) and longer (+17.4%) swing phases of gait even at very low threshold of stimulation. Sural nerve stimulation can also terminate an ongoing extension and initiate a flexion phase. A higher prevalence of early switching to the flexion phase was observed at higher stimulation levels and if stimulation was applied in the late stance phase. All flexor muscles were activated by the stimulation. These results suggest that electrical stimulation of the sural nerve may be used to increase the magnitude of the swing phase and control the timing of its onset after spinal cord injury and locomotor training. PMID:21389308

  15. Comparison of Transcutaneous Electrical Nerve Stimulation and Pulsed Radiofrequency Sympathectomy for Treating Painful Diabetic Neuropathy

    PubMed Central

    Naderi Nabi, Bahram; Sedighinejad, Abbas; Haghighi, Mohammad; Biazar, Gelareh; Hashemi, Masood; Haddadi, Soodabeh; Fathi, Amirhossein

    2015-01-01

    Background: Painful diabetic peripheral neuropathy (DPN) is a long-term complication of type 1 and type 2 diabetes that majorly impacts quality of life. Its prevalence increases with age and duration of diabetes. It is more common in patients who have suboptimal glycemic control over several years. Because DPN may be resistant to conventional treatments, it is common for patients to only have partial pain relief. Therefore, new therapeutic options are needed for the condition. Objectives: The aim of the present study was to compare the efficacy of transcutaneous electrical nerve stimulation (TENS) and pulsed radiofrequency (PRF) lumbar sympathectomy in treating painful DPN. Patients and Methods: Sixty-five patients with painful DPN refractory to conventional treatment were randomly and evenly assigned to either the TENS or PRF lumbar sympathectomy groups. Pain evaluations were based on the 10-point numerical rating scale (NRS). Subjects were followed for three months and had a total of four study visits (baseline and 1 week, 1 month, and 3 months after treatment). Results: Sixty patients completed all study visits. In both groups, the NRS rating significantly decreased after treatment, with a marked pain reduction observed at the first follow-up evaluation. In the PRF group, the NRS decreased from 6.46 at baseline to 2.76 at the 1 week visit. One and 3 months after treatment, the NRS was 4.30 and 5.13, respectively (P < 0.0001). In the TENS group, the NRS decreased from 6.10 at baseline to 3.96 at the 1 week visit. One and 3 months after treatment, the NRS was 5.23 and 5.90, respectively (P < 0.0001). Unfortunately, the NRS steady increased almost back to baseline levels in the TENS group. The NRS only slightly increased during the follow-up period in the PRF group, but did not reach baseline levels. Conclusions: Both TENS and PRF lumbar sympathectomy are promising pain relief treatments for painful DNP. However, PRF lumbar sympathectomy seems to have a superior

  16. Use of Transcutaneous Electrical Nerve Stimulation Device in Early Osteoarthritis of the Knee.

    PubMed

    Cherian, Jeffrey J; Kapadia, Bhaveen H; Bhave, Anil; McElroy, Mark J; Cherian, Christopher; Harwin, Steven F; Mont, Michael A

    2015-08-01

    Some have proposed the use of transcutaneous electrical nerve stimulation (TENS) as an adjunct to the current standard of care in treatment of osteoarthritis knee pain. The purpose of this study was to evaluate the effects of TENS on the following issues in patients who have early-stage osteoarthritis of the knee: (1) pain reduction; (2) subjective and (3) objective functional improvements; (4) quality-of-life (QOL) measure improvements; and (5) isokinetic strength. A prospective, randomized, and single-blinded trial was performed on 23 patients who were randomized to either novel TENS device or standard of care. Metrics analyzed included stair-climb test; timed-up-and-go test (TUGT); 2-minute walk test; 20 times, single leg 6-inch step test; five-repetition chair-rise test; active and passive range-of-motion (ROM) score; short form health survey-36 scores (SF-36) score; Knee Society Score (KSS); lower extremity functional scale (LEFS); visual analog scale (VAS); and isokinetic quadriceps and hamstring strength. In objective functional scores, TENS had significant improvements in TUGT and objective KSS when compared with the matching cohort. Subjective functional and QOL outcomes patients had a significant improvement of their LEFS and SF-36 physical component with the use of TENS brace. The TENS device significantly improved the quadriceps strength when compared with standard therapy. In evaluation for improvement within the TENS cohort, patients had a significant improvement at 3-month follow-up in the TUG test, timed stair-climb test, 20-times single leg, KSS, LEFS, and SF-36 physical component compared to their initial visit. In addition, within the TENS cohort, patients had a significant reduction in pain via VAS at their 3-month follow-up. In conclusion, the use of TENS for 3 months has shown encouraging results to improve pain, function, and QOL in patients with painful osteoarthritic knees, and could positively contribute as an adjunct to current

  17. Estimating nerve excitation thresholds to cutaneous electrical stimulation by finite element modeling combined with a stochastic branching nerve fiber model.

    PubMed

    Mørch, Carsten Dahl; Hennings, Kristian; Andersen, Ole Kæseler

    2011-04-01

    Electrical stimulation of cutaneous tissue through surface electrodes is an often used method for evoking experimental pain. However, at painful intensities both non-nociceptive Aβ-fibers and nociceptive Aδ- and C-fibers may be activated by the electrical stimulation. This study proposes a finite element (FE) model of the extracellular potential and stochastic branching fiber model of the afferent fiber excitation thresholds. The FE model described four horizontal layers; stratum corneum, epidermis, dermis, and hypodermal used to estimate the excitation threshold of Aβ-fibers terminating in dermis and Aδ-fibers terminating in epidermis. The perception thresholds of 11 electrodes with diameters ranging from 0.2 to 20 mm were modeled and assessed on the volar forearm of healthy human volunteers by an adaptive two-alternative forced choice algorithm. The model showed that the magnitude of the current density was highest for smaller electrodes and decreased through the skin. The excitation thresholds of the Aδ-fibers were lower than the excitation thresholds of Aβ-fibers when current was applied through small, but not large electrodes. The experimentally assessed perception threshold followed the lowest excitation threshold of the modeled fibers. The model confirms that preferential excitation of Aδ-fibers may be achieved by small electrode stimulation due to higher current density in the dermoepidermal junction. PMID:21207174

  18. Effects of sympathetic stimulation and applied catecholamines on mechanical and electrical responses to stimulation of the vagus nerve in guinea-pig isolated trachea.

    PubMed Central

    McCaig, D. J.

    1987-01-01

    Mechanical and electrical responses to stimulation of the vagus nerve were studied in the isolated, innervated trachea of the guinea-pig. In approximately half the preparations tested, the amplitudes of mechanical constrictor responses to stimulation of the vagus were reduced substantially during a period of sympathetic stimulation. Vagal responses were unaltered in the remainder. In single trachealis cells, stimulation of the vagus nerve or sympathetic stellate ganglion elicited depolarization and hyperpolarization, respectively. Vagally-mediated depolarization was decreased, unchanged or increased in amplitude after a period of sympathetic stimulation. Isoprenaline almost abolished mechanical responses induced by stimulation of the vagus, and this effect was blocked by propranolol. Noradrenaline attenuated markedly vagal mechanical responses also, and this effect was blocked by a combination of propranolol and phentolamine. Both noradrenaline and isoprenaline hyperpolarized single trachealis cells and greatly reduced the amplitude of vagally-mediated depolarization. Neither sympathetic stimulation nor applied catecholamines altered mechanical responses to applied acetylcholine, strongly suggesting that their effects on vagal responses are predominantly presynaptic. PMID:3607363

  19. [Development of an Analgesia Therapy System for Delivery Based on Bio-feedback Transcuataneous Electrical Nerve Stimulation].

    PubMed

    Deng Songbo; Lu Yaosheng; Fang, Kun; Qin, Ruyi; Lin, Zhan

    2015-06-01

    Transcuataneous electrical nerve stimulation (TENS) analgesia as a non-drug method has received people's more and more attention recently. Considering problems of existing products, such as unstable performance and unsatisfied effectiveness, we developed a new analgesia therapy system for delivery based on bio-feedback TENS in our laboratory. We proposed a new idea for stimulation signal design, that is, we modulated a middle frequency signal by a traditional low frequency TENS wave in the new system. We designed different prescription waves for pain relief during a uterine contraction or massage between contractions. In the end, a bio-feedback TENS method was proposed, in which the waveforms of stimulation signals were selected and their parameters were modified automatically based on feedback from uterine pressure, etc. It was proved through quality tests and clinical trials that the system had good performance and satisfied analgesia effectiveness. PMID:26485994

  20. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    PubMed

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. PMID:27353566

  1. Electrical stimulation of the auditory nerve: direct current measurement in vivo.

    PubMed

    Huang, C Q; Shepherd, R K; Carter, P M; Seligman, P M; Tabor, B

    1999-04-01

    Neural prostheses use charge recovery mechanisms to ensure the electrical stimulus is charge balanced. Nucleus cochlear implants short all stimulating electrodes between pulses in order to achieve charge balance, resulting in a small residual direct current (DC). In the present study we sought to characterize the variation of this residual DC with different charge recovery mechanisms, stimulation modes, and stimulation parameters, and by modeling, to gain insight into the underlying mechanisms. In an acute study with anaesthetised guinea pigs, DC was measured in four platinum intracochlear electrodes stimulated using a Nucleus C124M cochlear implant at moderate to high pulse rates (1200-14,500 pulses/s) and stimulus intensities (0.2-1.75 mA at 26-200 microseconds/phase). Both monopolar and bipolar stimulation modes were used, and the effects of shorting or combining a capacitor with shorting for charge recovery were investigated. Residual DC increased as a function of stimulus rate, stimulus intensity, and pulse width. DC was lower for monopolar than bipolar stimulation, and lower still with capacitively coupled monopolar stimulation. Our model suggests that residual DC is a consequence of Faradaic reactions which allow charge to leak through the electrode tissue interface. Such reactions and charge leakage are still present when capacitors are used to achieve charge recovery, but anodic and cathodic reactions are balanced in such a way that the net charge leakage is zero. PMID:10217884

  2. Localization of nerve depolarization with magnetic stimulation.

    PubMed

    Odderson, I R; Halar, E M

    1992-06-01

    The specific location on the magnetic stimulation (MS) coil that may correspond to the area of nerve depolarization has not been determined. In order to localize such an area, MS with 9-cm and 5-cm diameter coils was compared with conventional percutaneous electric stimulation (ES). On the 9-cm coil the distribution of points of nerve depolarization corresponded to that quarter of the coil which was placed over and parallel to the median nerve, whereas on the 5-cm coil, this area also extended outside the coil. The points of median nerve depolarization with MS were distributed over a distance of 7 cm on the stimulator head and was nearly identical for the 2 coil sizes at the wrist and elbow. Ulnar nerve costimulation was less frequent with the smaller coil at the wrist. A calculated reference point on the coil is suggested for more accurate NCV determinations. PMID:1508235

  3. Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure.

    PubMed

    Pinto, Tomás O C Teixeira; Lataro, Renata M; Castania, Jaci A; Durand, Marina T; Silva, Carlos A A; Patel, Kaushik P; Fazan, Rubens; Salgado, Helio C

    2016-04-01

    Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12-13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective β1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control (n = 12) and CHF (n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive. PMID:26843582

  4. Unilateral magnetic stimulation of the phrenic nerve.

    PubMed Central

    Mills, G. H.; Kyroussis, D.; Hamnegard, C. H.; Wragg, S.; Moxham, J.; Green, M.

    1995-01-01

    BACKGROUND--Electrical stimulation of the phrenic nerve is a useful non-volitional method of assessing diaphragm contractility. During the assessment of hemidiaphragm contractility with electrical stimulation, low twitch transdiaphragmatic pressures may result from difficulty in locating and stimulating the phrenic nerve. Cervical magnetic stimulation overcomes some of these problems, but this technique may not be absolutely specific and does not allow the contractility of one hemidiaphragm to be assessed. This study assesses both the best means of producing supramaximal unilateral magnetic phrenic stimulation and its reproducibility. This technique is then applied to patients. METHODS--The ability of four different magnetic coils to produce unilateral phrenic stimulation in five normal subjects was assessed from twitch transdiaphragmatic pressure (TwPDI) measurements and diaphragmatic electromyogram (EMG) recordings. The results from magnetic stimulation were compared with those from electrical stimulation. To determine whether the magnetic field affects the contralateral phrenic nerve as well as the intended phrenic nerve, EMG recordings from each hemidiaphragm were compared during stimulation on the same side and the opposite side relative to the recording electrodes. The EMG recordings were made from skin surface electrodes in five normal subjects and from needle electrodes placed in the diaphragm during cardiac surgery in six patients. Similarly, the direction of hemidiaphragm movement was evaluated by ultrasonography. To determine the usefulness of the technique in patients the 43 mm mean diameter double coil was used in 54 patients referred for assessment of possible respiratory muscle weakness. These results were compared with unilateral electrical phrenic stimulation, maximum sniff PDI, and TwPDI during cervical magnetic stimulation. RESULTS--In the five normal subjects supramaximal stimulation was established for eight out of 10 phrenic nerves with the 43

  5. Vagal nerve stimulator: Evolving trends

    PubMed Central

    Ogbonnaya, Sunny; Kaliaperumal, Chandrasekaran

    2013-01-01

    Over three decades ago, it was found that intermittent electrical stimulation from the vagus nerve produces inhibition of neural processes, which can alter brain activity and terminate seizures. This paved way for the concept of vagal nerve stimulator (VNS). We describe the evolution of the VNS and its use in different fields of medicine. We also review the literature focusing on the mechanism of action of VNS producing desired effects in different conditions. PUBMED and EMBASE search was performed for ‘VNS’ and its use in refractory seizure management, depression, obesity, memory, and neurogenesis. VNS has been in vogue over for the past three decades and has proven to reduce the intensity and frequency of seizure by 50% in the management of refractory seizures. Apart from this, VNS has been shown to promote neurogenesis in the dentate gyrus of rat hippocampus after 48 hours of stimulation of the vagus nerve. Improvement has also been observed in non-psychotic major depression from a randomized trial conducted 7 years ago. The same concept has been utilized to alter behavior and cognition in rodents, and good improvement has been observed. Recent studies have proven that VNS is effective in obesity management in patients with depression. Several hypotheses have been postulated for the mechanism of action of VNS contributing to its success. VNS has gained significant popularity with promising results in epilepsy surgery and treatment-resistant depression. The spectrum of its use has also extended to other fields of medicine including obesity, memory, and neurogenesis, and there is still a viable scope for its utility in the future. PMID:23633829

  6. Task-related training combined with transcutaneous electrical nerve stimulation promotes upper limb functions in patients with chronic stroke.

    PubMed

    Kim, Tae Hoon; In, Tae Sung; Cho, Hwi-young

    2013-01-01

    Severe upper limb paresis is a major contributor to disability after stroke. This study investigated the efficacy of task-related training (TRT) with transcutaneous electrical nerve stimulation (TENS) on recovery of upper limb motor function in chronic-stroke survivors. Thirty patients with chronic stroke were randomly allocated two groups: the TRT+TENS group (n = 15) and the TRT+placebo (TRT+PLBO) group (n = 15). Patients in the TRT+TENS group received TENS stimulation (two to three times the sensory threshold), while subjects in the TRT+PLBO group received TENS without real electrical stimulation. TENS was applied to muscle belly of triceps and wrist extensors, while placebo (PLBO) stimulation was administrated without real electrical stimulation. Both interventions were given for 30 minutes per day, 5 days per week, for a period of 4 weeks. The primary outcomes were assessed with Fugl-Meyer assessment scores (FMA), Manual function test (MFT), Box and block test (BBT), and Modified Ashworth scale (MAS), each of which was performed one day before and one day after intervention. Both groups showed significant improvements in FMA, MFT, and BBT after intervention. When compared with the TRT+PLBO group, the TRT+TENS group showed significantly greater improvements in FMA (p = 0.034), MFT (p = 0.037), and BBT (p = 0.042). In MAS score, significant improvement was observed only in the TRT+TENS group (p = 0.011). Our findings indicate that TRT with TENS can reduce motor impairment and improve motor activity in stroke survivors with chronic upper limb paresis, highlighting the benefits of somatosensory stimulation from TENS. PMID:24097280

  7. Optical stimulation of peripheral nerves in vivo

    NASA Astrophysics Data System (ADS)

    Wells, Jonathon D.

    This dissertation documents the emergence and validation of a new clinical tool that bridges the fields of biomedical optics and neuroscience. The research herein describes an innovative method for direct neurostimulation with pulsed infrared laser light. Safety and effectiveness of this technique are first demonstrated through functional stimulation of the rat sciatic nerve in vivo. The Holmium:YAG laser (lambda = 2.12 mum) is shown to operate at an optimal wavelength for peripheral nerve stimulation with advantages over standard electrical neural stimulation; including contact-free stimulation, high spatial selectivity, and lack of a stimulation artifact. The underlying biophysical mechanism responsible for transient optical nerve stimulation appears to be a small, absorption driven thermal gradient sustained at the axonal layer of nerve. Results explicitly prove that low frequency optical stimulation can reliably stimulate without resulting in tissue thermal damage. Based on the positive results from animal studies, these optimal laser parameters were utilized to move this research into the clinic with a combined safety and efficacy study in human subjects undergoing selective dorsal rhizotomy. The clinical Holmium:YAG laser was used to effectively stimulate human dorsal spinal roots and elicit functional muscle responses recorded during surgery without evidence of nerve damage. Overall these results predict that this technology can be a valuable clinical tool in various neurosurgical applications.

  8. Transcutaneous Electrical Nerve Stimulation (TENS) Improves the Diabetic Cytopathy (DCP) via Up-Regulation of CGRP and cAMP

    PubMed Central

    Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n = 15), DM group (n = 15) and control group (n = 15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG. PMID:23468996

  9. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    PubMed

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG. PMID:23468996

  10. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    PubMed Central

    Gozani, Shai N

    2016-01-01

    Objective The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non

  11. The evolution strategy--a search strategy used in individual optimization of electrical parameters for therapeutic carotid sinus nerve stimulation.

