Science.gov

Sample records for electrochemical oxidation treatment

  1. Electrochemical oxidation for landfill leachate treatment

    SciTech Connect

    Deng, Yang Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  2. Electrochemical oxidation as a final treatment of synthetic tannery wastewater.

    PubMed

    Panizza, Marco; Cerisola, Giacomo

    2004-10-15

    Vegetable tannery wastewaters contain high concentrations of organics and other chemicals that inhibit the activity of microorganisms during biological oxidations, so biorefractory organics that are not removed by biological treatment must be eliminated by a tertiary or advanced wastewater treatment. In this paper, the applicability of electrochemical oxidation as a tertiary treatment of a vegetable tannery wastewater was investigated by performing galvanostatic electrolysis using lead dioxide (Ti/PbO2) and mixed titanium and ruthenium oxide (Ti/TiRuO2) as anodes under different experimental conditions. The experimental results showed that both the electrodes performed complete mineralization of the wastewater. In particular, the oxidation took place on the PbO2 anode by direct electron transfer and indirect oxidation mediated by active chlorine, while it occurred on the Ti/TiRuO2 anode only by indirect oxidation. Furthermore, the Ti/PbO2 gave a somewhat higher oxidation rate than that observed for the Ti/TiRuO2 anode. Although the Ti/TiRuO2 required almost the same energy consumption for complete COD removal, it was more stable and did not release toxic ions, so it was the best candidate for industrial applications. With the Ti/TiRuO2 anode, the rate of tannery wastewater oxidation increased with the current density, pH, and temperature of the solution. These results strongly indicate that electrochemical methods can be applied effectively as a final treatment of vegetable tannery wastewater allowing the complete removal of COD, tannin, and ammonium and decolorization. PMID:15543753

  3. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. PMID:22965739

  4. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  5. Treatment of papermaking tobacco sheet wastewater by electrocoagulation combined with electrochemical oxidation.

    PubMed

    Ma, Xiangjuan; Gao, Yang; Huang, Hanping

    2015-01-01

    Attempts were made in this study to examine the efficiency of electrocoagulation (EC) using aluminum (Al) anode and stainless steel net cathode combined with electrochemical oxidation with a β-PbO₂anode or a mixed metal oxide (MMO) anode for treatment of papermaking tobacco sheet wastewater, which has the characteristics of high content of suspended solids (SS), intensive color, and low biodegradability. The wastewater was first subjected to the EC process under 40 mA/cm² of current density, 2.5 g/L of NaCl, and maintaining the original pH of wastewater. After 6 minutes of EC process, the effluent was further treated by electrochemical oxidation. The results revealed that the removal of SS during the EC process was very beneficial to mass transfer of organics during electrochemical oxidation. After the combined process, 83.9% and 82.8% of chemical oxygen demand (COD) removal could be achieved on the β-PbO₂and MMO anodes, respectively. The main components of the final effluent were biodegradable organic acids, such as acetic acid, propionic acid, butyric acid, valeric acid, and hexahyl carbonic acid; the 5-day biochemical oxygen demand/chemical oxygen demand (BOD₅/COD) ratio increased from 0.06 to 0.85 (Al + β-PbO₂) or 0.80 (Al + MMO). Therefore, this integrated process is a promising alternative for pretreatment of papermaking tobacco sheet wastewater prior to biological treatment. PMID:25909726

  6. Direct electrochemical oxidation of polyacrylates.

    PubMed

    Bellagamba, Riccardo; Comninellis, Christos; Vatistas, Nicolaos

    2002-10-01

    A promising elimination treatment of non-biodegradable organic pollutants is the direct electro-oxidation. In this work has been proposed the electrochemical elimination of polyacrylates by using boron-doped diamond (BDD) as anodic material. The complete elimination of organic contaminants has been obtained and this is the first case of successful electrochemical treatment of polymeric and bio-refractory species. The tests of the electrochemical oxidation have been conducted at constant current conditions and a complete elimination of organic species has been reached. The decrease of the COD value with time follows the behaviour of an ideal anode as in the case of low molecular organic compounds. PMID:12489259

  7. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    PubMed

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment. PMID:24965093

  8. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    PubMed

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. PMID:25585871

  9. Removal of perfluorinated compounds in wastewater treatment plant effluents by electrochemical oxidation.

    PubMed

    Zhang, Chunhui; Wang, Liangliang; Li, Juan; Su, Peidong; Peng, Chen

    2015-01-01

    The presence of perfluorinated compounds (PFCs) in the effluents of a wastewater treatment plant (WWTP) in Beijing was investigated in the current study. Perfluorooctanoate acid and perfluorooctane sulfonate were the predominant PFCs in wastewater, accounting for 19-27% and 18-31%, respectively. The concentrations of PFCs with long chains were much lower than those PFCs with short chains (≤C8). An electrochemical oxidation reactor was employed for advanced treatment of PFCs in WWTP effluents using stainless steel plates as anode and cathode electrodes. It was concluded that the removal efficiency of PFCs was improved accordingly with the increasing applied current density. The removal efficiencies of target PFCs ranged from 23.53 to 51.79% with a reaction time of 30 minutes, current density of 20 mA/cm(2), electrode plate distance of 1.0 cm and electrode plate amounts of five pairs. PMID:26067497

  10. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    PubMed

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures. PMID:26580737

  11. Treatment of ink effluents from flexographic printing by lime precipitation and boron-doped diamond (BDD) electrochemical oxidation.

    PubMed

    Diamadopoulos, Evan; Barndõk, Helen; Xekoukoulotakis, Nikolaos P; Mantzavinos, Dionissios

    2009-01-01

    Effluent treatment from flexographic printing was investigated by precipitation/coagulation and electrochemical oxidation over boron-doped diamond electrodes. Precipitation with 3 g/L of lime led to complete removal of effluent turbidity (initial value of about 410 NTU) but only about 20% chemical oxygen demand (COD) decrease (initial value of about 1,900 mg/L). Higher lime dosages (up to 15 g/L) had no effect on separation. On the other hand, coagulation with alum in the range 0.05-1 mM failed to enhance the extent of solids separation achieved by gravity settling alone (i.e. about 60%). Preliminary electrochemical oxidation experiments in the presence of sulphuric acid as supporting electrolyte showed that treatment performance (in terms of COD removal and decrease in sample absorbance at 300 nm) increased with increasing applied current. The latter was more efficiently utilized at shorter treatment times and lower currents with efficiency reaching 30%. Following lime precipitation, the effluent was electrochemically oxidized at alkaline conditions for 360 min yielding 64% absorbance reduction and 50% COD removal (this corresponds to 60% overall COD removal for the combined process). The rather low electrochemical treatment performance may be attributed to limestone deposition and fouling of electrodes and other electrochemical reactor components as evidenced by the gradual drop in conductivity/current throughout the operation. PMID:19923752

  12. Spontaneous electrochemical treatment for sulfur recovery by a sulfide oxidation/vanadium(V) reduction galvanic cell.

    PubMed

    Kijjanapanich, Pimluck; Kijjanapanich, Pairoje; Annachhatre, Ajit P; Esposito, Giovanni; Lens, Piet N L

    2015-02-01

    Sulfide is the product of the biological sulfate reduction process which gives toxicity and odor problems. Wastewaters or bioreactor effluents containing sulfide can cause severe environmental impacts. Electrochemical treatment can be an alternative approach for sulfide removal and sulfur recovery from such sulfide rich solutions. This study aims to develop a spontaneous electrochemical sulfide oxidation/vanadium(V) reduction cell with a graphite electrode system to recover sulfide as elemental sulfur. The effects of the internal and external resistance on the sulfide removal efficiency and electrical current produced were investigated at different pH. A high surface area of the graphite electrode is required in order to have as less internal resistance as possible. In this study, graphite powder was added (contact area >633 cm(2)) in order to reduce the internal resistance. A sulfide removal efficiency up to 91% and electrical charge of more than 400 C were achieved when using five graphite rods supplemented with graphite powder as the electrode at an external resistance of 30 Ω and a sulfide concentration of 250 mg L(-1). PMID:25463589

  13. Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol.

    PubMed

    Sun, Xuhui; Zhang, Qi; Liang, He; Ying, Li; Xiangxu, Meng; Sharma, Virender K

    2016-12-01

    Ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) is a greener oxidant in the treatment of drinking water and wastewater. The electrochemical synthesis of Fe(VI) may be considered environmentally friendly because it involves one-step process to convert Fe(0) to Fe(VI) without using harmful chemicals. Electrolysis was performed by using a sponge iron as an anode in NaOH solution at different ionic strengths. The cyclic voltammetric (CV) curves showed that the sponge iron had higher electrical activity than the grey cast iron. The optimum current density was 0.054mAcm(-2) in 10M NaOH solution, which is much lower than the electrolyte concentrations used in other electrode materials. A comparison of current efficiency and energy consumption was conducted and is briefly discussed. The generated ferrate solution was applied to degrade phenol in water at two levels (2mgL(-1) and 5mgL(-1)). The maximum removal efficiency was ∼70% and the optimum pH for phenol treatment was 9.0. Experiments on phenol removal using conventional coagulants (ferric chloride (FeCl3) and polyaluminium chloride (PAC)) were performed independently to demonstrate that removal of phenol by Fe(VI) occurred mainly by oxidative transformation. A combination of Fe(VI) and coagulant may be advantageous in enhancing removal efficiency, adjusting pH, and facilitating flocculation. PMID:26738940

  14. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    PubMed

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after

  15. Treatment of methyl orange dye wastewater by cooperative electrochemical oxidation in anodic-cathodic compartment.

    PubMed

    Pang, L; Wang, H; Bian, Z Y

    2013-01-01

    Electrochemical oxidation of methyl orange wastewater was studied using Ti/IrO(2)/RuO(2) anode and a self-made Pd/C O(2)-fed cathode in the divided cell with a terylene diaphragm. The result indicated that the appropriate rate of feeding air improved the methyl orange removal efficiency. The discoloration efficiency of methyl orange in the divided cell increased with increasing current density. The initial pH value had some effect on the discoloration of methyl orange, which became not obvious when the pH ranged from 2 to 10. However, the average removal efficiency of methyl orange wastewater in terms of total organic carbon (TOC) can reach 89.3%. The methyl orange structure had changed in the electrolytic process, and the characteristic absorption peak of methyl orange was about 470 nm. With the extension of electrolysis time, the concentration of methyl orange gradually reduced; wastewater discoloration rate increased gradually. The degradation of methyl orange was assumed to be cooperative oxidation by direct or indirect electrochemical oxidation at the anode and H(2)O(2), ·OH, O(2)(-)· produced by oxygen reduction at the cathode in the divided cell. Therefore, the cooperative electrochemical oxidation of methyl orange wastewater in the anodic-cathodic compartment had better degradation effects. PMID:23202555

  16. Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes.

    PubMed

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed; Cañizares, Pablo; Rodrigo, Manuel A

    2015-04-01

    In this work, the electrochemical oxidation of synthetic urine by anodic oxidation using boron-doped diamond as anode and stainless steel as cathode was investigated. Results show that complete depletion of chemical oxygen demand (COD) and total organic carbon (TOC) can be attained regardless of the current density applied in the range 20-100 mA cm(-2). Oxalic and oxamic acids, and, in lower concentrations, creatol and guanidine were identified as the main intermediates. Chloride ions play a very important role as mediators and contribute not only to obtain a high efficiency in the removal of the organics but also to obtain an efficient removal of nitrogen by the transformation of the various raw nitrogen species into gaseous nitrogen through chloramine formation. The main drawback of the technology is the formation of chlorates and perchlorates as final chlorine products. The increase of current density from 20 to 60 mA cm(-2) led to an increase in the rate of COD and TOC removals although the process becomes less efficient in terms of energy consumption (removals of COD and TOC after applying 18 Ah dm(-3) were 93.94 and 94.94 %, respectively, at 20 mA cm(-2) and 89.17 and 86.72 %, respectively, at 60 mA cm(-2)). The most efficient conditions are low current densities and high temperature reaching total mineralization at an applied charge as low as 20 kAh m(-3). This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of urine. PMID:25399531

  17. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  18. A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins.

    PubMed

    Cañizares, P; Hernández-Ortega, M; Rodrigo, M A; Barrera-Díaz, C E; Roa-Morales, G; Sáez, C

    2009-05-15

    In this study, three technologies classified as Advanced Oxidation Processes (Conductive-Diamond Electrochemical Oxidation (CDEO), ozonation and Fenton oxidation) have been compared to treat wastes produced in fermentation processes, and characterized by a significant color and a high organic load. Results of CDEO seem to strongly depend on the addition of an electrolyte salt, not only to decrease the energy cost but also to improve efficiency. The addition of sodium chloride as supporting electrolyte improves the removal percentages of organic load, indicating the important role of mediated oxidation processes carried out by the electrogenerated oxidants (hypochlorite). Fenton oxidation and ozonation seem to be less efficient, and mainly Fenton oxidation favors the accumulation of refractory compounds. The differences observed can be explained in terms of the contribution of hydroxyl radicals and other specific oxidation mechanisms involved in each technology. PMID:18789836

  19. An Investigation into the Effect of a Post-electroplating Electrochemical Oxidation Treatment on Tin Whisker Formation

    NASA Astrophysics Data System (ADS)

    Ashworth, M. A.; Haspel, D.; Wu, L.; Wilcox, G. D.; Mortimer, R. J.

    2015-01-01

    Since the `cracked oxide theory' was proposed by Tu in 1994,1 there has only been a limited number of studies that have sought to investigate the effect of the Sn oxide on whisker growth. The current study has used electrochemical oxidation to produce oxide films, which has enabled the effect of the surface oxide thickness on whisker growth to be established. The effect of oxide thickness on whisker growth has been investigated for tin electrodeposits on both Cu and brass substrates. The influence of applied oxidation potential on the thickness of the Sn oxide film has been investigated using x-ray photoelectron spectroscopy (XPS) for potassium bicarbonate-carbonate and borate buffer electrolyte solutions. Whisker growth from electrochemically oxidised Sn-Cu deposits on Cu and Sn deposits on brass has been investigated and compared with samples left to develop a native air-formed oxide. XPS studies show that the thickness of the electrochemically formed Sn oxide film is dependent on the applied oxidation potential and the total charge passed. Subsequent whisker growth studies demonstrate that electrochemically oxidised Sn-Cu deposits on Cu and Sn deposits on brass are significantly less susceptible to whisker growth than those having a native oxide film. For Sn deposits on brass, the electrochemically formed Sn oxide greatly reduces Zn oxide formation at the surface of the tin deposit, which results in whisker mitigation. For Sn-Cu deposits on Cu, the reduction in whisker growth must simply derive from the increased thickness of the Sn oxide, i.e. the Sn oxide film has an important role in stemming the development of whiskers.

  20. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect

    Hui Cheng, Chuan Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying; Tong Du, Guo

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup −} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2 eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91 cd/A, 102 lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  1. Electrochemical oxidation of chemical weapons

    SciTech Connect

    Surma, J.E.

    1994-05-01

    Catalyzed electrochemical oxidation (CEO), a low-temperature electrochemical oxidation technique, is being examined for its potential use in destroying chemical warfare agents. The CEO process oxidizes organic compounds to form carbon dioxide and water. A bench-scale CEO system was used in three separate tests sponsored by the US Department of Energy`s (DOE) Office of Intelligence and National Security through the Advanced Concepts Program. The tests examined the effectiveness of CEO in destroying sarin (GB), a chemical nerve agent. The tests used 0.5 mL, 0.95 mL, and 1.0 mL of GB, corresponding to 544 mg, 816 mg, and 1,090 mg, respectively, of GB. Analysis of the off gas showed that, under continuous processing of the GB agent, destruction efficiencies of better than six 9s (99.9999% destroyed) could be achieved.

  2. Antitumor effects of electrochemical treatment

    PubMed Central

    González, Maraelys Morales; Zamora, Lisset Ortíz; Cabrales, Luis Enrique Bergues; Sierra González, Gustavo Victoriano; de Oliveira, Luciana Oliveira; Zanella, Rodrigo; Buzaid, Antonio Carlos; Parise, Orlando; Brito, Luciana Macedo; Teixeira, Cesar Augusto Antunes; Gomes, Marina das Neves; Moreno, Gleyce; Feo da Veiga, Venicio; Telló, Marcos; Holandino, Carla

    2013-01-01

    Electrochemical treatment is an alternative modality for tumor treatment based on the application of a low intensity direct electric current to the tumor tissue through two or more platinum electrodes placed within the tumor zone or in the surrounding areas. This treatment is noted for its great effectiveness, minimal invasiveness and local effect. Several studies have been conducted worldwide to evaluate the antitumoral effect of this therapy. In all these studies a variety of biochemical and physiological responses of tumors to the applied treatment have been obtained. By this reason, researchers have suggested various mechanisms to explain how direct electric current destroys tumor cells. Although, it is generally accepted this treatment induces electrolysis, electroosmosis and electroporation in tumoral tissues. However, action mechanism of this alternative modality on the tumor tissue is not well understood. Although the principle of Electrochemical treatment is simple, a standardized method is not yet available. The mechanism by which Electrochemical treatment affects tumor growth and survival may represent more complex process. The present work analyzes the latest and most important research done on the electrochemical treatment of tumors. We conclude with our point of view about the destruction mechanism features of this alternative therapy. Also, we suggest some mechanisms and strategies from the thermodynamic point of view for this therapy. In the area of Electrochemical treatment of cancer this tool has been exploited very little and much work remains to be done. Electrochemical treatment constitutes a good therapeutic option for patients that have failed the conventional oncology methods. PMID:23592904

  3. Solid oxide electrochemical reactor science.

    SciTech Connect

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  4. Electrochemical oxidation of resorcinol for wastewater treatment using Ti/TiO2-RuO2-IrO2 electrode.

    PubMed

    Rajkumar, D; Palanivelu, K; Mohan, N

    2001-01-01

    Electrochemical oxidation of resorcinol for wastewater treatment in the presence of chloride was investigated. Titanium Substrate Insoluble Anode (TSIA) coated with TiO2-RuO2-IrO2 was used as an anode and graphite carbon sheet was used as a cathode. The extent of resorcinol electrochemical oxidation was determined in terms of COD removal. The Box-Behnken second order composite design was used to study the effect of operating parameters such as initial pH, chloride concentration, initial concentration of resorcinol and charge input. The experimental values were in good correlation with predicted values, and the correlation coefficient was found to be good. The effect of current density on resorcinol oxidation, the AOX level during the electrochemical treatment and TOC removal were also studied for selected conditions. It has been observed that the extended electrolysis brings down the AOX concentration to lower levels. The maximum current efficiency was observed at higher resorcinol concentration, higher chloride concentration and increasing current density. PMID:11759910

  5. Design of a visible light driven photo-electrochemical/electro-Fenton coupling oxidation system for wastewater treatment.

    PubMed

    Ding, Xing; Ai, Zhihui; Zhang, Lizhi

    2012-11-15

    In this study, we report on a photo-electrochemical/electro-Fenton oxidation (PEC/EF) system by coupling visible light driven photo-electrochemical oxidation (PEC) and electro-Fenton oxidation (EF) in an undivided cell. Bi2WO6 nanoplates deposited on FTO glass (Bi2WO6/FTO) and Fe@Fe2O3 core-shell nanowires supported on activated carbon fiber (Fe@Fe2O3/ACF) were used as the anode and the cathode in the PEC/EF system, respectively. This novel PEC/EF system showed much higher activity than the single PEC and EF systems on degradation of rhodamine B in aqueous solution at natural pH. Moreover, the degradation and the instantaneous current efficiencies of the PEC/EF system were increased by 154% and 26% in comparison with the sum of those of single PEC and EF systems, respectively. These significant enhancements could be attributed to the synergetic effect from better separation of photo-generated carriers in the photo-anode and the transfer of photo-electrons to the oxygen diffusion cathode to generate more electro-generated H2O2 and hydroxyl radicals on the Fenton cathode. The better separation of photo-generated carriers contribute more to the overall degradation enhancement than the photo-electrons generated H2O2 and the subsequent Fenton reaction on the cathode during the PEC/EF process. PMID:23017238

  6. Oxidative electrochemical switching of photochromic diarylethene compounds

    NASA Astrophysics Data System (ADS)

    Fan, Congbin; Pu, Shouzhi; Liu, Weijun; Yang, Tianshe; Liu, Gang

    2008-12-01

    A series of photochromic diarylethenes compounds were synthesized and the electrochemistry and electrochemistry reaction mechanism properties were investigated. The cyclic voltammetry tests demonstrated that the colorless open-ring isomers were assigned to the unique oxidation process, but the color closed-ring isomers of these compounds were assigned to two oxidation processes. In addition, the electrochromism of diarylethene compound is observed in solution: The closed-ring reaction can be triggered by electrochemical oxidation, while the open-ring reaction must be photochemically driven. These oxidation processes properties can be useful as the oxidation processes electrochemical switching and the oxidation electrochemical switching properties of these different diarylethene isomers can be potential for electrochemistry data storages.

  7. Removal of estrogens by electrochemical oxidation process.

    PubMed

    Cong, Vo Huu; Iwaya, Sota; Sakakibara, Yutaka

    2014-06-01

    Treatments of estrogens such as Estrone (E1), Estradiol (E2) and Ethinylestradiol (EE2) were conducted using an electrolytic reactor equipped with multi-packed granular glassy carbon electrodes. Experimental results showed that E1, E2 and EE2 were oxidized in the range of 0.45-0.85 V and were removed through electro-polymerization. Observed data from continuous experiments were in good agreement with calculated results by a mathematical model constructed based on mass transfer limitation. In continuous treatment of trace estrogens (1 μg/L), 98% of E1, E2 and EE2 were stably removed. At high loading rate (100 μg/L), removal efficiency of E1 was kept around 74%-88% for 21 days, but removal efficiency reduced due to passivation of electrodes. However, removal efficiency was recovered after electrochemical regeneration of electrodes in presence of ozone. Electric energy consumption was observed in the range of 1-2 Wh/m(3). From these results, we concluded that the present electrochemical process would be an alternative removal of estrogens. PMID:25079848

  8. Electrochemical treatment of liquid wastes

    SciTech Connect

    Hobbs, D.

    1996-10-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories.

  9. Electrochemical oxidation of perfluorinated compounds in water.

    PubMed

    Niu, Junfeng; Li, Yang; Shang, Enxiang; Xu, Zesheng; Liu, Jinzi

    2016-03-01

    Perfluorinated compounds (PFCs) are persistent and refractory organic pollutants that have been detected in various environmental matrices and municipal wastewater. Electrochemical oxidation (EO) is a promising remediation technique for wastewater contaminated with PFCs. A number of recent studies have demonstrated that the "non-active" anodes, including boron-doped diamond, tin oxide, and lead dioxide, are effective in PFCs elimination in wastewater due to their high oxygen evolution potential. Many researchers have conducted experiments to investigate the optimal conditions (i.e., potential, current density, pH value, plate distance, initial PFCs concentration, electrolyte, and other factors) for PFCs elimination to obtain the maximal elimination efficiency and current efficiency. The EO mechanism and pathways of PFCs have been clearly elucidated, which undergo electron transfer, Kolbe decarboxylation or desulfonation, hydrolysis, and radical reaction. In addition, the safety evaluation and energy consumption evaluation of the EO technology have also been summarized to decrease toxic ion release from electrode and reduce the cost of this technique. Although the ultrasonication and hydrothermal techniques combined with the EO process can improve the removal efficiency and current efficiency significantly, these coupled techniques have not been commercialized and applied in industrial wastewater treatment. Finally, key challenges facing EO technology are listed and the directions for further research are pointed out (such as combination with other techniques, treatment for natural waters contaminated by low levels of PFCs, and reactor design). PMID:26745381

  10. Electrochemical treatment of liquid wastes

    SciTech Connect

    Hobbs, D.T.

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  11. Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate.

    PubMed

    Souza, F L; Teodoro, T Q; Vasconcelos, V M; Migliorini, F L; Lima Gomes, P C F; Ferreira, N G; Baldan, M R; Haiduke, R L A; Lanza, M R V

    2014-12-01

    In this work we have studied the treatment of imazapyr by electrochemical oxidation with boron-doped diamond anode. Electrochemical degradation experiments were performed in a one-compartment cell containing 0.45 L of commercial formulations of herbicide in the pH range 3.0-10.0 by applying a density current between 10 and 150 mA cm(-2) and in the temperature range 25-45 °C. The maximum current efficiencies were obtained at lower current densities since the electrochemical system is under mass transfer control. The mineralization rate increased in acid medium and at higher temperatures. The treatment was able to completely degrade imazapyr in the range 4.6-100.0 mg L(-1), although the current charge required rises along with the increasing initial concentration of the herbicide. Toxicity analysis with the bioluminescent bacterium Vibrio fischeri showed that at higher pollutant concentrations the toxicity was reduced after the electrochemical treatment. To clarify the reaction pathway for imazapyr mineralization by OH radicals, LC-MS/MS analyses we performed together with a theoretical study. Ions analysis showed the formation of high levels of ammonium in the cathode. The main final products of the electrochemical oxidation of imazapyr with diamond thin film electrodes are formic, acetic and butyric acids. PMID:25461923

  12. Decolorization of landfill leachate using electrochemical oxidation technique

    NASA Astrophysics Data System (ADS)

    Jumaah, Majd Ahmed; Othman, Mohamed Rozali

    2015-09-01

    The study was carried out to investigate the electrochemical oxidation of landfill leachate from the Jeram sanitary landfill leachate using charcoal base metallic composite electrodes. The control parameters used were applied voltage, Cl- concentration (as supporting electrolyte) and pH of the solution. The optimum conditions obtained were NaCl concentration of 1.5 % (w/v), applied voltage of 10 V, operating time 180 min and C60CG Co10PVC15 electrode as an anode.15 Electrochemical treatment using charcoal base metallic composite electrode was able to remove color up to 79%.

  13. Ductile mode electrochemical oxidation assisted micromachining for glassy carbon

    NASA Astrophysics Data System (ADS)

    Nam, Eunseok; Lee, Chan-Young; Jun, Martin B. G.; Min, Byung-Kwon

    2015-04-01

    Recently, a new mechanical machining process using electrochemical oxidation was reported. Electrochemical oxidation assisted micromachining was applied to the machining of glassy carbon. The material removal process of the electrochemical oxidation assisted micromachining consists of repeated cycles of oxidation followed by removal of the oxide layer. In this paper, we experimentally investigate and compare the critical chip thickness for ductile mode cutting in mechanical machining and electrochemical oxidation assisted micromachining of glassy carbon. The theoretical critical chip thickness is calculated for mechanical machining of glassy carbon and experimentally verified. The effect of electrochemical oxidation on the critical chip thickness for ductile mode micromachining is also studied for glassy carbon. It is found that the critical chip thickness is increased for the electrochemical oxidation assisted micromachining.

  14. Toxicity assessment of the water used for human consumption from the Cameron/Tuba City abandoned uranium mining area prior/after the combined electrochemical treatment/advanced oxidation.

    PubMed

    Gajski, Goran; Oreščanin, Višnja; Gerić, Marko; Kollar, Robert; Lovrenčić Mikelić, Ivanka; Garaj-Vrhovac, Vera

    2015-01-01

    The purpose of this work was detailed physicochemical, radiological, and toxicological characterization of the composite sample of water intended for human consumption in the Cameron/Tuba City abandoned uranium mining area before and after a combined electrochemical/advanced oxidation treatment. Toxicological characterization was conducted on human lymphocytes using a battery of bioassays. On the bases of the tested parameters, it could be concluded that water used for drinking from the tested water sources must be strictly forbidden for human and/or animal consumption since it is extremely cytogenotoxic, with high oxidative stress potential. A combined electrochemical treatment and posttreatment with ozone and UV light decreased the level of all physicochemical and radiological parameters below the regulated values. Consequently, the purified sample was neither cytotoxic nor genotoxic, indicating that the presented method could be used for the improvement of water quality from the sites highly contaminated with the mixture of heavy metals and radionuclides. PMID:25087498

  15. Electrochemical treatment of tannery wastewater using DSA electrodes.

    PubMed

    Costa, Carla Regina; Botta, Clarice M R; Espindola, Evaldo L G; Olivi, Paulo

    2008-05-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity. PMID:17931769

  16. Solid oxide electrochemical cell fabrication process

    DOEpatents

    Dollard, Walter J.; Folser, George R.; Pal, Uday B.; Singhal, Subhash C.

    1992-01-01

    A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

  17. A review on the electrochemical treatment of the salty organic wastewater

    NASA Astrophysics Data System (ADS)

    Du, Xianjun

    2015-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, and recent years, there are growing interests in electrochemical treatment of the salty organic wastewater. The aim of this paper is to mainly present the source of the salty organic wastewater, the mechanism of direct and indirect oxidation process, and the research advances of electrochemical technologies in the salty organic wastewater by literature reports review.

  18. Continuous water treatment by adsorption and electrochemical regeneration.

    PubMed

    Mohammed, F M; Roberts, E P L; Hill, A; Campen, A K; Brown, N W

    2011-05-01

    This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex(®)1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L(-1). A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement. PMID:21511325

  19. Electrochemical oxidation of phenol using graphite anodes

    SciTech Connect

    Awad, Y.M.; Abuzaid, N.S.

    1999-02-01

    The effects of current and pH on the electrochemical oxidation of phenol on graphite electrodes is investigated in this study. There was no sign of deterioration of the graphite bed after 5 months of operation. Phenol removal efficiency was a function of the current applied and was around 70% at a current of 2.2 A. The increase of phenol removal efficiency with current is attributed to the increase of ionic transport which increases the rate of electrode reactions responsible for the removal process. The percentage of complete oxidation of phenol increases with current, with a maximum value of about 50%. However, at pH 0.2 it is slightly higher than that at pH 0.5 at all currents. The phenol removal rate increases with increases of current and pH. While the current (CO{sub 2}) efficiency reaches a maximum value in the current range of 1.0--1.2 A, it increases with an increase of acid concentration. The findings of this study have important implications: while anodic oxidation of phenol on graphite can achieve acceptable removal of phenol, the extent of oxidation should not be overlooked.

  20. Electrochemical treatment of landfill leachate: Oxidation at Ti/PbO{sub 2} and Ti/SnO{sub 2} anodes

    SciTech Connect

    Cossu, R.; Polcaro, A.M.; Mascia, M.; Palmas, S.; Renoldi, F.; Lavagnolo, M.C.

    1998-11-15

    Leachate originating in landfills where municipal solid wastes are disposed is a wastewater with a complex composition that could have a high environmental impact. The primary goal of this research was to investigate the feasibility of removing refractory organic pollutants and ammonium nitrogen from landfill leachate by electrochemical oxidation. The effects of current density, pH, and chloride concentration on the removal of both chemical oxygen demand (COD) and ammonium nitrogen were investigated. Titanium coated with lead dioxide (PbO{sub 2}) or tin dioxide (SnO{sub 2}) was used as the anode. An effective process was achieved in which the leachate was decolorized, COD was removed up to a value of 100 mg L{sup {minus}1}, and ammonia was totally eliminated. Average current efficiency of about 30% was measured for a decrease of COD from 1200 to 150 mg L{sup {minus}1}, while efficiency of about 10% was measured for a near complete removal of ammonium nitrogen, starting from an initial value of 380 mg L{sup {minus}1}. Results indicated that the organic load was removed by both direct and indirect oxidation. Indirect oxidation by chlorine or hypochlorite originating from oxidation of chlorides is believed to be mainly responsible for the nitrogen removal.

  1. Selective Electrochemical versus Chemical Oxidation of Bulky Phenol.

    PubMed

    Zabik, Nicole L; Virca, Carolyn N; McCormick, Theresa M; Martic-Milne, Sanela

    2016-09-01

    The electrochemical oxidation of selected tert-butylated phenols 2,6-di-tert-butyl-4-methylphenol (1), 2,6-di-tert-butylphenol (2), 2,4,6-tri-tert-butylphenol (3), 2-tert-butylphenol (4), and 4-tert-butylphenol (5) was studied in an aprotic environment using cyclic voltammetry, square-wave voltammetry, and UV-vis spectroscopy. All compounds exhibited irreversible oxidation of the corresponding phenol or phenolate ion. Compound 2 was selectively electrochemically oxidized, while other phenol analogues underwent mostly chemical oxidation. The electrochemical oxidation of 2 produced a highly absorbing product, 3,5,3',5'-tetra-tert-butyl-4,4'-diphenoquinone, which was characterized by X-ray crystal diffraction. The electrochemical oxidation was monitored as a function of electrochemical parameters and concentration. Experimental and theoretical data indicated that the steric hindrance, phenoxyl radical stability, and hydrogen bonding influenced the outcome of the electrochemical oxidation. The absence of the substituent at the para position and the presence of the bulky substituents at ortho positions were structural and electrostatic requirements for the selective electrochemical oxidation. PMID:27454828

  2. Tutorial Review: Electrochemical Nitric Oxide Sensors for Physiological Measurements

    PubMed Central

    Privett, Benjamin J.; Shin, Jae Ho; Schoenfisch, Mark H.

    2013-01-01

    Summary The important biological roles of nitric oxide (NO) have prompted the development of analytical techniques capable of sensitive and selective detection of NO. Electrochemical sensing, more than any other NO-detection method, embodies the parameters necessary for quantifying NO in challenging physiological environments such as blood and the brain. Herein, we provide a broad overview of the field of electrochemical NO sensors, including design, fabrication, and analytical performance characteristics. Both electrochemical sensors and biological applications are detailed. PMID:20502795

  3. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  4. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  5. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  6. Innovative oxide materials for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Wachsman, Eric D.

    2012-02-01

    Research in functional materials has progressed from those materials exhibiting structural to electronic functionality. The study of ion conducting ceramics ushers in a new era of ``chemically functional materials.'' This chemical functionality arises out of the defect equilibria of these materials, and results in the ability to transport chemical species and actively participate in chemical reactions at their surface. Moreover, this chemical functionality provides a promise for the future whereby the harnessing of our natural hydrocarbon energy resources can shift from inefficient and polluting combustion - mechanical methods to direct electrochemical conversion. The unique properties of these materials and their applications will be described. The focus will be on the application of ion conducting ceramics to energy conversion and storage, chemical sensors, chemical separation and conversion, and life support systems. Results presented will include development of record high power density (3 kW/kg) solid oxide fuel cells, NOx/CO species selective solid-state sensors, high yield membrane reactors, and regenerative life support systems that reduce CO2 to O2 and solid C.

  7. Selective electrochemical generation of hydrogen peroxide from water oxidation

    SciTech Connect

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  8. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGESBeta

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.« less

  9. Electrochemical and partial oxidation of methane

    NASA Astrophysics Data System (ADS)

    Singh, Rahul

    2008-10-01

    Hydrogen has been the most common fuel used for the fuel cell research but there remains challenging technological hurdles and storage issues with hydrogen fuel. The direct electrochemical oxidation of CH4 (a major component of natural gas) in a solid oxide fuel cell (SOFC) to generate electricity has a potential of commercialization in the area of auxiliary and portable power units and battery chargers. They offer significant advantages over an external reformer based SOFC, namely, (i) simplicity in the overall system architecture and balance of plant, (ii) more efficient and (iii) availability of constant concentration of fuel in the anode compartment of SOFC providing stability factor. The extreme operational temperature of a SOFC at 700-1000°C provides a thermodynamically favorable pathway to deposit carbon on the most commonly used Ni anode from CH4 according to the following reaction (CH4 = C + 2H2), thus deteriorating the cell performance, stability and durability. The coking problem on the anode has been a serious and challenging issue faced by the catalyst research community worldwide. This dissertation presents (i) a novel fabricated bi-metallic Cu-Ni anode by electroless plating of Cu on Ni anode demonstrating significantly reduced or negligible coke deposition on the anode for CH4 and natural gas fuel after long term exposure, (ii) a thorough microstructural examination of Ni and Cu-Ni anode exposed to H2, CH4 and natural gas after long term exposure at 750°C by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction and (iii) in situ electrochemical analysis of Ni and Cu-Ni for H2, CH4 and natural gas during long term exposure at 750°C by impedance spectroscopy. A careful investigation of variation in the microstructure and performance characteristics (voltage-current curve and impedance) of Ni and Cu-Ni anode before and after a long term exposure of CH4 and natural gas would allow us to test the validation of a

  10. Electrochemical oxidation and reuse of tannery saline wastewater.

    PubMed

    Sundarapandiyan, S; Chandrasekar, R; Ramanaiah, B; Krishnan, S; Saravanan, P

    2010-08-15

    In this present work, electrochemical treatment of saline wastewater with organic (protein) load was studied. The influence of the critical parameters of electro-oxidation such as pH, period, salt concentration and current density on the reduction of organic load was studied using graphite electrodes. It was found that current density of 0.024 A/cm(2) for a period of 2 h at pH 9.0 rendered best results in terms of reduction in COD and TKN. The energy requirement for the reduction of 1 kg of TKN and 1 kg of COD are 22.45 kWh and 0.80 kWh respectively at pH 9 and 0.024 A/cm(2). Reuse experiments were conducted at commercial scale. One of the saline waste streams in leather manufacturing process, pickling was treated and reused continuously thrice. The characteristics of the waste stream and the quality of the leathers indicate that the reuse of saline streams with intermittent electrochemical treatment is feasible. PMID:20435417

  11. Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes.

    PubMed

    Cañizares, Pablo; Paz, Rubén; Sáez, Cristina; Rodrigo, Manuel A

    2009-01-01

    In the work described here the technical and economic feasibilities of three Advanced Oxidation Processes (AOPs) have been studied: Conductive-Diamond Electrochemical Oxidation (CDEO), Ozonation and Fenton oxidation. The comparison was made by assessing the three technologies with synthetic wastewaters polluted with different types of organic compounds and also with actual wastes (from olive oil mills and from a fine-chemical manufacturing plant). All three technologies were able to treat the wastes, but very different results were obtained in terms of efficiency and mineralization. Only CDEO could achieve complete mineralization of the pollutants for all the wastes. However, the efficiencies were found to depend on the concentration of pollutant (mass transfer control of the oxidation rate). Results obtained in the oxidation with ozone (at pH 12) or by Fenton's reagent were found to depend on the nature of the pollutants, and significant concentrations of oxidation-refractory compounds were usually accumulated during the treatment. Within the discharge limits that all of the technologies can reach, the economic analysis shows that the operating cost of Fenton oxidation is lower than either CDEO or ozonation, although CD\\EO can compete satisfactorily with the Fenton process in the treatment of several kinds of wastes. Likewise, the investment cost for the ozonation process seems to be higher than either CDEO or Fenton oxidation, regardless of the pollutant treated. PMID:18082930

  12. Electrochemical glucose oxidation on dendritic cuprous oxide film fabricated by PSS-assisted electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Jin, Xiaoqi; Huang, Qiao

    2011-02-01

    Cuprous oxides (Cu 2O) with different morphologies were deposited on F-doped tin oxide (FTO) covered glass substrates by potentiostatic deposition. The as-deposited samples were characterized by XRD, BET surface area and SEM. The effects of Poly(styrene sulfonic acid) sodium salt (PSS) on the crystal morphologies of Cu 2O were studied. Different crystal morphologies of Cu 2O can be obtained by varying the concentrations of PSS in the electrolytes. The formation of dendritic microstructure in Cu 2O film depends on the concentration of PSS in the electrolyte. Dendritic Cu 2O crystals formed gradually with the increase of the concentration of PSS in the electrolyte from 0 to 4 g L -1. More symmetrical Cu 2O crystals appear when the concentration of PSS is changed from 4 to 8 g L -1. However, the Cu 2O nanoparticles formed instead of dendritic Cu 2O crystals if the concentration of PSS reaches to 12 g L -1, which is due to the slower diffusion rate of reactive species in high concentration of PSS. The as-deposited Cu 2O thin films with different morphologies all exhibit the electrochemical glucose oxidation properties. The improved performance of glucose oxidation is achieved on the dendritic Cu 2O film electrode. The result indicates that the dendritic microstructure is beneficial for decreasing the resistance and improving transportation and diffusion of reactants and products.

  13. Modification of the surface morphology of the silicon substrate for boron-doped diamond electrodes in electrochemical wastewater treatment applications

    NASA Astrophysics Data System (ADS)

    Bak, Ji-Yoon; Lee, Choong-Hyun; Kim, Jung-Do; Lim, Dae-Soon

    2016-01-01

    For electrochemical wastewater treatment applications, textured boron-doped diamond (BDD) electrodes were fabricated by using a simple and cost-effective etching process. On the basis of the surface area measurement, the etching time was optimized in order to achieve higher electrochemical wastewater treatment performance. The surface structure, electrochemical properties, and electrochemical oxidation performance of the electrodes were characterized by using Raman spectroscopy and atomic force microscopy, in addition to electrochemical techniques. The textured BDD electrode demonstrated a dense and large surface area with no change in the film's properties. The effective surface area of the textured BDD electrode was approximately twice as large as that of the planar BDD electrode. The electrochemical results clearly demonstrate that the enhanced surface area of the BDD electrode achieves a higher current efficiency and much lower energy consumption in the electrochemical oxidation of methyl-orange.

  14. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation.

    PubMed

    Chen, Wei; Wang, Haotian; Li, Yuzhang; Liu, Yayuan; Sun, Jie; Lee, Sanghan; Lee, Jang-Soo; Cui, Yi

    2015-08-26

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt-nickel-iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm(-2), small Tafel slope of 37.6 mV dec(-1), and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  15. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    PubMed Central

    2015-01-01

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  16. DEVELOPMENT OF ELECTROCHEMICAL REDUCTION TECHNOLOGY FOR SPENT OXIDE FUELS

    SciTech Connect

    Hur, Jin-Mok; Seo, Chung-Seok; Kim, Ik-Soo; Hong, Sun-Seok; Kang, Dae-Seung; Park, Seong-Won

    2003-02-27

    The Advanced Spent Fuel Conditioning Process (ACP) has been under development at Korea Atomic Energy Research Institute (KAERI) since 1997. The concept is to convert spent oxide fuel into metallic form and to remove high heat-load fission products such as Cs and Sr from the spent fuel. The heat power, volume, and radioactivity of spent fuel can decrease by a factor of a quarter via this process. For the realization of ACP, a concept of electrochemical reduction of spent oxide fuel in Li2O-LiCl molten salt was proposed and several cold tests using fresh uranium oxides have been carried out. In this new electrochemical reduction process, electrolysis of Li2O and reduction of uranium oxide are taking place simultaneously at the cathode part of electrolysis cell. The conversion of uranium oxide to uranium metal can reach more than 99% ensuring the feasibility of this process.

  17. Design of electrochemical processes for treatment of unusual waste streams

    SciTech Connect

    Farmer, J.C.

    1998-01-01

    UCRL- JC- 129438 PREPRINT This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Introduction. An overview of work done on the development of three electrochemical processes that meet the specific needs of low- level waste treatment is presented. These technologies include: mediated electrochemical oxidation [I- 4]; bipolar membrane electrodialysis [5]; and electrosorption of carbon aerogel electrodes [6- 9]. Design strategies are presented to assess the suitability of these electrochemical processes for Mediated electrochemical oxidation. Mixed wastes include both hazardous and radioactive components. It is desirable to reduce the overall volume of the waste before immobilization and disposal in repositories. While incineration is an attractive technique for the destruction of organic fractions of mixed wastes, such high-temperature thermal processes pose the threat of volatilizing various radionuclides. By destroying organics in the aqueous phase at low temperature and ambient pressure, the risk of volatilization can be reduced. One approach that is

  18. Corrosion and Electrochemical Oxidation of a Pyrite by Thiobacillus ferrooxidans

    PubMed Central

    Mustin, C.; Berthelin, J.; Marion, P.; de Donato, P.

    1992-01-01

    The oxidation of a pure pyrite by Thiobacillus ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved. Images PMID:16348688

  19. Surface Morphology of Si(111) during Electrochemical Oxidation

    NASA Astrophysics Data System (ADS)

    Ando, A.; Miki, K.; Sakamoto, K.; Matsumoto, K.; Morita, Y.; Tokumoto, H.

    1997-03-01

    Topographical changes of hydrogen terminated Si(111) during electrochemical oxidation in a 0.2 M H_2SO4 aqueous solution have been investigated using atomic force microscopy (AFM). The hydrogen terminated surface with atomically flat terraces was prepared by dipping into a NH_4F aqueous solution. Electrochemical oxidation has been performed by a potentiostatic (constant potential) or a galvanostatic (constant current) method. AFM images show that the oxidation occured on the terraces and proceeded homogeneously. The surface became rough as the oxidation proceeded. However, step edges were still observed even after the charge of 50 mC/cm^2 was applied. Quantitative analysis of a relation between the charge and surface morphology will be discussed. the address below:

  20. Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans

    SciTech Connect

    Mustin, C.; Berthelin, J. ); Marion, P.; Donato, P. de )

    1992-04-01

    The oxidation of a pure pyrite by Thiobacillus Ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved.

  1. Graphene oxide nanocapsules within silanized hydrogels suitable for electrochemical pseudocapacitors.

    PubMed

    Kataky, R; Hadden, J H L; Coleman, K S; Ntola, C N M; Chowdhury, M; Duckworth, A R; Dobson, B P; Campos, R; Pyner, S; Shenton, F

    2015-06-28

    Soft biocompatible gels comprised of rolled up graphene oxide nanocapsules within the pores of silanized hydrogels may be used as electrochemical pseudocapacitors with physiological glucose or KOH as a reducing agent, affording a material suitable for devices requiring pulses with characteristic time less than a second. PMID:25977943

  2. Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater.

    PubMed

    Liu, Pengxiao; Zhang, Hanmin; Feng, Yujie; Shen, Chao; Yang, Fenglin

    2015-10-15

    During the rejection of trace pharmaceutical contaminants from wastewater by forward osmosis (FO), disposal of the FO concentrate was still an unsolved issue. In this study, by integrating the advantages of forward osmosis and electrochemical oxidation, a forward osmosis process with the function of electrochemical oxidation (FOwEO) was established for the first time to achieve the aim of rejection of trace antibiotics from wastewater and treatment of the concentrate at the same time. Results demonstrated that FOwEO (current density J=1 mA cm(-2)) exhibited excellent rejections of antibiotics (>98%) regardless of different operation conditions, and above all, antibiotics in the concentrate were well degraded (>99%) at the end of experiment (after 3h). A synergetic effect between forward osmosis and electrochemical oxidation was observed in FOwEO, which lies in that antibiotic rejections by FO were enhanced due to the degradation of antibiotics in the concentrate, while the electrochemical oxidation capacity was improved in the FOwEO channel, of which good mass transfer and the assist of indirect oxidation owing to the reverse NaCl from draw solution were supposed to be the mechanism. This study demonstrated that the FOwEO has the capability to thoroughly remove trace antibiotics from wastewater. PMID:25966924

  3. Surface chemistry of RuO(2)/IrO(2)/TiO(2) mixed-oxide electrodes: secondary ion mass spectrometric study of the changes induced by electrochemical treatment.

    PubMed

    Barison, S; De Battisti, A; Fabrizio, M; Daolio, S; Piccirillo, C

    2000-01-01

    The IrO(2)/RuO(2)/TiO(2) ternary system is well known for its electrocatalytic activity towards oxygen- and chlorine-evolution reactions. Electrochemical processing induces noticeable chemical and morphological modifications on these electrodes, depending on the noble metal oxide content. In this work, cathodic/anodic polarization and the oxygen-evolution reaction were studied in order to evaluate the electrocatalytic activity at various noble metal oxide percentages. The best performing electrode (30 mol% noble metal oxides) was analyzed before and after electrochemical tests by means of secondary ion mass spectrometry (SIMS) in order to determine the chemical composition modification which occurred on the surface and in deeper regions of the mixed-oxide film. PMID:11114026

  4. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  5. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  6. Anodic Oxidative Modification of Egg White for Heat Treatment.

    PubMed

    Takahashi, Masahito; Handa, Akihiro; Yamaguchi, Yusuke; Kodama, Risa; Chiba, Kazuhiro

    2016-08-31

    A new functionalization of egg white was achieved by an electrochemical reaction. The method involves electron transfer from thiol groups of egg white protein to form disulfide bonds. The oxidized egg white produced less hydrogen sulfide during heat treatment; with sufficient application of electricity, almost no hydrogen sulfide was produced. In addition, gels formed by heating electrochemically oxidized egg white exhibited unique properties, such as a lower gelation temperature and a softened texture, presumably due to protein aggregation and electrochemically mediated intramolecular disulfide bond formation. PMID:27518910

  7. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  8. Electrochemical Treatment of Alkaline Nuclear Wastes. Innovative Technology Summary Report

    SciTech Connect

    2001-01-01

    Nitrate and nitrite are two of the major hazardous non-radioactive species present in Hanford and Savannah River (SR) high-level waste (HLW). Electrochemical treatment processes have been developed to remove these species by converting aqueous sodium nitrate/nitrite into sodium hydroxide and chemically reducing the nitrogen species to gaseous ammonia, nitrous oxide and nitrogen. Organic complexants and other organic compounds found in waste can be simultaneously oxidized to gaseous carbon dioxide and water, thereby reducing flammability and leaching risks as well as process interferences in subsequent radionuclide separation processes. Competing technologies include thermal, hydrothermal and chemical destruction. Unlike thermal and hydrothermal processes that typically operate at very high temperatures and pressures, electrochemical processes typically operate at low temperatures (<100 C) and atmospheric pressure. Electrochemical processes effect chemical transformations by the addition or removal of electrons and, thus, do not add additional chemicals, as is the case with chemical destruction processes. Hanford and SR have different plans for disposal of the low-activity waste (LAW) that results when radioactive Cs{sup 137} has been removed from the HLW. At SR, the decontaminated salt solution will be disposed in a cement waste form referred to as Saltstone, whereas at Hanford the waste will be vitrified as a borosilicate glass. Destruction of the nitrate and nitrite before disposing the decontaminated salt solution in Saltstone would eliminate possible groundwater contamination that could occur from the leaching of nitrate and nitrite from the cement waste form. Destruction of nitrate and nitrite before vitrification at Hanford would significantly reduce the size of the off-gas system by eliminating the formation of NO{sub x} gases in the melter. Throughout the 1990's, the electrochemical conversion process has been extensively studied at SR, the University of

  9. Electrochemical phase diagrams for Ti oxides from density functional calculations

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Feng; Rondinelli, James M.

    2015-12-01

    Developing an accurate simulation method for the electrochemical stability of solids, as well as understanding the physics related with its accuracy, is critically important for improving the performance of compounds and predicting the stability of new materials in aqueous environments. Herein we propose a workflow for the accurate calculation of first-principles electrochemical phase (Pourbaix) diagrams. With this scheme, we study the electrochemical stabilities of Ti and Ti oxides using density-functional theory. First, we find the accuracy of an exchange-correlation functional in predicting formation energies and electrochemical stabilities is closely related with the electronic exchange interaction therein. Second, the metaGGA and hybrid functionals with a more precise description of the electronic exchange interaction lead to a systematic improvement in the accuracy of the Pourbaix diagrams. Furthermore, we show that accurate Ti Pourbaix diagrams also require that thermal effects are included through vibrational contributions to the free energy. We then use these diagrams to explain various experimental electrochemical phenomena for the Ti-O system, and show that if experimental formation energies for Ti oxides, which contain contributions from defects owing to their generation at high (combustion) temperatures, are directly used to predict room temperature Pourbaix diagrams then significant inaccuracies result. In contrast, the formation energies from accurate first-principles calculations, e.g., using metaGGA and hybrid functionals, are found to be more reliable. Finally, to facilitate the future application of our accurate electrochemical phase equilibria diagrams, the variation of the Ti Pourbaix diagrams with aqueous ion concentration is also provided.

  10. Electrochemical deposition of conducting ruthenium oxide films from solution

    SciTech Connect

    Anderson, D.P.; Warren, L.F.

    1984-02-01

    In the last decade, ruthenium oxide, RuO /sub x/ (x less than or equal to 2), has been used extensively as the active anode electrocatalyst constituent for Cl/sub 2/ and O/sub 2/ evolution reactions, in chlorate production, and in metal electrowinning from mixed chloride-sulfate solutions. More recently, this material has been incorporated in several light-induced water electrolysis schemes and apparently possesses the ability to inhibit CdS photocorrosion by acting as a hole scavenger. The numerous applications for this catalyst material certainly warrant further studies of its electrochemical properties on a variety of substrates, e.g., semiconductors. The lack of a simple technique for controlled deposition of ruthenium oxide onto conducting substrates prompted us to investigate an electrochemical approach to this problem. We describe here a new way to electrochemically deposit conducting films of hydrated ruthenium oxide from an aqueous solution of the benzeneruthenium (II)aqua complex. The films slowly dissolve in aqueous electrolytes upon potential cycling, yet appear to be catalytic with regards to water oxidation.

  11. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  12. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods.

    PubMed

    Marie, Mohammed; Mandal, Sanghamitra; Manasreh, Omar

    2015-01-01

    A glucose electrochemical sensor based on zinc oxide (ZnO) nanorods was investigated. The hydrothermal sol-gel growth method was utilized to grow ZnO nanorods on indium tin oxide-coated glass substrates. The total active area of the working electrode was 0.3 × 0.3 cm2 where titanium metal was deposited to enhance the contact. Well aligned hexagonal structured ZnO nanorods with a diameter from 68 to 116 nm were obtained. The excitonic peak obtained from the absorbance spectroscopy was observed at ~370 nm. The dominant peak of Raman spectroscopy measurement was at 440 cm(-1), matching with the lattice vibration of ZnO. The uniform distribution of the GOx and Nafion membrane that has been done using spin coating technique at 4000 rotations per minute helps in enhancing the ion exchange and increasing the sensitivity of the fabricated electrochemical sensor. The amperometric response of the fabricated electrochemical sensor was 3 s. The obtained sensitivity of the fabricated ZnO electrochemical sensor was 10.911 mA/mM·cm2 and the lower limit of detection was 0.22 µM. PMID:26263988

  13. Playing peekaboo with graphene oxide: a scanning electrochemical microscopy investigation.

    PubMed

    Rapino, Stefania; Treossi, Emanuele; Palermo, Vincenzo; Marcaccio, Massimo; Paolucci, Francesco; Zerbetto, Francesco

    2014-11-01

    Scanning electrochemical microscopy (SECM) can image graphene oxide (GO) flakes on insulating and conducting substrates. The contrast between GO and the substrate is controlled by the electrostatic interactions that are established between the charges of the molecular redox mediator and the charges present in the sheet/substrate. SECM also allows quantitative measurement - at the nano/microscale - of the charge transfer kinetics between single monolayer sheets and agent molecules. PMID:25224581

  14. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    PubMed

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications. PMID:24418938

  15. Graphene Oxide Modified TiO2 Micro Whiskers and Their Photo Electrochemical Performance.

    PubMed

    Rambabu, Y; Jaiswal, Manu; Roy, Somnath C

    2016-05-01

    Harnessing the solar energy and producing clean fuel hydrogen through efficient photo-electrochemical water splitting has remained one of the most challenging endeavors in materials science. The core problem is to develop a suitable photo-catalyst material that absorbs a significant part of the solar spectrum and produces electron-hole pairs that can be easily separated without recombination. In the recent times, the composite of Titanium dioxide with graphene have been investigated to explore the advantages of both class of materials. Here we report on the photo-electrochemical properties of reduced graphene oxide functionalised TiO2 whiskers. The TiO2 whiskers are obtained from potassium titanium oxide (KTi8O16) synthesized through hydrothermal technique followed by ion exchange method and heat treatment. Graphene oxide was deposited on the as prepared TiO2 whiskers using hydrothermal method. As formed samples were characterized by Raman spectroscopy to confirm the presence of reduced graphene oxide (RGO) attached to TiO2 whiskers. Comparative photo electrochemical studies were carried out for TiO2 and reduced graphene oxide modified TiO2 whiskers. Among these, RGO modified TiO2 whiskers show significantly higher photo current density possibly due to enhancement in charge separation ability and longer electron life times. PMID:27483830

  16. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    DOEpatents

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  17. Electrochemical oxidation of the poultry manure anaerobic digested effluents for enhancing pollutants removal by Chlorella vulgaris.

    PubMed

    Wang, Mengzi; Cao, Wei; Wu, Yu; Lu, Haifeng; Li, Baoming

    2016-01-01

    The mechanisms and pseudo-kinetics of the electrochemical oxidation for wastewater treatment and the synergistic effect of combining algal biological treatment were investigated. NaCl, Na2SO4 and HCl were applied to compare the effect of electrolyte species on nutrients removal. NaCl was proved to be more efficient in removing ammonia ([Formula: see text]), total phosphorus (TP), total organic carbon (TOC) and inorganic carbon (IC). [Formula: see text] oxidation by using Ti/Pt-IrO2 electrodes was modelled, which indicates that the [Formula: see text] removal followed the zero-order kinetic with sufficient Cl(-) and the first-order kinetic with insufficient Cl(-), respectively. The feasibility of combining electrochemical oxidation with microalgae cultivation for wastewater treatment was also determined. A 2 h electrochemical pretreatment reduced 57% [Formula: see text], 76% TP, 72% TOC and 77% IC from the digested effluent, which is applied as feedstock for algae cultivation, and resulted in increasing both the biomass production and pollutants removal efficiencies of the algal biological process. PMID:26853507

  18. COD and color removal of reactive orange 16 dye solution by electrochemical oxidation and adsorption method

    NASA Astrophysics Data System (ADS)

    Zakaria, Zuhailie; Ahmad, Wan Yaacob Wan; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-01

    Degradation of Reactive Orange 16 (RO16) dye was investigated using electrochemical oxidation and adsorption (batch method) using mixture of coconut trunk charcoal-graphite-tin-polyvinyl chloride(PVC). In batch studies for adsorbents pellet and powder form of the charcoal mixture were used. RO16 was chosen as the model dye because of its high resistance towards conventional treatment methods. NaCl and RO16 concentration, treatment duration, weight of electrode and adsorbent and volume of solution were kept constant for both methods. The effectiveness of the treatments were compared and evaluated by percentage of RO16 decolorization and chemical oxygen demand (COD) removal and results indicated that electrochemical oxidation method ables to decolorized RO16 dye up to 98.5% after 20 minutes electrolysis time while pellet and powder in batch method only removed 17.1 and 33.6% of RO16 color respectively. However, only 45.6% of COD can be removed using electrochemical oxidation method while pellet and powder in batch method removed 47.8 and 49.6% of COD respectively. The decolorization and COD removal of RO16 was determined using UV-Vis spectrophotometer (by the changes of absorption spectrum intensity of azo chromophore (-N=N-) at λ=388 and 492.50 nm and Hach spectrophotometer respectively. FTIR was used to determine functional groups present in the coconut trunk charcoal.

  19. Ultrasonically enhanced electrochemical oxidation of ibuprofen.

    PubMed

    Thokchom, Binota; Kim, Kyungho; Park, Jeonghyuk; Khim, Jeehyeong

    2015-01-01

    A hybrid advanced oxidation process combining sonochemistry (US) and electrochemistry (EC) for the batch scale degradation of ibuprofen was developed. The performance of this hybrid reactor system was evaluated by quantifying on the degradation of ibuprofen under the variation in electrolytes, frequency, applied voltage, ultrasonic power density and temperature in aqueous solutions with a platinum electrode. Among the methods examined (US, EC and US/EC), the hybrid method US/EC resulted 89.32%, 81.85% and 88.7% degradations while using NaOH, H2SO4 and deionized water (DI), respectively, with a constant electrical voltages of 30V, an ultrasound frequency of 1000kHz, and a power density of 100WL(-1) at 298K in 1h. The degradation was established to follow pseudo first order kinetics. In addition, energy consumption and energy efficiencies were also calculated. The probable mechanism for the anodic oxidation of ibuprofen at a platinum electrode was also postulated. PMID:24844440

  20. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.

    PubMed

    Boopathy, R; Sekaran, G

    2013-09-15

    The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN. PMID:23770619

  1. Observable Electrochemical Oxidation of Carbon Promoted by Platinum Nanoparticles.

    PubMed

    Kou, Zongkui; Cheng, Kun; Wu, Hui; Sun, Ronghui; Guo, Beibei; Mu, Shichun

    2016-02-17

    The radical degradation of Pt-based catalysts toward oxygen reduction reaction (ORR), predominantly caused by the oxidation of carbon supports, heavily blocks the commercialization of polymer electrolyte membrane fuel cells (PEMFCs). As reported, the electrochemical oxidation of carbon could be accelerated by Pt catalysts; however, hitherto no direct evidence is present for the promotion of Pt catalysts. Herein, a unique ultrathin carbon layer (approximately 2.9 nm in thickness) covered Pt catalyst (Pt/C-GC) is designed and synthesized by a chemical vapor deposition (CVD) method. This magnifies the catalysis effect of Pt to carbon oxidation due to the greatly increased contact sites between the metal-support, making it easy to investigate the carbon oxidation process by observing the thinning of the carbon layer on Pt nanoparticles from TEM observations. Undoubtedly, this finding can better guide the structural design of the durable metal catalysts for PEMFCs and other applications. PMID:26788962

  2. ELECTROCHEMICAL ADVANCED OXIDATION PROCESS UTILIZING NB-DOPED TIO2 ELECTRODES

    EPA Science Inventory

    An electrochemical advanced oxidation process has been developed utilizing electrodes which generate hydroxyl free radical (HO) by oxidizing water. All substrates tested are oxidized, mostly with reaction rates proportional to the corresponding rate constants for reaction with hy...

  3. ELECTROCHEMICAL ADVANCED OXIDATION PROCESS UTILIZING NB-DOPED TIO2 ELECTRODES

    EPA Science Inventory

    An electrochemical advanced oxidation process has been developed, utilizing electrodes which generate hydroxyl free radical (HO) by oxidizing water. All substrates tested are oxidized, mostly with reaction rates proportional to the corresponding rate constants for reaction with h...

  4. Parallel electrochemical treatment system and application for identifying acid-stable oxygen evolution electrocatalysts.

    PubMed

    Jones, Ryan J R; Shinde, Aniketa; Guevarra, Dan; Xiang, Chengxiang; Haber, Joel A; Jin, Jian; Gregoire, John M

    2015-02-01

    Many energy technologies require electrochemical stability or preactivation of functional materials. Due to the long experiment duration required for either electrochemical preactivation or evaluation of operational stability, parallel screening is required to enable high throughput experimentation. Imposing operational electrochemical conditions to a library of materials in parallel creates several opportunities for experimental artifacts. We discuss the electrochemical engineering principles and operational parameters that mitigate artifacts in the parallel electrochemical treatment system. We also demonstrate the effects of resistive losses within the planar working electrode through a combination of finite element modeling and illustrative experiments. Operation of the parallel-plate, membrane-separated electrochemical treatment system is demonstrated by exposing a composition library of mixed-metal oxides to oxygen evolution conditions in 1 M sulfuric acid for 2 h. This application is particularly important because the electrolysis and photoelectrolysis of water are promising future energy technologies inhibited by the lack of highly active, acid-stable catalysts containing only earth abundant elements. PMID:25561243

  5. Simultaneous Electrochemical Reduction and Delamination of Graphene Oxide Films.

    PubMed

    Wang, Xiaohan; Kholmanov, Iskandar; Chou, Harry; Ruoff, Rodney S

    2015-09-22

    Here we report an electrochemical method to simultaneously reduce and delaminate graphene oxide (G-O) thin films deposited on metal (Al and Au) substrates. During the electrochemical reaction, interface charge transfer between the G-O thin film and the electrode surface was found to be important in eliminating oxygen-containing groups, yielding highly reduced graphene oxide (rG-O). In the meantime, hydrogen bubbles were electrochemically generated at the rG-O film/electrode interface, propagating the film delamination. Unlike other metal-based G-O reduction methods, the metal used here was either not etched at all (for Au) or etched a small amount (for Al), thus making it possible to reuse the substrate and lower production costs. The delaminated rG-O film exhibits a thickness-dependent degree of reduction: greater reduction is achieved in thinner films. The thin rG-O films having an optical transmittance of 90% (λ = 550 nm) had a sheet resistance of 6390 ± 447 Ω/□ (ohms per square). rG-O-based stretchable transparent conducting films were also demonstrated. PMID:26257072

  6. Electrochemical & Thermochemical Behavior of Cerium(IV) Oxide delta

    NASA Astrophysics Data System (ADS)

    Chueh, William C.

    The mixed-valent nature of nonstoichiometric ceria (CeO2-delta ) gives rise to a wide range of intriguing properties, such as mixed ionic and electronic conduction and oxygen storage. Surface and transport behavior in rare-earth (samaria) doped and undoped ceria were investigated, with particular emphasis on applications in electrochemical and thermochemical energy conversion processes such as fuel cells and solar fuel production. The electrochemical responses of bulk-processed ceria with porous Pt and Au electrodes were analyzed using 1-D and 2-D transport models to decouple surface reactions, near-surface transport and bulk transport. Combined experimental and numerical results indicate that hydrogen electro-oxidation and hydrolysis near open-circuit conditions occur preferentially over the ceria | gas interface rather than over the ceria | gas | metal interface, with the rate-limiting step likely to be either surface reaction or transport through the surface oxygen vacancy depletion layer. In addition, epitaxial thin films of ceria were grown on zirconia substrates using pulsed-laser deposition to examine electrocatalysis over well-defined microstructures. Physical models were derived to analyze the electrochemical impedance response. By varying the film thickness, interfacial and chemical capacitance were decoupled, with the latter shown to be proportional to the small polaron densities. The geometry of microfabricated metal current collectors (metal = Pt, Ni) was also systematically varied to investigate the relative activity of the ceria | gas and the ceria | metal | gas interfaces. The data suggests that the electrochemical activity of the metal-ceria composite is only weakly dependent on the metal due to the relatively high activity of the ceria | gas interface. In addition to electrochemical experiments, thermochemical reduction-oxidation studies were performed on ceria. It was shown that thermally-reduced ceria, upon exposure to H 2O and/or CO2, can be

  7. Case Studies in the Electrochemical Treatment of Wastewater Containing Organic Pollutants Using BDD

    NASA Astrophysics Data System (ADS)

    Polcaro, Anna Maria; Mascia, M.; Palmas, S.; Vacca, A.

    A critical review is presented in this chapter on the possible applications of boron-doped diamond (BDD) as anode material to perform oxidation of organic compounds in aqueous solution. The oxidation of model substances is studied as well as that of the main classes of pollutants, such as phenols, dyes, pesticides and drugs, surfactants, which make some problems of degradation with the traditional wastewater treatments. The presented results indicate that organic compounds refractory to other oxidation techniques are successfully oxidized at BDD, even if the reaction mechanism is differently dependent on the organic compound and the electrolyte composition. Economic considerations reveal that electrochemical oxidations at BDD are less expensive than other advanced oxidation processes, indicating that in the near future this technology can become a competitive treatment for the removal of refractory compounds from wastewater.

  8. Simultaneous hydrogen production and electrochemical oxidation of organics using boron-doped diamond electrodes.

    PubMed

    Jiang, Juyuan; Chang, Ming; Pan, Peng

    2008-04-15

    This paper presents advantages of using a boron-doped diamond (BDD) electrode for hydrogen production and wastewater treatment in a single electrochemical cell. Results indicated that the BDD electrode possessed the widest known electrochemical window, allowing new possibilities for both anodic and cathodic reactions to simultaneously take place. The BDD electrode exhibited high anodic potential, generating high oxidation state radicals that facilitated oxidation of toxic waste organic compounds such as 4-nitrophenols. In contrast, because of widening of potential windows, the rate of hydrogen evolution at the cathode was significantly increased. Time-on-stream concentrations of reaction intermediates were monitored to elucidate mechanism involved in 4-nitrophenol oxidation. Spalling, fouling, or reduction in the thickness of thin-film diamond coating was not observed. Overall, the BDD electrode exhibits unique properties including chemical inertness, anticorrosion, and extended service life. These properties are especially important in wastewater treatment. Economic advantages were attributed to the low cost and long duration BDD electrode and the valuable hydrogen byproduct produced. Analysis has shown that technology associated with the BDD electrode could be effectively implemented with minimum energy input and capital requirements. When combined with solar energy and fuel cells, electrochemical wastewater processing can become energy efficient and cost-effective. PMID:18497166

  9. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  10. Exfoliated graphite-ruthenium oxide composite electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Mitra, Sagar; Lokesh, K. S.; Sampath, S.

    The performance of exfoliated graphite (EG)-ruthenium oxide (RuO x) composites as binderless electrodes is evaluated for electrochemical capacitors (ECs). A composite of EG-RuO x is prepared by a modified sol-gel process. The material is characterized using X-ray diffraction and microscopy. Electrochemical capacitors with the composite electrodes in the presence of aqueous sulfuric acid (H 2SO 4) electrolyte are evaluated using voltammetry, impedance and charge-discharge studies. Cyclic voltammetry reveals very stable current-voltage behaviour up to several thousands of cycles, as well as high specific capacitances, e.g., a few hundreds of farads per gram for the composite that contains 16.5 wt.% RuO x.

  11. Trivalent chromium pre-treatment for corrosion protection of aluminum alloys -- an electrochemical evaluation

    SciTech Connect

    Agarwala, V.S.; Beckert, D.W.; Fabiszewski, A.S.; Pearlstein, F.

    1994-12-31

    A corrosion resistant chemical conversion coating on aluminum alloys was developed using a trivalent chromium bath. Electrochemical impedance spectroscopy and dc-polarization measurements were made to determine the nature of the surface films formed. The results showed a 10 to 100 fold increase in the polarization resistance of the surface films compared to the untreated aluminum alloy. These electrochemical results compared well with the corrosion behavior in salt spray tests. The trivalent chromium-treated surfaces showed no corrosion for up to 200 hours in 5% salt spray. A post-treatment with an oxidizer even further improved its resistance which almost doubled its corrosion protection.

  12. [Degradation of aniline by a dual-electrode electrochemical oxidation process].

    PubMed

    Cen, Shi-Hong; Song, Xiao-Yan; Chu, Yan-Yang

    2011-08-01

    The efficiency and the mechanism of aniline degradation by an electrochemical oxidation process using a Ti/SnO2-Sb2O5 electrode as the anode and a graphite electrode as the cathode, were studied in two aqueous electrolytes with/without Fe2+. The results showed that the reasonable anodic potential was about 2.0 V +/- 0.1 V for Ti/SnO2-Sb2O5 electrode to oxidize organic compounds, while the optimum cathodic potential was -0.65 V for graphite electrode to reduce O2 generating H2O2. The oxidation degradation of aniline could not take place only by the single action of H2O2. Anodic oxidation was accounted for the degradation of aniline in the absence of Fe2+, while in the presence of Fe2+ both electro-Fenton oxidation and anodic oxidation (dual-electrode electrochemical oxidation) could degradate aniline effectively, and in this case the former was the main mechanism. Under the conditions of -0.65 V cathodic potential, pH 3.0 and 0.5 mmol x L(-1) Fe2+, the removal rate of COD was 77.5% after 10 h treatment and a current efficiency of 97.8% for COD removal could be obtained. This work indicates that the dual-electrode electrochemical oxidation is feasible for the degradation of organic compounds with a high current efficiency by using Ti/SnO2-Sb2O5 as anode as well as the reasonable anodic and cathodic potentials. PMID:22619954

  13. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  14. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  15. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Riley, Brian; Szreders, Bernard E.

    1988-04-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approx. 1100 to 1300 C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20 and 50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  16. Scalable and sustainable electrochemical allylic C-H oxidation.

    PubMed

    Horn, Evan J; Rosen, Brandon R; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D; Baran, Phil S

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact. PMID:27096371

  17. Scalable and sustainable electrochemical allylic C–H oxidation

    NASA Astrophysics Data System (ADS)

    Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-05-01

    New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C–H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C–H oxidation (demonstrated on 100 grams), enabling the adoption of this C–H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  18. Wet Electrolytic Oxidation of Organics and Application for Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Serikawa, Roberto M.

    Wet electrolytic oxidation (WEO) is electrochemical oxidation conducted at subcritical water temperature and pressure. Under these conditions, the electrolytic reaction of water is very different from the reaction usually seen in water electrolysis. Electrolysis of an aqueous NaCl solution at 250°C proceeds without the evolution of any oxygen, chlorine or even hydrogen. Rapid oxidation of organics to CO2 occurs in WEO with the production of hydrogen. Further addition of an oxidizer enhances the electrochemical oxidation of organics with the suppression of hydrogen evolution. AOX compounds found in usual electrooxidation are not formed in WEO treatment. When WEO is applied to sludge treatment, colors are drastically reduced and there is an increase in the yield of organic acids. The biodegradability increases by up to 50% and the treated water shows higher methane yields during anaerobic fermentation.

  19. Corner heating in rectangular solid oxide electrochemical cell generators

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

  20. Synthesis and electrochemical performance of hierarchical nano-vanadium oxide.

    PubMed

    Mjejri, I; Sediri, F

    2016-10-15

    Hierarchically structured nano-vanadium oxides with different morphologies have been synthesized via a template-free hydrothermal route by adjusting the organic precursor quantities. The effects of molar ratio on structure, morphology and crystallite sized were investigated. The possible growth mechanism is also proposed. When evaluated as a cathode material for lithium-ion batteries, the vanadium oxyhydroxide H2V3O8 samples deliver very high charging capacity, good reversibility and a better cycling stability. The excellent electrochemical performance is attributed to multiple advantageous structural features. PMID:27442146

  1. Electrochemical oxidation of hydrazine and its derivatives on the surface of metal electrodes in alkaline media

    NASA Astrophysics Data System (ADS)

    Asazawa, Koichiro; Yamada, Koji; Tanaka, Hirohisa; Taniguchi, Masatoshi; Oguro, Keisuke

    Electrochemical oxidation of hydrazine and its derivatives on the surface of various metal electrodes in alkaline media was investigated. A comparison of various polycrystalline metal electrodes (Ni, Co, Fe, Cu, Ag, Au, and Pt) showed that Co and Ni electrodes have a lower onset potential for hydrazine oxidation than the Pt electrode. The onset oxidation potential of APA (aminopolyacrylamide), a hydrazine derivative (-0.127 V vs. reversible hydrogen electrode, RHE), was similar to that of hydrazine hydrate (-0.178 V vs. RHE) in the case of the Co electrode. APA oxidation was possible because of hydrazine desorption that was caused by APA hydrolysis. The hydrolysis reaction was brought about by a heat treatment. This result suggests that the hydrazine hydrolysis reaction of hydrazine derivatives makes it possible to store hydrazine hydrate safely.

  2. Functionalizing Aluminum Oxide by Ag Dendrite Deposition at the Anode during Simultaneous Electrochemical Oxidation of Al.

    PubMed

    Rafailović, Lidija D; Gammer, Christoph; Rentenberger, Christian; Trišović, Tomislav; Kleber, Christoph; Karnthaler, Hans Peter

    2015-11-01

    A novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications. PMID:26398487

  3. Electrochemical protection of Zr against SCC by oxidizing HCl solutions

    SciTech Connect

    Yaiu, T.; Maguire, M.

    1985-07-01

    Results are reported for electrochemical protection of zirconium in HCl containing 500 ppm ferric ions. Corrosion rate and pit propagation rate data as a function of acid concentration (10 to 37%) and temperature (25 to 107 C) are presented first as a basis for observations of SCC and/or intergranular attack associated with weld metals. U-bend, C-ring, sustained load tensile, and slow strain-rate tests were used and compared to define conditions where SCC occurs. Along with electrochemical protection, heat treatment and reducing the ferric ion concentration are presented as ways to alleviate local attack. Metallography was used both to define the mode of attack and to show the benefits of protection techniques.

  4. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Yu, Zhiming; Wei, Qiuping; Long, HangYu; Xie, Youneng; Wang, Yijia

    2016-07-01

    In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH3sbnd N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm-2, pH 5.16, flow velocity 6 L h-1. Under these conditions, 87.5% COD and 74.06% NH3sbnd N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m-3. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  5. Electrochemically tunable thermal conductivity of lithium cobalt oxide

    NASA Astrophysics Data System (ADS)

    Cho, Jiung; Losego, Mark D.; Zhang, Hui Gang; Kim, Honggyu; Zuo, Jianmin; Petrov, Ivan; Cahill, David G.; Braun, Paul V.

    2014-06-01

    Using time-domain thermoreflectance, the thermal conductivity and elastic properties of a sputter deposited LiCoO2 film, a common lithium-ion cathode material, are measured as a function of the degree of lithiation. Here we report that via in situ measurements during cycling, the thermal conductivity of a LiCoO2 cathode reversibly decreases from ~5.4 to 3.7 W m-1 K-1, and its elastic modulus decreases from 325 to 225 GPa, as it is delithiated from Li1.0CoO2 to Li0.6CoO2. The dependence of the thermal conductivity on lithiation appears correlated with the lithiation-dependent phase behaviour. The oxidation-state-dependent thermal conductivity of electrolytically active transition metal oxides provides opportunities for dynamic control of thermal conductivity and is important to understand for thermal management in electrochemical energy storage devices.

  6. Electrochemically tunable thermal conductivity of lithium cobalt oxide.

    PubMed

    Cho, Jiung; Losego, Mark D; Zhang, Hui Gang; Kim, Honggyu; Zuo, Jianmin; Petrov, Ivan; Cahill, David G; Braun, Paul V

    2014-01-01

    Using time-domain thermoreflectance, the thermal conductivity and elastic properties of a sputter deposited LiCoO2 film, a common lithium-ion cathode material, are measured as a function of the degree of lithiation. Here we report that via in situ measurements during cycling, the thermal conductivity of a LiCoO2 cathode reversibly decreases from ~5.4 to 3.7 W m(-1) K(-1), and its elastic modulus decreases from 325 to 225 GPa, as it is delithiated from Li1.0CoO2 to Li0.6CoO2. The dependence of the thermal conductivity on lithiation appears correlated with the lithiation-dependent phase behaviour. The oxidation-state-dependent thermal conductivity of electrolytically active transition metal oxides provides opportunities for dynamic control of thermal conductivity and is important to understand for thermal management in electrochemical energy storage devices. PMID:24892640

  7. Electrochemical formation of a composite polymer-aluminum oxide film

    NASA Astrophysics Data System (ADS)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  8. Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water.

    PubMed

    Radjenovic, Jelena; Sedlak, David L

    2015-10-01

    Electrochemical processes have been extensively investigated for the removal of a range of organic and inorganic contaminants. The great majority of these studies were conducted using nitrate-, perchlorate-, sulfate-, and chloride-based electrolyte solutions. In actual treatment applications, organic and inorganic constituents may have substantial effects on the performance of electrochemical treatment. In particular, the outcome of electrochemical oxidation will depend on the concentration of chloride and bromide. Formation of chlorate, perchlorate, chlorinated, and brominated organics may compromise the quality of the treated effluent. A critical review of recent research identifies future opportunities and research needed to overcome major challenges that currently limit the application of electrochemical water treatment systems for industrial and municipal water and wastewater treatment. Given the increasing interest in decentralized wastewater treatment, applications of electrolytic systems for treatment of domestic wastewater, greywater, and source-separated urine are also included. To support future adoption of electrochemical treatment, new approaches are needed to minimize the formation of toxic byproducts and the loss of efficiency caused by mass transfer limitations and undesired side reactions. Prior to realizing these improvements, recognition of the situations where these limitations pose potential health risks is a necessary step in the design and operation of electrochemical treatment systems. PMID:26370517

  9. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    NASA Astrophysics Data System (ADS)

    Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero-Romo, M.

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ , that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  10. Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools.

    PubMed

    Belaid, Chokri; Khadraoui, Moncef; Mseddii, Salma; Kallel, Monem; Elleuch, Boubaker; Fauvarque, Jean Frangois

    2013-01-01

    Problems related with industrials effluents can be divided in two parts: (1) their toxicity associated to their chemical content which should be removed before discharging the wastewater into the receptor media; (2) and the second part is linked to the difficulties of pollution characterisation and monitoring caused by the complexity of these matrixes. This investigation deals with these two aspects, an electrochemical treatment method of an olive mill wastewater (OMW) under platinized expanded titanium electrodes using a modified Grignard reactor for toxicity removal as well as the exploration of the use of some specific analytical tools to monitor effluent phenolic compounds elimination. The results showed that electrochemical oxidation is able to remove/mitigate the OMW pollution. Indeed, 87% of OMW color was removed and all aromatic compounds were disappeared from the solution by anodic oxidation. Moreover, 55% of the chemical oxygen demand (COD) and the total organic carbon (TOC) were reduced. On the other hand, UV-Visible spectrophotometry, Gaz chromatography/mass spectrometry, cyclic voltammetry and 13C Nuclear Magnetic Resonance (NMR) showed that the used treatment seems efficaciously to eliminate phenolic compounds from OMW. It was concluded that electrochemical oxidation in a modified Grignard reactor is a promising process for the destruction of all phenolic compounds present in OMW. Among the monitoring analytical tools applied, cyclic voltammetry and 13C NMR a re among th e techniques that are introduced for thefirst time to control the advancement of the OMW treatment and gave a close insight on polyphenols disappearance. PMID:23586318

  11. ELECTROCHEMICAL PROCESSES FOR IN-SITU TREATMENT OF CONTAMINATED SOILS

    EPA Science Inventory

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected from selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic per...

  12. SERS speciation of the electrochemical oxidation-reduction of riboflavin.

    PubMed

    Bailey, Matthew R; Schultz, Zachary D

    2016-08-15

    The reduction and oxidation of the flavin system is an important electron transfer reaction in biological systems. Several reaction pathways exist to connect oxidized to fully reduced riboflavin, each with unique intermediates including a semi-quinone radical. By performing surface-enhanced Raman scattering (SERS) with simultaneous electrochemical detection of riboflavin at different pH values, we are able to correlate reversible changes in spectral features to the current changes observed in the cyclic voltammetry. Multivariate curve resolution analysis of the SERS spectra indicates that three distinct components were present at the SERS electrode at each pH during the potential sweep. To verify and better understand the variations in Raman bands across the voltammogram, density functional theory (DFT) calculations were performed to model the effect of pH and oxidation state on the riboflavin Raman spectrum. The calculated spectra show qualitative agreement with the species identified in the chemometric analysis. This combination of results indicates the presence of the oxidized, semi-quinone, and reduced forms of riboflavin and provides insight into the mechanism of the flavin redox system. PMID:27297697

  13. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light.

    PubMed

    López-Grimau, V; Gutiérrez, M C

    2006-01-01

    This study is focused on the optimisation of the electrochemical decolourisation of textile effluents containing reactive dyes with the aim of making feasible-technically and economically-this method at industrial scale. Coloured waters were treated in continuous at low current density, to reduce the electrical consumption. Ti/PtO(x) electrodes were used to oxidize simulated dyebaths prepared with an azo/dichlorotriazine reactive dye (C.I. Reactive Orange 4). The decolourisation yield was dependent on the dyeing electrolyte (NaCl or Na(2)SO(4)). Dyeing effluents which contained from 0.5 to 20 gl(-1) of NaCl reached a high decolourisation yield, depending on the current density, immediately after the electrochemical process. These results were improved when the effluents were stored for several hours under solar light. After the electrochemical treatment the effluents were stored in a tank and exposed under different lighting conditions: UV light, solar light and darkness. The evolution of the decolourisation versus the time of storage was reported and kinetic constants were calculated. The time of storage was significantly reduced by the application of UV light. A dye mineralization study was also carried out on a concentrated dyebath. A TOC removal of 81% was obtained when high current density was applied for a prolonged treatment with recirculation. This treatment required a high electrical consumption. PMID:15893798

  14. Electrochemical production of hydrogen coupled with the oxidation of arsenite.

    PubMed

    Kim, Jungwon; Kwon, Daejung; Kim, Kitae; Hoffmann, Michael R

    2014-01-01

    The production of hydrogen accompanied by the simultaneous oxidation of arsenite (As(III)) was achieved using an electrochemical system that employed a BiOx-TiO2 semiconductor anode and a stainless steel (SS) cathode in the presence of sodium chloride (NaCl) electrolyte. The production of H2 was enhanced by the addition of As(III) during the course of water electrolysis. The synergistic effect of As(III) on H2 production can be explained in terms of (1) the scavenging of reactive chlorine species (RCS), which inhibit the production of H2 by competing with water molecules (or protons) for the electrons on the cathode, by As(III) and (2) the generation of protons, which are more favorably reduced on the cathode than water molecules, through the oxidation of As(III). The addition of 1.0 mM As(III) to the electrolyte at a constant cell voltage (E cell) of 3.0 V enhanced the production of H2 by 12% even though the cell current (I cell) was reduced by 5%. The net effect results in an increase in the energy efficiency (EE) for H2 production (ΔEE) by 17.5%. Furthermore, the value ΔEE, which depended on As(III) concentration, also depended on the applied E cell. For example, the ΔEE increased with increasing As(III) concentration in the micromolar range but decreased as a function of E cell. This is attributed to the fact that the reactions between RCS and As(III) are influenced by both RCS concentration depending on E cell and As(III) concentration in the solution. On the other hand, the ΔEE decreased with increasing As(III) concentration in the millimolar range due to the adsorption of As(V) generated from the oxidation of As(III) on the semiconductor anode. In comparison to the electrochemical oxidation of certain organic compounds (e.g., phenol, 4-chlorophenol, 2-chlorophenol, salicylic acid, catechol, maleic acid, oxalate, and urea), the ΔEE obtained during As(III) oxidation (17.5%) was higher than that observed during the oxidation of the above organic compounds

  15. Research trends in electrochemical technology for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2015-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  16. Physical and electrochemical study of cobalt oxide nano- and microparticles

    SciTech Connect

    Alburquenque, D.; Vargas, E.; Denardin, J.C.; Escrig, J.; Marco, J.F.; Gautier, J.L.

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  17. A novel method for photodegradation of high-chroma dye wastewater via electrochemical pre-oxidation.

    PubMed

    Zhao, Kunjiao; Zhao, Guohua; Li, Peiqiang; Gao, Junxia; Lv, Baoying; Li, Dongming

    2010-06-01

    A new two-step process involving the electrocatalytic (EC) pre-oxidation and the following photoelectrocatalytic synergistic (PEC) oxidation is proposed to treat the high concentration and high-chroma methyl orange dye wastewater, which cannot be degraded by photocatalytic oxidation (PC) directly. The SnO(2)/TiO(2)-NTs/Ti electrode simultaneously possessing the outstanding PC oxidation properties of TiO(2)-NTs and the excellent EC oxidation abilities of the Sb doped SnO(2) was synthesized by impregnating Sb doped SnO(2) nanoparticles into TiO(2)-NTs. In the pre-oxidation process as the first stage, the high-color dye wastewater is decolorized with electrochemical method to some extent. Then, the wastewater becomes a light transmission system. It provides a suitable condition for PC oxidation reaction in the second stage. The synergistic effects of PC and EC oxidation led to the high PEC efficiency and the complete mineralization of dye wastewater is achieved. This two-step process is fast and efficient, which is worthy to study and explore in the practical environmental treatment. PMID:20434754

  18. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pathania, Deepak; Katwal, Rishu; Kaur, Harpreet

    2016-03-01

    In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

  19. Vanadium oxides nanostructures: Hydrothermal synthesis and electrochemical properties

    SciTech Connect

    Mjejri, I.; Etteyeb, N.; Sediri, F.

    2014-12-15

    Highlights: • Vanadium oxides nanostructures were synthesized hydrothermally. • Reversible redox behavior with doping/dedoping process. • Doping/dedoping is easier for Li{sup +} to Na{sup +}. • Energy-related applications such as cathodes in lithium batteries. - Abstract: A facile and template-free one-pot strategy is applied to synthesize nanostructured vanadium oxide particles via a hydrothermal methodology. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to characterize the structure and morphology of the samples. The products are gradually changed from sheet-shaped VO{sub 2}(B) to rod-like V{sub 3}O{sub 7}·H{sub 2}O with decreasing cyclohexanediol as both protective and reducing agent. The specific surface area of the VO{sub 2}(B) nanosheets and V{sub 3}O{sub 7}·H{sub 2}O nanorods was found to be 22 and 16 m{sup 2} g{sup −1}, respectively. Thin films of VO{sub 2}(B) and V{sub 3}O{sub 7}·H{sub 2}O deposited on ITO substrates were electrochemically characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The voltammograms show reversible redox behavior with doping/dedoping process corresponding to reversible cation intercalation/de-intercalation into the crystal lattice of the nanorods/nanosheets. This process is easier for the small Li{sup +} cation than larger ones Na{sup +}.

  20. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application.

    PubMed

    Ping, Jianfeng; Wang, Yixian; Fan, Kai; Wu, Jian; Ying, Yibin

    2011-10-15

    A novel electrochemical biosensing platform using electrochemically reduced graphene oxide (ER-GNO) modified electrode was proposed. This modified electrode was prepared by one-step electrodeposition of the exfoliated GNO sheets onto the ionic liquid doped screen-printed electrode (IL-SPE). The resulting ER-GNO/IL-SPE brought new capabilities for electrochemical devices by combining the advantages of ER-GNO and disposable electrode. Two important biomolecules, nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)), were employed to study the electrochemical performance of the ER-GNO/IL-SPE, which exhibited more favorable electron transfer kinetics than the bare IL-SPE. On the basis of the greatly enhanced electrochemical reactivity of H(2)O(2) at the developed electrode, ER-GNO and glucose oxidase constructed disposable biosensor showed better analytical performance for the glucose detection compared with the IL-SPE based biosensor. The linear range for the detection of glucose was from 5.0 μM to 12.0 mM with a detection limit of 1.0 μM. This work provides a useful avenue for implementing ER-GNO as a new generation of electrochemical transducer in disposable electrode, which could expand the scope of graphene constructed electrochemical biosensing devices and hold great promise for routine sensing applications. PMID:21807494

  1. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe2O3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV-visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  2. Electrochemical oxidation of butein at glassy carbon electrodes.

    PubMed

    Tesio, Alvaro Yamil; Robledo, Sebastián Noel; Fernández, Héctor; Zon, María Alicia

    2013-06-01

    The electrochemical oxidation of flavonoid butein is studied at glassy carbon electrodes in phosphate and citrate buffer solutions of different pH values, and 1M perchloric acid aqueous solutions by cyclic and square wave voltammetries. The oxidation peak corresponds to the 2e(-), 2H(+) oxidation of the 3,4-dihydroxy group in B ring of butein, given the corresponding quinone species. The overall electrode process shows a quasi-reversible behavior and an adsorption/diffusion mixed control at high butein bulk concentrations. At low butein concentrations, the electrode process shows mainly an adsorption control. Butein surface concentration values were obtained from the charge associated with the adsorbed butein oxidation peaks, which are in agreement with those values expected for the formation of a monolayer of adsorbate in the concentration range from 1 to 5μM. Square wave voltammetry was used to perform a full thermodynamic and kinetics characterization of the butein surface redox couple. Therefore, from the combination of the "quasi-reversible maximum" and the "splitting of the net square wave voltammetric peak" methods, values of (0.386±0.003) V, (0.46±0.04), and 2.7×10(2)s(-1) were calculated for the formal potential, the anodic transfer coefficient, and the formal rate constant, respectively, of the butein overall surface redox process in pH4.00 citrate buffer solutions. These results will be then used to study the interaction of butein, and other flavonoids with the deoxyribonucleic acid, in order to better understand the potential therapeutic applications of these compounds. PMID:23434740

  3. Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Staiti, P.; Lufrano, F.

    A manganese oxide material was synthesised by an easy precipitation method based on reduction of potassium permanganate(VII) with a manganese(II) salt. The material was treated at different temperatures to study the effect of thermal treatment on capacitive property. The best capacitive performance was obtained with the material treated at 200 °C. This material was used to prepare electrodes with different amounts of polymer binder, carbon black and graphite fibres to individuate the optimal composition that gave the best electrochemical performances. It was found that graphite fibres improve the electrochemical performance of electrodes. The highest specific capacitance (267 F g -1 MnO x) was obtained with an electrode containing 70% of MnO x, 15% of carbon black, 10% of graphite fibres and 5% of PVDF. This electrode, with CB/GF ratio of 1.5, showed a higher utilization of manganese oxide. The results reported in the present paper further confirmed that manganese oxide is a very interesting material for supercapacitor application.

  4. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  5. Electrochemically Reduced Water Protects Neural Cells from Oxidative Damage

    PubMed Central

    Hamasaki, Takeki; Kinjo, Tomoya; Nakamichi, Noboru; Teruya, Kiichiro; Kabayama, Shigeru

    2014-01-01

    Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50–200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca2+ influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW. PMID:25383141

  6. Electrochemically reduced water protects neural cells from oxidative damage.

    PubMed

    Kashiwagi, Taichi; Yan, Hanxu; Hamasaki, Takeki; Kinjo, Tomoya; Nakamichi, Noboru; Teruya, Kiichiro; Kabayama, Shigeru; Shirahata, Sanetaka

    2014-01-01

    Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50-200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca(2+) influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW. PMID:25383141

  7. Influence of electrochemical reduction and oxidation processes on the decolourisation and degradation of C.I. Reactive Orange 4 solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-06-01

    The electrochemical treatment of wastewaters from textile industry is a promising treatment technique for substances which are resistant to biodegradation. This paper presents the results of the electrochemical decolourisation and degradation of C.I. Reactive Orange 4 synthetic solutions (commercially known as Procion Orange MX2R). Electrolyses were carried out under galvanostatic conditions in a divided or undivided electrolytic cell. Therefore, oxidation, reduction or oxido-reduction experiences were tested. Ti/SnO(2)-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively. Degradation of the dye was followed by TOC, total nitrogen, COD and BOD(5) analyses. TOC removal after an oxidation process was higher than after oxido-reduction while COD removal after this last process was about 90%. Besides, the biodegradability of final samples after oxido-reduction process was studied and an improvement was observed. UV-Visible spectra revealed the presence of aromatic structures in solution when an electro-reduction was carried out while oxido-reduction process degraded both azo group and aromatic structures. HPLC analyses indicated the presence of a main intermediate after the reduction process with a chemical structure closely similar to 2-amine-1, 5-naphthalenedisulfonic acid. The lowest decolourisation rate corresponded to electrochemical oxidation. In these experiences a higher number of intermediates were generated as HPLC analysis demonstrated. The decolourisation process for the three electrochemical processes studied presented a pseudo-first order kinetics. PMID:19345978

  8. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (<100 mg L(-1), the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. PMID:21377794

  9. Electrochemical treatment of Procion Black 5B using cylindrical flow reactor--a pilot plant study.

    PubMed

    Raghu, S; Basha, C Ahmed

    2007-01-10

    The paper presents the results of an efficient electrochemical treatment of Procion Black 5B--a pilot plant study. Experiments were conducted at different current densities and selected electrolyte medium using Ti/RuO2 as anode, stainless-steel as cathode in a cylindrical flow reactor. By cyclic voltammetric analysis, the best condition for maximum redox reaction rate was found to be in NaCl medium. During the various stages of electrolysis, parameters such as COD, colour, FTIR, UV-vis spectra studies, energy consumption and mass transfer coefficient were computed and presented. The experimental results showed that the electrochemical oxidation process could effectively remove colour and the chemical oxygen demand (COD) from the synthetic dye effluent. The maximum COD reduction and colour removal efficiencies were 74.05% and 100%, respectively. Probable theory, reaction mechanism and modeling were proposed for the oxidation of dye effluent. The results obtained reveal the feasibilities of application of electrochemical treatment for the degradation of Procion Black 5B. PMID:17008006

  10. Electrochemically Deposited Ceria Structures for Advanced Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Brown, Evan C.

    As the pursuit towards emissions reduction intensifies with growing interest and nascent technologies, solid oxide fuel cells (SOFCs) remain an illustrious candidate for achieving our goals. Despite myriad advantages, SOFCs are still too costly for widespread deployment, even as unprecedented materials developments have recently emerged. This suggests that, in addition to informed materials selection, the necessary power output--and, thereby, cost-savings--gains must come from the fuel cell architecture. The work presented in this manuscript primarily investigates cathodic electrochemical deposition (CELD) as a scalable micro-/nanoscale fabrication tool for engineering ceria-based components in a SOFC assembly. Also, polymer sphere lithography was utilized to deposit fully connected, yet fully porous anti-dot metal films on yttira-stabilized zirconia (YSZ) with specific and knowable geometries, useful for mechanistic studies. Particular attention was given to anode structures, for which anti-dot metal films on YSZ served as composite substrates for subsequent CELD of doped ceria. By tuning the applied potential, a wide range of microstructures from high surface area coatings to planar, thin films was possible. In addition, definitive deposition was shown to occur on the electronically insulating YSZ surfaces, producing quality YSZ|ceria interfaces. These CELD ceria deposits exhibited promising electrochemical activity, as probed by A.C. Impedance Spectroscopy. In an effort to extend its usefulness as a SOFC fabrication tool, the CELD of ceria directly onto common SOFC cathode materials without a metallic phase was developed, as well as templated deposition schemes producing ceria nanowires and inverse opals.

  11. Electrochemical and microstructural study of oxide films formed electrochemically at microcrystalline Al-Fe-V-Si alloys.

    PubMed

    Thomas, S C; Birss, V I; Steele, D; Tessier, D

    1995-07-01

    A recent advance in metallurgical technology has been the application of rapid solidification techniques to Al alloy production. FVS0812 is the designation given to a microcrystalline Al-based alloy consisting of 8 wt% Fe, 1 wt% V and 2 wt% Si. It is a two-phase alloy, consisting of ca. 27 vol percent of approximately spherical Fe-V-Si-rich dispersoids in an essentially pure Al matrix. The high strength, low density properties of this advanced material, and other related alloys, have not yet been realized, however, due, in part, to the inability of the alloy to form a thick, adherent, abrasion-resistant outer surface oxide film, a feature readily achieved at conventional Al alloys by normal anodizing methods. The present research has involved an electro-chemical study of oxide film growth at the 812 alloy, with the specific goals being to seek an understanding of the origin of the oxide film growth problem and ultimately to propose alternative approaches to the formation of a thick, stable oxide film at this material. The techniques used in this research have included electrochemical methodologies such as cyclic voltammetry and electrochemical impedance spectroscopy. Crucial information has been obtained through transmission electron microscopy (TEM) of ultramicrotomed specimens. Experiments were carried out initially in neutral borate solutions to characterize the compact barrier oxide film formed in this environment and expected to be present beneath the porous oxide film formed in the normal sulfuric acid anodizing medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7549001

  12. Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lang, Junwei; Yan, Xingbin; Xue, Qunji

    A series of cobalt oxide/multi-walled carbon nanotube (Co 3O 4/MWCNT) composites are successfully synthesized by a facile chemical co-precipitation method followed by a simple thermal treatment process. The morphology and structure of as-obtained composites are characterized by X-ray diffraction, scanning electron microscopy, and N 2-adsorption/desorption measurements, and the electrochemical properties are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). For all Co 3O 4/MWCNT composites, MWCNTs are well dispersed in the loosely packed Co 3O 4 nanoparticles. Among them, the Co 3O 4-5%MWCNT composite exhibits the highest specific surface area of 137 m 2 g -1 and a mesoporous structure with a narrow distribution of pore size from 2 to 10 nm. Because of the synergistic effects coming from Co 3O 4 nanoparticles and MWCNTs, the electrochemical performances of pure Co 3O 4 material are significantly improved after adding MWCNTs. The Co 3O 4-5%MWCNT composite shows the largest specific capacitance of 418 F g -1 at a current density of 0.625 A g -1 in 2 M KOH electrolyte. Furthermore, this composite exhibits good cycling stability and lifetime. Therefore, based on the above investigation, such Co 3O 4/MWCNT composite could be a potential candidate for supercapacitors.

  13. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature. PMID:19647934

  14. Sensitive electrochemical detection of nitric oxide based on AuPt and reduced graphene oxide nanocomposites.

    PubMed

    Liu, Zhonggang; Forsyth, Heidi; Khaper, Neelam; Chen, Aicheng

    2016-06-20

    Since nitric oxide (NO) plays a critical role in many biological processes, its precise detection is essential toward an understanding of its specific functions. Here we report on a facile and environmentally compatible strategy for the construction of an electrochemical sensor based on reduced graphene oxide (rGO) and AuPt bimetallic nanoparticles. The prepared nanocomposites were further employed for the electroanalysis of NO using differential pulse voltammetry (DPV) and amperometric methods. The dependence of AuPt molar ratios on the electrochemical performance was investigated. Through the combination of the advantages of the high conductivity from rGO and highly electrocatalytic activity from AuPt bimetallic nanoparticles, the AuPt-rGO based NO sensor exhibited a high sensitivity of 7.35 μA μM(-1) and a low detection limit of 2.88 nM. Additionally, negligible interference from common ions or organic molecules was observed, and the AuPt-rGO modified electrode demonstrated excellent stability. Moreover, this optimized electrochemical sensor was practicable for efficiently monitoring the NO released from rat cardiac cells, which were stimulated by l-arginine (l-arg), showing that stressed cells generated over 10 times more NO than normal cells. The novel sensor developed in this study may have significant medical diagnostic applications for the prevention and monitoring of disease. PMID:27143513

  15. Electrochemical treatment of the pollutants generated in an ink-manufacturing process.

    PubMed

    Cañizares, P; Louhichi, B; Gadri, A; Nasr, B; Paz, R; Rodrigo, M A; Saez, C

    2007-07-31

    The effluents of ink-manufacturing processes contain a large variety of pollutants such as dyes, surfactants, biocides, water soluble solvents, etc. In this work, the electrochemical oxidation of several dyes (methylene blue and rhodamine B), solvents (monoethylene glycol, diethylene glycol and glycerol) and surfactants (sodium dodecylbenzenesulfonate) has been studied. To carry out the electrolyses, a bench-scale plant with a single-compartment electrochemical flow-cell was used. Boron doped diamond (BDD) was used as anode and stainless steel (AISI 304) as cathode. For all the compounds tested, the conductive diamond electrooxidation allows achieving the almost complete removal of COD of the waste with a very high current efficiency. The efficiencies of the electrochemical processes seem to depend on the current density and on the nature of the anions contained in the waste (chlorine, sulphate, phosphate). Thus, it has been observed that the use of chloride media favours the treatment of dyes. On the contrary, the use of sulphate- or phosphate-containing solutions improves the removal of the aliphatic compounds studied (solvents). These results suggest an important role of the mediated electrochemical processes on the overall performance of the reaction system. PMID:17532123

  16. Electrochemical Treatment for Effectively Tuning Thermoelectric Properties of Free-Standing Poly(3-methylthiophene) Films.

    PubMed

    Hu, Yongjing; Zhu, Danhua; Zhu, Zhengyou; Liu, Endou; Lu, Baoyang; Xu, Jingkun; Zhao, Feng; Hou, Jian; Liu, Huixuan; Jiang, Fengxing

    2016-07-18

    The degree of oxidation of conducting polymers has great influence on their thermoelectric properties. Free-standing poly(3-methylthiophene) (P3MeT) films were prepared by electrochemical polymerization in boron trifluoride diethyl etherate, and the fresh films were treated electrochemically with a solution of propylene carbonate/lithium perchlorate as mediator. The conductivity of the resultant P3MeT films depends on the doping level, which is controlled by a constant potential from -0.5 to 1.4 V. The optimum electrical conductivity (78.9 S cm(-1) at 0.5 V) and a significant increase in the Seebeck coefficient (64.3 μV K(-1) at -0.5 V) are important for achieving an optimum power factor at an optimal potential. The power factor of electrochemically treated P3MeT films reached its maximum value of 4.03 μW m(-1)  K(-2) at 0.5 V. Moreover, after two months, it still exhibited a value of 3.75 μW m(-1)  K(-2) , and thus was more stable than pristine P3MeT due to exchange of doping ions in films under ambient conditions. This electrochemical treatment is a significant alternative method for optimizing the thermoelectric power factor of conducting polymer films. PMID:27062329

  17. Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron.

    PubMed

    Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric

    2014-08-01

    Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2treatment with BDD was the most potent method, yielding 93% mineralization after 360 min at 100 mA cm(-2). In the flow plant, the SPEF process attained a maximum mineralization of 70% at 100 mA cm(-2). Lower current densities slightly reduced the mineralization degree in SPEF, enhancing the current efficiency and dropping the energy consumption. The diuron decay always obeyed a pseudo-first-order kinetics, with a much greater apparent rate constant in EF and SPEF compared to EO-H2O2. Oxalic and oxamic acids were detected as final carboxylic acids. Ammonium and chloride ions were also released, the latter ion being partially converted into chlorate and perchlorate ions at the BDD surface. PMID:24873706

  18. Enhanced electrochemical supercapacitance of binder-free nanoporous ternary metal oxides/metal electrode.

    PubMed

    Gao, J J; Qiu, H-J; Wen, Y R; Chiang, F-K; Wang, Y

    2016-07-15

    Free-standing nanoporous Ni-Cu-Mn mixed metal oxides on metal with a high surface area was fabricated by chemically dealloying a Ni8Cu12Mn80 single-phase precursor, followed by electrochemical oxidation in an alkaline solution. Electrochemical analysis shows that first Cu and Mn-based metal oxides formed by the electrochemical oxidation. Ni-based oxides grow later with the increase of electrochemical CV cycles and mix with the Cu/Mn oxides, forming a relatively stable mixed metal oxides thin film on metal ligament network. Due to the different electrochemical properties of each metal and the synergetic effect between them, the mixed ternary metal oxides formed on metal nano-ligament can operate stably between a wide potential window (1.5V) in 1.0M KOH aqueous solution when tested as a free-standing supercapacitor electrode. Due to the high volumetric surface area, wide operating potential window and excellent conductivity, the nanoporous metal oxides@metal composite exhibits a high volumetric capacitance (∼500Fcm(-3)), high energy density (∼38mWhcm(-3)) and good cycling stability. PMID:27089016

  19. Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation.

    PubMed

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-05-01

    Co3O4 microframes are synthesized through a template-engaged strategy via the etching of Co-Co Prussian blue analogue microcubes with ammonia solution and subsequent annealing treatment. Benefitting from their unique structural merits including 3D open structure and high porosity, these Co3O4 microframes exhibit enhanced electrochemical properties for both lithium-ion batteries and water oxidation. PMID:27078114

  20. Electrochemical and electrochromic behavior of reactively sputtered nickel oxide

    SciTech Connect

    Miller, E.L.; Rocheleau, R.E.

    1997-06-01

    Nickel oxide thin films were deposited by reactive sputtering in a 20% oxygen/argon atmosphere for use as oxygen evolution catalysts in the photoelectrochemical production of hydrogen. The optical properties of the films were also characterized to evaluate their application as window layers. The polycrystalline films deposited at residual gas pressures of 6 or 10 mTorr exhibited moderate activity for oxygen evolution in 1 N KOH and pronounced coloration and bleaching during alternating anodic/cathodic bias. Properties of these films were not sensitive to growth rate over the range studied, 0.5 to 4 {angstrom}/s. In contrast, films deposited at 2 mTorr exhibited poor activity for oxygen evolution and severely limited electrochromic behavior which the authors attribute to marked changes in the morphology and crystallinity in the low-pressure films. The films grown at 6 mTorr and higher tended to be more oriented, to have a higher degree of crystallinity, and higher oxygen content. Strong linkages between the electrochemical and optical behaviors observed in this work provide new insights into the processes involved in oxygen evolution reaction catalysis and electrochromism in reactively sputtered NiO{sub x} films. The results presented indicate that reactive sites located on or near grain boundaries are responsible for both behaviors.

  1. Electrochemical chlorine evolution at rutile oxide (110) surfaces.

    PubMed

    Hansen, Heine A; Man, Isabela C; Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas; Rossmeisl, Jan

    2010-01-01

    Based on density functional theory (DFT) calculations we study the electrochemical chlorine evolution reaction on rutile (110) oxide surfaces. First we construct the Pourbaix surface diagram for IrO(2) and RuO(2), and from this we find the chlorine evolution reaction intermediates and identify the lowest overpotential at which all elementary reaction steps in the chlorine evolution reaction are downhill in free energy. This condition is then used as a measure for catalytic activity. Linear scaling relations between the binding energies of the intermediates and the oxygen binding energies at cus-sites are established for MO(2) (M being Ir, Ru, Pt, Ti). The linear relations form the basis for constructing a generalized surface phase diagram where two parameters, the potential and the binding energy of oxygen, are needed to determine the surface composition. We calculate the catalytic activity as function of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution activity is high for a wide range of oxygen binding energies. We find that the required overpotential for chlorine evolution is lower than the overpotential necessary for oxygen evolution. PMID:20024470

  2. Eliminating degradation in solid oxide electrochemical cells by reversible operation

    NASA Astrophysics Data System (ADS)

    Graves, Christopher; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    2015-02-01

    One promising energy storage technology is the solid oxide electrochemical cell (SOC), which can both store electricity as chemical fuels (electrolysis mode) and convert fuels to electricity (fuel-cell mode). The widespread use of SOCs has been hindered by insufficient long-term stability, in particular at high current densities. Here we demonstrate that severe electrolysis-induced degradation, which was previously believed to be irreversible, can be completely eliminated by reversibly cycling between electrolysis and fuel-cell modes, similar to a rechargeable battery. Performing steam electrolysis continuously at high current density (1 A cm-2), initially at 1.33 V (97% energy efficiency), led to severe microstructure deterioration near the oxygen-electrode/electrolyte interface and a corresponding large increase in ohmic resistance. After 4,000 h of reversible cycling, however, no microstructural damage was observed and the ohmic resistance even slightly improved. The results demonstrate the viability of applying SOCs for renewable electricity storage at previously unattainable reaction rates, and have implications for our fundamental understanding of degradation mechanisms that are usually assumed to be irreversible.

  3. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.

    PubMed

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO(2) could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO(2) (10(-5)-10(-6) S cm(-1)) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO(2) have enhanced conductivity, resulting in a specific capacitance of the constituent MnO(2) (~1,145 F g(-1)) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO(2), and facilitates fast ion diffusion between the MnO(2) and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery. PMID:21336267

  4. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO2 (10-5-10-6 S cm-1) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (~1,145 F g-1) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  5. Electrochemical reduction of CO 2 in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongliang; Zhao, Lin

    This paper describes results on the electrochemical reduction of carbon dioxide using the same device as the typical planar nickel-YSZ cermet electrode supported solid oxide fuel cells (H 2-CO 2, Ni-YSZ|YSZ|LSCF-GDC, LSCF, air). Operation in both the fuel cell and the electrolysis mode indicates that the electrodes could work reversibly for the charge transfer processes. An electrolysis current density of ≈1 A cm -2 is observed at 800 °C and 1.3 V for an inlet mixtures of 25% H 2-75% CO 2. Mass spectra measurement suggests that the nickel-YSZ cermet electrode is highly effective for reduction of CO 2 to CO. Analysis of the gas transport in the porous electrode and the adsorption/desorption process over the nickel surface indicates that the cathodic reactions are probably dominated by the reduction of steam to hydrogen, whereas carbon monoxide is mainly produced via the reverse water gas shift reaction.