    PubMed

    Peters, T K; Koralewski, H E; Zerbst, E W

    1989-07-01

    Optimization problems, arising in the search for parameters and/or techniques of functional electrostimulation (FES), disproportionally increase when multiple electrodes, electrode configurations, electrical parameters, and stimulation modes may be applied. When computational or investigational effort precludes systematic studies in FES, we propose to apply and evaluate Rechenberg's evolution strategy, which in technical use and numerical optimization has been valid in comparison to more traditional methods. This strategy implements mutation and selection processes in analogy to biological evolution. The effect of combined multiple input variables on a quality function (Q) is experimentally evaluated. The actual computed value of Q serves as a selection criterion for those input variable combinations which lead Q to approach a target value (maximization), similar to a hill-climbing procedure. In radiofrequency controlled, therapeutic electrical carotid sinus nerve stimulation (CSNS), we varied (mutated) combinations of pulse frequency and pulse amplitude parameters, according to the evolution strategy, in individual patients. CSNS lowers blood pressure and decreases heart rate. Q was computed from blood pressure and heart rate responses to CSNS. The strategy individually optimized electrical parameters to achieve large depressor responses upon CSNS. Although, in contrast to technical usage, only two input variables were investigated, and biomedical experience with the evolution strategy is limited so far, its potential use in other fields of FES, especially when more input variables are to be optimized, is discussed and encouraged. PMID:2787277

  12. Optical nerve stimulation for a vestibular prosthesis

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Bierer, Steven M.; Wells, Jonathon D.; Phillips, James O.

    2009-02-01

    Infrared Nerve Stimulation (INS) offers several advantages over electrical stimulation, including more precise spatial selectivity and improved surgical access. In this study, INS and electrical stimulation were compared in their ability to activate the vestibular branch of the VIIIth nerve, as a potential way to treat balance disorders. The superior and lateral canals of the vestibular system of Guinea pigs were identified and approached with the aid of precise 3-D reconstructions. A monopolar platinum stimulating electrode was positioned near the ampullae of the canals, and biphasic current pulses were used to stimulate vestibular evoked potentials and eye movements. Thresholds and input/output functions were measured for various stimulus conditions. A short pulsed diode laser (Capella, Lockheed Martin-Aculight, Inc., Bothell WA) was placed in the same anatomical position and various stimulus conditions were evaluated in their ability to evoke similar potentials and eye movements.

  13. Magnetic stimulation of peripheral nerves in dogs: a pilot study.

    PubMed

    Soens, Iris Van; Polis, Ingeborgh E; Nijs, Jozef X; Struys, Michel M; Bhatti, Sofie F; Ham, Luc M Van

    2008-11-01

    A model for magnetic stimulation of the radial and sciatic nerves in dogs was evaluated. Onset-latencies and peak-to-peak amplitudes of magnetic and electrical stimulation of the sciatic nerve were compared, and the effect of the direction of the current in the magnetic coil on onset-latencies and peak-to-peak amplitude of the magnetic motor evoked potential was studied in both nerves. The results demonstrate that magnetic stimulation is a feasible method for stimulating the radial and sciatic nerves in dogs. No significant differences were observed in onset-latencies and peak-to-peak amplitudes during magnetic and electrical stimulation, indicating conformity between the techniques. Orthodromic or antidromic magnetic nerve stimulation resulted in no significant differences. This pilot study demonstrates the potential of magnetic stimulation of nerves in dogs. PMID:17869140

  14. A precision mechanical nerve stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1988-01-01

    An electromechanical device, used to apply and monitor stimulating pulses to a mammalian motor nerve, has been successfully developed at NASA Langley Research Center. Two existing force transducers, a flight skin friction balance and a miniature skin friction balance which were designed for making aerodynamic drag measurements, were modified and incorporated to form this precision instrument. The nerve stimulator is a type one servomechanism capable of applying and monitoring stimulating pulses of 0 to 10 grams with a precision of better than +/- 0.05 grams. Additionally, the device can be independently used to apply stimulating pulses by displacing the nerve from 0 to 0.25 mm with a precision of better than +/- 0.001 mm while measuring the level of the load applied.

  15. The parameters of transcutaneous electrical nerve stimulation are critical to its regenerative effects when applied just after a sciatic crush lesion in mice.

    PubMed

    Cavalcante Miranda de Assis, Diana; Martins Lima, Êmyle; Teixeira Goes, Bruno; Zugaib Cavalcanti, João; Barbosa Paixão, Alaí; Vannier-Santos, Marcos André; Martinez, Ana Maria Blanco; Baptista, Abrahão Fontes

    2014-01-01

    We investigated the effect of two frequencies of transcutaneous electrical nerve stimulation (TENS) applied immediately after lesion on peripheral nerve regeneration after a mouse sciatic crush injury. The animals were anesthetized and subjected to crushing of the right sciatic nerve and then separated into three groups: nontreated, Low-TENS (4 Hz), and High-TENS (100 Hz). The animals of Low- and High-TENS groups were stimulated for 2 h immediately after the surgical procedure, while the nontreated group was only positioned for the same period. After five weeks the animals were euthanized, and the nerves dissected bilaterally for histological and histomorphometric analysis. Histological assessment by light and electron microscopy showed that High-TENS and nontreated nerves had a similar profile, with extensive signs of degeneration. Conversely, Low-TENS led to increased regeneration, displaying histological aspects similar to control nerves. High-TENS also led to decreased density of fibers in the range of 6-12 μm diameter and decreased fiber diameter and myelin area in the range of 0-2 μm diameter. These findings suggest that High-TENS applied just after a peripheral nerve crush may be deleterious for regeneration, whereas Low-TENS may increase nerve regeneration capacity. PMID:25147807

  16. Electrical Stimulation of the Ear, Head, Cranial Nerve, or Cortex for the Treatment of Tinnitus: A Scoping Review

    PubMed Central

    Adjamian, Peyman

    2016-01-01

    Tinnitus is defined as the perception of sound in the absence of an external source. It is often associated with hearing loss and is thought to result from abnormal neural activity at some point or points in the auditory pathway, which is incorrectly interpreted by the brain as an actual sound. Neurostimulation therapies therefore, which interfere on some level with that abnormal activity, are a logical approach to treatment. For tinnitus, where the pathological neuronal activity might be associated with auditory and other areas of the brain, interventions using electromagnetic, electrical, or acoustic stimuli separately, or paired electrical and acoustic stimuli, have been proposed as treatments. Neurostimulation therapies should modulate neural activity to deliver a permanent reduction in tinnitus percept by driving the neuroplastic changes necessary to interrupt abnormal levels of oscillatory cortical activity and restore typical levels of activity. This change in activity should alter or interrupt the tinnitus percept (reduction or extinction) making it less bothersome. Here we review developments in therapies involving electrical stimulation of the ear, head, cranial nerve, or cortex in the treatment of tinnitus which demonstrably, or are hypothesised to, interrupt pathological neuronal activity in the cortex associated with tinnitus. PMID:27403346

  17. Efficacy of Transcutaneous Electric Nerve Stimulation on Parotid Saliva Flow Rate in Relation to Age and Gender

    PubMed Central

    Dhillon, Manu; M Raju, Srinivasa; S Mohan, Raviprakash; Tomar, Divya

    2016-01-01

    Statement of the Problem Treatment with salivary substitutes and stimulation of salivary flow by either mechanical or pharmacologic methods has side effects and only provides symptomatic relief but no long-lasting results. Purpose To assess the effectiveness of extraoral transcutaneous electric nerve stimulation (TENS) as a mean of stimulating salivary function in healthy adult subjects; as well as to determine the gender and age-dependent changes in salivary flow rates of unstimulated and stimulated parotid saliva. Materials and Method Hundred patients were divided into two groups; Group I aged 20-40 and Group II aged ≥ 60 years. The TENS electrode pads were externally placed on the skin overlying the parotid glands. Unstimulated and stimulated parotid saliva was collected for 5 minutes each by using standardized collection techniques. Results Eighty seven of 100 subjects demonstrated increased salivary flow when stimulated via the TENS unit. Ten experienced no increase and 3 experienced a decrease. The mean unstimulated salivary flow rate was 0.01872 ml/min in Group I and 0.0088 ml/min in Group II. The mean stimulated salivary flow rate was 0.03084 ml/min (SD= 0.01248) in Group I, and 0.01556 ml/min (SD 0.0101) in Group II. After stimulation, the amount of salivary flow increased significantly in both groups (p< 0.001). Statistical comparison of the two groups revealed them to be significantly different (p< 0.001), with Group I producing more saliva. Gender-wise, no statistically significant difference was seen among the subjects in Group I (p = 0.148), and those in Group II (p= 0.448). Out of 12 subjects with 0 baseline flows, 7 continued to have no flow. Five subjects observed side effects, although minimal and transient. Conclusion The TENS unit was effective in increasing parotid gland salivary flow in healthy subjects. There was age-related but no gender-related variability in parotid salivary flow rate. PMID:27602390

  18. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation

    PubMed Central

    Stavrakis, Stavros; Humphrey, Mary Beth; Scherlag, Benjamin J.; Hu, Yanqing; Jackman, Warren M.; Nakagawa, Hiroshi; Lockwood, Deborah; Lazzara, Ralph; Po, Sunny S.

    2015-01-01

    BACKGROUND Transcutaneous low-level tragus electrical stimulation (LLTS) suppresses atrial fibrillation (AF) in canines. OBJECTIVES We examined the antiarrhythmic and anti-inflammatory effects of LLTS in humans. METHODS Patients with paroxysmal AF who presented for AF ablation, were randomized to either 1 hour of LLTS (n = 20) or sham control (n = 20). Attaching a flat metal clip onto the tragus produced LLTS (20 Hz) in the right ear (50% lower than the voltage slowing the sinus rate). Under general anesthesia, AF was induced by burst atrial pacing at baseline and after 1 hour of LLTS or sham. Blood samples from the coronary sinus and the femoral vein were collected at those time points and then analyzed for inflammatory cytokines, including tumor necrosis factor (TNF)-α and C-reactive protein (CRP), using a multiplex immunoassay. RESULTS There were no differences in baseline characteristics between the 2 groups. Pacing-induced AF duration decreased significantly by 6.3 ± 1.9 min compared to baseline in the LLTS group, but not in the controls (p = 0.002 for comparison between groups). AF cycle length increased significantly from baseline by 28.8 ± 6.5 ms in the LLTS group, but not in controls (p = 0.0002 for comparison between groups). Systemic (femoral vein) but not coronary sinus TNF-α and CRP levels decreased significantly only in the LLTS group. CONCLUSIONS LLTS suppresses AF and decreases inflammatory cytokines in patients with paroxysmal AF. Our results support the emerging paradigm of neuromodulation to treat AF. PMID:25744003

  19. Guidance of Block Needle Insertion by Electrical Nerve Stimulation: A Pilot Study of the Resulting Distribution of Injected Solution in Dogs

    PubMed Central

    Rigaud, Marcel; Filip, Patrick; Lirk, Philipp; Fuchs, Andreas; Gemes, Geza; Hogan, Quinn

    2009-01-01

    Background Little is known regarding the final needle tip location when various intensities of nerve stimulation are used to guide block needle insertion. Therefore, in control and hyperglycemic dogs, the authors examined whether lower-intensity stimulation results in injection closer to the sciatic nerve than higher-threshold stimulation. Methods During anesthesia, the sciatic nerve was approached with an insulated nerve block needle emitting either 1 mA (high-current group, n = 9) or 0.5 mA (low-current group, n = 9 in control dogs and n = 6 in hyperglycemic dogs). After positioning to obtain a distal motor response, the lowest current producing a response was identified, and ink (0.5 ml) was injected. Frozen sections of the tissue revealed whether the ink was in contact with the epineurium of the nerve, distant to it, or within it. Results In control dogs, the patterns of distribution using high-threshold (final current 0.99 ± 0.03 mA, mean ± SD) and low-threshold (final current 0.33 ± 0.08 mA) stimulation equally showed ink that was in contact with the epineurium or distant to it. One needle placement in the high-threshold group resulted in intraneural injection. In hyperglycemic dogs, all needle insertions used a low-threshold technique (n = 6, final threshold 0.35 ± 0.08 mA), and all resulted in intraneural injections. Conclusions In normal dogs, current stimulation levels in the range of 0.33–1.0 mA result in needle placement comparably close to the sciatic nerve but do not correlate with distance from the target nerve. In this experimental design, low-threshold electrical stimulation does not offer satisfactory protection against intraneural injection in the presence of hyperglycemia. PMID:18719445

  20. Evaluation of Efficacy of Ultrasonography in the Assessment of Transcutaneous Electrical Nerve Stimulation in Subjects with Myositis and Myofascial Pain

    PubMed Central

    Patil, Seema; Iyengar, Asha R; B V, Subash; Joshi, Revan Kumar

    2016-01-01

    Background The study aimed to determine if ultrasonography of masseter can be used to evaluate the outcome of transcutaneous electrical nerve stimulation (TENS) in subjects with temporomandibular disorders (TMDs) such as myositis and myofascial pain. Methods Fifteen TMD subjects with myofascial pain/myositis who satisfied the RDC/McNeil criteria were included in the study. All the subjects were administered TENS therapy for a period of 6 days (30 minutes per session). The mouth opening (in millimeters) and severity of pain (visual analogue scale score) and ultrasonographic thickness of the masseter (in millimeters) in the region of trigger/tender areas was assessed in all the subjects both prior and post TENS therapy. A comparison of the pre-treatment and post-treatment values of the VAS score, mouth opening and masseter thickness was done with the help of a t-test. Results There was a significant reduction in the thickness of masseter muscle (P = 0.028) and VAS scores (P < 0.001) post TENS therapy. There was also a significant improvement in the mouth opening (P = 0.011) post TENS therapy. Conclusions In the present study, ultrasonography was found to be an effective measuring tool in the assessment of TENS therapy in subjects with myositis and myofascial pain. PMID:26839665

  1. Electrophysiological and clinical evaluation of the effects of transcutaneous electrical nerve stimulation on the spasticity in the hemiplegic stroke patients.

    PubMed

    Karakoyun, Ahmet; Boyraz, İsmail; Gunduz, Ramazan; Karamercan, Ayşe; Ozgirgin, Nese

    2015-11-01

    To investigate whether transcutaneous electrical nerve stimulation (TENS) mitigates the spasticity of hemiplegic stroke patients, as assessed by electrophysiological variables, and the effects, if any, on the clinical appearance of spasticity. [Subjects and Methods] Twenty-seven subjects who had acute hemiplegia and 24 healthy people as the control group, were enrolled in this study. Some of the acute cerebrovascular disease patients could walk. Subjects who did not have spasticity, who were taking antispasticity medicine, or had a previous episode of cerebrovascular disease were excluded. The walking speed of the patients was recorded before and after TENS. EMG examinations were performed on the healthy controls and in the affected side of the patients. A 30-minute single session of TENS was applied to lower extremity. At 10 minutes after TENS, the EMG examinations were repeated. [Results] A statistically significant decrease in the spasticity variables, and increased walking speed were found post-TENS. The lower M amplitude and higher H reflex amplitude, H/M maximum amplitude ratio, H slope, and H slope/M slope ratio on the spastic side were found to be statistically significant. [Conclusion] TENS application for hemiplegic patients with spastic lower extremities due to cerebrovascular disease resulted in marked improvement in clinical scales of spasticity and significant changes in the electrophysiological variables. PMID:26696708

  2. Comparative clinical evaluation of transcutaneous electrical nerve stimulator over conventional local anesthesia in children seeking dental procedures: A clinical study

    PubMed Central

    Varadharaja, M.; Udhya, J.; Srinivasan, Ila; Sivakumar, Jambai Sampath Kumar; Karthik, Ramasamy Sundararajan; Manivanan, M.

    2014-01-01

    Aim: The aim of this study to evaluate the effectiveness of pain control by employing transcutaneous electrical nerve stimulator (TENS) over conventional injectable local anesthesia for children requiring restorative procedures under rubber dam. Materials and Methods: The study design considered was the split mouth design, in experiment (right) side, dental procedures under rubber dam was performed under TENS and in control (left) side, dental procedures under rubber dam was performed under conventional injectable local anesthetic (LA). The level of comfort and discomfort experienced during TENS and conventional LA was determined using visual analog scale (VAS) and heart rate. Result: Increase in mean heart rate associated with TENS (0.78%) was significantly less compared to increase in heart rate with administration of conventional local anesthesia (11.78%). In VAS, the mean values for pain indicate that minimum pain was felt with TENS, which was closely followed by LA. Conclusion: TENS can offer many safer and psychological advantages and is a valuable alternative to conventional LA for children. PMID:25210350

  3. Neuromuscular electrical stimulation of the median nerve facilitates low motor cortex excitability in patients with spinocerebellar ataxia.

    PubMed

    Chen, Chih-Chung; Chuang, Yu-Fen; Yang, Hsiao-Chu; Hsu, Miao-Ju; Huang, Ying-Zu; Chang, Ya-Ju

    2015-02-01

    The neuromodulation of motor excitability has been shown to improve functional movement in people with central nervous system damage. This study aimed to investigate the mechanism of peripheral neuromuscular electrical stimulation (NMES) in motor excitability and its effects in people with spinocerebellar ataxia (SCA). This single-blind case-control study was conducted on young control (n=9), age-matched control (n=9), and SCA participants (n=9; 7 SCAIII and 2 sporadic). All participants received an accumulated 30 min of NMES (25 Hz, 800 ms on/800 ms off) of the median nerve. The central motor excitability, measured by motor evoked potential (MEP) and silent period, and the peripheral motor excitability, measured by the H-reflex and M-wave, were recorded in flexor carpi radialis (FCR) muscle before, during, and after the NMES was applied. The results showed that NMES significantly enhanced the MEP in all 3 groups. The silent period, H-reflex and maximum M-wave were not changed by NMES. We conclude that NMES enhances low motor excitability in patients with SCA and that the mechanism of the neuromodulation was supra-segmental. These findings are potentially relevant to the utilization of NMES for preparation of motor excitability. The protocol was registered at Clinicaltrials.gov (NCT02103075). PMID:25434572

  4. Adenosine 5'-triphosphate release evoked by electrical nerve stimulation from the guinea-pig gallbladder.

    PubMed

    Takahashi, T; Kusunoki, M; Ishikawa, Y; Kantoh, M; Yamamura, T; Utsunomiya, J

    1987-01-28

    The endogenous release of adenosine 5'-triphosphate (ATP) from strips of guinea-pig gallbladder during transmural stimulation (TS) was measured with a firefly luciferine-luciferase reaction. TS (15V, 1 ms, 0.5-5 Hz, for 1 min) caused a rapid and marked increase of ATP release in a frequency-dependent manner. Both ATP release and contractions evoked by TS (15 V, 5 Hz, 1 ms) were completely abolished in Ca-free medium. BaCl2 (3 X 10(-3) M), a direct muscle stimulant, produced almost the same degree of contractile tension as TS (15 V, 5 Hz, 1 ms) while the ATP release induced by BaCl2 was significantly reduced to about 60 percent of that induced by TS. Atropine (10(-6) M) significantly reduced TS-evoked contraction without affecting ATP release. It was suggested, therefore, that some of the ATP release induced by TS was of neural origin. Theophylline (a P1-purinoreceptor antagonist) 10(-6) M, quinidine (a non-specific P2-purinoreceptor antagonist) 10(-6) M and apamin (a potassium channel blocking agent) 10(-8) M had no effects on TS-evoked contraction and ATP release, suggesting the absence of a presynaptic autoregulatory mechanism of ATP release in the guinea-pig gallbladder. PMID:3556400

  5. Effect of a combined continuous and intermittent transcutaneous electrical nerve stimulation on pain perception of burn patients evaluated by visual analog scale: a pilot study

    PubMed Central

    Pérez-Ruvalcaba, Irma; Sánchez-Hernández, Viridiana; Mercado-Sesma, Arieh R

    2015-01-01

    Aim The aim of this study was to assess the effect of continuous and intermittent electrical transcutaneous nerve stimulation on the perception of pain in patients with burns of different types. Materials and methods A pilot study was conducted in 14 patients (age 30.9±7.5 years) with second- and third-degree burns of different types. The burn types included electrical, fire/flame, and chemical. All patients received continuous and intermittent electrical transcutaneous nerve stimulation sessions three times per week for 4 weeks. Each session had a duration of 30 minutes. A pair of electrodes were placed around the burn. The primary efficacy endpoint was the perception of pain assessed by a visual analog scale at baseline and at the 30th day. Results A significant reduction of pain perception was reported (8.0±1.7 vs 1.0±0.5; P=0.027) by all patients after electrical stimulation therapy. There were no reports of adverse events during the intervention period. Conclusion Electrical stimulation could be a potential nonpharmacological therapeutic option for pain management in burn patients. PMID:26719723

  6. Can transcutaneous electrical nerve stimulation improve achilles tendon healing in rats?

    PubMed Central

    Folha, Roberta A. C.; Pinfildi, Carlos E.; Liebano, Richard E.; Rampazo, Érika P.; Pereira, Raphael N.; Ferreira, Lydia M.