  6. Porous structured vanadium oxide electrode material for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Reddy, Ravinder N.; Reddy, Ramana G.

    A nano porous vanadium oxide (V 2O 5) was prepared by sol-gel method. The preparation involved elutriation of aqueous sodium meta vanadate over a cation exchange resin. The product was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, surface area analysis and thermogravimetric analysis. Electrochemical characterization was done using cyclic voltammetry in a three electrode system consisting of a saturated calomel electrode as reference electrode, platinum mesh as a counter electrode, and V 2O 5 mounted on Ti mesh as the working electrode. Two molars of aqueous KCl, NaCl and LiCl were used as electrolytes. A maximum capacitance of 214 F g -1 was obtained at a scan rate of 5 mV s -1 in 2 M KCl. The effect of different electrolytes and the effect of concentration of KCl on the specific capacitance of V 2O 5 were studied. Specific capacitance faded rapidly over 100 cycles in 2 M KCl at a 5 mV s -1 scan rate.

  7. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes.

    PubMed

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A; Rodríguez, Rosa M; Brillas, Enric

    2015-06-15

    The decolorization and mineralization of solutions containing 230 mg L(-1) of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H2O2. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between H2O2 and added Fe(2+). The oxidation ability increased in the sequence EO-H2O2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO4(2-), ClO4(-) and NO3(-) media, whereas in Cl(-) medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC-MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO4(2-) medium and three chloroaromatics in Cl(-) solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH4(+), NO3(-) and SO4(2-) ions were released during the mineralization. PMID:25734532

  8. Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Giannouri, M.; Boukos, N.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Reduced graphene oxide sheets (rGO) were prepared by hydrothermal treatment of aqueous dispersions of graphite oxide (GtO) applied for short (4 h) and prolonged reaction times (19-24 h). The effect of process duration as well as the alkaline conditions (pH ∼10) by addition of K2CO3 on the quality characteristics of the produced rGO materials was investigated. Both reduction and exfoliation occurred during this process as it was evidenced by FTIR and XRD data. SEM, TEM and HRTEM microscopy displayed highly exfoliated rGO materials. XPS verified that the re-establishment of the conjugated graphene network is more extensive for prolonged times of hydrothermal processing in accordance to Raman spectroscopy measurements. The sample produced under alkaline conditions bore fewer defects and almost 5 times higher BET surface area (∼181 m2/g) than the sample with no pH adjustment (∼34 m2/g) for the same hydrothermal reaction time (19 h), attributed to the developed microporosity. The specific capacitance of this material estimated by electrochemical impedance using three-electrode cell and KCl aqueous solution as an electrolyte was ∼400-500 F/g. When EDLC capacitors were fabricated from rGO materials the electrochemical testing in organic electrolyte i.e. TEABF4 in PC, revealed that the shortest hydrothermal reaction time (4 h) was more efficient resulting in capacitance around 60 F/g.

  9. Electrochemical characterization of transition metal oxide aerogels for secondary lithium batteries

    NASA Astrophysics Data System (ADS)

    Dong, Winny

    The ability of transition metals to exist in multiple valence states, along with the fact that many transition metal oxides have a layered structure, has made transition metal oxides prime candidates as electrodes for the emerging technology of secondary lithium batteries. Traditionally, the electrochemical behavior of these materials is considered to be intrinsic to the material. In order to obtain different electrochemical performance needs, different materials need to be selected. The principal objective of this dissertation is to correlate electrochemical behavior with the microstructure of a material, allowing a material to meet different application requirements through the control of its microstructure. In this research, three different studies are used to explore the interrelationship between microstructure and electrochemical behavior. Sol-gel chemistry is used exclusively to prepare the electrochemically active materials as this process enables one to control the resulting microstructure and morphology. The first study looks at the influence of the degree of crystallinity in MoO3 aerogels on lithium capacity. The degree of crystallinity is controlled through heat treatment and observed to affect the lithium capacity. The nanocrystalline MoO3 aerogel exhibited higher lithium capacity (1.5 Li/Mo) compared to both the amorphous (1.1 Li/Mo) and crystalline (1.1 Li/Mo) samples. The second study involves the synthesis of organic/inorganic hybrids, achieved by simultaneously polymerizing the polypyrrole network within the Mo-O-Mo network. The addition of the conducting polymer phase increases both the electrical conductivity (4 x 10-3 S/cm) and the lithium capacity (1.7 Li/Mo) compared to that of MoO3 aerogels. The third study emphasizes the use of the "sticky carbon" electrode to study the effects of high surface area and pore size on the lithium intercalation properties of V2O5 aerogels. A series of V2O 5 aerogels with varying surface areas (10 to 280 m2/g) is

  10. Facile and controllable electrochemical reduction of graphene oxide and its applications

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Engelhard, Mark H.; Wang, Chong M.; Lin, Yuehe

    2010-01-01

    Graphene oxide is electrochemically reduced which is called electrochemically reduced graphene oxide (ER-G). ER-G is characterized with scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The oxygen content is significantly decreased and the sp 2 carbon is restored after electrochemical reduction. ER-G exhibits much higher electrochemical capacitance and cycling durability than carbon nanotubes (CNTs) and chemically reduced graphene; the specific capacitance measured with cyclic voltammetry (20 mV/s) is ~165 F/g, ~86 F/g, and ~100 F/g for ER-G, CNTs, and chemically reduced graphene,1 respectively. The electrochemical reduction of oxygen and hydrogen peroxide was greatly enhanced on ER-G electrodes as compared with CNTs. ER-G has shown a good potential for applications in energy storage, biosensors, and electrocatalysis.

  11. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    PubMed Central

    2013-01-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO. PMID:24059434

  12. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology

    PubMed Central

    Arulmathi, P.; Elangovan, G.; Begum, A. Farjana

    2015-01-01

    Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD) and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD). The results showed that electrochemical treatment process effectively removed the COD (89.5%) and color (95.1%) of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl) concentration of 1.67 g/L, respectively. PMID:26491716

  13. Effect of electrochemical redox reaction on biochemical ammonium oxidation and chemical nitrite oxidation.

    PubMed

    Jeon, Bo Young; Seo, Ha Na; Kang, Seung Won; Park, Doo Hyun

    2010-03-01

    A modified graphite felt electrode with neutral red (NRelectrode) was shown to catalyze the chemical oxidation of nitrite to nitrate under aerobic conditions. The electrochemically oxidized NR-electrode (EO-NR-electrode) and reduced NR-electrode (ER-NR-electrode) catalyzed the oxidation of 1,094+/-39 mg/l and 382+/-45 mg/l of nitrite, respectively, for 24 h. The electrically uncharged NRelectrode (EU-NR-electrode) catalyzed the oxidation of 345+/-47 mg/l of nitrite for 24 h. The aerobic bacterial community immobilized in the EO-NR-electrode did not oxidize ammonium to nitrite; however, the aerobic bacterial community immobilized in the ER-NR-electrode bioelectrochemically oxidized 1,412+/-39 mg/l of ammonium for 48 h. Meanwhile, the aerobic bacterial community immobilized on the EU-NR-electrode biochemically oxidized 449+/-22 mg/l of ammonium for 48 h. In the continuous culture system, the aerobic bacterial community immobilized on the ER-NR-electrode bioelectrochemically oxidized a minimal 1,337+/-38 mg/l to a maximal 1,480+/-38 mg/l of ammonium to nitrate, and the community immobilized on the EU-NR-electrode biochemically oxidized a minimal 327+/-23 mg/l to a maximal 412+/-26 mg/l of ammonium to nitrate every two days. The bacterial communities cultivated in the ER-NR-electrode and EU-NR-electrode in the continuous culture system were analyzed by TGGE on the 20th and 50th days of incubation. Some ammoniumoxidizing bacteria were enriched on the ER-NR-electrode, but not on the EU-NR-electrode. PMID:20372016

  14. Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method.

    PubMed

    Bejankiwar, Rajesh S; Lokesh, K S; Gowda, T P Halappa

    2003-05-01

    The treatment of biologically treated wastewater of coffee-curing industry by the electrochemical oxidation using steel anode was investigated. Bench-scale experiments were conducted for activated sludge process on raw wastewater and the treated effluents were further treated by electrochemical oxidation method for its colour and organic content removal. The efficiency of the process was determined in terms of removal percentage of COD, BOD and colour during the course of reaction. Several operating parameters like time, pH and current density were examined to ascertain their effects on the treatment efficiency. Steel anode was found to be effective for the COD and colour removal with anode efficiency of 0.118 kgCOD x h(-1) x A(-1) x m(-2) and energy consumption 20.61 kWh x kg(-1) of COD at pH 9. The decrease in pH from 9 to 3 found to increase the anode efficiency from 0.118 kgCOD x h(-1) x A(-1) x m(-2) to 0.144 kWh x kg(-1) of COD while decrease the energy consumption from 20.61 kWh x kg(-1) of COD to 12.86 kWh x kg(-1) of COD. The pH of 5 was considered an ideal from the present treatment process as it avoids the addition of chemicals for neutralization of treated effluents and also economical with respect to energy consumption. An empirical relation developed for relationship between applied current density and COD removal efficiency showed strong predictive capability with coefficient of determination of 96.5%. PMID:12938980

  15. Electrochemical oxidation of drug residues in water by the example of tetracycline, gentamicine and aspirin.

    PubMed

    Weichgrebe, D; Danilova, E; Rosenwinkel, K H; Vedenjapin, A A; Baturova, M

    2004-01-01

    Electro-chemical oxidation as a method to destroy drug residues like aspirin, tetracycline or gentamicine in water was investigated with C-anodes (modified by manganese oxides) and Pt anodes. The mechanism of aspirin and tetracycline oxidation and the influence of the biocide effect was observed using GC-MS and three different microbiological tests. In general, the biological availability increases with progressive oxidation of the antibiotics. PMID:15077972

  16. Electrochemical treatment of spent solution after EDTA-based soil washing.

    PubMed

    Voglar, David; Lestan, Domen

    2012-04-15

    The use of EDTA in soil washing technologies to remediate soils contaminated with toxic metals is prohibitive because of the large volumes of waste washing solution generated, which must be treated before disposal. Degradation of EDTA in the waste solution and the removal of Pb, Zn and Cd were investigated using electrochemical advanced oxidation processes (EAOP) with a boron-doped diamond anode (BDDA), graphite and iron anodes and a stainless-steel cathode. In addition to EAOP, the efficiency of electro-Fenton reactions, induced by the addition of H(2)O(2) and the regulation of electrochemical systems to pH 3, was also investigated. Soil extraction with 15 mmol kg(-1) of soil EDTA yielded waste washing solution with 566 ± 1, 152 ± 1 and 5.5 ± 0.1 mg L(-1) of Pb, Zn and Cd, respectively. Treatments of the waste solution in pH unregulated electrochemical systems with a BDDA and graphite anode (current density 67 mA cm(-2)) were the most efficient and removed up to 98 ± 1, 96 ± 1, 99 ± 1% of Pb, Zn and Cd, respectively, by electrodeposition on the cathode and oxidatively degraded up to 99 ± 1% of chelant. In the electrochemical system with an Fe anode operated at pH 3, the chelant remained preserved in the treated solution, while metals were removed by electrodeposition. This separation opens up the possibility of a new EDTA recycling method from waste soil washing solution. PMID:22305659

  17. Vanadium Oxide Electrochemical Capacitors: An Investigation into Aqueous Capacitive Degradation, Alternate Electrolyte-Solvent Systems, Whole Cell Performance and Graphene Oxide Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Engstrom, Allison Michelle

    Vanadium oxide has emerged as a potential electrochemical capacitor material due to its attractive pseudocapacitive performance; however, it is known to suffer from capacitive degradation upon sustained cycling. In this work, the electrochemical cycling behavior of anodically electrodeposited vanadium oxide films with various surface treatments in aqueous solutions is investigated at different pH. Quantitative compositional analysis and morphological studies provide additional insight into the mechanism responsible for capacitive degradation. Furthermore, the capacitance and impedance behavior of vanadium oxide electrochemical capacitor electrodes is compared for both aqueous and nonaqueous electrolyte-solvent systems. Alkali metal chloride and bromide electrolytes were studied in aqueous systems, and nonaqueous systems containing alkali metal bromides were studied in polar aprotic propylene carbonate (PC) or dimethyl sulfoxide (DMSO) solvents. The preferred aqueous and nonaqueous systems identified in the half-cell studies were utilized in symmetric vanadium oxide whole-cells. An aqueous system utilizing a 3.0 M NaCl electrolyte at pH 3.0 exhibited an excellent 96% capacitance retention over 3000 cycles at 10 mV s-1. An equivalent system tested at 500 mV s-1 displayed an increase in capacitance over the first several thousands of cycles, and eventually stabilized over 50,000 cycles. Electrodes cycled in nonaqueous 1.0 M LiBr in PC exhibited mostly non-capacitive charge-storage, and electrodes cycled in LiBr-DMSO exhibited a gradual capacitive decay over 10,000 cycles at 500 mV s-1. Morphological and compositional analyses, as well as electrochemical impedance modeling, provide additional insight into the cause of the cycing behavior. Lastly, reduced graphene oxide and vanadium oxide nanowire composites have been successfully synthesized using electrophoretic deposition for electrochemical capacitor electrodes. The composite material was found to perform with a

  18. Nanocrystals of Uranium Oxide: Controlled Synthesis and Enhanced Electrochemical Performance of Hydrogen Evolution by Ce Doping.

    PubMed

    Hu, Shi; Li, Haoyi; Liu, Huiling; He, Peilei; Wang, Xun

    2015-06-10

    A preliminary study of the growth of 0D, 1D, and 2D nanostructures of uranium oxides with feature sizes from several nanometers down to 1 nm are presented. Cerium is successfully doped into these oxides and its influence on the growth dynamics and electrochemical performance investigated. PMID:25627103

  19. Use of seawater for the boron-doped diamond electrochemical treatment of diluted vinasse wastewater.

    PubMed

    Daskalaki, V M; Marakas, H; Mantzavinos, D; Katsaounis, A; Gikas, P

    2013-01-01

    Vinasse wastewater of high organic content (COD = 131,000 mg/L) and low biodegradability (BOD5/COD = 0.11) cannot be easily managed and usually require several consecutive treatment steps. The objective of this work was to dilute vinasse wastewater with seawater and then subject them to electrochemical oxidation over boron-doped diamond (BDD) electrodes. The use of seawater is a rational and novel approach for plants close to the seashore since it may achieve the desirable levels of effluent concentration and conductivity without consuming other water resources and extra electrolytes. Experiments were conducted at initial COD values of 830-8,400 mg/L, NaCl concentrations of 34-200 mM and current densities of 70-200 mA/cm(2) for up to 5 hours. The effect of current density and NaCl concentration was marginal on the electrochemical treatment, while the single most important parameter was the initial COD concentration. The order of reaction for COD reduction appears to be 'first' at low effluent concentrations and it decreases to 'zero' at higher concentrations, denoting the importance of the ratio of organics to reactive radicals concentration. Based on COD and total organic carbon data, it is postulated that degradation occurs predominantly through total oxidation (i.e. mineralization) to carbon dioxide and water, which is characteristic of BDD anodes. PMID:24334881

  20. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  1. Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change.

    PubMed

    Zhu, Linyan; Santiago-Schübel, Beatrix; Xiao, Hongxia; Hollert, Henner; Kueppers, Stephan

    2016-10-01

    In this paper, we studied the electrochemical oxidation mechanisms of three typical fluoroquinolone antibiotics (FQs), and investigated residual antibacterial activity and toxicity changes after oxidation processes. Electrochemistry coupled to mass spectrometry (EC-MS) was used to study the oxidation processes of ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL). Eight oxidation products for each parent compound were identified and their chemical structures were elucidated. The transformation trend of each product, with the continuous increase of voltage from 0 to 3000 mV, was recorded by online EC-MS. The oxidation pathways were proposed based on the structural information and transformation trends of oxidation products. We found the oxidation mechanisms of FQs consisted of the hydroxylation and cleavage of piperazinyl ring via reactions with hydroxyl radicals, while the fluoroquinolone core remained intact. The antibacterial activity of the parent compounds and their oxidation mixtures was estimated using zone inhibition tests for gram-negative bacteria Salmonella typhimurium. It was found that the oxidation mixtures of CIP and NOR retained the antibacterial properties with lower activity compared to their parent compounds, while the antibacterial activity of OFL was almost eliminated after oxidation. Furthermore, the toxicity of the three FQs and their oxidation mixtures were evaluated using algal growth inhibition test (Desmodesmus subspicatus). The median effective concentration (EC50) values for the algal inhibition tests were calculated for the end point of growth rate. The toxicity of CIP and NOR to green algae after electrochemical oxidation, remained unchanged, while that of OFL significantly increased. The results presented in this paper contribute to an understanding of the electrochemical oxidation mechanisms of FQs, and highlight the potential environmental risks of FQs after electrochemical oxidation processes. PMID:27318447

  2. Writing nanopatterns with electrochemical oxidation on redox responsive organometallic multilayers by AFM

    NASA Astrophysics Data System (ADS)

    Song, Jing; Hempenius, Mark A.; Jing Chung, Hong; Julius Vancso, G.

    2015-05-01

    Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to structure generation. The influence of applied bias potential, tip velocity, and multilayer thickness on the pattern height and width were investigated.Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to structure generation. The influence of applied bias potential, tip velocity, and multilayer thickness on the pattern height and width were investigated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01206f

  3. Treatment of wastewater from pulp and paper mill industry by electrochemical methods in membrane reactor.

    PubMed

    Chanworrawoot, Kanjana; Hunsom, Mali

    2012-12-30

    The treatment of wastewater from a pulp and paper mill plant using electrochemical methods was performed at a laboratory bench-scale at ambient temperature (~30 °C). The effects of wastewater dilution (10- to 100-fold), circulating water flow rate (0-3.95 l/min), current density (1.90-3.80 mA/cm(2)) and sodium chloride concentration (0-3.75 g/l) were ascertained. The results demonstrated that this methods can facilitate the disappearance of the oxidative coupling unit of lignin as well as other organic and inorganic compounds, measured in terms of the removal of color, total biological- and total chemical oxygen demand (BOD and COD), and the total suspended and dissolved solids (TSS and TSD). In addition, the electrochemical method was more effective at reducing the pollutant levels, produced a smaller quantity of low-density sludge and had a low operating cost per unit quantity of COD. After optimization, the electrochemical method operating in a batch mode enhanced the removal of color, BOD and COD at around 98%, 98% and 97%, respectively, whilst in a continuous mode at the steady state condition (8 h after the start-up time) the color, BOD and COD levels were reduced by around 91%, 83% and 86%, respectively. PMID:23062272

  4. Route of electrochemical oxidation of the antibiotic sulfamethoxazole on a mixed oxide anode.

    PubMed

    Hussain, Sajjad; Gul, Saima; Steter, Juliana R; Miwa, Douglas W; Motheo, Artur J

    2015-10-01

    The appearance of pharmaceutical compounds and their bioactive transformation products in aquatic environments is becoming an issue of increasing concern. In this study, the electrochemical oxidation of the widely used antibiotic sulfamethoxazole (SMX) was investigated using a commercial mixed oxide anode (Ti/Ru0.3Ti0.7O2) and a single compartment filter press-type flow reactor. The kinetics of SMX degradation was determined as a function of electrolyte composition, applied current density, and initial pH. Almost complete (98 %) degradation of SMX could be achieved within 30 min of electrolysis in 0.1 mol L(-1) NaCl solution at pH 3 with applied current densities ≥20 mA cm(-2). Nine major intermediates of the reaction were identified by LC-ESI-Q-TOF-MS (e.g., C6H9NO2S (m/z = 179), C6H4NOCl (m/z = 141), and C6H6O2 (m/z = 110)). The degradation followed various routes involving cleavage of the oxazole and benzene rings by hydroxyl and/or chlorine radicals, processes that could occur before or after rupture of the N-S bond, followed by oxidation of the remaining moieties. Analysis of the total organic carbon content revealed that the antibiotic was partially mineralized under the conditions employed and some inorganic ions, including NO3 (-) and SO4 (2-), could be identified. The results presented herein demonstrate the efficacy of the electrochemical process using a Ti/Ru0.3Ti0.7O2 anode for the remediation of wastewater containing the antibiotic SMX. PMID:26002364

  5. Kinetics of the electrochemical oxidation of 1,1-bis-hydroperoxy-4-methylcyclohexane on platinum

    NASA Astrophysics Data System (ADS)

    Vedenyapina, M. D.; Simakova, A. P.; Platonov, M. M.; Terent'ev, A. O.; Skundin, A. M.; Vedenyapin, A. A.

    2013-03-01

    The electrochemical synthesis of 3,12-dimethyl-7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane (1,2,4,5-tetraoxane) from 1,1-bis-hydroperoxy-4-methylcyclohexane on platinum electrode in a cell with separated and unseparated cathode and anode space in an aprotic solvent is conducted. The kinetics of electrochemical oxidation of 1,1-bis(hydroperoxy)-4-methylcyclohexane is studied. The current yield of the reaction is determined.

  6. Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study.

    PubMed

    Lucas, Marie; Boily, Jean-François

    2015-12-22

    Alternating current scanning electrochemical microscopy (AC-SECM) was used for the first time to map key electrochemical attributes of oriented hematite (α-Fe2O3) single crystal surfaces at the micron-scale. Localized electrochemical impedance spectra (LEIS) of the (001) and (012) faces provided insight into the spatial variations of local double layer capacitance (C(dl)) and charge transfer resistance (R(ad)). These parameters were extracted by LEIS measurements in the 0.4-8000 Hz range to probe the impedance response generated by the redistribution of water molecules and charge carriers (ions) under an applied AC. These were attributed to local variations in the local conductivity of the sample surfaces. Comparison with global EIS measurements on the same samples uncovered highly comparable frequency-resolved processes, that were broken down into contributions from the bulk hematite, the interface as well as the microelectrode/tip assembly. This work paves the way for new studies aimed at mapping electrochemical processes at the mesoscale on this environmentally and technologically important material. PMID:26625255

  7. Electrochemical oxidation of bisphenol-A from aqueous solution using graphite electrodes.

    PubMed

    Govindaraj, M; Rathinam, R; Sukumar, C; Uthayasankar, M; Pattabhi, S

    2013-01-01

    Electrochemical oxidation of bisphenol-A (BPA) from aqueous solution using graphite electrodes has been investigated. The effect of the types and concentration of supporting electrolytes, initial pH and applied current density on the performance of the process were examined. During electrolysis, concentration of BPA has been monitored and determined using UV-vis spectra, chemical oxygen demand (COD) and energy consumption. NaCl has been considered as the best supporting electrolyte among the electrolytes used in the present study. Initial pH 5.0, higher concentration (0.01 to 0.1 M) of supporting electrolyte and higher applied current density (4 to 20 mA cm(-2)) facilitate the treatment process. The maximum COD removal of 78.3% has been achieved under the optimal experimental conditions such as NaCl concentration of 0.05 M, applied current density of 12 mA cm(-2), initial pH 5.0 and electrolysis time of 120 min. When the energy consumption has been found to be decreasing with increasing NaCl concentration, it has increased with increasing applied current density. SEM-EDAX analysis has confirmed that the gases such as oxygen and chlorine are produced during the anodic oxidation in graphite anode. The result of UV-vis spectrum analysis confirms the degradation of BPA from aqueous solution at the end of the treatment. PMID:23530365

  8. Electrochemical Synthesis of Binary and Ternary Niobium-Containing Oxide Electrodes Using the p-Benzoquinone/Hydroquinone Redox Couple.

    PubMed

    Papa, Christopher M; Cesnik, Anthony J; Evans, Taylor C; Choi, Kyoung-Shin

    2015-09-01

    New electrochemical synthesis methods have been developed to obtain layered potassium niobates, KNb3O8 and K4Nb6O17, and perovskite-type KNbO3 as film-type electrodes. The electrodes were synthesized from aqueous solutions using the redox chemistry of p-benzoquinone and hydroquinone to change the local pH at the working electrode to trigger deposition of desired phases. In particular, the utilization of electrochemically generated acid via the oxidation of hydroquinone for inorganic film deposition was first demonstrated in this study. The layered potassium niobates could be converted to (H3O)Nb3O8 and (H3O)4Nb6O17 by cationic exchange, which, in turn, could be converted to Nb2O5 by heat treatment. The versatility of the new deposition method was further demonstrated for the formation of CuNb2O6 and AgNbO3, which were prepared by the deposition of KNb3O8 and transition metal oxides, followed by thermal and chemical treatments. Considering the lack of solution-based synthesis methods for Nb-based oxide films, the methods reported in this study will contribute greatly to studies involving the synthesis and applications of Nb-based oxide electrodes. PMID:26293515

  9. Electrochemical treatment of Reactive Black 5 textile wastewater: optimization, kinetics, and disposal study.

    PubMed

    Bansal, Sachin; Kushwaha, Jai Prakash; Sangal, Vikas Kumar

    2013-12-01

    This research reports treatment of textile wastewater containing Reactive Black 5 (RB5) and other industrial constituents which are found in textile industry effluent, by the electrochemical treatment method using aluminum electrodes. Initial pH, current density (J), and electrolysis time (t) were selected as operational variables to observe the effects on chemical oxygen demand (COD) removal efficiency (Y1), dye removal efficiency (Y2), and specific energy consumed (Y3) (kWh/kg of COD removed). A response surface methodology (RSM) with full factorial central composite design (CCD) was used for designing and optimizing responses. To optimize the multiple responses, multi-response optimization with a desirability function were utilized for maximizing Y1 and Y2, and simultaneously minimizing Y3. To address issues of treated wastewater disposal, aluminum mass balance was performed. Electrocoagulation with subsequent adsorption, electro-floatation, and electro-oxidation were found to be the mechanism for removal of the pollutants. PMID:24597045

  10. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.

    PubMed

    Maharana, Dusmant; Xu, Zesheng; Niu, Junfeng; Rao, Neti Nageswara

    2015-10-01

    Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) over metal-oxide-coated Ti anodes, i.e., Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2, was examined. The degradation efficiency of over 90% was attained at 20 min at different initial concentrations (0.5-20 mg L(-1)) and initial pH values (3.1-11.2). The degradation efficiencies of 2,4,5-T on Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2 anodes were higher than 99.9%, 97.2% and 91.5% at 30 min, respectively, and the respective total organic carbon removal ratios were 65.7%, 54.6% and 37.2%. The electrochemical degradation of 2,4,5-T in aqueous solution followed pseudo-first-order kinetics. The compounds, i.e., 2,5-dichlorohydroquinone and 2,5-dihydroxy-p-benzoquinone, have been identified as the main aromatic intermediates by liquid chromatography-mass spectrometry. The results showed that the energy efficiencies of 2,4,5-T (20 mg L(-1)) degradation with Ti/SnO2-Sb/Ce-PbO2 anode at the optimal current densities from 2 to 16 mA cm(-2) ranged from 8.21 to 18.73 kWh m(-3). PMID:25981800

  11. Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes

    NASA Astrophysics Data System (ADS)

    Cordova, Isvar Abraxas

    The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy. Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD's thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2's bandgap, can have a strong dependence on TiO2's thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH 3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency. In Chapter 3, two innovative

  12. Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Rodrigo, Manuel A.; Cañizares, Pablo; Lobato, Justo; Sáez, Cristina

    Electrocoagulation and electrooxidation are promising electrochemical technologies that can be used to remove organic pollutants contained in wastewaters. To make these technologies competitive with the conventional technologies that are in use today, a better understanding of the processes involved must be achieved. In this context, the development of mathematical models that are consistent with the processes occurring in a physical system is a relevant advance, because such models can help to understand what is happening in the treatment process. In turn, a more detailed knowledge of the physical system can be obtained, and tools for a proper design of the processes, or for the analysis of operating problems, are attained. The modeling of these technologies can be carried out using single-variable or multivariable models. Likewise, the position dependence of the model species can be described with different approaches. In this work, a review of the basics of the modeling of these processes and a description of several representative models for electrochemical oxidation and coagulation are carried out. Regarding electrooxidation, two models are described: one which summarizes the pollution of a wastewater in only one model species and that considers a macroscopic approach to formulate the mass balances and other that considers more detailed profile of concentration to describe the time course of pollutants and intermediates through a mixed maximum gradient/macroscopic approach. On the topic of electrochemical coagulation, two different approaches are also described in this work: one that considers the hydrodynamic conditions as the main factor responsible for the electrochemical coagulation processes and the other that considers the chemical interaction of the reagents and the pollutants as the more significant processes in the description of the electrochemical coagulation of organic compounds. In addition, in this work it is also described a multivariable model

  13. Laboratory studies of electrochemical treatment of industrial azo dye effluent.

    PubMed

    Vaghela, Sanjay S; Jethva, Ashok D; Mehta, Bhavesh B; Dave, Sunil P; Adimurthy, Subbarayappa; Ramachandraiah, Gadde

    2005-04-15

    Removal of color and reduction of chemical oxygen demand (COD) in an industrial azo dye effluent containing chiefly reactive dyes were investigated under single-pass conditions at a dimensionally stable anode (DSA) in a thin electrochemical flow reactor at different current densities, flow rates, and dilutions. With 50% diluted effluent, decolorization was achieved up to 85-99% at 10-40 mA/ cm2 at 5 mL/min flow rate and 50-88% at 30-40 mA/ cm2 at high (10-15 mL/min) flow rates. The COD reduction was maximum (81%) at 39.9 mA/cm2 or above when solution-electrode contact time (Ct) was as high as 21.7 s/cm2 and decreased as Ct declined at a given current density. Cyclic voltammetric studies suggesting an indirect oxidation of dye molecules over the anode surface were carried out at a glassy carbon electrode. The effect of pH on decolorization and COD reduction was determined. An electrochemical mechanism mediated by OCl- operating in the decolorization and COD reduction processes was suggested. The effluent was further treated with NaOCI. The oxidized products from the treated effluents were isolated and confirmed to be free from chlorine-substituted products by IR spectroscopy. From the apparent pseudo-first-order rate data, the second-order rate coefficients were evaluated to be 2.9 M(-1) s(-1) at 5 mL/ min, 76.2 M(-1) s(-1) at 10 mL/min, and 156.1 M(-1) s(-1) at 15 mL/ min for color removal, and 1.19 M(-1) s(-1) at 5 mL/min, 1.79 M(-1) s(-1) at 10 mL/min, and 3.57 M(-1) s(-1) at 15 mL/min for COD reduction. Field studies were also carried out with a pilot-scale cell at the source of effluent generation of different plants corresponding to the industry. Decolorization was achieved to about 94-99% with azo dye effluents at 0.7-1.0 L/min flow costing around Indian Rupees 0.02-0.04 per liter, and to about 54-75% in other related effluents at 0.3-1.0 L/min flow under single-pass conditions. PMID:15884385

  14. CoOx thin film deposited by CVD as efficient water oxidation catalyst: change of oxidation state in XPS and its correlation to electrochemical activity.

    PubMed

    Weidler, Natascha; Paulus, Sarina; Schuch, Jona; Klett, Joachim; Hoch, Sascha; Stenner, Patrick; Maljusch, Artjom; Brötz, Joachim; Wittich, Carolin; Kaiser, Bernhard; Jaegermann, Wolfram

    2016-04-20

    To reduce energy losses in water electrolysers a fundamental understanding of the water oxidation reaction steps is necessary to design efficient oxygen evolution catalysts. Here we present CoOx/Ti electrocatalytic films deposited by thermal and plasma enhanced chemical vapor deposition (CVD) onto titanium substrates. We report electrochemical (EC), photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The electrochemical behavior of the samples was correlated with the chemical and electronic structure by recording XPS spectra before and after each electrochemical treatment (conditioning and cyclovoltammetry). The results show that the electrochemical behavior of CoOx/Ti strongly depends on the resulting electronic structure and composition. The thermal deposition leads to the formation of a pure Co(ii)Ox which transforms to a mixed Co(ii)Co(iii)Ox during the OER. This change in oxidation state is coupled with a decrease in overpotential from η = 0.57 V to η = 0.43 V at 5 mA cm(-2). Plasma deposition in oxygen leads to a Co(iii)-dominated mixed CoOx, that has a lower onset potential as deposited due to a higher Co(iii) content in the initial deposited material. After the OER XPS results of the CoOx/Ti indicate a partial formation of hydroxides and oxyhydroxides on the oxide surface. Finally the plasma deposition in air, results in a CoOxOH2 surface, that is able to completely oxidizes during OER to an oxyhydroxide Co(iii)OOH. With the in situ formed CoOOH we present a highly active catalyst for the OER (η = 0.34 at 5 mA cm(-2); η = 0.37 V at 10 mA cm(-2)). PMID:26694730

  15. Mediated electrochemical oxidation of organic wastes without electrode separators

    DOEpatents

    Farmer, Joseph C.; Wang, Francis T.; Hickman, Robert G.; Lewis, Patricia R.

    1996-01-01

    An electrochemical cell/electrolyte/mediator combination for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required.

  16. Mediated electrochemical oxidation of organic wastes without electrode separators

    DOEpatents

    Farmer, J.C.; Wang, F.T.; Hickman, R.G.; Lewis, P.R.

    1996-05-14

    An electrochemical cell/electrolyte/mediator combination is described for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required. 3 figs.

  17. Advanced Electrochemical Oxidation of 1,4-Dioxane via Dark Catalysis by Novel Titanium Dioxide (TiO2) Pellets.

    PubMed

    Jasmann, Jeramy R; Borch, Thomas; Sale, Tom C; Blotevogel, Jens

    2016-08-16

    1,4-dioxane is an emerging groundwater contaminant with significant regulatory implications. Because it is resistant to traditional groundwater treatments, remediation of 1,4-dioxane is often limited to costly ex situ UV-based advanced oxidation. By varying applied voltage, electrical conductivity, seepage velocity, and influent contaminant concentration in flow-through reactors, we show that electrochemical oxidation is a viable technology for in situ and ex situ treatment of 1,4-dioxane under a wide range of environmental conditions. Using novel titanium dioxide (TiO2) pellets, we demonstrate for the first time that this prominent catalyst can be activated in the dark even when electrically insulated from the electrodes. TiO2-catalyzed reactors achieved efficiencies of greater than 97% degradation of 1,4-dioxane, up to 4.6 times higher than noncatalyzed electrolytic reactors. However, the greatest catalytic enhancement (70% degradation versus no degradation without catalysis) was observed in low-ionic-strength water, where conventional electrochemical approaches notoriously fail. The TiO2 pellet's dark-catalytic oxidation activity was confirmed on the pharmaceutical lamotrigine and the industrial solvent chlorobenzene, signifying that electrocatalytic treatment has tremendous potential as a transformative remediation technology for persistent organic pollutants in groundwater and other aqueous environments. PMID:27420906

  18. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    SciTech Connect

    Gupta, Vinay Kawaguchi, Toshikazu; Miura, Norio

    2009-01-08

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co{sub 3}O{sub 4}, NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm{sup 2} current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides.

  19. Electronic defects and interface potentials for Al oxide films on Al and their relationship to electrochemical properties

    SciTech Connect

    SULLIVAN,JOHN P.; DUNN,ROBERTO G.; BARBOUR,J. CHARLES; WALL,FREDERICK D.; MISSERT,NANCY A.; BUCHHEIT,R.G.

    2000-06-01

    The relative electronic defect densities and oxide interface potentials were determined for naturally-occurring and synthetic Al oxides on Al. In addition, the effect of electrochemical treatment on the oxide electrical properties was assessed. The measurements revealed (1) that the open circuit potential of Al in aqueous solution is inversely correlated with the oxide electronic defect density (viz., lower oxide conductivities are correlated with higher open circuit potentials), and (2) the electronic defect density within the Al oxide is increased upon exposure to an aqueous electrolyte at open circuit or applied cathodic potentials, while the electronic defect density is reduced upon exposure to slight anodic potentials in solution. This last result, combined with recent theoretical predictions, suggests that hydrogen may be associated with electronic defects within the Al oxide, and that this H may be a mobile species, diffusing as H{sup +}. The potential drop across the oxide layer when immersed in solution at open circuit conditions was also estimated and found to be 0.3 V, with the field direction attracting positive charge towards the Al/oxide interface.

  20. Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate.

    PubMed

    Labiadh, Lazhar; Fernandes, Annabel; Ciríaco, Lurdes; Pacheco, Maria José; Gadri, Abdellatif; Ammar, Salah; Lopes, Ana

    2016-10-01

    Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated. The anodic oxidation pretreatment was performed in a pilot plant using an electrochemical cell with boron-doped diamond electrodes. In the electro-Fenton experiments, a boron-doped diamond anode and carbon-felt cathode were used, and the influence of the initial pH and iron concentration were studied. For the experimental conditions, the electro-Fenton assays performed at an initial pH of 3 had higher organic load removal levels, whereas the best nitrogen removal was attained when the electrochemical process was performed at the natural pH of 8.8. The increase in the iron concentration had an adverse impact on treatment under natural pH conditions, but it enhanced the nitrogen removal in the electro-Fenton assays performed at an initial pH of 3. The combined anodic oxidation and electro-Fenton process is useful for treating the reverse osmosis concentrate because it is effective at removing the organic load and nitrogen-containing species. Additionally, this process potentiates the increase in the biodegradability index of the treated effluent. PMID:27423100

  1. Electroenzymatic oxidation of bisphenol A (BPA) based on the hemoglobin (Hb) film in a membraneless electrochemical reactor.

    PubMed

    Tang, Tiantian; Hou, Juying; Ai, Shiyun; Qiu, Yanyan; Ma, Qiang; Han, Ruixia

    2010-09-15

    This paper presents a novel electroenzymatic method for the treatment of bisphenol A (BPA) in a membraneless electrochemical reactor. The electrochemical reactor was arranged with a stainless steel and an enzymatic film as anode and cathode, respectively. The enzymatic film was formed by immobilizing hemoglobin (Hb) on carbon fiber. In the membraneless electrochemical reactor, hydrogen peroxide (H(2)O(2)) was generated in situ in cathode and BPA was oxidated and removed by the combining Hb with H(2)O(2). The experimental conditions for electrogeneration of H(2)O(2) and electroremoval of BPA were optimized. Experimental results showed that in supplied voltage 2.4 V, pH 5.0 and oxygen flow rate 25 mL/min, the electrogeneration of H(2)O(2) and the electroenzymatic removal of BPA were highest. Under optimal operation conditions, the removal efficiency of BPA reached 50.7% in 120 min and then kept constant when further prolonging the period of reaction. Compared with electrochemical and biochemical methods, the removal of BPA through electroenzymatic method was comparatively favorable. PMID:20605681

  2. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  3. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed. PMID:26549729

  4. Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors

    SciTech Connect

    Shou Qingliang; Cheng Jipeng; Zhang Li; Nelson, Bradley J.; Zhang Xiaobin

    2012-01-15

    We report a one-step synthesis of a nanocomposite of goethite ({alpha}-FeOOH) nanorods and reduced graphene oxide (RGO) using a solution method in which ferrous cations serve as a reducing agent of graphite oxide (GO) to graphene and a precursor to grow goethite nanorods. As-prepared goethite nanorods have an average length of 200 nm and a diameter of 30 nm and are densely attached on both sides of the RGO sheets. The electrochemical properties of the nanocomposite were characterized by cyclic voltammetry (CV) and chronopotentiometry (CP) charge-discharge tests. The results showed that goethite/RGO composites have a high electrochemical capacitance of 165.5 F g{sup -1} with an excellent recycling capability making the material promising for electrochemical capacitors. - Graphical abstract: The reduced graphene oxide sheets are decorated with goethite nanorods. The as-prepared composite exhibits a high electrochemical capacitance with good recycling capability, which is promising for supercapacitor applications. Higlights: Black-Right-Pointing-Pointer Ferrous ions act as reductant of graphite oxide and precursor of goethite nanorods. Black-Right-Pointing-Pointer Goethite nanorods are attached on both sides of the reduced graphene oxide sheets. Black-Right-Pointing-Pointer Composite exhibits a high specific capacitance and a good recycling capability. Black-Right-Pointing-Pointer Composite is promising for supercapacitor applications.

  5. Ultra-thin films on transparent conductor oxides for the development of spectro-electrochemical transducers

    NASA Astrophysics Data System (ADS)

    Grigore, E.; Delacôte, C.; Thobie-Gautier, C.; Boujtita, M.; Tessier, P. Y.

    2013-07-01

    Transparent C, Au and Pt films with thickness in the 5-10 nm range have been deposited by a DC magnetron sputtering system on commercial ITO (indium tin oxide) coated glass substrate for evaluation as electrode of spectro-electrochemical transducer. The transmission, over the investigated spectral range, is superior to 55% with the best transmission values obtained for C films (higher than 80%). The deposited films have been characterized by AFM, XPS and electrochemical methods. Results showed a low roughness, improved in comparison with uncoated electrodes. Electrochemical properties of the Au and Pt films evidenced a metallic behavior, which allowed qualifying them as conductive optically transparent electrodes for spectro-electrochemical devices.

  6. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    PubMed

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-01

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability. PMID:27180820

  7. Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: Application to DNA biosensor.

    PubMed

    Miodek, Anna; Mejri-Omrani, Nawel; Khoder, Rabih; Korri-Youssoufi, Hafsa

    2016-07-01

    Electrochemical patterning method has been developed to fabricate composite based on polypyrrole (PPy) film and poly(amidoamine) dendrimers of fourth generation (PAMAM G4). PPy layer was generated using electrochemical polymerization of pyrrole on a gold electrode. PPy film was then modified with PAMAM G4 using amines electro-oxidation method. Covalent bonding of PAMAM G4 and the formation of PPy-PAMAM composite was characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Ferrocenyl groups were then attached to such surface as a redox marker. Electrochemical properties of the modified nanomaterial (PPy-PAMAM-Fc) were studied using both amperometric and impedimetric methods to demonstrate the efficiency of electron transfer through the modified PPy layer. The obtained electrical and electrochemical properties were compared to a composite where PPy bearing carboxylic acid functions was chemically modified with PAMAM G4 by covalent attachment through formation of amid bond (PPy-CONH-PAMAM). The above mentioned studies showed that electrochemical patterning does not disturb the electronic properties of PPy. The effect of the number of functional groups introduced by the electrochemical patterning was demonstrated through the association of various compounds (ethylenediamine, PAMAM G2 and PAMAM G6). We demonstrated that such compounds could be applied in the biosensors technology. The modified PPy-PAMAM-Fc was evaluated as a platform for DNA sensing. High performance in the DNA detection by variation of the electrochemical signal of ferrocene was obtained with detection limit of 0.4 fM. Furthermore, such approach of electrochemical patterning by oxidation of amines could be applied for chemical modification of PPy and open a new way in various biosensing application involving functionalized PPy. PMID:27154698

  8. Oxidation pond for municipal wastewater treatment

    NASA Astrophysics Data System (ADS)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2015-04-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  9. Electrochemical protection of zirconium in oxidizing hydrochloric acid solutions

    SciTech Connect

    Yuu, T-L.; Maguire, M.

    1984-06-01

    An electrochemical protection technique using cathodic polarization to maintain zirconium below its critical repassivation potential was used to avoid pitting and stress corrosion cracking (SCC) in hydrochloric acid (HCI) containing ferric ions (Fe/sup +3/). Corrosion and pit penetration rates are reported for pickled, abraded, and as-received surface conditions in 10, 20, and 37% HCI containing 50, 100, or 500 ppm Fe/sup +3/ at temperatures to boiling. The pickled surface was the least susceptible to pitting in the 64 day tests. Electrochemical protection is then evaluated for total immersion, partial immersion, U-bend, and constant strain rate tensile tests. Protection is effective in eliminating pitting and SCC in 10 and 20% HCI containing Fe/sup +3/.

  10. Preparation, characterization, and electrochemical application of mesoporous copper oxide

    SciTech Connect

    Cheng, Liang; Shao, Mingwang; Chen, Dayan; Zhang, Yuzhong

    2010-02-15

    Mesoporous CuO was successfully synthesized via thermal decomposition of CuC{sub 2}O{sub 4} precursors. These products had ring-like morphology, which was made up of nanoparticles with the average diameter of 40 nm. The electrochemical experiments showed that the mesoporous CuO decreased the overvoltage of the electrode and increased electron transference in the measurement of dopamine.

  11. Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology.

    PubMed

    Silveira, Jefferson E; Zazo, Juan A; Pliego, Gema; Bidóia, Edério D; Moraes, Peterson B

    2015-04-01

    Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99% of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested. PMID:25339535

  12. Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application.

    PubMed

    Wang, Xia; Wang, Qingxiang; Wang, Qinghua; Gao, Feng; Gao, Fei; Yang, Yizhen; Guo, Hongxu

    2014-07-23

    A highly dispersible and stable nanocomposite of Cu(tpa)-GO (Cu(tpa) = copper terephthalate metal-organic framework, GO = graphene oxide) was prepared through a simple ultrasonication method. The morphology and structure of the obtained composite were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis, Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). On the basis of the characterization results, the binding mechanism of the Cu(tpa) and GO was speculated to be the cooperative interaction of π-π stacking, hydrogen bonding, and Cu-O coordination. The electrochemical sensing property of Cu(tpa)-GO composite was investigated through casting the composite on a glassy carbon electrode (GCE), followed by an electro-reduction treatment to transfer the GO in the composite to the highly conductive reduced form (electrochemically reduced graphene, EGR). The results demonstrated that the electrochemical signals and peak profiles of the two drugs of acetaminophen (ACOP) and dopamine (DA) were significantly improved by the modified material, owing to the synergistic effect from high conductivity of EGR and unique electron mediating action of Cu(tpa). Under the optimum conditions, the oxidation peak currents of ACOP and DA were linearly correlated to their concentrations in the ranges of 1-100 and 1-50 μM, respectively. The detection limits for ACOP and DA were estimated to be as low as 0.36 and 0.21 μM, respectively. PMID:25000168

  13. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Han-Ki; Seong, Tae-Yeon; Lim, Jae-Hong; Cho, Won, Ii; Soo Yoon, Young

    The electrochemical and structural properties of cobalt oxide films which are deposited at different sputtering gas-ratios of O 2/(Ar+O 2) are investigated. In order to examine the electrochemical properties of the as-deposited films, all solid-state thin-film supercapacitors (TFSCs) are fabricated. There consist of Co 3O 4 electrodes and an amorphous LiPON thin-film electrolyte. It is shown that the capacitance behaviour of the Co 3O 4/LiPON/Co 3O 4 TFSCs is similar to bulk-type supercapacitor behaviour. It is further shown that the electrochemical behaviour of the TFSCs is dependent on the sputtering gas-ratios. The gas-ratio dependence of the capacitance of the oxide electrode films is discussed based on X-ray diffraction (XRD) and electrical results for the Co 3O 4 films.

  14. Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation.

    PubMed

    Reichert, Robert; Zambrzycki, Christian; Jusys, Zenonas; Behm, R Jürgen

    2015-11-01

    To better understand organic-molecule-assisted photo-electrochemical water splitting, photo-electrochemistry and on-line mass spectrometry measurements are used to investigate the photo-electrochemical oxidation of the C1 molecules methanol, formaldehyde, and formic acid over WO3 film anodes in aqueous solution and its competition with O2 evolution from water oxidation O2 (+) and CO2 (+) ion currents show that water oxidation is strongly suppressed by the organic species. Photo-electro-oxidation of formic acid is dominated by formation of CO2 , whereas incomplete oxidation of formaldehyde and methanol prevails, with the selectivity for CO2 formation increasing with increasing potential and light intensity. The mechanistic implications for the photo-electro-oxidation of the organic molecules and its competition with water oxidation, which could be derived from this novel approach, are discussed. PMID:26382643

  15. Electrochemical processes for in-situ treatment of contaminated soils. 1998 annual progress report

    SciTech Connect

    Huang, C.P.

    1998-06-01

    'This research project is to develop electrochemical processes for in-situ treatment of contaminated soils. Specifically, it is to study electrokinetic (EK) and electro-Fento (EF) processes and to integrate these processes for the treatment of soils containing mixed contaminants. The objectives are: (1) To study important parameters controlling the mobilization and the transport of selected organics and metals in soils by the electrokinetic (EK) process. Factors to be studied include field strength, pH, ionic strength, soil washing agents, types of organic and metal contaminants, and soil surface properties such as cation exchange capacity(CEC), soil organic content, soil moisture content, soil composition, and surface charge. (2) To study the important factors governing the oxidation of selected organic contaminants by the electro-Fenton (EF) process. Parameters such as pH, surface area and the configuration of working electrode, oxygen concentration, ferrous ion, and temperature that may affect the performance of the EF process will be investigated. (3) To understand the mechanism of the oxidation of selected organic contaminants by the electro-Fenton oxidation process.'

  16. Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignins.

    PubMed

    Díaz-González, María; Vidal, Teresa; Tzanov, Tzanko

    2011-03-01

    Sixteen phenolic compounds, 14 of which naturally occurring, were compared to the synthetic 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and violuric acid (VA) in terms of their ability to act as mediators/enhancers in: (1) laccase oxidation of veratryl alcohol as a lignin model compound, and (2) electrochemical oxidation of kraft and flax lignins. HPLC analysis revealed that the syringyl-type phenols methyl syringate and acetosyringone were the most efficient natural enhancers in the laccase oxidation of veratryl alcohol. Both compounds, though far from the performance of ABTS were able to generate veratraldehyde in amount similar to that obtained with VA. By contrast, the best performing phenolic enhancers for the electrochemical oxidation of lignins were sinapinaldehyde, vanillin, acetovanillone, and syringic acid. Catalytic efficiencies close to those achieved with ABTS and VA were calculated for these phenolic compounds. PMID:21110019

  17. Electrochemical detection of nitric oxide production in perfused pig coronary artery: comparison of the performances of two electrochemical sensors.

    PubMed

    Villeneuve, N; Bedioui, F; Voituriez, K; Avaro, S; Vilaine, J P

    1998-08-01

    In situ direct measurement of nitric oxide (NO) in biological media is now possible by means of electrochemical detection. In the literature, there are principally two amperometric approaches based on the direct oxidation of NO either on a sensor made from platinum/ iridium (Pt/Ir) alloy coated with a three-layered membrane or on a nickel porphyrin and Nafion-coated carbon fiber electrode. Nonetheless, the exact nature of the experimental amperometric signal obtained with the Pt/Ir system was never authenticated as being related to NO. This study compared responses of two sensors to the inhibition effect of Nomega-nitro-L-arginine (L-NA) as the amperometric signals produced by 5-hydroxytryptamine (5-HT) on isolated pig coronary preparations. These amperometric signals could be attributed to NO only for the nickel porphyrin and Nafion-coated carbon fiber electrode. Indeed, voltammetric characterization of the electrochemical response demonstrated only variations of the baseline current upon additions of either SNAP or NO on the Pt/Ir electrode instead of anodic peak current displayed at 0.63-0.75 V for the other system. Nitrites induced baseline current variations with the Pt/Ir electrode, similar to those obtained with S-nitroso-N-acetyl-dl-penicillamine (SNAP) or NO. This study highlights the potential hazards and pitfalls that may be associated with the use of a Pt/Ir sensor calibrated with SNAP solutions for the detection of NO production in various biological systems. PMID:10100498

  18. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    PubMed Central

    2013-01-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors. PMID:23522184

  19. Chemical and electrochemical oxidation of C8-arylamine adducts of 2′-deoxyguanosine

    PubMed Central

    Stover, James S.; Ciobanu, Madalina; Cliffel, David E.; Rizzo, Carmelo J.

    2008-01-01

    The electrochemical and chemical oxidation of a series of C8-arylamine adducts of 2′-deoxyguanosine has been examined. The oxidations were found to be reversible by cyclic and square-wave voltammetry in both aqueous buffer and aprotic organic solvent. The mechanism of the oxidation in protic media was either one- or two-electron depending on the aryl group. The chemical oxidation resulted in guanidinohydantoin and spiroiminodihydantoin rearrangement products similar to those observed for 8-oxo-7,8-dihydro-2′-deoxyguanosine. PMID:17256856

  20. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Cao, Ying; Xie, Shufan; Yang, Junhe; Tang, Zhihong; Wang, Xianying; Sun, Luyi

    2013-03-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors.

  1. Electrochemical oxidation stability of anions for modern battery electrolytes: a CBS and DFT study.

    PubMed

    Jónsson, Erlendur; Johansson, Patrik

    2015-02-01

    The electrochemical stability vs. oxidation is a crucial property of anions in order to be suitable as components in lithium-ion batteries. Here the applicability of a number of computational approaches and methods to assess this property, employing a wide selection of DFT functionals, has been studied using the CCSD(T)/CBS method as the reference. In all, the vertical anion oxidation potential, ΔEv, is a fair way to calculate the stability vs. oxidation, however, a functional of at least hybrid quality is recommended. In addition, the chemical hardness, η, is identified as a novel approach to calculate the stability vs. oxidation. PMID:25557392

  2. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy.

    PubMed

    Huang, Yi-Fan; Kooyman, Patricia J; Koper, Marc T M

    2016-01-01

    Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts. PMID:27514695

  3. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy

    PubMed Central

    Huang, Yi-Fan; Kooyman, Patricia J.; Koper, Marc T. M.

    2016-01-01

    Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts. PMID:27514695

  4. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation.

    PubMed

    He, Yapeng; Lin, Haibo; Wang, Xue; Huang, Weimin; Chen, Rongling; Li, Hongdong

    2016-06-28

    A boron-doped diamond electrode with a three-dimensional network was fabricated on a mesh titanium substrate. Properties such as higher surface area, enhanced mass transfer and a hydrophobic surface endowed the prepared electrode with excellent electrochemical oxidation ability towards contaminants. PMID:27264247

  5. Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode.

    PubMed

    Teodorescu, Florina; Rolland, Laure; Ramarao, Viswanatha; Abderrahmani, Amar; Mandler, Daniel; Boukherroub, Rabah; Szunerits, Sabine

    2015-09-28

    An electrochemical insulin-delivery system based on reduced graphene oxide impregnated with insulin is described. Upon application of a potential pulse of -0.8 V for 30 min, up to 70 ± 4% of human insulin was released into a physiological medium while preserving its biological activity. PMID:26257079

  6. CO oxidation on stepped-Pt(111) under electrochemical conditions: insights from theory and experiment.

    PubMed

    Busó-Rogero, C; Herrero, E; Bandlow, J; Comas-Vives, A; Jacob, Timo

    2013-11-14

    The co-adsorption of CO and OH on two Pt stepped surfaces vicinal to the (111) orientation has been evaluated by means of density functional theory (DFT) calculations. Focusing on Pt(533) and Pt(221), which contain (100) and (111)-steps, respectively, we find that (111)-steps should be more reactive towards CO oxidation than surfaces containing (100)-steps. The DFT results are compared with electrochemical experiments on the CO adsorption and oxidation on these vicinal surfaces. PMID:24072258

  7. Hydrothermal electrocatalytic oxidation for the treatment of herbicides wastewater.

    PubMed

    Xiao, Hanshuang; Lv, Baoying; Gao, Junxia; Zhao, Guohua

    2016-05-01

    A hydrothermal electrocatalytic oxidation (HTECO) method is adopted to treat the biorefractory and toxic 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides wastewater on nano-Pt/Ti electrode in the existence of H2O2. Comparisons for the removal of 2,4-D and total organic carbon (TOC) have been carried out between HTECO with individual electrochemical oxidation (EO) and hydrothermal catalytic oxidation (HTCO), showing that high mineralization efficiency was obtained in HTECO process. The possible factors resulting in the high removal efficiency in HTECO process have been studied by investigating the properties of the electrode and solution in hydrothermal condition, the amount of active radicals, the decay kinetic, and evolution of main intermediates of 2,4-D. Thus, an enhanced mechanism for HTECO method for the treatment of herbicides wastewater has been obtained. PMID:26865489

  8. Oxygen vacancy diffusion across cathode/electrolyte interface in solid oxide fuel cells: An electrochemical phase-field model

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Hu, Jia-Mian; Gerdes, Kirk; Chen, Long-Qing

    2015-08-01

    An electrochemical phase-field model is developed to study electronic and ionic transport across the cathode/electrolyte interface in solid oxide fuel cells. The influences of local current density and interfacial electrochemical reactions on the transport behaviors are incorporated. This model reproduces two electrochemical features. Nernst equation is satisfied through the thermodynamic equilibriums of the electron and oxygen vacancy. The distributions of charged species around the interface induce charge double layer. Moreover, we verify the nonlinear current/overpotential relationship. This model facilitates the exploration of problems in solid oxide fuel cells, which are associated with transport of species and electrochemical reactions at high operating temperature.

  9. Effect of electrochemical oxidation on biodegradability and toxicity of batik industry wastewater

    NASA Astrophysics Data System (ADS)

    Subramaniam, Devagi; Halim, Azhar A.

    2014-09-01

    This study was conducted to investigate the increase in biodegradability and reduction in toxicity level in the batik wastewater treatment. Basically, the wastewater treatment from batik industry contained chemicals especially dyes which are not biodegradable and contains higher toxicity level because of the chemical compartment which comes out during the wastewater discharge and this could lead high risk in health wise to humans and all the aquatic living organisms. Thus, this research was carried to enhance the effectiveness of the electrochemical oxidation method by using the batik wastewater. Optimal parameters such as pH, time, distance between graphite electrodes and sodium chloride (NaCl) concentration as it activates as the electrolyte was done to obtain the removal of BOD, COD and color in the batik wastewater. The research study found that the removal of COD and color was high in the acidic conditions which are pH 5 with the removal of COD, 89.71% and color 93.89%. The ratio of BOD5/ COD successfully increased from 0.015 to 0.271 which mean it increase by 94.46% and the toxicity level using Toxtrax method (10017) also successfully reduced from 1.195% to 0.129% which means the samples which were slightly toxic were reduced to non-toxic level.

  10. Chemical and electrochemical study of fabrics coated with reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.

    2013-08-01

    Polyester fabrics coated with reduced graphene oxide (RGO) have been obtained and later characterized by means of chemical and electrochemical techniques. X-ray photoelectron spectroscopy showed a decrease of the oxygen content as well as an increase of the sp2 fraction after chemical reduction of graphene oxide (GO). The electrical conductivity was measured by electrochemical impedance spectroscopy (EIS) and showed a decrease of 5 orders of magnitude in the resistance (Ω) when GO was reduced to RGO. The phase angle also changed from 90° for PES-GO (capacitative behavior) to 0° for RGO coated fabrics (resistive behavior). In general an increase in the number of RGO layers produced an increase of the conductivity of the fabrics. EIS measurements in metal/sample/electrolyte configuration showed better electrocatalytic properties and faster diffusion rate for RGO specimens. Scanning electrochemical microscopy was employed to test the electroactivity of the different fabrics obtained. The sample coated with GO was not conductive since negative feedback was obtained. When GO was reduced to RGO the sample behaved like a conducting material since positive feedback was obtained. Approach curves indicated that the redox mediator had influence on the electrochemical response. The Fe(CN)63-/4- redox mediator produced a higher electrochemical response than Ru(NH3)63+/2+ one.

  11. Synthesis and Microstructural Characterization of Manganese Oxide Electrodes for Application as Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Babakhani, Banafsheh

    The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected

  12. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  13. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  14. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  15. Electrochemical treatment of mouse and rat fibrosarcomas with direct current

    SciTech Connect

    Chou, C.K.; McDougall, J.A.; Ahn, C.; Vora, N.

    1997-03-01

    Electrochemical treatment (ECT) of cancer utilizes direct current to produce chemical changes in tumors. ECT has been suggested as an effective alternative local cancer therapy. However, a methodology is not established, and mechanisms are not well studied. In vivo studies were conducted to evaluate the effectiveness of ECT on animal tumor models. Radiation-induced fibrosarcomas were implanted subcutaneously in 157 female C3H/HeJ mice. Larger rat fibrosarcomas were implanted on 34 female Fisher 344 rats. When the spheroidal tumors reached 10 mm in the mice, two to five platinum electrodes were inserted into the tumors at various spacings and orientations. Ten rats in a pilot group were treated when their ellipsoidal tumors were about 25 mm long; electrode insertion was similar to the later part of the mouse study; i.e., two at the base and two at the center. A second group of 24 rats was treated with six or seven electrodes when their tumors were about 20 mm long; all electrodes were inserted at the tumor base. Of the 24 rats, 12 of these were treated once, 10 were treated twice, and 2 were treated thrice. All treated tumors showed necrosis and regression for both mice and rats; however, later tumor recurrence reduced long-term survival. When multiple treatments were implemented, the best 3 month mouse tumor cure rate was 59.3%, and the best 6 month rat tumor cure rate was 75.0%. These preliminary results indicate that ECT is effective on the radiation-induced fibrosarcoma (RIF-1) mouse tumor and rat fibrosarcoma. The effectiveness is dependent on electrode placement and dosage.

  16. Radio frequency sputtered cobalt oxide coating: Structural, optical, and electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Estrada, W.; Fantini, M. C. A.; de Castro, S. C.; Polo da Fonseca, C. N.; Gorenstein, A.

    1993-11-01

    Cobalt oxide thin films (thickness 2000 Å) with different stoichiometries were deposited by reactive rf sputtering. The variation of the oxygen partial pressure lead to films with compositions varying from metallic cobalt to CO3O4, as determined by x-ray diffraction and x-ray photoelectron spectroscopy. The electrochromic properties of the films were investigated in aqueous electrolytes (0.1 M KOH). The initial electrochemical behavior of the films is strongly dependent on the film deposition conditions, but after cycling the electrochemical/electrochromic characteristics of the different deposits were quite similar. Transmittance changes and electrochromic efficiency are discussed.

  17. Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities.

    PubMed

    Tan, Shu Min; Ambrosi, Adriano; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2014-04-21

    The electrochemical properties of graphene are highly sensitive to residual metallic impurities that persist despite various purification efforts. To accurately evaluate the electrochemical performance of graphene, highly purified materials free of metallic impurities are required. In this study, the partial purification of chemically reduced graphene oxides prepared via Hummers (CRGO-HU) and Staudenmaier (CRGO-ST) oxidation methods was performed through cyclic voltammetric (CV) scans executed in nitric acid, followed by CV measurements of cumene hydroperoxide (CHP). The purification of graphene was monitored by the changes in the peak current and potential of CHP which is sensitive to iron impurities. The CRGOs were characterised by inductively coupled plasma-mass spectrometry (ICP-MS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and CV. The micrographs revealed CRGOs of similar morphologies, but with greater defects in CRGO-HU. The dependencies of CHP peak current and peak potential on the number of purification cycles exhibit greater efficiency of removing iron impurities from CRGO-HU than CRGO-ST. This can be attributed to the oxidative method that is used in CRGO-HU production, which exposes more defect sites for iron impurities to reside in. This facile electrochemical purification of graphenes can be utilised as a routine preparation and cleaning method of graphene before electrochemical measurements for analytes that show exceptional sensitivity towards electrocatalytic metallic impurities in sp(2) nanocarbon materials. PMID:24615543

  18. Modified cermet fuel electrodes for solid oxide electrochemical cells

    DOEpatents

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  19. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei

    2016-04-01

    For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb5+/Nb4+, Nb4+/Nb3+) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.

  20. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.

    PubMed

    Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei

    2016-04-28

    For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb(5+)/Nb(4+), Nb(4+)/Nb(3+)) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells. PMID:27074412

  1. Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide.

    PubMed

    Zhou, Shaofeng; Huang, Shaobin; He, Jiaxin; Li, Han; Zhang, Yongqing

    2016-10-01

    This study reports catalytic electro-chemical reduction of nitric oxide (NO) enhanced by Pseudomonas aeruginosa strain CP1. The current generated in the presence of bacteria was 4.36times that in the absence of the bacteria. The strain was able to catalyze electro-chemical reduction of NO via indirect electron transfer with an electrode, revealed by a series of cyclic voltammetry experiments. Soluble electron shuttles secreted into solution by live bacteria were responsible for the catalytic effects. The enhancement of NO reduction was also confirmed by detection of nitrous oxide; the level of this intermediate was 46.4% higher in the presence of bacteria than in controls, illustrated that the electron transfer pathway did not directly reduce nitric oxide to N2. The findings of this study may offer a new model for bioelectrochemical research in the field of NO removal by biocatalysts. PMID:27426634

  2. Development of graphene-nanometre-sized cerium oxide-incorporated aluminium and its electrochemical evaluation

    NASA Astrophysics Data System (ADS)

    Ashraf, P. Muhamed; Thomas, Saly N.; Edwin, Leela

    2016-02-01

    Graphene-nanometre-sized cerium oxide-incorporated aluminium was prepared and its electrochemical and surface morphological characteristics were studied. The atomic force micrographs and scanning electron micrographs evaluation highlighted that the graphene and nanometre-sized cerium oxide in aluminium had decreased the surface roughness and improved the surface morphological characteristics. The graphene: nanometre-sized cerium oxide (ratios 1:2 or 2:1) with lesser amounts of particle in the matrix showed excellent corrosion resistance in the marine environment as evidenced by linear polarization, electrochemical impedance and weight loss studies. Introduction of graphene in the aluminium matrix showed a barrier separation between the outermost layer and inner layer, increased roughness and increased corrosion. The material is found to be a potential candidate for use in marine environment.

  3. EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution.

    PubMed

    Pociecha, Maja; Lestan, Domen

    2009-06-15

    The feasibility of a two-phase method for remediation of Cu (364+/-2 mg kg(-1)) contaminated vineyard soil was evaluated. In the first phase we used ethylenediamine tetraacetae (EDTA) for Cu leaching, while in the second phase we used an electrochemical advanced oxidation process (EAOP) for the treatment and reuse of the washing solution for soil rinsing (removal of soil-retained, chelant-mobilized Cu complexes) in a closed loop. In the EAOP, a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of EDTA-metal complexes at a constant current density (40 mA cm(-2)). The released Cu was removed from the solution mostly as an electro-deposit on the cathode. Two consecutive additions of 10 mmol kg(-1) EDTA removed 26% of Cu from the soil, mostly from carbonate and oxide soil fractions (58% and 40% Cu reduction). The soil Cu oral availability (in vitro Physiologically Based Extraction Test) was reduced after remediation by 42% and 51% in the simulated stomach and intestinal phases. The discharge solution was clear, almost colorless, with pH 8.4 and 0.5 mg L(-1) Cu and 0.07 mM EDTA. The novel method enables soil Cu availability stripping using small volumes of process waters, and no wastewater generation or other emissions into the environment. PMID:19022571

  4. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors.

    PubMed

    Kumar, Nanjundan Ashok; Choi, Hyun-Jung; Shin, Yeon Ran; Chang, Dong Wook; Dai, Liming; Baek, Jong-Beom

    2012-02-28

    An alternative and effective route to prepare conducting polyaniline-grafted reduced graphene oxide (PANi-g-rGO) composite with highly enhanced properties is reported. In order to prepare PANi-g-rGO, amine-protected 4-aminophenol was initially grafted to graphite oxide (GO) via acyl chemistry where a concomitant partial reduction of GO occurred due to the refluxing and exposure of GO to thionyl chloride vapors and heating. Following the deprotection of amine groups, an in situ chemical oxidative grafting of aniline in the presence of an oxidizing agent was carried out to yield highly conducting PANi-g-rGO. Electron microscopic studies demonstrated that the resultant composite has fibrillar morphology with a room-temperature electrical conductivity as high as 8.66 S/cm and capacitance of 250 F/g with good cycling stability. PMID:22276770

  5. Morphological and electrochemical properties of crystalline praseodymium oxide nanorods.

    PubMed

    Shamshi Hassan, M; Shaheer Akhtar, M; Shim, Kyung-Bo; Yang, O-Bong

    2010-01-01

    Highly crystalline Pr6O11 nanorods were prepared by a simple precipitation method of triethylamine complex at 500°C. Synthesized Pr6O11 nanorods were uniformly grown with the diameter of 12-15 nm and the length of 100-150 nm without any impurities of unstable PrO2 phase. The Pr6O11 nanorod electrodes attained a high electrical conductivity of 0.954 Scm-1 with low activation energy of 0.594 eV at 850°C. The electrochemical impedance study showed that the resistance of electrode was significantly decreased at high temperature, which resulted from its high conductivity and low activation energy. The reduced impedance and high electrical conductivity of Pr6O11 nanorod electrodes are attributed to the reduction of grain boundaries and high space charge width. PMID:20672103

  6. Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications

    NASA Technical Reports Server (NTRS)

    Merryman, Stephen A.; Chen, Zheng

    2000-01-01

    Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.

  7. Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes.

    PubMed

    Sharma, Priyanka; Bhalla, Vijayender; Dravid, Vinayak; Shekhawat, Gajendera; Jinsong-Wu; Prasad, E Senthil; Suri, C Raman

    2012-01-01

    Graphene and related materials have come to the forefront of research in electrochemical sensors during recent years due to the promising properties of these nanomaterials. Further applications of these nanomaterials have been hampered by insufficient sensitivity offered by these nanohybrids for the type of molecules requiring lower detection ranges. Here, we report a signal amplification strategy based on magneto-electrochemical immunoassay which combines the advantages of carbon nanotube and reduced graphene oxide together with electrochemical bursting of magnetic nanoparticles into a large number of metal ions. Sensitive detection was achieved by precisely designing the nanohybrid and correlating the available metal ions with analyte concentration. We confirmed the ultrahigh sensitivity of this method for a new generation herbicide diuron and its analogues up to sub-picomolar concentration in standard water samples. The novel immune-detection platform showed the excellent potential applicability in rapid and sensitive screening of environmental pollutants or toxins in samples. PMID:23166860

  8. Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes

    PubMed Central

    Sharma, Priyanka; Bhalla, Vijayender; Dravid, Vinayak; Shekhawat, Gajendera; Jinsong-Wu, J W; Prasad, E. Senthil; Suri, C. Raman

    2012-01-01

    Graphene and related materials have come to the forefront of research in electrochemical sensors during recent years due to the promising properties of these nanomaterials. Further applications of these nanomaterials have been hampered by insufficient sensitivity offered by these nanohybrids for the type of molecules requiring lower detection ranges. Here, we report a signal amplification strategy based on magneto-electrochemical immunoassay which combines the advantages of carbon nanotube and reduced graphene oxide together with electrochemical bursting of magnetic nanoparticles into a large number of metal ions. Sensitive detection was achieved by precisely designing the nanohybrid and correlating the available metal ions with analyte concentration. We confirmed the ultrahigh sensitivity of this method for a new generation herbicide diuron and its analogues up to sub-picomolar concentration in standard water samples. The novel immune-detection platform showed the excellent potential applicability in rapid and sensitive screening of environmental pollutants or toxins in samples. PMID:23166860

  9. Mechanistic Study for Facile Electrochemical Patterning of Surfaces with Metal Oxides.

    PubMed

    Jones, Evan C; Liu, Qihan; Suo, Zhigang; Nocera, Daniel G

    2016-05-24

    Reactive interface patterning promoted by lithographic electrochemistry serves as a method for generating submicrometer scale structures. We use a binary-potential step on a metallic overlayer on silicon to fabricate radial patterns of cobalt oxide on the nanoscale. The mechanism for pattern formation has heretofore been ill-defined. The binary potential step allows the electrochemical boundary conditions to be controlled such that initial conditions for a scaling analysis are afforded. With the use of the scaling analysis, a mechanism for producing the observed pattern geometry is correlated to the sequence of electrochemical steps involved in the formation of the submicrometer structures. The patterning method is facile and adds to electrochemical micromachining techniques employing a silicon substrate. PMID:27072117

  10. Influence of electrolytes (TEABF4 and TEMABF4) on electrochemical performance of graphite oxide derived from needle coke.

    PubMed

    Yang, Sunhye; Kim, Ick-Jun; Choi, In-Sik; Bae, Mi-Kyeong; Kim, Hyun-Soo

    2013-05-01

    The structure of needle coke was changed to graphite oxide structure after oxidation treatment with 70 wt.% of nitric acid and sodium chlorate (NaClO3), and the inter-layer distance of the oxidized needle coke was expanded to 6.9 angstroms. The first charge profile of the oxidized needle coke-cell with 1.2 M TEMABF4/acetonitrile solution displayed that the intercalation of electrolyte ions into the inter-layer occurred at 1.0 V, which value is lower than 1.3 V of the oxidized needle coke-cell with 1.2 M TEABF4/acetonitrile solution. After first charge/discharge, the cell using TEMABF4 electrolyte exhibited smaller electrode resistance of 0.05 omega, and larger specific volume capacitance of 25.5 F/ml at the two-electrode system in the potential range 0-2.5 V than those of the cell using TEABF4 electrolyte. Compared to the TEABF4 electrolyte, better electrochemical performance of the TEMABF4 electrolyte in the oxidized needle coke may be caused by the smaller cation (TEMA+) size and better ion mobility in the nanopores between inter-layers. PMID:23858941

  11. Microfluidic Electrochemical Sensor for On-line Monitoring of Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S.

    2012-01-01

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species (ROS) in and around human tissues, leading to oxidative stress. We report here, a system employing a microfluidic electrochemical sensor coupled directly to a Particle-into-Liquid-Sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay) where after oxidized by PM, the remaining reduced DTT was analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Cobalt (II) phthalocyanine (CoPC)-modified carbon paste was used as the working electrode material allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R2 from 0.86–.97) with a time-resolution of approximately 3 minutes. PMID:22651886

  12. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes.

    PubMed

    Oturan, Nihal; van Hullebusch, Eric D; Zhang, Hui; Mazeas, Laurent; Budzinski, Hélène; Le Menach, Karyn; Oturan, Mehmet A

    2015-10-20

    In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants. PMID:26378656

  13. Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces.

    PubMed

    Yang, Chuan-Sen; Shang, Da-Shan; Chai, Yi-Sheng; Yan, Li-Qin; Shen, Bao-Gen; Sun, Young

    2016-05-14

    An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO3-x/fluorine-doped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current-voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag-H2O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells. PMID:26996952

  14. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage.

    PubMed

    Sassin, Megan B; Mansour, Azzam N; Pettigrew, Katherine A; Rolison, Debra R; Long, Jeffrey W

    2010-08-24

    We describe a simple self-limiting electroless deposition process whereby conformal, nanoscale iron oxide (FeO(x)) coatings are generated at the interior and exterior surfaces of macroscopically thick ( approximately 90 microm) carbon nanofoam paper substrates via redox reaction with aqueous K(2)FeO(4). The resulting FeO(x)-carbon nanofoams are characterized as device-ready electrode structures for aqueous electrochemical capacitors and they demonstrate a 3-to-7 fold increase in charge-storage capacity relative to the native carbon nanofoam when cycled in a mild aqueous electrolyte (2.5 M Li(2)SO(4)), yielding mass-, volume-, and footprint-normalized capacitances of 84 F g(-1), 121 F cm(-3), and 0.85 F cm(-2), respectively, even at modest FeO(x) loadings (27 wt %). The additional charge-storage capacity arises from faradaic pseudocapacitance of the FeO(x) coating, delivering specific capacitance >300 F g(-1) normalized to the content of FeO(x) as FeOOH, as verified by electrochemical measurements and in situ X-ray absorption spectroscopy. The additional capacitance is electrochemically addressable within tens of seconds, a time scale of relevance for high-rate electrochemical charge storage. We also demonstrate that the addition of borate to buffer the Li(2)SO(4) electrolyte effectively suppresses the electrochemical dissolution of the FeO(x) coating, resulting in <20% capacitance fade over 1000 consecutive cycles. PMID:20731433

  15. Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells.

    PubMed

    Zhang, Chunjuan; Yu, Yi; Grass, Michael E; Dejoie, Catherine; Ding, Wuchen; Gaskell, Karen; Jabeen, Naila; Hong, Young Pyo; Shavorskiy, Andrey; Bluhm, Hendrik; Li, Wei-Xue; Jackson, Gregory S; Hussain, Zahid; Liu, Zhi; Eichhorn, Bryan W

    2013-08-01

    Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) → H2 + O(2-)) and electro-oxidation of hydrogen (H2 + O(2-) → H2O + 2e(-)) at ∼700 °C in 0.5 Torr of H2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-up of surface intermediates (OH(-) and Ce(3+)) and show the separation of charge at the gas-solid interface exclusively in the electrochemically active region of the SOC. During water electrolysis on ceria, the increase in surface potentials of the adsorbed OH(-) and incorporated O(2-) differ by 0.25 eV in the active regions. For hydrogen electro-oxidation on ceria, the surface concentrations of OH(-) and O(2-) shift significantly from their equilibrium values. These data suggest that the same charge transfer step (H2O + Ce(3+) <-> Ce(4+) + OH(-) + H(•)) is rate limiting in both the forward (water electrolysis) and reverse (H2 electro-oxidation) reactions. This separation of potentials reflects an induced surface dipole layer on the ceria surface and represents the effective electrochemical double layer at a gas-solid interface. The in situ XPS data and DFT calculations show that the chemical origin of the OH(-)/O(2-) potential separation resides in the reduced polarization of the Ce-OH bond due to the increase of Ce(3+) on the electrode surface. These results provide a graphical illustration of the electrochemically driven surface charge transfer processes under relevant and nonultrahigh vacuum conditions. PMID:23822749

  16. Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Seok; Choi, Suneui; Song, JunHo; Woo, Sang-Gil; Jo, Yong Nam; Choi, Jungkyu; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun

    2014-05-01

    Lithium-nickel-cobalt-manganese oxide, Li[NixCoyMnz]O2 (NCM) is a low-cost cathode material with a high capacity and a moderately high rate capability, however, it still suffers from poor electrochemical performance. In this study, several types of additives are attempted to enhance the surface stability of high-Ni-content (Ni ≥ 60%) cathodes and the most effective additive turns out to be PS. The cycle performance in the presence of 2% PS is much improved at a high temperature of 60 °C: (1) 98.9% of its initial capacity is preserved, (2) the increase in thickness is only 17.9%, preventing undesired swellings, and (3) gases are not generated in large amounts with the internal pressure being 56.4 kPa. The FT-IR spectroscopy results suggest that the surface of the cathode in the presence of 2% PS is covered with a film of alkyl sulfone components (RSOSR and RSO2SR), which is possibly formed by the electrochemical oxidation of PS. The current results confirm that the electrochemical performance of Ni-rich cathodes can be improved via the appropriate use of additives. They also indicate that among the tested additive candidates in this study, PS is highly desirable for enhancing the electrochemical performance of Ni-rich cathodes.

  17. Electrochemically deposited gallium oxide nanostructures on silicon substrates

    PubMed Central

    2014-01-01

    We report a synthesis of β-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. β-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method. PMID:24629107

  18. Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films.

    PubMed

    Wen, Rui-Tao; Niklasson, Gunnar A; Granqvist, Claes G

    2015-05-13

    Anodically colored nickel oxide (NiO) thin films are of much interest as counter electrodes in tungsten oxide based electrochromic devices such as "smart windows" for energy-efficient buildings. However, NiO films are prone to suffering severe charge density degradation upon prolonged electrochemical cycling, which can lead to insufficient device lifetime. Therefore, a means to improve the durability of NiO-based films is an important challenge at present. Here we report that the incorporation of a modest amount of iridium into NiO films [Ir/(Ir + Ni) = 7.6 atom %] leads to remarkable durability, exceeding 10000 cycles in a lithium-conducting electrolyte, along with significantly improved optical modulation during extended cycling. Structure characterization showed that the face-centered-cubic-type NiO structure remained after iridium addition. Moreover, the crystallinity of these films was enhanced upon electrochemical cycling. PMID:25919917

  19. Electrochemical sensing of glucose by reduced graphene oxide-zinc ferrospinels

    NASA Astrophysics Data System (ADS)

    Shahnavaz, Zohreh; Woi, Pei Meng; Alias, Yatimah

    2016-08-01

    We have developed ZnFe2O4 magnetic nanoparticles/reduced graphene oxide nanosheets modified glassy carbon (ZnFe2O4/rGO/GCE) electrode as a novel system for the electrochemical glucose sensing. Via a facile in situ hydrothermal route, the reduction of GO and the formation of ZnFe2O4 nanoparticles occurred simultaneously. This enables the ZnFe2O4 nanoparticles dispersed on the reduced graphene sheet. Characterization of nanocomposite by X-ray diffraction (XRD) and transmission electron microscopy (TEM) clearly demonstrate the successful attachment of ZnFe2O4 nanoparticles to graphene sheets. Electrochemical studies revealed that the ZnFe2O4/rGO/GCE possess excellent electrocatalytic activities toward the oxidation of glucose and the performance of sensor is enhanced by integration of graphene nanosheets with ZnFe2O4 nanoparticles.

  20. Electrochemical impedance spectroscopy studies of lithium diffusion in doped manganese oxide

    SciTech Connect

    Johnson, B.J.; Doughty, D.H.; Voigt, J.A.; Boyle, T.J.

    1996-06-01

    Cathode performance is critical to lithium ion rechargeable battery performance; effects of doping lithium manganese oxide cathode materials on cathode performance are being investigated. In this paper, Li diffusion in Al-doped LiMn{sub 2}O{sub 4} was studied and found to be controlled by the quantity of Al dopant. Electrochemical cycling was conducted at 0.5mA/cm{sub 2}; electrochemical impedance spectra were taken at open circuit potential, with impedance being measured at 65 kHz-0.01 Hz. As the Al dopant level was increased, the Li diffusion rate decreased; this was attributed to the decreased lattice parameter of the doped oxide.

  1. An electrochemical approach to graphene oxide coated sulfur for long cycle life

    NASA Astrophysics Data System (ADS)

    Moon, Joonhee; Park, Jungjin; Jeon, Cheolho; Lee, Jouhahn; Jo, Insu; Yu, Seung-Ho; Cho, Sung-Pyo; Sung, Yung-Eun; Hong, Byung Hee

    2015-07-01

    Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the nanocomposite structures of the electrodes, in improving the electrochemical contact, and in minimizing the loss of soluble polysulfide intermediates. An electrochemical impedance spectroscopy analysis also confirms the enhanced structural stability of the GO-S/CB composites after battery operation. As a result, the GO-S/CB exhibited excellent cycle stability and specific capacity as high as ~723.7 mA h g-1 even after 100 cycles at 0.5 C.Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the

  2. ENGINEERING BULLETIN: CHEMICAL OXIDATION TREATMENT

    EPA Science Inventory

    Oxidation destroys hazardous contaminants by chemically converting them to nonhazardous or less toxic compounds that are ideally more stable, less mobile, and/or inert. However, under some conditions, other hazardous compounds may be formed. The oxidizing agents most commonly use...

  3. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    DOEpatents

    Balazs, G. Bryan; Lewis, Patricia R.

    1999-01-01

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components.

  4. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    DOEpatents

    Balazs, G.B.; Lewis, P.R.

    1999-07-06

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs.

  5. One step hydrothermal synthesis of a carbon nanotube/cerium oxide nanocomposite and its electrochemical properties

    NASA Astrophysics Data System (ADS)

    Kalubarme, Ramchandra S.; Kim, Yong-Han; Park, Chan-Jin

    2013-09-01

    A carbon nanotube (CNT)/cerium oxide composite was prepared by a one-pot hydrothermal reaction in the presence of KOH and capping agent polyvinylpyrrolidone. The nanocomposite displayed pronounced capacitive behaviour with very small diffusion resistance. The electrochemical performance of the composite electrode in a symmetric supercapacitor displayed a high energy density of 35.9 Wh kg-1 corresponding to a specific capacitance of 289 F g-1. These composite electrodes also demonstrated a long cycle life with better capacity retention.

  6. Electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices

    NASA Astrophysics Data System (ADS)

    He, Zhen

    The focus of this dissertation is the electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices. The electrochemical reduction of metal oxides to metals has been studied for decades as an alternative to pyrometallurgical processes for the metallurgy industry. However, the previous work was conducted on bulk polycrystalline metal oxides. Paper I in this dissertation shows that epitaxial face-centered cubic magnetite (Fe3O4 ) thin films can be electrochemically reduced to epitaxial body-centered cubic iron (Fe) thin films in aqueous solution on single-crystalline Au substrates at room temperature. This technique opens new possibilities to produce special epitaxial metal/metal oxide heterojunctions and a wide range of epitaxial metallic alloy films from the corresponding mixed metal oxides. Electrodeposition, like biomineralization, is a soft solution processing method which can produce functional materials with special properties onto conducting or semiconducting solid surfaces. Paper II in this dissertation presents the electrodeposition of cobalt-substituted magnetite (CoxFe3-xO4, 0 of cobalt-substituted magnetite (CoxFe3-xO4, 0oxide (Co3O4) thin films on stainless steel and Au single-crystalline substrates. The crystalline Co3O4 thin films exhibit high catalytic activity towards the oxygen evolution reaction in an alkaline solution. A possible application of the electrodeposited Co 3O4 is the fabrication of highly active and low-cost photoanodes for photoelectrochemical water-splitting cells.

  7. Assessment of Electrodes Prepared from Wafers of Boron-doped Diamond for the Electrochemical Oxidation of Waste Lubricants

    SciTech Connect

    Taylor, G.T.; Sullivan, I.A.; Newey, A.W.E.

    2006-07-01

    Electrochemical oxidation using boron-doped diamond electrodes is being investigated as a treatment process for radioactively contaminated oily wastes. Previously, it was shown that electrodes coated with a thin film of diamond were able to oxidise a cutting oil but not a mineral oil. These tests were inconclusive, because the electrodes lost their diamond coating during operation. Accordingly, an electrode prepared from a 'solid' wafer of boron-doped diamond is being investigated to determine whether it will oxidise mineral oils. The electrode has been tested with sucrose, a cutting oil and an emulsified mineral oil. Before and after each test, the state of the electrode was assessed by cyclic voltammetry with the ferro/ferricyanide redox couple. Analysis of the cyclic voltammogram suggested that material accumulated on the surface of the electrode during the tests. The magnitude of the effect was in the order: - emulsified mineral oil > cutting oil > sucrose. Despite this, the results indicated that the electrode was capable of oxidising the emulsified mineral oil. Confirmatory tests were undertaken in the presence of alkali to trap the carbon dioxide, but they had to be abandoned when the adhesive holding the diamond in the electrode was attacked by the alkali. Etching of the diamond wafer was also observed at the end of the tests. Surface corrosion is now regarded as an intrinsic part of the electrochemical oxidation on diamond, and it is expected that the rate of attack will determine the service life of the electrodes. (authors)

  8. Electrochemical oxidation of the carbide wastes of hard alloys using alternating current

    NASA Astrophysics Data System (ADS)

    Bryukvin, V. A.; Palant, A. A.; Levchuk, O. M.; Tsybin, O. I.

    2012-03-01

    The electrochemical oxidation of the carbide wastes of a W-Co alloy has been studied by gas, electron-probe microanalysis, and X-ray diffraction analyses. The experiments are carried out using halfwave sinusoidal alternating current. It is established that a CO2 + CO mixture forms under such conditions in a gaseous phase in volumetric ratio of 2: 1 and that a tungsten deposit forms in an anode sludge mainly in the form of hydrated tungsten oxide WO2(OH)2. Marketable products are obtained in the form of pure CO3O4 and WO3.

  9. The electrochemical oxidation of methanol on a Pt/TNTs/Ti electrode enhanced by illumination

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Wei, Z. D.; Gao, B.; Qi, X. Q.; Li, L.; Zhang, Q.; Xia, M. R.

    A Pt/TNTs/Ti electrode is prepared by electrochemically depositing Pt using the modulated pulse current method onto high density, well ordered and uniformly distributed TiO 2 nanotubes (TNTs) on a Ti substrate. The results show that the performance and anti-poison ability of the Pt/TNTs/Ti electrode for methanol electro-oxidation under illumination is remarkably enhanced and is even better than the best bi-metallic Pt-Ru catalysts. CO poisoning is no longer a problem during methanol electro-oxidation with the Pt/TNTs/Ti electrode under illumination.

  10. Experimental study on electrochemical hydrogen pump of SrZrO{sub 3}-based oxide

    SciTech Connect

    Tanaka, M.; Asakura, Y.; Uda, T.

    2008-07-15

    The electrochemical hydrogen pump properties of the SrZr{sub 0.8}In{sub 0.2}O{sub 3-{alpha}} proton conducting oxide were evaluated under various atmospheres, temperatures and the effect of oxygen gas in the cathode for the recovery of hydrogen isotopes. It was found that high temperature is not necessarily required and protonic conductivity of the proton conducting oxide rather than total conductivity should be observed to improve the performance of the hydrogen pump. Furthermore, the presence of oxygen in the cathode compartment plays an important role in the enhancement of the hydrogen pump performance. (authors)

  11. Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    DOEpatents

    Isenberg, Arnold O.

    1989-01-01

    An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  12. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    SciTech Connect

    Han, Kun; Miao, Peng; Tang, Yuguo; Tong, Hui; Zhu, Xiaoli; Liu, Tao; Cheng, Wenbo

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  13. Electrochemical oxide film formation at noble metals as a surface-chemical process

    NASA Astrophysics Data System (ADS)

    Conway, B. E.

    1995-08-01

    The mechanisms of electrochemical oxide film formation at noble metals are described and exemplified by the cases of Pt and Au, especially in the light of recent experimentation by means of cyclic voltammetry, ellipsometry and vacuum surface-science studies using LEED and AES. Unlike the mechanisms of base-metal oxidation, e.g., in corrosion processes, anodic oxide film formation at noble metals proceeds by surface chemical processes involving, initially, sub-monolayer, through monolayer, formation of 2-dimensional {OH}/{O} arrays. During such 2-d processes, place-exchange between electrosorbed OH or O species on the surface, and Pt or Au atoms within the surface lattice, takes place leading to a quasi-2-d compact film which then grows ultimately to a multilayer hydrous oxide film, probably by continuing injection of ions of the substrate metal and their migration through the growing film under the influence of the field. The initial, sub-monolayer stage of electrosorption of OH involves competitive chemisorption by anions, e.g. HSO 4-, ClO 4-, Cl -, which inhibits onset of the first stage of surface oxidation. These processes are demonstrable in experiments on single-crystal surfaces. The combination of such anion effects with place-exchange during the extension of the film, leads to a general mechanism of noble metal oxide film formation. The formation of the oxide films can be examined in detail by recording the distinguishable stages in the film's electrochemical reduction in linear-sweep voltammetry which is sensitive down to {OH}/{O} fractional coverages as low as 0.5% and over time-scales down to 50μs in experiments on time-evolution and transformation of the states of the oxide films. By means of LEED, AES and STM or AFM experiments, the reconstructions and perturbations (e.g. generation of stepped terraces) which oxide films cause on singlecrystal surfaces can be followed.

  14. Writable electrochemical energy source based on graphene oxide

    PubMed Central

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  15. Electrochemically-Controlled Compositional Oscillations of Oxide Surfaces

    SciTech Connect

    Mutoro, Eva; Crumlin, Ethan; Pöpke, Hendrik; Luerssen, Bjoern; Amati, Matteo; Abyaneh, Majid; Biegalski, Michael D; Christen, Hans M; Gregoratti, Luca; Janek, Jürgen; Shao-Horn, Yang

    2012-01-01

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically and/or ionically conducting, and thus they have been used in a number of solid-state devices such as solid oxide fuel cells and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface chemistries is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface chemistry changes of La0.8Sr0.2CoO3 (LSC113), LaSrCoO4 (LSC214), and LSC214-decorated LSC113 films (LSC113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr was found for the LSC113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites.

  16. Writable electrochemical energy source based on graphene oxide.

    PubMed

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm(3) and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  17. Writable electrochemical energy source based on graphene oxide

    NASA Astrophysics Data System (ADS)

    Wei, Di

    2015-10-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability.

  18. Cobalt Oxide Nanoflowers for Electrochemical Determination of Glucose

    NASA Astrophysics Data System (ADS)

    Balouch, Quratulain; Ibupoto, Zafar Hussain; Khaskheli, Ghulam Qadir; Soomro, Razium Ali; Sirajuddin; Samoon, Muhammad Kashif; Deewani, Vinod Kumar

    2015-10-01

    This study reports a simple, economic, and efficient approach for synthesis of cobalt oxide (Co3O4) nanostructures by a low-temperature aqueous chemical growth method. The synthesized Co3O4 nanostructures were characterized by various techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The synthesized nanostructures exhibited flower-shaped morphology with thickness of each pellet in the range of 200 to 300 nm. The synthesized Co3O4 nanostructures with excellent structural features exhibited high electrocatalytic activity towards the oxidation of glucose in alkaline solution. This enabled development of a highly sensitive (1618.71 µA mM-1 cm-2), stable and reproducible non-enzymatic glucose sensor. The developed sensor demonstrated high anti-interference capability against common interferents such as dopamine, ascorbic acid and uric acid. Furthermore, the applicability of the developed sensor for the determination of glucose from human blood serum provides an alternative approach for the routine glucose analysis.

  19. Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles.

    PubMed

    Chen, Aicheng; La Russa, Daniel J; Miller, Brad

    2004-10-26

    The influence of the iridium oxide thin film on the electrocatalytic properties of platinum nanoparticles was investigated using the electro-oxidation of methanol and CO as a probe. The presence of the IrO(2) thin film leads to the homogeneous dispersion of Pt nanoparticles. For comparison, polycrystalline platinum and Pt nanoparticles dispersed on a Ti substrate in the absence of an IrO(2) layer (Ti/Pt) were also investigated in this study. Inverted and enhanced CO bipolar peaks were observed using an in situ electrochemical Fourier transform infrared technique during the methanol oxidation on the Pt nanoparticles dispersed on a Ti substrate. Electrochemical impedance studies showed that the charge transfer resistance was significantly lower for the Ti/IrO(2)/Pt electrode compared with that of the massive Pt and Ti/Pt nanoparticles. The presence of the IrO(2) thin film not only greatly increases the active surface area but also promotes CO oxidation at a much lower electrode potential, thus, significantly enhancing the electrocatalytic activity of Pt nanoparticles toward methanol electro-oxidation. PMID:15491204

  20. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.

    PubMed

    Kirtley, John D; Halat, David M; McIntyre, Melissa D; Eigenbrodt, Bryan C; Walker, Robert A

    2012-11-20

    Carbon formation or "coking" on solid oxide fuel cell (SOFC) anodes adversely affects performance by blocking catalytic sites and reducing electrochemical activity. Quantifying these effects, however, often requires correlating changes in SOFC electrochemical efficiency measured during operation with results from ex situ measurements performed after the SOFC has been cooled and disassembled. Experiments presented in this work couple vibrational Raman spectroscopy with chronopotentiometry to observe directly the relationship between graphite deposited on nickel cermet anodes and the electrochemical performance of SOFCs operating at 725 °C. Raman spectra from Ni cermet anodes at open circuit voltage exposed to methane show a strong vibrational band at 1556 cm(-1) assigned to the "G" mode of highly ordered graphite. When polarized in the absence of a gas-phase fuel, these carbon-loaded anodes operate stably, oxidizing graphite to form CO and CO(2). Disappearance of graphite intensity measured in the Raman spectra is accompanied by a steep ∼0.8 V rise in the cell potential needed to keep the SOFC operating under constant current conditions. Continued operation leads to spectroscopically observable Ni oxidation and another steep rise in cell potential. Time-dependent spectroscopic and electrochemical measurements pass through correlated equivalence points providing unequivocal, in situ evidence that identifies how SOFC performance depends on the chemical condition of its anode. Chronopotentiometric data are used to quantify the oxide flux necessary to eliminate the carbon initially present on the SOFC anode, and data show that the oxidation mechanisms responsible for graphite removal correlate directly with the electrochemical condition of the anode as evidenced by voltammetry and impedance measurements. Electrochemically oxidizing the Ni anode damages the SOFC significantly and irreversibly. Anodes that have been reconstituted following electrochemical oxidation of

  1. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    SciTech Connect

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  2. Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen.

    PubMed

    Park, Hyunwoong; Vecitis, Chad D; Hoffmann, Michael R

    2008-08-21

    A Bi-doped TiO2 anode, which is prepared from a mixed metal oxide coating deposited on Ti metal, is shown to be efficient for conventional water splitting. In this hybrid photovoltaic-electrochemical system, a photovoltaic (PV) cell is used to convert solar light to electricity, which is then used to oxidize a series of phenolic compounds at the semiconductor anode to carbon dioxide with the simultaneous production of molecular hydrogen from water/proton reduction at the stainless steel cathode. Degradation of phenol in the presence of a background NaCl electrolyte produces chlorinated phenols as reaction intermediates, which are subsequently oxidized completely to carbon dioxide and low-molecular weight carboxylic acids. The anodic current efficiency for the complete oxidation of phenolic compounds ranges from 3% to 17%, while the cathodic current efficiency and the energy efficiency for hydrogen gas generation range from 68% to 95% and 30% to 70%, respectively. PMID:18656909

  3. Electrochemical properties of highly degenerate and low cost cadmium oxide thin films

    NASA Astrophysics Data System (ADS)

    Mundinamani, S. P.; Rabinal, M. K.

    2015-11-01

    In the present work, we describe a simple and easy method for the deposition of nanostructured cadmium oxide films on glass by spray pyrolysis. The electrochemical capacitive properties of these films have been studied for different electrolyte species under the different scan rates. The present results show a high value of specific capacitance of 18 F g-1 in 1 M NaOH electrolyte for the scan rate of 10 mV s-1. This value of specific capacitance is the highest ever reported value for cadmium oxide thin films. These results emphasize that the ion diffusion between the electrode and the electrolyte is significantly high due to the highly porous nanostructure of cadmium oxide and these results confirms the cadmium oxide as a capacitive material. The constructed devices were stable even after the 1000 cycle.

  4. Mediated electrochemical oxidation of Rocky Flats combustible low level mixed wastes

    SciTech Connect

    Chiba, Z.

    1992-12-01

    Mediated Electrochemical Oxidation (MEO) was originally developed for dissolution of difficult to dissolve forms of plutonium oxide. It was also found to be effective for oxidizing non-polymerized organic materials. MEO is an inherently safe process since the hazardous and radioactive materials are completely contained in the aqueous phase, and operating temperatures and pressures of the system are low (well below 100 {degree}C and 30 psig). The most commonly used mediator-electrolyte combination is silver in nitric acid. The process produces divalent silver ion, a strong oxidizing agent, which dissolves the radioactive components of mixed wastes and destroys the organic components. In the past, work at LLNL has been focused on understanding the basic science and modeling the dissolution and destruction mechanisms. Reaction rates of water with Ag(H) were measured using spectrophotometric methods, and the diffusivity of silver ions in nitric acid was estimated using a rotating disk electrode.

  5. Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor

    NASA Astrophysics Data System (ADS)

    Ghasemi, Shahram; Ahmadi, Fatemeh

    2015-09-01

    In this study, reduced graphene oxide- Fe3O4 (RGO-Fe3O4) nanocomposite is fabricated using simple electrophoretic deposition (EPD) method followed by an electrochemical reduction process. It is characterized using atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy. Fe3O4 nanoparticles with 20-50 nm in diameter are uniformly formed on RGO. Electrochemical properties of nanocomposite are characterized by cyclic voltammetery, galvanostatic charge/discharge and electrochemical impedance spectroscopy. According to the galvanostatic charge/discharge analysis, RGO-Fe3O4/SS presents specific capacitance (Cs) of 154 F g-1 at current density of 1 A g-1, which is higher than that of RGO/SS (81 F g-1) in Na2SO4 electrolyte. Also, the electrochemical behaviors show that addition of three kind of surfactant, i.e. sodium dodecyl sulphate, cetyltrimethylammonium bromide, t-octyl phenoxy polyethoxyethanol (Triton X-100) to Na2SO4 aqueous solution can improve the Cs of RGO-Fe3O4/SS electrodes. RGO-Fe3O4/SS in Na2SO4 electrolyte containing Triton X-100 shows maximum Cs of 236 F g-1 at 1 A g-1 which retains 97% of initial capacitance after 500 cycles.

  6. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  7. Voltammetric Scanning Electrochemical Cell Microscopy: Dynamic Imaging of Hydrazine Electro-oxidation on Platinum Electrodes.

    PubMed

    Chen, Chang-Hui; Jacobse, Leon; McKelvey, Kim; Lai, Stanley C S; Koper, Marc T M; Unwin, Patrick R

    2015-06-01

    Voltammetric scanning electrochemical cell microscopy (SECCM) incorporates cyclic voltammetry measurements in the SECCM imaging protocol, by recording electrochemical currents in a wide potential window at each pixel in a map. This provides much more information compared to traditional fixed potential imaging. Data can be represented as movies (hundreds of frames) of current (over a surface region) at a series of potentials and are highly revealing of subtle variations in electrode activity. Furthermore, by combining SECCM data with other forms of microscopy, e.g. scanning electron microscopy and electron backscatter diffraction data, it is possible to directly relate the current-voltage characteristics to spatial position and surface structure. In this work we use a "hopping mode", where the SECCM pipet probe is translated toward the surface at a series of positions until meniscus contact. Small amounts of residue left on the surface, upon probe retraction, demark the precise area of each measurement. We use these techniques to study hydrazine oxidation on a polycrystalline platinum substrate both in air and in a deaerated environment. In both cases, the detected faradaic current shows a structural dependence on the surface crystallographic orientation. Significantly, in the presence of oxygen (aerated solution) the electrochemical current decreases strongly for almost all grains (crystallographic orientations). The results highlight the flexibility of voltammetric SECCM for electrochemical imaging and present important implications for hydrazine electroanalysis. PMID:25942527

  8. Radiofrequency-oxidation treatment of sewage sludge.

    PubMed

    Srinivasan, Asha; Young, Chris; Liao, Ping H; Lo, Kwang V

    2015-12-01

    A novel thermal-chemical treatment technology using radiofrequency heating and oxidants (hydrogen peroxide, ozone and a combination of both) was used for the treatment of sewage sludge. This was to evaluate the process effectiveness on cell disintegration and nutrient release of sludge, physical property changes such as particle size distribution, dewaterability and settleability, and their inter-relationships. The effectiveness of treatment processes was in the following order, from the most to least: thermal-oxidation process, oxidation process and thermal process. The thermal-oxidation process greatly increased cell disintegration and nutrient release, improved settleability, and decreased particle sizes. The treatment scheme involving ozone addition followed by hydrogen peroxide and radiofrequency heating yielded the highest soluble chemical oxygen demand, volatile fatty acids, ammonia and metals, while proffering the shortest capillary suction time and excellent settling properties. PMID:26233925

  9. Electrochemical Properties of Graphene Oxide/Resol Composites as Electrode Materials for Supercapacitor Applications.

    PubMed

    Park, Geon Woo; Jeon, Sang Kwon; Yang, Jin Yong; Choi, Sung Dae; Kim, Geon Joong

    2016-05-01

    RGO/Resol carbon composites were prepared from a mixture of reduced GO and a low-molecular-weight phenolic resin (Resol) solution. The effects of the calcination temperature, amount of Resol added and KOH treatment on the electrochemical performance of the RGO/Resol composites were investigated. The physical and electrochemical properties of the composite materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) surface areas measurements, and cyclic voltammetry (CV). The relationships between their physical properties and their electrochemical performance were examined for use as super-capacitors (SCs). The RGO/Resol composite calcined at 400 degrees C after the KOH loading showed dramatically improved electrochemical properties, showing a high BET surface and capacitance of 2190 m2/g and 220 F/g, respectively. The RGO/Resol composites calcined after the KOH treatment showed much better capacitor performance than those treated only thermally at the same temperature without KOH impregnation. The fabrication of high surface electrodes was essential for improving the SCs properties. PMID:27483752

  10. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    NASA Astrophysics Data System (ADS)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming; Mao, Xiaojian; Hauch, Anne; Nielsen, Karsten A.

    Oxygen electrodes and steam electrodes are designed and tested to develop improved solid oxide electrolysis cells for H 2 production with the cell support on the oxygen electrode. The electrode performance is evaluated by impedance spectroscopy testing of symmetric cells at open circuit voltage (OCV) in a one-atmosphere set-up. For the oxygen electrode, nano-structured La 0.75Sr 0.25MnO 3 (LSM25) is impregnated into a LSM25/yttria stabilised zirconia (YSZ) composite, whereas for the steam electrode, nano-structured Ni and Ce 0.8Gd 0.2O 2- δ (CGO) is impregnated into a Sr 0.94Ti 0.9Nb 0.10O 3- δ (STN) backbone. In the present study, the best performing oxygen electrode is a LSM25-YSZ composite with 20% porosity and impregnated with a LSM25 solution measuring a polarisation resistance (R p) of 0.12 Ω cm 2 at 850 °C in oxygen. For the steam electrode, the best performance is obtained for a STN backbone, sintered at 1200 °C and impregnated with CGO/Ni, with an R p of 0.08 Ω cm 2 at 850 °C in 3% H 2O/H 2.

  11. Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing

    PubMed Central

    Sharma, Priyanka; Tuteja, Satish K.; Bhalla, Vijayender; Shekhawat, G.; Dravid, Vinayak P.; Suri, C.Raman

    2014-01-01

    We report a novel in-situ electrochemical synthesis approach for the formation of functionalized graphene–graphene oxide (fG–GO) nanocomposite on screen-printed electrodes (SPE). Electrochemically controlled nanocomposite film formation was studied by transmission electron microscopy (TEM) and Raman spectroscopy. Further insight into the nanocomposite has been accomplished by the Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) spectroscopy. Configured as a highly responsive screen-printed immunosensor, the fG–GO nanocomposite on SPE exhibits electrical and chemical synergies of the nano-hybrid functional construct by combining good electronic properties of functionalized graphene (fG) and the facile chemical functionality of graphene oxide (GO) for compatible bio-interface development using specific anti-diuron antibody. The enhanced electrical properties of nanocomposite biofilm demonstrated a significant increase in electrochemical signal response in a competitive inhibition immunoassay format for diuron detection, promising its potential applicability for ultra-sensitive detection of range of target analytes. PMID:22884654

  12. Bio-functionalized graphene-graphene oxide nanocomposite based electrochemical immunosensing.

    PubMed

    Sharma, Priyanka; Tuteja, Satish K; Bhalla, Vijayender; Shekhawat, G; Dravid, Vinayak P; Suri, C Raman

    2013-01-15

    We report a novel in-situ electrochemical synthesis approach for the formation of functionalized graphene-graphene oxide (fG-GO) nanocomposite on screen-printed electrodes (SPE). Electrochemically controlled nanocomposite film formation was studied by transmission electron microscopy (TEM) and Raman spectroscopy. Further insight into the nanocomposite has been accomplished by the Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) spectroscopy. Configured as a highly responsive screen-printed immunosensor, the fG-GO nanocomposite on SPE exhibits electrical and chemical synergies of the nano-hybrid functional construct by combining good electronic properties of functionalized graphene (fG) and the facile chemical functionality of graphene oxide (GO) for compatible bio-interface development using specific anti-diuron antibody. The enhanced electrical properties of nanocomposite biofilm demonstrated a significant increase in electrochemical signal response in a competitive inhibition immunoassay format for diuron detection, promising its potential applicability for ultra-sensitive detection of range of target analytes. PMID:22884654

  13. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Alver, Ü.; Tanrıverdi, A.

    2016-08-01

    In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  14. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors.

    PubMed

    Lang, Xing-You; Fu, Hong-Ying; Hou, Chao; Han, Gao-Feng; Yang, Ping; Liu, Yong-Bing; Jiang, Qing

    2013-01-01

    Tremendous demands for electrochemical biosensors with high sensitivity and reliability, fast response and excellent selectivity have stimulated intensive research on developing versatile materials with ultrahigh electrocatalytic activity. Here we report flexible and self-supported microelectrodes with a seamless solid/nanoporous gold/cobalt oxide hybrid structure for electrochemical nonenzymatic glucose biosensors. As a result of synergistic electrocatalytic activity of the gold skeleton and cobalt oxide nanoparticles towards glucose oxidation, amperometric glucose biosensors based on the hybrid microelectrodes exhibit multi-linear detection ranges with ultrahigh sensitivities at a low potential of 0.26 V (versus Ag/AgCl). The sensitivity up to 12.5 mA mM⁻¹ cm⁻² with a short response time of less than 1 s gives rise to ultralow detection limit of 5 nM. The outstanding performance originates from a novel nanoarchitecture in which the cobalt oxide nanoparticles are incorporated into pore channels of the seamless solid/nanoporous Au microwires, providing excellent electronic/ionic conductivity and mass transport for the enhanced electrocatalysis. PMID:23851924

  15. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments.

    PubMed

    Wang, Hui; Wang, Jian Long

    2008-06-15

    By using a self-made carbon/polytetrafluoroethylene (C/PTFE) O2-fed as the cathode and Ti/IrO2/RuO2 as the anode, the degradation of three organic compounds (phenol, 4-chlorophenol, and 2,4-dichlorophenol) was investigated in the diaphragm (with terylene as diaphragm material) electrolysis device by electrochemical oxidation process. The result indicated that the concentration of hydrogen peroxide (H2O2) was 8.3 mg/L, and hydroxyl radical (HO) was determined in the cathodic compartment by electron spin resonance spectrum (ESR). The removal efficiency for organic compounds reached about 90% after 120 min, conforming to the sequence of phenol, 4-chlorophenol, and 2,4-dichlorophenol. And the dechlorination degree of 4-chlorophenol exceeded 90% after 80 min. For H2O2, HO existed in the catholyte and reduction dechlorination at the cathode, the mineralization of organics in the cathodic compartment was better than that in the anodic compartment. The degradation of organics was supposed to be cooperative oxidation by direct or indirect electrochemical oxidation at the anode and H2O2, HO produced by oxygen reduction at the cathode. High-performance liquid chromatography (HPLC) allowed identifying phenol as the dechlorination product of 4-chlorophenol in the cathodic compartment, and hydroquinone, 4-chlorocatechol, benzoquinone, maleic, fumaric, oxalic, and formic acids as the main oxidation intermediates in the cathodic and anodic compartments. A reaction scheme involving all these intermediates was proposed. PMID:17996367

  16. Optimization and electrochemical characterization of RF-sputtered iridium oxide microelectrodes for electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyang; Liu, Jingquan; Tian, Hongchang; Yang, Bin; NuLi, Yanna; Yang, Chunsheng

    2014-02-01

    A reactively sputtered iridium oxide (IrOx) thin film has been developed as electrochemical modification material for microelectrodes to obtain high stability and charge storage capacity (CSC) in functional electrical stimulation. The effect of the oxygen flow and oxygen to argon ratio during sputtering process on the microstructure and electrochemical properties of the IrOx film is characterized. After optimization, the activated IrOx microelectrode shows the highest CSC of 36.15 mC cm-2 at oxygen flow of 25 sccm and oxygen to argon ratio of (2.5:1). Because the deposition process of the reactively sputtered iridium oxide is an exothermic reaction, it is difficult to form film patterning by the lift-off process. The lift-off process was focused on the partially carbonized photoresist (PR) and normal PR. The higher of the carbonization degree of PR reaches, the longer the immersion duration. However, the patterning process of the iridium oxide film becomes feasible when the sputtering pressure is increasing. The experimental results show that the iridium oxide films forms the pattern with the lowest duration of ultrasonic agitation when the deposition pressure is 4.2 Pa and pressure ratio between O2 and Ar pressure is 3:4.