    2015-01-01

    BACKGROUND: Tendon injury is one of the most frequent injuries in sports activities. TENS is a physical agent used in the treatment of pain but its influence on the tendon's healing process is unclear. OBJECTIVE: To evaluate the influence of TENS on the healing of partial rupture of the Achilles tendon in rats. METHOD: Sixty Wistar rats were submitted to a partial rupture of the Achilles tendon by direct trauma and randomized into six groups (TENS or Sham stimulation) and the time of evaluation (7, 14, and 21 days post-injury). Burst TENS was applied for 30 minutes, 6 days, 100 Hz frequency, 2 Hz burst frequency, 200 µs pulse duration, and 300 ms pulse train duration. Microscopic analyses were performed to quantify the blood vessels and mast cells, birefringence to quantify collagen fiber alignment, and immunohistochemistry to quantify types I and III collagen fibers. RESULTS: A significant interaction was observed for collagen type I (p=0.020) where the TENS group presented lower percentage in 14 days after the lesion (p=0.33). The main group effect showed that the TENS group presented worse collagen fiber alignment (p=0.001) and lower percentage of collagen III (p=0.001) and the main time effect (p=0.001) showed decreased percentage of collagen III at 7 days (p=0.001) and 14 days (p=0.001) after lesion when compared to 21 days. CONCLUSIONS: Burst TENS inhibited collagen I and III production and impaired its alignment during healing of partial rupture of the Achilles tendon in rats. PMID:26647744

  7. Demonstrating Electrical Activity in Nerve and Muscle. Part I

    ERIC Educational Resources Information Center

    Robinson, D. J.

    1975-01-01

    Describes a demonstration for showing the electrical activity in nerve and muscle including action potentials, refractory period of a nerve, and fatigue. Presents instructions for constructing an amplifier, electronic stimulator, and force transducer. (GS)

  8. Transcutaenous electrical nerve stimulation to manage a lower extremity wound complicated by peripheral arterial disease: a case report.

    PubMed

    Yarboro, Douglas D; Smith, Robert

    2014-07-01

    Transcutaneous electrical nerve stimulation (TENS) is used to alleviate muscle pain, and there is some evidence it may affect healing in chronic wounds. An 80-year-old male patient with a chronic left lower extremity wound and a history of peripheral arterial disease, type 2 diabetes, hypertension, chronic obstructive pulmonary disease, and lung cancer presented for treatment. Previous protocols of care, mainly consisting of sharp debridement and daily dressing changes, had not resulted in a decrease in wound size. The patient had right and left iliac artery stenosis - not amenable to surgical intervention - and an ankle brachial index (ABI) of 0.63 on the left and 0.59 on the right lower extremities. On presentation, the wound measured 3.0 cm x 2.0 cm with a depth of 0.3 cm and a 0.5-cm tract at the 5 o'clock position. Treatment was changed to application of an ionic silver-containing Hydrofiber™ dressing and low-frequency TENS. Electrodes were applied 2 cm superior and inferior to the wound margin at a frequency of 2 Hz with a pulse width of 250 microseconds and amplitude of 33 mA. Treatment time was 45 minutes, twice daily, for 3 months, performed at home by the patient and his caregiver. After 4 weeks, wound dimensions decreased by 1.51% per day, and the wound was completely healed (100% epithelialized) after 12 weeks. At that time, the ABI of the left (treated) leg had increased to 0.71. Research is needed to determine the efficacy and effectiveness of low-frequency TENS to help clinicians provide evidenced-based treatment for wounds complicated by decreased blood flow. PMID:25019248

  9. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  10. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  11. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  12. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  13. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  14. Transcutaneous electrical nerve stimulation as adjunct to primary care management for tennis elbow: pragmatic randomised controlled trial (TATE trial)

    PubMed Central

    Lewis, A Martyn; Sim, Julius; Mallen, Christian D; Mason, Elizabeth E; Hay, Elaine M; van der Windt, Daniëlle A

    2013-01-01

    Objective To investigate the effectiveness of supplementing information and advice on analgesia and exercise from a general practitioner with transcutaneous electrical nerve stimulation (TENS) as a non-drug form of analgesia to reduce pain intensity in patients with tennis elbow. Design Pragmatic randomised controlled trial in primary care. Setting and 38 general practices in the West Midlands, UK. Participants 241 adults consulting with a first or new (no consultation in previous six months) clinical diagnosis of tennis elbow. Interventions Participants were randomly allocated to either primary care management alone, consisting of a consultation with a general practitioner followed by information and advice on exercises, or primary care management plus TENS to be used once a day for 45 minutes over six weeks (or until symptom resolution) for pain relief. Outcome measures The primary outcome was self reported intensity of elbow pain (0-10 rating scale) at six weeks. Primary and secondary outcomes were measured at baseline and at six weeks, six months, and 12 months by postal questionnaire. Analysis was by intention to treat. Results 121 participants were randomised to primary care management plus TENS and 120 to primary care management only (first episode, n=197 (82%); duration <1-3 months, n=138 (57%)). Adherence to exercise and TENS recommendations reported at six weeks was low; only 42 participants in the primary care management plus TENS group met a priori defined adherence criteria. Both intervention groups showed large improvements in pain and secondary outcomes, especially during the first six weeks of follow-up. However, no clinically or statistically significant differences were seen between groups at any follow-up timepoint. At the primary endpoint (six weeks), the between group difference in improvement of pain was −0.33 (95% confidence interval −0.96 to 0.31; P=0.31) in favour of the primary care management only group, with adjustment for age, sex

  15. Comparison of Neurofeedback and Transcutaneous Electrical Nerve Stimulation Efficacy on Treatment of Primary Headaches: A Randomized Controlled Clinical Trial

    PubMed Central

    Moshkani Farahani, Davood; Tavallaie, Seyed Abbas; Ahmadi, Khodabakhsh; Fathi Ashtiani, Ali

    2014-01-01

    Background: Headache is one of the most prevalent investigated complaints in the neurology clinics and is the most common pain-related complaint worldwide. Stress is a significant factor that causes and triggers headaches. Since healthcare practitioners experience a lot of stress in their careers, they are more prone to headaches. Objectives: This study was designed to evaluate and compares the efficacy of neurofeedback behavioural therapy (NFB) and transcutaneous electrical nerve stimulation (TENS) in the treatment of primary headaches in healthcare providers. Patients and Methods: The current study was a clinical trial, performed in Teheran, IR Iran, with two experimental groups and a control group. Convenient sampling method was used to recruit patients. Independent variables were NFB and TENS and dependent variables were frequency, severity, and duration of headache. Blanchard headache diary was used for assessment. Hence, 45 healthcare providers with primary headache were selected and randomly allocated to one of the NFB, TENS, and control groups by block random assignment method. All three groups completed the headache diary during one week before and after the treatment period as pretest and posttests, respectively. The NFB group was treated in the period between pretest and posttest with fifteen 30-minute treatment sessions three times a week and the TENS group was treated with fifteen 20-minute daily sessions. The control group received none of these treatments. Results: The results from the analysis of covariance showed that treatment with NFB and TENS had caused significant decrease in the frequency, severity, and duration of headache in experimental groups. The results of the LSD post-hoc test indicated that there were significant differences in the frequency, severity, and duration of pain among experimental groups and the control group. Moreover, there were significant differences between pain frequencies in experimental groups. Conclusions: According

  16. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  17. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  18. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  19. Electroactive biocompatible materials for nerve cell stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Chen, Jun; Liu, Yong

    2015-04-01

    In the past decades, great efforts have been developed for neurobiologists and neurologists to restore nervous system functions. Recently much attention has been paid to electrical stimulation (ES) of the nervous system as a potential way to repair it. Various conductive biocompatible materials with good electrical conductivity, biocompatibility, and long-term ES or electrical stability have been developed as the substrates for ES. In this review, we summarized different types of materials developed in the purpose for ES of nervous system, including conducting polymers, carbon nanomaterials and composites from conducting polymer/carbon nanomaterials. The present review will give our perspective on the future research directions for further investigation on development of ES particularly on the nerve system.

  20. Sensitivity of the cochlear nerve to acoustic and electrical stimulation months after a vestibular labyrinthectomy in guinea pigs.

    PubMed

    Brown, D J; Mukherjee, P; Pastras, C J; Gibson, W P; Curthoys, I S

    2016-05-01

    Single-sided deafness patients are now being considered candidates to receive a cochlear implant. With this, many people who have undergone a unilateral vestibular labyrinthectomy for the treatment of chronic vertigo are now being considered for cochlear implantation. There is still some concern regarding the potential efficacy of cochlear implants in these patients, where factors such as cochlear fibrosis or nerve degeneration following unilateral vestibular labyrinthectomy may preclude their use. Here, we have performed a unilateral vestibular labyrinthectomy in normally hearing guinea pigs, and allowed them to recover for either 6 weeks, or 10 months, before assessing morphological and functional changes related to cochlear implantation. Light sheet fluorescence microscopy was used to assess gross morphology throughout the entire ear. Whole nerve responses to acoustic, vibrational, or electrical stimuli were used as functional measures. Mild cellular infiltration was observed at 6 weeks, and to a lesser extent at 10 months after labyrinthectomy. Following labyrinthectomy, cochlear sensitivity to high-frequency acoustic tone-bursts was reduced by 16 ± 4 dB, vestibular sensitivity was almost entirely abolished, and electrical sensitivity was only mildly reduced. These results support recent clinical findings that patients who have received a vestibular labyrinthectomy may still benefit from a cochlear implant. PMID:26873525

  1. Dysregulation of the Descending Pain System in Temporomandibular Disorders Revealed by Low-Frequency Sensory Transcutaneous Electrical Nerve Stimulation: A Pupillometric Study

    PubMed Central

    Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide

    2015-01-01

    Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the

  2. Dysregulation of the descending pain system in temporomandibular disorders revealed by low-frequency sensory transcutaneous electrical nerve stimulation: a pupillometric study.

    PubMed

    Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide

    2015-01-01

    Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the

  3. Laryngeal elevation by selective stimulation of the hypoglossal nerve

    NASA Astrophysics Data System (ADS)

    Hadley, Aaron J.; Kolb, Ilya; Tyler, Dustin J.

    2013-08-01

    Objective. Laryngeal elevation protects the airway and assists opening of the esophagus during swallowing. The GH, thyrohyoid, and MH muscles provide a majority of this elevatory motion. This study applied functional electrical stimulation to the XII/C1 nerve complex using a nerve cuff electrode to determine the capabilities of neural stimulation to induce laryngeal elevation. Approach. Multi-contact FINE electrodes were implanted onto the XII/C1 nerve complex at locations proximal and distal to the thyrohyoid branching point in five anesthetized canines. Motion of the thyroid cartilage and the hyoid bone was recorded during stimulation of nerve cuffs and intramuscular electrodes. Main Results. Nerve stimulation induced 260% more laryngeal elevation than intramuscular stimulation (18.8 mm versus 5.2 mm, p ≪ 0.01), and 228% higher velocity (143.8 versus 43.9 mm s-1, p ≪ 0.01). While stimulation at all cuff and electrode locations elevated the larynx, only the proximal XII/C1 nerve cuff significantly elicited both thyroid-hyoid approximation and hyoid elevation. In all proximal XII/C1 nerve cuffs (n = 7), stimulation was able to obtain selectivity of greater than 75% of at least one elevatory muscle. Significance. These results support the hypothesis that an implanted neural interface system can produce increased laryngeal elevation, a significant protective mechanism of deglutition.

  4. An association between phantom limb sensations and stump skin conductance during transcutaneous electrical nerve stimulation (TENS) applied to the contralateral leg: a case study.

    PubMed

    Katz, J; France, C; Melzack, R

    1989-03-01

    This report describes a placebo-controlled study of transcutaneous electrical nerve stimulation (TENS) applied to the contralateral lower leg and outer ears of an amputee with non-painful phantom sensations. The subject received TENS or placebo stimulation on separate sessions in which baseline periods of no stimulation alternated with periods of TENS (or placebo). Throughout the two sessions, continuous measures of stump skin conductance, surface skin temperature and phantom intensity were obtained. The results showed that TENS applied to the contralateral leg was significantly more effective than a placebo in decreasing the intensity of phantom sensations, whereas stimulation of the outer ears led to a non-significant increase. The pattern of electrodermal activity on the TENS session was consistently linear during baseline periods, indicating a progressive increase in sympathetic sudomotor activity. In contrast, during periods of electrical stimulation the pattern of electrodermal activity was consistently curvilinear indicating an initial decrease followed by an increase in sudomotor responses. Changes in stump skin conductance correlated significantly with changes in phantom sensations both in TENS and placebo sessions suggesting a relationship between sympathetic activity at the stump and paresthesias referred to the phantom. Two hypotheses are presented to account for these findings. PMID:2785260

  5. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation

    PubMed Central

    Feng, Zhen; Du, Qing

    2016-01-01

    Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes) showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway. PMID:27482224

  6. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation.

    PubMed

    Feng, Zhen; Du, Qing

    2016-06-01

    Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes) showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway. PMID:27482224

  7. Reducing Current Spread by Use of a Novel Pulse Shape for Electrical Stimulation of the Auditory Nerve

    PubMed Central

    Ballestero, Jimena; Recugnat, Matthieu; Laudanski, Jonathan; Smith, Katie E.; Jagger, Daniel J.; Gnansia, Daniel

    2015-01-01

    Improving the electrode-neuron interface to reduce current spread between individual electrodes has been identified as one of the main objectives in the search for future improvements in cochlear-implant performance. Here, we address this problem by presenting a novel stimulation strategy that takes account of the biophysical properties of the auditory neurons (spiral ganglion neurons, SGNs) stimulated in electrical hearing. This new strategy employs a ramped pulse shape, where the maximum amplitude is achieved through a linear slope in the injected current. We present the theoretical framework that supports this new strategy and that suggests it will improve the modulation of SGNs’ activity by exploiting their sensitivity to the rising slope of current pulses. The theoretical consequence of this sensitivity to the slope is a reduction in the spread of excitation within the cochlea and, consequently, an increase in the neural dynamic range. To explore the impact of the novel stimulation method on neural activity, we performed in vitro recordings of SGNs in culture. We show that the stimulus efficacy required to evoke action potentials in SGNs falls as the stimulus slope decreases. This work lays the foundation for a novel, and more biomimetic, stimulation strategy with considerable potential for implementation in cochlear-implant technology. PMID:26721928

  8. Reducing Current Spread by Use of a Novel Pulse Shape for Electrical Stimulation of the Auditory Nerve.

    PubMed

    Ballestero, Jimena; Recugnat, Matthieu; Laudanski, Jonathan; Smith, Katie E; Jagger, Daniel J; Gnansia, Daniel; McAlpine, David

    2015-01-01

    Improving the electrode-neuron interface to reduce current spread between individual electrodes has been identified as one of the main objectives in the search for future improvements in cochlear-implant performance. Here, we address this problem by presenting a novel stimulation strategy that takes account of the biophysical properties of the auditory neurons (spiral ganglion neurons, SGNs) stimulated in electrical hearing. This new strategy employs a ramped pulse shape, where the maximum amplitude is achieved through a linear slope in the injected current. We present the theoretical framework that supports this new strategy and that suggests it will improve the modulation of SGNs' activity by exploiting their sensitivity to the rising slope of current pulses. The theoretical consequence of this sensitivity to the slope is a reduction in the spread of excitation within the cochlea and, consequently, an increase in the neural dynamic range. To explore the impact of the novel stimulation method on neural activity, we performed in vitro recordings of SGNs in culture. We show that the stimulus efficacy required to evoke action potentials in SGNs falls as the stimulus slope decreases. This work lays the foundation for a novel, and more biomimetic, stimulation strategy with considerable potential for implementation in cochlear-implant technology. PMID:26721928

  9. Optical stimulation of the facial nerve: a surgical tool?

    NASA Astrophysics Data System (ADS)

    Richter, Claus-Peter; Teudt, Ingo Ulrik; Nevel, Adam E.; Izzo, Agnella D.; Walsh, Joseph T., Jr.

    2008-02-01

    One sequela of skull base surgery is the iatrogenic damage to cranial nerves. Devices that stimulate nerves with electric current can assist in the nerve identification. Contemporary devices have two main limitations: (1) the physical contact of the stimulating electrode and (2) the spread of the current through the tissue. In contrast to electrical stimulation, pulsed infrared optical radiation can be used to safely and selectively stimulate neural tissue. Stimulation and screening of the nerve is possible without making physical contact. The gerbil facial nerve was irradiated with 250-μs-long pulses of 2.12 μm radiation delivered via a 600-μm-diameter optical fiber at a repetition rate of 2 Hz. Muscle action potentials were recorded with intradermal electrodes. Nerve samples were examined for possible tissue damage. Eight facial nerves were stimulated with radiant exposures between 0.71-1.77 J/cm2, resulting in compound muscle action potentials (CmAPs) that were simultaneously measured at the m. orbicularis oculi, m. levator nasolabialis, and m. orbicularis oris. Resulting CmAP amplitudes were 0.3-0.4 mV, 0.15-1.4 mV and 0.3-2.3 mV, respectively, depending on the radial location of the optical fiber and the radiant exposure. Individual nerve branches were also stimulated, resulting in CmAP amplitudes between 0.2 and 1.6 mV. Histology revealed tissue damage at radiant exposures of 2.2 J/cm2, but no apparent damage at radiant exposures of 2.0 J/cm2.