  17. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode.

    PubMed

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-François

    2009-05-30

    In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO(2)) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO(2)) and five cathodes (stainless steel, 316 L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm(-2) was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na(2)SO(4)) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na(2)SO(4)L(-1) was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAHL(-1). Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C(10)-C(50)) was removed, whereas removal yields of 69% and 62% have been measured for O&G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO(2) could be efficiently used to reduce more than 90% of the COS toxicity. PMID:18926633

  18. Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution.

    PubMed

    Meng, Huan; Fan, Ke; Low, Jingxiang; Yu, Jiaguo

    2016-09-21

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen by sunlight is a promising approach to solve energy and environmental problems. In this work, silicon nanowire arrays (SiNWs) photocathodes decorated with reduced graphene oxide (rGO) for PEC water splitting were successfully prepared by a flexible and scalable electrochemical reduction method. The SiNWs photocathode with the optimized rGO decoration (SiNWs/rGO20) shows an enhanced activity with a much higher photocurrent density and significantly positive shift of onset potential compared to the bare SiNWs arrays for the hydrogen evolution reaction (HER). The enhanced PEC activity is ascribed to the high electrical conductivity of rGO and improved separation of the photogenerated charge carriers. This work not only demonstrates a facile, rapid and tunable electrochemical reduction method to produce rGO, but also exhibits an efficient protocol to enhance the PEC water splitting of silicon-based materials. PMID:27461187

  19. Reduced graphene oxide-yttria nanocomposite modified electrode for enhancing the sensitivity of electrochemical genosensor.

    PubMed

    Rasheed, P Abdul; Radhakrishnan, Thulasi; Shihabudeen, P K; Sandhyarani, N

    2016-09-15

    Reduced graphene oxide-yttria nanocomposite (rGO:Y) is applied as electrochemical genosensor platform for ultrahigh sensitive detection of breast cancer 1 (BRCA1) gene for the first time. The sensor is based on the sandwich assay in which gold nanoparticle cluster labeled reporter DNA hybridize to the target DNA. Glassy carbon electrode modified with rGO-yttria serves as the immobilization platform for capture probe DNA. The sensor exhibited a fine capability of sensing BRCA1 gene with linear range of 10attomolar (aM) to 1nanomolar (nM) and a detection limit of 5.95attomolar. The minimum distinguishable response concentration is down to the attomolar level with a high sensitivity and selectivity. We demonstrated that the use of rGO:Y modified electrode along with gold nanoparticle cluster (AuNPC) label leads to the highly sensitive electrochemical detection of BRCA1 gene. PMID:27153526

  20. Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes.

    PubMed

    Samet, Y; Elaoud, S Chaabane; Ammar, S; Abdelhedi, R

    2006-12-01

    Electrochemical oxidation of 4-chloroguaiacol (4-CG) at Nb/PbO(2) anodes was studied under different experimental conditions such as initial concentration of substrate, electrolysis time, temperature and pH. We measured the concentrations of 4-chlorocatechol (4-CC), 2-methoxyhydroquinone (2-MHQ), maleic acid (MA) and carbon dioxide as the main products. Black solid particles consisting mainly of polymers were formed during electrolysis. A mechanism of electrochemical oxidation of 4-CG was investigated. The oxidation of 4-CG can generally be described by simple pseudo first-order kinetics. The degradation of 4-CG was favoured at high temperature and lower initial concentration of 4-CG and low solution pH. However, the increase of temperature has not a significant effect on the mineralization of carboxylic acids. Moreover, these products required long electrolysis time. PMID:16844292

  1. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system

    PubMed Central

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-01-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron–hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems. PMID:25994309

  2. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-05-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron-hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems.

  3. Amplified electrochemical determination of maltol in food based on graphene oxide-wrapped tin oxide@carbon nanospheres.

    PubMed

    Gan, Tian; Sun, Junyong; Yu, Miaomiao; Wang, Kaili; Lv, Zhen; Liu, Yanming

    2017-01-01

    The study presents a new approach for rapid and ultrasensitive detection of maltol using a glassy carbon electrode (GCE) modified with graphene oxide-wrapped tin oxide@carbon nanospheres (SnO2@C@GO). The morphological and components properties of SnO2@C@GO nanocomposites were investigated by means of X-ray diffraction spectroscopy, Raman spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, and electrochemical impedance spectroscopy. SnO2@C@GO nanocomposite on a GCE had a synergetic effect on the electrochemical oxidation of maltol by means of square wave voltammetry. Under the optimum conditions, anodic peak current response of maltol was linear with its concentration in the range of 80nM-10μM, and a detection limit of 12nM was achieved for maltol. The experiment results presented that the method showed good selectivity, sensitivity, reproducibility, and long-term stability, as well as excellent potential for use as an ideal inexpensive voltammetric method applicable for complex food matrices. PMID:27507451

  4. Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Gu, Shuqing; Ding, Yaping; Jiang, Feng; Zhang, Zhen

    2013-12-01

    A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 μM for AC and 0.06 to 10 μM for PCT with high sensitivities of 54 295.82 μA mM-1 cm2 for AC and 21 344.66 μA mM-1 cm2 for PCT, respectively. Moreover, the practical applicability was validated to be reliable and desirable in pharmaceutical detections. The excellent results showed the promise of the proposed preparation strategy of EGR-transition metal oxide nanocomposite in the field of electroanalytical chemistry.A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 μM for AC and 0.06 to 10

  5. Oxidative particle mixtures for groundwater treatment

    DOEpatents

    Siegrist, Robert L.; Murdoch, Lawrence C.

    2000-01-01

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  6. Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor.

    PubMed

    Pramanik, Atin; Maiti, Sandipan; Mahanty, Sourindra

    2015-09-01

    Developing new materials for electrochemical supercapacitors with higher energy density has recently gained tremendous impetus in the context of effective utilization of renewable energy. Herein, we report a simple one-pot synthesis of bundled nanorods of Cu(OH)2 embedded in a matrix of reduced graphene oxide (Cu(OH)2@RGO) under mild hydrothermal conditions of 80 °C for 1 h. The synthesized material shows a high BET surface area of 78.7 m(2) g(-1) and a mesoporous nature with a broad pore-size distribution consisting of structural pores as well as inter-particle pores. Raman spectroscopy suggests an intimate interaction between Cu(OH)2 and reduced graphene oxide (RGO) creating more defects by destruction of sp(2) domains which would help the defect-assisted charge transport during electrochemical processes. When investigated as an electrochemical supercapacitor, Cu(OH)2@RGO shows a high capacitance of 602 F g(-1) at 0.2 A g(-1) in 1 M KOH in a three-electrode cell configuration. Detailed electrochemical studies indicate that the Faradic processes are diffusion controlled and follow a quasi-reversible kinetics. Further, a two-electrode symmetric cell shows good energy density and power density (84.5 Wh kg(-1) at 0.55 kW kg(-1) and 20.5 Wh kg(-1) at 5.5 kW kg(-1)) characteristics demonstrating superior application potential of this common low-cost transition metal hydroxide for high performance energy storage devices. PMID:26208312

  7. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    NASA Astrophysics Data System (ADS)

    Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.

    2016-06-01

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  8. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study

    SciTech Connect

    Holmes, P.R.; Crundwell, F.K.

    2000-01-01

    The dissolution of pyrite is important in the geochemical cycling of iron and sulphur, in the formation of acid mine drainage, and in the extraction of metals by bacterial leaching. Many researchers have studied the kinetics of dissolution, and the rate of dissolution has often been found to be half-order in ferric ions or oxygen. Previous work has not adequately explained the kinetics of dissolution of pyrite. The dissolution of pyrite is an oxidation-reduction reaction. The kinetics of the oxidation and reduction half-reactions was studied independently using electrochemical techniques of voltammetry. The kinetics of the overall reaction was studied by the electrochemical technique of potentiometry, which consisted of measuring the mixed potential of a sample of corroding pyrite in solutions of different compositions. The kinetics of the half reactions are related to the kinetics of the overall dissolution reaction by the condition that there is no accumulation of charge. This principle is used to derive expressions for the mixed potential and the rate of dissolution, which successfully describe the mixed potential measurements and the kinetics of dissolution reported in the literature. It is shown that the observations of half-order kinetics and that the oxygen in the sulphate product arises from water are both a direct consequence of the electrochemical mechanism. Thus it is concluded that the electrochemical reaction steps occurring at the mineral-solution interface control the rate of dissolution. Raman spectroscopy was used to analyze reaction products formed on the pyrite surface. The results indicated that small amounts of polysulphides form on the surface of the pyrite. However, it was also found that the mixed (corrosion) potential does not change over a 14-day leaching period. This indicates that even though polysulphide material is present on the surface, it does not influence the rate of the reactions occurring at the surface. Measurement of the

  9. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    SciTech Connect

    Tanaka, M.; Sugiyama, T.

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  10. Cobalt (hydro)oxide electrodes under electrochemical conditions: a first principle study

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Selloni, Annabella

    2013-03-01

    There is currently much interest in photoelectrochemical water splitting as a promising pathway towards sustainable energy production. A major issue of such photoelectrochemical devices is the limited efficiency of the anode, where the oxygen evolution reaction (OER) takes place. Cobalt (hydro)oxides, particularly Co3O4 and Co(OH)2, have emerged as promising candidates for use as OER anode materials. Interestingly, recent in-situ Raman spectroscopy studies have shown that Co3O4 electrodes undergo progressive oxidation and transform into oxyhydroxide, CoO(OH), under electrochemical working conditions. (Journal of the American Chemical Society 133, 5587 (2011))Using first principle electronic structure calculations, we provide insight into these findings by presenting results on the structural, thermodynamic, and electronic properties of cobalt oxide, hydroxide and oxydroxide CoO(OH), and on their relative stabilities when in contact with water under external voltage.

  11. Efficient removal of insecticide "imidacloprid" from water by electrochemical advanced oxidation processes.

    PubMed

    Turabik, Meral; Oturan, Nihal; Gözmen, Belgin; Oturan, Mehmet A

    2014-01-01

    The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP) = 1.23 × 10(9) L mol(-1) s(-1). The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94% total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71%. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl(-), NO₃(-), and NH₄(+). PMID:24671401

  12. Alternating voltage induced electrochemical synthesis of three-dimensionalization copper oxide for lithium-ion battery application

    NASA Astrophysics Data System (ADS)

    Jing, Mingjun; Ding, Zhiying; Hou, Hongshuai; Zhang, Yan; Zou, Guoqiang; Li, Simin; Ji, Xiaobo

    2016-06-01

    Three-dimensional copper oxide structures composed of single crystal nanosheets have been successfully prepared by a green electrochemical alternating voltage approach. This special structure of copper oxide grown along the [0 1 0] direction can be effective to accommodate the volume expansion during charge-discharge cycles. The obtained product as anode materials in lithium-ion batteries displays outstanding electrochemical performances with a high reversible capacity of 635.2 mA h g-1 after 50 cycles at 100 mA g-1 close to the theoretical capacity of copper oxide (674 mA h g-1).

  13. Sequential electrochemical treatment of dairy wastewater using aluminum and DSA-type anodes.

    PubMed

    Borbón, Brenda; Oropeza-Guzman, Mercedes Teresita; Brillas, Enric; Sirés, Ignasi

    2014-01-01

    Dairy wastewater is characterized by a high content of hardly biodegradable dissolved, colloidal, and suspended organic matter. This work firstly investigates the performance of two individual electrochemical treatments, namely electrocoagulation (EC) and electro-oxidation (EO), in order to finally assess the mineralization ability of a sequential EC/EO process. EC with an Al anode was employed as a primary pretreatment for the conditioning of 800 mL of wastewater. A complete reduction of turbidity, as well as 90 and 81% of chemical oxygen demand (COD) and total organic carbon (TOC) removal, respectively, were achieved after 120 min of EC at 9.09 mA cm(-2). For EO, two kinds of dimensionally stable anodes (DSA) electrodes (Ti/IrO₂-Ta₂O₅ and Ti/IrO₂-SnO₂-Sb₂O₅) were prepared by the Pechini method, obtaining homogeneous coatings with uniform composition and high roughness. The (·)OH formed at the DSA surface from H₂O oxidation were not detected by electron spin resonance. However, their indirect determination by means of H₂O₂ measurements revealed that Ti/IrO₂-SnO₂-Sb₂O₅ is able to produce partially physisorbed radicals. Since the characterization of the wastewater revealed the presence of indole derivatives, preliminary bulk electrolyses were done in ultrapure water containing 1 mM indole in sulfate and/or chloride media. The performance of EO with the Ti/IrO₂-Ta₂O₅ anode was evaluated from the TOC removal and the UV/Vis absorbance decay. The mineralization was very poor in 0.05 M Na₂SO₄, whereas it increased considerably at a greater Cl(-) content, meaning that the oxidation mediated by electrogenerated species such as Cl₂, HClO, and/or ClO(-) competes and even predominates over the (·)OH-mediated oxidation. The EO treatment of EC-pretreated dairy wastewater allowed obtaining a global 98 % TOC removal, decreasing from 1,062 to <30 mg L(-1). PMID:24671400

  14. Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions.

    PubMed

    Suryanto, Bryan H R; Zhao, Chuan

    2016-05-11

    Carbon black (CB) is popularly used as a catalyst support for metal/metal oxide nanoparticles due to its large surface area, excellent conductivity and stability. Herein, we show that surface oxidized CB itself, after acidic treatment and electrochemical oxidation, exhibits significant catalytic activity for the electrochemical oxidation of water and alcohols. PMID:27097802

  15. Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes.

    PubMed

    Li, Ting-Ting; Zhao, Wei-Liang; Chen, Yong; Li, Fu-Min; Wang, Chuan-Jun; Tian, Yong-Hua; Fu, Wen-Fu

    2014-10-20

    Two mononuclear ruthenium complexes [Ru(H2tcbp)(isoq)2] (1) and [Ru(H2tcbp)(pic)2] (2) (H4tcbp=4,4',6,6'-tetracarboxy-2,2'-bipyridine, isoq=isoquinoline, pic=4-picoline) are synthesized and fully characterized. Two spare carboxyl groups on the 4,4'-positions are introduced to enhance the solubility of 1 and 2 in water and to simultaneously allow them to tether to the electrode surface by an ester linkage. The photochemical, electrochemical, and photoelectrochemical water oxidation performance of 1 in neutral aqueous solution is investigated. Under electrochemical conditions, water oxidation is conducted on the deposited indium-tin-oxide anode, and a turnover number higher than 15,000 per water oxidation catalyst (WOC) 1 is obtained during 10 h of electrolysis under 1.42 V vs. NHE, corresponding to a turnover frequency of 0.41 s(-1). The low overpotential (0.17 V) of electrochemical water oxidation for 1 in the homogeneous solution enables water oxidation under visible light by using [Ru(bpy)3](2+) (P1) (bpy=2,2'-bipyridine) or [Ru(bpy)2(4,4'-(COOEt)2-bpy)](2+) (P2) as a photosensitizer. In a three-component system containing 1 or 2 as a light-driven WOC, P1 or P2 as a photosensitizer, and Na2S2O8 or [CoCl(NH3)5]Cl2 as a sacrificial electron acceptor, a high turnover frequency of 0.81 s(-1) and a turnover number of up to 600 for 1 under different catalytic conditions are achieved. In a photoelectrochemical system, the WOC 1 and photosensitizer are immobilized together on the photoanode. The electrons efficiently transfer from the WOC to the photogenerated oxidizing photosensitizer, and a high photocurrent density of 85 μA cm(-2) is obtained by applying 0.3 V bias vs. NHE. PMID:25205065

  16. Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Chen, Yonghong; Cheng, Zhuanxia; Yang, Yang; Gu, Qingwen; Tian, Dong; Lu, Xiaoyong; Yu, Weili; Lin, Bin

    2016-04-01

    Symmetrical solid oxide fuel cell (SSOFC) using same materials as both anode and cathode simultaneously has gained extensively attentions, which can simplify fabrication process, minimize inter-diffusion between components, enhance sulfur and coking tolerance by operating the anode as the cathode in turn. With keeping the SSOFC's advantages, a novel quasi-symmetrical solid oxide fuel cell (Q-SSOFC) is proposed to further improve the performance, which optimally combines two different SSOFC electrode materials as both anode and cathode simultaneously. PrBaFe2O5+δ (PBFO) and PrBaFe1.6Ni0.4O5+δ (PBFNO, Fe is partially substituted by Ni.) are prepared and applied as both cathode and anode for SSOFC, which exhibit desirable chemical and thermal compatibility with Sm0.8Ce0.2O1.9 (SDC) electrolyte. PBFO cathode exhibits higher oxygen reduction reaction (ORR) activity than PBFNO cathode in air, whereas PBFNO anode exhibits higher hydrogen oxidation reaction (HOR) activity than PBFO anode in H2. The as-designed Q-SSOFC of PBFNO/SDC/PBFO exhibits higher electrochemical performance than the conventional SSOFCs of both PBFO/SDC/PBFO and PBFNO/SDC/PBFNO. The superior performance of Q-SSOFC is attributed to the lowest polarization resistance (Rp). The newly developed Q-SSOFCs open doors for further improvement of electrochemical performance in SSOFC, which hold more promise for various potential applications.

  17. Retarding of electrochemical oxidation of formate on the platinum anode by a coat of Nafion membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Lv, Weixin; Li, Guanghua; Mezaal, Mohammed Adnan; Li, Xiaojing; Lei, Lixu

    2014-12-01

    It has been found that the faradaic efficiency is decreasing with the electrolysis time for electrochemical reduction of CO2 to formate on a Sn cathode with a Pt anode in an undivided electrolytic cell, because the oxidation of formed formate takes place on the Pt anode, which also limits seriously the highest concentration of formate in the system. Here, we report that a coat of Nafion membrane on the Pt anode can retard the oxidation of formate: even if the concentration of the formate in the electrolyte reaches to 0.12 mol L-1, the faradaic efficiency still maintains above 61.3%; in contrast, the oxidation reaction of the formate on the naked Pt electrode is very fast, when the concentration of the formate in the electrolyte reaches to 0.023 mol L-1, the faradaic efficiency decreases to 35.3%. This is very important because the separation of formic acid could not be economical when its concentration is not high enough, and it is also costly if the depleted solution allows too less of its concentration because the solution has to be reused in the electrochemical process.

  18. Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes.

    PubMed

    Pikaar, Ilje; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg; Rabaey, Korneel

    2011-11-01

    Hydrogen sulfide generation is a major issue in sewer management. A novel method based on electrochemical sulfide oxidation was recently shown to be highly effective for sulfide removal from synthetic and real sewage. Here, we compare the performance of five different mixed metal oxide (MMO) coated titanium electrode materials for the electrochemical removal of sulfide from domestic wastewater. All electrode materials performed similarly in terms of sulfide removal, removing 78±5%, 77±1%, 85±4%, 84±1%, and 83±2% at a current density of 10 mA/cm(2) using Ta/Ir, Ru/Ir, Pt/Ir, SnO(2) and PbO(2), respectively. Elevated chloride concentrations, often observed in coastal areas, did not entail any significant difference in performance. Independent of the electrode material used, sulfide oxidation by in situ generated oxygen was the predominant reaction mechanism. Passivation of the electrode surface by deposition of elemental sulfur did not occur. However, scaling was observed in the cathode compartment. This study shows that all the MMO coated titanium electrode materials studied are suitable anodic materials for sulfide removal from wastewater. Ta/Ir and Pt/Ir coated titanium electrodes seem the most suitable electrodes since they possess the lowest overpotential for oxygen evolution, are stable at low chloride concentration and are already used in full scale applications. PMID:21885081

  19. Field emission characteristics of electrochemically synthesized nickel nanowires with oxygen plasma post-treatment.

    PubMed

    Joo, Jinsoo; Lee, Sun Jeong; Park, Dong Hyuk; Kim, Young Soo; Lee, Yeonhee; Lee, Cheol Jin; Lee, Seong-Rae

    2006-07-28

    The field emissive, electrical, magnetic, and structural characteristics of nickel (Ni) nanowires synthesized using the electrochemical deposition method with an alumina nanoporous template are reported. The synthesis and formation of Ni nanowires were confirmed by XRD, SEM, and HR-TEM experiments. Ferromagnetic hysteresis curves and the metallic temperature dependence of the current-voltage characteristics were observed for the Ni nanowire systems. The nanotip emitters of the field emission cells of the Ni nanowires after O(2) plasma treatment were easily patterned using the solution drop casting (SDC) method, in which the Ni nanowires were homogeneously dispersed in organic solvents, and then dropped and dried on an n-type doped Si substrate as the cathode. For the O(2) plasma treated Ni nanowires, we observed that the inhomogeneous oxidized layer on their surface was reduced, that the current density of the field emission cell increased from approximately 3.0 x 10(-9) to approximately 1.0 x 10(-3) A cm(-2) due to field emission, and that the lowest threshold electric field was approximately 4 V microm(-1). The field enhancement factor was estimated as approximately 1300 for the O(2) plasma treated Ni nanowires. The evolution of the field emission obtained from the phosphor screen was observed at different applied electric fields. PMID:19661596

  20. Electrochemical oxidation of recalcitrant organic compounds in biologically treated municipal solid waste leachate in a flow reactor.

    PubMed

    Quan, Xuejun; Cheng, Zhiliang; Chen, Bo; Zhu, Xincai

    2013-10-01

    Biologically-treated municipal solid waste (MSW) leachate still contains many kinds of bio-recalcitrant organic matter. A new plate and frame electrochemical reactor was designed to treat these materials under flow conditions. In the electrochemical oxidation process, NH3 and color could be easily removed by means of electro-generated chlorine/hypochlorite within 20 min. The effects of major process parameters on the removal of organic pollutants were investigated systematically. Under experimental conditions, the optimum operation parameters were current density of 65 mA/cm2, flow velocity of 2.6 cm/sec in electrode gap, and initial chloride ion concentration of 5000 mg/L. The COD in the leachate could be reduced below 100 mg/L after 1 hr of treatment. The kinetics and mechanism of COD removal were investigated by simultaneously monitoring the COD change and chlorine/hypochlorite production. The kinetics of COD removal exhibited a two-stage kinetic model, and the decrease of electro-generated chlorine/hypochlorite production was the major mechanism for the slowing down of the COD removal rate in the second stage. The narrowing of the electrode gap is beneficial for COD removal and energy consumption. PMID:24494488

  1. Characterization of electro-oxidation catalysts using scanning electrochemical and mass spectral methods

    NASA Astrophysics Data System (ADS)

    Jambunathan, Krishnakumar

    Low temperature fuel cells have many potential benefits, including high efficiency, high energy density and environmental friendliness. However, logistically appealing fuels for this system, such as reformed hydrocarbons or alcohols, exhibit poor performance because of catalyst poisoning that occurs during oxidation at the anode. This research focuses on the analysis of several model fuels and catalyst materials to understand the impact of catalyst poisoning on reactivity. Two novel experimental tools were developed based upon the local measurement of catalyst performance using scanning, reactivity mapping probes. The Scanning Electrochemical Microscope (SECM) was used to directly measure the rate constant for hydrogen oxidation in the presence and absence of dissolved CO. The Scanning Differential Electrochemical Mass Spectrometer (SDEMS) was exploited to measure the partial and complete oxidation products of methanol and ethanol oxidation. The reactivity of Pt and Pt/Ru catalysts towards the hydrogen oxidation reaction in the absence and presence of adsorbed CO was elucidated using the SECM. Steady state rate constant measurements in the absence of CO showed that the rate of hydrogen oxidation reaction exceeded 1 cms-1 . Steady state rate constant measurements in the presence of CO indicated that the platinum surface is completely inactive due to adsorbed CO. Addition of as little as 6% Ru to the Pt electrode was found to significantly improve the activity of the electrode towards CO removal. SDEMS was used to study the electro-oxidation of methanol on Pt xRuy electrodes at different electrode potentials and temperatures. Screening measurements performed with the SDEMS showed that PtxRu y electrodes containing 6--40% Ru had the highest activity for methanol oxidation. Current efficiencies for CO2 were also calculated under different conditions. SDEMS was also used to study the electro-oxidation of ethanol on Pt xRuy electrodes. The reaction was found to occur

  2. Morphological, rheological and electrochemical studies ofpoly(ethylene oxide) electrolytes containing fumed silicananoparticles

    SciTech Connect

    Xie, Jiangbing; Kerr, John B.; Duan, Robert G.; Han, Yongbong

    2003-06-01

    In this paper, the rheology and crystallization of composite Poly(Ethylene Oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting point were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

  3. Electrocatalytic Oxidation Properties of Ascorbic Acid at Poly(3, 4-ethylenedioxythiophene) Films Studied by Electrochemical-Surface Plasmon Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Baba, Akira; Sano, Yohsuke; Ohdaira, Yasuo; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    In this report, we demonstrate electrocatalytic oxidation properties of ascorbic acid at poly(3, 4-ethylenedioxythiophene) (PEDOT) thin films in view of their potential application for bio-sensing devices. PEDOT thin films were deposited on gold thin films by electropolymerization of EDOT monomer in acetonitrile solvent. In-situ electrochemical-surface plasmon resonance spectroscopy (EC-SPR) was used to detect both electrochemical and optical signals upon an injection of ascorbic acid.

  4. Mechanism of enhanced removal of quinonic intermediates during electrochemical oxidation of Orange II under ultraviolet irradiation.

    PubMed

    Li, Fazhan; Li, Guoting; Zhang, Xiwang

    2014-03-01

    The effect of ultraviolet irradiation on generation of radicals and formation of intermediates was investigated in electrochemical oxidation of the azo-dye Orange II using a TiO2-modified β-PbO2 electrode. It was found that a characteristic absorbance of quinonic compounds at 255 nm, which is responsible for the rate-determining step during aromatics degradation, was formed only in electrocatalytic oxidation. The dye can be oxidized by either HO radicals or direct electron transfer. Quinonic compounds were produced concurrently. The removal of TOC by photo-assisted electrocatalytic oxidation was 1.56 times that of the sum of the other two processes, indicating a significant synergetic effect. In addition, once the ultraviolet irradiation was introduced into the process of electrocatalytic oxidation, the degradation rate of quinonic compounds was enhanced by as much as a factor of two. The more efficient generation of HO radicals resulted from the introduction of ultraviolet irradiation in electrocatalytic oxidation led to the significant synergetic effect as well as the inhibiting effect on the accumulation of quinonic compounds. PMID:25079285

  5. Alleviation of membrane fouling in a submerged membrane bioreactor with electrochemical oxidation mediated by in-situ free chlorine generation.

    PubMed

    Chung, Chong Min; Tobino, Tomohiro; Cho, Kangwoo; Yamamoto, Kazuo

    2016-06-01

    The control of membrane fouling is still the biggest challenge that membrane bioreactor (MBR) for wastewater treatment faces with. In this report, we evince that an in-situ electrochemical free chlorine generation is effective for membrane fouling mitigation. An electrochemical oxidation (EO) apparatus with perforated Ti/IrO2 anodes and Ti/Pt cathodes was integrated into a conventional MBR with microfiltration module (EO-MBR). The membrane fouling characteristics of EO-MBR fed with synthetic wastewater were monitored for about 2 months in comparison to control MBRs. In the EO-MBR at a direct current density of 0.4 mA/cm(2), the frequency of membrane fouling when the trans-membrane pressure (TMP) reached 30 kPa was effectively reduced by 40% under a physical membrane cleaning regime. The evolution patterns of TMP together with hydraulic resistance analysis based on resistance-in-series model indicated that the electrochemically generated active chlorine alleviated the physically irremovable membrane fouling. Further analysis on extracellular polymeric substances (EPS) of sludge cake layer (SCL) revealed significant reductions of protein contents in soluble EPS and fluorescence emission intensities from humic acids and other fluorophores in bound EPS, which in-turn would decrease the hydrophobic accumulation of organic foulants on membrane pores. The chlorine dosage from the EO apparatus was estimated to be 4.7 mg Cl2/g MLVSS/day and the overall physicochemical properties (bio-solids concentration, floc diameter, zeta-potential) as well as the microbial activity in terms of specific oxygen utilization rate and removal efficiency of dissolved organic carbon (>97%) were not affected significantly. A T-RFLP (terminal restriction fragment length polymorphism) analysis suggested noticeable shifts in microbial community both in mixed liquor and sludge cake layer. Consequently, our electrochemical chlorination would be an efficient fouling control strategy in membrane

  6. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction.

    PubMed

    Lu, Zhiyi; Wang, Haotian; Kong, Desheng; Yan, Kai; Hsu, Po-Chun; Zheng, Guangyuan; Yao, Hongbin; Liang, Zheng; Sun, Xiaoming; Cui, Yi

    2014-01-01

    Searching for low-cost and efficient catalysts for the oxygen evolution reaction has been actively pursued owing to its importance in clean energy generation and storage. While developing new catalysts is important, tuning the electronic structure of existing catalysts over a wide electrochemical potential range can also offer a new direction. Here we demonstrate a method for electrochemical lithium tuning of catalytic materials in organic electrolyte for subsequent enhancement of the catalytic activity in aqueous solution. By continuously extracting lithium ions out of LiCoO2, a popular cathode material in lithium ion batteries, to Li0.5CoO2 in organic electrolyte, the catalytic activity is significantly improved. This enhancement is ascribed to the unique electronic structure after the delithiation process. The general efficacy of this methodology is demonstrated in several mixed metal oxides with similar improvements. The electrochemically delithiated LiCo0.33Ni0.33Fe0.33O2 exhibits a notable performance, better than the benchmark iridium/carbon catalyst. PMID:24993836

  7. Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Yang, Wenyao; Zhao, Yuetao; He, Xin; Chen, Yan; Xu, Jianhua; Li, Shibin; Yang, Yajie; Jiang, Yadong

    2015-05-01

    In this paper, we demonstrate the preparation of a flexible poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)/reduced graphene oxide (PEDOT-PSS/RGO) film with a layered structure via a simple vacuum filtered method as a high performance electrochemical electrode. The PEDOT-PSS/RGO films are characterized by scanning electron microscopy (SEM), X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectrometry. The results indicate that a layer-ordered structure is constructed in this nanocomposite during the vacuum filtering process. The electrochemical performances of the flexible films are characterized by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. The results reveal that a 193.7 F/g highly specific capacitance of nanocomposite film is achieved at a current density of 500 mA/g. This flexible and self-supporting nanocomposite film exhibits excellent cycling stability, and the capacity retention is 90.6 % after 1000 cycles, which shows promising application as high-performance electrode materials for flexible energy-storage devices.

  8. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyi; Wang, Haotian; Kong, Desheng; Yan, Kai; Hsu, Po-Chun; Zheng, Guangyuan; Yao, Hongbin; Liang, Zheng; Sun, Xiaoming; Cui, Yi

    2014-07-01

    Searching for low-cost and efficient catalysts for the oxygen evolution reaction has been actively pursued owing to its importance in clean energy generation and storage. While developing new catalysts is important, tuning the electronic structure of existing catalysts over a wide electrochemical potential range can also offer a new direction. Here we demonstrate a method for electrochemical lithium tuning of catalytic materials in organic electrolyte for subsequent enhancement of the catalytic activity in aqueous solution. By continuously extracting lithium ions out of LiCoO2, a popular cathode material in lithium ion batteries, to Li0.5CoO2 in organic electrolyte, the catalytic activity is significantly improved. This enhancement is ascribed to the unique electronic structure after the delithiation process. The general efficacy of this methodology is demonstrated in several mixed metal oxides with similar improvements. The electrochemically delithiated LiCo0.33Ni0.33Fe0.33O2 exhibits a notable performance, better than the benchmark iridium/carbon catalyst.

  9. Comparative electrochemical studies of a nanostructured vanadium oxide electrode material in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Soghomonian, Victoria; Yuan, Qifan; Ren, Shaola; Zukowski, Julia

    Electrochemical energy storage plays an increasing role in energy solutions. We report on a new hydrothermally synthesized vanadium oxide nanostructured material and study its performance as electrode material for insertion of various ions from aqueous solutions. The as-synthesized product is in the form of nanosheets forming quasi-spherical 3-dimensional objects. Variable temperature resistivity measurements indicate a thermally activated behavior. Electrodes are constructed, and comparative electrochemical insertion reactions of Li, Na, K and NH4 cations, over different cycle numbers, investigated. Concomitantly, morphological and microstructural changes are characterized by scanning electron microscopy, providing physical input to the observed electrochemical behavior. Specific charge is calculated. For Li and K, the specific charge decreases as the cycle number increases, while the reverse is observed for Na and NH4 cations. The trends are correlated to the morphological changes observed. The specific charge in the case of ammonium reaches 180 mAh/g after 20 cycles and continues increasing, indicating that ammonium cations may be considered as viable charge carriers for electrical energy storage system, and moreover in an aqueous electrolyte. We acknowledge support from the National Science Foundation, Grant No. DMR-1206338.

  10. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay.

    PubMed

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-01

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL(-1) to 100 ng mL(-1) and a low limit of detection of 0.037 pg mL(-1). Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. PMID:26772127

  11. Rapid Online Non-Enzymatic Protein Digestion Combining Microwave Heating Acid Hydrolysis and Electrochemical Oxidation

    PubMed Central

    Basile, Franco; Hauser, Nicolas

    2010-01-01

    We report an online non-enzymatic method for site-specific digestion of proteins to yield peptides that are well suited for collision induced dissociation (CID) tandem mass spectrometry (MS/MS). The method combines online microwave heating acid hydrolysis at aspartic acid and online electrochemical oxidation at tryptophan and tyrosine. The combined microwave/electrochemical (microwave/echem) digestion is reproducible and produces peptides with an average sequence length of 10 amino acids. This peptide length is similar to the average peptide length of 9 amino acids obtained by digestion of proteins with the enzyme trypsin. As a result, the peptides produced by this novel non-enzymatic digestion method, when analyzed by ESI-MS, produce protonated molecules with mostly +1 and +2 charge states. The combination of these two non-enzymatic methods overcomes shortcomings with each individual method in that: i) peptides generated by the microwave-hydrolysis method have an average amino acid length of 16 amino acids, and ii) the inability of the electrochemical-cleavage method to reproducibly digest proteins with molecular masses above 4 kDa. Preliminary results are presented on the application and utility of this rapid online digestion (total of 6 min digestion time) on a series of standard peptides and proteins as well as an E. coli protein extract. PMID:21138252

  12. [Electrochemical oxidation of ammonia nitrogen wastewater using Ti/RuO2-TiO2-IrO2-SnO2 electrode].

    PubMed

    Xu, Li-li; Shi, Han-chang; Chen, Jin-luan

    2007-09-01

    Electrochemical oxidation ammonia is a new method of ammonia nitrogen wastewater treatment. A study was undertaken of electrochemical oxidation ammonia wastewater in cycle mobil-electrobath. The anode was Ti/RuO2-TiO2-IrO2-SnO2 expanded metal sheet electrode. The cathode was expanded metal sheet electrode. The parameters investigated were the optimal available time for the measurement of ammonia nitrogen, flowrate and current density. The energy consumption, anode efficiency and current efficiency were analysed in different current densities. Experimental results show that when the concentration of the chlorine ion was 400 mg/L and the initial ammoniac nitrogen concentration was 40 mg/L, the flowrate had little impact on ammonia nitrogen removal, but current density had greater impact. Under the condition with flowrate 600 mL/min, current density 20 mA/cm2, electrolytic time 90 min, ammonia nitrogen removal ratio was 99.37%. The energy consumption was 500 kW x h and the anode efficiency was 2.68 h x m2 x A per kg NH4+ -N removed, and instantaneous current efficiency (ICE) was 0.28. Research has shown that electrochemical oxidation ammonia wastewater has better prospects. PMID:17990548

  13. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    SciTech Connect

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  14. Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes.

    PubMed

    Lütke Eversloh, Christian; Schulz, Manoj; Wagner, Manfred; Ternes, Thomas A

    2015-04-01

    The electrochemical treatment of low-salinity reverse osmosis (RO) concentrates was investigated using tramadol (100 μM) as a model substance for persistent organic contaminants. Galvanostatic degradation experiments using boron-doped diamond electrodes at different applied currents were conducted in RO concentrates as well as in ultra-pure water containing either sodium chloride or sodium sulfate. Kinetic investigations revealed a significant influence of in-situ generated active chlorine besides direct anodic oxidation. Therefore, tramadol concentrations decreased more rapidly at elevated chloride content. Nevertheless, reduction of total organic carbon (TOC) was found to be comparatively low, demonstrating that transformation rather than mineralization was taking place. Early stage product formation could be attributed to both direct and indirect processes, including demethylation, hydroxylation, dehydration, oxidative aromatic ring cleavage and halogenation reactions. The latter led to various halogenated derivatives and resulted in AOX (adsorbable organic halogens) formation in the lower mg/L-range depending on the treatment conditions. Characterisation of transformation products (TPs) was achieved via MS(n) experiments and additional NMR measurements. Based on identification and quantification of the main TPs in different matrices and on additional potentiostatic electrolysis, a transformation pathway was proposed. PMID:25660808

  15. Electrometallurgical treatment of oxide spent fuel.

    SciTech Connect

    Karell, E. J.

    1999-06-08

    The Department of Energy (DOE) inventory of spent nuclear fuel contains a wide variety of oxide fuel types that may be unsuitable for direct repository disposal in their current form. The molten-salt electrometallurgical treatment technique developed by Argonne National Laboratory (ANL) has the potential to simplify preparing and qualifying these fuels for disposal by converting them into three uniform product streams: uranium metal, a metal waste form, and a ceramic waste form. This paper describes the major steps in the electrometallurgical treatment process for oxide fuels and provides the results of recent experiments performed to develop and scale up the process.

  16. Electrochemical and electrochromic properties of niobium oxide thin films fabricated by pulsed laser deposition

    SciTech Connect

    Fu, Z.W.; Kong, J.J.; Qin, Q.Z.

    1999-10-01

    Niobium oxide thin films have been successfully fabricated on the indium-tin oxide coated glasses by pulsed laser deposition in an O{sub 3}/O{sub 2} gas mixture. Films are characterized by X-ray diffraction and Raman spectrometry. Electrochemical and electrochromic properties of Nb{sub 2}O{sub 5} films are examined by cyclic voltammogram and potential step coupled with an in situ charge-coupled device spectrophotometer. The unique characteristics of absorption spectra of Nb{sub 2}O{sub 5} films are observed for the first time, and the optical absorption from the trapped electrons in the surface states plays an important role in the electrochromic phenomenon.

  17. Electrochemical investigation of polyhalide ion oxidation-reduction on carbon nanotube electrodes for redox flow batteries

    SciTech Connect

    Shao, Yuyan; Engelhard, Mark H.; Lin, Yuehe

    2009-10-01

    Polyhalide ions (Br-/BrCl2-) are an important redox couple for redox flow batteries. The oxidation-reduction behavior of polyhalide ions on a carbon nanotube (CNT) electrode has been investigated with cyclic voltammetry and electrochemical impedance spectroscopy. The onset oxidation potential of Br-/BrCl2- is negatively shifted by >100 mV, and the redox current peaks are greatly enhanced on a CNT electrode compared with that on the most widely-used graphite electrode. The reaction resistance of the redox couple (Br-/BrCl2-) is decreased on a CNT electrode. The redox reversibility is increased on a CNT electrode even though it still needs further improvement. CNT is a promising electrode material for redox flow batteries.

  18. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations.

    PubMed

    Moreira, Rebeca; Schütz, Marta K; Libert, Marie; Tribollet, Bernard; Vivier, Vincent

    2014-06-01

    Low carbon steel has been considered a suitable material for component of the multi-barrier system employed on the geological disposal of high-level radioactive waste (HLW). A non negligible amount of dihydrogen (H2) is expected to be produced over the years within the geological repository due to the anoxic corrosion of metallic materials and also to the water radiolysis. The influence of the activity of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB) on carbon steel corrosion is considered in this study because of the high availability of energetic nutriments (H2, iron oxides and hydroxides) produced in anoxic disposal conditions. Local electrochemical techniques were used for investigating the activity of IRB as a promoter of local corrosion in the presence of H2 as electron donor. A local consumption of H2 by the bacteria has been evidenced and impedance measurements indicate the formation of a thick layer of corrosion products. PMID:24177135

  19. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan

    2016-01-01

    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  20. Hydrothermal synthesis of layered sodium manganese oxide nanowires and their electrochemical performance.

    PubMed

    Liu, Xian-Ming; Huang, Zhen-Dong; Oh, Sei-Woon; Ma, Peng-Cheng; Ma, Jun; Li, Bao-Hua; Kim, Jang-Kyo

    2010-11-01

    A new method for preparing black birnessite nanowires is introduced. Layer-structured manganese oxide nanowires were synthesized by a facile hydrothermal method, and using both NaMnO4 and CH3CH2OH as the precursors in a concentrated NaOH solution. The structure, composition, appearance and electrochemical performance of the product were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), energy diffraction (ED), high-resolution transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA) and constant current charge/discharge. The XRD patterns showed a single phase corresponding to a crystalline birnessite-based manganese oxide. TEM studies suggested their wire-like structures. The TGA measurement demonstrated that they possessed an excellent thermal stability up to 400 degrees C. In the potential window of 2.0-4.3 V, the product exhibited excellent cyclic stability and rapid charge-discharge performance. PMID:21137939

  1. In-situ generated H₂O₂ induced efficient visible light photo-electrochemical catalytic oxidation of PCP-Na with TiO₂.

    PubMed

    Liu, Wei; Liu, Huichao; Ai, Zhihui

    2015-05-15

    In this study, we developed a novel photo-electrochemical catalytic oxidation wastewater treatment system by interacting the cathodic in-situ generated H₂O₂ with TiO₂ suspension to form interfacial ≡ Ti(IV)OOH species, which endowed the PEC system with superior efficiency for degrading sodium pentachlorophenate (PCP-Na) under visible light irradiation at neutral pH. The apparent PCP-Na degradation rate constant of the PEC system was more than 10 times that of the electrochemical oxidation counterpart. In the PEC system, the interfacial ≡ Ti(IV)OOH species injected electrons to the conduction band of TiO₂ to initiate the activation of O₂ and the in-situ generated H₂O₂ adsorbed on the surface of TiO₂, lead to producing reactive oxygen species of superoxide anions and hydroxyl radicals, which were responsible for the dechlorination and mineralization of PCP-Na during the PEC process, respectively. The dosage of TiO₂ catalyst and the current intensity applied on PCP-Na degradation were optimized. This study develops a high efficient PEC oxidation system for wastewater treatment and provides new insight into the role of cathodic in-situ generated H₂O₂ on PEC oxidation of PCP-Na with TiO₂ under visible light irradiation. PMID:25698570

  2. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  3. Microwave synthesis and electrochemical characterization of Mn/Ni mixed oxide for supercapacitor application

    SciTech Connect

    Prasankumar, T.; Jose, Sujin P.; Ilangovan, R.; Venkatesh, K. S.

    2015-06-24

    Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni in the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.

  4. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)

    DOE PAGESBeta

    Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.; Markovic, Nenad M.; Koper, Marc T. M.

    2016-01-12

    The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH3-to-N2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed NOad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurring prior to themore » electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.« less

  5. LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD

    PubMed Central

    Koehler, Kirsten; Shapiro, Jeffrey; Sameenoi, Yupaporn; Henry, Charles; Volckens, John

    2014-01-01

    Human exposure to particulate matter (PM) air pollution is associated with human morbidity and mortality. The mechanisms by which PM impacts human health are unresolved, but evidence suggests that PM intake leads to cellular oxidative stress through the generation of reactive oxygen species (ROS). Therefore, reliable tools are needed for estimating the oxidant generating capacity, or oxidative load, of PM at high temporal resolution (minutes to hours). One of the most widely reported methods for assessing PM oxidative load is the dithiothreitol (DTT) assay. The traditional DTT assay utilizes filter-based PM collection in conjunction with chemical analysis to determine the oxidation rate of reduced DTT in solution with PM. However, the traditional DTT assay suffers from poor time resolution, loss of reactive species during sampling, and high limit of detection. Recently, a new DTT assay was developed that couples a Particle-Into-Liquid-Sampler with microfluidic-electrochemical detection. This ‘on-line’ system allows high temporal resolution monitoring of PM reactivity with improved detection limits. This study reports on a laboratory comparison of the traditional and on-line DTT approaches. An urban dust sample was aerosolized in a laboratory test chamber at three atmospherically-relevant concentrations. The on-line system gave a stronger correlation between DTT consumption rate and PM mass (R2 = 0.69) than the traditional method (R2 = 0.40) and increased precision at high temporal resolution, compared to the traditional method. PMID:24711675

  6. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.

    PubMed

    Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei

    2010-11-01

    In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE). PMID:21138016

  7. Ionic and electrochemical phenomena induced by structural and chemical defects in oxide thin films

    NASA Astrophysics Data System (ADS)

    Aruta, Carmela

    Interactions at the surfaces/interfaces between complex oxides and gaseous environment are fundamental for the efficiency of many environmental friendly systems and applications. Such interactions can be modified by the intricate interrelationship between microstructure and chemical substitution defects, being their role on functional properties, such as ionic conductivity and surface reaction rates, as particularly relevant as difficult to discriminate. New possibilities in thin film fabrication allow growth of oxide thin films with a more precise control of the structure and chemical stoichiometry, thus unveiling new perspectives in the study of electrochemical effects for physical functionalities, through nanoscale characterizations by complementary state-of-art techniques. As an example of interfacial structural defect effects, we will discuss the case of yttrium doped barium zirconate thin films, where the cation substitutions represent a viable mechanism, alternative to the formation of dislocations near the interface, to relieve the strain building up in the film growing on a highly mismatched substrate, thus providing fast transport pathways together with enhanced interface electrochemical reactivity. The effect of the chemical defects will be further presented in the case of samarium-doped ceria films with different doping concentration. We will explain the role of the trivalent doping on the conduction mechanism, i.e. proton or oxygen ion, which in turns may greatly influence the surface reactivity.

  8. Selective oxidation of ethane using the Au|YSZ|Ag electrochemical membrane system

    SciTech Connect

    Hamakawa, Satoshi; Sato, Koichi; Hayakawa, Takashi; York, A.P.E.; Tsunoda, Tatsuo; Suzuki, Kunio; Shimizu, Masao; Takehira, Katsuomi

    1997-01-01

    The catalytic conversion of ethane to acetaldehyde on an inert gold electrode has been studied using the electrochemical membrane reactor with yttria-stabilized zirconia (YSZ) solid electrolyte at 475 C. On applying a direct current to the reaction cell, 5% ethane in N{sub 2}, Au|YSZ|Ag, 100% O{sub 2}, acetaldehyde was formed and the formation rate increased linearly with increasing current. Selectivities to acetaldehyde and carbon dioxide were 45 and 55%, respectively. The addition of oxygen to the ethane-mixed gas in the anode space did not affect the acetaldehyde formation. The use of YSZ powder as a fixed bed catalyst under the mixed gas flow of ethane and oxygen at 450 to 600 C resulted in the formation of carbon monoxide, carbon dioxide, and ethene. Even the use of N{sub 2}O instead of oxygen resulted in no formation of acetaldehyde. Hence, it is likely that partial oxidation of ethane to acetaldehyde was carried out by the oxygen species transferred electrochemically through the YSZ which appeared at the gold-YSZ-gas triple-phase boundary. From the results of ethanol oxidation over the Au|YSZ|Ag system, the following mechanism was proposed: ethane is dehydrogenated to an ethyl radical, then converted to ethoxide, and finally to acetaldehyde by the oxygen species transferred through the YSZ.

  9. Hydrogen production aided solid oxide electrochemical reformer fed with octane: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Murashkina, A. A.; Maragou, V. I.; Demin, A. K.; Pikalova, E. Yu.; Tsiakaras, P. E.

    In the present work the possibility of pure hydrogen production by a solid oxide electrochemical reformer (SOER) is examined. Initial reagents are water steam, flowing into the cathode channel and octane flowing into the anode channel. Three modes of reforming are considered: (i) steam reforming (SR-mode), (ii) preliminary octane partial oxidation (PO-mode) and (iii) preliminary octane reforming by exhaust anode gas recycling (EAGR-mode). A parametric analysis is carried out that can be easily applied for various hydrocarbons. It was found that the electromotive force (EMF) value depends mainly on the ratio of steam moles' number supplied to the cathode space to the number of hydrogen output moles (k-parameter). It was also found that EMF increases with k increase, while is weakly affected from the temperature and the heat losses amount. Moreover, the EMF average value under the PO-mode is lower than that under the SR-mode. Finally, it is shown that the SOER optimum characteristics can be reached under the EAGR-mode, since it provides the most favorable combination of the reforming efficiency and the rate of the electrochemical process.

  10. Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium-Oxygen Batteries.

    PubMed

    Liu, Bin; Yan, Pengfei; Xu, Wu; Zheng, Jianming; He, Yang; Luo, Langli; Bowden, Mark E; Wang, Chong-Min; Zhang, Ji-Guang

    2016-08-10

    Lithium-oxygen (Li-O2) batteries have an extremely high theoretical specific energy density when compared with conventional energy-storage systems. However, practical application of the Li-O2 battery system still faces significant challenges. In this work, we report a new approach for synthesis of ultrafine metal oxide nanocatalysts through an electrochemical prelithiation process. This process reduces the size of NiCo2O4 (NCO) particles from 20-30 nm to a uniformly distributed domain of ∼2 nm and significantly improves their catalytic activity. Structurally, the prelithiated NCO nanowires feature ultrafine NiO/CoO nanoparticles that are highly stable during prolonged cycles in terms of morphology and particle size, thus maintaining an excellent catalytic effect to oxygen reduction and evolution reactions. A Li-O2 battery using this catalyst demonstrated an initial capacity of 29 280 mAh g(-1) and retained a capacity of >1000 mAh g(-1) after 100 cycles based on the weight of the NCO active material. Direct in situ transmission electron microscopy observations conclusively revealed the lithiation/delithiation process of as-prepared NCO nanowires and provided in-depth understanding for both catalyst and battery chemistries of transition-metal oxides. This unique electrochemical approach could also be used to form ultrafine nanoparticles of a broad range of materials for catalyst and other applications. PMID:27380300

  11. Inhibited Ru(bpy)3 2+ electrochemiluminescence related to electrochemical oxidation activity of inhibitors.

    PubMed

    Chi, Yuwu; Dong, Yongqiang; Chen, Guonan

    2007-06-15

    Electrochemiluminescence (ECL) has been accepted by the analytical chemist as a powerful tool for detection of many inorganic and organic compounds. Ru(bpy)3 2+ has been the most popular ECL system, and many investigations have been focused on the application based on the enhancement or inhibition of Ru(bpy)3 2+ ECL system. However, not much attention has been paid to the theoretical investigation of this ECL system, especially to the inhibiting mechanism for the Ru(bpy)3 2+ ECL system. In the present study, many of the inorganic and organic compounds with electrochemical oxidation activity were found to strongly inhibit Ru(bpy)3 2+ ECL. To explain these inhibited ECL phenomena, a new "electrochemical oxidation inhibiting" mechanism has been proposed via the establishment of a corresponding model. The effects of applied potential, uncompensated resistance, and concentration of inhibitor on the inhibited ECL derived from the model have been verified by experiments. The new ECL inhibition mechanism can be commonly used to explain many kinds of inhibited ECL presently observed, and it is envisioned to result in finding of more inhibitors of this type and establishment of new sensitive ECL detection methods for them. PMID:17489558

  12. Processing, microstructural evolution and electrochemical performance relationships in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ayhan

    The relationships between the processing parameters, microstructures and electrochemical performance of solid oxide fuel cell (SOFC) components were investigated. The operating regimes (i.e., reducing vs. oxidizing) as well as the elevated temperatures (e.g. 800°C) for their operation introduce several material challenges. Therefore, composite materials are employed to withstand operating conditions while providing sufficient electrochemical performance for fuel cell operation. Analyses on lanthanum-strontium manganite (LSM) - yttria stabilized zirconia (YSZ) compositions (45 vol%-55 vol%) by impedance spectroscopy demonstrated that two competing polarization mechanisms (i.e. charge-exchange and surface adsorption-diffusion of oxygen) limit performance. Optimization of microstructures resulted in total resistances as low as 0.040 Ohm cm2. Studies on Ag composites revealed that incorporation of up to 25 vol% oxide particles (LSM and YSZ) with sizes comparable to the Ag grains (~0.5 microm) can minimize the densification and coarsening of the Ag matrix. While the powder based oxide additions increased the stability limit of porous Ag composites from <550°C to 800°C, the use of nanostructured coatings increased the stability limit to 900°C for cathodes and current collectors. Investigations of Ni-YSZ anode microstructures demonstrated that uniform distribution of percolating isometric pores (>5 microm) allows forming desired continuous percolation of all phases (Ni, YSZ and pores) lowering activation polarization below 0.100 Ohm cm2 and maintaining significant electrical conductivity (>1000 S/cm). Identification of polarization mechanisms by deconvolution of impedance spectra and tailoring the corresponding microstructures was demonstrated as an effective method for optimization of SOFC components.

  13. Summary technical report on the electrochemical treatment of alkaline nuclear wastes

    SciTech Connect

    Hobbs, D.T.

    1994-07-30

    This report summarizes the laboratory studies investigating the electrolytic treatment of alkaline solutions carried out under the direction of the Savannah River Technology Center from 1985-1992. Electrolytic treatment has been demonstrated at the laboratory scale to be feasible for the destruction of nitrate and nitrite and the removal of radioactive species such as {sup 99}Tc and {sup 106}Ru from Savannah River Site (SRS) decontaminated salt solution and other alkaline wastes. The reaction rate and current efficiency for the removal of these species are dependent on cell configuration, electrode material, nature of electrode surface, waste composition, current density, and temperature. Nitrogen, ammonia, and nitrous oxide have been identified as the nitrogen-containing reaction products from the electrochemical reduction of nitrate and nitrite under alkaline conditions. The reaction mechanism for the reduction is very complex. Voltammetric studies indicated that the electrode reactions involve surface phenomena and are not necessarily mass transfer controlled. In an undivided cell, results suggest an electrocatalytic role for oxygen via the generation of the superoxide anion. In general, more efficient reduction of nitrite and nitrate occurs at cathode materials with higher overpotentials for hydrogen evolution. Nitrate and nitrite destruction has also been demonstrated in engineering-scale flow reactors. In flow reactors, the nitrate/nitrite destruction efficiency is improved with an increase in the current density, temperature, and when the cell is operated in a divided cell configuration. Nafion{reg_sign} cation exchange membranes have exhibited good stability and consistent performance as separators in the divided-cell tests. The membranes were also shown to be unaffected by radiation at doses approximating four years of cell operation in treating decontaminated salt solution.

  14. Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing

    NASA Astrophysics Data System (ADS)

    Haftlang, Farahnaz; Habibolahzadeh, Ali; Sohi, Mahmoud Heydarzadeh

    2015-02-01

    Improvement in electrochemical behavior of AISI 1045 steel after applying aluminum nitride coating was investigated in 3.5% NaCl solution, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) analyses. Aluminum nitride coating was applied on the steel surface by duplex treatment of pack aluminizing and plasma nitriding. Some specimens were plasma nitrided followed by aluminizing (PN-Al), while the others were pack aluminized followed by plasma nitriding (Al-PN). Topological and structural studies of the modified surfaces were conducted using scanning electron microscope (SEM) equipped by energy dispersive X-ray spectroscope (EDS), and X-ray diffractometer (XRD). The electrochemical measurements showed that the highest corrosion and polarization (Rp) resistances were obtained in PN-Al specimens, having single phase superficial layer of AlN. Pitting mechanism was dominant reason of lower corrosion resistance in the Al-PN specimens.

  15. Nanoporous zeolite and solid-state electrochemical devices for nitrogen-oxide sensing

    NASA Astrophysics Data System (ADS)

    Yang, Jiun-Chan

    Solid-state electrochemical gas sensing devices composed of stabilized-zirconia electrolyte have used extensively in the automobile and chemical industry. Two types of electrochemical devices, potentiometric and amperometric, were developed in this thesis for total NOx (NO + NO2) detection in harsh environments. In potentiometric devices, Pt covered with Pt containing zeolite Y (PtY) and WO3 were examined as the two electrode materials. Significant reactivity differences toward NOx between PtY and WO 3 led to the difference in non-electrochemical reactions and resulted in a electrode potential. With gases passing through a PtY filter, it was possible to remove interferences from 2000 ppm CO, 800 ppm propane, 10 ppm NH3, as well as to minimize effects of 1˜13% O2, CO2, and H2O. Total NOx concentration was measured by maintaining a temperature difference between the filter and the sensor. The sensitivity was significantly improved by connecting sensors in series. Amperometic devices were also developed to detect NOx passing through the PtY filter. By applying a low anodic potential of 80 mV, NO in the NOx equilibrated mixture can be oxidized at a Pt working electrode on the YSZ electrolyte at 500°C. The PtY can be held separate from the YSZ or coated onto the YSZ as a film. This design was demonstrated to exhibit total-NOx detection capability, a low NOx detection limit (< 1 ppm), high NOx selectivity relative to CO and oxygen, and linear dependence on NOx concentration. The non-electrochemical reactions around the triple-phase boundary were studied to understand the origin of the superior performance of WO3 on potentiometric NOx sensing. From TPD, DRIFTS, XRD, Raman, and catalytic activity measurements, the interfacial reactions between WO 3 and YSZ were found to dramatically reduce the NOx catalytic activity of YSZ. WO3 reacted with surface Y2O3 on YSZ and formed less catalytically active yttrium tungsten oxides and monoclinic ZrO2, which suppressed the non-electrochemical

  16. Chemical-oxidation treatment. Engineering bulletin

    SciTech Connect

    Not Available

    1991-10-01

    Oxidation destroys hazardous contaminants by chemically converting them to nonhazardous or less toxic compounds that are ideally more stable, less mobile, and/or inert. However, under some conditions, other hazardous compounds may be formed. The oxidizing agents most commonly used for the treatment of hazardous contaminants are ozone, hydrogen peroxide, hypochlorites, chlorine, and chlorine dioxide. Current research has shown the combination of these reagents or ultraviolet (UV) light and an oxidizing agent(s) makes the process more effective. Treatability studies are necessary to document the applicability and performance of chemical oxidation systems technology for a specific site. The bulletin provides information on the technology applicability, limitations, a technology description, the types of residuals produced, site requirements, current performance data, status of the technology, and sources of further information.

  17. Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Zhipeng; Zhao, Hailei; Lv, Pengpeng; Zhang, Zijia; Wang, Jie; Xia, Qing

    2015-01-01

    A composited anode material with combined Fe3O4/FeO nanotube and carbon shell is synthesized by a facile hydrothermal method with subsequent CVD heat treatment. The as-prepared Fe3O4/FeO/C composite shows excellent cycle stability and rate capability as lithium ion battery anode. We study the effect of FeO on the electrochemical performances of the Fe3O4/FeO/C electrode. A capacity climbing phenomenon can be observed for the Fe3O4/FeO/C electrodes, which tends to be more evident with increasing FeO content. The "extra capacity" is correlated with the reversible formation of polymeric gel-like film on the particle surface of active materials, which is electrochemical active towards Li ions. The FeO component presents a certain extent of catalytic role in assisting the formation of the gel-like film. Transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS) analytical technique are combined to further confirm the reversible growth of the SEI gel-like film. High temperature promotes the formation of gel-like film, while the resistance from the film decreases remarkably with temperature due to the enhanced lithium ion conductivity. The film contributes little to the whole EIS resistance of Fe3O4/FeO nanotube/carbon electrode. Tentative explanations based on the current experiments and existing literature are made to explain such unusual finding.

  18. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress.

    PubMed

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials. PMID:27409641

  19. Electrochemical metallization switching with a platinum group metal in different oxides

    NASA Astrophysics Data System (ADS)

    Wang, Zhongrui; Jiang, Hao; Hyung Jang, Moon; Lin, Peng; Ribbe, Alexander; Xia, Qiangfei; Yang, J. Joshua

    2016-07-01

    In a normal electrochemical metallization (ECM) switch, electrochemically active metals, such as Ag and Cu are used to provide mobile ions for the conducting filament. In both ECM and valence change memory (VCM) devices, platinum group metals, such as Pt and Pd, are typically used as the counter electrode and assumed to be chemically and physically inert. In this study, we explore whether the so-called inert metal itself can form a conducting filament and result in repeatable resistance switching. Pd and different oxide host matrices are used for this purpose. We have observed that the transport of oxygen anions dominates over Pd metal cations in ALD deposited AlOx and HfOx. However, in sputtered SiOx, Pd cation transport was revealed, accompanied by the formation of nano-crystalline Pd filament(s) in the junctions. Based on these observations, memristors with reversible and repeatable switching were obtained by using Pd doped SiOx as the switching material.In a normal electrochemical metallization (ECM) switch, electrochemically active metals, such as Ag and Cu are used to provide mobile ions for the conducting filament. In both ECM and valence change memory (VCM) devices, platinum group metals, such as Pt and Pd, are typically used as the counter electrode and assumed to be chemically and physically inert. In this study, we explore whether the so-called inert metal itself can form a conducting filament and result in repeatable resistance switching. Pd and different oxide host matrices are used for this purpose. We have observed that the transport of oxygen anions dominates over Pd metal cations in ALD deposited AlOx and HfOx. However, in sputtered SiOx, Pd cation transport was revealed, accompanied by the formation of nano-crystalline Pd filament(s) in the junctions. Based on these observations, memristors with reversible and repeatable switching were obtained by using Pd doped SiOx as the switching material. Electronic supplementary information (ESI) available

  20. Surface Composition, Work Function, and Electrochemical Characteristics of Gallium-Doped Zinc Oxide

    SciTech Connect

    Ratcliff, E. L.; Sigdel, A. K.; Macech, M. R.; Nebesny, K.; Lee, P. A.; Ginley, D. S.; Armstrong, N. R.; Berry, J. J.

    2012-06-30

    Gallium-doped zinc oxide (GZO) possesses the electric conductivity, thermal stability, and earth abundance to be a promising transparent conductive oxide replacement for indium tin oxide electrodes in a number of molecular electronic devices, including organic solar cells and organic light emitting diodes. The surface chemistry of GZO is complex and dominated by the hydrolysis chemistry of ZnO, which influences the work function via charge transfer and band bending caused by adsorbates. A comprehensive characterization of the surface chemical composition and electrochemical properties of GZO electrodes is presented, using both solution and surface adsorbed redox probe molecules. The GZO surface is characterized using monochromatic X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy after the following pretreatments: (i) hydriodic acid etch, (ii) potassium hydroxide etch, (iii) RF oxygen plasma etching, and (iv) high-vacuum argon-ion sputtering. The O 1s spectra for the GZO electrodes have contributions from the stoichiometric oxide lattice, defects within the lattice, hydroxylated species, and carbonaceous impurities, with relative near-surface compositions varying with pretreatment. Solution etching procedures result in an increase of the work function and ionization potential of the GZO electrode, but yield different near surface Zn:Ga atomic ratios, which significantly influence charge transfer rates for a chemisorbed probe molecule. The near surface chemical composition is shown to be the dominant factor in controlling surface work function and significantly influences the rate of electron transfer to both solution and tethered probe molecules.

  1. Legitimate intermediates of oxygen evolution on iridium oxide revealed by in situ electrochemical evanescent wave spectroscopy.

    PubMed

    Ooka, Hideshi; Wang, Yuanqing; Yamaguchi, Akira; Hatakeyama, Makoto; Nakamura, Shinichiro; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2016-06-01

    Understanding how the four-electron oxidation of water to dioxygen proceeds in different materials is critical to the rational design of efficient catalysts towards artificial photosynthetic systems. Here, using in situ electrochemical evanescent wave spectroscopy under oxygen-evolving conditions, we report two intermediates of iridium oxide (IrOx), which is the most active and stable catalyst characterized to date in acidic medium. The observed potential dependence of the two intermediates indicated that they were associated with different surface sites, and intermediate scavenging experiments using H2O2 provided insight into their role during catalysis. Notably, an Ir(V) species with an absorption maximum at 450 nm was found to mediate the initial two-electron oxidation of water. Inhibition of the Ir(V) species by H2O2, combined with computational modeling, indicates that the accumulation and concurrent spin-state change of the Ir(V) species is a prerequisite for efficient water oxidation by IrOx electrodes. PMID:27197557

  2. Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes

    NASA Astrophysics Data System (ADS)

    Kurzweil, P.

    The mechanism of charge storage in hydrous platinum metal oxides is considered in more detail with respect to the pH dependence of redox capacitance for applications in double-layer capacitors, fuel cells, and pH sensors. An amorphous RuO 2 electrode is able to work like a pH glass electrode during the titration of hydrochloric acid with sodium hydroxide solution. It is shown that the proton exchange mechanism at a glass membrane can be reproduced by platinum metal oxide-hydrates bound in a polymer matrix. Hydrous RuO 2, obtained by alkaline precipitation or thermal decomposition from RuCl 3, as well as single crystal RuO 2, were characterized by TOF-SIMS, NMR spectroscopy, and electrochemical techniques. The proton conductivity of hydrous RuO 2 appears to be due to the dissociative adsorption of water and the formation of acidic OH groups in Ru(III,IV) cluster ions. Depending on the pH of the solution, the electrode potential is determined by the formal hydrogen oxidation or oxygen reduction in ruthenium cluster ions. During aging, the active Ru(III) surface sites are partially oxidized to Ru(IV).

  3. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes.

    PubMed

    Cohen, Jamie L; Volpe, David J; Abruña, Héctor D

    2007-01-01

    The oxidation pathways of methanol (MeOH) have been the subject of intense research due to its possible application as a liquid fuel in polyelectrolyte membrane (PEM) fuel cells. The design of improved catalysts for MeOH oxidation requires a deep understanding of these complex oxidation pathways. This paper will provide a discussion of the literature concerning the extensive research carried out in acidic and alkaline electrolytes. It will highlight techniques that have proven useful in the determination of product ratios, analysis of surface poisoning, anion adsorption, and oxide formation processes, in addition to the effects of temperature on the MeOH oxidation pathways at bulk polycrystalline platinum (Pt(poly)) electrodes. This discussion will provide a framework with which to begin the analysis of activation energy (E(a)) values. This kinetic parameter may prove useful in characterizing the rate-limiting step of the MeOH oxidation at an electrode surface. This paper will present a procedure for the determination of E(a) values for MeOH oxidation at a Pt(poly) electrode in acidic and alkaline media. Values from 24-76 kJ mol(-1) in acidic media and from 36-86 kJ mol(-1) in alkaline media were calculated and found to be a function of applied potential and direction of the potential sweep in a voltammetric experiment. Factors that influence the magnitude of the calculated E(a) include surface poisoning from MeOH oxidation intermediates, anion adsorption from the electrolyte, pH effects, and oxide formation processes. These factors are all potential, and temperature, dependent and must clearly be addressed when citing E(a) values in the literature. Comparison of E(a) values must be between systems of comparable electrochemical environment and at the same potential. E(a) values obtained on bulk Pt(poly), compared with other catalysts, may give insight into the superiority of other Pt-based catalysts for MeOH oxidation and lead to the development of new catalysts

  4. Influences of graphene oxide support on the electrochemical performances of graphene oxide-MnO2 nanocomposites

    PubMed Central

    2011-01-01

    MnO2 supported on graphene oxide (GO) made from different graphite materials has been synthesized and further investigated as electrode materials for supercapacitors. The structure and morphology of MnO2-GO nanocomposites are characterized by X-ray diffraction, X-ray photoemission spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and Nitrogen adsorption-desorption. As demonstrated, the GO fabricated from commercial expanded graphite (denoted as GO(1)) possesses more functional groups and larger interplane gap compared to the GO from commercial graphite powder (denoted as GO(2)). The surface area and functionalities of GO have significant effects on the morphology and electrochemical activity of MnO2, which lead to the fact that the loading amount of MnO2 on GO(1) is much higher than that on GO(2). Elemental analysis performed via inductively coupled plasma optical emission spectroscopy confirmed higher amounts of MnO2 loading on GO(1). As the electrode of supercapacitor, MnO2-GO(1) nanocomposites show larger capacitance (307.7 F g-1) and better electrochemical activity than MnO2-GO(2) possibly due to the high loading, good uniformity, and homogeneous distribution of MnO2 on GO(1) support. PMID:21951643

  5. Electrochemical Characterization of a Solid Oxide Membrane Electrolyzer for Production of High-Purity Hydrogen

    NASA Astrophysics Data System (ADS)

    Pati, Soobhankar; Yoon, Kyung Joong; Gopalan, Srikanth; Pal, Uday B.

    2009-12-01

    A laboratory-scale solid oxide membrane (SOM) steam electrolyzer that can potentially use energy value in waste or any source of carbon or hydrocarbon to produce high-purity hydrogen has been fabricated and evaluated. The SOM electrolyzer comprises an oxygen-ion-conducting yttria-stabilized zirconia (YSZ) electrolyte with a Ni-YSZ cermet cathode coated on one side and liquid-metal anode on the other side. The SOM electrolyzer is operated at 1000 °C by providing a steam-rich gas feed to the Ni-YSZ cermet cathode and feeding a reductant source into the liquid-metal anode. The steam is reduced over the cathode, and oxygen ions are transported through the YSZ electrolyte and are oxidized at the molten metal electrode by the reductant feed. The advantage of SOM electrolyzer over the state-of-the-art solid oxide electrolyzer is its ability to use solid, liquid, and gaseous reductant feed in the liquid-metal anode to reduce the oxygen chemical potential and drive the reaction for hydrogen production. In this study, an electrochemical process model for a SOM electrolyzer was developed. The condition of the liquid-metal anode with reductant was simulated by bubbling humidified hydrogen (3 pct H2O) in the liquid metal, and the electrochemical performance of the SOM electrolyzer was modeled. The experimental data were curve-fitted into the model to identify the various polarization losses. It showed that the performance of the SOM electrolyzer was dominated by the ohmic resistance of the YSZ membrane. Based on the results of this study, future work is needed toward increasing the performance efficiency of the SOM electrolyzer.

  6. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber

    PubMed Central

    2014-01-01

    The aim of this work is to optimize the different parameters for realization of an absorbing cavity to measure the incident absolute laser energy. Electrochemical oxidation is the background process that allowed the copper blackening. A study of the blackened surface quality was undertaken using atomic force microscopy (AFM) analysis and ultraviolet-visible-infrared spectrophotometry using a Shimadzu spectrophotometer. A two-dimensional and three-dimensional visualization by AFM of the formed oxide coating showed that the copper surfaces became porous after electrochemical etching with different roughness. This aspect is becoming more and more important with decreasing current density anodization. In a 2 mol L -1 of NaOH solution, at a temperature of 90°C, and using a 16 mA cm2 constant density current, the copper oxide formed has a reflectivity of around 3% in the spectral range between 300 and 1,800 nm. Using the ‘mirage effect’ technique, the obtained Cu2O diffusivity and thermal conductivity are respectively equal to (11.5 ± 0.5) 10 to 7 m2 s-1 and (370 ± 20) Wm-1 K-1. This allows us to consider that our Cu2O coating is a good thermal conductor. The results of the optical and thermal studies dictate the choice of the cavity design. The absorbing cavity is a hollow cylinder machined to its base at an angle of 30°. If the included angle of the plane is 30° and the interior surface gives specular reflection, an incoming ray parallel to the axis will undergo five reflections before exit. So the absorption of the surface becomes closely near 0.999999. PMID:25349555

  7. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber.

    PubMed

    Ben Salem, Sonia; Achour, Zahra Ben; Thamri, Kamel; Touayar, Oualid

    2014-01-01

    The aim of this work is to optimize the different parameters for realization of an absorbing cavity to measure the incident absolute laser energy. Electrochemical oxidation is the background process that allowed the copper blackening. A study of the blackened surface quality was undertaken using atomic force microscopy (AFM) analysis and ultraviolet-visible-infrared spectrophotometry using a Shimadzu spectrophotometer. A two-dimensional and three-dimensional visualization by AFM of the formed oxide coating showed that the copper surfaces became porous after electrochemical etching with different roughness. This aspect is becoming more and more important with decreasing current density anodization. In a 2 mol L(-1) of NaOH solution, at a temperature of 90°C, and using a 16 mA cm(2) constant density current, the copper oxide formed has a reflectivity of around 3% in the spectral range between 300 and 1,800 nm. Using the 'mirage effect' technique, the obtained Cu2O diffusivity and thermal conductivity are respectively equal to (11.5 ± 0.5) 10 to 7 m(2) s(-1) and (370 ± 20) Wm(-1) K(-1). This allows us to consider that our Cu2O coating is a good thermal conductor. The results of the optical and thermal studies dictate the choice of the cavity design. The absorbing cavity is a hollow cylinder machined to its base at an angle of 30°. If the included angle of the plane is 30° and the interior surface gives specular reflection, an incoming ray parallel to the axis will undergo five reflections before exit. So the absorption of the surface becomes closely near 0.999999. PMID:25349555

  8. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber

    NASA Astrophysics Data System (ADS)

    Ben Salem, Sonia; Achour, Zahra Ben; Thamri, Kamel; Touayar, Oualid

    2014-10-01

    The aim of this work is to optimize the different parameters for realization of an absorbing cavity to measure the incident absolute laser energy. Electrochemical oxidation is the background process that allowed the copper blackening. A study of the blackened surface quality was undertaken using atomic force microscopy (AFM) analysis and ultraviolet-visible-infrared spectrophotometry using a Shimadzu spectrophotometer. A two-dimensional and three-dimensional visualization by AFM of the formed oxide coating showed that the copper surfaces became porous after electrochemical etching with different roughness. This aspect is becoming more and more important with decreasing current density anodization. In a 2 mol L -1 of NaOH solution, at a temperature of 90°C, and using a 16 mA cm2 constant density current, the copper oxide formed has a reflectivity of around 3% in the spectral range between 300 and 1,800 nm. Using the `mirage effect' technique, the obtained Cu2O diffusivity and thermal conductivity are respectively equal to (11.5 ± 0.5) 10 to 7 m2 s-1 and (370 ± 20) Wm-1 K-1. This allows us to consider that our Cu2O coating is a good thermal conductor. The results of the optical and thermal studies dictate the choice of the cavity design. The absorbing cavity is a hollow cylinder machined to its base at an angle of 30°. If the included angle of the plane is 30° and the interior surface gives specular reflection, an incoming ray parallel to the axis will undergo five reflections before exit. So the absorption of the surface becomes closely near 0.999999.

  9. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes.

    PubMed

    Beline, Thamara; Garcia, Camila S; Ogawa, Erika S; Marques, Isabella S V; Matos, Adaias O; Sukotjo, Cortino; Mathew, Mathew T; Mesquita, Marcelo F; Consani, Rafael X; Barão, Valentim A R

    2016-02-01

    The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sand blasted with Al2O3, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (Rp) (P b .0001) and the highest capacitance (CPE) (P b .006), corrosion current density (Icorr) and corrosion rate (P b .0001). In contrast, acid etching increased Rp and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced Rp (P b .008) and increased Icorr and corrosion rate (P b .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P b .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi. PMID:26652467

  10. Electrochemical incineration of wastes

    NASA Technical Reports Server (NTRS)

    Kaba, L.; Hitchens, G. D.; Bockris, J. O'M.

    1989-01-01

    A low temperature electrolysis process has been developed for the treatment of solid waste material and urine. Experiments are described in which organic materials are oxidized directly at the surface of an electrode. Also, hypochlorite is generated electrochemically from chloride component of urine. Hypochlorite can act as a strong oxidizing agent in solution. The oxidation takes place at 30-60 C and the gaseous products from the anodic reaction are carbon dioxide, nitrogen, oxygen. Hydrogen is formed at the cathode. Carbon monoxide, and nitrogen oxides and methane were not detected in the off gases. Chlorine was evolved at the anode in relatively low amounts.

  11. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor

    PubMed Central

    Rusi; Chan, P. Y.; Majid, S. R.

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm-2. The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg-1 at current density of 1.85 Ag-1 in 0.5M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5M KOH and 0.5M KOH/0.04M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 103 Fg-1 and an energy density of 309 Whkg-1 in a 0.5MKOH/0.04MK3Fe(CN) 6 electrolyte at a current density of 10 Ag-1. The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications. PMID:26158447

  12. Insight of an easy topochemical oxidative reaction in obtaining high performance electrochemical capacitor based on CoIICoIII monometallic cobalt Layered Double Hydroxide

    NASA Astrophysics Data System (ADS)

    Vialat, Pierre; Rabu, Pierre; Mousty, Christine; Leroux, Fabrice

    2015-10-01

    A series of monometallic Layered Double Hydroxides (LDH) using electroactive cation, i.e. divalent or trivalent cobalt, was prepared by Topochemical Oxidation Reaction (TOR) under O2 atmosphere at 40 °C from pristine β-Co(OH)2 platelets. The oxidation state of the ill-defined layered materials was evaluated by coupling thermal measurements and chemical titration (iodometry). Their characterization by ancillary techniques was completed by the study of their magnetic behavior. The obtained magnetic moments suggest the presence of structural local deformation around the CoII ions, unhomogeneous charge distribution yielding to clustering effects cannot be discarded. Their pseudo-faradic properties as supercapacitor in KOH solution was thoroughly investigated by using Cyclic Voltammetry (CV), Galvanostatic Cycling with Potential Limitation (GCPL) and Electrochemical Impedance Spectroscopy (EIS) techniques. As a function of the oxygen treatment, the relative amount of CoII/CoIII was found to range into 5.3 and 13.3, which is unusually high when compared to classical LDH charge distribution. Pseudocapacitance as high as 1540 F g-1 was obtained underlining a high percentage of CoII, ≈40%, involved in electrochemical process. This high percentage is tentatively explained by an extended outer-active electrochemical surface which demonstrates that TOR is a quick and easy process to get a high pseudocapacitive performance.

  13. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation.

    PubMed

    Huang, Jianfei; Zhao, Shunan; Chen, Wei; Zhou, Ying; Yang, Xiaoling; Zhu, Yihua; Li, Chunzhong

    2016-03-21

    This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications. PMID:26580842

  14. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Jianfei; Zhao, Shunan; Chen, Wei; Zhou, Ying; Yang, Xiaoling; Zhu, Yihua; Li, Chunzhong

    2016-03-01

    This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications.This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications. Electronic supplementary information (ESI) available: Experimental details, additional figures and table. See DOI: 10.1039/c5nr06512g

  15. Electrochemically reduced graphene oxide/carbon nanotubes composites as binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Pang, Siu-Kwong; Yung, Kam-Chuen

    2016-04-01

    Binder-free composites of electrochemically reduced graphene oxide (ecrGO) and multiwalled carbon nanotubes (MWCNTs) were fabricated as supercapacitors electrodes operating in aqueous systems. GO was found to be electrochemically reduced according to the XRD and Raman data. Therefore, this facile and controllable method was applied to reduce GO in the GO/MWCNTs composites, generating ecrGO/MWCNTs composites. The ecrGO/MWCNTs composites exhibit higher specific capacitance (Csp) than ecrGO because the intercalation of MWCNTs into ecrGO sheets increases the surface areas, according to the TEM, XRD and N2 adsorption-desorption results. The composites with different mass ratios of GO to MWCNTs (10:1, 5:1, 1:1, 1:5, 1:10) were investigated. The ecrGO/MWCNTs composite (GO: MWCNTs = 5:1) showed the highest Csp from the cyclic voltammetry results at a scan rate of 10 mV s-1, and it expressed Csp of 165 F g-1 at a current density of 1 A g-1 and 93% retention after 4000 cycles of charge/discharge. When the mass ratio of GO to MWCNTs further decreases to 1:10, the Csp of the composites declines, and the ecrGO/MWCNTs composite (GO: MWCNTs = 1:10) performs a nearly pure double-layer capacitor. However, the composites containing more MWCNTs can maintain better capacitive behavior at higher rates of charge/discharge.

  16. Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kang, Doo Won; Kim, Sang-Wook; Kim, Chang-Koo

    2015-05-01

    We develop a direct and environmentally benign method to prepare manganese oxide (Mn3O4)/graphene composites via one-step hydrothermal synthesis from graphite without using strong acids and toxic reducing agents. Structural and morphological analyses reveals that the irregularly shaped Mn3O4 nanoparticles are well-dispersed on the graphene flakes. Cyclic voltammetry and galvanostatic charge-discharge tests indicate that the charge-storing mechanism of the Mn3O4/graphene composites is pseudocapacitive. The Mn3O4/graphene composite exhibits a specific capacitance of 367 F/g at a current density of 5 A/g. After 3000 charge-discharge cycles, the Mn3O4/graphene electrode retains 91.8% of its initial specific capacitance. From electrochemical impedance spectra, it is evident that the changes in both the equivalent series resistance and charge-transfer resistance of the Mn3O4/graphene electrode before and after 3000 charge-discharge cycles are small, indicating good cycling and electrochemical stability of the Mn3O4/graphene electrode.

  17. Multi-resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction induced Carrier Control

    PubMed Central

    Seo, Hyungtak; Ahn, Seungbae; Kim, Jinseo; Lee, Young-Ahn; Chung, Koo-Hyun; Jeon, Ki-Joon

    2014-01-01

    The extended application of graphene-based electronic devices requires a bandgap opening in order to realize the targeted device functionality. Since the bandgap tuning of pristine graphene is limited to 360 meV, the chemical modification of graphene is considered essential to achieve a large bandgap opening at the expense of electrical properties degradation. Reduced graphene oxide (RGO) has attracted significant interest for fabricating graphene-based semiconductors since it has several advantages over other forms of chemically modified graphene; such as tunable bandgap opening, decent electrical properties, and easy synthesis. Because of the reduced bonding nature of RGO, the role of metastable oxygen in the RGO matrix is recently highlighted and it may offer emerging ionic devices. In this study, we show that multi-resistivity RGO/n-Si diodes can be obtained by controlling the RGO thickness at a nanometer scale. This is made possible by (1) a metastable lattice-oxygen drift within bulk RGO and (2) electrochemical ambient hydroxyl (OH) formation at the RGO surface. The effect demonstrated in a p-RGO/n-Si heterojunction diode is equivalent to electrochemically driven reversible electronic manipulation and therefore provides an important basis for the application of O bistability in RGO for chemical sensors and electrocatalysis. PMID:25007942

  18. Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Johannes, Michelle

    Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.

  19. Electrochemical effect of lithium tungsten oxide modification on LiCoO2 thin film electrode

    NASA Astrophysics Data System (ADS)

    Hayashi, Tetsutaro; Okada, Jiro; Toda, Eiji; Kuzuo, Ryuichi; Matsuda, Yasutaka; Kuwata, Naoaki; Kawamura, Junichi

    2015-07-01

    We fabricated a lithium tungsten oxide (LWO)-modified LiCoO2 (LCO) thin film electrode by pulsed laser deposition and investigated the reason for its lower resistance as compared with a bare LCO electrode. X-ray diffraction revealed that the LWO layer has a randomly oriented Li2WO4 structure with tetragonal symmetry. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX) indicated that the LWO modification changes the LCO particle surface, and the electrochemical impedance spectroscopy demonstrated that the LWO modification on LCO decreases the lithium ion transfer resistance at the interface between the positive electrode and the liquid electrolyte and increases the frequency factor at the interface. X-ray photoemission spectroscopy, EDX, and electron energy loss spectroscopy (EELS) indicated the presence of phosphate on the surface of the unmodified LCO electrode after electrochemical tests, but EDX and EELS did not indicate the presence of phosphate in the LWO-modified LCO electrode. The absence of phosphates apparently alleviates the hindrance of Li+ ion diffusion and increases the frequency factor in LCO, resulting in lowered Li+ ion transfer resistance at the interface.

  20. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Mandon, Julien; Högman, Marieann; Merkus, Peter J. F. M.; van Amsterdam, Jan; Harren, Frans J. M.; Cristescu, Simona M.

    2012-01-01

    Fractional exhaled nitric oxide (FENO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring FENO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 1∶10-9) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO®, Aerocrine AB, Sweden). FENO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values.

  1. Synthesis of Electrochemically Reduced Graphene Oxide Bonded to Thiodiazole-Pd and Applications to Biosensor.

    PubMed

    You, Jung-Min; Han, Hyoung Soon; Jeon, Seungwon

    2015-08-01

    A novel biosensor for the determination of hydrogen peroxide and glucose was developed based on EGN-TDZ-Pd, as an electrocatalyst. The preparation of graphene oxide (GO) nanosheets was functionalized by combining it with 5-amino-1,3,4-thiadiazole-2-thiol (TDZ) and by covalently bonding it to palladium (Pd) nanoparticles (GO-TDZ-Pd). In the electrochemical investigation, EGN-TDZ-Pd was characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and chronoamperometry (CA) were used to characterize the performance of EGN-TDZ-Pd. The proposed H2O2 biosensor exhibited a wide linear range from 10 µM to 6.5 mM. Also, a glucose biosensor was prepared using glucose oxidase and EGN-TDZ-Pd placed onto a glassy carbon electrode (GCE). The GOx/EGN-TDZ-Pd/GCE was easily prepared using a rapid and simple procedure, and it was utilized for highly sensitive glucose determination. PMID:26369140

  2. Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmi; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-08-01

    We have prepared a reduced graphene oxide (rGO)-supported silver (Ag) and manganese dioxide (MnO2) deposited porous-like catalyst (denoted as rGO/MnO2/Ag) through a facile electrochemical deposition route and have been used as a cathode catalyst for oxygen reduction reaction (ORR) in alkaline fuel cells. The physical properties of rGO/MnO2/Ag have been investigated via several instrumental methods. This material exhibits a polycrystalline structure characterized by Ag/MnO2 microsphere formation as a result of Ostwald ripening. The X-ray diffraction and X-ray photoelectron spectroscopy data reveal that the MnO2 and Ag have been slightly alloyed and Mn presents with the dioxide form on rGO. The electrochemical properties of the electrocatalyst have been studied via several voltammetric methods. The results demonstrated that the rGO/MnO2/Ag has an excellent catalytic activity for ORR in alkaline media compared to the other tested electrodes. Particularly, it shows 1.2 times higher current density and better electron transfer rate at 0.3 V per O2 than that of 20 wt% Pt/C. The other kinetic analysis reveals that the O2 has reduced directly to H2O through a nearly four-electron pathway with better anodic fuel tolerance and duration performance than that of 20% Pt/C.

  3. Electrochemical metallization switching with a platinum group metal in different oxides.

    PubMed

    Wang, Zhongrui; Jiang, Hao; Hyung Jang, Moon; Lin, Peng; Ribbe, Alexander; Xia, Qiangfei; Yang, J Joshua

    2016-08-01

    In a normal electrochemical metallization (ECM) switch, electrochemically active metals, such as Ag and Cu are used to provide mobile ions for the conducting filament. In both ECM and valence change memory (VCM) devices, platinum group metals, such as Pt and Pd, are typically used as the counter electrode and assumed to be chemically and physically inert. In this study, we explore whether the so-called inert metal itself can form a conducting filament and result in repeatable resistance switching. Pd and different oxide host matrices are used for this purpose. We have observed that the transport of oxygen anions dominates over Pd metal cations in ALD deposited AlOx and HfOx. However, in sputtered SiOx, Pd cation transport was revealed, accompanied by the formation of nano-crystalline Pd filament(s) in the junctions. Based on these observations, memristors with reversible and repeatable switching were obtained by using Pd doped SiOx as the switching material. PMID:27166623

  4. Electrochemical degradation of the antihypertensive losartan in aqueous medium by electro-oxidation with boron-doped diamond electrode.

    PubMed

    Salazar, Claudio; Contreras, Nicole; Mansilla, Héctor D; Yáñez, Jorge; Salazar, Ricardo

    2016-12-01

    In this work the electrochemical oxidation of losartan, an emerging pharmaceutical pollutant, was studied. Electrochemical oxidation was carried out in batch mode, in an open and undivided cell of 100cm(3) using a boron-doped diamond (BDD)/stainless steel system. With Cl(-) medium 56% of mineralization was registered, while with the trials containing SO4(2-) as supporting electrolyte a higher mineralization yield of 67% was reached, even obtaining a total removal of losartan potassium at 80mAcm(-2) and 180min of reaction time at pH 7.0. Higher losartan potassium concentrations enhanced the mineralization degree and the efficiency of the electrochemical oxidation process. During the mineralization up to 4 aromatic intermediates were identified by ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Moreover, short-linear carboxylic acids, like oxalic, succinic and oxamic were detected and quantified by ion-exclusion HPLC. Finally, the ability of the electrochemical oxidation process to mineralize dissolved commercial tablets containing losartan was achieved, obtaining TOC removal up to 71% under optimized conditions (10mAcm(-2), 0.05M Na2SO4, pH 7.0 and 25°C and 360min of electrolysis). PMID:27180209

  5. High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive-diamond anodes.

    PubMed

    Aquino, José Mario; Rocha-Filho, Romeu C; Sáez, Cristina; Cañizares, Pablo; Rodrigo, Manuel A

    2014-01-01

    Oxidation of anthraquinonic dye Acid Blue 62 by electrolysis with conductive-diamond electrodes is studied in this work. COD, TOC, and color have been selected to monitor the degradation of the molecule as a function of several operating inputs (current density, pH, temperature, and NaCl concentration). Results show that the electrochemical oxidation of this model of large molecules follows a first order kinetics in all the conditions assessed, and it does not depend on the pH and temperature. The occurrence of chloride ions in wastewaters increases the rate of color and COD removal as a consequence of the mediated oxidation promoted by the chlorinated oxidizing species. However, chloride occurrence does not have an influence on the mineralization rate. First-order kinetic-constants for color depletion (attack to chromophores groups), oxidation (COD removal), and mineralization (TOC removal) were found to depend on the current density and to increase significantly with its value. A single model was proposed to explain these changes in terms of the mediated oxidation processes. Rate of mineralization remained very close to that expected for a purely mass transfer-controlled process. This was explained assuming that mediated oxidation does not have a significant influence on the mineralization in spite it has some effect on intermediate oxidation stages. The efficiency of the oxidation was found to depend mainly on the concentration of COD being negligible the effect of the other inputs assessed except for the occurrence of chloride ions. Opposite, the efficiency of mineralization depends on concentration of TOC and current density and it did not depend on the chloride occurrence. This observation was found to have an important influence on the power required to remove a given percentage of the initial TOC or COD. To decrease COD efficiently, the occurrence of chloride in the solution is very important, while to remove TOC efficiently, it is more important to work at

  6. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages.

    PubMed

    Jampasa, Sakda; Siangproh, Weena; Duangmal, Kiattisak; Chailapakul, Orawon

    2016-11-01

    A simple and highly sensitive electrochemical sensor based on an electrochemically reduced graphene oxide-modified screen-printed carbon electrode (ERGO-SPCE) for the simultaneous determination of sunset yellow (SY) and tartrazine (TZ) was proposed. An ERGO film was coated onto the electrode surface using a cyclic voltammetric method and then characterized by scanning electron microscopy (SEM). In 0.1M phosphate buffer at a pH of 6, the two oxidation peaks of SY and TZ appeared separately at 0.41 and 0.70V, respectively. Surprisingly, the electrochemical response remarkably increased approximately 90- and 20-fold for SY and TZ, respectively, using the modified electrode in comparison to the unmodified electrode. The calibration curves exhibited linear ranges from 0.01 to 20.0µM for SY and from 0.02 to 20.0µM for TZ. The limits of detection were found to be 0.50 and 4.50nM (at S/N=3) for SY and TZ, respectively. Furthermore, this detection platform provided very high selectivity for the measurement of both colorants. This electrochemical sensor was successfully applied to determine the amount of SY and TZ in commercial beverages. Comparison of the results obtained from this proposed method to those obtained by an in-house standard technique proved that this developed method has good agreement in terms of accuracy for practical applications. This sensor offers an inexpensive, rapid and sensitive determination. The proposed system is therefore suitable for routine analysis and should be an alternative method for the analysis of food colorants. PMID:27591594

  7. Synthesis and characterization of zinc-molybdenum oxide photocatalysts using an electrochemical-thermal process

    NASA Astrophysics Data System (ADS)

    Goveas, J. J.; Gonsalves, R. A.; Rao, P.; Pinto, R.

    2016-05-01

    Dyes act as major pollutants in water and can be degraded by photocatalysis. This paper establishes the role of electrochemically generated nanostructures of Zinc-Molybdenum oxides (ZMO) as photocatalysts by degrading EBT (Eriochrome Black- T) taken as a model pollutant under UV light. A facile, rapid and low cost process to synthesize these nanostructures (ZMO) is presented. Various factors that affect the synthesis and photocatalytic activity of these nanostructures are discussed. The role of calcination temperature and pulverization on the photocatalytic action has also been established. Particles have been synthesized in pure form as well as using surfactants such as cetrimide (cetyl trimethyl ammonium bromide), polyethylene glycol (PEG) and SDS (sodium dodecyl sulphate) to enhance their photocatalytic action. This paper also discusses the characterization of these nanoparticles by powder XRD, SEM, FT-IR and UV-Visible spectroscopy. Decolourisation was achieved to completion under optimum experimental conditions at room temperature ascertaining the application of these nanostructures as effective photocatalysts.

  8. Solid flexible electrochemical supercapacitor using Tobacco mosaic virus nanostructures and ALD ruthenium oxide

    NASA Astrophysics Data System (ADS)

    Gnerlich, M.; Pomerantseva, E.; Gregorczyk, K.; Ketchum, D.; Rubloff, G.; Ghodssi, R.

    2013-11-01

    An all-solid electrochemical supercapacitor has been developed using a nanostructured nickel and titanium nitride template that is coated with ruthenium oxide by atomic layer deposition (ALD). The electrode morphology was based on a high surface area biotemplate of genetically modified Tobacco mosaic virus. The biotemplate automatically self-assembles at room temperature in aqueous solution. Nafion® perfluorosulfonate ionomer dispersion was cast on the electrodes and used as a solid proton-conducting electrolyte. A 5.8 F g-1 gravimetric capacity (578 µF cm-2 based on footprint) was achieved in Nafion electrolyte, and the device retained 80% of its capacity after 25 000 cycles. The technology presented here will enable thin, solid, flexible supercapacitors that are compatible with standard microfabrication techniques.

  9. A Novel Electrochemical Detector using Prussian Blue Modified Indium Tin Oxide Electrode

    NASA Astrophysics Data System (ADS)

    Yi, In-Je; Kim, Ju-Ho; Kang, C. J.; Choi, Y. J.; Lee, Kisay; Kim, Yong-Sang

    2006-01-01

    We propose a novel electrochemical detector (ECD) to catalyze redox efficiently by electrodepositing Prussian blue (PB, ferric hexacyanoferrate) on the indium tin oxide (ITO) electrode. Capillary electrophoresis (CE) and amperometric methods were used. We investigated the PB surface properties by topography from atomic force microscopy (AFM). The PB film on dense and smooth surfaces could catalyze redox reaction efficiently. Compared with CE-ECD microchips using a bare-ITO electrode, the proposed CE-ECD microchip using a PB modified electrode has shown better sensitivity of the electropherograms. It has been verified that wide-ranging detection can be performed under the limits of 0.01 mM of dopamine and catechol respectively when we use a PB modified electrode.

  10. Electrochemical Deposition of Nanostructured Manganese Oxide on Carbon Cloth for Flexible High-Performance Supercapacitor Electrodes.

    PubMed

    Huang, Zilong; Zhao, Xin; Ren, Jianli; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-06-01

    Well-ordered manganese oxide (MnO2) arrays were directly grown on the treated carbon cloth (CC) though a simple electrochemical deposition method. The structures and the thickness of MnO2 film were controlled by tuning the deposition time. The morphologies and structures of MnO2 deposited on CC were examined by scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. With appropriate reaction time, the MnO2/CC composite demonstrates a high specific capacitance of 291 mF/cm2 and a superior cycling stability at a current density of 0.2 mA/cm2. The specific capacitance shows a little improvement at the first 200 cycles and remains unchanged after continuous 2000 charge/discharge cycles. The MnO2 nanosheet arrays with high degree of ordering, combined with the flexible carbon cloth substrate can coffer great promise for supercapacitor applications. PMID:27427613

  11. Electrochemical regeneration of sodium hypochlorite in the absorption-oxidation method of desorbing waste gases

    SciTech Connect

    Znamenskii, Yu.D.; Perchugov, G.Ya.

    1988-07-10

    The electrochemical synthesis of sodium hypochlorite from a solution with a reduced concentration of sodium chloride is efficiently carried out with the use of ruthenium oxide-titanium anodes (ROTA). In this context they investigated the electrolysis of a solution of sodium chloride with concentrations equal to 20 and 50 kg/m/sup 3/ in a single cell flow-type electrolyzer with an ROTA and, for comparison, with a graphite anode under laboratory conditions. A flow-type electrolyzer was selected in view of the fact that it most closely satisfies the purposes of gas purification. The current efficiency with respect to sodium hypochlorite was almost two times higher, and the specific consumption of electrical energy was 1.6-1.8 times lower in the case of the ROTA than in the case of the graphite electrode. The yield of sodium chlorate remained on the same level in both cases.

  12. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Huang, Dekang; Cao, Kun; Wang, Mingkui; Zakeeruddin, Shaik M.; Grätzel, Michael

    2013-01-01

    We report on a new counter electrode for dye-sensitized solar cells (DSCs), which is prepared using layer-by-layer assembly of negatively charged graphene oxide and positively charged poly (diallyldimethylammonium chloride) followed by an electrochemical reduction procedure. The DSC devises using the heteroleptic Ru complex C106TBA as sensitizer and this new counter electrode reach power conversion efficiencies of 9.5% and 7.6% in conjunction with low volatility and solvent free ionic liquid electrolytes, respectively. The new counter electrode exhibits good durability (60°C for 1000 h in a solar simulator, 100 mW cm−2) during the accelerated tests when used in combination with an ionic liquid electrolyte. This work identifies a new class of electro-catalysts with potential for low cost photovoltaic devices. PMID:23508212

  13. Graphene oxide as nanocarrier for sensitive electrochemical immunoassay of clenbuterol based on labeling amplification strategy.

    PubMed

    Lai, Yanjun; Bai, Jing; Shi, Xinhao; Zeng, Yanbo; Xian, Yuezhong; Hou, Jie; Jin, Litong

    2013-03-30

    A novel electrochemical immunosensor for sensitive detection of clenbuterol (CLB) is fabricated using glucose oxidase (GOD)-functionalized grahene oxide (GO) nanocomposites to label CLB. The immunosensor was constructed by layer-by-layer assembly colloidal prussian blue (PB), multiwalled carbon nanotubes (MWCNTs) and CLB antibodies (Abs) on a glassy carbon electrode (GCE). In this competitive immunoassay system, PB acts as the redox mediator to reduce H2O2 originated from the catalyst cycle of GOD. The high ratio of GOD to GO effectively amplified the signal for this competitive-type immunoassay. Under optimized conditions, the immunosensor shows a wide linear range from 0.5 to 1,000 ng/mL with a low detection limit of 0.25 ng/mL. The dual signal amplification of GOD-functionalized GO nanocomposites as a label is promising to be applied to design other sensitive immunosenseors. PMID:23598209

  14. Mössbauer study of electrochemically deposited amorphous iron-sulfide-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ichimura, Masaya; Kajima, Takahiro; Kawai, Shoichi; Mibu, Ko

    2016-03-01

    Iron-sulfide-oxide thin films, which are promising candidates for solar cell materials, were deposited by electrochemical deposition. As-deposited and annealed films were characterized by Mössbauer spectroscopy, X-ray diffraction (XRD), and Raman scattering at room temperature. The as-deposited film is amorphous, and the oxygen content is about 1/4 of the sulfur content (S/Fe ≈ 1.5, O/Fe ≈ 0.4). The Mössbauer spectrum for the as-deposited film is a doublet with a broad line profile having hyperfine parameters similar to those of FeS2 pyrite or marcasite. This indicates that Fe atoms are in the Fe2+ low-spin state, as in FeS2.

  15. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Nechache, A.; Cassir, M.; Ringuedé, A.

    2014-07-01

    High temperature water electrolysis based on Solid Oxide Electrolysis Cell (SOEC) is a very promising solution to produce directly pure hydrogen. However, degradation issues occurring during operation still represent a scientific and technological barrier in view of its development at an industrial scale. Electrochemical Impedance Spectroscopy (EIS) is a powerful in-situ fundamental tool adapted to the study of SOEC systems. Hence, after a quick presentation of EIS principle and data analysis methods, this review demonstrates how EIS can be used: (i) to characterize the performance and mechanisms of SOEC electrodes; (ii) as a complementary tool to study SOEC degradation processes for different cell configurations, in addition to post-test tools such as scanning electron microscopy (SEM) or X-ray diffraction (XRD). The use of EIS to establish a systematic SOEC analysis is introduced as well.

  16. SOLID OXIDE FUEL CELL CATHODES: Polarization Mechanisms and Modeling of the Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    Fleig, Jurgen

    2003-08-01

    Several recent experimental and numerical investigations have contributed to the improved understanding of the electrochemical mechanisms taking place at solid oxide fuel cell (SOFC) cathodes and yielded valuable information on the relationships between alterable parameters (geometry/material) and the cathodic polarization resistance. Efforts to reduce the polarization resistance in SOFCs can benefit from these results, and some important aspects of the corresponding studies are reviewed. Experimental results, particularly measurements using geometrically well-defined Sr-doped LaMnO3 (LSM) cathodes, are discussed. In regard to simulations, the different levels of sophistication used in SOFC electrode modeling studies are summarized and compared. Exemplary simulations of mixed conducting cathodes that show the capabilities and limits of different modeling levels are described.

  17. Electrochemical synthesis of new magnetic mixed oxides of Sr and Fe: Composition, magnetic properties, and microstructure

    SciTech Connect

    Amigo, R.; Asenjo, J.; Krotenko, E.; Torres, F.; Tejada, J.; Brillas, E.

    2000-02-01

    An electrochemical method for the preparation of magnetic nanoparticles of new Sr-Fe oxides is presented in this work. It consists of the electrolysis of nitrate or chloride solutions with Sr{sup 2+} and Fe{sup 3+} salts using commercial Fe electrodes. Magnetic materials are collected as precipitates from nitrate media in the pH range 1-3 and from chloride media within the pH range 1--12. The presence of 100--300 ppm aniline in acidic nitrate media yields a decrease in energy cost and particle size. Inductively coupled plasma analysis of materials and energy-dispersive X-ray spectrometry of single particles confirm that they are composed of mixed oxides of Sr and Fe. All synthesized materials crystallize as inverse cubic spinels, usually with intermediate structures between magnetite and maghemite. They are formed by nanoparticles with average sizes from 2 nm to {approximately} 50 nm, as observed by scanning electron microscopy. The electrogenerated mixed oxides have higher saturation magnetization, but lower remanent magnetization and coercive field, than commercial strontium hexaferrite with micrometric particle size.

  18. Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Xie, Yongmin; Cai, Weizi; Xiao, Jie; Tang, Yubao; Liu, Jiang; Liu, Meilin

    2015-03-01

    Solid oxide fuel cells (SOFCs), with yttrium stabilized zirconia (YSZ) as electrolyte, composite of strontium-doped lanthanum manganate (LSM) and YSZ as cathode, and cermet of silver and gadolinium-doped ceria (GDC) as anode, are prepared and tested with 5wt% Fe-loaded activated carbon as fuel and ambient air as oxidant. It is found that electricity and CO gas can be cogenerated in the direct carbon SOFCs through the electrochemical oxidation of CO and the Boudouard reaction. The gas-electricity cogeneration performances are investigated by taking the operating time of the DC-SOFCs as a measure of rate decrease of the Boudouard reaction. Three single cells and a two-cell-stack are tested and characterized in terms of electrical power output, CO production rate, electrical conversion efficiency, and overall conversion efficiency. It turns out that a rapid rate of the Boudouard reaction is necessary for getting high electrical power and CO production. Taking the emitted CO as part of the power output, an overall efficiency of 76.5% for the single cell, and of 72.5% for the stack, is obtained.

  19. Synthesis and Electrochemical Analyses of Manganese Oxides for Super-Capacitors.

    PubMed

    Kim, Taewoo; Hwang, Hyein; Jang, Jaeyong; Park, Inyeong; Shim, Sang Eun; Baeck, Sung-Hyeon

    2015-11-01

    δ-Phase and α-phase manganese oxides were prepared using a hydrothermal method and their electrochemical properties were characterized. The influence of calcination temperature on the properties of manganese oxides was studied. Crystallinities were studied by X-ray diffraction, and scanning and transmission electron microscopy were utilized to examine morphologies. Average pore sizes and specific surface areas of samples were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. After calcination in the range 300 degrees C to 600 degrees C, changes in morphology and crystallinity were observed. The flower-like shape of as synthesized samples became nanorod-like and the δ-phase changed to the α-phase. These changes may have been due to the removal of water during calcination. Furthermore, a transition stage in which the two phases coexisted was observed. Synthesized manganese oxides were mixed with carbon by sonification, to increase electric conductivity and to induce a synergistic effect between pseudo-capacitor and electric double layer capacitor (EDLC). Specific capacitances and rate durability of each composite were investigated by cyclic voltammetry in 1 M Na2SO4 electrolyte at different scan rates. MnO2 calcined at 400 degrees C exhibited the highest capacitance, probably due to its high surface area and more porous structure. PMID:26726613

  20. Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Close, Thomas; Tulsyan, Gaurav; Diaz, Carlos A.; Weinstein, Steven J.; Richter, Christiaan

    2015-05-01

    A material capable of rapid, reversible molecular oxygen uptake at room temperature is desirable for gas separation and sensing, for technologies that require oxygen storage and oxygen splitting such as fuel cells (solid-oxide fuel cells in particular) and for catalytic applications that require reduced oxygen species (such as removal of organic pollutants in water and oil-spill remediation). To date, however, the lowest reported temperature for a reversible oxygen uptake material is in the range of 200-300 °C, achieved in the transition metal oxides SrCoOx (ref. 1) and LuFe2O4+x (ref. 2) via thermal cycling. Here, we report rapid and reversible oxygen scavenging by TiO2-x nanotubes at room temperature. The uptake and release of oxygen is accomplished by an electrochemical rather than a standard thermal approach. We measure an oxygen uptake rate as high as 14 mmol O2 g-1 min-1, ˜2,400 times greater than commercial, irreversible oxygen scavengers. Such a fast oxygen uptake at a remarkably low temperature suggests a non-typical mechanistic pathway for the re-oxidation of TiO2-x. Modelling the diffusion of oxygen, we show that a likely pathway involves ‘exceptionally mobile’ interstitial oxygen produced by the oxygen adsorption and decomposition dynamics, recently observed on the surface of anatase.

  1. An electrochemical dopamine aptasensor incorporating silver nanoparticle, functionalized carbon nanotubes and graphene oxide for signal amplification.

    PubMed

    Bahrami, Shokoh; Abbasi, Amir Reza; Roushani, Mahmoud; Derikvand, Zohreh; Azadbakht, Azadeh

    2016-10-01

    In this work, immobilization of a dopamine (DA) aptamer was performed at the surface of an amino functionalized silver nanoparticle-carbon nanotube graphene oxide (AgNPs/CNTs/GO) nanocomposite. A 58-mer DA-aptamer was immobilized through the formation of phosphoramidate bonds between the amino group of chitosan and the phosphate group of the aptamer at the 5' end. An AgNPs/CNTs/GO nanocomposite was employed as a highly catalytic label for electrochemical detection of DA based on electrocatalytic activity of the nanocomposite toward hydrogen peroxide (H2O2). Interaction of DA with the aptamer caused conformational changes of the aptamer which, in turn, decreased H2O2 oxidation and reduction peak currents. On the other hand, the presumed folding of the DA-aptamer complexes on the sensing interface inhibited the electrocatalytic activity of AgNPs/CNTs/GO toward H2O2. Sensitive quantitative detection of DA was carried out by monitoring the decrease of differential pulse voltammetric (DPV) responses of AgNPs/CNTs/GO nanocomposite toward H2O2 oxidation. The DPV signal linearly decreased with increased concentration of DA from 3 to 110nmolL(-1) with a detection limit of 700±19.23pmolL(-1). Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation. PMID:27474313

  2. Inactivation of Pseudomonas aeruginosa in electrochemical advanced oxidation process with diamond electrodes.

    PubMed

    Griessler, M; Knetsch, S; Schimpf, E; Schmidhuber, A; Schrammel, B; Wesner, W; Sommer, R; Kirschner, A K T

    2011-01-01

    The electrochemical advanced oxidation process (EAOP) with diamond electrodes may serve as an additional technology to the currently approved methods for water disinfection. Only few data exist on the microbicidal effect of the EAOP. The aim of our study was to investigate the microbicidal effect of a flow-through oxidation cell with diamond electrodes, using Pseudomonas aeruginosa as the test organism. Without electrical current the EAOP had no measurable effect on investigated microbiological and chemical parameters. For direct electrical current a stronger impact was observed at low flow rate than at higher flow rate. Depending on the contact time of the oxidants and the type of quenching reagent added, inactivation of P. aeruginosa was in the range log 1.6-3.6 at the higher flow rate and log 2.4-4.4 at the lower rate. Direct electrical current showed a stronger microbicidal effect than alternating current (maximum reduction log 4.0 and log 2.9, respectively). The microbiological results of experiments with this EAOP prototype revealed higher standard deviations than expected, based on our experience with standard water disinfection methods. Safe use of an EAOP system requires operating parameters to be defined and used accurately, and thus specific monitoring tests must be developed. PMID:21902043

  3. Hydrothermally Oxidized Single-Walled Carbon Nanotube Networks for High Volumetric Electrochemical Energy Storage.

    PubMed

    Liu, Tianyuan; Davijani, Amir A Bakhtiary; Sun, Jingying; Chen, Shuo; Kumar, Satish; Lee, Seung Woo

    2016-07-01

    Improving volumetric energy density is one of the major challenges in nanostructured carbon electrodes for electrochemical energy storage device applications. Herein, a simple hydrothermal oxidation process of single-walled carbon nanotube (SWNT) networks in dilute nitric acid is reported, enabling simultaneous physical densification and chemical functionalization of the as-assembled randomly-packed SWNT films. After the hydrothermal oxidation process, the density of the SWNT films increases from 0.63 to 1.02 g cm(-3) and a considerable amount of redox-active oxygen functional groups are introduced on the surface of the SWNTs. The functionalized SWNT films are used as positive electrodes against Li metal negative electrodes for potential Li-ion capacitors or Li-ion battery applications. The functionalized SWNT electrodes deliver high volumetric as well as gravimetric capacities, 154 Ah L(-1) and 152 mAh g(-1) , respectively, owing to the surface redox reactions between the introduced oxygen functional groups and Li ions. In addition, these electrodes exhibit a remarkable rate-capability by retaining its high capacity of 94 Ah L(-1) (92 mAh g(-1) ) at a high discharge rate of 10 A g(-1) . These results demonstrate the simple hydrothermal oxidation process as an attractive strategy for improving the volumetric performance of nanostructured carbon electrodes. PMID:27200509

  4. Enhanced Conversion Efficiency of Cu(In,Ga)Se2 Solar Cells via Electrochemical Passivation Treatment.

    PubMed

    Tsai, Hung-Wei; Thomas, Stuart R; Chen, Chia-Wei; Wang, Yi-Chung; Tsai, Hsu-Sheng; Yen, Yu-Ting; Hsu, Cheng-Hung; Tsai, Wen-Chi; Wang, Zhiming M; Chueh, Yu-Lun

    2016-03-30

    Defect control in Cu(In,Ga)Se2 (CIGS) materials, no matter what the defect type or density, is a significant issue, correlating directly to PV performance. These defects act as recombination centers and can be briefly categorized into interface recombination and Shockley-Read-Hall (SRH) recombination, both of which can lead to reduced PV performance. Here, we introduce an electrochemical passivation treatment for CIGS films that can lower the oxygen concentration at the CIGS surface as observed by X-ray photoelectron spectrometer analysis. Temperature-dependent J-V characteristics of CIGS solar cells reveal that interface recombination is suppressed and an improved rollover condition can be achieved following our electrochemical treatment. As a result, the surface defects are passivated, and the power conversion efficiency performance of the solar cell devices can be enhanced from 4.73 to 7.75%. PMID:26815164

  5. Electrochemical modification of indium tin oxide using di(4-nitrophenyl) iodonium tetrafluoroborate.

    PubMed

    Charlton, Matthew R; Suhr, Kristin J; Holliday, Bradley J; Stevenson, Keith J

    2015-01-20

    Optoelectronic applications often rely on indium tin oxide (ITO) as a transparent electrode material. Improvements in the performance of such devices as photovoltaics and light-emitting diodes often requires robust, controllable modification of the ITO surface to enhance interfacial charge transfer properties. In this work, modifier films were deposited onto ITO by the electrochemical reduction of di(4-nitrophenyl) iodonium tetrafluoroborate (DNP), allowing for control over surface functionalization. The surface coverage could be tuned from submonolayer to multilayer coverage by either varying the DNP concentration or the number of cyclic voltammetry (CV) grafting scans. Modification of ITO with 0.8 mM DNP resulted in near-monolayer surface coverage (4.95 × 10(14) molecules/cm(2)). X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of 4-nitrophenyl (NO2Ph) moieties on the ITO surface through the detection of a NO2 nitrogen signal at 405.6 eV after grafting. Further XPS evidence suggests that the NO2Ph radicals do not bond to the surface indium or tin sites, consistent with modification occurring either through bonding to surface hydroxyl groups or through strong physisorption on ITO. CV in the presence of an electroactive probe and electrochemical impedance spectroscopy (EIS) were used to investigate the electronic effects that modification via DNP has on ITO. Even at submonolayer coverage, the insulating organic films can reduce the current response to ferrocene oxidation and reduction by more than 25% and increase the charge transfer resistance by a factor of 10. PMID:25526354

  6. Boron-doped cadmium oxide composite structures and their electrochemical measurements

    SciTech Connect

    Lokhande, B.J.; Ambare, R.C.; Mane, R.S.; Bharadwaj, S.R.