  10. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans

    PubMed Central

    Frangos, Eleni; Ellrich, Jens; Komisaruk, Barry R.

    2014-01-01

    Background Tract-tracing studies in cats and rats demonstrated that the auricular branch of the vagus nerve (ABVN) projects to the nucleus tractus solitarii (NTS); it has remained unclear as to whether or not the ABVN projects to the NTS in humans. Objective To ascertain whether non-invasive electrical stimulation of the cymba conchae, a region of the external ear exclusively innervated by the ABVN, activates the NTS and the “classical” central vagal projections in humans. Methods Twelve healthy adults underwent two fMRI scans in the same session. Electrical stimulation (continuous 0.25ms pulses, 25Hz) was applied to the earlobe (control, scan #1) and left cymba conchae (scan #2). Statistical analyses were performed with FSL. Two region-of-interest analyses were performed to test the effects of cymba conchae stimulation (compared to baseline and control, earlobe, stimulation) on the central vagal projections (corrected; brainstem p<0.01, forebrain p<0.05), followed by a whole-brain analysis (corrected, p< 0.05). Results Cymba conchae stimulation, compared to earlobe (control) stimulation, produced significant activation of the “classical” central vagal projections, e.g., widespread activity in the ipsilateral nucleus of the solitary tract, bilateral spinal trigeminal nucleus, dorsal raphe, locus coeruleus, and contralateral parabrachial area, amygdala, and nucleus accumbens. Bilateral activation of the paracentral lobule was also observed. Deactivations were observed bilaterally in the hippocampus and hypothalamus. Conclusion These findings provide evidence in humans that the central projections of the ABVN are consistent with the “classical” central vagal projections and can be accessed non-invasively via the external ear. PMID:25573069

  11. Effects of acute vagal nerve stimulation on the early passive electrical changes induced by myocardial ischaemia in dogs: heart rate-mediated attenuation.

    PubMed

    Del Rio, Carlos L; Dawson, Tom A; Clymer, Bradley D; Paterson, David J; Billman, George E

    2008-08-01

    Parasympathetic activity during acute coronary artery occlusion (CAO) can protect against ischaemia-induced malignant arrhythmias; nonetheless, the mechanism mediating this protection remains unclear. During CAO, myocardial electrotonic uncoupling is associated with autonomically mediated immediate (i.e. type 1A) arrhythmias and can modulate pro-arrhythmic dispersion of repolarization. Therefore, the effects of acutely enhanced or decreased cardiac parasympathetic activity on early electrotonic coupling during CAO, as measured by myocardial electrical impedance (MEI), were investigated. Anaesthetized dogs were instrumented for MEI measurements, and left circumflex coronary arterial occlusions were performed in intact (CTRL) and vagotomized (VAG) animals. The CAO was followed by either vagotomy (CTRL) or vagal nerve stimulation (VNS, 10 Hz, 10 V) in the VAG dogs. Vagal nerve stimulation was studied in two additional sets of animals. In one set heart rate (HR) was maintained by pacing (220 beats min(-1)), while in the other set bilateral stellectomy preceded CAO. The MEI increased after CAO in all animals. A larger MEI increase was observed in vagotomized animals (+85 +/- 9 Omega, from 611 +/- 24 Omega, n = 16) when compared with intact control dogs (+43 +/- 5 Omega, from 620 +/- 20 Omega, n = 7). Acute vagotomy during ischaemia abruptly increased HR (from 155 +/- 11 to 193 +/- 15 beats min(-1)) and MEI (+12 +/- 1.1 Omega, from 663 +/- 18 Omega). In contrast, VNS during ischaemia (n = 11) abruptly reduced HR (from 206 +/- 6 to 73 +/- 9 beats min(-1)) and MEI (-16 +/- 2 Omega, from 700 +/- 44 Omega). These effects of VNS were eliminated by pacing but not by bilateral stellectomy. Vagal nerve stimulation during CAO also attenuated ECG-derived indices of ischaemia (e.g. ST segment, 0.22 +/- 0.03 versus 0.15 +/- 0.03 mV) and of rate-corrected repolarization dispersion [terminal portion of T wave (TPEc), 84.5 +/- 4.2 versus 65.8 +/- 5.9 ms; QTc, 340 +/- 8 versus 254

  12. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  13. The Effects of High-Frequency Transcutaneous Electrical Nerve Stimulation for Dental Professionals with Work-Related Musculoskeletal Disorders: A Single-Blind Randomized Placebo-Controlled Trial

    PubMed Central

    2015-01-01

    Work-related musculoskeletal symptom disorders (WMSDs) have a significant issue for dental professionals. This study investigated the effects of high-frequency transcutaneous electrical nerve stimulation (TENS) on work-related pain, fatigue, and the active range of motion in dental professionals. Among recruited 47 dental professionals with WMSDs, 24 subjects received high-frequency TENS (the TENS group), while 23 subjects received placebo stimulation (the placebo group). TENS was applied to the muscle trigger points of the levator scapulae and upper trapezius, while placebo-TENS was administered without electrical stimulation during 60 min. Pain and fatigue at rest and during movement were assessed using the visual analog scale (VAS), pain pressure threshold (PPT), and active range of motion (AROM) of horizontal head rotation at six time points: prelabor, postlabor, post-TENS, and at 1 h, 3 h, and 1 day after TENS application. Both groups showed significantly increased pain and fatigue and decreased PPT and AROM after completing a work task. The TENS group showed significantly greater improvements in VAS score, fatigue, PPT, and AROM at post-TENS and at 1 h and 3 h after application (all P < 0.05) as compared to the placebo group. A single session high-frequency TENS may immediately reduce symptoms related to WMSDs in dental professionals. PMID:26664451

  14. Electrical stimulation of the auditory nerve: the coding of frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people.

    PubMed

    Clark, G M

    1996-09-01

    1. The development of speech processing strategies for multiple-channel cochlear implants has depended on encoding sound frequencies and intensities as temporal and spatial patterns of electrical stimulation of the auditory nerve fibres so that speech information of most importance of intelligibility could be transmitted. 2. Initial physiological studies showed that rate encoding of electrical stimulation above 200 pulses/s could not reproduce the normal response patterns in auditory neurons for acoustic stimulation in the speech frequency range above 200 Hz and suggested that place coding was appropriate for the higher frequencies. 3. Rate difference limens in the experimental animal were only similar to those for sound up to 200 Hz. 4. Rate difference limens in implant patients were similar to those obtained in the experimental animal. 5. Satisfactory rate discrimination could be made for durations of 50 and 100 ms, but not 25 ms. This made rate suitable for encoding longer duration suprasegmental speech information, but not segmental information, such as consonants. The rate of stimulation could also be perceived as pitch, discriminated at different electrode sites along the cochlea and discriminated for stimuli across electrodes. 6. Place pitch could be scaled according to the site of stimulation in the cochlea so that a frequency scale was preserved and it also had a different quality from rate pitch and was described as tonality. Place pitch could also be discriminated for the shorter durations (25 ms) required for identifying consonants. 7. The inaugural speech processing strategy encoded the second formant frequencies (concentrations of frequency energy in the mid frequency range of most importance for speech intelligibility) as place of stimulation, the voicing frequency as rate of stimulation and the intensity as current level. Our further speech processing strategies have extracted additional frequency information and coded this as place of stimulation

  15. High frequency transcutaneous electrical nerve stimulation with diphenidol administration results in an additive antiallodynic effect in rats following chronic constriction injury.

    PubMed

    Lin, Heng-Teng; Chiu, Chong-Chi; Wang, Jhi-Joung; Hung, Ching-Hsia; Chen, Yu-Wen

    2015-03-01

    The impact of coadministration of transcutaneous electrical nerve stimulation (TENS) and diphenidol is not well established. Here we estimated the effects of diphenidol in combination with TENS on mechanical allodynia and tumor necrosis factor-α (TNF-α) expression. Using an animal chronic constriction injury (CCI) model, the rat was estimated for evidence of mechanical sensitivity via von Frey hair stimulation and TNF-α expression in the sciatic nerve using the ELISA assay. High frequency (100Hz) TENS or intraperitoneal injection of diphenidol (2.0μmol/kg) was applied daily, starting on postoperative day 1 (POD1) and lasting for the next 13 days. We demonstrated that both high frequency TENS and diphenidol groups had an increase in mechanical withdrawal thresholds of 60%. Coadministration of high frequency TENS and diphenidol gives better results of paw withdrawal thresholds in comparison with high frequency TENS alone or diphenidol alone. Both diphenidol and coadministration of high frequency TENS with diphenidol groups showed a significant reduction of the TNF-α level compared with the CCI or HFS group (P<0.05) in the sciatic nerve on POD7, whereas the CCI or high frequency TENS group exhibited a higher TNF-α level than the sham group (P<0.05). Our resulting data revealed that diphenidol alone, high frequency TENS alone, and the combination produced a reduction of neuropathic allodynia. Both diphenidol and the combination of diphenidol with high frequency TENS inhibited TNF-α expression. A moderately effective dose of diphenidol appeared to have an additive effect with high frequency TENS. Therefore, multidisciplinary treatments could be considered for this kind of mechanical allodynia. PMID:25596445

  16. Topography of Auditory Nerve Projections to the Cochlear Nucleus in Cats after Neonatal Deafness and Electrical Stimulation by a Cochlear Implant

    PubMed Central

    Hradek, Gary T.; Bonham, Ben H.; Snyder, Russell L.

    2008-01-01

    We previously reported that auditory nerve projections from the cochlear spiral ganglion (SG) to the cochlear nucleus (CN) exhibit clear cochleotopic organization in adult cats deafened as neonates before hearing onset. However, the topographic specificity of these CN projections in deafened animals is proportionately broader than normal (less precise relative to the CN frequency gradient). This study examined SG-to-CN projections in adult cats that were deafened as neonates and received a unilateral cochlear implant at ∼7 weeks of age. Following several months of electrical stimulation, SG projections from the stimulated cochleae were compared to projections from contralateral, non-implanted ears. The fundamental organization of SG projections into frequency band laminae was clearly evident, and discrete projections were always observed following double SG injections in deafened cochleae, despite severe auditory deprivation and/or broad electrical activation of the SG. However, when normalized for the smaller CN size after deafness, AVCN, PVCN, and DCN projections on the stimulated side were broader by 32%, 34%, and 53%, respectively, than projections in normal animals (although absolute projection widths were comparable to normal). Further, there was no significant difference between projections from stimulated and contralateral non-implanted cochleae. These findings suggest that early normal auditory experience may be essential for normal development and/or maintenance of the topographic precision of SG-to-CN projections. After early deafness, the CN is smaller than normal, the topographic distribution of these neural projections that underlie frequency resolution in the central auditory system is proportionately broader, and projections from adjacent SG sectors are more overlapping. Several months of stimulation by a cochlear implant (beginning at ∼7 weeks of age) did not lessen or exacerbate these degenerative changes observed in adulthood. One clinical

  17. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carotid sinus nerve stimulator. 870.3850 Section... nerve stimulator. (a) Identification. A carotid sinus nerve stimulator is an implantable device used to decrease arterial pressure by stimulating Hering's nerve at the carotid sinus. (b) Classification....

  18. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carotid sinus nerve stimulator. 870.3850 Section... nerve stimulator. (a) Identification. A carotid sinus nerve stimulator is an implantable device used to decrease arterial pressure by stimulating Hering's nerve at the carotid sinus. (b) Classification....

  19. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carotid sinus nerve stimulator. 870.3850 Section... nerve stimulator. (a) Identification. A carotid sinus nerve stimulator is an implantable device used to decrease arterial pressure by stimulating Hering's nerve at the carotid sinus. (b) Classification....

  20. Exteroceptive silent period of masseter muscle activity evoked by electrical mental nerve stimulation: relation to non-pain and pain sensations.

    PubMed

    Strenge, H; Zichner, V; Niederberger, U

    1996-01-01

    Exteroceptive silent periods (ESPs) of masseter muscle activity evoked by electrical stimulation of the mental nerve were studied over a large range of prepain intensities and at pain threshold in 44 normal subjects. Seven levels of stimulus intensity, based on individual sensory and pain thresholds, were applied and the relationship between ESPs, stimulus intensity and perception, as manifested by the subjective verbal response, was investigated. The analysis revealed that the occurrence of ESPs was not related to the stimulus intensity at the pain threshold. There were individually different patterns of progressive response to increasing current intensities within the pre-pain range in many cases. On the other hand, almost half of all the subjects investigated showed no or only occasional ESPs. In view of this variability the concept of ESPs being a nociceptive behavioural response has to be questioned. PMID:8936454

  1. Evaluation of sensitivity, motor and pain thresholds across the menstrual cycle through medium-frequency transcutaneous electrical nerve stimulation

    PubMed Central

    de Brito Barbosa, Mariana; de Oliveira Guirro, Elaine Caldeira; Nunes, Fabiana Roberta

    2013-01-01

    OBJECTIVES: The aim of this study was to identify variations in nervous thresholds in different phases of the menstrual cycle in eumenorrheic women and users of oral contraceptives. METHOD: An observational study was performed including 56 volunteers, consisting of 30 eumenorrheic women who were non-users of oral contraceptives and 26 users of oral contraceptives. An electrical stimulator was employed to assess their nervous thresholds, with pulses applied at a fixed frequency of 2,500 Hz, modulated at 50 Hz, with phase variances of 20 μs, 50 μs and 100 μs. Sensitivity, motor and pain thresholds were evaluated during five menstrual cycle phases: phase 1 - menstrual, phase 2 - follicular, phase 3 - ovulatory, phase 4 - luteal and phase 5 - premenstrual. RESULTS: The results indicated low sensitivity thresholds of 100 μs for non-users of oral contraceptives and 50 μs for oral contraceptive users in phase 5. Low motor thresholds of 20 μs, 50 μs and 100 μs were observed for non-users of oral contraceptives in phase 5, while that of oral contraceptive users was 100 μs. Finally, a low pain threshold of 100 μs was observed in phase 5, but only in the oral contraceptive group. CONCLUSION: Nervous thresholds vary systematically across the phases of the menstrual cycle, with or without the use of oral contraceptives. These variations should be taken into account during research performed in women. PMID:23917651

  2. Glucagon Release Induced by Pancreatic Nerve Stimulation in the Dog

    PubMed Central

    Marliss, Errol B.; Girardier, Lucien; Seydoux, Josiane; Wollheim, Claes B.; Kanazawa, Yasunori; Orci, Lelio; Renold, Albert E.; Porte, Daniel

    1973-01-01

    A direct neural role in the regulation of immunoreactive glucagon (IRG) secretion has been investigated during stimulation of mixed autonomic nerves to the pancreas in anesthetized dogs. The responses were evaluated by measurement of blood flow and hormone concentration in the venous effluent from the stimulated region of pancreas. Electrical stimulation of the distal end of the discrete bundles of nerve fibers isolated along the superior pancreaticoduodenal artery was invariably followed by an increase in IRG output. With 10-min periods of nerve stimulation, the integrated response showed that the higher the control glucagon output, the greater was the increment. Atropinization did not influence the response to stimulation. That the preparation behaved in physiologic fashion was confirmed by a fall in IRG output, and a rise in immunoreactive insulin (IRI) output, during hyperglycemia induced by intravenous glucose (0.1 g/kg). The kinetics of this glucose effect on IRG showed characteristics opposite to those of nerve stimulation: the lower the control output, the less the decrement. Furthermore, during the control steady state, blood glucose concentration was tightly correlated with the IRI/IRG molar output ratio, the function relating the two parameters being markedly nonlinear. Injection or primed infusion of glucose diminished the IRG response to simultaneous nerve stimulation. Measurement of IRG was inferred to reflect response of pancreatic glucagon secretion on the basis of the site of sample collection (the superior pancreaticoduodenal vein), the absence of changes in arterial IRG, and similar responses being obtained using an antibody specific for pancreatic glucagon. These studies support a role for the autonomic nervous system in the control of glucagon secretion: direct nerve stimulation induces glucagon release. Such sympathetic activation may be interpreted as capable of shifting the sensitivity of the A cell to glucose in the direction of higher

  3. Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos-like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem.

    PubMed

    Erickson, J T; Millhorn, D E

    1994-10-01

    A complete understanding of the neural mechanisms responsible for the chemoreceptor and baroreceptor reflexes requires precise knowledge of the locations and chemical phenotypes of higher-order neurons within these reflex pathways. In the present study, the protein product (Fos) of the c-fos protooncogene was used as a metabolic marker to trace central neural pathways following activation of carotid sinus nerve afferent fibers. In addition, immunohistochemical double-labeling techniques were used to define the chemical phenotypes of activated neurons. Both electrical stimulation of the carotid sinus nerve and physiological stimulation of the carotid bodies by hypoxia induced Fos-like immunoreactivity in catecholaminergic neurons containing tyrosine hydroxylase or phenylethanolamine-N-methyltransferase in the ventrolateral medulla oblongata and, to a lesser degree, in the dorsal vagal complex. Tyrosine hydroxylase/Fos colocalization was also observed in the locus coeruleus and the A5 noradrenergic cell group in pons. Many serotoninergic neurons in nucleus raphe pallidus, nucleus raphe magnus, and along the ventral medullary surface contained Fos-like immunoreactivity. In pons and midbrain, Fos-like immunoreactivity was observed in the lateral parabrachial and Kölliker-Fuse nuclei, the inferior colliculus, the cuneiform nucleus, and in the vicinity of the Edinger-Westphal nucleus, but no catecholaminergic or serotoninergic colocalization was observed in these regions. Although Fos-labeled cells were observed within and lateral to the dorsal raphe nucleus, few were catecholaminergic or serotoninergic. This study further defines a potential central neuroanatomical substrate for the chemoreceptor and/or baroreceptor reflexes. PMID:7814687

  4. Different clinical electrodes achieve similar electrical nerve conduction block

    NASA Astrophysics Data System (ADS)

    Boger, Adam; Bhadra, Narendra; Gustafson, Kenneth J.

    2013-10-01

    Objective. We aim to evaluate the suitability of four electrodes previously used in clinical experiments for peripheral nerve electrical block applications. Approach. We evaluated peripheral nerve electrical block using three such clinical nerve cuff electrodes (the Huntington helix, the Case self-sizing Spiral and the flat interface nerve electrode) and one clinical intramuscular electrode (the Memberg electrode) in five cats. Amplitude thresholds for the block using 12 or 25 kHz voltage-controlled stimulation, onset response, and stimulation thresholds before and after block testing were determined. Main results. Complete nerve block was achieved reliably and the onset response to blocking stimulation was similar for all electrodes. Amplitude thresholds for the block were lowest for the Case Spiral electrode (4 ± 1 Vpp) and lower for the nerve cuff electrodes (7 ± 3 Vpp) than for the intramuscular electrode (26 ± 10 Vpp). A minor elevation in stimulation threshold and reduction in stimulus-evoked urethral pressure was observed during testing, but the effect was temporary and did not vary between electrodes. Significance. Multiple clinical electrodes appear suitable for neuroprostheses using peripheral nerve electrical block. The freedom to choose electrodes based on secondary criteria such as ease of implantation or cost should ease translation of electrical nerve block to clinical practice.

  5. The distribution of C-Fos protein immunolabeled cells in the spinal cord of the rat after electrical and noxious thermal stimulation following sciatic nerve crush, or transection and repair.

    PubMed

    Hongpaisan, J; Molander, C

    1993-01-01

    The distribution of stimulus evoked Fos protein-like immunoreactivity in spinal cord neurons was studied in adult rats at different survival times after sciatic nerve crush or transection and epineural repair. Fos protein-like immunoreactivity was induced either by electrical stimulation of the sciatic nerve central to the injury, at C-fiber strength, at 21, 39, and 92 days post-lesion, or by noxious heat applied to the skin of the hind paw 92 days post-lesion. The contralateral uninjured side served as control. The results with electrical stimulation showed, with some exceptions, that the distribution of c-fos expressing cells in the spinal cord on the normal and on the previously injured side were similar after both crush and transection with repair. The main finding was an up-regulation of the number of Fos protein immunoreactive neurons in the inner portion of Rexed's lamina II. The results following heat stimulation 92 days post-lesion showed a decrease in the number of labeled neurons in most laminae after both types of injury. This was more pronounced in cases with sciatic nerve transection with repair compared to cases with crush. The results indicate time-dependent alterations in the distribution of stimulus evoked c-fos expression in spinal cord neurons during regeneration after nerve injury. Furthermore, the results from heat stimulation may indicate a slower and perhaps more incomplete restoration process after transection with repair than after crush. PMID:21551711

  6. Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve

    PubMed Central

    Wells, Jonathon; Kao, Chris; Konrad, Peter; Milner, Tom; Kim, Jihoon; Mahadevan-Jansen, Anita; Jansen, E. Duco

    2007-01-01

    A new method for in vivo neural activation using low-intensity, pulsed infrared light exhibits advantages over standard electrical means by providing contact-free, spatially selective, artifact-free stimulation. Here we investigate the biophysical mechanism underlying this phenomenon by careful examination of possible photobiological effects after absorption-driven light-tissue interaction. The rat sciatic nerve preparation was stimulated in vivo with a Holmium:yttrium aluminum garnet laser (2.12 μm), free electron laser (2.1 μm), alexandrite laser (750 nm), and prototype solid-state laser nerve stimulator (1.87 μm). We systematically determined relative contributions from a list of plausible interaction types resulting in optical stimulation, including thermal, pressure, electric field, and photochemical effects. Collectively, the results support our hypothesis that direct neural activation with pulsed laser light is induced by a thermal transient. We then present data that characterize and quantify the spatial and temporal nature of this required temperature rise, including a measured surface temperature change required for stimulation of the peripheral nerve (6°C–10°C). This interaction is a photothermal effect from moderate, transient tissue heating, a temporally and spatially mediated temperature gradient at the axon level (3.8°C–6.4°C), resulting in direct or indirect activation of transmembrane ion channels causing action potential generation. PMID:17526565

  7. Patterning of sympathetic nerve activity in response to vestibular stimulation

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  8. Electrical Stimulation at the ST36 Acupoint Protects against Sepsis Lethality and Reduces Serum TNF Levels through Vagus Nerve- and Catecholamine-Dependent Mechanisms.

    PubMed

    Villegas-Bastida, Albino; Torres-Rosas, Rafael; Arriaga-Pizano, Lourdes Andrea; Flores-Estrada, Javier; Gustavo-Acosta, Altamirano; Moreno-Eutimio, Mario Adan

    2014-01-01

    Electrical vagus nerve (VN) stimulation during sepsis attenuates tumor necrosis factor (TNF) production through the cholinergic anti-inflammatory pathway, which depends on the integrity of the VN and catecholamine production. To characterize the effect of electroacupuncture at ST36 (EA-ST36) on serum TNF, IL-6, nitrite, and HMGB1 levels and survival rates, based on VN integrity and catecholamine production, a sepsis model was induced in rats using cecal ligation and puncture (CLP). The septic rats were subsequently treated with EA-ST36 (CLP+ST36), and serum samples were collected and analyzed for cytokines levels. The serum TNF, IL-6, nitrite, and HMGB1 levels in the CLP+ST36 group were significantly lower compared with the group without treatment, the survival rates were significantly higher (P < 0.05), and the acute organ injury induced by CLP was mitigated by EA-ST36; however, when subdiaphragmatic vagotomy was performed, the serum levels of TNF in the CLP+ST36 group did not show a significant difference compared with the group without electrostimulation, and, similarly, no significant difference in serum TNF levels was found under the pharmacological blockade of catecholamines. These results suggest that in rats with CLP sepsis models EA-ST36 reduces serum TNF levels through VN- and atecholamine-dependent mechanisms. PMID:25057275

  9. A Comparison Study of Growth Factor Expression following Treatment with Transcutaneous Electrical Nerve Stimulation, Saline Solution, Povidone-Iodine, and Lavender Oil in Wounds Healing

    PubMed Central

    Koca Kutlu, Adalet; Çeçen, Dilek; Gürgen, Seren Gülşen; Sayın, Oya; Çetin, Ferihan

    2013-01-01

    This study compared the effects of transcutaneous electrical nerve stimulation (TENS), saline solution (SS), povidone-iodine (PI), and lavender oil (Lavandula angustifolia) through expression of growth factors in a rat model of wound healing. Six experimental groups were established, each containing 8 rats: a healthy group with no incision wounds, an incision-control group, an incision and TENS group, an incision and SS group, an incision and PI group, and an incision and lavender oil group. Experiments continued for 5 days, after which the skin in the excision area was removed. Tissue concentrations of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)-A were measured using enzyme-linked immunosorbent assay (ELISA). Tissue expressions of EGF, PDGF-A, and fibroblast growth factor (FGF)-2 were determined using immunohistochemistry. Wound closure progressed more rapidly in the TENS and lavender oil groups than in the control and other study groups. In particular, PDGF-A expressions in the dermis and EGF expression in the epidermis were significantly intense in the TENS group (P < 0.05). In addition, ELISA levels of growth factors such as PDGF-A and EGF were significantly higher in TENS group compared to the control group (P < 0.05). These immunohistochemical and ELISA results suggest that TENS may improve wound healing through increasing growth factors in the dermis and epidermis more than other topical applications. PMID:23861704

  10. Infrared neural stimulation of human spinal nerve roots in vivo

    PubMed Central

    Cayce, Jonathan M.; Wells, Jonathon D.; Malphrus, Jonathan D.; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B.; Konrad, Peter E.; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2015-01-01

    Abstract. Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients (n=7) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and 1.23  J/cm2. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at 1.09  J/cm2 and a 2∶1 safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans. PMID:26157986

  11. Phrenic Nerve Stimulation for Diaphragm Pacing in a Quadriplegic Patient

    PubMed Central

    Kim, Deog-ryung; Kim, Il-sup; Hong, Jae Taek

    2013-01-01

    Chronic hypoventilation due to injury to the brain stem respiratory center or high cervical cord (above the C3 level) can result in dependence to prolonged mechanical ventilation with tracheostomy, frequent nosocomial pneumonia, and prolonged hospitalization. Diaphragm pacing through electrical stimulation of the phrenic nerve is an established treatment for central hypoventilation syndrome. We performed chronic phrenic nerve stimulation for diaphragm pacing with the spinal cord stimulator for pain control in a quadriplegic patient with central apnea due to complete spinal cord injury at the level of C2 from cervical epidural hematoma. After diaphragmatic pacing, the patient who was completely dependent on the mechanical ventilator could ambulate up to three hours every day without aid of mechanical ventilation during the 12 months of follow-up. Diaphragm pacing through unilateral phrenic nerve stimulation with spinal cord stimulator was feasible in an apneic patient with complete quadriplegia who was completely dependent on mechanical ventilation. Diaphragm pacing with the spinal cord stimulator is feasible and effective for the treatment of the central hypoventilation syndrome. PMID:24294464

  12. Continuous-wave infrared optical nerve stimulation for potential diagnostic applications

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-09-01

    Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  13. Continuous-wave vs. pulsed infrared laser stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2011-03-01

    Optical nerve stimulation has recently been developed as an alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuouswave (CW) infrared laser radiation, for potential diagnostic applications. A Thulium fiber laser (λ = 1870 nm) was used for non-contact optical stimulation of the rat prostate cavernous nerves, in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in either CW mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation was observed to be primarily dependent on a threshold nerve temperature (42-45 °C), not an incident fluence, as previously reported. CW optical nerve stimulation provides a significantly faster ICP response time using a laser with lower power output than pulsed stimulation. CW optical nerve stimulation may therefore represent an alternative mode of stimulation for intra-operative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  14. Transcutaneous electrical nerve stimulation (TENS) as compared to placebo TENS for the relief of acute oro-facial pain.

    PubMed

    Hansson, P; Ekblom, A

    1983-02-01

    The present paper describes the effect of high frequency, low frequency and placebo TENS on acute oro-facial pain in 62 patients, attending to an emergency clinic for dental surgery; they had all suffered pain for 1-4 days. The patients were randomly assigned to one of three groups receiving either high frequency (100 Hz), low frequency (2 Hz) or placebo TENS. In the two groups receiving TENS (42 patients) 16 patients reported a reduction in pain intensity exceeding 50%; out of these 16 patients, 4 patients reported complete relief of pain. In the placebo group (20 patients) 2 patients reported a pain reduction of more than 50%; out of these 2 patients, none reported a complete pain relief. Mechanical vibratory stimulation augmented the pain reduction obtained by TENS in 5 out of 10 patients. PMID:6601789

  15. Stimulation Stability and Selectivity of Chronically Implanted Multicontact Nerve Cuff Electrodes in the Human Upper Extremity

    PubMed Central

    Polasek, Katharine H.; Hoyen, Harry A.; Keith, Michael W.; Kirsch, Robert F.; Tyler, Dustin J.

    2010-01-01

    Nine spiral nerve cuff electrodes were implanted in two human subjects for up to three years with no adverse functional effects. The objective of this study was to look at the long term nerve and muscle response to stimulation through nerve cuff electrodes. The nerve conduction velocity remained within the clinically accepted range for the entire testing period. The stimulation thresholds stabilized after approximately 20 weeks. The variability in the activation over time was not different from muscle-based electrodes used in implanted functional electrical stimulation systems. Three electrodes had multiple, independent contacts to evaluate selective recruitment of muscles. A single muscle could be selectively activated from each electrode using single-contact stimulation and the selectivity was increased with the use of field steering techniques. The selectivity after three years was consistent with selectivity measured during the implant surgery. Nerve cuff electrodes are effective for chronic muscle activation and multichannel functional electrical stimulation in humans. PMID:19775987

  16. Preemptive Analgesic Effects of Transcutaneous Electrical Nerve Stimulation (TENS) on Postoperative Pain: A Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Eidy, Mohammad; Fazel, Mohammad Reza; Janzamini, Monir; Haji Rezaei, Mostafa; Moravveji, Ali Reza

    2016-01-01

    Background Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacological analgesic method used to control different types of pain. Objectives The aim of this study was to evaluate the effects of preoperative TENS on post inguinal hernia repair pain. Patients and Methods This randomized, double-blind, placebo-controlled clinical trial was performed on 66 male patients with unilateral inguinal hernias who were admitted to the Shahid Beheshti hospital in Kashan, Iran, from April to October 2014. Participants were selected using a convenience sampling method and were assigned to intervention (n = 33) and control (n = 33) groups using permuted-block randomization. Patients in the intervention group were treated with TENS 1 hour before surgery, while the placebo was administered to patients in the control group. All of the patients underwent inguinal hernia repair by the Lichtenstein method, and pain intensity was evaluated at 2, 4, 6, and 12 hours after surgery using a visual analogue scale. Additionally, the amounts of analgesic administered by pump were calculated and compared between the two groups. Results The mean estimated postoperative pain intensity was 6.21 ± 1.63 in the intervention group and 5.45 ± 1.82 in the control group (P = 0.08). In the intervention group pain intensity at 2 and 4 hours after surgery were 3.54 ± 1.48 and 5.12 ± 1.41 (P < 0.001), respectively. In the control group these values were 4.0±1.5 and 4.76 ± 1.39 (P = 0.04), respectively. No significant differences were observed in mean pain intensities at 6 and 12 hours. Conclusions TENS can reduce postoperative pain in the early hours after inguinal hernia repair surgery. PMID:27275401

  17. Effect of low frequency transcutaneous electrical nerve stimulation of TE5 (waiguan) and PC6 (neiguan) acupoints on cold-induced pain

    PubMed Central

    Montenegro, Eduardo José Nepomuceno; Guimarães de Alencar, Geisa; Rocha de Siqueira, Gisela; Guerino, Marcelo Renato; Maia, Juliana Netto; Araújo de Oliveira, Daniella

    2016-01-01

    [Purpose] This study assesse the effect of low frequency transcutaneous electrical nerve stimulation (TENS) of theTE5 (waiguan) and PC6 (neiguan) acupoints on cold-induced pain. [Subjects and Methods] Forty-eight subjects were divided by convenience into three groups: TENS with electrodes of 1 cm2 area, TENS with electrodes of area 15 cm2 and a placebo group. The study consisted of three phases: cold-induced pain without electroanalgesia, cold-induced pain with electroanalgesia or placebo, and cold-induced pain post-electroanalgesia or placebo. [Results] Acupuncture like TENS increased the pain threshold latency during treatment (45.7 ± 11.7s) compared to pre-treatment (30.9 ± 8.9s) in the TENS group with 1 cm2 electrodes. In the TENS group with 15 cm2 electrodes, the pain threshold latency increased at post-treatment (36.2 ± 12.9s) compared to pre-treatment (25.5 ± 7.4s). The placebo group showed no significant changes. The group with 1 cm2 electrodes showed a significantly higher pain threshold latency (45.7 ± 11.7s) than the other two groups. At post-treatment, the pain threshold latencies of both the 1 cm2 (39.4 ± 11.5s) and 15 cm2 (36.2 ± 12.9s) TENS group were higher than that of the placebo group (22.4 ± 7.4s). [Conclusion] Acupuncture like TENS applied to PC6 and TE5 acupoints increased the pain threshold latency. The pain intensity was reduced by TENS with an electrode area of 1 cm2. PMID:26957732

  18. Effect of Transcutaneous Electrical Nerve Stimulation, Cold, and a Combination Treatment on Pain, Decreased Range of Motion, and Strength Loss Associated with Delayed Onset Muscle Soreness

    PubMed Central

    Denegar, Craig R.; Perrin, David H.

    1992-01-01

    Athletic trainers have a variety of therapeutic agents at their disposal to treat musculoskeletal pain, but little objective evidence exists of the efficacy of the modalities they use. In this study, delayed onset muscle soreness (DOMS) served as a model for musculoskeletal injury in order to: (1) compare the changes in perceived pain, elbow extension range of motion, and strength loss in subjects experiencing DOMS in the elbow flexor muscle group following a single treatment with either transcutaneous electrical nerve stimulation (TENS), cold, a combination of TENS and cold, sham TENS, or 20 minutes of rest; (2) compare the effects of combining static stretching with these treatments; and (3) determine if decreased pain is accompanied by a restoration of strength. DOMS was induced in the non-dominant elbow flexor muscle group in 40 females (age = 22.0 ± 4.3 yr) with repeated eccentric contractions. Forty-eight hours following exercise, all subjects presented with pain, decreased elbow extension range of motion, and decreased strength consistent with DOMS. Subjects were randomly assigned to 20-minute treatments followed by static stretching. Cold, TENS, and the combined treatment resulted in significant decreases in perceived pain. Treatments with cold resulted in a significant increase in elbow extension range of motion. Static stretching also significantly reduced perceived pain. Only small, nonsignificant changes in muscle strength were observed following treatment or stretching, regardless of the treatment group. These results suggest that the muscle weakness associated with DOMS is not the result of inhibition caused by pain. The results suggest that these modalities are effective in treating the pain and muscle spasm associated with DOMS, and that decreased pain may not be an accurate indicator of the recovery of muscle strength. PMID:16558162

  19. Effect of low frequency transcutaneous electrical nerve stimulation of TE5 (waiguan) and PC6 (neiguan) acupoints on cold-induced pain.

    PubMed

    Montenegro, Eduardo José Nepomuceno; Guimarães de Alencar, Geisa; Rocha de Siqueira, Gisela; Guerino, Marcelo Renato; Maia, Juliana Netto; Araújo de Oliveira, Daniella

    2016-01-01

    [Purpose] This study assesse the effect of low frequency transcutaneous electrical nerve stimulation (TENS) of theTE5 (waiguan) and PC6 (neiguan) acupoints on cold-induced pain. [Subjects and Methods] Forty-eight subjects were divided by convenience into three groups: TENS with electrodes of 1 cm(2) area, TENS with electrodes of area 15 cm(2) and a placebo group. The study consisted of three phases: cold-induced pain without electroanalgesia, cold-induced pain with electroanalgesia or placebo, and cold-induced pain post-electroanalgesia or placebo. [Results] Acupuncture like TENS increased the pain threshold latency during treatment (45.7 ± 11.7s) compared to pre-treatment (30.9 ± 8.9s) in the TENS group with 1 cm(2) electrodes. In the TENS group with 15 cm(2) electrodes, the pain threshold latency increased at post-treatment (36.2 ± 12.9s) compared to pre-treatment (25.5 ± 7.4s). The placebo group showed no significant changes. The group with 1 cm(2) electrodes showed a significantly higher pain threshold latency (45.7 ± 11.7s) than the other two groups. At post-treatment, the pain threshold latencies of both the 1 cm(2) (39.4 ± 11.5s) and 15 cm(2) (36.2 ± 12.9s) TENS group were higher than that of the placebo group (22.4 ± 7.4s). [Conclusion] Acupuncture like TENS applied to PC6 and TE5 acupoints increased the pain threshold latency. The pain intensity was reduced by TENS with an electrode area of 1 cm(2). PMID:26957732

  20. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.

    PubMed

    Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U

    2015-06-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. PMID:25797650

  1. Mesencephalic stimulation elicits inhibition of phrenic nerve activity in cat.

    PubMed

    Gallman, E A; Lawing, W L; Millhorn, D E

    1991-05-01

    1. Previous work from this laboratory has indicated that the mesencephalon is the anatomical substrate for a mechanism capable of inhibiting central respiratory drive in glomectomized cats for periods of up to 1 h or more following brief exposure to systemic hypoxia; phrenic nerve activity was used as an index of central respiratory drive. 2. The present study was undertaken to further localize the region responsible for the observed post-hypoxic inhibition of respiratory drive. We studied the phrenic nerve response to stimulations of the mesencephalon in anaesthetized, paralysed peripherally chemo-denervated cats with end-expired PCO2 and body temperature servo-controlled. 3. Stimulations of two types were employed. Electrical stimulation allowed rapid determination of sites from which phrenic inhibition could be elicited. Microinjections of excitatory amino acids were used subsequently in order to confine excitation to neuronal cell bodies and not axons of passage. 4. Stimulation of discrete regions of the ventromedial aspect of the mesencephalon in the vicinity of the red nucleus produced substantial inhibition of phrenic activity which lasted up to 45 min. Stimulation of other areas of the mesencephalon either produced no phrenic inhibition or resulted in a slight stimulation of phrenic activity. 5. The results are discussed in the context of the central respiratory response to hypoxia. PMID:1676420

  2. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an

  3. Computation of induced electric field for the sacral nerve activation

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Hattori, Junya; Laakso, Ilkka; Takagi, Airi; Shimada, Takuo

    2013-11-01

    The induced electric field/current in the sacral nerve by stimulation devices for the treatment of bladder overactivity is investigated. Implanted and transcutaneous electrode configurations are considered. The electric field induced in the sacral nerve by the implanted electrode is largely affected by its surrounding tissues, which is attributable to the variation in the input impedance of the electrode. In contrast, the electric field induced by the transcutaneous electrode is affected by the tissue conductivity and anatomical composition of the body. In addition, the electric field induced in the subcutaneous fat in close proximity of the electrode is comparable with the estimated threshold electric field for pain. These computational findings explain the clinically observed weakness and side effect of each configuration. For the transcutaneous stimulator, we suggest that the electrode contact area be increased to reduce the induced electric field in the subcutaneous fat.

  4. Development of VCSELs for optical nerve stimulation

    NASA Astrophysics Data System (ADS)

    Dummer, Matthew; Johnson, Klein; Hibbs-Brenner, Mary; Keller, Matthew; Gong, Tim; Wells, Jonathon; Bendett, Mark

    2011-03-01

    Neural stimulation using infrared optical pulses has numerous potential advantages over traditional electrical stimulation, including improved spatial precision and no stimulation artifact. However, realization of optical stimulation in neural prostheses will require a compact and efficient optical source. One attractive candidate is the vertical cavity surface emitting laser. This paper presents the first report of VCSELs developed specifically for neurostimulation applications. The target emission wavelength is 1860 nm, a favorable wavelength for stimulating neural tissues. Continuous wave operation is achieved at room temperature, with maximum output power of 2.9 mW. The maximum lasing temperature observed is 60° C. Further development is underway to achieve power levels necessary to trigger activation thresholds.

  5. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    NASA Astrophysics Data System (ADS)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  6. Enhancing Rehabilitative Therapies with Vagus Nerve Stimulation.

    PubMed

    Hays, Seth A

    2016-04-01

    Pathological neural activity could be treated by directing specific plasticity to renormalize circuits and restore function. Rehabilitative therapies aim to promote adaptive circuit changes after neurological disease or injury, but insufficient or maladaptive plasticity often prevents a full recovery. The development of adjunctive strategies that broadly support plasticity to facilitate the benefits of rehabilitative interventions has the potential to improve treatment of a wide range of neurological disorders. Recently, stimulation of the vagus nerve in conjunction with rehabilitation has emerged as one such potential targeted plasticity therapy. Vagus nerve stimulation (VNS) drives activation of neuromodulatory nuclei that are associated with plasticity, including the cholinergic basal forebrain and the noradrenergic locus coeruleus. Repeatedly pairing brief bursts of VNS sensory or motor events drives robust, event-specific plasticity in neural circuits. Animal models of chronic tinnitus, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, and post-traumatic stress disorder benefit from delivery of VNS paired with successful trials during rehabilitative training. Moreover, mounting evidence from pilot clinical trials provides an initial indication that VNS-based targeted plasticity therapies may be effective in patients with neurological diseases and injuries. Here, I provide a discussion of the current uses and potential future applications of VNS-based targeted plasticity therapies in animal models and patients, and outline challenges for clinical implementation. PMID:26671658

  7. Regulation of Peripheral Nerve Stimulation Technology.

    PubMed

    Birk, Daniel M; Yin, Dali; Slavin, Konstantin V

    2015-01-01

    The number of peripheral nerve stimulation (PNS) indications, targets, and devices is expanding, yet the development of the technology has been slow because many devices used for PNS do not have formal regulatory approval. Manufacturers have not sought Food and Drug Administration (FDA) approval for PNS devices because of a perceived lack of interest amongst practitioners and patients. Without FDA approval, companies cannot invest in marketing to educate the implanters and the patients about the benefits of PNS in the treatment of chronic pain. Violation of this has resulted in governmental investigation and prosecution. Most of the PNS devices currently used to treat chronic pain are FDA approved for epidural spinal cord stimulation. Many of the complications seen in PNS surgery can be attributed to the lack of purpose-built hardware with FDA approval. Despite the lack of regulatory approval, there are insurance companies that approve PNS procedures when deemed medically necessary. As the targets and indications for PNS continue to expand, there will be an even greater need for customized technological solutions. It is up to the medical device industry to invest in the design and marketing of PNS technology and seek out FDA approval. Market forces will continue to push PNS into the mainstream and physicians will increasingly have the choice to implant devices specifically designed and approved to treat chronic peripheral nerve pain. PMID:26394389

  8. Vagus Nerve Stimulation for Major Depressive Episodes.

    PubMed

    Eljamel, Sam

    2015-01-01

    Stimulation of the left vagus nerve is a novel antidepressive therapy that relies upon the vagal projections to the brain stem to modulate brain circuits involved in mood regulation. There is cumulative evidence from prospective and long-term studies that has demonstrated tolerability and effectiveness of vagus nerve stimulation (VNS) in major depressive episodes (MDE). VNS in MDE has the following advantages: symptomatic response (defined as at least a 50% improvement in MDE severity) occurs in at least 15-17% of patients after 10 weeks of VNS treatment and in at least 22-37% of patients after 12 months of VNS treatment, remissions are observed in at least 15-17% of patients after 12 months of treatment, there is a sustained response in 13-27% of patients during 12 months of VNS, and successful maintenance of the initial improvement is observed in a high percentage of patients (73-77% of patients who had meaningful or greater benefit after 3 months of treatment maintained at least meaningful benefit after 12 months of treatment). VNS is a well-tolerated treatment as indicated by the high continuation rates of VNS therapy in the D01 and D02 studies after 12 months of therapy (90-98%) and the low rate of adverse event-related study discontinuations through 12 months or more in these studies (3%). Adverse effects are characterized by the absence of systemic effects associated with drug therapy and are primarily limited to those related to stimulation of the vagus nerve; many of the common adverse effects only occurred when VNS was on with the ability to stop acute stimulation-related adverse effects immediately through the use of magnet deactivation of the VNS device. More importantly, there were no adverse cognitive and psychomotor effects observed with antidepressant drugs and electroconvulsive therapy, no overdose toxicity observed with antidepressant drugs, favorable findings in animal reproductive studies, and an ability to add VNS therapy to antidepressant drug

  9. Effects of I(h) and I(KLT) on the response of the auditory nerve to electrical stimulation in a stochastic Hodgkin-Huxley model.

    PubMed

    Negm, Mohamed H; Bruce, Ian C

    2008-01-01

    An accurate model of auditory nerve fibers (ANFs) would help in improving cochlear implant (CI) functionality. Previous studies have shown that the original Hodgkin-Huxley (1952) model (with kinetics adjusted for mammalian body temperature) may be better at describing nodes of Ranvier in ANFs than models for other mammalian axon types. However, the HH model is still unable to explain a number of phenomena observed in auditory nerve responses to CI stimulation such as long-term accommodation, adaptation and the time-course of relative refractoriness. Recent physiological investigations of spiral ganglion cells have shown the presence of a number of ion channel types not considered in the previous modeling studies, including low-threshold potassium (I(KLT)) channels and hyperpolarization-activated cation (I(h)) channels. In this paper we investigate inclusion of these ion channel types in a stochastic HH model. For single biphasic charge-balanced pulse, an increase in spike threshold was typically produced by inclusion of one or both of these channel types. The addition of I(KLT) increases random threshold fluctuations in the stochastic model, particularly for longer pulse widths. Pulse-train responses were investigated for pulse rates of 200, 800, and 2000 pulse/s. Initial results suggests that both the I(KLT) channels and I(h) channels can produce adaptation in the spike rate. However, the adaptation due to I(KLT) is restricted to higher stimulation rates, whereas the adaptation due to I(h) is observed across all stimulation rates. PMID:19163972

  10. Transcutaneous nerve stimulation (TNS) in tinnitus.

    PubMed

    Kaada, B; Hognestad, S; Havstad, J

    1989-01-01

    Low-frequency (2 Hz) TNS applied distally to peripheral nerves of the upper extremity is known to induce a wide-spread, non-segmental and prolonged relief of pain and an increased microcirculation due to sympatho-inhibition in a number of vascular beds. Such stimulation was administered in 29 tinnitus patients of various etiology. Reduction of tinnitus was encountered in 9 subjects in response to a 45-min TNS-session. The improvement was mainly seen in tinnitus characterized by lower frequencies (125-500 Hz). In 7 of the 9 patients, the tinnitus reduction was associated with improvement of hearing, predominantly in the low-frequency band. The effects were still present after one week following daily stimulation at home. On continued treatment, the effects were found to be transitory in 4 of the patients, whereas the remaining 5 patients are still using the stimulator after 2 to 5 years. It is suggested that the mechanism behind the beneficial effects is increased microcirculation in part of the auditory pathways. PMID:2609098

  11. Vagus Nerve Stimulation and Food Intake

    PubMed Central

    Schneider, Kristin L.; Oleski, Jessica; Gordon, Katherine; Rothschild, Anthony J.; Pagoto, Sherry L.

    2014-01-01

    Animal research suggests that vagus nerve stimulation (VNS) is associated with weight loss and decreased appetite. Results from human studies are mixed; some suggest that VNS affects weight whereas others do not, and it is unclear how VNS affects eating behaviors. Baseline body mass index (BMI) and VNS device settings may moderate the effects of VNS on caloric intake. This study investigates the association among BMI, VNS device settings, and caloric intake of highly palatable foods during VNS on versus VNS off sessions in 16 adult patients (62.5% female; BMI mean = 29.11 ± 6.65) using VNS therapy for either epilepsy or depression. Participants attended 2 experimental sessions (VNS on versus off) where they were presented with 4 preferred snack foods totaling 1600 calories. At the start of the session, they either had their VNS devices turned off or left on. Caloric intake was calculated by weighing foods before and after each session. BMI category (overweight/obese and lean) was the between group factor in the analysis. After controlling for covariates, an interaction of condition and BMI category (P = .03) was found. There was an interaction of condition and device output current (P = .05) and a trend toward an interaction of condition and device on time (P = .07). Excess weight may impact how neurobiological signals from the vagus nerve affect appetite and eating. Future research is needed to further elucidate this relationship. PMID:24876624

  12. Vagus nerve stimulation therapy in partial epilepsy: a review.

    PubMed

    Panebianco, Mariangela; Zavanone, Chiara; Dupont, Sophie; Restivo, Domenico A; Pavone, Antonino

    2016-09-01

    Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked epileptic seizures. The majority of people given a diagnosis of epilepsy have a good prognosis, but 20-30 % will develop drug-resistant epilepsy. Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with medically refractory epilepsy. It consists of chronic intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator (Neuro-Cybernetic Prosthesis). In 1997, the Food and Drug Administration approved VNS as adjunctive treatment for medically refractory partial-onset seizures in adults and adolescents. This article reviews the literature from 1988 to nowadays. We discuss thoroughly the anatomy and physiology of vagus nerve and the potential mechanisms of actions and clinical applications involved in VNS therapy, as well as the management, safety, tolerability and effectiveness of VNS therapy. VNS for partial seizures appears to be an effective and well tolerated treatment in adult and pediatric patients. People noted improvements in feelings of well-being, alertness, memory and thinking skills, as well as mood. The adverse effect profile is substantially different from the adverse effect profile associated with antiepileptic drugs, making VNS a potential alternative for patients with difficulty tolerating antiepileptic drug adverse effects. Despite the passing years and the advent of promising neuromodulation technologies, VNS remains an efficacy treatment for people with medically refractory epilepsy. Past and ongoing investigations in other indications have provided signals of the therapeutic potential in a wide variety of conditions. PMID:26908034

  13. Effects of Biphasic Current Pulse Frequency, Amplitude, Duration and Interphase Gap on Eye Movement Responses to Prosthetic Electrical Stimulation of the Vestibular Nerve

    PubMed Central

    Davidovics, Natan S.; Fridman, Gene Y.; Chiang, Bryce; Della Santina, Charles C.

    2011-01-01

    An implantable prosthesis that stimulates vestibular nerve branches to restore sensation of head rotation and vision-stabilizing reflexes could benefit individuals disabled by bilateral loss of vestibular (inner ear balance) function. We developed a prosthesis that partly restores normal function in animals by delivering pulse frequency modulated (PFM) biphasic current pulses via electrodes implanted in semicircular canals. Because the optimal stimulus encoding strategy is not yet known, we investigated effects of varying biphasic current pulse frequency, amplitude, duration and interphase gap on vestibulo-ocular reflex (VOR) eye movements in chinchillas. Increasing pulse frequency increased response amplitude while maintaining a relatively constant axis of rotation. Increasing pulse amplitude (range 0–325 μA) also increased response amplitude but spuriously shifted eye movement axis, probably due to current spread beyond the target nerve. Shorter pulse durations (range 28–340 μs) required less charge to elicit a given response amplitude and caused less axis shift than longer durations. Varying interphase gap (range 25–175 μs) had no significant effect. While specific values reported herein depend on microanatomy and electrode location in each case, we conclude that PFM with short duration biphasic pulses should form the foundation for further optimization of stimulus encoding strategies for vestibular prostheses intended to restore sensation of head rotation. PMID:20813652

  14. Can ultrasound be used to stimulate nerve tissue?

    PubMed Central

    Norton, Stephen J

    2003-01-01

    Background The stimulation of nerve or cortical tissue by magnetic induction is a relatively new tool for the non-invasive study of the brain and nervous system. Transcranial magnetic stimulation (TMS), for example, has been used for the functional mapping of the motor cortex and may have potential for treating a variety of brain disorders. Methods and Results A new method of stimulating active tissue is proposed by propagating ultrasound in the presence of a magnetic field. Since tissue is conductive, particle motion created by an ultrasonic wave will induce an electric current density generated by Lorentz forces. An analytical derivation is given for the electric field distribution induced by a collimated ultrasonic beam. An example shows that peak electric fields of up to 8 V/m appear to be achievable at the upper range of diagnostic intensities. This field strength is about an order of magnitude lower than fields typically associated with TMS; however, the electric field gradients induced by ultrasound can be quite high (about 60 kV/m2 at 4 MHz), which theoretically play a more important role in activation than the field magnitude. The latter value is comparable to TMS-induced gradients. Conclusion The proposed method could be used to locally stimulate active tissue by inducing an electric field in regions where the ultrasound is focused. Potential advantages of this method compared to TMS is that stimulation of cortical tissue could be highly localized as well as achieved at greater depths in the brain than is currently possible with TMS. PMID:12702213

  15. Intermittent electrical stimulation of the right cervical vagus nerve in salt-sensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology

    PubMed Central

    Annoni, Elizabeth M; Xie, Xueyi; Lee, Steven W; Libbus, Imad; KenKnight, Bruce H; Osborn, John W; Tolkacheva, Elena G

    2015-01-01

    Hypertension (HTN) is the single greatest risk factor for potentially fatal cardiovascular diseases. One cause of HTN is inappropriately increased sympathetic nervous system activity, suggesting that restoring the autonomic nervous balance may be an effective means of HTN treatment. Here, we studied the potential of vagus nerve stimulation (VNS) to treat chronic HTN and cardiac arrhythmias through stimulation of the right cervical vagus nerve in hypertensive rats. Dahl salt-sensitive rats (n = 12) were given a high salt diet to induce HTN. After 6 weeks, rats were randomized into two groups: HTN-Sham and HTN-VNS, in which VNS was provided to HTN-VNS group for 4 weeks. In vivo blood pressure and electrocardiogram activities were monitored continuously by an implantable telemetry system. After 10 weeks, rats were euthanized and their hearts were extracted for ex vivo electrophysiological studies using high-resolution optical mapping. Six weeks of high salt diet significantly increased both mean arterial pressure (MAP) and pulse pressure, demonstrating successful induction of HTN in all rats. After 4 weeks of VNS treatment, the increase in MAP and the number of arrhythmia episodes in HTN-VNS rats was significantly attenuated when compared to those observed in HTN-Sham rats. VNS treatment also induced changes in electrophysiological properties of the heart, such as reduction in action potential duration (APD) during rapid drive pacing, slope of APD restitution, spatial dispersion of APD, and increase in conduction velocity of impulse propagation. Overall, these results provide further evidence for the therapeutic efficacy of VNS in HTN and HTN-related heart diseases. PMID:26265746

  16. Modeling Electric Fields of Peripheral Nerve Block Needles.

    NASA Astrophysics Data System (ADS)

    Davis, James Ch.; Anderson, Norman E.; Meisel, Mark W.; Ramirez, Jason G.; Kayser Enneking, F.

    2006-03-01

    Peripheral nerve blocks present an alternative to general anesthesia in certain surgical procedures and a means of acute pain relief through continuous blockades. They have been shown to decrease the incidence of postoperative nausea and vomiting, reduce oral narcotic side effects, and improve sleep quality. Injecting needles, which carry small stimulating currents, are often used to aid in locating the target nerve bundle. With this technique, muscle responses indicate needle proximity to the corresponding nerve bundle. Failure rates in first injection attempts prompted our study of electric field distributions. Finite difference methods were used to solve for the electric fields generated by two widely used needles. Geometric differences in the needles effect variations in their electric field and current distributions. Further investigations may suggest needle modifications that result in a reduction of initial probing failures.

  17. Modeling Electric Fields of Peripheral Nerve Block Needles.

    NASA Astrophysics Data System (ADS)

    Davis, James Ch.; Ramirez, Jason G.

    2005-11-01

    Peripheral nerve blocks present an alternative to general anesthesia in certain surgical procedures and a means of acute pain relief through continuous blockades. They have been shown to decrease the incidence of postoperative nausea and vomiting, reduce oral narcotic side effects, and improve sleep quality. Injecting needles, which carry small stimulating currents, are often used to aid in locating the target nerve bundle. With this technique, muscle responses indicate needle proximity to the corresponding nerve bundle. Failure rates in first injection attempts prompted our study of electric field distributions. Finite difference methods were used to solve for the electric fields generated by two widely used needles. Differences in geometry between needles are seen to effect changes in electric field and current distributions. Further investigations may suggest needle modifications that result in a reduction of initial probing failures.

  18. Electrical stimulation: a societal perspective.

    PubMed

    Gater, D R; McDowell, S M; Abbas, J J

    2000-01-01

    Societal perspective on functional electrical stimulation is colored by media influence, popular thought, and political climate as much as by the science that supports it. The purpose of this article is to examine how these influences facilitate or inhibit the application of electrical stimulation in today's world and to describe the challenges facing the use of electrical stimulation in the future. Emphasis will be placed on perceived need, cost, and available resources and how these factors must be addressed to utilize functional electrical stimulation successfully in society. PMID:11067581

  19. The boundary effect in magnetic stimulation. Analysis at the peripheral nerve.

    PubMed

    Mathis, J; Seemann, U; Weyh, T; Jakob, C; Struppler, A

    1995-10-01

    The optimal stimulus position for a figure-8-shaped coil for magnetic stimulation of the ulnar nerve at the wrist was not coincident with the optimal electrical stimulus point but was shifted 18.3 mm to the ulnar side (P < 0.01). For the median nerve the optimal stimulus site was 9.6 mm radial to the optimal position for electrical stimulation (P < 0.05). This shift of the stimulus point for magnetic stimulation is significantly smaller after interposition of a homogenous electrically conducting medium between coil and arm but not changed after interposition of distilled water. This so-called boundary effect is therefore due to the different conductivities of the medium interposed between coil and nerve. It may also distort precise localisation of other excitable structures such as cranial nerves, nerve roots and cortical areas by means of magnetic stimuli. The amplitudes of the compound muscle action potentials elicited with identical magnetic stimulus strength were larger after the interposition of isotonic solution between coil and skin but not after interposition of distilled water. Consideration of the boundary effect provided an improved response amplitude to magnetic stimulation, but this could not adequately compensate for its poor localisation compared to electrical stimulation. PMID:7489685

  20. A complete model for the evaluation of the magnetic stimulation of peripheral nerves.

    PubMed

    Pisa, Stefano; Apollonio, Francesca; d'Inzeo, Guglielmo

    2014-01-01

    In this paper, a numerical procedure for the analysis of peripheral nerve excitation through magnetic stimulation is presented and used to investigate the physical parameters influencing stimulation. The finite difference technique is used to evaluate the electric field distribution induced inside an arm by the current flowing through a coil, and a nonlinear cable model is used to describe the response of the nerve fiber to the induced electric field. The comparison among several forearm structures has evidenced that the heterogeneous non dispersive forearm model is a good reference condition. With this model, the lowest charging voltage on the stimulator capacitance, able to produce the nerve stimulation, is achieved when the coil is shifted, with respect to the nerve, of a quantity slightly lower than the coil radius but it is also possible to excite the nerve fiber by applying a shift equal to zero. The charging voltage increases when the coil radius is increased and when a three-dimensional coil geometry is considered. Moreover, this voltage is strongly dependent on the nerve position inside the forearm and on the kind of tissue surrounding the nerve. PMID:24511330

  1. A Complete Model for the Evaluation of the Magnetic Stimulation of Peripheral Nerves

    PubMed Central

    Pisa, Stefano; Apollonio, Francesca; d'Inzeo, Guglielmo

    2014-01-01

    In this paper, a numerical procedure for the analysis of peripheral nerve excitation through magnetic stimulation is presented and used to investigate the physical parameters influencing stimulation. The finite difference technique is used to evaluate the electric field distribution induced inside an arm by the current flowing through a coil, and a nonlinear cable model is used to describe the response of the nerve fiber to the induced electric field. The comparison among several forearm structures has evidenced that the heterogeneous non dispersive forearm model is a good reference condition. With this model, the lowest charging voltage on the stimulator capacitance, able to produce the nerve stimulation, is achieved when the coil is shifted, with respect to the nerve, of a quantity slightly lower than the coil radius but it is also possible to excite the nerve fiber by applying a shift equal to zero. The charging voltage increases when the coil radius is increased and when a three-dimensional coil geometry is considered. Moreover, this voltage is strongly dependent on the nerve position inside the forearm and on the kind of tissue surrounding the nerve. PMID:24511330

  2. Revision surgeries following vagus nerve stimulator implantation.

    PubMed

    Lam, Sandi; Lin, Yimo; Curry, Daniel J; Reddy, Gaddum D; Warnke, Peter C

    2016-08-01

    The vagus nerve stimulator (VNS) has been shown to provide a safe, albeit costly, treatment for intractable epilepsy. We aimed to analyze the incidence, timing, and clinical/demographic associations of revision surgery post-VNS implantation in epilepsy patients. The Thomson Reuters MarketScan database, containing data from 23-50million individuals, was used. Epilepsy patients receiving VNS implantations from 2003 to 2009 were identified by Current Procedural Terminology and International Classification Of Diseases Ninth Revision codes. Incidence and timing of subsequent implant-related surgeries were recorded. Events were described using time-to-event methodology, with Kaplan-Meier failure estimation/Cox proportional hazard models adjusted for clinical/demographic factors. In 1234 patients, average incidence of revision surgeries over 6years of follow-up were <1%, <3%, 4-10%, and <1% for VNS electrode revision, battery revision/removal, battery replacement/implantation, and infection washout, respectively. For electrode revision and battery revision/replacement, the incidence was higher in the first year and for battery replacement in later years. Age, sex, insurance type, or geographic region did not significantly impact event occurrence. Implant-related revision surgeries are rare. Some events occur more often in certain follow-up years than others; none are significantly impacted by age, sex, insurance type, or geographic region. The most common reason for revision was battery replacement several years after VNS placement. PMID:27050913

  3. Periodical assessment of electrophysiological recovery following sciatic nerve crush via surface stimulation in rats.

    PubMed

    Wang, Yaxian; Wang, Hongkui; Mi, Daguo; Gu, Xiaosong; Hu, Wen

    2015-03-01

    When evaluating peripheral nerve regeneration, electrophysiological test is recognized as an optimal assessment, which is a quantitative, objective, and direct evidence reflecting function as compared to morphological examinations. In murine models of nerve regeneration, however, it remains a challenge to record compound muscle action potentials (CMAPs) periodically and non-invasively, i.e., with no insult to the nerve. In the present study, we recorded CMAPs in the gastrocnemius muscle weekly until 8 weeks after sciatic nerve crush by stimulating the nerve in a surface manner, and the electric stimuli were delivered to the skin between ischial tuberosity and major trochanter using bipolar hook electrodes. The CMAPs were reproducibly recorded in this way from 3 weeks post-injury, and both amplitude and latency were well correlated to post-operative time. Furthermore, a strong positive correlation was observed between CMAP amplitude and sciatic function index (SFI), a well-recognized assessment for sciatic nerve function. CMAP recordings by direct nerve stimulation at 8 weeks post-injury showed no significant difference in amplitude compared to surface stimulation, but the peak latency was relatively longer than the latter. This study indicated that non-invasive surface stimulation-based periodical recording of CMAPs was a practical electrophysiological approach to monitor the progression of peripheral nerve regeneration in murine models. PMID:25394740

  4. A conduction block in sciatic nerves can be detected by magnetic motor root stimulation.

    PubMed

    Matsumoto, Hideyuki; Konoma, Yuko; Fujii, Kengo; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-08-15

    Useful diagnostic techniques for the acute phase of sciatic nerve palsy, an entrapment neuropathy, are not well established. The aim of this paper is to demonstrate the diagnostic utility of magnetic sacral motor root stimulation for sciatic nerve palsy. We analyzed the peripheral nerves innervating the abductor hallucis muscle using both electrical stimulations at the ankle and knee and magnetic stimulations at the neuro-foramina and conus medullaris levels in a patient with sciatic nerve palsy at the level of the piriformis muscle due to gluteal compression related to alcohol consumption. On the fourth day after onset, magnetic sacral motor root stimulation using a MATS coil (the MATS coil stimulation method) clearly revealed a conduction block between the knee and the sacral neuro-foramina. Two weeks after onset, needle electromyography supported the existence of the focal lesion. The MATS coil stimulation method clearly revealed a conduction block in the sciatic nerve and is therefore a useful diagnostic tool for the abnormal neurophysiological findings associated with sciatic nerve palsy even at the acute phase. PMID:23809191

  5. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... III (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice... sinus nerve stimulator shall have an approved PMA or a declared completed PDP in effect before...

  6. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... III (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice... sinus nerve stimulator shall have an approved PMA or a declared completed PDP in effect before...

  7. Laterality effects of human pudendal nerve stimulation on corticoanal pathways: evidence for functional asymmetry

    PubMed Central

    Hamdy, S; Enck, P; Aziz, Q; Uengoergil, S; Hobson, A; Thompson, D

    1999-01-01

    BACKGROUND—Although motor and sensory pathways to the human external anal sphincter are bilateral, a unilateral pudendal neuropathy may still disrupt anal continence. Anal continence can, however, be preserved despite unilateral pudendal damage, and so to explain those differing observations, we postulated that pudendal innervation might be asymmetric.
AIMS—To explore the individual effects of right and left pudendal nerve stimulation on the corticofugal pathways to the human external anal sphincter and thus assess evidence for functional asymmetric pelvic innervation.
METHODS—In eight healthy subjects, anal sphincter electromyographic responses, evoked to transcranial magnetic stimulation of the motor cortex, were recorded 5-500 msec after digital transrectal electrical conditioning stimuli applied to each pudendal nerve.
RESULTS—Right or left pudendal nerve stimulation evoked anal responses of similar latencies but asymmetric amplitudes in six subjects: dominant responses (>50% contralateral side) from the right pudendal in four subjects and from the left in two. Cortical stimulation also evoked anal responses with amplitude 448 (121) µV and latency 20.9 (1.1) msec. When cortical stimulation was preceded by pudendal nerve stimulation, the cortical responses were facilitated at interstimulus intervals of 5-20 msec. Dominant pudendal nerve stimulation induced greater facilitation of the cortically evoked responses than the non-dominant nerve.
CONCLUSIONS—Cortical pathways to the external anal sphincter are facilitated by pudendal nerve conditioning, in an asymmetric manner. This functional asymmetry may explain the presence and absence of anal incontinence after unilateral pudendal nerve injury.


Keywords: cerebral cortex; continence; electromyography; external anal sphincter; incontinence; magnetic stimulation PMID:10369705

  8. Stimulation of the human auditory nerve with optical radiation

    NASA Astrophysics Data System (ADS)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  9. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog

    NASA Astrophysics Data System (ADS)

    Yoo, Paul B.; Lubock, Nathan B.; Hincapie, Juan G.; Ruble, Stephen B.; Hamann, Jason J.; Grill, Warren M.

    2013-04-01

    Objective. Not fully understanding the type of axons activated during vagus nerve stimulation (VNS) is one of several factors that limit the clinical efficacy of VNS therapies. The main goal of this study was to characterize the electrical recruitment of both myelinated and unmyelinated fibers within the cervical vagus nerve. Approach. In anesthetized dogs, recording nerve cuff electrodes were implanted on the vagus nerve following surgical excision of the epineurium. Both the vagal electroneurogram (ENG) and laryngeal muscle activity were recorded in response to stimulation of the right vagus nerve. Main results. Desheathing the nerve significantly increased the signal-to-noise ratio of the ENG by 1.2 to 9.9 dB, depending on the nerve fiber type. Repeated VNS following nerve transection or neuromuscular block (1) enabled the characterization of A-fibers, two sub-types of B-fibers, and unmyelinated C-fibers, (2) confirmed the absence of stimulation-evoked reflex compound nerve action potentials in both the ipsilateral and contralateral vagus nerves, and (3) provided evidence of stimulus spillover into muscle tissue surrounding the stimulating electrode. Significance. Given the anatomical similarities between the canine and human vagus nerves, the results of this study provide a template for better understanding the nerve fiber recruitment patterns associated with VNS therapies.

  10. Peripheral Nerve Stimulation for Treatment of Post-Amputation Pain – A Case Report

    PubMed Central

    Rauck, Richard L.; Kapural, Leonardo; Cohen, Steven P.; North, James M.; Gilmore, Christopher A.; Zang, Rosemary H.; Boggs, Joseph W.

    2012-01-01

    Many amputees suffer from post-amputation pain, which can be extremely debilitating, decrease quality of life, increase the risk of depression, and negatively affect interpersonal relationships and the ability to work. Present methods of treatment, including medications, are often unsatisfactory in reducing post-amputation pain. Electrical stimulation of the nerve innervating the painful area could reduce the pain, but peripheral nerve stimulation is rarely used to treat post-amputation pain because present methods require invasive surgical access and precise placement of the leads in close proximity (≤ 2 mm) with the nerve. The present study investigated a novel approach to peripheral nerve stimulation in which a lead was placed percutaneously a remote distance (> 1 cm) away from the femoral nerve in a patient with severe residual limb pain 33 years following a below-knee amputation. Electrical stimulation generated ≥ 75% paresthesia coverage, reduced residual limb pain by > 60%, and improved quality of life outcomes as measured by the pain interference scale of the Brief Pain Inventory-Short Form (100% reduction in pain interference), Pain Disability Index (74% reduction in disability), and the Patient Global Impression of Change (Very Much Improved) during a 2-week home trial. There were no adverse events. The ability to generate significant paresthesia coverage and pain relief with a single lead inserted percutaneously and remotely from the target nerve holds promise for providing relief of post-amputation pain. PMID:22548686

  11. Peripheral nerve stimulation for the treatment of postamputation pain--a case report.

    PubMed

    Rauck, Richard L; Kapural, Leonardo; Cohen, Steven P; North, James M; Gilmore, Christopher A; Zang, Rosemary H; Boggs, Joseph W

    2012-11-01

    Many amputees suffer from postamputation pain, which can be extremely debilitating, decrease quality of life, increase the risk of depression, and negatively affect interpersonal relationships and the ability to work. Present methods of treatment, including medications, are often unsatisfactory in reducing postamputation pain. Electrical stimulation of the nerve innervating the painful area could reduce the pain, but peripheral nerve stimulation is rarely used to treat postamputation pain because present methods require invasive surgical access and precise placement of the leads in close proximity (≤ 2 mm) with the nerve. The present study investigated a novel approach to peripheral nerve stimulation in which a lead was placed percutaneously a remote distance (> 1 cm) away from the femoral nerve in a patient with severe residual limb pain (RLP) 33 years following a below-knee amputation. Electrical stimulation generated ≥ 75% paresthesia coverage, reduced RLP by > 60%, and improved quality of life outcomes as measured by the pain interference scale of the Brief Pain Inventory-Short Form (100% reduction in pain interference), Pain Disability Index (74% reduction in disability), and the Patient Global Impression of Change (very much improved) during a 2-week home trial. There were no adverse events. The ability to generate significant paresthesia coverage and pain relief with a single lead inserted percutaneously and remotely from the target nerve holds promise for providing relief of postamputation pain. PMID:22548686

  12. System identification of mechanomyogram evoked by common peroneal nerve stimulation.

    PubMed

    Higuchi, Tatsuya; Yamaguchi, Takumasa; Uchiyama, Takanori

    2008-01-01

    In the quantitative assessment of a system, a description of the low-order transfer function model is important. The objective of this study was to identify the system of a mechanomyogram (MMG) with SubSpace-based State Space model IDentification (4SID). The input data consisted of the electrical stimulation of the common peroneal nerve, which made the anterior tibial muscle contract. The output data consisted of the evoked MMG. We applied Fourier transform to the MMG signal and obtained a power spectrum. The 10th-order model was estimated by the 4SID method. It was suggested that the frequency band separation of the power spectrum reflected the types of recruited muscle fiber. The results suggest that the MMG is a linear system which can be estimated in the lower-order transfer function model by applying the 4SID to each frequency band. PMID:19162658

  13. Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording of electric and magnetic fields combined with 3D-MR tomography.

    PubMed

    Buchner, H; Fuchs, M; Wischmann, H A; Dössel, O; Ludwig, I; Knepper, A; Berg, P

    1994-01-01

    At the current state of technology, multichannel simultaneous recording of combined electric potentials and magnetic fields should constitute the most powerful tool for separation and localization of focal brain activity. We performed an explorative study of multichannel simultaneous electric SEPs and magnetically recorded SEFs. MEG only sees tangentially oriented sources, while EEG signals include the entire activity of the brain. These characteristics were found to be very useful in separating multiple sources with overlap of activity in time. The electrically recorded SEPs were adequately modelled by three equivalent dipoles located: (1) in the region of the brainstem, modelling the P14 peak at the scalp, (2) a tangentially oriented dipole, modelling the N20-P20 and N30-P30 peaks, and part of the P45, and (3) a radially oriented dipole, modelling the P22 peak and part of the P45, both located in the region of the somatosensory cortex. Magnetically recorded SEFs were adequately modelled by a single equivalent dipole, modelling the N20-P20 and N30-P30 peaks, located close to the posterior bank of the central sulcus, in area 3b (mean deviation: 3 mm). The tangential sources in the electrical data were located 6 mm on average from the area 3b. MEG and EEG was able to locate the sources of finger stimulated SEFs in accordance with the somatotopic arrangement along the central fissure. A combined analysis demonstrated that MEG can provide constraints to the orientation and location of sources and helps to stabilize the inverse solution in a multiple-source model of the EEG. PMID:7946929

  14. Electrical stimulation in exercise training

    NASA Technical Reports Server (NTRS)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve

  15. Renal opiate receptor mediation of renin secretion to renal nerve stimulation in the dog.

    PubMed

    Koyama, S; Hosomi, H

    1986-06-01

    The present study was designed to evaluate renal opiate receptor mediation of the renin secretion response to electrical stimulation of the renal nerves in the pentobarbital sodium-anesthetized dog by use of the opiate agonist leucine-enkephalin (Leu-enk) and the opiate antagonist naloxone. In all animals studied, left kidneys were pump perfused at a constant renal blood flow. Renal perfusion pressure (RPP) and glomerular filtration rate (GFR) were unaltered at a stimulation frequency of 1.0 Hz; however, renin secretion rate (RSR) increased significantly in the nontreated group. High-frequency renal nerve stimulation (10 Hz) increased RPP and decreased GFR. RSR at the high-frequency stimulation was significantly augmented in the nontreated group. Renal arterial infusion of either Leu-enk (25 micrograms X kg-1 X min-1) or naloxone (7 micrograms X kg-1 X min-1) did not alter base-line levels of renal hemodynamics and RSR and did not produce significant changes in these variables even when renal nerves were stimulated at the low frequency; however, Leu-enk inhibited RPP and RSR responses to the high-frequency stimulation, and naloxone augmented these responses. Phentolamine (13 micrograms X kg-1 X min-1) prevented renal hemodynamic responses to the renal nerve stimulation, whereas RSR responses to the stimulation were unaffected. Propranolol (8 micrograms X kg-1 X min-1) resulted in decreases in RSR at the renal nerve stimulation despite the presence of changes in renal hemodynamics similar to the other groups. The results indicate that intrarenal opiate receptors may participate in inhibiting renal secretion of renin mediated by the renal nerves when renal vasoconstriction and reduction of GFR occurred at the high-frequency stimulation. PMID:3013030

  16. Selectivity for specific cardiovascular effects of vagal nerve stimulation with a multi-contact electrode cuff.

    PubMed

    Ordelman, Simone C M A; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P J; Veltink, Peter H

    2013-01-01

    The cardiovascular system can be influenced by electrically stimulating the vagal nerve. Selectivity for specific cardiac fibers may be limited when stimulating at the cervical level. Our objective was to increase effectiveness and selectivity for cardiovascular effects of vagal nerve stimulation by using local bipolar stimulation in one nerve cross section using a multi-contact cuff instead of less localized stimulation using a tripolar ring electrode. Both types of cuff electrodes were compared with respect to their relative effects on R-R interval (RRI), P-Q interval (PQI), left ventricular contractility (LVC), and left ventricular pressure (P(LV)) in seven pigs. Stimulation using the optimal bipolar configuration on the multi-contact cuff significantly affected RRI, PQI, LVC, and P(LV), whereas stimulation with the ring electrode only significantly affected RRI and PQI. The cardiovascular parameters that could be significantly influenced varied between the bipolar configurations. These novel findings may be relevant for optimizing electrode configurations for clinical cardiac applications of vagal nerve stimulation. PMID:22987542

  17. Peripheral nerve/field stimulation for neuropathic pain.

    PubMed

    Deogaonkar, Milind; Slavin, Konstantin V

    2014-01-01

    Peripheral nerve stimulation and peripheral nerve field stimulation are emerging as a viable neuromodulatory therapy in the treatment of refractory pain. Although the technology of percutaneous stimulation has been available for decades, recent advancements have broadened the number of indications. Success of treatment revolves around identifying the correct patient population, and the selection and placement of the appropriate electrodes and implantable pulse generators. Most results to date have come from case reports and retrospective studies. However, given the promising outcomes in reducing otherwise medically refractory pain, future randomized controlled studies are needed to assess this emerging technology. PMID:24262894

  18. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve

    PubMed Central

    Kent, Alexander R; Grill, Warren M

    2013-01-01

    Objective Electrical stimulation of the pudendal nerve (PN) is being developed as a means to restore bladder function in persons with spinal cord injury. A single nerve cuff electrode placed on the proximal PN trunk may enable selective stimulation of distinct fascicles to maintain continence or evoke micturition. The objective of this study was to design a nerve cuff that enabled selective stimulation of the PN. Approach We evaluated the performance of both flat interface nerve electrode (FINE) cuff and round cuff designs, with a range of FINE cuff heights and number of contacts, as well as multiple contact orientations. This analysis was performed using a computational model, in which the nerve and fascicle cross-sectional positions from five human PN trunks were systematically reshaped within the nerve cuff. These cross-sections were used to create finite element models, with electric potentials calculated and applied to a cable model of a myelinated axon to evaluate stimulation selectivity for different PN targets. Subsequently, the model was coupled to a genetic algorithm (GA) to identify solutions that used multiple contact activation to maximize selectivity and minimize total stimulation voltage. Main results Simulations did not identify any significant differences in selectivity between FINE and round cuffs, although the latter required smaller stimulation voltages for target activation due to preserved localization of targeted fascicle groups. Further, it was found that a 10 contact nerve cuff generated sufficient selectivity for all PN targets, with the degree of selectivity dependent on the relative position of the target within the nerve. The GA identified solutions that increased fitness by 0.7–45.5% over single contact activation by decreasing stimulation of non-targeted fascicles. Significance This study suggests that using an optimal nerve cuff design and multiple contact activation could enable selective stimulation of the human PN trunk for

  19. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Kent, Alexander R.; Grill, Warren M.

    2013-06-01

    Objective. Electrical stimulation of the pudendal nerve (PN) is being developed as a means to restore bladder function in persons with spinal cord injury. A single nerve cuff electrode placed on the proximal PN trunk may enable selective stimulation of distinct fascicles to maintain continence or evoke micturition. The objective of this study was to design a nerve cuff that enabled selective stimulation of the PN. Approach. We evaluated the performance of both flat interface nerve electrode (FINE) cuff and round cuff designs, with a range of FINE cuff heights and number of contacts, as well as multiple contact orientations. This analysis was performed using a computational model, in which the nerve and fascicle cross-sectional positions from five human PN trunks were systematically reshaped within the nerve cuff. These cross-sections were used to create finite element models, with electric potentials calculated and applied to a cable model of a myelinated axon to evaluate stimulation selectivity for different PN targets. Subsequently, the model was coupled to a genetic algorithm (GA) to identify solutions that used multiple contact activation to maximize selectivity and minimize total stimulation voltage. Main results. Simulations did not identify any significant differences in selectivity between FINE and round cuffs, although the latter required smaller stimulation voltages for target activation due to preserved localization of targeted fascicle groups. Further, it was found that a ten contact nerve cuff generated sufficient selectivity for all PN targets, with the degree of selectivity dependent on the relative position of the target within the nerve. The GA identified solutions that increased fitness by 0.7-45.5% over single contact activation by decreasing stimulation of non-targeted fascicles. Significance. This study suggests that using an optimal nerve cuff design and multiple contact activation could enable selective stimulation of the human PN trunk for

  20. [Implantable nerve stimulation for obstructive sleep apnea hypopnea syndrome].

    PubMed

    Afonso Delgado, Lidia; Micoulaud Franchi, Jean-Arthur; Monteyrol, Pierre-Jean; Philip, Pierre

    2016-02-01

    Obstructive sleep apnea hypopnea syndrome (OSAHS) is a common disorder that has been identified as a contributor to cardiovascular disease making it a major public health problem. Continuous positive airway pressure is the standard treatment but compliance is suboptimal. Mandibular advancement devices and surgery have limited indications, inconstant efficiency and potential irreversible side effects. Stimulation of the hypoglossal nerve, that innervates the genioglossus, a protrusor muscle of the tongue, is now a new treatment option for moderate and severe cases of OSAHS. Two types of stimulation are currently available: stimulation synchronous with inspiration and continuous stimulation. The indication of each type of stimulation and long-term effects still need to be assessed but the implantable nerve stimulation is a promising treatment for patients without a therapy solution so far. PMID:26796478

  1. [Role of transcranial magnetic stimulation in clinical diagnosis: facial nerve neurography].

    PubMed

    Arányi, Zsuzsanna; Simó, Magdolna

    2002-11-20

    Facial nerve neurography involving magnetic stimulation techniques can be used to assess the intracranial segment of the facial nerve and the entire facial motor pathway, as opposed to the traditional neurography, involving only extracranial electric stimulation of the nerve. Both our own experience and data published in the literature underline the value of the method in localising facial nerve dysfunction and its role in clinical diagnosis. It is non-invasive and easy to perform. Canalicular hypoexcitability has proved to be the most useful and sensitive parameter, which indicates the dysfunction of the nerve between the brain stem and the facial canal. This is an electrophysiological finding which offers for the first time positive criteria for the diagnosis of Bell's palsy. The absence of canalicular hypoexcitability practically excludes the possibility of Bell's palsy. The technique is also able to demonstrate subclinical dysfunction of the nerve, which can be of considerable help in the etiological diagnosis of facial palsies. For example, in a situation where clinically unilateral facial weakness is observed, but facial nerve neurography demonstrates bilateral involvement, etiologies other than Bell's palsy are more likely, such as Lyme's disease, Guillain-Barré syndrome, meningeal affections etc. Furthermore, the technique differentiates reliably between peripheral facial nerve lesion involving the segment in the brain stem or the segment after leaving the brainstem. PMID:12632796

  2. Exploring Selective Neural Electrical Stimulation for Upper Limb Function Restoration

    PubMed Central

    Tigra, Wafa; Guiraud, David; Andreu, David; Coulet, Bertrand; Gelis, Anthony; Fattal, Charles; Maciejasz, Pawel; Picq, Chloé; Rossel, Olivier; Teissier, Jacques; Coste, Christine Azevedo

    2016-01-01

    This article introduces a new approach of selective neural electrical stimulation of the upper limb nerves. Median and radial nerves of individuals with tetraplegia are stimulated via a multipolar cuff electrode to elicit movements of wrist and hand in acute conditions during a surgical intervention. Various configurations corresponding to various combinations of a 12-poles cuff electrode contacts are tested. Video recording and electromyographic (EMG) signals recorded via sterile surface electrodes are used to evaluate the selectivity of each stimulation configuration in terms of activated muscles. In this abstract we introduce the protocol and preliminary results will be presented during the conference. PMID:27478571

  3. Diaphragmatic paralysis evaluated by phrenic nerve stimulation during fluoroscopy or real-time ultrasound

    SciTech Connect

    McCauley, R.G.K.; Labib, K.B.

    1984-10-01

    Stimulation of the phrenic nerve by supplying an electrical impulse to the neck during fluoroscopy or real-time ultrasound (sonoscopy) of the diaphragm allows more precise functional evaluation than fluoroscopy and/or sonoscopy alone. This is especially true of patients who are unable to cooperate because the are on a ventilator, unconscious, or very young. The authors cite cases in which diaphragmatic paralysis was diagnosed by conventional methods but stimulation of the phrenic nerve demonstrated good diaphragmatic motion, leading to a change in prognosis in some cases and a change in therapy in others.

  4. Diabetic neuropathy increases stimulation threshold during popliteal sciatic nerve block†

    PubMed Central

    Heschl, S.; Hallmann, B.; Zilke, T.; Gemes, G.; Schoerghuber, M.; Auer-Grumbach, M.; Quehenberger, F.; Lirk, P.; Hogan, Q.; Rigaud, M.

    2016-01-01

    Background Peripheral nerve stimulation is commonly used for nerve localization in regional anaesthesia, but recommended stimulation currents of 0.3–0.5 mA do not reliably produce motor activity in the absence of intraneural needle placement. As this may be particularly true in patients with diabetic neuropathy, we examined the stimulation threshold in patients with and without diabetes. Methods Preoperative evaluation included a neurological exam and electroneurography. During ultrasound-guided popliteal sciatic nerve block, we measured the current required to produce motor activity for the tibial and common peroneal nerve in diabetic and non-diabetic patients. Proximity to the nerve was evaluated post-hoc using ultrasound imaging. Results Average stimulation currents did not differ between diabetic (n=55) and non-diabetic patients (n=52). Although the planned number of patients was not reached, the power goal for the mean stimulation current was met. Subjects with diminished pressure perception showed increased thresholds for the common peroneal nerve (median 1.30 vs. 0.57 mA in subjects with normal perception, P=0.042), as did subjects with decreased pain sensation (1.60 vs. 0.50 mA in subjects with normal sensation, P=0.038). Slowed ulnar nerve conduction velocity predicted elevated mean stimulation current (r=−0.35, P=0.002). Finally, 15 diabetic patients required more than 0.5 mA to evoke a motor response, despite intraneural needle placement (n=4), or required currents ≥2 mA despite needle-nerve contact, vs three such patients (1 intraneural, 2 with ≥2 mA) among non-diabetic patients (P=0.003). Conclusions These findings suggest that stimulation thresholds of 0.3–0.5 mA may not reliably determine close needle-nerve contact during popliteal sciatic nerve block, particularly in patients with diabetic neuropathy. Clinical trial registration NCT01488474 PMID:26994231

  5. Surface electrical stimulation to evoke referred sensation.

    PubMed

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space. PMID:26348194

  6. Centrally administered glucagon stimulates sympathetic nerve activity in rat.

    PubMed

    Krzeski, R; Czyzyk-Krzeska, M F; Trzebski, A; Millhorn, D E

    1989-12-18

    The effect of pancreatic glucagon given intravenously, intracerebroventricularly and microinjected into the nucleus of the solitary tract on sympathetic activity in the cervical trunk and adrenal nerve was examined in rat. In each case glucagon caused a relatively long-lasting substantial increase in discharge of both nerves. This finding shows that glucagon can act centrally to stimulate sympathetic activity. The most probable site for the sympathoexcitatory effect of glucagon is the nucleus of the solitary tract. PMID:2598031

  7. Electrochemical and Electrophysiological Performance of Platinum Electrodes Within the Ninety-Nine-Electrode Stimulating Nerve Cuff.

    PubMed

    Pečlin, Polona; Mehle, Andraž; Karpe, Blaž; Rozman, Janez

    2015-10-01

    The trend in neural prostheses using selective nerve stimulation for electrical stimulation therapies is headed toward single-part systems having a large number of working electrodes (WEs), each of which selectively stimulate neural tissue or record neural response (NR). The present article reviews the electrochemical and electrophysiological performance of platinum WE within a ninety-nine-electrode spiral cuff for selective nerve stimulation and recording of peripheral nerves, with a focus on the vagus nerve (VN). The electrochemical properties of the WE were studied in vitro using the electrochemical impedance spectroscopy (EIS) technique. The equivalent circuit model (ECM) of the interface between the WE and neural tissue was extracted from the EIS data and simulated in the time domain using a preset current stimulus. Electrophysiological performance of in-space and fiber-type highly selective vagus nerve stimulation (VNS) was tested using an isolated segment of a porcine VN and carotid artery as a reference. A quasitrapezoidal current-controlled pulse (stimulus) was applied to the VN or arterial segment using an appointed group of three electrodes (triplet). The triplet and stimulus were configured to predominantly stimulate B-fibers and minimize the stimulation of A-fibers. The EIS results revealed capacitive charge transfer predominance, which is a highly desirable property. Electrophysiological performance testing indicated the potential existence of certain parameters and waveforms of the stimulus for which the contribution of the A-fibers to the NR decreased slightly and that of the B-fibers increased slightly. Findings show that the design of the stimulating electrodes, based on the EIS and ECM results, could act as a useful tool for nerve cuff development. PMID:26471140

  8. Design of a compact laparoscopic probe for optical stimulation of the cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Fried, Nathaniel M.

    2009-02-01

    The cavernous nerves are responsible for erectile function and course along the prostate surface, varying in size and location among patients, making preservation of sexual function challenging after prostate cancer surgery. Electrical stimulation has proven inconsistent and unreliable in identifying these nerves and evaluating nerve function. Optical stimulation of the rat cavernous nerves has recently been reported as a alternative to electrical stimulation, with potential advantages including noncontact stimulation and improved spatial selectivity. This study describes the design of a compact laparoscopic probe for future clinical use in optical nerve stimulation. The 10-Fr (3.4-mm-OD) prototype laparoscopic probe includes an aspheric lens for collimation of the laser beam with a 0.8- mm-diameter spot, coupled with a 200-μm-core optical fiber. A 45° gold-coated rod mirror in the probe tip provides side-firing delivery of the laser radiation. The probe handle houses a miniature linear motorized stage for lateral scanning of the probe tip over a 25-mm line along the prostate surface. A 5.5-W Thulium fiber laser with tunable wavelength range of 1850-1880 nm was tested with the probe. The probe fits through a standard 5-mm-ID laparoscopic port and is capable of delivering pulse energies up to 8 mJ (1.6 J/cm2) at a 2.5-ms pulse duration, well above the threshold (~ 0.35 J/cm2) for optical stimulation of the cavernous nerves.

  9. High frequency electrical conduction block of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin; Gustafson, Kenneth J.

    2006-06-01

    A reversible electrical block of the pudendal nerves may provide a valuable method for restoration of urinary voiding in individuals with bladder-sphincter dyssynergia. This study quantified the stimulus parameters and effectiveness of high frequency (HFAC) sinusoidal waveforms on the pudendal nerves to produce block of the external urethral sphincter (EUS). A proximal electrode on the pudendal nerve after its exit from the sciatic notch was used to apply low frequency stimuli to evoke EUS contractions. HFAC at frequencies from 1 to 30 kHz with amplitudes from 1 to 10 V were applied through a conforming tripolar nerve cuff electrode implanted distally. Sphincter responses were recorded with a catheter mounted micro-transducer. A fast onset and reversible motor block was obtained over this range of frequencies. The HFAC block showed three phases: a high onset response, often a period of repetitive firing and usually a steady state of complete or partial block. A complete EUS block was obtained in all animals. The block thresholds showed a linear relationship with frequency. HFAC pudendal nerve stimulation effectively produced a quickly reversible block of evoked urethral sphincter contractions. The HFAC pudendal block could be a valuable tool in the rehabilitation of bladder-sphincter dyssynergia.

  10. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat.

    PubMed

    Millhorn, D E

    1986-12-01

    1. The respiratory response, measured as integrated phrenic nerve activity, during and for up to an hour following 10 min of continuous electrical stimulation of raphe obscurus was quantitated in anaesthetized, artificially ventilated cats whose carotid sinus nerves and vagus nerves had been cut. End-tidal PCO2 and body temperature were kept constant with servocontrollers. 2. Stimulation of raphe obscurus caused a significant increase in both phrenic tidal activity and respiratory frequency that persisted following cessation of the stimulus. This persistent facilitation is referred to as 'long-term potentiation' of respiration. 3. Control stimulations in the parenchyma of the medulla oblongata failed to stimulate respiration and cause the long-term potentiation. 4. Both the direct facilitatory effects of raphe obscurus stimulation on phrenic nerve activity and the long-term potentiation of respiration following the stimulus were prevented by pre-treating cats with methysergide, a serotonin receptor antagonist. 5. The results are discussed in terms of the raphe obscurus being the potential source of the long-term potentiation of respiration that occurs following stimulation of carotid body afferents (Millhorn, Eldridge & Waldrop, 1980a, b). PMID:3114470