    2013-08-01

    Graphical abstract: Conducting nano-fibrous 3% boron doped cadmium oxide thin films were prepared by SILAR and its super capacitive properties were studied. - Highlights: • Samples are of nanofibrous nature. • All samples shows pseudocapacitive behavior. • 3% B doped CdO shows good specific capacitance. • 3% B doped CdO shows maximum 74.93% efficiency at 14 mA/cm{sup 2}. • 3% B doped CdO shows 0.8 Ω internal resistance. - Abstract: Boron-doped and undoped cadmium oxide composite nanostructures in thin film form were prepared onto stainless steel substrates by a successive ionic layer adsorption and reaction method using aqueous solutions of cadmium nitrate, boric acid and 1% H{sub 2}O{sub 2}. As-deposited films were annealed at 623 K for 1 h. The X-ray diffraction study shows crystalline behavior for both doped and undoped films with a porous topography and nano-wires type architecture, as observed in SEM image. Wettability test confirms the hydrophilic surface with 58° contact angle value. Estimated band gap energy is around 1.9 eV. Electrochemical behavior of the deposited films is attempted in 1 M KOH electrolyte using cyclic voltammetry (CV), electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Maximum values of the specific capacitance, specific energy and specific power obtained for 3% B doped CdO film at 2 mV/s scan rate are 20.05 F/g, 1.22 Wh/kg and 3.25 kW/kg, respectively.

  7. Chiral conducting surfaces via electrochemical oxidation of L-leucine-oligothiophenes.

    PubMed

    McTiernan, Christopher D; Omri, Karim; Chahma, M'hamed

    2010-09-17

    Polythiophenes bearing a specific chiral center such as L-leucine have been prepared via the electrochemical oxidation of a series of L-leucine functionalized oligothiophenes (monothiophenes and terthiophenes). These oligothiophenes have been prepared through the condensation of L-leucine methyl ester and the corresponding thiophene monomers in the presence of hydroxybenzotriazole (HOBt) and N,N'-dicyclohexylcarbodiimide (DCC) followed by hydrolysis of the esters. The electroactive polymers are electrochemically stable and exhibit excellent adhesive properties on electrode surfaces (platinum, gold, and glassy carbon) as well as interesting optical properties in both doped and undoped states. Hydrogen bonds between a free amino acid (L-leucine, D-leucine, L-alanine, D-alanine, and D/L-alanine) and the L-leucine based polythiophenes (chiral conducting surface) were probed using cyclic voltammetry. Preliminary results show that the capacitive current of a modified L-leucine-polythiophene electrode decreases as a result of the formation of a hydrogen bond barrier on the surface of the chiral conducting surface accompanied with a shift of the oxidation potential. Cyclic voltammetry responses resulting from the interaction of the chiral conducting surface with L and Dfree amino acid isomers are similar. The formation of hydrogen bonds between the chiral conducting surfaces and the free amino acids was characterized by (1)H NMR. A chemical shift was observed for the N-H group in monomer 6 as a result of the hydrogen bond formation between the L-leucine methyl ester (D-leucine methyl ester, D/L-leucine methyl ester) and monomer 6. PMID:20718451

  8. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  9. Lagoons and oxidation ponds. [Wastewater treatment

    SciTech Connect

    George, D.B.

    1982-06-01

    A review of the literature on waste stabilization pond systems is presented. Factors such as wastewater temperature, and levels of heavy metals that affect the stability of the lagoons and oxidation ponds, and methods to upgrade stabilization pond effluent to meet state and federal effluent requirements are discussed. Model simulations utilized to predict the treatment efficiency of various waste stabilization pond geometries, and inlet and outlet configurations are reviewed. (KRM)

  10. Removal of organic pollutants from 2,2',5,5'-tetrachlorobenzidine (TCB) industrial wastewater by micro-electrochemical oxidation and air-stripping.

    PubMed

    Shibin, Xia; Shuichun, Xia; Changqing, Zhu

    2007-06-01

    A feasible method for treatment of the wastewater from the two-staged neutralization in 2,2',5,5'-tetrachlorobenzidine (TCB) manufacturing processes, a refractory dye intermediate effluents, based on combined micro-electrochemical oxidation or iron-chipping filtration (ICF) and air-stripping reactor (ASR), was developed. On conditions of HRT 1h, pH 3.0 in ICF and HRT 38 h, gas-liquid ratio 15, pH 6.0-8.65, temperature 26 degrees C in ASR, the overall COD, color, TCB and NH(4)(+)-N removal were 96.8%, 91%, 87.61% and 62%, respectively, during the treatment of TCB wastewater from the two-staged neutralization dissolved by methanol. The averaged 18.3%, 81.7% of the total degraded COD, 35.2%, 64.8% of TCB were carried out in ICF and ASR, respectively. NH(4)(+)-N removal was finished mainly in ASR. The experimental results indicated that the combined micro-electrochemical oxidation and air-stripping process performed good treatment of COD, color, TCB and NH(4)(+)-N removal in TCB wastewater from the two-staged neutralization dissolved by ethanol or acetone, came up the discharge standard in China. But the TCB wastewater from the two-staged neutralization dissolved by methanol should be deeply treated before discharged. PMID:17118553

  11. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance.

    PubMed

    Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad

    2016-08-01

    Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2. PMID:27443233

  12. Nitrous oxide emissions from wastewater treatment processes

    PubMed Central

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  13. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres

    NASA Astrophysics Data System (ADS)

    Sarma, Biplab; Jurovitzki, Abraham L.; Ray, Rupashree S.; Smith, York R.; Mohanty, Swomitra K.; Misra, Mano

    2015-07-01

    The effect of annealing atmosphere on the supercapacitance behavior of iron oxide nanotube (Fe-NT) electrodes has been explored and reported here. Iron oxide nanotubes were synthesized on a pure iron substrate through an electrochemical anodization process in an ethylene glycol solution containing 3% H2O and 0.5 wt.% NH4F. Subsequently, the annealing of the nanotubes was carried out at 500 °C for 2 h in various gas atmospheres such as air, oxygen (O2), nitrogen (N2), and argon (Ar). The morphology and crystal phases evolved after the annealing processes were examined via field emission scanning electron microscopy, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical capacitance properties of the annealed Fe-NT electrodes were evaluated by conducting cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy tests in the Li2SO4 electrolyte. Based on these experiments, it was found that the capacitance of the Fe-NT electrodes annealed in air and O2 atmospheres shows mixed behavior comprising both the electric double layer and pseudocapacitance. However, annealing in N2 and Ar environments resulted in well-defined redox peaks in the CV profiles of the Fe-NT electrodes, which are therefore attributed to the relatively higher pseudonature of the capacitance in these electrodes. Based on the galvanostatic charge-discharge studies, the specific capacitance achieved in the Fe-NT electrode after annealing in Ar was about 300 mF cm-2, which was about twice the value obtained for N2-annealed Fe-NTs and three times higher than those annealed in air and O2. The experiments also demonstrated excellent cycle stability for the Fe-NT electrodes with 83%-85% capacitance retention, even after many charge-discharge cycles, irrespective of the gas atmospheres used during annealing. The increase in the specific capacitance was discussed in terms of increased oxygen vacancies as a result of the

  14. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    PubMed

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed. PMID:20540540

  15. [Treatment of Petrochemical Treatment Plant Secondary Effluent by Fenton Oxidation].

    PubMed

    Wang, Yi; Wu, Chang-yong; Zhou, Yue-xi; Zhang, Xue; Dong, Bo; Chen, Xue-min

    2015-07-01

    Fenton oxidation was applied to treat the petrochemical treatment plant secondary effluent by the continuous flow configuration. The effect of Fenton agent dosage on the COD and phosphorus removal and the variation of the dissolved organic matter characteristics during the treatment process were investigated. The results showed the average COD and PO(4)3- -P concentrations were 64.8 mg.L-1 and 0. 79 mg.L-1, respectively. When the dosage of H2O (30%), FeSO4.7H2O and PAM were 0. 4 mL.L-1, 0. 8 mg.L-1 and 0. 9 mg.L-1 and the residence time was 30 min, the average removal rate of COD and PO(4)3- -P were 24. 3% and 95. 5% respectively. The effluent COD was lower than 50 mg.L-1. The percentage of dissolved organic matters with molecular weight less than 1 x 10(3) was 80. 4% in the raw wastewater, however, the percentage increased to 95. 6% when treated by Fenton oxidation. Three-dimensional fluorescence analysis showed that the Fenton oxidation can effectively remove protein and phenols. GC-MS results showed that there were about 117 kinds of organic matters detected in the secondary effluent, while the number reduced to 27 after oxidation by Fenton. The organics containing unsaturated bond had a better removal than those of other types of organics. Fenton oxidation can be used in the advanced treatment of petrochemical secondary effluent. PMID:26489330

  16. Glucose sensor based on an electrochemical reduced graphene oxide-poly(L-lysine) composite film modified GC electrode.

    PubMed

    Hua, Liang; Wu, Xiaqin; Wang, Rong

    2012-12-21

    A convenient and environmentally friendly method of fabricating glucose biosensors is proposed. Glucose oxidase (GOD) was immobilized on electrochemically reduced graphene oxide (ERGO) which was adsorbed on the poly-L-lysine (PLL) modified glassy carbon electrode after being immersed in GO solution for 4 h. The electrochemical behaviors of GOD/ERGO/PLL/GC electrode have been investigated by cyclic voltammetry. Direct electron transfer between GOD immobilized with ERGO/PLL and GC electrode was observed. Moreover, the GOD/ERGO/PLL/GC electrode exhibited excellent electrocatalytic activity for the detection of glucose with a linear range from 0.25 to 5 mmol L(-1). PMID:23082313

  17. Decolorization of C. I. Reactive Orange 4 and Textile Effluents by Electrochemical Oxidation Technique using Silver-Carbon Composite Electrode.

    PubMed

    Nordin, Norazzizi; Fathrita Mohd Amir, Siti; Rahimi Yusop, Muhammad; Rozali Othman, Mohamed

    2015-01-01

    In this study, the electrochemical oxidation of C. I. Reactive Orange 4 (RO4) on a silver-carbon composite (AgC-PVC) electrode was studied using the cyclic voltammetry, potential liner V, and electrolysis methods. The AgC-PVC electrode was used as the working electrode in the electrochemical measurement of RO4 in the presence of NaCl as a supporting electrolyte. The UV-Vis spectra of RO4 after the electrochemical oxidation showed the complete decolorization of the solution. The electrolysis products were characterized using FTIR and GC-MS. The results showed that in the presence of OCl- as an active oxidant, RO4 molecules are broken down into several lower-molecular-weight molecules by the electrochemical technique. The electrode used was also able to reduce the COD, BOD(5) and surfactant contents in the textile effluents using a pilot scale reactor. This proved that the prepared AgC-PVC electrode was beneficial for removing both the color and other pollutants from textile effluents. PMID:26454599

  18. Electrochemical investigation of Mn4O4-cubane water-oxidizing clusters.

    PubMed

    Brimblecombe, Robin; Bond, Alan M; Dismukes, G Charles; Swiegers, Gerhard F; Spiccia, Leone

    2009-08-14

    High valence states in manganese clusters are a key feature of the function of one of the most important catalysts found in nature, the water-oxidizing complex of photosystem II. We describe a detailed electrochemical investigation of two bio-inspired manganese-oxo complexes, [Mn(4)O(4)L(6)] (L = diphenylphosphinate (1) and bis(p-methoxyphenyl)phosphinate (2)), in solution, attached to an electrode surface and suspended within a Nafion film. These complexes contain a cubic [Mn(4)O(4)](6+) core stabilized by phosphinate ligands. They have previously been shown to be active and durable photocatalysts for the oxidation of water to dioxygen. A comparison of catalytic photocurrent generated by films deposited by two methods of electrode immobilization reveals that doping of the catalyst in Nafion results in higher photocurrent than was observed for a solid layer of cubane on an electrode surface. In dichloromethane solution, and under conditions of cyclic voltammetry, the one-electron oxidation processes 1/1(+) and 2/2(+) were found to be reversible and quasi-reversible, respectively. Some decomposition of 1(+) and 2(+) was detected on the longer timescale of bulk electrolysis. Both compounds also undergo a two-electron, chemically irreversible reduction in dichloromethane, with a mechanism that is dependent on scan rate and influenced by the presence of a proton donor. When immersed in aqueous electrolyte, the reduction process exhibits a limited level of chemical reversibility. These data provide insights into the catalytic operation of these molecules during photo-assisted electrolysis of water and highlight the importance of the strongly electron-donating ligand environment about the manganese ions in the ability of the cubanes to photocatalyze water oxidation at low overpotentials. PMID:19809676

  19. A Straightforward Electrochemical Approach to Imine‐ and Amine‐bisphenolate Metal Complexes with Facile Control Over Metal Oxidation State

    PubMed Central

    Chapman, Michael R.; Henkelis, Susan E.; Kapur, Nikil

    2016-01-01

    Abstract Synthetic methods to prepare organometallic and coordination compounds such as Schiff‐base complexes are diverse, with the route chosen being dependent upon many factors such as metal–ligand combination and metal oxidation state. In this work we have shown that electrochemical methodology can be employed to synthesize a variety of metal–salen/salan complexes which comprise diverse metal–ligand combinations and oxidation states. Broad application has been demonstrated through the preparation of 34 complexes under mild and ambient conditions. Unprecedented control over metal oxidation state (MII/III/IV where M=Fe, Mn) is presented by simple modification of reaction conditions. Along this route, a general protocol‐switch is described which allows access to analytically pure FeII/III–salen complexes. Tuning electrochemical potential, selective metalation of a Mn/Ni alloy is also presented which exclusively delivers MnII/IV–salen complexes in high yield. PMID:27547645

  20. A Straightforward Electrochemical Approach to Imine- and Amine-bisphenolate Metal Complexes with Facile Control Over Metal Oxidation State.

    PubMed

    Chapman, Michael R; Henkelis, Susan E; Kapur, Nikil; Nguyen, Bao N; Willans, Charlotte E

    2016-08-01

    Synthetic methods to prepare organometallic and coordination compounds such as Schiff-base complexes are diverse, with the route chosen being dependent upon many factors such as metal-ligand combination and metal oxidation state. In this work we have shown that electrochemical methodology can be employed to synthesize a variety of metal-salen/salan complexes which comprise diverse metal-ligand combinations and oxidation states. Broad application has been demonstrated through the preparation of 34 complexes under mild and ambient conditions. Unprecedented control over metal oxidation state (M(II/III/IV) where M=Fe, Mn) is presented by simple modification of reaction conditions. Along this route, a general protocol-switch is described which allows access to analytically pure Fe(II/III)-salen complexes. Tuning electrochemical potential, selective metalation of a Mn/Ni alloy is also presented which exclusively delivers Mn(II/IV)-salen complexes in high yield. PMID:27547645

  1. Nanoelectrical investigation and electrochemical performance of nickel-oxide/carbon sphere hybrids through interface manipulation.

    PubMed

    Yang, Xiaogang; Zhang, Yan'ge; Wu, Guodong; Zhu, Congxu; Zou, Wei; Gao, Yuanhao; Tian, Jie; Zheng, Zhi

    2016-05-01

    Advanced hetero-nanostructured materials for electrochemical devices, such as Li-ion batteries (LiBs), dramatically depend on each functional component and their interfaces to transport and storage charges, where the bottleneck is the sluggish one in series. In this work, we prepare Ni(OH)2@C hybrids through a continuous feeding in reflux and followed by a hydrothermal treatment. The as-prepared Ni(OH)2@C can be further converted into NiO@C hybrids after thermal annealing. As a control, Ni(OH)2&C and NiO&C nanocomposites have also been prepared. Peakforce Tuna measurement shows the conductivity of the NiO@C hybrids is higher than that of NiO&C composites in nanoscale. To further investigate the quality of the interface, 100 charge/discharge cycles of the hybrids are performed in LiBs. The capacity retention of hybrid materials has significantly improved than the simple carbon composites. The enhancement of the electrochemical performance is attributed to the better electric conductivity and smaller charge transfer impedance and strong covalent interface between nickel species and carbon spheres obtained through the controlled seeded deposition. PMID:26897565

  2. [Study on the variation of algal activity during the electrochemical oxidation as inactivation method].

    PubMed

    Liang, Wen-Yan; Wang, Ke; Ruan, Ling-Ling; Sui, Li-Li

    2010-06-01

    The paper studied the variation of algal activity during the electrochemical inactivation and the influence factors by the use of TTC-dehydrogenase activity and neutral red staining assays. The treatment reactor was consisted of Ti/RuO2 rod as anode and stainless steel pipe as cathode. The results showed that algal inactivation rate was 45% in cell density after 30 min treatment at 8 mA/cm2. Whereas the decrease of TTC-dehydrogenase activity was 94% and neutral red staining percentage was 100%. The algae after treatment was unable to regrow and it revealed that the algal activity assays can reflect the inactivation effect more correctly than cell density. The electrolytes could influence the inactivation efficiency. The electrolytes of Na2SO4 and NaNO3 had similar effects on algal inactivation and Na2SO4 concentration had small influence on the treatment. However, when the electrolyte contained 0.1 mmol/L NaCl, the algal inactivation was improved obviously with the 87% for TTC-dehydrogenase activity decrease and 82% for neutral red staining ratio. The initial algal concentration also influenced the treatment efficiency. If cell density increased, the inactivation efficiency decreased significantly. All algal cells in samples with cell density of 4.4 x 10(7) cells/L were completely inactivated by the use of natural water as electrolyte within 1 minute. PMID:20698257

  3. Adhesive strength of bioactive oxide layers fabricated on TNTZ alloy by three different alkali-solution treatments.

    PubMed

    Takematsu, E; Cho, K; Hieda, J; Nakai, M; Katsumata, K; Okada, K; Niinomi, M; Matsushita, N

    2016-08-01

    Bioactive oxide layers were fabricated on Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) by three different alkali solution treatments: hydrothermal (H), electrochemical (E), and hydrothermal-electrochemical (HE). The adhesive strength of the oxide layer to the TNTZ substrate was measured to determine whether this process achieves sufficient adhesive strength for implant materials. Samples subjected to the HE process, in which a current of 15mA/cm(2) was applied at 90°C for 1h (HE90-1h), exhibited a comparatively higher adhesive strength of approximately 18MPa while still maintaining a sufficiently high bioactivity. Based on these results, an oxide layer fabricated on TNTZ by HE90-1h is considered appropriate for practical biomaterial application, though thicker oxide layers with many cracks can lead to a reduced adhesive strength. PMID:26866453

  4. Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Toan; Nguyen, Van Hoa; Deivasigamani, Ranjith Kumar; Kharismadewi, Dian; Iwai, Yoshio; Shim, Jae-Jin

    2016-03-01

    Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g-1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g-1) than that of bare Co3O4 (100 F g-1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM-1cm-2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.

  5. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes.

    PubMed

    Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-12-01

    An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10-60Am(-2) and Cl(-) concentrations up to 600gm(-3). The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl2, of about 0.7gCl2m(-3) were measured; the maximum values were obtained at Re=10 and i=25Am(-2), with values strongly dependent on the concentration of Cl(-). The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully used to simulate the performances of the reactor in the single-stack configuration used for the experiments and in multi-stack configurations. PMID:26988900

  6. Coupling extraction-flotation with surfactant and electrochemical degradation for the treatment of PAH contaminated hazardous wastes.

    PubMed

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-François

    2009-10-30

    The performance of a two-stage process combining extraction of polycyclic aromatic hydrocarbons (PAHs) with an amphoteric surfactant (CAS) followed by electro-oxidation of PAH-foam concentrate was studied for the decontamination of aluminum industry wastes (AIW) and polluted soils. The PAH suspensions extracted from AIW and soils were treated in a 2L-parallelepipedic electrolytic cell containing Ti/RuO2 anodes and stainless steel cathodes. Current densities varying from 4.6 to 18.5 mA cm(-2) have been tested with and without addition of a supporting electrolyte (6.25 to 50 kg Na2SO4 t(-1) of dry waste). The best performance for PAH degradation was obtained while the electrolytic cell was operated during 90 min at a current density of 9.2 mA cm(-2), with a total solids concentration of 2.0%, and in presence 12.5 kg Na(2)SO(4)t(-1). The application of the process on AIW (initial PAH content: 3424 mg kg(-1)) allowed extracting 42% of PAH, whereas 50% of PAH was electrochemically degraded in the resulting foam suspensions. By comparison, 44% to 60% of PAH was extracted from polluted soils (initial PAH content: 1758 to 4160 mg kg(-1)) and 21% to 55% of PAH was oxidized in the foam suspensions. The electrochemical treatment cost (including only electrolyte and energy consumption) recorded in the best experimental conditions varied from 99 to 188 USD $ t(-1) of soils or AIW treated. PMID:19525064

  7. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-01

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. PMID:22912066

  8. Electrochemical Urea Biosensor Based on Sol-gel Derived Nanostructured Cerium Oxide

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Azahar, Md; Malhotra, B. D.

    2012-04-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been co-immobilized onto a nanostructured-cerium oxide (Nano-CeO2) film deposited onto a indium-tin-oxide (ITO) coated glass substrate by dip-coating via sol-gel process for urea detection. This nanostructured film has characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscope (SEM) and electrochemical techniques, respectively. The particle size of the Nano-CeO2 film has been found to be 23 nm. Electrochemcial response (CV) studies show that Ur-GLDH/Nano-CeO2/ITO bioelectrode is found to be sensitive in the 10-80 mg/dL urea concentration range and can detect urea concentration upto 0.1 mg/dL level. The value of Michaelis-Menten constant (Km) estimated using Lineweaver-Burke plot found as 6.09 mg/dL indicates enhancement in the affinity and/or activity of enzyme attached to their nanobiocomposite. This bioelectrode retained 95% of enzyme activity after 6 months at 4°C.

  9. THERMAL AND ELECTROCHEMICAL THREE DIMENSIONAL CFD MODEL OF A PLANAR SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant Hawkes; Jim O'Brien; Carl Stoots; Steve Herring; Mehrdad Shahnam

    2005-07-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell, as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec , Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL.

  10. Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique.

    PubMed

    Ansari, S G; Fouad, H; Shin, Hyung-Shik; Ansari, Z A

    2015-12-01

    Nano-Tin oxide was synthesized using hydrothermal method at 150 °C for 6 h and then thin films were deposited by electrophoretic method at an optimized voltage of 100 V for 5 min on electropolished aluminum substrate. Spherical particles of about 30-50 nm diameters are observed with partial agglomeration when observed under electron microscope, which are tetragonal rutile structure. XPS results showed peaks related to Sn 4d, Sn 3d, O 1s & C 1s with spin-orbit splitting of 8.4 eV for Sn 3d. Feasibility studies of enzyme less urea sensing characteristics of nano-tin oxide thin films are exhibited herein. The deposited films have been used for enzyme less urea sensing from 1 to 20 mM concentration in buffer solution. The sensors were characterized electrochemically to obtain cyclic voltammogram as a function of urea concentration and scan rate. The sensitivity is estimated as 18.9 μA/mM below 5 mM and 2.31 μA/mM above 5 mM with a limit of detection of 0.6 mM. PMID:26381425

  11. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports

  12. Improvement in electrochemical capacitance of activated carbon from scrap tires by nitric acid treatment

    NASA Astrophysics Data System (ADS)

    Han, Yan; Zhao, Ping-Ping; Dong, Xiao-Ting; Zhang, Cui; Liu, Shuang-Xi

    2014-12-01

    Activated carbon (AC) obtained from the industrial pyrolytic tire char is treated by concentrated nitric acid (AC-HNO3) and then used as the electrode material for supercapacitors. Surface properties and electrochemical capacitances of AC and ACHNO3 are studied. It is found that the morphology and the porous texture for AC and AC-HNO3 have little difference, while the oxygen content increases and functional groups change after the acid treatment. Electrochemical results demonstrate that the AC-HNO3 electrode displays higher specific capacitance, better stability and cycling performance, and lower equivalent series resistance, indicating that AC obtained from the industrial pyrolytic tire char treated by concentrated nitric acid is applicable for supercapacitors.

  13. Electrochemical performance of a solid oxide fuel cell with an anode based on Cu-Ni/CeO2 for methane direct oxidation

    NASA Astrophysics Data System (ADS)

    Hornés, Aitor; Escudero, María J.; Daza, Loreto; Martínez-Arias, Arturo

    2014-03-01

    A CuNi-CeO2/YSZ/LSF solid oxide fuel cell has been fabricated and tested with respect to its electrochemical activity for direct oxidation of dry methane. The electrodes have been prepared by impregnation of corresponding porous YSZ layers, using reverse microemulsions as impregnating medium for the anode (constituted by Cu-Ni at 1:1 atomic ratio in combination with CeO2). On the basis of I-V electrochemical testing complemented by impedance spectroscopy (IS) measurements it is shown the ability of the SOFC for direct oxidation of methane in a rather stable way. Differences in the behavior as a function of operating temperature (1023-1073 K) are also revealed and examined on the basis of analysis of IS spectra.

  14. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, A.O.

    1987-03-10

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

  15. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, Arnold O.

    1987-01-01

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  16. Removal of caffeine from aqueous solution by indirect electrochemical oxidation using a graphite-PVC composite electrode: A role of hypochlorite ion as an oxidising agent.

    PubMed

    Al-Qaim, Fouad F; Mussa, Zainab H; Othman, Mohamed R; Abdullah, Md P

    2015-12-30

    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products. PMID:26218306

  17. A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine.

    PubMed

    Lin, Yuqing; Zhang, Zipin; Zhao, Lingzhi; Wang, Xiang; Yu, Ping; Su, Lei; Mao, Lanqun

    2010-02-15

    A new electrochemical approach to selective online measurements of dopamine (DA) release in the cerebral microdialysate is demonstrated with a non-oxidative mechanism based on the distinct reaction properties of DA and the excellent biocatalytic activity of laccase. To make the successful transition of the distinct sequential reaction properties of DA from a conceptual determination protocol to a practical online analytical system, laccase enzyme is immobilized onto magnetite nanoparticles and the nanoparticles are confined into a fused-silica capillary through an external magnetic field to fabricate a magnetic microreactor. The microreactor is placed in the upstream of the thin-layer electrochemical flow cell to efficiently catalyze the oxidation of DA into its quinonoid form and thereby initialize the sequential reactions including deprotonation, intramolecular cyclization, disproportionation and/or oxidation to finally give 5,6-dihydroxyindoline quinone. The electrochemical reduction of the produced 5,6-dihydroxyindoline quinone at bare glassy carbon electrode is used as the readout for the DA measurement. The laccase-immobilized microreactor is also found to catalyze the oxidation of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) into electroinactive species and, as such, to eliminate the great interference from both species. Moreover, the successful transition of the mechanism for DA detection from the conventional oxidative electrochemical approach to the non-oxidative one substantially enables the measurements virtually interference-free from physiological levels of uric acid, 5-hydroxytryptamine, norepinephrine, and epinephrine. The current response is linear with DA concentration within a concentration range from 1 to 20 microM with a sensitivity of 3.97 nA/microM. The detection limit, based on a signal-to-noise ratio of 3, is calculated to be 0.3 microM. The high selectivity and the good linearity as well as the high stability of the online

  18. Effects of anodic oxidation of a substoichiometric titanium dioxide reactive electrochemical membrane on algal cell destabilization and lipid extraction.

    PubMed

    Hua, Likun; Guo, Lun; Thakkar, Megha; Wei, Dequan; Agbakpe, Michael; Kuang, Liyuan; Magpile, Maraha; Chaplin, Brian P; Tao, Yi; Shuai, Danmeng; Zhang, Xihui; Mitra, Somenath; Zhang, Wen

    2016-03-01

    Efficient algal harvesting, cell pretreatment and lipid extraction are the major steps challenging the algal biofuel industrialization. To develop sustainable solutions for economically viable algal biofuels, our research aims at devising innovative reactive electrochemical membrane (REM) filtration systems for simultaneous algal harvesting and pretreatment for lipid extraction. The results in this work particularly demonstrated the use of the Ti4O7-based REM in algal pretreatment and the positive impacts on lipid extraction. After REM treatment, algal cells exhibited significant disruption in morphology and photosynthetic activity due to the anodic oxidation. Cell lysis was evidenced by the changes of fluorescent patterns of dissolved organic matter (DOM) in the treated algal suspension. The lipid extraction efficiency increased from 15.2 ± 0.6 g-lipidg-algae(-1) for untreated algae to 23.4 ± 0.7 g-lipidg-algae(-1) for treated algae (p<0.05), which highlights the potential to couple algal harvesting with cell pretreatment in an integrated REM filtration process. PMID:26722810

  19. Development of high power and energy density microsphere silicon carbide-MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors.

    PubMed

    Kim, Myeongjin; Kim, Jooheon

    2014-06-21

    In order to achieve high energy and power densities, a high-voltage asymmetric electrochemical supercapacitor has been developed, with activated carbon (AC) as the negative electrode and a silicon carbide-MnO2 nanoneedle (SiC-N-MnO2) composite as the positive electrode. A neutral aqueous Na2SO4 solution was used as the electrolyte. SiC-N-MnO2 was prepared by packing growing MnO2 nanoneedle crystal species in only one direction on the silicon carbide surface. AC was oxidized by thermal treatment in order to introduce oxygen-containing functional groups. Owing to the high capacitance and excellent rate performance of SiC-N-MnO2 and AC, as well as the synergistic effects of the two electrodes, a constructed asymmetric supercapacitor exhibited superior electrochemical performance. The optimized asymmetric supercapacitor could be cycled reversibly in the voltage range from 0 to 1.9 V, and it exhibited a specific capacitance of 59.9 F g(-1) at a scan rate of 2 mV s(-1) and excellent energy density and power density (30.06 W h kg(-1) and 113.92 W kg(-1), respectively) with a specific capacitance loss of less than 3.1% after 1000 charge-discharge cycles, indicating excellent electrochemical stability. These encouraging results show great potential in terms of developing energy storage devices with high energy and power densities for practical applications. PMID:24789348

  20. Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.

    PubMed

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2012-10-15

    In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. PMID:23141325

  1. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    PubMed Central

    Li, Shiue-Lin; Nealson, Kenneth H.

    2015-01-01

    Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at +30 mV (vs. SHE) at all pH ranges tested (from pH = 4 to 8), while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA) were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA) in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte) equipped with carbon-felt electrodes. In both cases, when potentials of +630 or +130 mV (vs. SHE) were applied, currents were consistently higher at +630 then at +130 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter) not well-known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes. PMID:25741331

  2. Sensitive electrochemical aptasensor for thrombin detection based on graphene served as platform and graphene oxide as enhancer.

    PubMed

    He, Chun; Xu, Zenghong; Sun, Tao; Wang, Li

    2014-01-01

    A sensitive electrochemical aptasensor was developed with conductive graphene served as platform and inert graphene oxide (GO) as enhancer. An electrodeposited nano-Au layer was firstly formed on conductive graphene modified glass carbon electrode surface for further immobilizing of electrochemical redox probe hexacyanoferrates nanoparticles (NiHCFNPs). Subsequently, another nano-Au layer was formed for immobilizing of thrombin aptamer (TBA). In the presence of thrombin, the TBA on the electrode surface could bind with thrombin, which made a barrier for electrons and inhibited the electro-transfer, resulting in the decreased electrochemical signals of NiHCFNPs. Owing to the non-conductivity property of graphene oxide, further decreased electrochemical signals of NiHCFNPs could be obtained via the sandwich reaction with GO-labeled TBA. According to the signal changes before the thrombin recognition and after sandwich reaction, trace detection of thrombin could be achieved. As a result, the proposed approach showed a high sensitivity and a wider linearity to thrombin in the range from 0.005 nM to 50 nM with a detection limit of 1 pM. PMID:24142359

  3. Electrochemical treatment: an effective way of dealing with extensive venous malformations of the oral and cervicofacial region.

    PubMed

    Zhong, Hao-Yan; Cai, Yu; Zhao, Yi-Fang; Yang, Xin; Liu, Li; Zhao, Ji-Hong

    2016-07-01

    We describe the results of electrochemical treatment of extensive venous malformations in the oral and cervicofacial region in 29 patients. Platinum needles were inserted into the lesions under general or local anaesthesia, the electrode pitch, voltage, current, and quantity of electricity being 1-1.5cm, 5-8V, 40-60mA, and 50-60C/cm(2), respectively. Six months after the treatment, 26 patients had been cured, and in the other three the lesions had decreased by more than 75%. Electrochemical treatment is therefore relatively safe, simple, and highly efficient for the treatment of extensive venous malformations, and leaves no scars. PMID:27130569

  4. A METHOD FOR REGENERATION OF SPENT ELECTROCHEMICAL DECONTAMINATION SOLUTION AND ITS TREATMENT FOR FINAL DISPOSAL

    SciTech Connect

    Davydov, D.Yu.; Davydov, Yu.P.; Toropov, I.G.; John, J.; Rosikova, K.; Motl, A.; Hudson, M.J.; Prazska, M.

    2003-02-27

    This paper describes the method of regeneration of spent electrochemical decontamination solution. The proposed method allows separation of radionuclides and stable metals from spent decontamination solution in a form suitable for final disposal and repeated use of the remaining solution for electrochemical decontamination. Development of this method was based on the results of the speciation studies which showed that Fe(III) can be precipitated in the presence of organic complexing agents, in a form of iron hydroxide, and Ag-110m, Co-60, Mn-54 radionuclides can be coprecipitated on it. In order to verify the conclusions made as a result of the speciation studies, the experiments with electrochemically prepared simulant solution and real solution were carried out. The test results proved that the proposed method can be applied in practice. Treatment of the ultimately spent decontamination solutions can be also made applying iron precipitation, which allows for removal of the bulk amount of contaminants, as the first step. Then, if necessary the remaining radionuclides can be removed by sorption. A series of novel absorbers has been tested for their potential for the sorption removal of the remaining radionuclides from the supernate. The test results showed that most of them were more effective in neutral or alkaline range of pH, however, the high efficiency of the sorption removal can be achieved only after the removal of the oxalic and citric acids from solution.

  5. Electrochemical oxidation of ²⁴³Am(III) in nitric acid by a terpyridyl-derivatized electrode.

    PubMed

    Dares, Christopher J; Lapides, Alexander M; Mincher, Bruce J; Meyer, Thomas J

    2015-11-01

    Selective oxidation of trivalent americium (Am) could facilitate its separation from lanthanides in nuclear waste streams. Here, we report the application of a high-surface-area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand to the oxidation of Am(III) to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 volts (V) versus the saturated calomel electrode were applied, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 molar acid. This simple electrochemical procedure provides a method to access the higher oxidation states of Am in noncomplexing media for the study of the associated coordination chemistry and, more important, for more efficient separation protocols. PMID:26542564

  6. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-03-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1–400 ng·mL‑1, with a detection limit of 0.1 ng·mL‑1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples.

  7. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide

    PubMed Central

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-01-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1–400 ng·mL−1, with a detection limit of 0.1 ng·mL−1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples. PMID:27003798

  8. Electrochemical promotion of propane oxidation on Pt deposited on a dense β"-Al2O3 ceramic Ag+ conductor

    NASA Astrophysics Data System (ADS)

    Tsampas, Michail; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini; Vernoux, Philippe

    2013-08-01

    A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β"-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  9. In-situ X-Ray Absorption Spectroscopy (XAS) Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction

    PubMed Central

    Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.

    2013-01-01

    In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity. PMID:23758050

  10. Electrochemical capacitor

    DOEpatents

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  11. Highly Selective Oxidation of Carbohydrates in an Efficient Electrochemical Energy Converter: Cogenerating Organic Electrosynthesis.

    PubMed

    Holade, Yaovi; Servat, Karine; Napporn, Teko W; Morais, Cláudia; Berjeaud, Jean-Marc; Kokoh, Kouakou B

    2016-02-01

    The selective electrochemical conversion of highly functionalized organic molecules into electricity, heat, and added-value chemicals for fine chemistry requires the development of highly selective, durable, and low-cost catalysts. Here, we propose an approach to make catalysts that can convert carbohydrates into chemicals selectively and produce electrical power and recoverable heat. A 100% Faradaic yield was achieved for the selective oxidation of the anomeric carbon of glucose and its related carbohydrates (C1-position) without any function protection. Furthermore, the direct glucose fuel cell (DGFC) enables an open-circuit voltage of 1.1 V in 0.5 m NaOH to be reached, a record. The optimized DGFC delivers an outstanding output power Pmax =2 mW cm(-2) with the selective conversion of 0.3 m glucose, which is of great interest for cogeneration. The purified reaction product will serve as a raw material in various industries, which thereby reduces the cost of the whole sustainable process. PMID:26777210

  12. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Song, Jian; Xu, Lin; Xing, Ruiqing; Li, Qingling; Zhou, Chunyang; Liu, Dali; Song, Hongwei

    2014-12-01

    In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15 V, a high sensitivity of 101.86 μA mM-1 cm-2 to AA, a low detection limit of 100 nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application.

  13. Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors.

    PubMed

    Park, Hae Woong; Na, Byung-Ki; Cho, Byung Won; Park, Sun-Min; Roh, Kwang Chul

    2013-10-28

    In this study, V-doped NiO materials were prepared by simple coprecipitation and thermal decomposition, and the effect of the vanadium content on the morphology, structural properties, electrochemical behavior, and cycling stability of NiO upon oxidation and reduction was analyzed for supercapacitor applications. The results show an improvement in the capacitive characteristics of the V-doped NiO, including increases in the specific capacitance after the addition of just 1.0, 2.0, and 4.0 at% V. All VxNi1-xO electrodes (x = 0.01, 0.02, 0.04) exhibited higher specific capacitances of 371.2, 365.7, and 386.2 F g(-1) than that of pure NiO (303.2 F g(-1)) at a current density of 2 A g(-1) after 500 cycles, respectively. The V0.01Ni0.99O electrode showed good capacitance retention of 73.5% at a current density of 2 A g(-1) for more than 500 cycles in a cycling test. Importantly, the rate capability of the V0.01Ni0.99O electrode was maintained at about 84.7% as discharge current density was increased from 0.5 A g(-1) to 4 A g(-1). PMID:24036916

  14. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  15. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid

    PubMed Central

    Song, Jian; Xu, Lin; Xing, Ruiqing; Li, Qingling; Zhou, Chunyang; Liu, Dali; Song, Hongwei

    2014-01-01

    In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15 V, a high sensitivity of 101.86 μA mM−1 cm−2 to AA, a low detection limit of 100 nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application. PMID:25515430

  16. Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode.

    PubMed

    Ping, Jianfeng; Wang, Yixian; Ying, Yibin; Wu, Jian

    2012-04-01

    In this study, a novel disposable all-solid-state ion-selective electrode using graphene as the ion-to-electron transducer was developed. The graphene film was prepared on screen-printed electrode directly from the graphene oxide dispersion by a one-step electrodeposition technique. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to demonstrate the large double layer capacitance and fast charge transfer of the graphene film modified electrode. On the basis of these excellent properties, an all-solid-state calcium ion-selective electrode as the model was constructed using the calcium ion-selective membrane and graphene film modified electrode. The mechanism about the graphene promoting the ion-to-electron transformation was investigated in detail. The disposable electrode exhibited a Nernstian slope (29.1 mV/decade), low detection limit (10(-5.8) M), and fast response time (less than 10 s). With the high hydrophobic character of graphene materials, no water film was formed between the ion-selective membrane and the underlying graphene layer. Further studies revealed that the developed electrode was insensitive to light, oxygen, and redox species. The use of the disposable electrode for real sample analysis obtained satisfactory results, which made it a promising alternative in routine sensing applications. PMID:22380625

  17. Seedless growth of zinc oxide flower-shaped structures on multilayer graphene by electrochemical deposition

    PubMed Central

    2014-01-01

    A seedless growth of zinc oxide (ZnO) structures on multilayer (ML) graphene by electrochemical deposition without any pre-deposited ZnO seed layer or metal catalyst was studied. A high density of a mixture of vertically aligned/non-aligned ZnO rods and flower-shaped structures was obtained. ML graphene seems to generate the formation of flower-shaped structures due to the stacking boundaries. The nucleation of ZnO seems to be promoted at the stacking edges of ML graphene with the increase of applied current density, resulting in the formation of flower-shaped structures. The diameters of the rods/flower-shaped structures also increase with the applied current density. ZnO rods/flower-shaped structures with high aspect ratio over 5.0 and good crystallinity were obtained at the applied current densities of −0.5 and −1.0 mA/cm2. The growth mechanism was proposed. The growth involves the formation of ZnO nucleation below 80°C and the enhancement of the growth of vertically non-aligned rods and flower-shaped structures at 80°C. Such ZnO/graphene hybrid structure provides several potential applications in sensing devices. PMID:25024694

  18. Voltage induced electrochemical reactions in the single lithium-rich layer-oxide nanoparticles.

    PubMed

    Li, Tao; Song, Bohang; Lu, Li; Zeng, Kaiyang

    2015-04-21

    As a crucial building block of the electrode in the lithium-ion battery (LIB), single nanoparticles that respond to an electric field have rarely been characterized experimentally. It is important to study the intrinsic properties of nanoparticles independently, excluding the effects from binders and additives. In this paper, isolated Li-rich layer-oxide (Li1.2Mn0.54Ni0.13Co0.13O2) nanoparticles are studied in comparison with individual Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 nanoparticles. The bias triggered changes in morphology and material properties are characterized using dual-frequency scanning probe microscopy (SPM) techniques in ambient air, synthetic air, and an argon atmosphere. Inhomogeneous stiffness/composition is observed on single nanoparticles. The change in local Li(+)-ion concentration may contribute to the stiffness variation. Bias induced Li(+)-ion redistributions and electrochemical reactions are observed. Nanoparticles are fragmented at high voltage (>5 V) when an excessive amount of Li-ions are removed. This work further demonstrates the application of multi-frequency SPM techniques for the characterization of nanoparticles for energy storage applications. PMID:25798700

  19. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well. PMID:26706687

  20. Electrochemical detection of uric acid via uricase-immobilized graphene oxide.

    PubMed

    Omar, Muhamad Nadzmi; Salleh, Abu Bakar; Lim, Hong Ngee; Ahmad Tajudin, Asilah

    2016-09-15

    Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility. PMID:27402177

  1. [Toxicity of 4-Chlorophenol Solution Under Electrochemical Reduction-oxidation Process].

    PubMed

    Wang, Yan; Shi, Qin; Wang, Hui; Bian, Zhao-yong

    2016-04-15

    The Pd-Fe/graphene multi-functional catalytic cathode was prepared by UV-assisted photocatalytic reduction. The catalytic cathode and a Ti/IrO₂/RuO₂ anode consisting of both three-electrode system (two cathodes) and two-electrode system (one cathode) were designed for the degradation of 4-chlorophenol in aid of olectrochemical reducing and oxidizing processes. The concentrations of the intermediates and products were monitored by high performance liquid chromatography (HPLC), total organic carbon (TOC), and ion chromatography (IC). The theoretical toxicity was calculated according to the formula. The actual toxicity of the solution during the degradation process was detected using the luminescent bacteria. The comparison of the actual toxicity and theoretical toxicity was performed to analyze the trend of the two systems. The results showed that the toxicity of the solution in anode compartment first increased and then decreased, but the toxicity in cathode compartment decreased during the whole degradation for both systems. This trend could be attributed to the intermediate formed, benzoquinone. Through the analysis of correlation, the correlation coefficient was 1 of the theoretical toxicity and actual toxicity at the level of P = 0.01, which indicated the result of toxicity was reliable. The toxicity of three-electrode system was lower than that of two-electrode system after 120 mm. The three-electrode system was considered to be better than the two-electrode system. Therefore, the detection of actual toxicity in electrochemical reducing and oxidizing process for the degradation of chlorophenols in the actual industry has wide application prospect. PMID:27548966

  2. DEMONSTRATION BULLETIN: PEROX-PURE CHEMICAL OXIDATION TREATMENT

    EPA Science Inventory

    Technology Description: The perox-pure™ chemical oxidation treatment technology was developed by Peroxidation Systems, Inc. (PSI), to destroy dissolved organic contaminants in water. The technology uses ultraviolet (UV) radiation and hydrogen peroxide to oxidize organic co...

  3. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Youn, Duck Hyun; Park, Yoon Bin; Kim, Jae Young; Magesh, Ganesan; Jang, Youn Jeong; Lee, Jae Sung

    2015-10-01

    As an efficient non-precious metal catalyst for oxygen evolution reaction (OER) in electrochemical and photoelectrochemical water splitting, NiFe layered double hydroxide (LDH)/reduced graphene oxide (NiFe/RGO) composite is synthesized by a simple solvothermal method in one-pot. NiFe LDHs are uniformly deposited on RGO layers of high electrical conductivity and large surface area. In electrochemical water splitting, NiFe/RGO shows superior OER performance compared to bare NiFe and reference IrO2 with a lower benchmark η10 value (required overpotential to drive 10 mA cm-2) of 0.245 V. Furthermore, NiFe/RGO substantially increases the performance of a hematite photoanode in photoelectrochemical water oxidation, demonstrating its potential as an OER co-catalyst for photoelectrodes.

  4. A combined CaO/electrochemical treatment of the acid mine drainage from the "Robule" Lake.

    PubMed

    Orescanin, Visnja; Kollar, Robert

    2012-01-01

    The purpose of this work was development and application of the purification system suitable for the treatment of the acid mine drainage (AMD) accumulated in the "Robule" Lake, which represents the part of the Bor copper mining and smelting complex, Serbia. The study was undertaken in order to minimize adverse effect on the environment caused by the discharge of untreated AMD, which was characterized with low pH value (2.63) and high concentration of heavy metals (up to 610 mg/L) and sulfates (up to 12,000 mg/L). The treatment of the effluent included pretreatment/pH adjustment with CaO followed by electrocoagulation using iron and aluminum electrode sets. Following the final treatment, the decrease in the concentration of heavy metals ranged from 40 up to 61000 times depending on the metal and its initial concentration. The parameters, color and turbidity were removed completely in the pretreatment step, while the removal efficiencies for other considered parameters were as follows: EC = 55.48%, SO(4) (2-) = 70.83%, Hg = 98.36%, Pb = 97.50%, V = 98.43%, Cr = 99.86%, Mn = 97.96%, Fe = 100.00%, Co = 99.96%, Ni = 99.78%, Cu = 99.99% and Zn = 99.94%. Because the concentrations of heavy metals in the electrochemically treated AMD (ranging from 0.001 to 0.336 mg/L) are very low, the negative impact of this effluent on the aquatic life and humans is not expected. The sludge generated during the treatment of AMD is suitable for reuse for at least two purposes (pretreatment of AMD and covering of the flotation waste heap). From the presented results, it could be concluded that electrochemical treatment is a suitable approach for the treatment of AMD. PMID:22506711

  5. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  6. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  7. A novel system combining biocatalytic dephosphorylation of L-ascorbic acid 2-phosphate and electrochemical oxidation of resulting ascorbic acid.

    PubMed

    Kuwahara, Takashi; Homma, Toshimasa; Kondo, Mizuki; Shimomura, Masato

    2011-03-15

    An enzyme electrode was prepared with acid phosphatase (ACP) for development of a new electric power generation system using ascorbic acid 2-phosphate (AA2P) as a fuel. The properties of the electrode were investigated with respect to biocatalytic dephosphorylation of AA2P and electrochemical oxidation of resulting ascorbic acid (AA). The enzyme electrode was fabricated by immobilization of ACP through amide linkage onto a self-assembled monolayer of 3-mercaptopropionic acid on a gold electrode. AA2P was not oxidized on a bare gold electrode in the potential sweep range from -0.1 to +0.5 V vs. Ag/AgCl. However, the enzyme electrode gave an oxidation current in citric buffer solution of pH 5 containing 10 mM of AA2P. The oxidation current began to increase at +0.2V, and reached to 5.0 μA cm(-2) at +0.5 V. The potential +0.2 V corresponded to the onset of oxidation of ascorbic acid (AA). These results suggest that the oxidation current observed with the enzyme electrode is due to AA resulting from dephosphorylation of AA2P. The oxidation current increased with increasing concentration of AA2P and almost leveled off at around the concentration of 5mM. Thus the enzyme electrode brought about biocatalytic conversion of AA2P to AA, followed by electrochemical oxidation of the AA. The oxidation current is likely to be controlled by the biocatalytic reaction. PMID:21247749

  8. The effect of metallic oxide deposition on the electrochemical behaviour of Al-Zn-Mg-Sn alloy in natural tropical seawater

    NASA Astrophysics Data System (ADS)

    Din Yati, M. S.; Nazree Derman, Mohd; Isa, M. C.; Y Ahmad, M.; Yusoff, N. H. N.; Muhammad, M. M.; Nain, H.

    2014-06-01

    The potential of aluminium alloys as anode materials in cathodic protection system has been explored and a significant improvement has been achieved. However, for marine application, it is quite difficult to maintain continuous activation process due to passivation behavior of aluminum alloys. Therefore, to choose the best activation mechanism for aluminium alloy in marine environment, it has to be considered from various points such as alloy composition and surface treatment. This paper report the effect of metallic ruthenium oxide (RuO2) deposition on the surface of as-cast Al-Zn-Mg-Sn alloy and to study the effect of its presence on the electrochemical behavior using direct current (DC) electrochemical polarization and current capacity measurement. The morphology and topography of corroded surface were studied by the aid of scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) respectively. Results from this study showed that the presence of intermetallic compound (Mg2Sn) and also mixed metal oxide compound (Al2O3 and RuO2) on the alloy surface has been very useful in improving electrochemical reaction and charge transfer activities in chloride containing solution. This study also showed that RuO2 catalytic coating applied on the surface of Al-Zn-Mg-Sn alloy has slightly increased the corrosion current density compared to Al-Zn-Mg-Sn without RuO2. The corrosion morphology and topography of corroded surface of Al-Zn-Mg-Sn alloy deposited with RuO2 was found more uniform corrosion attack with the formation of porous and fibrous mud-like crack on outer layer. Based on surface morphology and 3D topographic studies, these features were believed to facilitate ionic species adsorption and diffusion through corrosion product layer at solution-alloy interface. Deposited RuO2 films also was found to increase of current efficiency by more than 10%.

  9. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  10. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.

    PubMed

    Guinea, Elena; Arias, Conchita; Cabot, Pere Lluís; Garrido, José Antonio; Rodríguez, Rosa María; Centellas, Francesc; Brillas, Enric

    2008-01-01

    Solutions containing 164 mg L(-1) salicylic acid of pH 3.0 have been degraded by electrochemical advanced oxidation processes such as anodic oxidation, anodic oxidation with electrogenerated H(2)O(2), electro-Fenton, photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Their oxidation power has been comparatively studied in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and a graphite or O(2)-diffusion cathode. In the three latter procedures, 0.5mM Fe(2+) is added to the solution to form hydroxyl radical (()OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the O(2)-diffusion cathode. Total mineralization is attained for all methods with BDD and for photoelectro-Fenton and solar photoelectro-Fenton with Pt. The poor decontamination achieved in anodic oxidation and electro-Fenton with Pt is explained by the slow removal of most pollutants by ()OH formed from water oxidation at the Pt anode in comparison to their quick destruction with ()OH produced at BDD. ()OH generated from Fenton's reaction oxidizes rapidly all aromatic pollutants, but it cannot destroy final Fe(III)-oxalate complexes. Solar photoelectro-Fenton treatments always yield quicker degradation rate due to the very fast photodecarboxylation of these complexes by UVA irradiation supplied by solar light. The effect of current density on the degradation rate, efficiency and energy cost of all methods is examined. The salicylic acid decay always follows a pseudo-first-order kinetics. 2,3-Dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic, alpha-ketoglutaric, glycolic, glyoxylic, maleic, fumaric, malic, tartronic and oxalic acids are detected as oxidation products. A general reaction sequence for salicylic acid mineralization considering all these intermediates is proposed. PMID:17692891

  11. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    PubMed

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. PMID:26751827

  12. Electrochemical and spectroscopic studies of some less stable oxidation states of selected lanthanide and actinide elements

    SciTech Connect

    Hobart, D. E.

    1981-06-01

    Simultaneous observation of electrochemical and spectroscopic properties (spectroelectrochemistry) at optically transparent electrodes (OTE's) was used to study some less stable oxidation states of selected lanthanide and actinide elements. Cyclic voltammetry at microelectrodes was used in conjunction with spectroelectrochemistry for the study of redox couples. Additional analytical techniques were used. The formal reduction potential (E/sup 0/') values of the M(III)/M(II) redox couples in 1 M KCl at pH 6 were -0.34 +- 0.01 V for Eu, -1.18 +- 0.01 V for Yb, and -1.50 +- 0.01 V for Sm. Spectropotentiostatic determination of E/sup 0/' for the Eu(III)/Eu(II) redox couple yielded a value of -0.391 +- 0.005 V. Spectropotentiostatic measurement of the Ce(IV)/Ce(III) redox couple in concentrated carbonate solution gave E/sup 0/' equal to 0.051 +- 0.005 V, which is about 1.7 V less positive than the E/sup 0/' value in noncomplexing solution. This same difference in potential was observed for the E/sup 0/' values of the Pr(IV)/Pr(III) and Tb(IV)/Tb(III) redox couples in carbonate solution, and thus Pr(IV) and Tb(IV) were stabilized in this medium. The U(VI)/U(V)/U(IV) and U(IV)/U(III) redox couples were studied in 1 M KCl at OTE's. Spectropotentiostatic measurement of the Np(VI)/Np(V) redox couple in 1 M HClO/sub 4/ gave an E/sup 0/' value of 1.140 +- 0.005 V. An E/sup 0/' value of 0.46 +- 0.01 V for the Np(VII)/Np(VI) couple was found by voltammetry. Oxidation of Am(III) was studied in concentrated carbonate solution, and a reversible cyclic voltammogram for the Am(IV)/Am(III) couple yielded E/sup 0/' = 0.92 +- 0.01 V in this medium; this value was used to estimate the standard reduction potential (E/sup 0/) of the couple as 2.62 +- 0.01 V. Attempts to oxidize Cm(III) in concentrated carbonate solution were not successful which suggests that the predicted E/sup 0/ value for the Cm(IV)/Cm(III) redox couple may be in error.

  13. Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis.

    PubMed

    Schäfer, Philipp; van der Veen, Monique A; Domke, Katrin F

    2016-03-17

    To employ the full potential of electrochemical (ec) synthesis to grow metal-organic frameworks (MOFs) in more complex organizations at the mesoscale, it is vital to understand the underlying crystallization reaction pathway. For the MOF most typically grown electrochemically, CuBTC, we systematically investigated the role of oxygen species in the synthesis. PMID:26954845

  14. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Shabani Shayeh, J.; Ehsani, A.; Ganjali, M. R.; Norouzi, P.; Jaleh, B.

    2015-10-01

    Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge-discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm-2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g-1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  15. Understanding the mechanism of surface modification through enhanced thermal and electrochemical stabilities of N-doped graphene oxide

    NASA Astrophysics Data System (ADS)

    Mehetre, Shantilal S.; Maktedar, Shrikant S.; Singh, Man

    2016-03-01

    The kinetically active two dimensional surface of graphene oxide (GrO) plays an important role in understanding the chemistry of graphene. The GrO is comprises of carbon and oxygen while the f-(6-AIND) GrO contains nitrogen along with carbon and oxygen. The prominent thermal instability of GrO is widely explored. However, due to the synergistic impact of their constituting elements, the thermal and electrochemical stability of f-(6-AIND) GrO enhances after N-doping with nitrogen containing heterocycles like 6-Aminoindazole. Hence it is essential to probe the mutual impact of various functionalities present over the surface of GrO, to understand the mechanism of direct functionalization of GrO with thermal and electrochemical stabilities. Therefore, the decomposition kinetics of discrete atomic domains and their effect on thermal stability of f-(6-AIND) GrO was revealed with spectroscopic analysis and thermal assessment. Additionally, the mechanism of thermal transformation is precisely developed to demonstrate the impact of heat on weight loss due to the mass transfer. Likewise, the electrochemical properties can be well understood with the help of mechanism of electrochemical activity and cyclic voltammetry experiments. Also, the f-(6-AIND) GrO is confirmed with the help of various surface analysis techniques like FTIR, EDS, HR-XPS, HR-TEM, CV, SAED, TGA, DSC and UV-vis.

  16. Highly sensitive electrochemical determination of Sunset Yellow based on the ultrafine Au-Pd and reduced graphene oxide nanocomposites.

    PubMed

    Wang, Jin; Yang, Beibei; Zhang, Ke; Bin, Duan; Shiraishi, Yukihide; Yang, Ping; Du, Yukou

    2016-11-01

    A sensitive and novel electrochemical sensor with Au-Pd and reduced graphene oxide (RGO) nanocomposites modified glassy carbon electrode (Au-Pd-RGO/GCE) was successfully fabricated by one-step synthesis method for the detection of Sunset Yellow. The as-prepared composites were uniformly dispersed on the surface of electrode with an average diameter of approximately 3.44nm, and the ultrafine nanoparticles effectively enhanced the electrochemical active surface area of GCE. The modified electrode had been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and electrochemical tests. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results showed high stability and outstanding electrocatalytic activity of Au-Pd-RGO/GCE for the detection of SY with low detection limits (1.5 nM, S/N=3) and wide concentration ranges (0.686-331.686μM). The Au-Pd-RGO/GCE was further applied to detect SY in real samples with good recovery. Herein, the fabricated Au-Pd-RGO/GCE showed excellent sensitivity, stability and repeatability for the detection of SY and will be a promising application in electrochemical sensor. PMID:27475710

  17. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction

    NASA Astrophysics Data System (ADS)

    Yu, Dingshan; Wei, Li; Jiang, Wenchao; Wang, Hong; Sun, Bo; Zhang, Qiang; Goh, Kunli; Si, Rongmei; Chen, Yuan

    2013-03-01

    Electrocatalysts for anode or cathode reactions are at the heart of electrochemical energy conversion and storage devices. Molecular design of carbon based nanomaterials may create the next generation electrochemical catalysts for broad applications. Herein, we present the synthesis of a three-dimensional (3D) nanostructure with a large surface area (784 m2 g-1) composed of nitrogen doped (up to 8.6 at.%) holey graphene. The holey structure of graphene sheets (~25% of surface area is attributed to pores) engenders more exposed catalytic active edge sites. Nitrogen doping further improves catalytic activity, while the formation of the 3D porous nanostructure significantly reduces graphene nanosheet stacking and facilitates the diffusion of reactants/electrolytes. The three factors work together, leading to superb electrochemical catalytic activities for both hydrazine oxidation (its current generation ability is comparable to that of 10 wt% Pt-C catalyst) and oxygen reduction (its limiting current is comparable to that of 20 wt% Pt-C catalyst) with four-electron transfer processes and excellent durability.Electrocatalysts for anode or cathode reactions are at the heart of electrochemical energy conversion and storage devices. Molecular design of carbon based nanomaterials may create the next generation electrochemical catalysts for broad applications. Herein, we present the synthesis of a three-dimensional (3D) nanostructure with a large surface area (784 m2 g-1) composed of nitrogen doped (up to 8.6 at.%) holey graphene. The holey structure of graphene sheets (~25% of surface area is attributed to pores) engenders more exposed catalytic active edge sites. Nitrogen doping further improves catalytic activity, while the formation of the 3D porous nanostructure significantly reduces graphene nanosheet stacking and facilitates the diffusion of reactants/electrolytes. The three factors work together, leading to superb electrochemical catalytic activities for both

  18. A novel electrochemical ion exchange system and its application in water treatment.

    PubMed

    Li, Yansheng; Li, Yongbin; Liu, Zhigang; Wu, Tao; Tian, Ying

    2011-06-01

    A novel electrochemical ion exchange system with porous cylinder electrodes is proposed for treatment of wastewater. This system can be used for desalination without the costly ion-exchange membrane and extra chemical reagents. Since the electrodes are completely uniform and no ion-exchange membrane was used in this system, it can be operated by switching anodes and cathodes flexibly for eliminating the scaling on the surface of electrodes. The strong base ion-exchange resin grains placed among the anode and cathode have played as supporting electrolyte, which is capable for the treatment of wastewater with low conductivity. The concentrated and neutralized anolyte containing chlorine is effective for disinfection and contaminants removal. Under the experimental conditions, the removal percentage of total dissolved salts was 83% and the removal percentage of chemical oxygen demand was 92% without consumption of extra chemical reagents. PMID:25084577

  19. Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction

    PubMed Central

    2012-01-01

    The comparison between two kinds of single-layer reduced graphene oxide (rGO) sheets, obtained by reduction of graphene oxide (GO) with the electrochemical method and hydrazine vapor reduction, referred to as E-rGO and C-rGO, respectively, is systematically studied. Although there is no morphology difference between the E-rGO and C-rGO films adsorbed on solid substrates observed by AFM, the reduction process to obtain the E-rGO and C-rGO films is quite different. In the hydrazine vapor reduction, the nitrogen element is incorporated into the obtained C-rGO film, while no additional element is introduced to the E-rGO film during the electrochemical reduction. Moreover, Raman spectra show that the electrochemical method is more effective than the hydrazine vapor reduction method to reduce the GO films. In addition, E-rGO shows better electrocatalysis towards dopamine than does C-rGO. This study is helpful for researchers to understand these two different reduction methods and choose a suitable one to reduce GO based on their experimental requirements. PMID:22373422

  20. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials.

    PubMed

    Guo, Zhuo; Wang, Ze-Yu; Wang, Hui-Hua; Huang, Guo-Qing; Li, Meng-Meng

    2015-12-01

    A sensitive electrochemical sensor has been fabricated to detect Isoniazid (INZ) using reduced graphene oxide (RGO) and Au nanocomposites (RGO-Au). RGO-Au nanocomposites were synthesized by a solution-based approach of chemical co-reduction of Au(III) and graphene oxide (GO), and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and Fourier transform infrared (FT-IR). The Au nanoparticles separate the RGO sheets in the precipitate and prevent RGO sheets from aggregation upon π-π stacking interactions. RGO-Au nanocomposites were used to modify the glassy carbon electrode (GCE). The electrochemical properties of RGO-Au/GCE were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the RGO-Au/GCE exhibited remarkably strong electrocatalytic activities towards INZ. Under the optimized conditions, there was linear relationships between the peak currents and the concentrations in the range of 1.0×10(-7)M to 1.0×10(-3)M for INZ, with the limit of detection (LOD) (based on S/N=3) of 1.0×10(-8)M for INZ. PMID:26354255

  1. Formation of Mosaic Silicon Oxide Structure during Metal-Assisted Electrochemical Etching of Silicon at High Current Density

    NASA Astrophysics Data System (ADS)

    Cao, Dao Tran; Anh, Cao Tuan; Ngan, Luong Truc Quynh

    2016-05-01

    We have used constant-current, metal-assisted electrochemical etching of silicon in HF/H2O2/ethanol electrolyte to fabricate porous silicon. We found that, at large enough current density, the sponge-like porous silicon structure is replaced by a mosaic structure, which includes islands of various shapes emerging between trenches that have been etched downward. Energy-dispersive x-ray analysis showed that the surface of the mosaic pieces was covered with silicon oxide, while little silicon oxide developed on the surface of trenches. We suggest that the appearance of the mosaic structure can be explained by the increase in the oxidation rate of silicon when the anodic current density increases, combined with no change in the dissolution rate of silicon oxide into the solution. Consequently, above a certain value of anodic current density, there is sufficient residual silicon oxide on the etched surface to create a continuous thin film. However, if the silicon oxide layer is too thick (e.g., due to too high anodic current density or too long etching time), it will become cracked (formation of mosaic pieces), likely due to differences in thermal expansion coefficient between the amorphous silicon oxide layer and crystalline silicon substrate. The oxide is cracked at locations with many defects, and the cracks reveal the silicon substrate. Therefore, at the locations where cracks occur, etching will go sideways and downward, creating trenches.

  2. Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Sahu, Vikrant; Goel, Shubhra; Sharma, Raj Kishore; Singh, Gurmeet

    2015-12-01

    This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg-1 (ZnO/GNR symmetric) to 9.4 Wh kg-1 (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm-2, paves the way to a high performance aqueous electrochemical supercapacitive energy storage.This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny Zn

  3. Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Myeongjin; Yoo, Youngjae; Kim, Jooheon

    2014-11-01

    Synthesis of microsphere silicon carbide/nanoneedle MnO2 (SiC/N-MnO2) composites for use as high-performance materials in supercapacitors is reported herein. The synthesis procedure involves the initial treatment of silicon carbide (SiC) with hydrogen peroxide to obtain oxygen-containing functional groups to provide anchoring sites for connection of SiC and the MnO2 nanoneedles (N-MnO2). MnO2 nanoneedles are subsequently formed on the SiC surface. The morphology and microstructure of the as-prepared composites are characterized via X-ray diffractometry, field-emission scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The characterizations indicate that MnO2 nanoneedles are homogeneously formed on the SiC surface in the composite. The capacitive properties of the as-prepared SiC/N-MnO2 electrodes are evaluated using cyclic voltammetry, galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy in a three-electrode experimental setup using a 1-M Na2SO4 aqueous solution as the electrolyte. The SiC/N-MnO2(5) electrode, for which the MnO2/SiC feed ratio is 5:1, displays a specific capacitance as high as 273.2 F g-1 at 10 mV s-1.

  4. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine.

    PubMed

    Hosseini, Hadi; Ahmar, Hamid; Dehghani, Ali; Bagheri, Akbar; Tadjarodi, Azadeh; Fakhari, Ali Reza

    2013-04-15

    A novel electrochemical sensor based on Au-SH-SiO₂ nanoparticles supported on metal-organic framework (Au-SH-SiO₂@Cu-MOF) has been developed for electrocatalytic oxidation and determination of L-cysteine. The Au-SH-SiO₂@Cu-MOF was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and cyclic voltammetry. The electrochemical behavior of L-cysteine at the Au-SH-SiO₂@Cu-MOF was investigated by cyclic voltammetry. The Au-SH-SiO₂@Cu-MOF showed a very efficient electrocatalytic activity for the oxidation of L-cysteine in 0.1 M phosphate buffer solution (pH 5.0). The oxidation overpotentials of L-cysteine decreased significantly and their oxidation peak currents increased dramatically at Au-SH-SiO₂@Cu-MOF. The potential utility of the sensor was demonstrated by applying it to the analytical determination of L-cysteine concentration. The results showed that the electrocatalytic current increased linearly with the L-cysteine concentration in the range of 0.02-300 μM and the detection limit was 0.008 μM. Finally, the sensor was applied to determine L-cysteine in water and biological samples. PMID:23228494

  5. Metal-Free Dihydrogen Oxidation by a Borenium Cation: A Combined Electrochemical/Frustrated Lewis Pair Approach**

    PubMed Central

    Lawrence, Elliot J; Herrington, Thomas J; Ashley, Andrew E; Wildgoose, Gregory G

    2014-01-01

    In order to use H2 as a clean source of electricity, prohibitively rare and expensive precious metal electrocatalysts, such as Pt, are often used to overcome the large oxidative voltage required to convert H2 into 2 H+ and 2 e−. Herein, we report a metal-free approach to catalyze the oxidation of H2 by combining the ability of frustrated Lewis pairs (FLPs) to heterolytically cleave H2 with the in situ electrochemical oxidation of the resulting borohydride. The use of the NHC-stabilized borenium cation [(IiPr2)(BC8H14)]+ (IiPr2=C3H2(NiPr)2, NHC=N-heterocyclic carbene) as the Lewis acidic component of the FLP is shown to decrease the voltage required for H2 oxidation by 910 mV at inexpensive carbon electrodes, a significant energy saving equivalent to 175.6 kJ mol−1. The NHC–borenium Lewis acid also offers improved catalyst recyclability and chemical stability compared to B(C6F5)3, the paradigm Lewis acid originally used to pioneer our combined electrochemical/frustrated Lewis pair approach. PMID:25044562

  6. "On-off" switchable electrochemical affinity nanobiosensor based on graphene oxide for ultrasensitive glucose sensing.

    PubMed

    Huang, Jing; Zhang, Li; Liang, Ru-Ping; Qiu, Jian-Ding

    2013-03-15

    A novel "smart" electrochemical affinity nanobiosensor with "on-off" switchable property was designed for the ultrasensitive determination of glucose. The sensing approach was based on the glucose-ConA-dextran competitive system induced charge evolution in the use of graphene oxide (GO) as transducer element, resulting in the enhancement of interfacial electron transfer kinetics between the redox probe and the electrode. As concanavalin A (ConA) constituent was pH-sensitive, when the ConA-DexP/GO film electrode switched in probe Fe(CN)(6)(3-/4-) solution between pH 4.0 and 8.0, the film was cycled between the "on" and "off" states by the electrostatic attraction and repulsion of Fe(CN)(6)(3-/4-) to and from the electrode surface. Upon introduction of glucose into the ConA-DexP/GO complex at the "off" state, glucose competed with DexP for ConA and displaced ConA from the GO platform, resulting in gradual decrease of the surface negative charge as well as the resistance of probe for electron communication on the sensor surface, and making the switching from "off" state to "on" state simultaneously. This ultrasensitive glucose nanobiosensor had a broad linearity between the decrease in electron transfer resistance (ΔR) and the glucose concentration over a range from 5.0 μM to 9.0 mM with a detection limit as low as 0.34 μM. The proposed method showed potential application for fabricating novel biosensors and bioelectronic devices. PMID:23026685

  7. Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell

    NASA Astrophysics Data System (ADS)

    Hu, Huiqing; Lin, Qizhao; Muhammad, Afzal; Zhu, Bin

    2015-07-01

    This study analyzed the effect of various semiconductors of transition metal oxides in modified lithiated NiO on the electrochemical performance of a single layer fuel cell (SLFC). A typical ionic conductor Ce0.8Sm0.2O2-δ (SDC) and three types of semiconductors Li0.3Ni0.6Cu0.07Sr0.03O2-δ (LNCuS), Li0.3Ni0.6Mn0.07Sr0.03O2-δ (LNMnS) and Li0.3Ni0.6Co0.07Sr0.03O2-δ (LNCoS), were the fundamental components of the SLFCs. The components were characterized by using X-ray diffraction (XRD), a scanning electron microscope (SEM), and an energy-dispersive X-ray spectrometer (EDS). The stability of the synthesized materials was evaluated using thermal gravity analysis (TGA). The ohmic resistances at 500 °C were 0.36, 0.48 and 0.58 Ω cm2 for 6SDC-4LNMnS, 6SDC-4LNCoS and 6SDC-4LNCuS, respectively. Among the three SLFCs, the single cell with 6SDC-4LNMnS achieves the highest power density (422 mW cm-2) but the lowest temperature stability, while the single cell with 6SDC-4LNCuS achieved the lowest power density (331 mW cm-2) but the highest temperature stability during the operation temperature.

  8. Batch fabrication of mesoporous boron-doped nickel oxide nanoflowers for electrochemical capacitors

    SciTech Connect

    Yang, Jing-He; Yu, Qingtao; Li, Yamin; Mao, Liqun; Ma, Ding

    2014-11-15

    Highlights: • A new facile liquid-phase method has been employed for synthesis boron-doped NiO nanoflowers. • The specific surface area of NiO is as high as 200 m{sup 2} g{sup −1}. • NiO nanoflowers exhibit a high specific capacitance of ∼1309 F g{sup −1} at a charge and discharge current density of 3 A g{sup −1}. • NiO nanoflowers have excellent cycling ability and even after 2500 cycles there is no significant reduction in specific capacitance. - Abstract: Boron-doped nickel oxide (B-NiO) nanoflowers are prepared by simple thermal decomposition of nickel hydroxide. B-NiO is porous sphere with a diameter of about 400 nm. B-NiO nanoflowers are composed of approximately 30 nm nanoplates and the thickness of the nanosheets is approximately 3 nm. The specific surface area of the material is as high as 200 m{sup 2} g{sup −1} and the pore size distribution curves of B-NiO has three typical peaks in the range of mesoporous (5 nm, 13 nm and 18 nm). As an electrode for supercapacitors, the crystalline B-NiO nanoflowers have favorable characteristics, for instance, a specific capacitance of 1309 F g{sup −1} at a current density of 3 A g{sup −1} and no significant reduction in Coulombic efficiency after 2500 cycles at 37.5 A g{sup −1}. This remarkable electrochemical performance will make B-NiO nanoflowers a promising electrode material for high performance supercapacitors.

  9. Tunable Mixed Ionic/Electronic Conductivity and Permittivity of Graphene Oxide Paper for Electrochemical Energy Conversion.

    PubMed

    Bayer, Thomas; Bishop, Sean R; Perry, Nicola H; Sasaki, Kazunari; Lyth, Stephen M

    2016-05-11

    Graphene oxide (GO) is a two-dimensional graphitic carbon material functionalized with oxygen-containing surface functional groups. The material is of interest in energy conversion, sensing, chemical processing, gas barrier, and electronics applications. Multilayer GO paper has recently been applied as a new proton conducting membrane in low temperature fuel cells. However, a detailed understanding of the electrical/dielectric properties, including separation of the ionic vs electronic contributions under relevant operating conditions, has so far been lacking. Here, the electrical conductivity and dielectric permittivity of GO paper are investigated in situ from 30 to 120 °C, and from 0 to 100% relative humidity (RH) using impedance spectroscopy. These are related to the water content, measured by thermogravimetric analysis. With the aid of electron blocking measurements, GO is demonstrated to be a mixed electronic-protonic conductor, and the ion transference number is derived for the first time. For RH > 40%, conductivity is dominated by proton transport (with a maximum of 0.5 mS/cm at 90 °C and 100% RH). For RH < 40%, electronic conductivity dominates (with a maximum of 7.4 mS/cm at ∼80 °C and 0% RH). The relative permittivity of GO paper increases with decreasing humidity, from ∼10 at 100% RH to several 1000 at 10% RH. These results underline the potential of GO for application not only as a proton conducting electrolyte but also as a mixed conducting electrode material under appropriate conditions. Such materials are highly applicable in electrochemical energy conversion and storage devices such as fuel cells and electrolyzers. PMID:27088238

  10. Electrochemical investigation of chromium oxide-coated Ti-6Al-4V and Co-Cr-Mo alloy substrates.

    PubMed

    Swaminathan, Viswanathan; Zeng, Haitong; Lawrynowicz, Daniel; Zhang, Zongtao; Gilbert, Jeremy L

    2011-08-01

    Hard coatings for articulating surfaces of total joint replacements may improve the overall wear resistance. However, any coating approach must take account of changes in corrosion behavior. This preliminary assessment analyzes the corrosion kinetics, impedance and mechanical-electrochemical stability of 100 μm thick plasma sprayed chromium oxide (Cr₂O₃) coatings on bearing surfaces in comparison to the native alloy oxide films on Co-Cr-Mo and Ti-6Al-6V. Cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, and mechanical abrasion under potentiostatic conditions were performed on coated and substrate surfaces in physiological saline. SEM analysis characterized the coating morphology. The results showed that the corrosion current density values of chromium oxide coatings (0.4-1.2 μA/cm²) were of the same order of magnitude as Ti-6Al-4V alloy. Mechanical abrasion did not increase corrosion rates of chromium oxide coatings but did for uncoated Co-Cr-Mo and Ti-6Al-4V. The impedance response of chromium oxide coatings was very different than Co-Cr-Mo and Ti-6Al-4V native oxides characterized by a defected coating model. More of a frequency-independent purely resistive response was seen in mid-frequency range for the coatings (CPE(coat) : 40-280 nF/cm² (rad/s)(1-α) , α: 0.67-0.83) whereas a more capacitive character is seen for Co-Cr-Mo and Ti-6Al-4V (CPE(ox) around 20 μF/cm² (rad/s)(1-α) , α around 0.9). Pores, interparticle gaps and incomplete fusion typical for thermal spray coatings were present in these oxides which could have influenced corrosion resistance. The coating microstructure could have allowed some fluid penetration. Overall, these coatings appear to have suitable corrosion properties for wear surfaces. PMID:21648063

  11. Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan.

    PubMed

    Li, Junhua; Kuang, Daizhi; Feng, Yonglan; Zhang, Fuxing; Xu, Zhifeng; Liu, Mengqin; Wang, Deping

    2013-04-15

    A new kind of nanocomposite based on silver nanoparticles (AgNPs)/graphene oxide (GO) was conveniently achieved through a green and low-cost synthesis approach using glucose as a reducing and stabilizing agent, and the synthetic procedure can be easily used for the construction of a disposable electrochemical sensor on glassy carbon electrode (GCE). The nanocomposite was detailedly characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The experimental results demonstrated that the nanocomposite possessed the specific features of both silver nanoparticles and graphene, and the intrinsic high specific area and the fast electron transfer rate ascribed to the nanohybrid structure could improve its electrocatalytic performance greatly. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed to evaluate the electrochemical properties of AgNPs/GO/GCE towards tryptophan, and the AgNPs/GO film exhibited a distinctly higher activity for the electro-oxidation of tryptophan than GO film with tenfold enhancement of peak current. The oxidation mechanism and the kinetic parameters were investigated, and analysis operation conditions were optimized. Under the selected experimental conditions, the oxidation peak currents were proportional to tryptophan concentrations over the range of 0.01 μM to 50.0 μM and 50.0 μM to 800.0 μM, respectively. The detection limit was 2.0 nM (S/N=3). Moreover, the proposed method is free of interference from tyrosine and other coexisting species. The resulting sensor displays excellent repeatability and long-term stability; finally it was successfully applied to detect tryptophan in real samples with good recoveries, ranging from 99.0% to 103.0%. PMID:23202352

  12. Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses

    PubMed Central

    Besson-Bard, Angélique; Griveau, Sophie; Bedioui, Fethi; Wendehenne, David

    2008-01-01

    It was previously reported that cryptogein, an elicitor of defence responses, induces an intracellular production of nitric oxide (NO) in tobacco. Here, the possibility was explored that cryptogein might also trigger an increase of NO extracellular content through two distinct approaches, an indirect method using the NO probe 4,5-diaminofluorescein (DAF-2) and an electrochemical method involving a chemically modified microelectrode probing free NO in biological media. While the chemical nature of DAF-2-reactive compound(s) is still uncertain, the electrochemical modified microelectrodes provide real-time evidence that cryptogein induces an increase of extracellular NO. Direct measurement of free extracellular NO might offer important new insights into its role in plants challenged by biotic stresses. PMID:18653691

  13. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M. João; Silva, Teresa M.; Montemor, M. Fátima

    2015-07-01

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g-1 at 1 A g-1. The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g-1 to 20 A g-1. The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  14. Optical, electrochemical and structural properties of long-term cycled tungsten oxide films prepared by sol gel

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Jia, Jianfeng; Pan, Qingtao; Yang, Feng; He, Deyan

    2007-06-01

    A peroxopolytungstic acid sol has been employed for preparing tungsten oxide (WO 3) films by sol-gel dip-coating technique. Three-electrode cells with 0.5 mol/L H 2SO 4 electrolyte were fabricated using the prepared WO 3 films as active working electrode. Optical, electrochemical and structural properties of the films as a function of coloration-bleaching cycle were characterized by ultraviolet-visible spectrophotometer, cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscopy (SEM). The films showed a stable behavior of reversible and reproducible electrochemical switching up to 1000 coloration-bleaching cycles. XRD peaks were found for the films being cycled more than 2000, and the irregular cracks, uniform nano-particles and novel nano-blades were observed on the long-term cycled film surface by SEM. The degradation of the electrochromic behavior is due to the film change to loose and crystallization after the long-term cycling.

  15. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  16. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    PubMed

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra). PMID:22711381

  17. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes.

    PubMed

    Radjenovic, Jelena; Bagastyo, Arseto; Rozendal, René A; Mu, Yang; Keller, Jürg; Rabaey, Korneel

    2011-02-01

    During membrane treatment of secondary effluent from wastewater treatment plants, a reverse osmosis concentrate (ROC) containing trace organic contaminants is generated. As the latter are of concern, effective and economic treatment methods are required. Here, we investigated electrochemical oxidation of ROC using Ti/Ru(0.7)Ir(0.3)O(2) electrodes, focussing on the removal of dissolved organic carbon (DOC), specific ultra-violet absorbance at 254 nm (SUVA(254)), and 28 pharmaceuticals and pesticides frequently encountered in secondary treated effluents. The experiments were conducted in a continuously fed reactor at current densities (J) ranging from 1 to 250 A m(-2) anode, and a batch reactor at J = 250 A m(-2). Higher mineralization efficiency was observed during batch oxidation (e.g. 25.1 ± 2.7% DOC removal vs 0% removal in the continuous reactor after applying specific electrical charge, Q = 437.0 A h m(-3) ROC), indicating that DOC removal is depending on indirect oxidation by electrogenerated oxidants that accumulate in the bulk liquid. An initial increase and subsequent slow decrease in SUVA(254) during batch mode suggests the introduction of auxochrome substituents (e.g. -Cl, NH(2)Cl, -Br, and -OH) into the aromatic compounds. Contrarily, in the continuous reactor ring-cleaving oxidation products were generated, and SUVA(254) removal correlated with applied charge. Furthermore, 20 of the target pharmaceuticals and pesticides completely disappeared in both the continuous and batch experiments when applying J ≥ 150 A m(-2) (i.e. Q ≥ 461.5 A h m(-3)) and 437.0 A h m(-3) (J = 250 A m(-2)), respectively. Compounds that were more persistent during continuous oxidation were characterized by the presence of electrophilic groups on the aromatic ring (e.g. triclopyr) or by the absence of stronger nucleophilic substituents (e.g. ibuprofen). These pollutants were oxidized when applying higher specific electrical charge in batch mode (i.e. 1.45 kA h m(-3) ROC

  18. Effect of plasma nitriding treatment on structural, tribological and electrochemical properties of commercially pure titanium.

    PubMed

    Çelik, İlhan; Karakan, Mehmet

    2016-02-01

    In this study, plasma nitriding treatment was applied to commercially pure titanium (Grade 2). Structural properties, electrochemical and tribological behaviours of the nitrided pure titanium specimens were comparatively investigated. Microstructure and morphology of the plasma nitrided specimens were analysed by X-ray diffraction and scanning electron microscopy. Furthermore, corrosion tests were conducted in Ringer's solution, which represents a human body environment, to determine electrochemical properties. Then, tribological and frictional properties were investigated using pin-on-disc tribometer, and a micro-hardness tester was used to measure the hardness of the coatings. The results showed that plasma nitrided specimens exhibited higher surface hardness than the untreated specimens did. In addition, the plasma nitrided specimens at 700 °C presented significantly better performance than the other plasma nitrided specimens (at 500 °C and 600 °C) under dry wear conditions. Moreover, corrosion test results showed that corrosion behaviours of untreated and nitrided samples had similar characteristic. PMID:26666885

  19. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    PubMed

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. PMID:26094049

  20. Great-enhanced performance of Pt nanoparticles by the unique carbon quantum dot/reduced graphene oxide hybrid supports towards methanol electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Hong, Tian-Zeng; Xue, Qiong; Yang, Zhi-Yong; Dong, Ya-Ping

    2016-01-01

    The Pt-carbon quantum dot (CQD)/reduced graphene oxide (RGO) catalysts are prepared by one pot reduction method and demonstrate ultraefficient performance towards methanol oxidation reaction (MOR). In the high content CQD products, Pt nanoparticles around 2-3 nm are dispersed uniformly on supporting materials. And the X-ray photoelectron spectroscopy analysis indicates that in the high content CQD products a large part of surface oxygen groups is contributed by CQD. The electrochemical tests reveal that the catalyst with the saturated CQD exhibits best performance in MOR: the mass and specific activity at forward peak position, the potential close to fuel cell operation and 3600 s of chronoamperometric curve are roughly 2-3 folds of the commercial Pt/C. Furthermore, the electrochemical data on the series of catalysts with different quantity of CQD disclose the improving tendency of MOR performance with the increasing content of CQD evidently. Overview the electrochemical and characterization results, we suggest CQD play multiple roles in the enhancement of Pt performance: present abundant nucleating and anchoring points to facilitate the formation of small size and uniform distributed Pt particles; act as spacer to alleviate restacking of RGO sheets; and provide fruitful surface oxygen groups to improve the antipoisonous ability of Pt.

  1. The electrochemical oxidation of toluene catalysed by Co(II) in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide.

    PubMed

    Balaji, S; Kannan, K; Moon, I S

    2015-12-14

    The electrochemical oxidation of toluene in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpyr](+)[Ntf2](-)) was investigated by using cyclic voltammetry and galvanostatic electrolysis in the presence of Co(II) at a Pt disc working electrode. Cyclic voltammetry (CV) investigations revealed that Co(II)-Co(III) oxidation is a diffusion controlled electron transfer process. The diffusion coefficient values of Co(II) were found to increase from 0.38 × 10(-7) to 1.9 × 10(-7) cm(2) s(-1) as the temperature was increased from 25 °C to 80 °C. The CV peak current for toluene electro-oxidation increased by nearly 7 fold in the presence of Co(II) demonstrating a good catalytic effect. Co(II) catalysed galvanostatic electrolysis of toluene at room temperature has shown that benzaldehyde was formed along with a small quantity of 3-methyl-1-hexanol. PMID:26538114

  2. On the origin of enhanced electrochemical behavior of oxidized activated carbon

    NASA Astrophysics Data System (ADS)

    Niu, Rui; Li, Haibo; Ma, Yulong

    2016-08-01

    The amount of ions stored within the electrochemical double layer is dominantly determined by the surface area of porous electrode. High surface area indicates high capacitance. However, this is not the case when the pore is extremely small, ∼less than 1 nm. To observe this phenomenon, we have carried out an experiment by comparatively investigating the electrochemical performance of activated carbon (AC) and sulfuric acid treated AC (SAC). The results show that the electrochemical performance of SAC involving the specific capacitance, rate capability and cycling stability is significantly increased as compared to pristine AC. These are attributed to the improved porosity by differentiating the respective contributions of electrochemical double layer capacity and pseudo-capacity from SAC and AC, respectively.

  3. Degradation of 1-hydroxy-2,4-dinitrobenzene from aqueous solutions by electrochemical oxidation: role of anodic material.

    PubMed

    Quiroz, Marco A; Sánchez-Salas, José L; Reyna, Silvia; Bandala, Erick R; Peralta-Hernández, Juan M; Martínez-Huitle, Carlos A

    2014-03-15

    Electrochemical oxidation (ECOx) of 1-hydroxy-2,4-dinitrobenzene (or 2,4-dinitrophenol: 2,4-DNP) in aqueous solutions by electrolysis under galvanostatic control was studied at Pb/PbO2, Ti/SnO2, Ti/IrxRuySnO2 and Si/BDD anodes as a function of current density applied. Oxidative degradation of 2,4-DNP has clearly shown that electrode material and the current density applied were important parameters to optimize the oxidation process. It was observed that 2,4-DNP was oxidized at few substrates to CO2 with different results, obtaining good removal efficiencies at Pb/PbO2, Ti/SnO2 and Si/BDD anodes. Trends in degradation way depend on the production of hydroxyl radicals (OH) on these anodic materials, as confirmed in this study. Furthermore, HPLC results suggested that two kinds of intermediates were generated, polyhydroxylated intermediates and carboxylic acids. The formation of these polyhydroxylated intermediates seems to be associated with the denitration step and substitution by OH radicals on aromatic rings, this being the first proposed step in the reaction mechanism. These compounds were successively oxidized, followed by the opening of aromatic rings and the formation of a series of carboxylic acids which were at the end oxidized into CO2 and H2O. On the basis of these information, a reaction scheme was proposed for each type of anode used for 2,4-D oxidation. PMID:24462986

  4. NITROUS OXIDE EMISSIONS FROM RIPARIAN BUFFERS AND TREATMENT WETLANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian buffers and treatment wetlands are used throughout the world for the protection of water bodies from nonpoint source pollution, particularly nitrogen. Yet, relatively few studies of riparian or treatment wetland denitrification consider the production of nitrous oxide. Nitrous oxide emissio...

  5. Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes.

    PubMed

    Serna-Galvis, Efraim A; Silva-Agredo, Javier; Giraldo, Ana L; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2016-01-15

    Synthetic pharmaceutical effluents loaded with the β-lactam antibiotic oxacillin were treated using advanced oxidation processes (the photo-Fenton system and TiO2 photocatalysis) and chloride mediated electrochemical oxidation (with Ti/IrO2 anodes). Combinations of the antibiotic with excipients (mannitol or tartaric acid), an active ingredient (calcium carbonate, i.e. bicarbonate ions due to the pH) and a cleaning agent (sodium lauryl ether sulfate) were considered. Additionally, urban wastewater that had undergone biological treatment was doped with oxacillin and treated with the tested systems. The evolution of antimicrobial activity was monitored as a parameter of processes efficiency. Although the two advanced oxidation processes (AOPs) differ only in the way they produce OH, marked differences were observed between them. There were also differences between the AOPs and the electrochemical system. Interestingly, each additive had a different effect on each treatment. For water loaded with mannitol, electrochemical treatment was the most suitable option because the additive did not significantly affect the efficiency of the system. Due to the formation of a complex with Fe(3+), tartaric acid accelerated the elimination of antibiotic activity during the photo-Fenton process. For TiO2 photocatalysis, the presence of bicarbonate ions contributed to antibiotic activity elimination through the possible formation of carbonate and bicarbonate radicals. Sodium lauryl ether sulfate negatively affected all of the processes. However, due to the higher selectivity of HOCl compared with OH, electrochemical oxidation showed the least inhibited efficiency. For the urban wastewater doped with oxacillin, TiO2 photocatalysis was the most efficient process. These results will help select the most suitable technology for the treatment of water polluted with β-lactam antibiotics. PMID:26479916

  6. A wind-powered BDD electrochemical oxidation process for the removal of herbicides.

    PubMed

    Souza, F L; Lanza, M R V; Llanos, J; Sáez, C; Rodrigo, M A; Cañizares, P

    2015-08-01

    In the search for greener treatment technologies, this work studies the coupling of a wind turbine energy supply with an electrolytic cell (CWTEC device) for the remediation of wastewater polluted with pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The discontinuous and unforeseeable supply of energy is the main challenge inspiring this new proposal, which aims at reducing the environmental impact of electrolytic treatment by using a green energy supply. The results obtained using the coupled technologies are compared with those obtained by powering the electrolyser with a traditional power supply with a similar current intensity. The mineralisation of wastewater can be accomplished independently of how the electrolytic cell is powered, although differences in performance are clearly observed in the total organic carbon (TOC) and 2,4-D decays. These changes can be explained in terms of the changing profile of the current intensity, which influences the concentrations of the oxidants produced and thereby the mediated electrolytic process. PMID:25950835

  7. Studies of electrochemical oxidation of Zircaloy nuclear reactor fuel cladding using time-of-flight-energy elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Whitlow, H. J.; Zhang, Y.; Wang, Y.; Winzell, T.; Simic, N.; Ahlberg, E.; Limbäck, M.; Wikmark, G.

    2000-03-01

    The trend towards increased fuel burn-up and higher operating temperatures in order to achieve more economic operation of nuclear power plants places demands on a better understanding of oxidative corrosion of Zircaloy (Zry) fuel rod cladding. As part of a programme to study these processes we have applied time-of-flight-energy elastic recoil detection (ToF-E ERD), electrochemical impedance measurements and scanning electron microscopy to quantitatively characterise thin-oxide films corresponding to the pre-transition oxidation regime. Oxide films of different nominal thickness in the 9-300 nm range were grown on a series of rolled Zr and Zry-2 plates by anodisation in dilute H 2SO 4 with applied voltages. The dielectric thickness of the oxide layer was determined from the electrochemical impedance measurements and the surface topography characterised by scanning electron microscopy. ToF-E ERD with a 60 MeV 127I 11+ ion beam was used to determine the oxygen content and chemical composition of the oxide layer. In the Zr samples, the oxygen content (O atom cm -2) that was determined by ERD was closely similar to the O content derived from impedance measurements from the dielectric film. The absolute agreement was well within the uncertainty associated with the stopping powers. Moreover, the measured composition of the thick oxide layers corresponded to ZrO 2 for the films thicker than 65 nm where the oxide layer was resolved in the ERD depth profile. Zry-2 samples exhibited a similar behaviour for small thickness ( ⩽130 nm) but had an enhanced O content at larger thicknesses that could be associated either with enhanced rough surface topography or porous oxide formation that was correlated with the presence of Second Phase Particles (SPP) in Zry-2. The concentration of SPP elements (Fe, Cr, Ni) in relation to Zr was the same in the outer 9×10 17 atom cm -2 of oxide as in the same thickness of metal. The results also revealed the presence of about 1 at.% 32S in the

  8. Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage.

    PubMed

    Bunce, N J; Chartrand, M; Keech, P

    2001-12-01

    Acid mine drainage (AMD) is a serious environmental problem in the mining industry. The present work describes electrolytic reduction of solutions of synthetic AMD, comprising FeSO4/H2SO4 and CuSO4/H2SO4, in flow-through cells whose anode and cathode compartments were separated using ion exchange membranes. In the case of FeSO4/H2SO4 at constant flow rate, the pH of the effluent from the catholyte increased progressively with current at a variety of cathodes, due to electrolytic reduction of H+ ions to elemental hydrogen. Near-quantitative removal of iron was achieved by sparging air into the catholyte effluent, thereby precipitating iron outside the electrochemical cell, and avoiding fouling of the electrodes. The anode reaction was the oxidation of water to O2, a proton-releasing process. Using cation exchange membranes and sodium sulfate as the supporting electrolyte in the anode compartment, the efficiency of the process was compromised at high currents by transport of H+ competitively with Na+ from the anode to the cathode compartments. Higher efficiencies were obtained when anion exchange membranes were used, and in this case no additional supporting electrolyte other than dilute H2SO4 was needed, the net reaction being the electrochemically driven transfer of the elements of H2SO4 from the cathode to the anode compartments. Current efficiencies approximately 50% were achieved, the loss of efficiency being accounted for by ohmic heating of the solutions. In the case of CuSO4/H2SO4 and anion exchange membranes at high currents, reduction of Cu2+ and H+ ions and transport of SO4(2-) ions out of the catholyte caused unacceptably high potentials to be generated. PMID:11763043

  9. A Novel Electrochemical Membrane Bioreactor as a Potential Net Energy Producer for Sustainable Wastewater Treatment

    PubMed Central

    Wang, Yun-Kun; Sheng, Guo-Ping; Shi, Bing-Jing; Li, Wen-Wei; Yu, Han-Qing

    2013-01-01

    One possible way to address both water and energy shortage issues, the two of major global challenges, is to recover energy and water resource from wastewater. Herein, a novel electrochemical membrane bioreactor (EMBR) was developed to recover energy from wastewater and meantime harvest clean water for reuse. With the help of the microorganisms in the biocatalysis and biodegradation process, net electricity could be recovered from a low-strength synthetic wastewater after estimating total energy consumption of this system. In addition, high-quality clean water was obtained for reuse. The results clearly demonstrate that, under the optimized operating conditions, it is possible to recover net energy from wastewater, while at the same time to harvest high-quality effluent for reuse with this novel wastewater treatment system. PMID:23689529

  10. Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes

    NASA Astrophysics Data System (ADS)

    McNulty, David; Buckley, D. Noel; O'Dwyer, Colm

    2014-12-01

    The electrochemical intercalation of lithium into vanadium pentoxide was first reported in the 1970's. Over the last 40 years vanadium oxides have continued to be the subject of much research due to their desirable physical properties. Initial results with bulk V2O5 and V2O5 gels demonstrated the potential for application as a cathode material for lithium batteries. Encouraging specific capacities exceeding 250 mAh g-1 were accompanied by severe capacity fading, which prevented widespread commercial application of V2O5-containing cathodes. Following the commercial release of the Li-ion battery, the development of layered materials that reversibly intercalated lithium, and the resurgence in nanoscale materials for Li-ion and alternative batteries, have opened new opportunities for the examination of the influence of material structure on cell performance. Recent decades have witnessed advances in the control of shape, structure and function of Li-ion battery materials. This review details the synthesis and structural properties of vanadium oxides, one of the model layered battery materials, and reviews the synthesis and structure of vanadium oxides and related polymorphs, bronzes and phases. Their electrochemical characteristics under a wide range of conditions are assessed and compared as positive electrode materials in lithium and lithium-ion batteries up to the present day.

  11. Effect of S-doping on structural, optical and electrochemical properties of vanadium oxide thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M.-M.

    2013-12-01

    In this research, S-doped vanadium oxide thin films, with doping levels from 0 to 40 at.%, are prepared by spray pyrolysis technique on glass substrates. For electrochemical measurements, the films were deposited on florin-tin oxide coated glass substrates. The effect of S-doping on structural, electrical, optical and electrochemical properties of vanadium oxide thin films was studied. The x-ray diffractometer analysis indicated that most of the samples have cubic β-V2O5 phase structure with preferred orientation along [200]. With increase in the doping levels, the structure of the samples tends to be amorphous. The scanning electron microscopy images show that the structure of the samples is nanobelt-shaped and the width of the nanobelts decreases from nearly 100 to 40 nm with increase in the S concentration. With increase in the S-doping level, the sheet resistance and the optical band gap increase from 940 to 4015 kΩ/square and 2.41 to 2.7 eV, respectively. The cyclic voltammogram results obtained for different samples show that the undoped sample is expanded and the sample prepared at 20 at.% S-doping level has sharper anodic and cathodic peaks.

  12. A new method for manufacturing graphene and electrochemical characteristic of graphene-supported Pt nanoparticles in methanol oxidation

    NASA Astrophysics Data System (ADS)

    Kakaei, Karim; Zhiani, Mohammad

    2013-03-01

    We report a Pt/graphene catalyst for the methanol oxidation. Graphene is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Graphene-supported Pt electrocatalyst is then reduced by sodium borohydride with ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) as a stabilizing agent to prepare highly dispersed Pt nanoparticles on carbon graphene to use as methanol oxidation in direct methanol fuel cell (DMFC) catalysts. X-ray diffractometer and scanning electron microscopy technique are used to investigate the crystallite size and the surface morphologies respectively. The electrochemical characteristics of the Pt/graphene and commercial Pt/C catalysts are investigated by cyclic voltammetry (CV) in nitrogen saturated sulfuric acid aqueous solutions and in mixed sulfuric acid and methanol aqueous solutions. The catalytic activities of the Pt/graphene and Pt/C electrodes for methanol oxidation is 1315 A g-1 Pt and 725 A g-1 Pt, which can be revealed the particular properties of the exfoliated graphene supports. Furthermore, Pt/graphene exhibited a better sensitivity, signal-to-noise ratio, and stability than commercial Pt/C.

  13. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy.

    PubMed

    Kwon, Seong Jung; Bard, Allen J

    2012-04-25

    We investigated the electrochemical detection of single iridium oxide nanoparticle (IrO(x) NP) collisions at the NaBH(4)-treated Pt ultramicroelectrode (UME) in a scanning electrochemical microscope (SECM) over an insulating surface. The NP collision events were monitored by observing the electrocatalytic water oxidation reaction at potentials where it does not take place on the Pt UME. These collisions occurred stochastically, resulting in a transient response ("blip") for each collision. The frequency of the collisions is proportional to the flux of NPs to the UME tip, and thus equivalent to the SECM current. A plot of collision frequency versus distance followed the theoretical approach curve behavior for negative feedback for a high concentration of mediator, demonstrating that the collisions were diffusion-controlled and that single-particle measurements of mass transport are equivalent to ensemble ones. When the SECM was operated with a Pt substrate at the same potential as the tip, the behavior followed that expected of the shielding mode. These studies and additional ones result in a model where the IrO(x) NP collision on the Pt UME is adsorptive, with oxygen produced by the catalyzed water oxidation causing a current decay. This results in a blip current response, with the current decay diminished in the presence of the oxygen scavenger, sulfite ion. Random walk and theoretical bulk simulations agreed with the proposed mechanism of IrO(x) NP collision, adsorption, and subsequent deactivation. PMID:22452267

  14. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan.

    PubMed

    Liu, Bingdi; Ouyang, Xiaoqian; Ding, Yaping; Luo, Liqing; Xu, Duo; Ning, Yanqun

    2016-01-01

    In the present work, transition metal oxides decorated graphene (GR) have been fabricated for simultaneous determination of dopamine (DA), acetaminophen (AC) and tryptophan (Trp) using square wave voltammetry. Electro-deposition is a facile preparation strategy for the synthesis of nickel oxide (NiO) and copper oxide (CuO) nanoparticles. GR can be modified by using citric acid to produce more functional groups, which is conducive to the deposition of dispersed metal particles. The morphologies and interface properties of the obtained NiO-CuO/GR nanocomposite were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Moreover, the electrochemical performances of the composite film were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited that the linear response ranges for detecting DA, AC and Trp were 0.5-20 μM, 4-400 μM and 0.3-40 μM, respectively, and the detection limits were 0.17 μM, 1.33 μM and 0.1 μM (S/N=3). Under optimal conditions, the sensor displayed high sensitivity, excellent stability and satisfactory results in real samples analysis. PMID:26695242

  15. Performance of electrochemical oxidation process for removal of di (2-ethylhexyl) phthalate.

    PubMed

    Espinoza, Josué Daniel García; Drogui, Patrick; Zolfaghari, Mehdi; Dirany, Ahmad; Ledesma, Maria Teresa Orta; Gortáres-Moroyoqui, Pablo; Buelna, Gerardo

    2016-06-01

    Di (2-ethylhexyl) phthalate (DEHP) is the most detected and concentrated plasticizer in environment and wastewaters, worldwide. In this study, different operating parameters such as current intensity, treatment time, type of anodes, and supporting electrolytes were tested to optimized the electro-oxidation process (EOP) for the removal of DEHP in the presence of methanol as a dissolved organic matter. Among the anodes, the Nb/BDD showed the best degradation rate of DEHP, at low current intensity of 0.2 A after 90 min of treatment time with a percentage of degradation recorded of 81 %, compared to 70 % obtained with the Ti/IrO2-RuO2. Furthermore, due to the combination of direct and indirect oxidation, the removal of DEHP in the presence of 1 g/L Na2SO4 was higher than NaBr, even though the oxidant production of NaBr was 11.7 mmol/L against 3.5 mmol/L recorded in the presence of sulfate at 0.5 A and after 60 min of electrolysis time. Under optimal condition (current intensity = 0.5 A, time = 120 min, using Nb/BDD anode and Na2SO4 as supporting electrolyte), the removal of 87.2 % of DEHP was achieved. The total cost of 0.106 US$/m(3) of treated water was achieved based on economical optimization of reactor with current intensity of 0.2 A and 1 g/L Na2SO4. PMID:26971515

  16. Electrochemical stability and restructuring and its impact on the electro-oxidation of CO: Pt modified Ru(0001) electrodes

    NASA Astrophysics Data System (ADS)

    Engstfeld, A. K.; Klein, J.; Brimaud, S.; Behm, R. J.

    2015-01-01

    Structural modifications during electrochemical measurements on well defined Pt modified Ru(0001) electrode surfaces, which were prepared and characterized under ultrahigh vacuum (UHV) conditions, and the influence of the restructuring on the CO oxidation reaction have been investigated in a set-up combining surface preparation and scanning tunneling microscopy characterization under UHV conditions (UHV-STM) and electrochemical flow cell measurements. Bare Ru(0001) and Pt monolayer island modified Ru(0001) electrodes with different Pt coverages were investigated, together with a Pt0.3Ru0.7/Ru(0001) monolayer surface alloy for comparison. Comparing bulk CO oxidation measurements performed upon cycling in base electrolyte (0.5 M H2SO4) to 0.90 VRHE with similar measurements performed after potential cycling to 1.05 VRHE, we find pronounced differences in the current-voltage characteristics, with a distinct new peak at low potentials in the positive-going scan in the latter case, which is centered at 0.67 VRHE. STM imaging performed before and after the electrocatalytic measurements revealed a distinct restructuring of the Pt monolayer island modified Ru(0001) surfaces upon potential cycling to 1.05 VRHE, while cycling to 0.90 VRHE maintains the original structure and morphology of the bimetallic surface. In contrast, for the bare Ru(0001) electrode, restructuring of steps is observed already upon potential cycling to 0.9 VRHE. Implications of these findings on the electrochemical stability of the electrodes as well as on the mechanistic understanding of the CO oxidation reaction on bimetallic PtRu electrode surfaces and on the activity of different mono- and bimetallic nanostructures are discussed.

  17. Treatment of trichlorophenol by catalytic oxidation process.

    PubMed

    Chu, W; Law, C K

    2003-05-01

    The oxidation of 2,4,6-trichlorophenol (TCP) by ferrous-catalyzed hydrogen peroxide was quantified and modeled in the study. TCP was effectively degraded by hydroxyl radicals that were generated by Fe(II)/H(2)O(2) in the oxidation process. The oxidation capacity (OC) of the process depends on the concentrations of oxidant (hydrogen peroxide) and oxidative catalyst (ferrous ion). Up to 99.6% of TCP removal can be achieved in the process, provided the doses of Fe(II) and H(2)O(2) are selected correctly. The OC of the process was successfully predicted through a kinetic approach in a two-stage model with some simple and measurable parameters, which makes the model useful for predicting, controlling and optimizing the catalyzed oxidation process in the degradation of TCP. PMID:12727243

  18. Oxidation state-differentiated measurement of aqueous inorganic arsenic by continuous flow electrochemical arsine generation coupled to gas-phase chemiluminescence detection.

    PubMed

    Sengupta, Mrinal K; Dasgupta, Purnendu K

    2011-12-15

    The electrochemical reduction of inorganic As on a graphite cathode depends on the current density. We observed that while only inorganic As(III) is reduced to AsH(3) at low current densities, at high current densities both forms of inorganic As are reduced. We describe a unique electrochemical reactor in which the cylindrical anode compartment is isolated from the outer concentric cathode compartment by a Nafion tube in which a hole is deliberately made and the entire anode compartment is inside the cylindrical cavity of a small volume (∼115 μL) cathode chamber. The evolved arsine is then quantitated by gas-phase chemiluminescence (GPCL) reaction with ozone; the latter is generated from oxygen formed during electrolysis. For the dimensions used, inorganic As(III) can be selectively determined at a current of 0.1 A while total inorganic As (both As(III) and As(V)) respond equally at an applied electrolysis current at 0.85 A, without any sample treatment. For a 1-mL sample, the system provides a limit of detection (LOD, S/N = 3) of 0.09 μg/L for total As (i = 0.85 A) and an LOD of 0.76 μg/L for As(III) (i = 0.10 A); As(V) is obtained by difference. Comparison of ICP-MS results for total As in groundwater samples that span a large range of concentration and total inorganic As determined by the present method showed a high correlation (r(2) = 0.9975) and a near unity slope. The basic electrochemical arsine generation technique and current-differentiated oxidation state speciation should be applicable as the front end to many other arsenic measurements techniques, including atomic spectrometry. PMID:22035322

  19. Fabrication of Fe2O3 nanoflakes-based electrochemical solar cells prepared by facile thermal oxidation

    NASA Astrophysics Data System (ADS)

    Rashid, Norhana Mohamed; Kishi, Naoki; Soga, Tetsuo

    2016-06-01

    A Fe2O3 nanoflakes-based solar cell was successfully prepared by thermal oxidation of iron film on FTO glass. The short circuit current density (Jsc) of the cell increased with annealing time while the open circuit voltage was saturated after 1 h. This enhancement was caused by the increased surface area of the nanoflakes and improved electron transfer through the (110) crystal plane in the Fe2O3-based electrochemical solar cell. The overall photovoltaic performance significantly increased with ruthenium dye, which likely suppressed carrier recombination on the Fe2O3 surface.

  20. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    NASA Astrophysics Data System (ADS)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-02-01

    Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution.