Sample records for electrode negative dans

  1. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  2. Electrochemical cell and negative electrode therefor

    DOEpatents

    Kaun, Thomas D.

    1982-01-01

    A secondary electrochemical cell with the positive and negative electrodes separated by a molten salt electrolyte with the negative electrode comprising a particulate mixture of lithium-aluminum alloy and electrolyte and an additive selected from graphitized carbon, Raney iron or mixtures thereof. The lithium-aluminum alloy is present in the range of from about 45 to about 80 percent by volume of the negative electrode, and the electrolyte is present in an amount not less than about 10 percent by volume of the negative electrode. The additive of graphitized carbon is present in the range of from about 1 to about 10 percent by volume of the negative electrode, and the Raney iron additive is present in the range of from about 3 to about 10 percent by volume of the negative electrode.

  3. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  4. Negative electrodes for lithium cells and batteries

    DOEpatents

    Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.

    2005-02-15

    A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.

  5. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  6. Design of interpenetrated network MWCNT/poly(1,5-DAN) on interdigital electrode: toward NO2 gas sensing.

    PubMed

    Nguyen, Dzung Tuan; Nguyen, My Thanh; Ho, Giang Truong; Nguyen, Toan Ngoc; Reisberg, S; Piro, B; Pham, M C

    2013-10-15

    In this paper, poly(1,5-diaminonaphthalene) was interpenetrated into the network made of multiwalled carbon nanotubes (MWCNT) on platinum interdigital electrode (IDE) by electro-polymerization of 1,5-diaminonaphthalene (1,5-DAN). The electro-polymerization process of 1,5-DAN on MWCNT was controlled by scanning the cyclic voltage at 50 mV s(-1) scan rate between -0.1 V and +0.95 V vs. saturated calomel electrode (SCE). The results of voltammetric responses and Raman spectroscopy represented that the films MWCNT/poly(1,5-DAN) were successfully created by this polymerization process. The films MWCNT/poly(1,5-DAN) were investigated for gas-sensing to NO2 at low concentration level. The gas-sensing results showed that the response-recovery times were long and strongly affected by thickness of the film MWCNT/poly(1,5-DAN). Nevertheless, these films represented auspicious results for gas sensors operating at room temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Lithium alloy negative electrodes

    NASA Astrophysics Data System (ADS)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  8. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  9. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    PubMed

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    PubMed Central

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  11. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOEpatents

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  12. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    NASA Astrophysics Data System (ADS)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  13. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  14. Electrochemical behavior of negative electrode of lead-acid cells based on reticulated vitreous carbon carrier

    NASA Astrophysics Data System (ADS)

    Czerwiński, A.; Obrębowski, S.; Kotowski, J.; Rogulski, Z.; Skowroński, J. M.; Krawczyk, P.; Rozmanowski, T.; Bajsert, M.; Przystałowski, M.; Buczkowska-Biniecka, M.; Jankowska, E.; Baraniak, M.

    Reticulated vitreous carbon (RVC ®) and RVC ® plated with lead were investigated as carriers for the negative electrode of lead-acid cell. The RVC ® and Pb/RVC ® carriers were pasted with active paste (received from JENOX Ltd., Polish producer of lead-acid batteries) and prepared to be used in lead-acid cell. Comparative study of electrodes based on RVC ® and Pb/RVC ® has been done using constant-current charging/discharging, constant-potential discharging and cycling voltammetry measurements. Scanning electron microscopy (SEM) was employed to determine the morphology of the lead layer deposited on the RVC surface. Hybrid flooded single lead-acid cells containing one negative electrode, based on new type of carrier (RVC ® or Pb/RVC ®), sandwiched between two positive electrodes, based on the Pb-Ca grids, were assembled and subjected to electrochemical tests. It has been found that both materials, RVC ® and Pb/RVC ®, can be used as carriers of negative electrode, but the latter seems to have better influence on the discharge performance.

  15. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors.

    PubMed

    Lu, Xihong; Zeng, Yinxiang; Yu, Minghao; Zhai, Teng; Liang, Chaolun; Xie, Shilei; Balogun, Muhammad-Sadeeq; Tong, Yexiang

    2014-05-21

    Oxygen-deficient α-Fe2 O3 nanorods with outstanding capacitive performance are developed and demonstrated as novel negative electrodes for flexible asymmetric supercapacitors. The asymmetric-supercapacitor device based on the oxygen-deficient α-Fe2 O3 nanorod negative electrode and a MnO2 positive electrode achieves a maximum energy density of 0.41 mW·h/cm(3) ; it is also capable of charging a mobile phone and powering a light-emitting diode indicator. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode

    NASA Astrophysics Data System (ADS)

    Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru

    2016-09-01

    Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.

  17. The negative electrode development for a Ni-MH battery prototype

    NASA Astrophysics Data System (ADS)

    Cuscueta, D. J.; Ghilarducci, A. A.; Salva, H. R.; Milocco, R. H.; Castro, E. B.

    2009-10-01

    The negative electrode development for a nickel-metal hydride battery (Ni-MH) prototype was performed with the following procedure: (1) the Lm 0.95Ni 3.8Co 0.3Mn 0.3Al 0.4 (Lm=lanthanum rich mischmetal) intermetallic alloy was elaborated by melting the pure elements in an induction furnace inside a boron nitride crucible under an inert atmosphere, (2) the obtained alloy was crushed and sieved between 44 and 74 μm and mixed with teflonized carbon; (3) the compound was assembled together with a current collector and pressed in a cylindrical matrix. The obtained electrode presented a disc shape, with 11 mm diameter and approximately 1 mm thickness. The crystalline structure of the hydrogen storage alloy was examined using X-ray diffractometry. The measured hcp lattice volume was 1.78% larger than the precursor LaNi 5 intermetallic alloy, increasing the available space for hydrogen movement. Energy dispersive spectroscopy (EDS) and scanning electronic microscopy (SEM) measurements were used before and after hydriding in order to verify the alloy sample homogeneity. The negative electrode was electrochemically tested by using a laboratory cell. It activates almost totally in its first cycle, which is an excellent characteristic from the commercial point of view. The maximum discharge capacity reached was 314.2 mA h/g in the 10th cycle.

  18. Review on α-Fe2O3 based negative electrode for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Nithya, V. D.; Arul, N. Sabari

    2016-09-01

    Supercapacitor is an electrochemical energy storage device which has drawn attention of the researchers in recent years due to its high power density and long cycle life. Recently, an enormous effort has been imposed to improve the energy density of supercapacitor and might be attained through asymmetric cell configuration that offer wider potential window. Until now, a significant advancement has been achieved in the fabrication of positive electrodes for asymmetric cell. Nevertheless, the electrochemical performance of negative electrode materials is less explored, especially Hematite (α-Fe2O3). The α-Fe2O3 has been proved to be a promising negative electrode in supercapacitor application due to its wide operating potential, high redox activity, low cost, abundant availability and eco-friendliness. In this review, we have chosen α-Fe2O3 as the negative electrode and discussed its latest research progress with emphasis on various surface engineering synthesis strategies such as, carbon, polymer, metal-metal oxide, and ternary based α-Fe2O3 composites for supercapacitor. Besides, the importance of their synergistic effects over the supercapacitive performance in terms of specific capacitance, energy density, power density, cycling life and rate capability are highlighted. Also, an extensive analysis of the literature about its symmetric/asymmetric cell performance is explored.

  19. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Chen, G.; Rotaru, M.

    2011-08-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  20. Low-bias negative differential conductance controlled by electrode separation

    NASA Astrophysics Data System (ADS)

    Yi, Xiao-Hua; Liu, Ran; Bi, Jun-Jie; Jiao, Yang; Wang, Chuan-Kui; Li, Zong-Liang

    2016-12-01

    The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 11405098) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006).

  1. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    PubMed

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  2. Surface-modified Mg{sub 2}Ni-type negative electrode materials for Ni-MH battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, N.; Luan, B.; Bradhurst, D.

    1997-12-01

    In order to further improve the electrode performance of Mg{sub 1.9}Y{sub 0.1}Ni{sub 0.9}Al{sub 0.1} alloy at ambient temperature, its surface was modified by an ultrasound pretreatment in the alkaline solution and microencapsulation with Ni-P coating. The effects of various surface modifications on the microstructure and electrochemical performance of the alloy electrodes were investigated and compared in this paper. It was found that the modification with ultrasound pretreatment significantly improved the electrocatalytic activity of the negative electrode and then reduced the overpotential of charging/discharging, resulting in a remarkable increase of electrode capacity and high-rate discharge capability but having little influence onmore » the cycle life. However, the electrode fabricated from the microencapsulated alloy powder showed a higher discharge capacity, better high-rate discharge capability and longer cycle life as well.« less

  3. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    PubMed

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.

    PubMed

    Higgins, Thomas M; Park, Sang-Hoon; King, Paul J; Zhang, Chuanfang John; McEvoy, Niall; Berner, Nina C; Daly, Dermot; Shmeliov, Aleksey; Khan, Umar; Duesberg, Georg; Nicolosi, Valeria; Coleman, Jonathan N

    2016-03-22

    This work describes silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PSS. While enabling the production of well-mixed slurry-cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm(2), this system demonstrated a first cycle lithiation capacity of 3685 mA·h/g (based on the SiNP mass) and a first cycle efficiency of ∼78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mA·h/g normalized to Si mass (∼75% capacity retention), corresponding to 1542 mA·h/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (∼1.5 mg/cm(2)), a high areal capacity of 3 mA·h/cm(2) was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.

  5. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.

    1977-03-08

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.

  6. Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li-Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xingcheng; Zhou, Weidong; Kim, Youngnam

    Si is an attractive negative electrode material for lithium ion batteries due to its high specifi c capacity (≈3600 mAh g –1 ). However, the huge volume swelling and shrinking during cycling, which mimics a breathing effect at the material/electrode/cell level, leads to several coupled issues including fracture of Si particles, unstable solid electrolyte interphase, and low Coulombic effi ciency. In this work, the regulation of the breathing effect is reported by using Si–C yolk–shell nanocomposite which has been well-developed by other researchers. The focus is on understanding how the nanoscaled materials design impacts the mechanical and electrochemical response atmore » electrode level. For the fi rst time, it is possible to observe one order of magnitude of reduction on breathing effect at the electrode level during cycling: the electrode thickness variation reduced down to 10%, comparing with 100% in the electrode with Si nanoparticles as active materials. The Si–C yolk–shell nanocomposite electrode exhibits excellent capacity retention and high cycle effi ciency. In situ transmission electron microscopy and fi nite element simulations consistently reveals that the dramatically enhanced performance is associated with the regulated breathing of the Si in the new composite, therefore the suppression of the overall electrode expansion.« less

  7. Low energy milling method, low crystallinity alloy, and negative electrode composition

    DOEpatents

    Le, Dihn B; Obrovac, Mark N; Kube, Robert Y; Landucci, James R

    2012-10-16

    A method of making nanostructured alloy particles includes milling a millbase in a pebble mill containing milling media. The millbase comprises: (i) silicon, and (ii) at least one of carbon or a transition metal, and wherein the nanostructured alloy particles are substantially free of crystalline domains greater than 50 nanometers in size. A method of making a negative electrode composition for a lithium ion battery including the nanostructured alloy particles is also disclosed.

  8. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Z.; Olszanski, W.; Battles, J.E.

    1975-12-09

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such a solid lithium--aluminum filled within a substrate of metal foam are provided. 1 figure, 1 table.

  9. Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Nagamuthu, Sadayappan; Vijayakumar, Subbukalai; Lee, Seong-Hun; Ryu, Kwang-Sun

    2016-12-01

    MnCo2O4 nanosheets and FeMn2O4 nanospheres were synthesized using a hydrothermal method. Choline chloride was used as the capping agent during the preparation of the nanoparticles. XRD patterns confirmed the spinel structure of MnCo2O4 and FeMn2O4. XPS measurements were used to determine the oxidation state of the prepared spinel metal oxides. HRTEM images revealed the formation of hexagonal nanosheets of MnCo2O4 and nanospheres of FeMn2O4. Electrochemical measurements were made for both positive and negative electrodes using three electrode systems. MnCo2O4 Exhibits 282C g-1 and FeMn2O4 yields 110C g-1 at a specific current of 1 A g-1. Hybrid supercapacitor device was fabricated using MnCo2O4 as the positive and FeMn2O4 as the negative electrode material. The hybrid supercapacitor device was delivered a maximum power of 37.57 kW kg-1.

  10. Lithium-ion capacitors using carbide-derived carbon as the positive electrode - A comparison of cells with graphite and Li4Ti5O12 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Rauhala, Taina; Leis, Jaan; Kallio, Tanja; Vuorilehto, Kai

    2016-11-01

    The use of carbide-derived carbon (CDC) as the positive electrode material for lithium-ion capacitors (LICs) is investigated. CDC based LIC cells are studied utilizing two different negative electrode materials: graphite and lithium titanate Li4Ti5O12 (LTO). The graphite electrodes are prelithiated before assembling the LICs, and LTO containing cells are studied with and without prelithiation. The rate capability and cycle life stability during 1000 cycles are evaluated by galvanostatic cycling at current densities of 0.4-4 mA cm-2. The CDC shows a specific capacitance of 120 F g-1 in the organic lithium-containing electrolyte, and the LICs demonstrate a good stability over 1000 charge-discharge cycles. The choice of the negative electrode is found to have an effect on the utilization of the CDC positive electrode during cycling and on the specific energy of the device. The graphite/CDC cell delivers a maximum specific discharge energy of 90 Wh kg-1 based on the total mass of active material in the cell. Both the prelithiated and non-prelithiated LTO/CDC cells show a specific energy of around 30 Wh kg-1.

  11. The effect of asymmetrical electrode form after negative bias illuminated stress in amorphous IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Su, Wan-Ching; Chang, Ting-Chang; Liao, Po-Yung; Chen, Yu-Jia; Chen, Bo-Wei; Hsieh, Tien-Yu; Yang, Chung-I.; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan; Chang, Kuan-Chang; Tsai, Tsung-Ming

    2017-03-01

    This paper investigates the degradation behavior of InGaZnO thin film transistors (TFTs) under negative bias illumination stress (NBIS). TFT devices with two different source and drain layouts were exanimated: one having a parallel format electrode and the other with UI format electrode. UI means that source/drain electrodes shapes is defined as a forked-shaped structure. The I-V curve of the parallel electrode exhibited a symmetric degradation under forward and reverse sweeping in the saturation region after 1000 s NBIS. In contrast, the I-V curve of the UI electrode structure under similar conditions was asymmetric. The UI electrode structure also shows a stretch-out phenomenon in its C-V measurement. Finally, this work utilizes the ISE-Technology Computer Aided Design (ISE-TCAD) system simulations, which simulate the electron field and IV curves, to analyze the mechanisms dominating the parallel and UI device degradation behaviors.

  12. The influence of negative current collector size on a liquid metal positive electrode

    NASA Astrophysics Data System (ADS)

    Mohammad, Ibrahim; Ashour, Rakan; Kelley, Douglas

    2017-11-01

    Fluid mixing in the positive electrode of a liquid metal battery (LMB) governs some performance-related factors such as the rate of charge and discharge of the battery. The negative current collector (NCC) of a LMB is always smaller than the positive current collector, implying that current is convergent at the NCC. Also, different NCC sizes introduce different thermal, electromagnetic, and flow boundary conditions. In this talk, I will show how our lab studies the influence of NCC diameter on the flow in a liquid metal positive electrode driven by electrical current. I will present measurements of the flow velocity taken via Ultrasonic Doppler Velocimetry (UDV) over a range of different currents, at different NCC diameters.

  13. Optimization of the Negative Electrode in Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Reese, Matthew; White, Matthew; Rumbles, Garry; Ginley, David; Shaheen, Sean

    2007-03-01

    A blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is used as the active layer in a series of bulk heterojunction organic solar cells. This polymer blend serves as a test-bed to explore the significant effects on device performance of using low work function metals and/or alkali metal halides as the top, negative electrode. Work function values reported in the literature are compared with those measured for our thin films. A series of contact materials are investigated including Al, Ca/Al, Ba/Al, LiF/Al; many devices are prepared with each contact type to validate the statistical significance of the results.

  14. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  15. Negative ion formation and evolution in atmospheric pressure corona discharges between point-to-plane electrodes with arbitrary needle angle

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    2010-12-01

    The change in the distribution pattern of negative ions HO-, NOx- and COx- observed on arbitrary point-to-plane electrode configuration has been investigated by varying the angle of needle to the plane electrode, under atmospheric pressure corona discharge conditions. The stationary inhomogeneous electric field distributions between the point-to-plane electrodes with arbitrary needle angle were calculated. The experimental and theoretical results obtained suggested that the negative ion evolutions progress along field lines established between the electrodes with arbitrary configurations and the resulting terminal ion formation on a given field line is attributable to the electric field strength on the needle tip surface where the field line arose. The NOx- and COx- ions were dominantly produced on the field lines arising from the needle tip apex region with the highest electric field strength, while the field lines emanating from the tip peripheral regions with lower field strength resulted in the formation of the HO- ion.

  16. Atmospheric negative corona discharge using a Taylor cone as liquid electrode

    NASA Astrophysics Data System (ADS)

    Sekine, Ryuto; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2012-10-01

    We examined characteristics of atmospheric negative corona discharge using liquid needle cathode. As a liquid needle cathode, we adopted Taylor cone with conical shape. A nozzle with inner diameter of 10 mm is filled with liquid, and a plate electrode is placed at 10 mm above the nozzle. By applying a dc voltage between electrodes, Taylor cone is formed. To change the liquid property, we added sodium dodecyl sulfate to reduce the surface tension, sodium sulfate to increase the conductivity, and polyvinyl alcohol to increase the viscosity, in distilled water. The liquid, with high surface tension such as pure water could not form a Taylor cone. When we reduced surface tension, a Taylor cone was formed and the stable corona discharge was observed at the tip of the cone. When we increased viscosity, a liquid filament protruded from the solution surface was formed and corona discharge was observed along the filament at position 0.7-1.0 mm above from the tip of the cone. Increasing the conductivity resulted in the higher light intensity of corona and the lower corona onset voltage. When we use the metal needle electrode, the corona discharge depends on the voltage and the gap length. Using Taylor cone, different types of discharges were observed by changing the property of the liquid.

  17. A Facile Strategy for the Preparation of MoS3 and its Application as a Negative Electrode for Supercapacitors.

    PubMed

    Zhang, Tong; Kong, Ling-Bin; Dai, Yan-Hua; Yan, Kun; Shi, Ming; Liu, Mao-Cheng; Luo, Yong-Chun; Kang, Long

    2016-09-06

    Owing to their graphene-like structure and available oxidation valence states, transition metal sulfides are promising candidates for supercapacitors. Herein, we report the application of MoS3 as a new negative electrode for supercapacitors. MoS3 was fabricated by the facile thermal decomposition of a (NH4 )2 MoS4 precursor. For comparison, samples of MoS3 &MoS2 and MoS2 were also synthesized by using the same method. Moreover, this is the first report of the application of MoS3 as a negative electrode for supercapacitors. MoS3 displayed a high specific capacitance of 455.6 F g(-1) at a current density of 0.5 A g(-1) . The capacitance retention of the MoS3 electrode was 92 % after 1500 cycles, and even 71 % after 5000 cycles. In addition, an asymmetric supercapacitor assembly of MoS3 as the negative electrode demonstrated a high energy density at a high potential of 2.0 V in aqueous electrolyte. These notable results show that MoS3 has significant potential in energy-storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ti-substituted tunnel-type Na 0.44MnO 2 oxide as a negative electrode for aqueous sodium-ion batteries

    DOE PAGES

    Wang, Yuesheng; Liu, Jue; Lee, Byungju; ...

    2015-03-25

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na 0.44MnO 2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi 2(PO 4) 3, are available. Here we show that Ti-substituted Na 0.44MnO 2 (Na 0.44[Mn 1-xTi x]O 2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on sphericalmore » aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na 0.44[Mn 1-xTi x]O 2 is a promising negative electrode material for aqueous sodium-ion batteries.« less

  19. HIGH VOLTAGE ELECTRODES

    DOEpatents

    Murray, J.J.

    1963-04-23

    S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)

  20. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S.

    We investigated the influence of vinylene carbonate, as an additive molecule, on the decomposition phenomena of electrolyte solution [ethylene carbonate (EC)—ethyl methyl carbonate (EMC) (1:2 by volume) containing 1 M LiPF 6] on a highly oriented pyrolytic graphite (HOPG) negative electrode by using cyclic voltammetry (CV) and atomic force microscopy (AFM). Vinylene carbonate deactivated reactive sites (e.g. radicals and oxides at the defects and the edge of carbon layer) on the cleaved surface of the HOPG negative electrode, and prevented further decomposition of the other solvents there. Further, vinylene carbonate induced an ultra-thin film (less than 1.0 nm in thickness) on the terrace of the basal plane of the HOPG negative electrode, and this film suppressed the decomposition of electrolyte solution on the terraces of the basal plane. We consider that this ultra-thin passivating film is composed of a reduction product of vinylene carbonate (VC), and might have a polymer structure. These induced effects might explain how VC improves the life performance of lithium-ion cells.

  1. Negative-Electrode Catalysts for Fe/Cr Redox Cells

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Hagedorn, N.

    1987-01-01

    Electrodes perform more consistently and less expensive. Surfaces catalyzed by bismuth and bismuth/lead developed for application on chromium electrode in iron/chromium redox electrochemical energy storage system. NASA Fe/Cr storage system incorporates two soluble electrodes consisting of acidified solutions of iron chloride (FeC13 and FeC12) and chromium chloride (CrC13 and CrC12) oxidized and reduced in power-conversion unit to store and produce electricity. Electrolytes circulated with pumps and stored in external tanks.

  2. Ozone production of hollow-needle-to-mesh negative corona discharge enhanced by dielectric tube on the needle electrode

    NASA Astrophysics Data System (ADS)

    Pekárek, Stanislav

    2014-12-01

    For the hollow-needle-to-mesh negative corona discharge in air, we studied the effect of placing the dielectric tube on the needle electrode and the effect of various positions of the end of this tube with respect to the tip of the needle electrode on the concentration of ozone produced by the discharge, the ozone production yield and the discharge V-A characteristics. We found that the placement of the dielectric tube on the needle electrode with a suitable position of this tube end with respect to the tip of the needle electrode for a particular discharge power led to a more than fourfold increase in the concentration of ozone produced by the discharge and also, for a constant airflow, the ozone production yield.

  3. Uncharged positive electrode composition

    DOEpatents

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  4. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Lu; Zhang, Mingyi; Zhang, Xitian; Zhang, Zhiguo

    2017-10-01

    Novel 3D Ti3C2 aerogel has been first synthesized by a simple EDA-assisted self-assembly process. Its inside are channels and pores structure. The interconnected aerogel structure could efficiently restrain restacking of Ti3C2 flakes. Thus, it exhibits a large specific surface area as high as 176.3 m2 g-1. The electrochemical performances have been measured. The Ti3C2 aerogel achieves a quite high areal capacitance of 1012.5 mF cm-2 for the mass loading of 15 mg at a scan rate of 2 mV s-1 in 1 M KOH electrolyte. An asymmetric supercapacitor (ASC) has been assembled by using the Ti3C2 aerogel electrode as the negative electrode and electrospinning carbon nanofiber film as the positive electrode. The device can deliver a high energy density of 120.0 μWh cm-2 and a maximum power density of 26123 μW cm-2. A lamp panel with nineteen red light-emitting diodes has been powered by two ASCs in series.

  5. Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Woo, Jihoon; Baek, Seong-Ho; Park, Jung-Soo; Jeong, Young-Min; Kim, Jae Hyun

    2015-12-01

    We introduce a one-step process that consists of thermal disproportionation and impurity doping to enhance the reversible capacity and electrical conductivity of silicon monoxide (SiO)-based negative electrode materials in Li-ion batteries. Transmission electron microscope (TEM) results reveal that thermally treated SiO at 900 °C (H-SiO) consists of uniformly dispersed nano-crystalline Si (nc-Si) in an amorphous silicon oxide (SiOx) matrix. Compared to that of prinstine SiO, the electrochemical performance of H-SiO shows improved specific capacity, due mainly to the increased reversible capacity by nc-Si and to the reduced volume expansion by thermally disproportionated SiOx matrix. Further electrochemical improvements can be obtained by boron-doping on SiO (HB-SiO) using solution dopant during thermal disproportionation. HB-SiO electrode without carbon coating exhibits significantly enhanced specific capacity superior to that of undoped H-SiO electrode, having 947 mAh g-1 at 0.5C rate and excellent capacity retention of 93.3% over 100 cycles. Electrochemical impedance spectroscopy (EIS) measurement reveals that the internal resistance of the HB-SiO electrode is significantly reduced by boron doping.

  6. NiCd battery electrodes

    NASA Technical Reports Server (NTRS)

    Holleck, G.; Turchan, M.; Hopkins, J.

    1972-01-01

    The objective of this research program was to develop and evaluate electrodes for a negative limited nickel-cadmium cell and to prove its feasibility. The program consisted of three phases: (1) the development of cadmium electrodes with high hydrogen overvoltage characteristics, (2) the testing of positive and negative plates, and (3) the fabrication and testing of complete negative limited NiCd cells. The following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures. All cadmium electrode structures showed a sharp increase in potential at the end of charge, with the advent of hydrogen evolution occurring at approximately -1.3 V versus Hg/HgO. The hydrogen advent potentials on pure cadmium structures were 50 to 70 mV more cathodic than those of their silver-containing counterparts.

  7. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael

    2018-01-01

    In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.

  8. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties

    DOE PAGES

    Sougrati, Moulay T.; Darwiche, Ali; Liu, Xiaohiu; ...

    2016-03-16

    Here we report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as a negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on 57Fe M ssbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe NCN into Li/Na NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not requiremore » heavy treatments (nanoscale tailoring, sophisticated textures, coating etc.) to obtain long cycle life with density current as high as 9 A/g -1 for hundreds of charge/discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides M x(NCN) y with M = Mn, Cr, Zn can cycle successfully versus lithium and sodium. Ultimately, their electrochemical activity and performances open the way to the design of a novel family of anode materials.« less

  9. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nemaga, Abirdu Woreka; Mallet, Jeremy; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2018-07-01

    The development of high energy density Li-ion batteries requires to look for electrode materials with high capacity while keeping their stability upon cycling. In this study, amorphous silicon (a-Si) thin film deposited on self-organized TiO2 nanotubes is investigated as negative electrode for Li-ion batteries. Nanostructured composite negative electrodes were fabricated by a two-step cost effective electrochemical process. Firstly, self-organized TiO2 nanotube arrays were synthesised by anodizing of Ti foil. Subsequently, thanks to the use of room temperature ionic liquid, conformal Si layer was electrodeposited on the TiO2 nanotubes to achieve the synthesis of nanostructured a-Si/TiO2 nanotube composite negative electrodes. The influence of the Si loading as well as the crystallinity of the TiO2 nanotubes have been studied in terms of capacity and cyclic stability. For an optimized a-Si loading, it is shown that the amorphous state for the TiO2 nanotubes enables to get stable lithiation and delithiation with a total areal charge capacity of about 0.32 mA h cm-2 with improved capacity retention of about 84% after 50 cycles, while a-Si on crystalline TiO2 nanotubes shows poor cyclic stability independently from the Si loading.

  10. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  11. Spin-Filtering Rectifying and Negative Differential Resistance Behaviors in Co(dmit)2 Molecular Devices with Monatomic (C, Fe, Au) Electrodes

    NASA Astrophysics Data System (ADS)

    Yan, Shenlang; Long, Mengqiu; Zhang, Xiaojiao; He, Jun; Xu, Hui; Gao, Yongli

    2014-09-01

    Using nonequilibrium Green's functions (NEGFs) combined with the density functional theory (DFT), we study the electronic transport properties of a single molecule magnet Co(dmit)2, which is sandwiched between two monatomic chain electrodes, and the different electrode materials carbon, iron and gold, have been considered. The results show that the electrodes play a crucial role in the spin-dependent transport of the Co(dmit)2 molecular device, and some interesting phenomenon, such as perfect spin-filtering effect, rectifying and negative differential resistance (NDR) can be observed. We demonstrated that the magnetic Fe electrode can lead to high spin-flittering effect, and the different hybridization and alignment of energy levels between the molecule and the electrodes may be responsible for the rectification performance, and the distributions (delocalization or localization) of the frontier molecular orbitals under different bias result in the NDR behaviors. These characteristics could be used in the study of spin physics and the realization of nanospintronic devices.

  12. Synthesis and properties of Li3VO4 - Carbon composite as negative electrode for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Narumi, Kengo; Mori, Tomoya; Kumasaka, Rei; Tojo, Tomohiro; Inada, Ryoji; Sakurai, Yoji

    2017-07-01

    Lithium vanadate Li3VO4 (LVO) is known to be as one of the attractive candidates for negative electrode of lithium-ion battery (LIB) with high safety. Although theoretical capacity of LVO attains to 400 mAh g-1, the actual charge and discharge capacities are far below due to its low electrical and ionic conductivity. In this study, we synthesized carbon-coated LVO (C-LVO) via one-step solid state reaction method and examined its properties as a negative electrode for LIB. From XRD measurements and SEM observation, crystal structure of C-LVO was nearly identical with non-coated one but grain size of former was much smaller than latter with same annealing temperature, suggesting that introduction of carbon source in starting materials effectively helps to suppress LVO grain growth during annealing. TEM observation of C-LVO also shows that amorphous carbon layer with its thickness of several ten nm was formed on the surface of LVO grain. In electrochemical testing, C-LVO shows much higher charge and discharge capacities than non-coated LVO.

  13. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  14. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes.

    PubMed

    Dubal, Deepak P; Chodankar, Nilesh R; Vinu, Ajayan; Kim, Do-Heyoung; Gomez-Romero, Pedro

    2017-07-10

    Nanofabrication using a "bottom-up" approach of hybrid electrode materials into a well-defined architecture is essential for next-generation miniaturized energy storage devices. This paper describes the design and fabrication of reduced graphene oxide (rGO)/polyoxometalate (POM)-based hybrid electrode materials and their successful exploitation for asymmetric supercapacitors. First, redox active nanoclusters of POMs [phosphomolybdic acid (PMo 12 ) and phosphotungstic acid (PW 12 )] were uniformly decorated on the surface of rGO nanosheets to take full advantage of both charge-storing mechanisms (faradaic from POMs and electric double layer from rGO). The as-synthesized rGO-PMo 12 and rGO-PW 12 hybrid electrodes exhibited impressive electrochemical performances with specific capacitances of 299 (269 mF cm -2 ) and 370 F g -1 (369 mF cm -2 ) in 1 m H 2 SO 4 as electrolyte at 5 mA cm -2 . An asymmetric supercapacitor was then fabricated using rGO-PMo 12 as the positive and rGO-PW 12 as the negative electrode. This rGO-PMo 12 ∥rGO-PW 12 asymmetric cell could be successfully cycled in a wide voltage window up to 1.6 V and hence exhibited an excellent energy density of 39 Wh kg -1 (1.3 mWh cm -3 ) at a power density of 658 W kg -1 (23 mW cm -3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  16. Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte: Performance of electroplated Al film negative electrode

    NASA Astrophysics Data System (ADS)

    Ui, Koichi; Yamamoto, Keigo; Ishikawa, Kohei; Minami, Takuto; Takeuchi, Ken; Itagaki, Masayuki; Watanabe, Kunihiro; Koura, Nobuyuki

    The negative electrode performance of the electroplated Al film electrode in the LiCl saturated AlCl 3-1-ethyl-3-methylimizadolium chloride (EMIC) + SOCl 2 melt as the electrolyte for use in non-flammable lithium secondary batteries was evaluated. In the cyclic voltammogram of the electroplated Al film electrode in the melt, the oxidation and reduction waves corresponding to the electrochemical insertion/extraction reactions of the Li + ion were observed at 0-0.80 V vs. Li +/Li, which suggested that the electroplated Al film electrode operated well in the electrolyte. The almost flat potential profiles at about 0.40 V vs. Li +/Li on discharging were shown. The discharge capacity and charge-discharge efficiency was 236 mAh g -1 and 79.2% for the 1st cycle and it maintained 232 mAh g -1 and 77.9% after the 10th cycle. In addition, the initial charge-discharge efficiencies of the electroplated Al film electrode were higher than that of carbon electrodes. The main cathodic polarization reaction was the insertion of Li + ions, and side reactions hardly occurred due to the decomposition reaction of the melt because the Li content corresponding to the electricity was almost totally inserted into the film after charging.

  17. Negative differential conductance in doped-silicon nanoscale devices with superconducting electrodes

    NASA Astrophysics Data System (ADS)

    Shapovalov, A.; Shaternik, V.; Suvorov, O.; Zhitlukhina, E.; Belogolovskii, M.

    2018-02-01

    We present a proof-of-concept nanoelectronics device with a negative differential conductance, an attractive from the applied viewpoint functionality. The device, characterized by the decreasing current with increasing voltage in a certain voltage region above a threshold bias of about several hundred millivolts, consists of two superconducting electrodes with an amorphous 10-nm-thick silicon interlayer doped by tungsten nano-inclusions. We show that small changes in the W content radically modify the shape of the trilayer current-voltage dependence and identify sudden conductance switching at a threshold voltage as an effect of Andreev fluctuators. The latter entities are two-level systems at the superconductor-doped silicon interface where a Cooper pair tunnels from a superconductor and occupies a pair of localized electronic states. We argue that in contrast to previously proposed devices, our samples permit very large-scale integration and are practically feasible.

  18. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study.

    PubMed

    Johari, Priya; Qi, Yue; Shenoy, Vivek B

    2011-12-14

    In order to realize Si as a negative electrode material in commercial Li-ion batteries, it is important to understand the mixing mechanism of Li and Si, and stress evolution during lithiation in Si negative electrode of Li-ion batteries. Available experiments mainly provide the diffusivity of Li in Si as an averaged property, neglecting information regarding diffusivity of Si. However, if Si can diffuse as fast as Li, the stress generated during Li diffusion can be reduced. We, therefore, studied the diffusivity of Li as well as Si atoms in the Si-anode of Li-ion battery using an ab initio molecular dynamics-based methodology. The electrochemical insertion of Li into crystalline Si prompts a crystalline-to-amorphous phase transition. We considered this situation and thus examined the diffusion kinetics of Li and Si atoms in both crystalline and amorphous Si. We find that Li diffuses faster in amorphous Si as compared to crystalline Si, while Si remains relatively immobile in both cases and generates stresses during lithiation. To further understand the mixing mechanism and to relate the structure with electrochemical mixing, we analyzed the evolution of the structure during lithiation and studied the mechanism of breaking of Si-Si network by Li. We find that Li atoms break the Si rings and chains and create ephemeral structures such as stars and boomerangs, which eventually transform to Si-Si dumbbells and isolated Si atoms in the LiSi phase. Our results are found to be in agreement with the available experimental data and provide insights into the mixing mechanism of Li and Si in Si negative electrode of Li-ion batteries.

  19. The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Hou, Shang-Chieh; Su, Yuh-Fan; Chang, Chia-Chin; Hu, Chih-Wei; Chen, Tsan-Yao; Yang, Shun-Min; Huang, Jow-Lay

    2017-05-01

    The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger Sisbnd Osbnd CH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention.

  20. NiCd battery electrodes, C-150

    NASA Technical Reports Server (NTRS)

    Holleck, G.; Turchan, M.; Hopkins, J.

    1972-01-01

    Electrodes for a nongassing negative limited nickel-cadmium cell are discussed. The key element is the development of cadmium electrodes with high hydrogen overvoltage. For this, the following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver-sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures.

  1. Nickel hydrogen bipolar battery electrode design

    NASA Technical Reports Server (NTRS)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  2. Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Langner, J.; Bruns, M.; Dixon, D.; Nefedov, A.; Wöll, Ch.; Scheiba, F.; Ehrenberg, H.; Roth, C.; Melke, J.

    2016-07-01

    Carbon felt electrodes for vanadium redox flow batteries are obtained by the graphitization of polyacrylonitrile based felts at different temperatures. Subsequently, the surface of the felts is modified via thermal oxidation at various temperatures. A single-cell experiment shows that the voltage efficiency is increased by this treatment. Electrode potentials measured with reference electrode setup show that this voltage efficiency increase is caused mainly by a reduction of the overpotential of the negative half-cell reaction. Consequently, this reaction is investigated further by cyclic voltammetry and the electrode activity is correlated with structural and surface chemical properties of the carbon fibers. By Raman, X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy the role of edge sites and oxygen containing functional groups (OCFs) for the electrochemical activity are elucidated. A significant activity increase is observed in correlation with these two characteristics. The amount of OCFs is correlated with structural defects (e.g. edge sites) of the carbon fibers and therefore decreases with an increasing graphitization degree. Thus, for the same thermal oxidation temperature carbon fibers graphitized at a lower temperature show higher activities than those graphitized at a higher temperature.

  3. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    DOEpatents

    Striebel, Kathryn A.; Wen, Shi-Jie

    2000-01-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  4. Regulation of the discharge reservoir of negative electrodes in Ni-MH batteries by using Ni(OH) x (x = 2.10) and γ-CoOOH

    NASA Astrophysics Data System (ADS)

    Shangguan, Enbo; Chang, Zhaorong; Tang, Hongwei; Yuan, Xiao-Zi; Wang, Haijiang

    In this paper, a novel strategy to regulate the discharge reservoir of negative electrodes in Ni-MH batteries is introduced by using Ni(OH) x (x = 2.10) and γ-CoOOH. The electrochemical measurements of these batteries demonstrate that the use of Ni(OH) x (x = 2.10) and γ-CoOOH can not only successfully regulate the discharge reservoir of negative electrodes in Ni-MH batteries to an adequate quantity, but also effectively improve the electrochemical performance of the batteries. Compared with normal batteries, the in-house prepared batteries with a lower discharge reservoir exhibit an enhanced discharge capacity, improved high-rate discharge ability, higher discharge potential plateau and superior cycle stability. The effect of Ni(OH) x (x = 2.10) and γ-CoOOH on the electrochemical performance of nickel electrode is also investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results suggest that the new method is simple and effective for cost reduction of Ni-MH batteries with improved electrochemical performance.

  5. A solvated electron lithium electrode for secondary batteries

    NASA Astrophysics Data System (ADS)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  6. "One-for-All" Strategy in Fast Energy Storage: Production of Pillared MOF Nanorod-Templated Positive/Negative Electrodes for the Application of High-Performance Hybrid Supercapacitor.

    PubMed

    Qu, Chong; Liang, Zibin; Jiao, Yang; Zhao, Bote; Zhu, Bingjun; Dang, Dai; Dai, Shuge; Chen, Yu; Zou, Ruqiang; Liu, Meilin

    2018-06-01

    Currently, metal-organic frameworks (MOFs) are intensively studied as active materials for electrochemical energy storage applications due to their tunable structure and exceptional porosities. Among them, water stable pillared MOFs with dual ligands have been reported to exhibit high supercapacitor (SC) performance. Herein, the "One-for-All" strategy is applied to synthesize both positive and negative electrodes of a hybrid SC (HSC) from a single pillared MOF. Specifically, Ni-DMOF-TM ([Ni(TMBDC)(DABCO) 0.5 ], TMBDC: 2,3,5,6-tetramethyl-1,4-benzenedicarboxylic acid, DABCO: 1,4-diazabicyclo[2.2.2]-octane) nanorods are directly grown on carbon fiber paper (CFP) (denoted as CFP@TM-nanorods) with the help of triethylamine and function as the positive electrode of HSC under alkaline electrolyte. Meanwhile, calcinated N-doped hierarchical porous carbon nanorods (CFP@TM-NPCs) are produced and utilized as the negative counter-electrode from a one-step heat treatment of CFP@TM-nanorods. After assembling these two electrodes together to make a hybrid device, the TM-nanorods//TM-NPCs exhibit a wide voltage window of 1.5 V with a high sloping discharge plateau between 1-1.2 V, indicating its great potential for practical applications. This as-described "One-for-All" strategy is widely applicable and highly reproducible in producing MOF-based electrode materials for HSC applications, which shortens the gap between experimental synthesis and practical application of MOFs in fast energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  8. Stability of Triggering of the Switch with Sharply Non-Uniform Electric Field at the Electrode with Negative Potential

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Zherlitsyn, A. A.; Kumpyak, E. V.

    2017-12-01

    Results of investigations into a two-electrode high-pressure gas switch with sharply non-uniform field at the electrode with negative potential operating in the self-breakdown regime with pulsed charging of a highvoltage capacitive energy storage for 100 μs to voltage exceeding 200 kV are presented. It is demonstrated that depending on the air pressure and the gap length, the corona-streamer discharge, whose current increases with voltage, arises in the switch at a voltage of 0.2-0.3 of the self-breakdown voltage. At the moment of switch self-breakdown, the corona-streamer discharge goes over to one or several spark channels. The standard deviation of the triggering moment can be within 1.5 μs, which corresponds to the standard deviation of the self-breakdown voltage less than 2 kV. The voltage stability can be better than 1.5%.

  9. Li-alloy electrode for Li-alloy/metal sulfide cells

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Lithium, silicon and nickel is alloyed in a prescribed proportion forming an electroactive material, to provide an improved electrode and cell.

  10. Research on Lead Acid Battery Electrodes.

    DTIC Science & Technology

    1982-02-26

    electrode. Changes in electrode structure caused by the use of lignin derivatives have also been reported (12). The use of lignin derivatives and other... lignin derivative. R-2761d) 24 2. Description of Experimental Procedure The positive and negative plates used in this investiga- tion were...sisted of crystals in the 3-8 pm range, although many crystals 31 Fig. 11 - A negative plate immediately after for-f mation where a lignin derivative

  11. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.

    PubMed

    Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi

    2014-11-01

    For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Shielded capacitive electrode

    DOEpatents

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  13. Li-alloy electrode for Li-alloy/metal sulfide cells

    DOEpatents

    Kaun, T.D.

    1996-07-16

    A method of making a negative electrode is described, the electrode made thereby and a secondary electrochemical cell using the electrode. Lithium, silicon and nickel is alloyed in a prescribed proportion forming an electroactive material, to provide an improved electrode and cell. 7 figs.

  14. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.

    PubMed

    Yin, Jiao; Qi, Li; Wang, Hongyu

    2012-05-01

    The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.

  15. Operating a redox flow battery with a negative electrolyte imbalance

    DOEpatents

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  16. Positive electrode current collector for liquid metal cells

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.

    1984-01-01

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  17. Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries

    DOE PAGES

    Yoon, Taeho; Nguyen, Cao Cuong; Seo, Daniel M.; ...

    2015-09-16

    A thorough analysis of the evolution of the voltage profiles of silicon nanoparticle electrodes upon cycling has been conducted. The largest changes to the voltage profiles occur at the earlier stages (> 0.16 V vs Li/Li +) of lithiation of the silicon nanoparticles. The changes in the voltage profiles suggest that the predominant failure mechanism of the silicon electrode is related to incomplete delithiation of the silicon electrode during cycling. The incomplete delithiation is attributed to resistance increases during delithiation, which are predominantly contact and solid electrolyte interface (SEI) resistance. The capacity retention can be significantly improved by lowering delithiationmore » cutoff voltage or by introducing electrolyte additives, which generate a superior SEI. The improved capacity retention is attributed to the reduction of the contact and SEI resistance.« less

  18. Influence of composition on phase occurrence during charge process of AB 5+x Ni-MH negative electrode materials

    NASA Astrophysics Data System (ADS)

    Vivet, S.; Latroche, M.; Chabre, Y.; Joubert, J.-M.; Knosp, B.; Percheron-Guégan, A.

    2005-05-01

    Multi-substituted LaNi 5-type alloys (AB 5+x) are widely used as negative electrode materials in commercial Ni-MH batteries. Cobalt substitution on Ni sites allows to enhance battery cycle life by reducing alloy pulverization induced by hydrogen cycling. This improvement is attributed to the occurrence of a three-phase process (α, β and γ) during electrochemical hydrogen loading. In order to better understand the effect of the composition on the phase occurrence and to reduce the rate of costly cobalt, an in situ neutron diffraction study has been performed at room temperature during electrochemical charge of two different electrode materials MmNi 4.07Mn 0.63Al 0.2M 0.4 with M=Fe and Mn and B/A=5.3. These cobalt free compounds show cycle life comparable to that of commercial materials. The results show that three phases are also observed for these samples. The γ-phase content depends on M and is higher for M=Fe than for M=Mn. These results are related to the improved cycle lives and to the alloy pulverization process.

  19. Crystal structure and electrochemical properties of rare earth non-stoichiometric AB5-type alloy as negative electrode material in Ni-MH battery

    NASA Astrophysics Data System (ADS)

    Zhang, Xinbo; Chai, Yujun; Yin, Wenya; Zhao, Minshou

    2004-07-01

    The La 0.85Mg xNi 4.5Co 0.35Al 0.15 (0.05⩽ x⩽0.35) system compounds have been prepared by arc melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La 0.85Mg 0.25Ni 4.5Co 0.35Al 0.15 alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40°C.

  20. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  1. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  2. Development of electrodes for the NASA iron/chromium

    NASA Technical Reports Server (NTRS)

    Swette, L.; Jalan, V.

    1984-01-01

    This program was directed primarily to the development of the negative (Cr3+/Cr2+) electrode for the NASA chromous/ferric Redox battery. The investigation of the effects of substrate processing and gold/lead catalyzation parameters on electrochemical performance were continued. In addition, the effects of reactant cross-mixing, acidity level, and temperature were examined for both Redox couples. Finally, the performance of optimized electrodes was tested in system hardware (1/3 square foot single cell). The major findings are discussed: (1) The recommended processing temperature for the carbon felt, as a substrate for the negative electrode, is 1650 to 1750 C, (2) The recommended gold catalyzation procedure is essentially the published NASA procedure (NASA TM-82724, Nov. 1981) based on deposition from aqueous methanol solution, with the imposition of a few controls such as temperature (25 C) and precatalyzation pH of the felt (7), (3) Experimental observations of the gold catalyzation process and subsequent electron microscopy indicate that the gold is deposited from the colloidal state, induced by contact of the solution with the carbon felt, (4) Electrodeposited lead appears to be present as a thin uniform layer over the entire surface of the carbon fibers, rather than an discrete particles, and (5) Cross-mixing of reactants (Fe-2+ in negative electrode solution or Cr-3+ in the positive electrode solution) did not appear to produce significant interference at either electrode.

  3. Facile Synthesis of Pre-Doping Lithium-Ion Into Nitrogen-Doped Graphite Negative Electrode for Lithium-Ion Capacitor.

    PubMed

    Lee, Seul-Yi; Kim, Ji-Il; Rhee, Kyong Yop; Park, Soo-Jin

    2015-09-01

    Nitrogen-doped graphite, prepared via the thermal decomposition of melamine into a carbon matrix for use as the negative electrode in lithium-ion capacitors (LICs), was evaluated by electrochemical measurements. Furthermore, in order to study the performance of pre-doped lithium components as a function of nitrogen-doped material, the pre-doped lithium graphite was allowed to react with a lithium salt solution. The results showed that the nitrogen functional groups in the graphite largely influenced the pre-doped lithium components, thereby contributing to the discharge capacity and cycling performance. We confirmed that the large initial irreversible capacity could be significantly decreased by using pre-doped lithium components obtained through the nitrogen-doping method.

  4. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  5. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions

    DOEpatents

    Mrazek, Franklin C.; Smaga, John A.; Battles, James E.

    1983-01-01

    A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  6. Considerations for Estimating Electrode Performance in Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Bennett, William R.

    2012-01-01

    Advanced electrode materials with increased specific capacity and voltage performance are critical to the development of Li-ion batteries with increased specific energy and energy density. Although performance metrics for individual electrodes are critically important, a fundamental understanding of the interactions of electrodes in a full cell is essential to achieving the desired performance, and for establishing meaningful goals for electrode performance. This paper presents practical design considerations for matching positive and negative electrodes in a viable design. Methods for predicting cell-level discharge voltage, based on laboratory data for individual electrodes, are presented and discussed.

  7. In situ study of LaY2Ni9 compound as Ni MH negative-electrode material

    NASA Astrophysics Data System (ADS)

    Latroche, M.; Isnard, O.

    2008-03-01

    The behavior of a Ni-MH (metal hydride) negative composite electrode made of LaY2Ni9 active material has been studied dynamically using in situ neutron diffraction during a complete charge-discharge electrochemical cycle. From the analysis of the collected diffraction patterns, the phase identity, phase amount variations and cell volume evolutions have been determined as a function of the electrochemical state of (dis)charge. The active material shows a typical two-phase behavior with equilibrium between a hydrogen-poor α phase and a hydrogen-rich β one. The lower electrochemical reversible capacity as compared to solid-gas properties has been interpreted in terms of hydrogen gas evolving during charge and kinetic limitation due to slow β to α transformation during discharge, which hinders high discharge rates.

  8. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  9. Added clinical value of the inferior temporal EEG electrode chain.

    PubMed

    Bach Justesen, Anders; Eskelund Johansen, Ann Berit; Martinussen, Noomi Ida; Wasserman, Danielle; Terney, Daniella; Meritam, Pirgit; Gardella, Elena; Beniczky, Sándor

    2018-01-01

    To investigate the diagnostic added value of supplementing the 10-20 EEG array with six electrodes in the inferior temporal chain. EEGs were recorded with 25 electrodes: 19 positions of the 10-20 system, and six additional electrodes in the inferior temporal chain (F9/10, T9/10, P9/10). Five-hundred consecutive standard and sleep EEG recordings were reviewed using the 10-20 array and the extended array. We identified the recordings with EEG abnormalities that had peak negativities at the inferior temporal electrodes, and those that only were visible at the inferior temporal electrodes. From the 286 abnormal recordings, the peak negativity was at the inferior temporal electrodes in 81 cases (28.3%) and only visible at the inferior temporal electrodes in eight cases (2.8%). In the sub-group of patients with temporal abnormalities (n = 134), these represented 59% (peak in the inferior chain) and 6% (only seen at the inferior chain). Adding six electrodes in the inferior temporal electrode chain to the 10-20 array improves the localization and identification of EEG abnormalities, especially those located in the temporal region. Our results suggest that inferior temporal electrodes should be added to the EEG array, to increase the diagnostic yield of the recordings. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Lithium electrode and an electrical energy storage device containing the same

    DOEpatents

    Lai, San-Cheng

    1976-07-13

    An improved lithium electrode structure comprises an alloy of lithium and silicon in specified proportions and a supporting current-collecting matrix in intimate contact with said alloy. The lithium electrode of the present invention is utilized as the negative electrode in a rechargeable electrochemical cell.

  11. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  12. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  13. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  14. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  15. Charging/discharging stability of a metal hydride battery electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, M.; Han, J.; Feng, F.

    1999-07-01

    The metal hydride (MH) alloy powder for the negative electrode of the Ni/MH battery was first pulverized and oxidized by electrochemically charging and discharging for a number of cycles. The plate of the negative electrode of an experimental cell in this study was made from a mixture of a multicomponent AB{sub 5}-based alloy powder, nickel powder, and polytetra fluoroethylene (PTFE). The characteristics of the negative electrode, including discharge capacity, exchange current density, and hydrogen diffusivity, were studied by means of the electrochemical experiments and analysis in an experimental cell. The exchange current density of a Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{submore » 0.35}Al{sub 0.35} alloy electrode increases with increasing number of charge/discharge cycles and then remains almost constant after 20 cycles. A microcracking activation, resulting from an increase in reaction surface area and an improvement in the electrode surface activation, increases the hydrogen exchange current densities. Measurement of hydrogen diffusivities for Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35} alloy powder shows that the ratio of D/a{sup 2} (D = hydrogen diffusivity; a = sphere radius) increases with increasing number of cycles but remains constant after 20 cycles.« less

  16. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  17. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    DOEpatents

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  18. Method of making electrodes for electrochemical cell. [Li-Al alloy

    DOEpatents

    Kaun, T.D.; Kilsdonk, D.J.

    1981-07-29

    A method is described for making an electrode for an electrochemical cell in which particulate electrode-active material is mixed with a liquid organic carrier chemically inert with respect to the electrode-active material, mixing the liquid carrier to form an extrudable slurry. The liquid carrier is present in an amount of from about 10 to about 50% by volume of the slurry, and then the carrier is removed from the slurry leaving the electrode-active material. The method is particularly suited for making a lithium-aluminum alloy negative electrode for a high-temperature cell.

  19. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  20. Hydrophilic Electrode For An Alkaline Electrochemical Cell, And Method Of Manufacture

    DOEpatents

    Senyarich, Stephane; Cocciantelli, Jean-Michel

    2000-03-07

    A negative electrode for an alkaline electrochemical cell. The electrode comprises an active material and a hydrophilic agent constituted by small cylindrical rods of polyolefin provided with hydrophilic groups. The mean length of the rods is less than 50 microns and the mean diameter thereof is less than 20 microns. A method of manufacturing a negative electrode in which hydrophilic rods are made by fragmenting long polyolefin fibers having a mean diameter of less than 20 microns by oxidizing them, with the rods being mixed with the active material and the mixture being applied to a current conductor.

  1. Electrode characteristics of nanocrystalline AB{sub 5} compounds prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Chen, Z.; Zhou, D.

    1998-10-01

    Nanocrystalline LaNi{sub 5} and LaNi{sub 4.5}Si{sub 0.5} synthesized by mechanical alloying were used as negative materials for Ni-MH batteries. It was found that the electrodes prepared with the nanocrystalline powders had similar discharge capacities, better activation behaviors, and longer cycle lifetimes, compared with the negative electrode prepared with polycrystalline coarse-grained LaNi{sub 5} alloy. The properties of the electrodes prepared with these nanocrystalline materials were attributed to the structural characteristics of the compounds caused by mechanical alloying.

  2. The cadmium electrode: Review of the status of research

    NASA Technical Reports Server (NTRS)

    Gross, S.; Glockling, R. J.

    1976-01-01

    Investigations characterizing the negative cadmium electrode used in a nickel cadmium battery cell are summarized with citations to references where more detailed information is available. Emphasis is placed on data pertinent to aerospace applications. An evaluation of some of the published results of cadmium electrode research is included.

  3. Electrode-active material for electrochemical batteries and method of preparation

    DOEpatents

    Varma, R.

    1983-11-07

    A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  4. Electrode-active material for electrochemical batteries and method of preparation

    DOEpatents

    Varma, Ravi

    1987-01-01

    A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  5. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  6. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  7. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  8. Porous MoO2 nanowires as stable and high-rate negative electrodes for electrochemical capacitors.

    PubMed

    Zheng, Dezhou; Feng, Haobin; Zhang, Xiyue; He, Xinjun; Yu, Minghao; Lu, Xihong; Tong, Yexiang

    2017-04-04

    Free-standing porous MoO 2 nanowires with extraordinary capacitive performance are developed as high-performance electrodes for electrochemical capacitors. The as-obtained MoO 2 electrode exhibits a remarkable capacitance of 424.4 mF cm -2 with excellent electrochemical durability (no capacitance decay after 10 000 cycles at various scan rates).

  9. Fabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders.

    PubMed

    Jang, Suk-Yong; Han, Sien-Ho

    2016-12-19

    Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g -1 ). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.

  10. Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode

    NASA Astrophysics Data System (ADS)

    Ming, SUN; Zhan, TAO; Zhipeng, ZHU; Dong, WANG; Wenjun, PAN

    2018-05-01

    The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods. The nozzle-cylinder electrode in the discharge reactor was supplied with a negative nanosecond pulsed generator. The optical emission spectrum diagnosis revealed that OH (A2∑+ → X2Π, 306–309 nm), N2 (C3Π→B3Πg, 337 nm), O (3p5p→3s5s0, 777.2 nm) and O (3p3p→3s3s0, 844.6 nm) were produced in the discharge plasma channels. The electron temperature (T e) was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm, and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 eV. The gas temperature (T g) that was measured by Lifbase was in a range from 400 K to 600 K.

  11. Dependence of negative ion formation on inhomogeneous electric field strength in atmospheric pressure negative corona discharge

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    2008-12-01

    The dependence of negative ion formation on the inhomogeneous electric field strength in atmospheric pressure negative corona discharge with point-to-plane electrodes has been described. The distribution of negative ions HO-, NOx - and COx - and their abundances on the plane electrode was obtained with a mass spectrometer. The ion distribution on the plane was divided into two regions, the center region on the needle axis and peripheral region occurring the dominant NOx - and COx - ions and HO- ion, respectively. The calculated electric field strength in inhomogeneous electric field established on the needle tip surface suggested that the abundant formation of NOx - and COx - ions and HO- ion is attributed to the high field strength at the tip apex region over 108 Vm-1 and the low field strength at the tip peripheral region of the order of 107 Vm-1, respectively. The formation of HO-, NOx - and COx - has been discussed from the standpoint of negative ion evolution based on the thermochemical reaction and the kinetic energy of electron emitted from the needle tip.

  12. A polyoxovanadate as an advanced electrode material for supercapacitors.

    PubMed

    Chen, Han-Yi; Wee, Grace; Al-Oweini, Rami; Friedl, Jochen; Tan, Kim Soon; Wang, Yuxi; Wong, Chui Ling; Kortz, Ulrich; Stimming, Ulrich; Srinivasan, Madhavi

    2014-07-21

    Polyoxovanadate Na(6)V(10)O(28) is investigated for the first time as electrode material for supercapacitors (SCs). The electrochemical properties of Na(6)V(10)O(28) electrodes are studied in Li(+) -containing organic electrolyte (1 M LiClO(4) in propylene carbonate) by galvanostatic charge/discharge and cyclic voltammetry in a three-electrode configuration. Na(6)V(10)O(28) electrodes exhibit high specific capacitances of up to 354 F g(-1). An asymmetric SC with activated carbon as positive electrode and Na(6)V(10)O(28) as negative electrode is fabricated and exhibits a high energy density of 73 Wh kg(-1) with a power density of 312 W kg(-1), which successfully demonstrates that Na(6)V(10)O(28) is a promising electrode material for high-energy SC applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Layered electrodes for lithium cells and batteries

    DOEpatents

    Johnson; Christopher S. , Thackeray; Michael M. , Vaughey; John T. , Kahaian; Arthur J. , Kim; Jeom-Soo

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  14. Energy storage systems having an electrode comprising Li.sub.xS.sub.y

    DOEpatents

    Xiao, Jie; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Wang, Wei; Zheng, Jianming; Xu, Wu; Shao, Yuyan; Yang, Zhenguo

    2016-08-02

    Improved lithium-sulfur energy storage systems can utilizes Li.sub.xS.sub.y as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising Li.sub.xS.sub.y. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.

  15. Multinary alloy electrodes for solid state batteries I. A phase diagram approach for the selection and storage properties determination of candidate electrode materials

    NASA Astrophysics Data System (ADS)

    Anani, A.; Huggins, R. A.

    The desire to produce high specific energy rechargeable batteries has led to the investigation of ternary alloy systems for use as negative electrode components in lithium-based cells. The addition of a third component to a binary alloy electrode could result in a significant change in the thermodynamic and/or kinetic behavior of the electrode material, depending on the relevant phase diagram and the crystal structures of the phases present. The influence of ternary phase diagram characteristics upon the thermodynamic properties and specific energies of multi-component electrodes is discussed with lithiumsilicon-based systems as an illustration. It is shown that the electrode potentials (and thus specific energies of the ensuing cell) as well as the theoretical lithium capacities of electrodes based on these ternary alloy modifications can be significantly increased with respect to their present day binary counterpart.

  16. Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery.

    PubMed

    Sankar, Kalimuthu Vijaya; Shanmugapriya, Sathyanarayanan; Surendran, Subramani; Jun, Seong Chan; Selvan, Ramakrishnan Kalai

    2018-03-01

    Battery type electrodes would replace the currently available pseudocapacitive electrodes by the cause of high energy density and long discharge time. In this regard, battery type carbon coated CoFe 2 O 4 spherical nanoparticles is prepared by the facile hydrothermal method and tested as the possible negative electrode for supercapattery applications. The phase purity, electronic states of elements, and the presence of carbon is inferred through various sophisticated techniques. The calculated surface area of CoFe 2 O 4 and carbon coated CoFe 2 O 4 are found to be 9 and 26 m 2  g -1 , respectively. The morphological analysis confirms the formation of uniform CoFe 2 O 4 nanospheres (∼25 nm) with a thin layer of carbon coating (∼2 nm). The amorphous carbon coating over CoFe 2 O 4 nanosphere is identified via high-resolution transmission electron microscope. The observed peak and plateau regions in the cyclic voltammogram and galvanostatic charge/discharge curves reveals the battery-type charge storage behaviour of the material. The carbon coated CoFe 2 O 4 delivers the maximum length capacitance of 9.9 F m -1 at 1 mV s -1 with a useful lifespan over 5000 cycles. The electrochemical impedance spectroscopy reveals that the carbon-coated CoFe 2 O 4 delivers the low charge transfer resistance than CoFe 2 O 4 . Further, the fabricated supercapattery provides the energy density of 160 × 10 -8  Wh cm -1 at a power density of 67.2 μW cm -1 . As well as, the device shows 93% of coulombic efficiency and 75% of the specific capacitance retention over 11,000 cycles. Overall, it is believed that the carbon-coated CoFe 2 O 4 can serve as a good candidate for flexible supercapatteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Electrochemical modification of a pyrolytic graphite sheet for improved negative electrode performance in the vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Kabir, Humayun; Gyan, Isaiah O.; Francis Cheng, I.

    2017-02-01

    The vanadium redox flow battery is a promising technology for buffering renewable energies. It is recognized that negative electrode is the limitation in this device where there are problems of slow heterogeneous electron transfer (HET) of V3+/2+ and parasitic H2 evolution. Any methods aimed at addressing one of these barriers must assess the effects on the other. We examine electrochemical enhancement of a common commercially available material. Treatment of Panasonic pyrolytic graphite sheets is through oxidation at 2.1 V vs. Ag/AgCl for 1 min in 1 M H2SO4. This increases the standard HET rate for V3+/2+ from 3.2 × 10-7 to 1 × 10-3 cm/s, one of the highest in literature and shifts voltammetric reductive peak potential from -1.0 V to -0.65 V in 50 mM V3+ in 1 M H2SO4. Infrared analysis of the surfaces indicates formation of Csbnd OH, Cdbnd O, and Csbnd O functionalities. These groups catalyze HET with V3+/2+ as hypothesized by Skyllas-Kasacos. Also of significance is that electrode modification decreases the fraction of the current directed towards H2 evolution. This proportion decreases by two orders of a magnitude from 12% to 0.1% as measured at the respective voltammetric peak potentials of -1.0 V (pristine) and -0.65 V (modified).

  18. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    PubMed

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  19. Nanosecond plasma-mediated electrosurgery with elongated electrodes

    NASA Astrophysics Data System (ADS)

    Vankov, Alexander; Palanker, Daniel

    2007-06-01

    Progress in interventional medicine is associated with the development of more delicate and less invasive surgical procedures, which requires more precise and less traumatic, yet affordable, surgical instruments. Previously we reported on the development of the pulsed electron avalanche knife for dissection of soft tissue in liquid media using the 100 ns plasma-mediated electric discharges applied via a 25 μm disk microelectrode. Cavitation bubbles accompanying explosive vaporization of the liquid medium in front of such a pointed electrode produced a series of craters that did not always merge into a continuous cut. In addition, this approach of surface ablation provided a limited depth of cutting. Application of an elongated electrode capable of cutting with its edge rather than just with its pointed apex faces a problem of nonuniformity of the electric field on a nonspherical electrode. In this article we explore dynamics of the plasma-mediated nanosecond discharges in liquid medium in positive and negative polarities and describe the geometry of an electrode that provides a sufficiently uniform electric field along an extended edge of a surgical probe. A highly enhanced and uniform electric field was obtained on very sharp (2.5 μm) exposed edges of a planar electrode insulated on its flat sides. Uniform ionization and simultaneous vaporization was obtained along the whole edge of such a blade with 100 ns pulses at 4-6 kV. A continuous cutting rate of 1 mm/s in the retina and in soft membranes was achieved at a pulse repetition rate of 100 Hz. The collateral damage zone at the edges of incision did not exceed 80 μm. Negative polarity was found advantageous due to the lower rate of electrode erosion and due to better spatial confinement of the plasma-mediated discharge in liquid.

  20. Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Darwiche, Ali; Dugas, Romain; Fraisse, Bernard; Monconduit, Laure

    2016-02-01

    Due to its weight and toxicity, Pb is usually not considered as possible anode for Li- and Na-ion (NIBs) batteries. Nevertheless the toxicity is related to specific applications and its recycling is more than 99% which is one of the highest recycling rates on the planet where no other power source is utilized in more applications with such sustainability. For this reason, we have investigated micrometric lead particles as electrode for NIBs in an ether-based electrolyte (1 M NaPF6 in diglyme). The cyclability, coulombic efficiency and rate capability of lead were unexpected. A high loaded lead electrode with 98%wt of Pb and only 1% of carbon additive showed i) a capacity retention of 464 mA h/g after 50 cycles with only 1.5% of capacity loss, which represents a high volumetric capacity of 5289 mA h/cm3 due to the high density of Pb and ii) a very interesting capacity retention even at high current rate (1950 mA/g). In situ XRD study confirmed a sodiation-desodiation process in four steps. Preliminary tests in Pb//Na3V2(PO4)2F3 full cells showed promising results demonstrating that Pb could be a practical candidate for future high energy density Na-ion batteries with an efficient sodiated or non sodiated positive electrode.

  1. Density impact on performance of composite Si/graphite electrodes

    DOE PAGES

    Dufek, Eric J.; Picker, Michael; Petkovic, Lucia M.

    2016-01-27

    The ability of alkali-substituted binders for composite Si and graphite negative electrodes to minimize capacity fade for lithium ion batteries is investigated. Polymer films and electrodes are described and characterized by FTIR following immersion in electrolyte (1:2 EC:DMC) for 24 h. FTIR analysis following electrode formation displayed similar alkali-ion dependent shifts in peak location suggesting that changes in the vibrational structure of the binder are maintained after electrode formation. The Si and graphite composite electrodes prepared using the alkali-substituted polyacrylates were also exposed to electrochemical cycling and it has been found that the performance of the Na-substituted binder is superiormore » to a comparable density K-substituted system. However, in comparing performance across many different electrode densities attention needs to be placed on making comparisons at similar densities, as low density electrodes tend to exhibit lower capacity fade over cycling. This is highlighted by a 6% difference between a low density K-substituted electrode and a high density Na-substituted sample. As a result, this low variance between the two systems makes it difficult to quickly make a direct evaluation of binder performance unless electrode density is tightly controlled.« less

  2. Investigations of negative and positive cesium ion species

    NASA Technical Reports Server (NTRS)

    Chanin, L. M.

    1978-01-01

    A direct test is provided of the hypothesis of negative ion creation at the anode or collector of a diode operating under conditions simulating a cesium thermionic converter. The experimental technique involves using direct ion sampling through the collector electrode with mass analysis using a quadrupole mass analyzer. Similar measurements are undertaken on positive ions extracted through the emitter electrode. Measurements were made on a variety of gases including pure cesium, helium-cesium mixtures and cesium-hydrogen as well as cesium-xenon mixtures. The gas additive was used primarily to aid in understanding the negative ion formation processes. Measurements were conducted using emitter (cathode) temperatures up to about 1000 F. The major negative ion identified through the collector was Cs(-) with minor negative ion peaks tentatively identified as H(-), H2(-), H3(-), He(-) and a mass 66. Positive ions detected were believed to be Cs(+), Cs2(+) and Cs3(+).

  3. Enhancement of negative hydrogen ion production in an electron cyclotron resonance source

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; Murillo, M. T.; Karyaka, V. I.

    2013-07-01

    In this paper, we present a method for improving the negative hydrogen ion yield in the electron cyclotron resonance source with driven plasma rings where the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with plasma electrons to high-laying Rydberg and high vibration levels in the plasma volume. The second stage leads to negative ion production through the process of repulsive attachment of low-energy electrons by the excited molecules. The low-energy electrons originate due to a bombardment of the plasma electrode surface by ions of a driven ring and the thermoelectrons produced by a rare earth ceramic electrode, which is appropriately installed in the source chamber. The experimental and calculation data on the negative hydrogen ion generation rate demonstrate that very low-energy thermoelectrons significantly enhance the negative-ion generation rate that occurs in the layer adjacent to the plasma electrode surface. It is found that heating of the tungsten filaments placed in the source chamber improves the discharge stability and extends the pressure operation range.

  4. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  5. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    PubMed

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  6. Optimization and fabrication of porous carbon electrodes for Fe/Cr redox flow cells

    NASA Technical Reports Server (NTRS)

    Jalan, V.; Morriseau, B.; Swette, L.

    1982-01-01

    Negative electrode development for the NASA chromous/ferric Redox battery is reported. The effects of substrate material, gold/lead catalyst composition and loading, and catalyzation procedures on the performance of the chromium electrode were investigated. Three alternative catalyst systems were also examined, and 1/3 square foot size electrodes were fabricated and delivered to NASA at the conclusion of the program.

  7. Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users

    PubMed Central

    Lu, Thomas; Litovsky, Ruth; Zeng, Fan-Gang

    2011-01-01

    Bilateral cochlear implant (BiCI) users gain an advantage in noisy situations from a second implant, but their bilateral performance falls short of normal hearing listeners. Channel interactions due to overlapping electrical fields between electrodes can impair speech perception, but its role in limiting binaural hearing performance has not been well characterized. To address the issue, binaural masking level differences (BMLD) for a 125 Hz tone in narrowband noise were measured using a pair of pitch-matched electrodes while simultaneously presenting the same masking noise to adjacent electrodes, representing a more realistic stimulation condition compared to prior studies that used only a single electrode pair. For five subjects, BMLDs averaged 8.9 ± 1.0 dB (mean ± s.e.) in single electrode pairs but dropped to 2.1 ± 0.4 dB when presenting noise on adjacent masking electrodes, demonstrating a negative impact of the additional maskers. Removing the masking noise from only the pitch-matched electrode pair not only lowered thresholds but also resulted in smaller BMLDs. The degree of channel interaction estimated from auditory nerve evoked potentials in three subjects was significantly and negatively correlated with BMLD. The data suggest that if the amount of channel interactions can be reduced, BiCI users may experience some performance improvements related to binaural hearing. PMID:21682415

  8. Vertically Aligned Carbon Nanotube Electrodes for Lithium-Ion Batteries

    DTIC Science & Technology

    2011-01-01

    wpafb.af.mil (M.F. Durstock). [11] nanowires, and iron oxide/copper [12] and tin/copper [13] nanorods. Carbon nanotubes ( CNTs ) have also been examined as...negative electrodes [14–17]. Although CNTs and other nega- tive electrode nanomaterials have been shown to exhibit similar or greater capacities...rate capability [18]. Studies suggest that aligned CNTs could allow for better contact with the current collector and increased ion diffu- sivity to

  9. MALDI-MS analysis and imaging of small molecule metabolites with 1,5-diaminonaphthalene (DAN).

    PubMed

    Korte, Andrew R; Lee, Young Jin

    2014-08-01

    1,5-Diaminonaphthalene (DAN) has previously been reported as an effective matrix for matrix-assisted laser desorption ionization-mass spectrometry of phospholipids. In the current work, we investigate the use of DAN as a matrix for small metabolite analysis in negative ion mode. DAN was found to provide superior ionization to the compared matrices for MW < ~400 Da; however, 9-aminoacridine (9-AA) was found to be superior for a uridine diphosphate standard (MW 566 Da). DAN was also found to provide a more representative profile of a natural phospholipid mixture than 9-AA. Finally, DAN and 9-AA were applied for imaging of metabolites directly from corn leaf sections. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. The effect of electrode temperature on the sparking voltage of short spark gaps

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1924-01-01

    This report presents the results of an investigation to determine what effect the temperature of spark plug electrodes might have on the voltage at which a spark occurred. A spark gap was set up so that one electrode could be heated to temperatures up to 700 degrees C., while the other electrode and the air in the gap were maintained at room temperature. The sparking voltages were measured both with direct voltage and with voltage impulse from ignition coil. It was found that the sparking voltage of the gap decreased materially with increase of temperature. This change was more marked when the hot electrode was of negative polarity. The phenomena observed can be explained by the ionic theory of gaseous conduction, and serve to account for certain hitherto unexplained actions in the operation of internal combustion engines. These results indicate that the ignition spark will pass more readily when the spark-plug design is such as to make the electrodes run hot. This possible gain is, however, very closely limited by the danger of producing preignition. These experiments also show that sparking is somewhat easier when the hot electrode (which is almost always the central electrode) is negative than when the polarity is reversed.

  11. Unitary plate electrode

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)

    1985-01-01

    The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).

  12. Method of preparing a positive electrode for an electrochemical cell

    DOEpatents

    Tomczuk, Zygmunt

    1979-01-01

    A method of preparing an electrochemical cell including a metal sulfide as the positive electrode reactant and lithium alloy as the negative electrochemical reactant with an alkali metal, molten salt electrolyte is disclosed which permits the assembly to be accomplished in air. The electrode reactants are introduced in the most part as a sulfide of lithium and the positive electrode metal in a single-phase compound. For instance, Li.sub.2 FeS.sub.2 is a single-phase compound that is produced by the reaction of Li.sub.2 S and FeS. This compound is an intermediate in the positive electrode cycle from FeS.sub.2 to Fe and Li.sub.2 S. Its use minimizes volumetric changes from the assembled to the charged and discharged conditions of the electrode and minimizes electrode material interaction with air and moisture during assembly.

  13. The standardized EEG electrode array of the IFCN.

    PubMed

    Seeck, Margitta; Koessler, Laurent; Bast, Thomas; Leijten, Frans; Michel, Christoph; Baumgartner, Christoph; He, Bin; Beniczky, Sándor

    2017-10-01

    Standardized EEG electrode positions are essential for both clinical applications and research. The aim of this guideline is to update and expand the unifying nomenclature and standardized positioning for EEG scalp electrodes. Electrode positions were based on 20% and 10% of standardized measurements from anatomical landmarks on the skull. However, standard recordings do not cover the anterior and basal temporal lobes, which is the most frequent source of epileptogenic activity. Here, we propose a basic array of 25 electrodes including the inferior temporal chain, which should be used for all standard clinical recordings. The nomenclature in the basic array is consistent with the 10-10-system. High-density scalp EEG arrays (64-256 electrodes) allow source imaging with even sub-lobar precision. This supplementary exam should be requested whenever necessary, e.g. search for epileptogenic activity in negative standard EEG or for presurgical evaluation. In the near future, nomenclature for high density electrodes arrays beyond the 10-10 system needs to be defined, to allow comparison and standardized recordings across centers. Contrary to the established belief that smaller heads needs less electrodes, in young children at least as many electrodes as in adults should be applied due to smaller skull thickness and the risk of spatial aliasing. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  14. High voltage holding in the negative ion sources with cesium deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  15. Advanced screening of electrode couples

    NASA Technical Reports Server (NTRS)

    Giner, J. D.; Cahill, K.

    1980-01-01

    The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.

  16. Virtual electrodes for high-density electrode arrays

    DOEpatents

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  17. New β-Cyclodextrin Entrapped in Polyethyleneimine Film-Modified Electrodes for Pharmaceutical Compounds Determination

    PubMed Central

    Fritea, Luminţa; Tertiş, Mihaela; Cristea, Cecilia; Săndulescu, Robert

    2013-01-01

    The electrochemical behavior of ascorbic acid and uric acid on glassy carbon bare electrodes and ones modified with β-cyclodextrin entrapped in polyethyleneimine film has been investigated using square wave voltammetry. The electrode modification was achieved in order to separate the voltammetric peaks of ascorbic acid and uric acid when present in the same solution. On the modified electrodes the potential of the oxidation peak of the ascorbic acid was shifted to more negative values by over 0.3 V, while in the case of uric acid, the negative potential shift was about 0.15 V compared to the bare glassy carbon electrode. When the two compounds were found together in the solution, on the bare electrode only a single broad signal was observed, while on the modified electrode the peak potentials of these two compounds were separated by 0.4 V. When the uric acid concentration remained constant, the peak intensity of the ascorbic acid is increased linearly with the concentration (r2 = 0.996) and when the ascorbic acid concentration remains constant, the peak intensity of the uric acid increased linearly with the concentration (r2 = 0.992). FTIR measurements supported the formation of inclusion complexes. In order to characterize the modification of the electrodes microscopic studies were performed. The modified electrodes were successfully employed for the determination of ascorbic acid in pharmaceutical formulations with a detection limit of 0.22 μM. PMID:24287544

  18. Characteristics of the high-rate discharge capability of a nickel/metal hydride battery electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, M.; Han, J.; Feng, F.

    1999-10-01

    The high rate discharge capability of the negative electrode in a Ni/MH battery is mainly determined by the charge transfer process at the interface between the metal hydride (MH) alloy powder and the electrolyte, and the mass transfer process in the bulk MH alloy powder. In this study, the anodic polarization curves of a MH electrode were measured and analyzed. An alloy of nominal composition Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35} was used as the negative electrode material. With increasing number of charge/discharge cycles, the MH alloy powders microcrack into particles several micrometers in diameter. The decrease in themore » MH alloy particle size results in an increase in both the activation surface area and the exchange current density of the MH alloy electrode. The electrode overpotentials of the MH electrode decreases with increasing number of cycles at a large value of anodic polarization current. The decrease in electrode overpotential leads to an increase in the high rate discharge capability of the MH electrode. By using the limiting current, the hydrogen diffusion coefficient in the MH alloy was estimated to be 1.2 x 10{sup {minus}11}cm{sup 2}s{sup {minus}1} assuming an average particle radius of 5 {micro}m.« less

  19. Electrodes including a polyphosphazene cyclomatrix, methods of forming the electrodes, and related electrochemical cells

    DOEpatents

    Gering, Kevin L; Stewart, Frederick F; Wilson, Aaron D; Stone, Mark L

    2014-10-28

    An electrode comprising a polyphosphazene cyclomatrix and particles within pores of the polyphosphazene cyclomatrix. The polyphosphazene cyclomatrix comprises a plurality of phosphazene compounds and a plurality of cross-linkages. Each phosphazene compound of the plurality of phosphazene compounds comprises a plurality of phosphorus-nitrogen units, and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. Each phosphorus-nitrogen unit is bonded to an adjacent phosphorus-nitrogen unit. Each cross-linkage of the plurality of cross-linkages bonds at least one pendant group of one phosphazene compound of the plurality of phosphazene compounds with the at least one pendant group of another phosphazene compound of the plurality of phosphazene compounds. A method of forming a negative electrode and an electrochemical cell are also described.

  20. Electrochemical cell having cylindrical electrode elements

    DOEpatents

    Nelson, Paul A.; Shimotake, Hiroshi

    1982-01-01

    A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.

  1. [Contact dermatitis from polyacrylate in TENS electrode].

    PubMed

    Weber-Muller, F; Reichert-Penetrat, S; Schmutz, J-L; Barbaud, A

    2004-05-01

    Transcutaneous electric nerve stimulation (TENS) is useful for many chronic pains. It induces few serious side effects, but skin reactions are not rare. We report on two cases of contact dermatitis due to TENS electrodes by sensitization to the acrylate in TENS conductive gel. A 50 year-old man suffered from post-traumatic lumbar pair. He developed eczematous lesions on the sites where the TENS electrodes were applied. Patch tests were positive with the TENS gel, with ethylene glycol dimethylacrylate (2 p. 100 petrolatum) and ethyl-acrylate (2 p. 100 petrolatum) on day 2 and 4 readings. A 54 Year-old man had a paralysis of the foot elevator following rupture of an aneurysm. After 2 months, he had an eczema on the sites where the TENS electrodes were applied. Patch tests were negative with the TENS electrodes but positive with 2-hydroxyethyl acrylate (0.1 p. 100 petrolatum), triethyleneglycol diacrylate (0.1 p. 100 petrolatum), 2-hydroxyethyl methacrylate (2 p. 100 petrolatum) and 2-hydroxypropyl methacrylate (2 p. 100 petrolatum) on day 2 and 4 readings. TENS transmits small electrical currents through the skin that induce the depolarization of the affected sensory nerve endings. They have few serious side effects but skin reactions such as irritation, burns or allergy to propylene glycol in the electrode gel, to the rubber of the electrodes (mercaptobenzothiazole) or to the metallic part of the electrodes, i.e. nickel, are not uncommon. To our knowledge, only one case of an allergy to the polyacrylates of TENS electrode gel has been previously reported in the literature. We emphasize that acrylate could be the main sensitizer in the more recently commercialized TENS electrodes and will propose alternative ways of treating patients sensitized to acrylate and who require treatment with TENS.

  2. Non-gassing nickel-cadmium battery electrodes and cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1972-01-01

    The concept of a negative limited nongassing nickel-cadmium battery was demonstrated by constructing and testing practical size experimental cells of approximately 25 Ah capacity. These batteries operated in a gas-free manner and had measured energy densities of 10-11 Wh/lb. Thirty cells were constructed for extensive testing. Some small cells were tested for over 200 cycles at 100% depth. For example, a small cell with an electrodeposited cadmium active mass on a silver screen still had 55% of its theoretical capacity (initial efficiency was 85%). There was no evidence of deterioration of gassing properties with cycling of the nickel electrodes. The charge temperature was observed to be the most critical variable governing nickel electrode gassing. This variable was shown to be age dependent. Four types of cadmium electrodes were tested: an electrodeposited cadmium active mass on a cadmium or silver substrate, a porous sintered silver substrate based electrode, and a Teflon bonded pressed cadmium electrode. The electrodeposited cadmium mass on a silver screen was found to be the best all-around electrode from a performance point of view and from the point of view of manufacturing them in a size required for a 25 Ah size battery.

  3. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOEpatents

    Otto, Neil C.; Warner, Barry T.; Smaga, John A.; Battles, James E.

    1983-01-01

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  4. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOEpatents

    Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.

    1982-07-07

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  5. All-solid electrodes with mixed conductor matrix

    DOEpatents

    Huggins, Robert A.; Boukamp, Bernard A.

    1984-01-01

    Alkali metal based electrochemical cells offer a great deal of promise for applications in many areas such as electric vehicles and load leveling purposes in stationary power plants. Lithium is an attractive candidate as the electroactive species in such cells since lithium is very electropositive, abundant and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated at elevated temperatures. The subject invention provides an electrochemical cell in one embodiment of which lithium is the electroactive species. The cell comprises an electrolyte, a positive electrode, and a negative electrode, either or both of which is an all-solid, composite microstructural electrode containing both a reactant phase and a mixed ionic-electronic conducting phase. The cells of the subject invention exhibit improved kinetic features, current and power densities. Repeated charging and discharging of these cells can be accomplished without appreciable loss of capacity.

  6. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    2015-04-01

    Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative

  7. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  8. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap

    NASA Astrophysics Data System (ADS)

    Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.

    2013-10-01

    This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.

  9. Damage cost of the Dan River coal ash spill.

    PubMed

    Dennis Lemly, A

    2015-02-01

    The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value losses totals $295,485,000. Because the environmental impact and associated economic costs of riverine coal ash spills can be long-term, on the order of years or even decades, this 6-month assessment should be viewed as a short-term preview. The total cumulative damage cost from the Dan River coal ash spill could go much higher. Published by Elsevier Ltd.

  10. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Khomenko, V.; Raymundo-Piñero, E.; Béguin, F.

    A new type of low cost and high energy asymmetric capacitor based on only activated carbons for both electrodes has been developed in a safe and environment friendly aqueous electrolyte. In such electrolyte, the charges are stored in the electrical double-layer and through fast faradaic charge transfer processes. By taking profit of different redox reactions occurring in the positive and negative ranges of potential, it is possible to optimize the capacitor either by balancing the mass of the electrodes or by using different optimized carbons for the positive and negative electrodes. The best results are obtained in the latter case, by utilizing different pseudo-faradaic properties of carbons in order to increase the capacitance and to shift the potentials of water decomposition and destructive oxidation of activated carbon to more negative and positive values, respectively. After an additional adjustment of potentials by mass-balancing the two electrodes, the electrochemical capacitor can be reversibly charged/discharged at 1.6 V in aqueous medium, with energy densities close to the values obtained with electrical double-layer capacitors working in organic electrolytes, while avoiding their disadvantages.

  11. Oligonucleotide probes functionalization of nanogap electrodes.

    PubMed

    Zaffino, Rosa Letizia; Mir, Mònica; Samitier, Josep

    2017-11-01

    Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrolyte effects in a model of proton discharge on charged electrodes

    NASA Astrophysics Data System (ADS)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  13. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes.

    PubMed

    Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-02-08

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  14. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    NASA Astrophysics Data System (ADS)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  15. Damage cost of the Dan River coal ash spill

    Treesearch

    A. Dennis Lemly

    2015-01-01

    The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value...

  16. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  17. Cycling behavior of NCM523/graphite lithium-ion cells in the 3–4.4 V range: Diagnostic studies of full cells and harvested electrodes

    DOE PAGES

    Gilbert, James A.; Bareño, Javier; Spila, Timothy; ...

    2016-09-22

    Energy density of full cells containing layered-oxide positive electrodes can be increased by raising the upper cutoff voltage above the current 4.2 V limit. In this article we examine aging behavior of cells, containing LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523)-based positive and graphite-based negative electrodes, which underwent up to ~400 cycles in the 3-4.4 V range. Electrochemistry results from electrodes harvested from the cycled cells were obtained to identify causes of cell performance loss; these results were complemented with data from X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) measurements. Our experiments indicate that the full cell capacitymore » fade increases linearly with cycle number and results from irreversible lithium loss in the negative electrode solid electrolyte interphase (SEI) layer. The accompanying electrode potential shift reduces utilization of active material in both electrodes and causes the positive electrode to cycle at higher states-of-charge. Here, full cell impedance rise on aging arises primarily at the positive electrode and results mainly from changes at the electrode-electrolyte interface; the small growth in negative electrode impedance reflects changes in the SEI layer. Our results indicate that cell performance loss could be mitigated by modifying the electrode-electrolyte interfaces through use of appropriate electrode coatings and/or electrolyte additives.« less

  18. A new activation process for a Zr-based alloy as a negative electrode for Ni/MH electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.S.; Lee, H.; Lee, S.M.

    1999-12-01

    The effects of a combination hot-immersion and slow-charging method on the activation of a Zr-based alloy were investigated. A Zr{sub 0.7}Ti{sub 0.3}Cr{sub 0.3}Mn{sub 0.3}V{sub 0.4}Ni{sub 1.0} alloy electrode was treated with two steps: alloy electrodes were immersed at 80 C for 12 h in a KOH solution and then charged at a low current density for one cycle. It was found that the alloy electrode activation was greatly improved after this hot-immersion and slow-charging treatment, and furthermore the treated electrodes were fully activated at the first normal cycle. The effects of this treatment are discussed on the basis of resultsmore » obtained by scanning electron microscopy, Auger electron spectroscopy, and inductively coupled plasma spectroscopy. The hot-immersion and slow-charging method was successfully applied to the formation process of 80 Ah Ni/MH cells using this Zr-based alloy.« less

  19. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    NASA Astrophysics Data System (ADS)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  20. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lota, Grzegorz; Tyczkowski, Jacek; Kapica, Ryszard; Lota, Katarzyna; Frackowiak, Elzbieta

    The carbon material was modified by RF plasma with various reactive gases: O 2, Ar and CO 2. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application.

  1. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  2. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit)2-based device with graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Liu, N.; Liu, J. B.; Yao, K. L.

    2017-12-01

    We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit)2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC) and the antiparallel configuration (APC). At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  3. Surgical factors in pediatric cochlear implantation and their early effects on electrode activation and functional outcomes.

    PubMed

    Francis, Howard W; Buchman, Craig A; Visaya, Jiovani M; Wang, Nae-Yuh; Zwolan, Teresa A; Fink, Nancy E; Niparko, John K

    2008-06-01

    To assess the impact of surgical factors on electrode status and early communication outcomes in young children in the first 2 years of cochlear implantation. Prospective multicenter cohort study. Six tertiary referral centers. Children 5 years or younger before implantation with normal nonverbal intelligence. Cochlear implant operations in 209 ears of 188 children. Percent active channels, auditory behavior as measured by the Infant Toddler Meaningful Auditory Integration Scale/Meaningful Auditory Integration Scale and Reynell receptive language scores. Stable insertion of the full electrode array was accomplished in 96.2% of ears. At least 75% of electrode channels were active in 88% of ears. Electrode deactivation had a significant negative effect on Infant Toddler Meaningful Auditory Integration Scale/Meaningful Auditory Integration Scale scores at 24 months but no effect on receptive language scores. Significantly fewer active electrodes were associated with a history of meningitis. Surgical complications requiring additional hospitalization and/or revision surgery occurred in 6.7% of patients but had no measurable effect on the development of auditory behavior within the first 2 years. Negative, although insignificant, associations were observed between the need for perioperative revision of the device and 1) the percent of active electrodes and 2) the receptive language level at 2-year follow-up. Activation of the entire electrode array is associated with better early auditory outcomes. Decrements in the number of active electrodes and lower gains of receptive language after manipulation of the newly implanted device were not statistically significant but may be clinically relevant, underscoring the importance of surgical technique and the effective placement of the electrode array.

  4. Hydrometallurgical treatment of nickel-metal hydride battery electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyman, J.W.; Palmer, G.R.

    1995-12-31

    Nickel-metal hydride (Ni-MH) battery electrodes have been developed as a substitute for cadmium-containing negative electrodes. Use of NI-MH electrodes offers enhanced electrochemical properties in many instances as well as reduced environmental toxicity. Rechargeable batteries using NI-MH electrodes are also strong candidates for electric vehicles. During the production and secondary reclamation of these battery types, recycling procedures will be needed to prevent environmental impact caused by these wastes as well as to recover the value inherent in the scrap. The US Bureau of Mines (USBM) is investigating hydrometallurgical technology that separates and recovers purified metallic components from Ni-MH battery scrap ofmore » two types, AB{sub 2} and AB{sub 5}. An investigation of acid dissolution and metal recovery techniques has determined several processing alternatives that may be used to promote the successful recycling of much of the battery fabrication scrap and eventual secondary scrap. The metals recovered are Ni, Co, and rare earth metals. Although recovery techniques have been identified in principal, their applicability to mixed battery waste stream and economic attractiveness remain to be demonstrated.« less

  5. Rough Gold Electrodes for Decreasing Impedance at the Electrolyte/Electrode Interface

    PubMed Central

    Koklu, Anil; Sabuncu, Ahmet C.; Beskok, Ali

    2016-01-01

    Electrode polarization at the electrolyte/electrode interface is often undesirable for bio-sensing applications, where charge accumulated over an electrode at constant potential causes large potential drop at the interface and low measurement sensitivity. In this study, novel rough electrodes were developed for decreasing electrical impedance at the interface. The electrodes were fabricated using electrochemical deposition of gold and sintering of gold nanoparticles. The performances of the gold electrodes were compared with platinum black electrodes. A constant phase element model was used to describe the interfacial impedance. Hundred folds of decrease in interfacial impedance were observed for fractal gold electrodes and platinum black. Biotoxicity, contact angle, and surface morphology of the electrodes were investigated. Relatively low toxicity and hydrophilic nature of the fractal and granulated gold electrodes make them suitable for bioimpedance and cell electromanipulation studies compared to platinum black electrodes which are both hydrophobic and toxic. PMID:27695132

  6. Selecting electrode configurations for image-guided cochlear implant programming using template matching.

    PubMed

    Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H; Dawant, Benoit M

    2018-04-01

    Cochlear implants (CIs) are neural prostheses that restore hearing using an electrode array implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). We have proposed a system to assist the audiologist in programming the CI that we call image-guided CI programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend deactivation of a subset of electrodes to avoid NSO. We have shown that IGCIP significantly improves hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires manual intervention. With expertise, distance-versus-frequency curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. We propose an automated technique for electrode configuration selection. A comparison between this approach and one we have previously proposed shows that our method produces results that are as good as those obtained with our previous method while being generic and requiring fewer parameters.

  7. Ion counting in supercapacitor electrodes using NMR spectroscopy.

    PubMed

    Griffin, John M; Forse, Alexander C; Wang, Hao; Trease, Nicole M; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2014-01-01

    (19)F NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in- and ex-pore environments with an exchange rate in the order of tens of Hz. (19)F in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane)sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism.

  8. Floating electrode dielectrophoresis.

    PubMed

    Golan, Saar; Elata, David; Orenstein, Meir; Dinnar, Uri

    2006-12-01

    In practice, dielectrophoresis (DEP) devices are based on micropatterned electrodes. When subjected to applied voltages, the electrodes generate nonuniform electric fields that are necessary for the DEP manipulation of particles. In this study, electrically floating electrodes are used in DEP devices. It is demonstrated that effective DEP forces can be achieved by using floating electrodes. Additionally, DEP forces generated by floating electrodes are different from DEP forces generated by excited electrodes. The floating electrodes' capabilities are explained theoretically by calculating the electric field gradients and demonstrated experimentally by using test-devices. The test-devices show that floating electrodes can be used to collect erythrocytes (red blood cells). DEP devices which contain many floating electrodes ought to have fewer connections to external signal sources. Therefore, the use of floating electrodes may considerably facilitate the fabrication and operation of DEP devices. It can also reduce device dimensions. However, the key point is that DEP devices can integrate excited electrodes fabricated by microtechnology processes and floating electrodes fabricated by nanotechnology processes. Such integration is expected to promote the use of DEP devices in the manipulation of nanoparticles.

  9. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  10. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    PubMed

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  11. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  12. Advantage of four-electrode over two-electrode defibrillators

    NASA Astrophysics Data System (ADS)

    Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.

    2015-12-01

    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.

  13. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    DOE PAGES

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; ...

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less

  14. Na 2 Ti 3 O 7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Jesse S.; Doan-Nguyen, Vicky V. T.; Kim, Hyung-Seok

    2017-01-18

    The increasing interest in Na-ion batteries (NIBs) can be traced to sodium abundance, its low cost compared to lithium, and its intercalation chemistry being similar to that of lithium. We report that the electrochemical properties of a promising negative electrode material, Na2Ti3O7, are improved by exfoliating its layered structure and forming 2D nanoscale morphologies, nanoplatelets, and nanosheets. Exfoliation of Na2Ti3O7 was carried out by controlling the amount of proton exchange for Na+ and then proceeding with the intercalation of larger cations such as methylammonium and propylammonium. An optimized mixture of nanoplatelets and nanosheets exhibited the best electrochemical performance in termsmore » of high capacities in the range of 100–150 mA h g–1 at high rates with stable cycling over several hundred cycles. These properties far exceed those of the corresponding bulk material, which is characterized by slow charge-storage kinetics and poor long-term stability. The results reported in this study demonstrate that charge-storage processes directed at 2D morphologies of surfaces and few layers of sheets are an exciting direction for improving the energy and power density of electrode materials for NIBs.« less

  15. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  16. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes.

    PubMed

    Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W

    2016-04-29

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode-a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  17. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    PubMed Central

    Foster, Christopher W.; Pillay, Jeseelan; Metters, Jonathan P.; Banks, Craig E.

    2014-01-01

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes l-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards l-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate. PMID:25414969

  18. From Si wafers to cheap and efficient Si electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gauthier, Magali; Reyter, David; Mazouzi, Driss; Moreau, Philippe; Guyomard, Dominique; Lestriez, Bernard; Roué, Lionel

    2014-06-01

    High-energy ball milling is used to recycle Si wafers to produce Si powders for negative electrodes of Li-ion batteries. The resulting Si powder consists in micrometric Si agglomerates made of cold-welded submicrometric nanocrystalline Si particles. Silicon-based composite electrodes prepared with ball-milled Si wafer can achieve more than 900 cycles with a capacity of 1200 mAh g-1 of Si (880 mAh g-1 of electrode) and a coulombic efficiency higher than 99%. This excellent electrochemical performance lies in the use of nanostructured Si produced by ball milling, the electrode formulation in a pH 3 buffer solution with CMC as binder and the use of FEC/VC additives in the electrolyte. This work opens the way to an economically attractive recycling of Si wastes.

  19. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; ...

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  20. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes.

    PubMed

    Klink, Stefan; Schuhmann, Wolfgang; La Mantia, Fabio

    2014-08-01

    Porous lithium ion battery electrodes are characterized using a vertical distribution of cross-currents. In an appropriate simplification, this distribution can be described by a transmission line model (TLM) consisting of infinitely thin electrode layers. To investigate the vertical distribution of currents, overpotentials, and irreversible charge losses in a porous graphite electrode in situ, a multi-layered working electrode (MWE) was developed as the experimental analogue of a TLM. In this MWE, each layer is in ionic contact but electrically insulated from the other layers by a porous separator. It was found that the negative graphite electrodes get lithiated and delithiated stage-by-stage and layer-by-layer. Several mass-transport- as well as non-mass-transport-limited processes could be identified. Local current densities can reach double the average, especially on the outermost layer at the beginning of each intercalation stage. Furthermore, graphite particles close to the counter electrode act as "electrochemical sieve" reducing the impurities present in the electrolyte such as water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. NDI and DAN DNA: nucleic acid-directed assembly of NDI and DAN.

    PubMed

    Ikkanda, Brian A; Samuel, Stevan A; Iverson, Brent L

    2014-03-07

    Two novel DNA base surrogate phosphoramidites 1 and 2, based upon relatively electron-rich 1,5-dialkoxynaphthalene (DAN) and relatively electron-deficient 1,4,5,8-naphthalenetetracarboxylic diimide (NDI), respectively, were designed, synthesized, and incorporated into DNA oligonucleotide strands. The DAN and NDI artificial DNA bases were inserted within a three-base-pair region within the interior of a 12-mer oligonucleotide duplex in various sequential arrangements and investigated with CD spectroscopy and UV melting curve analysis. The CD spectra of the modified duplexes indicated B-form DNA topology. Melting curve analyses revealed trends in DNA duplex stability that correlate with the known association of DAN and NDI moieties in aqueous solution as well as the known favorable interactions between NDI and natural DNA base pairs. This demonstrates that DNA duplex stability and specificity can be driven by the electrostatic complementarity between DAN and NDI. In the most favorable case, an NDI-DAN-NDI arrangement in the middle of the DNA duplex was found to be approximately as stabilizing as three A-T base pairs.

  2. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor

    PubMed Central

    Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang

    2018-01-01

    The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi18SeO29/BiSe as the negative electrode and flower-like Co0.85Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi18SeO29/BiSe and Co0.85Se have high specific capacitance (471.3 F g–1 and 255 F g–1 at 0.5 A g–1), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg–1 at a power density of 871.2 W kg–1 in the voltage window of 0–1.6 V with 2 M KOH solution. PMID:29410830

  3. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.

    PubMed

    Ma, Guofu; Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang

    2018-01-01

    The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g -1 and 255 F g -1 at 0.5 A g -1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg -1 at a power density of 871.2 W kg -1 in the voltage window of 0-1.6 V with 2 M KOH solution.

  4. Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer.

    PubMed

    Mizutani, F; Yabuki, S; Sato, Y

    1997-01-01

    A voltammetric urea-sensing electrode was prepared by combining a lipid-attached urease layer with a 2,5-dihydroxythiophenol-modified gold electrode. A self-assembled monolayer of dihydroxythiophenol was prepared on the gold surface by soaking the electrode into an ethanolic solution containing the modifier. A layer of the lipid-attached enzyme and that of acetyl cellulose overcoat were successively made on the dihydroxythiophenol-modified electrode by applying a dip-coating procedure. The addition of urea in a test solution (10 mM phosphate buffer, pH 7.0) brought about an increase of pH near the urease layer. The pH shift accompanied a negative shift of the anodic peak, which corresponded to the electro-oxidation of dihydroxyphenol moiety to form quinone, on the linear sweep voltammograms for the urease/dihydroxythiophenol electrode. The concentration of urea (0.2-5 mM) could be determined by measuring the electrode current at -0.05 V versus Ag/AgCl from the voltammogram. The electrode was applied to the determination of urea in human urine; the measurement of electrode current at such a low potential provided the urea determination without any electrochemical interference from L-ascorbic acid and uric acid.

  5. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.

    PubMed

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent

    2011-01-21

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  6. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C.; CNRS, LAPLACE, F-31062 Toulouse

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are modelmore » of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.« less

  7. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  8. Single element of the matrix source of negative hydrogen ions: Measurements of the extracted currents combined with diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A.

    2016-02-15

    Combining measurements of the extracted currents with probe and laser-photodetachment diagnostics, the study is an extension of recent tests of factors and gas-discharge conditions stimulating the extraction of volume produced negative ions. The experiment is in a single element of a rf source with the design of a matrix of small-radius inductively driven discharges. The results are for the electron and negative-ion densities, for the plasma potential and for the electronegativity in the vicinity of the plasma electrode as well as for the currents of the extracted negative ions and electrons. The plasma-electrode bias and the rf power have beenmore » varied. Necessity of a high bias to the plasma electrode and stable linear increase of the extracted currents with the rf power are the main conclusions.« less

  9. Textile electrode characterization: dependencies in the skin-clothing-electrode interface

    NASA Astrophysics Data System (ADS)

    Macías, R.; Fernández, M.; Bragós, R.

    2013-04-01

    Given the advances in the technology known as smart textiles, the use of textile electrodes is more and more common. However this kind of electrodes presents some differences regarding the standard ones as the Ag-AgCl electrodes. Therefore to characterize them as best as possible is required. In order to make the characterization reproducible and repetitive, a skin dummy made of agar-agar and a standardized measurement set-up is used in this article. Thus, some dependencies in the skin-electrode interface are described. These dependencies are related to the surface of the textile electrode, the conductive material and the applied pressure. Furthermore, the dependencies on clothing in the skin-textile electrode interface are also analyzed. Thus, based on some parameters such as textile material, width and number of layers, the behavior of the interface made up by the skin, the textile electrode and clothing is depicted.

  10. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    NASA Astrophysics Data System (ADS)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  11. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE PAGES

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit; ...

    2017-07-01

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  12. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  13. Electrochemical characterization of high frequency stimulation electrodes: role of electrode material and stimulation parameters on electrode polarization

    NASA Astrophysics Data System (ADS)

    Ghazavi, Atefeh; Cogan, Stuart F.

    2018-06-01

    Objective. With recent interest in kilohertz frequency electrical stimulation for nerve conduction block, understanding the electrochemistry and role of electrode material is important for assessing the safety of these stimulus protocols. Here we describe an approach to determining electrode polarization in response to continuous kilohertz frequency sinusoidal current waveforms. We have also investigated platinum, iridium oxide, and titanium nitride as coatings for high frequency electrodes. The current density distribution at 50 kHz at the electrode–electrolyte interface was also modeled to demonstrate the importance of the primary current distribution in supporting charge injection at high frequencies. Approach. We determined electrode polarization in response to sinusoidal currents with frequencies in the 1–50 kHz range and current amplitudes from 100 to 500 µA and 1–5 mA, depending on the electrode area. The current density distribution at the interface was modeled using the finite element method (FEM). Main results. At low frequencies, 1–5 kHz, polarization on the platinum electrode was significant, exceeding the water oxidation potential for high amplitude (5 mA) waveforms. At frequencies of 20 kHz or higher, the polarization was less than 300 mV from the electrode open circuit potential. The choice of electrode material did not play a significant role in electrode polarization at frequencies higher than 10 kHz. The current density distribution modeled at 50 kHz is non-uniform and this non-uniformity persists throughout charge delivery. Significance. At high frequencies (>10 kHz) electrode double-layer charging is the principal mechanism of charge-injection and selection of the electrode material has little effect on polarization, with platinum, iridium oxide, and titanium nitride exhibiting similar behavior. High frequency stimulation is dominated by a highly nonuniform primary current distribution.

  14. A study on electrode gels for skin conductance measurements.

    PubMed

    Tronstad, Christian; Johnsen, Gorm Krogh; Grimnes, Sverre; Martinsen, Ørjan G

    2010-10-01

    Low-frequency skin conductance is used within several clinical applications and is mainly sensitive to sweating and the moisture content of the stratum corneum, but also how electrodes introduce changes in the electrical properties. Four electrode gels were investigated with regard to sorption characteristics and electrical properties. Skin conductance time series were collected from 18 test subjects during relaxation, exercise and recovery, wearing different pairs of electrodes contralaterally on the hypothenar and the T9 dermatome. Pressure test was applied on the T9 electrodes. Impedance frequency sweeps were taken on the T9 electrodes the same day and the next, parameterized to the Cole model. ANOVA on the initial skin conductance level change, exercise response amplitude, recovery offset and pressure-induced changes revealed significant differences among gel types. The wetter gels caused a higher positive level change, a greater response amplitude, larger recovery offset and greater pressure-induced artifacts compared to the solid gels. Sweating on the T9 site led to negative skin conductance responses for the wetter gels. Correlations were found between the desorption measurements and the initial skin conductance level change (hypothenar: R = 0.988 T9: R = 0.901) RM-ANOVA on the Cole parameters revealed a significant decrease in R(s) of the most resistive gel. Clinical implications are discussed.

  15. Fundamental electrode kinetics

    NASA Technical Reports Server (NTRS)

    Elder, J. P.

    1968-01-01

    Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics.

  16. Polyphase alloys as rechargeable electrodes in advanced battery systems

    NASA Technical Reports Server (NTRS)

    Huggins, Robert A.

    1987-01-01

    The rechargeability of electrochemical cells is often limited by negative electrode problems. These may include loss of capacity, increased impedance, macroscopic shape change, dendrite growth, or a tendency for filamentary or whisker growth. In principle, these problems can be reduced or eliminated by the use of alloys that undergo either displacement or insertion reactions at reactant species activities less than unity, rather than pure elements. The fundamental reasons for some of these problems with elemental electrodes, as well as the basic principles involved in the different behavior of alloys, are briefly discussed. More information is now available concerning the thermodynamic and kinetic properties of a number of alloys of potential interest for use as electrodes in elevated temperature lithium battery systems. Recent results have extended these results down to ambient temperatures, indicating that some such materials may be of interest for use with new low temperature molten salt electrolytes, or with organic solvent electrolytes. The all solid mixed conductor matrix concept is also reviewed.

  17. Method of preparing electrodes with porous current collector structures and solid reactants for secondary electrochemical cells

    DOEpatents

    Gay, Eddie C.; Martino, Fredric J.

    1976-01-01

    Particulate electrode reactants, for instance transition metal sulfides for the positive electrodes and lithium alloys for the negative electrodes, are vibratorily compacted into porous, electrically conductive structures. Structures of high porosity support sufficient reactant material to provide high cell capacity per unit weight while serving as an electrical current collector to improve the utilization of reactant materials. Pore sizes of the structure and particle sizes of the reactant material are selected to permit uniform vibratory loading of the substrate without settling of the reactant material during cycling.

  18. Effects of the guard electrode on the photoelectron distribution around an electric field sensor

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Kojima, H.

    2011-05-01

    We have developed a numerical model of a double-probe electric field sensor equipped with a photoelectron guard electrode for the particle-in-cell simulation. The model includes typical elements of modern double-probe sensors on, e.g., BepiColombo/MMO, Cluster, and THEMIS spacecraft, such as a conducting boom and a preamplifier housing called a puck. The puck is also used for the guard electrode, and its potential is negatively biased by reference to the floating spacecraft potential. We apply the proposed model to an analysis of an equilibrium plasma environment around the sensor by assuming that the sun illuminates the spacecraft from the direction perpendicular to the sensor deployment axis. As a simulation result, it is confirmed that a substantial number of spacecraft-originating photoelectrons are once emitted sunward and then fall onto the puck and sensing element positions. In order to effectively repel such photoelectrons coming from the sun direction, a potential hump for electrons, i.e., a negative potential region, should be created in a plasma region around the sunlit side of the guard electrode surface. The simulation results reveal the significance of the guard electrode potential being not only lower than the spacecraft body but also lower than the background plasma potential of the region surrounding the puck and the sensing element. One solution for realizing such an operational condition is to bias the guard potential negatively by reference to the sensor potential because the sensor is usually operated nearly at the background plasma potential.

  19. Stress and Strain in Silicon Electrode Models

    DOE PAGES

    Higa, Kenneth; Srinivasan, Venkat

    2015-03-24

    While the high capacity of silicon makes it an attractive negative electrode for Li-ion batteries, the associated large volume change results in fracture and capacity fade. Composite electrodes incorporating silicon have additional complexity, as active material is attached to surrounding material which must likewise experience significant volume change. In this paper, a finite-deformation model is used to explore, for the first time, mechanical interactions between a silicon particle undergoing lithium insertion, and attached binder material. Simulations employ an axisymmetric model system in which solutions vary in two spatial directions and shear stresses develop at interfaces between materials. The mechanical responsemore » of the amorphous active material is dependent on lithium concentration, and an equation of state incorporating reported volume expansion data is used. Simulations explore the influence of active material size and binder stiffness, and suggest delamination as an additional mode of material damage. Computed strain energies and von Mises equivalent stresses are in physically-relevant ranges, comparable to reported yield stresses and adhesion energies, and predicted trends are largely consistent with reported experimental results. It is hoped that insights from this work will support the design of more robust silicon composite electrodes.« less

  20. [Brief investigation on the issue of Zhen Dan(Cinnabar, HgS) irrelevant to Qian Dan (Minium, Pb(3)O(4))].

    PubMed

    Shen, S N

    2017-07-28

    Zhen Dan, the abbreviated form of Zhen Dan Sha, or called Zhu Sha (Cinnabar, HgS). It can be ruled out that Zhen Dan is the nickname of Qian Dan (Minium, Pb(3)O(4)) through the homologous formulas contrast. The prescriptions containing Zhen Dan in the Zheng lei ben cao ( Classified Materia Medica ) was put under the "attached prescriptions" of Qian Dan, while Zhong yao da ci dian ( Great Dictionary of Chinese Materia Medica )and Zhong hua ben cao ( Chinese Herbology )all definitelyconfirmed that Zhen Dan is the other name of Qian Dan, which are wrong and should be corrected.

  1. Method of electrode fabrication and an electrode for metal chloride battery

    DOEpatents

    Bloom, I.D.; Nelson, P.A.; Vissers, D.R.

    1993-03-16

    A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 [Omega]cm[sup 2] than those resistivity values of approximately 1.0-1.5 [Omega]cm[sup 2] exhibited by currently available electrodes.

  2. Method of electrode fabrication and an electrode for metal chloride battery

    DOEpatents

    Bloom, Ira D.; Nelson, Paul A.; Vissers, Donald R.

    1993-01-01

    A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 .OMEGA.cm.sup.2 than those resistivity values of approximately 1.0-1.5 .OMEGA.cm.sup.2 exhibited by currently available electrodes.

  3. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    NASA Astrophysics Data System (ADS)

    Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.

    2016-04-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  4. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    NASA Astrophysics Data System (ADS)

    Kajisa, Taira; Sakata, Toshiya

    2017-12-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  5. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  6. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes.

    PubMed

    Pandit, Soumya; Shanbhag, Sneha; Mauter, Meagan; Oren, Yoram; Herzberg, Moshe

    2017-09-05

    Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.

  7. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions.

    PubMed

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  8. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  9. Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization

    NASA Astrophysics Data System (ADS)

    Mazúr, P.; Mrlík, J.; Beneš, J.; Pocedič, J.; Vrána, J.; Dundálek, J.; Kosek, J.

    2018-03-01

    In our contribution we study the electrocatalytic effect of oxygen functionalization of thermally treated graphite felt on kinetics of electrode reactions of vanadium redox flow battery. Chemical and morphological changes of the felts are analysed by standard physico-chemical characterization techniques. A complex method four-point method is developed and employed for characterization of the felts in a laboratory single-cell. The method is based on electrochemical impedance spectroscopy and load curves measurements of positive and negative half-cells using platinum wire pseudo-reference electrodes. The distribution of ohmic and faradaic losses within a single-cell is evaluated for both symmetric and asymmetric electrode set-up with respect to the treatment conditions. Positive effect of oxygen functionalization is observed only for negative electrode, whereas kinetics of positive electrode reaction is almost unaffected by the treatment. This is in a contradiction to the results of typically employed cyclovoltammetric characterization which indicate that both electrodes are enhanced by the treatment to a similar extent. The developed four-point characterization method can be further used e.g., for the component screening and in-situ durability studies on single-cell scale redox flow batteries of various chemistries.

  10. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  11. Self-discharge performance of Ni-MH battery by using electrodes with hydrophilic/hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Wang, Xiaojie; Dong, Huichao; Xia, Tongchi; Wang, Lizhen; Song, Yanhua

    2013-12-01

    The polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) film is separately coated on the surface of the metal hydride (MH) and Ni(OH)2 electrodes to obtain the electrodes with hydrophobic or hydrophilic surface. The effects of the surface treatment on the oxygen and hydrogen evolution from the electrodes are studied by using cyclic voltammetry tests. Although the positive and negative active materials of the Ni-MH batteries show a lower self-decomposition rate after the CMC treatment, the self-discharge rate of the batteries show little change. On the contrary, the self-discharge rate of the batteries decreases from 35.9% to 27.1% by using the PTFE-treated Ni(OH)2 electrodes, which might be related to the suppression of the reaction between NiOOH and H2 by the hydrophobic film.

  12. Induction of Electrode-Cellular Interfaces with ˜ 0.05 μm^2 Contact Areas

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Thapa, Prem

    2009-10-01

    Individual cells of the slime mold Dictyostelium discoideum attach themselves to negatively biased nanoelectrodes that are separated by 30 μm from grounded electrodes. There is a -43 mV voltage-threshold for cell-to-electrode attachment, with negligible probability across the 0 to -38 mV range but probability that approaches 0.7 across the -46 to -100 mV range. A cell initiates contact by extending a pseudopod to the electrode and maintains contact until the voltage is turned off. Scanning electron micrographs of these interfaces show the contact areas to be of the order of 0.05 μm^2. Insight into this straight-forward, reproducible process may lead to new electrode-cellular attachment strategies that complement established approaches, such as blind sampling and patch clamp.

  13. Selecting electrode configurations for image-guided cochlear implant programming using template matching

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H.; Dawant, Benoit M.

    2017-03-01

    Cochlear implants (CIs) are used to treat patients with severe-to-profound hearing loss. In surgery, an electrode array is implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). In the recent past, we have proposed a system to assist the audiologist in programming the CI that we call Image-Guided CI Programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend which subset of electrodes should be active to avoid NSO. In an ongoing clinical study, we have shown that IGCIP leads to significant improvement in hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires expert intervention. With expertise, Distance-Vs-Frequency (DVF) curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. In this work, we propose an automated technique for electrode configuration selection. It relies on matching new patients' DVF curves to a library of DVF curves for which electrode configurations are known. We compare this approach to one we have previously proposed. We show that, generally, our new method produces results that are as good as those obtained with our previous one while being generic and requiring fewer parameters.

  14. Graphene-passivated cobalt as a spin-polarized electrode: growth and application to organic spintronics

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Tang, Guoqiang; Li, Tian; Pan, Guoxing; Deng, Zanhong; Zhang, Fapei

    2017-03-01

    The ferromagnetic electrode on which a clean high-quality electrode/interlayer interface is formed, is critical to achieve efficient injection of spin-dependent electrons in spintronic devices. In this work, we report on the preparation of graphene-passivated cobalt electrodes for application in vertical spin valves (SVs). In this strategy, high-quality monolayer and bi-layer graphene sheets have been grown directly on the crystal Co film substrates in a controllable process by chemical vapor deposition. The electrode is oxidation resistant and ensures a clean crystalline graphene/Co interface. The AlO x -based magnetic junction devices using such bottom electrodes, exhibit a negative tunnel magneto-resistance (TMR) of ca. 1.0% in the range of 5 K-300 K. Furthermore, we have also fabricated organic-based SVs employing a thin layer of fullerene C60 or an N-type polymeric semiconductor as the interlayer. The devices of both materials show a tunneling behavior of spin-polarized electron transport as well as appreciable TMR effect, demonstrating the high potential of such graphene-coated Co electrodes for organic-based spintronics.

  15. Dan Macumber | NREL

    Science.gov Websites

    Dan Macumber Photo of Daniel Macumber Dan Macumber Engineering Daniel.Macumber@nrel.gov | 303-384 -6172 Orcid ID http://orcid.org/0000-0002-6909-4725 Daniel joined NREL in 2008 and works in the and interoperability. Prior to joining NREL, Daniel worked as a software developer working on

  16. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  17. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  18. Meet EPA's Dan Nelson

    EPA Pesticide Factsheets

    EPA’s Dan Nelson is the Director of the Human Research Protocol Office at the National Health and Environmental Effect Research Laboratory, Dan works to protect the rights and welfare of EPA’s research participants.

  19. In situ neutron diffraction study of deuterium gas absorption by AB5+y alloys used as negative electrode materials for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Latroche, M.; Joubert, J.-M.; Guégan, A. Percheron; Isnard, O.

    2004-07-01

    LaNi5-type alloys store reversibly hydrogen and are used as negative electrode materials in Ni-MH batteries. Substitutions on La and Ni crystallographic sites have led to competitive materials with complex formulae Mm(Ni4.3-xMn0.4Al0.3Cox)1+y (Mm: mishmetal). Materials involving an unexpected metastable phase γ show the best cycle lives. This phase occurrence depends on the mishmetal composition, the cobalt rate and the over-stoichiometry. It is observed as a transitory phase only for charge in electrochemical process. To confirm the appearance of this phase during gas loading, in beam D2 gas absorption has been performed on two materials for which the γ phase is expected. Phase amounts and cell volumes have been measured by in situ neutron powder diffraction analysis under controlled gas pressure as a function of the state of charge.

  20. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    NASA Technical Reports Server (NTRS)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  1. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat [Albuquerque, NM; Wessendorf, Kurt O [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  2. Space Suit Electrocardiographic Electrode Selection: Are commercial electrodes better than the old Apollo technology?

    NASA Technical Reports Server (NTRS)

    Redmond, M.; Polk, J. D.; Hamilton, D.; Schuette, M.; Guttromson, J.; Guess, T.; Smith, B.

    2005-01-01

    The NASA Manned Space Program uses an electrocardiograph (ECG) system to monitor astronauts during extravehicular activity (EVA). This ECG system, called the Operational Bioinstrumentation System (OBS), was developed during the Apollo era. Throughout the Shuttle program these electrodes experienced failures during several EVAs performed from the Space Shuttle and International Space Station (ISS) airlocks. An attempt during Shuttle Flight STS-109 to replace the old electrodes with new commercial off-the-shelf (COTS) disposable electrodes proved unsuccessful. One assumption for failure of the STS-109 COTS electrodes was the expansion of trapped gases under the foam electrode pad, causing the electrode to be displaced from the skin. Given that our current electrodes provide insufficient reliability, a number of COTS ECG electrodes were tested at the NASA Altitude Manned Chamber Test Facility. Methods: OBS disposable electrodes were tested on human test subjects in an altitude chamber simulating an Extravehicular Mobility Unit (EMU) operating pressure of 4.3 psia with the following goals: (1) to confirm the root cause of the flight certified, disposable electrode failure during flight STS-109. (2) to identify an adequate COTS replacement electrode and determine if further modifications to the electrodes are required. (3) to evaluate the adhesion of each disposable electrode without preparation of the skin with isopropyl alcohol. Results: There were several electrodes that failed the pressure testing at 4.3psia, including the electrodes used during flight STS-109. Two electrodes functioned well throughout all testing and were selected for further testing in an EMU at altitude. A vent hole placed in all electrodes was also tested as a possible solution to prevent gas expansion from causing electrode failures. Conclusions: Two failure modes were identified: (1) foam-based porous electrodes entrapped air bubbles under the pad (2) poor adhesion caused some electrodes to

  3. BMP inhibition by DAN in Hensen's node is a critical step for the establishment of left-right asymmetry in the chick embryo.

    PubMed

    Katsu, Kenjiro; Tokumori, Daisuke; Tatsumi, Norifumi; Suzuki, Atsushi; Yokouchi, Yuji

    2012-03-01

    During left-right (L-R) axis formation, Nodal is expressed in the node and has a central role in the transfer of L-R information in the vertebrate embryo. Bone morphogenetic protein (BMP) signaling also has an important role for maintenance of gene expression around the node. Several members of the Cerberus/Dan family act on L-R patterning by regulating activity of the transforming growth factor-β (TGF-β) family. We demonstrate here that chicken Dan plays a critical role in L-R axis formation. Chicken Dan is expressed in the left side of the node shortly after left-handed Shh expression and before the appearance of asymmetrically expressed genes in the lateral plate mesoderm (LPM). In vitro experiments revealed that DAN inhibited BMP signaling but not NODAL signaling. SHH had a positive regulatory effect on Dan expression while BMP4 had a negative effect. Using overexpression and RNA interference-mediated knockdown strategies, we demonstrate that Dan is indispensable for Nodal expression in the LPM and for Lefty-1 expression in the notochord. In the perinodal region, expression of Dan and Nodal was independent of each other. Nodal up-regulation by DAN required NODAL signaling, suggesting that DAN might act synergistically with NODAL. Our data indicate that Dan plays an essential role in the establishment of the L-R axis by inhibiting BMP signaling around the node. Copyright © 2012. Published by Elsevier Inc.

  4. Controlled porosity in electrodes

    DOEpatents

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  5. Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy

    DOE PAGES

    Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.; ...

    2016-05-31

    Battery cycle life is directly influenced by the microstructural changes occurring in the electrodes during charge and discharge cycles. In this study, we image in situ the nanoscale phase evolution in negative electrode materials for Li-ion batteries using a fully enclosed liquid cell in a transmission electron microscope (TEM) to reveal early degradation that is not evident in the charge–discharge curves. To compare the electrochemical phase transformation behavior between three model materials, thin films of amorphous Si, crystalline Al, and crystalline Au were lithiated and delithiated at controlled rates while immersed in a commercial liquid electrolyte. This method allowed formore » the direct observation of lithiation mechanisms in nanoscale negative electrodes, revealing that a simplistic model of a surface-to-interior lithiation front is insufficient. For the crystalline films, a lithiation front spread laterally from a few initial nucleation points, with continued grain nucleation along the growing interface. The intermediate lithiated phases were identified using electron diffraction, and high-resolution postmortem imaging revealed the details of the final microstructure. Lastly, our results show that electrochemically induced solid–solid phase transformations can lead to highly concentrated stresses at the laterally propagating phase boundary which should be considered for future designs of nanostructured electrodes for Li-ion batteries.« less

  6. Observation of electrostatically released DNA from gold electrodes with controlled threshold voltages.

    PubMed

    Takeishi, Shunsaku; Rant, Ulrich; Fujiwara, Tsuyoshi; Buchholz, Karin; Usuki, Tatsuya; Arinaga, Kenji; Takemoto, Kazuya; Yamaguchi, Yoshitaka; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki

    2004-03-22

    DNA oligo-nucleotides, localized at Au metal electrodes in aqueous solution, are found to be released when applying a negative bias voltage to the electrode. The release was confirmed by monitoring the intensity of the fluorescence of cyanine dyes (Cy3) linked to the 5' end of the DNA. The threshold voltage of the release changes depending on the kind of linker added to the DNA 3'-terminal. The amount of released DNA depends on the duration of the voltage pulse. Using this technique, we can retain DNA at Au electrodes or Au needles, and release the desired amount of DNA at a precise location in a target. The results suggest that DNA injection into living cells is possible with this method. (c) 2004 American Institute of Physics

  7. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.

    PubMed

    Cai, Jie; Niu, Haitao; Li, Zhenyu; Du, Yong; Cizek, Pavel; Xie, Zongli; Xiong, Hanguo; Lin, Tong

    2015-07-15

    Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFs, which were obtained by electrospinning, deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)2 showed specific capacitances of ∼236 and ∼1045 F g(-1), respectively. An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)2 and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as ∼51 (W h) kg(-1) and a maximum power density of ∼117 kW kg(-1). The device had excellent cycle lifetime, which retained ∼84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices.

  8. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  9. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  10. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    PubMed Central

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094

  11. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions.

    PubMed

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-03-04

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions.

  12. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  13. Negative ion-driven associated particle neutron generator

    DOE PAGES

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  14. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    NASA Astrophysics Data System (ADS)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical

  15. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    PubMed

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  16. Rechargeable aluminum batteries with conducting polymers as positive electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole andmore » polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g -1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg -1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.« less

  17. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    DOEpatents

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  18. Negative measurement sensitivity values of planar capacitive imaging probes

    NASA Astrophysics Data System (ADS)

    Yin, Xiaokang; Chen, Guoming; Li, Wei; Hutchins, David

    2014-02-01

    The measurement sensitivity distribution of planar capacitive imaging (CI) probes describes how effectively each region in the sensing area is contributing to the measured charge signal on the sensing electrode. It can be used to determine the imaging ability of a CI probe. It is found in previous work that, there are regions in the sensing area where the change of the charge output and the change of targeting physical parameter are of opposite trends. This opposite correlation implies that the measurement sensitivity values in such regions are negative. In this work, the cause of negative sensitivity is discussed. Experiments are also designed and performed so as to verify the existence of negative sensitivity and study the factors that may affect the negative sensitivity distributions.

  19. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  20. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  1. Minimizing analyte electrolysis in electrospray ionization mass spectrometry using a redox buffer coated emitter electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peintler-Krivan, Emese; Van Berkel, Gary J; Kertesz, Vilmos

    2010-01-01

    An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI-MS). The PPy film acted as a surface-attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy-coated electrode. A semi-quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore themore » lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state.« less

  2. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    NASA Astrophysics Data System (ADS)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  3. High-Performance Flexible Asymmetric Supercapacitor Based on CoAl-LDH and rGO Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Shuoshuo; Cheng, Pengpeng; Luo, Jiaxian; Zhou, Dan; Xu, Weiming; Li, Jingwei; Li, Ruchun; Yuan, Dingsheng

    2017-07-01

    A flexible asymmetric supercapacitor (ASC) based on a CoAl-layered double hydroxide (CoAl-LDH) electrode and a reduced graphene oxide (rGO) electrode was successfully fabricated. The CoAl-LDH electrode as a positive electrode was synthesized by directly growing CoAl-LDH nanosheet arrays on a carbon cloth (CC) through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g-1 at a current density of 1 A g-1. The rGO electrode as a negative electrode was synthesized by coating rGO on the CC via a simple dip-coating method and revealed a specific capacitance of 110.0 F g-1 at a current density of 2 A g-1. Ultimately, the advanced ASC offered a broad voltage window (1.7 V) and exhibited a high superficial capacitance of 1.77 F cm-2 at 2 mA cm-2 and a high energy density of 0.71 mWh cm-2 at a power density of 17.05 mW cm-2, along with an excellent cycle stability (92.9% capacitance retention over 8000 charge-discharge cycles).

  4. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  5. Characterization of dry biopotential electrodes.

    PubMed

    Xie, Li; Yang, Geng; Xu, Linlin; Seoane, Fernando; Chen, Qiang; Zheng, Lirong

    2013-01-01

    Driven by the increased interest in wearable long-term healthcare monitoring systems, varieties of dry electrodes are proposed based on different materials with different patterns and structures. Most of the studies reported in the literature focus on proposing new electrodes and comparing its performance with commercial electrodes. Few papers are about detailed comparison among different dry electrodes. In this paper, printed metal-plate electrodes, textile based electrodes, and spiked electrodes are for the first time evaluated and compared under the same experimental setup. The contact impedance and noise characterization are measured. The in-vivo electrocardiogram (ECG) measurement is applied to evaluate the overall performance of different electrodes. Textile electrodes and printed electrodes gain comparable high-quality ECG signals. The ECG signal obtained by spiked electrodes is noisier. However, a clear ECG envelope can be observed and the signal quality can be easily improved by backend signal processing. The features of each type of electrodes are analyzed and the suitable application scenario is addressed.

  6. Fuel cell electrodes

    DOEpatents

    Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad

    2015-06-23

    A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.

  7. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  8. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  9. Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis.

    PubMed

    Angelov, Svilen D; Koenen, Sven; Jakobi, Jurij; Heissler, Hans E; Alam, Mesbah; Schwabe, Kerstin; Barcikowski, Stephan; Krauss, Joachim K

    2016-01-12

    Electrodes for neural stimulation and recording are used for the treatment of neurological disorders. Their features critically depend on impedance and interaction with brain tissue. The effect of surface modification on electrode impedance was examined in vitro and in vivo after intracranial implantation in rats. Electrodes coated by electrophoretic deposition with platinum nanoparticles (NP; <10 and 50 nm) as well as uncoated references were implanted into the rat's subthalamic nucleus. After postoperative recovery, rats were electrostimulated for 3 weeks. Impedance was measured before implantation, after recovery and then weekly during stimulation. Finally, local field potential was recorded and tissue-to-implant reaction was immunohistochemically studied. Coating with NP significantly increased electrode's impedance in vitro. Postoperatively, the impedance of all electrodes was temporarily further increased. This effect was lowest for the electrodes coated with particles <10 nm, which also showed the most stable impedance dynamics during stimulation for 3 weeks and the lowest total power of local field potential during neuronal activity recording. Histological analysis revealed that NP-coating did not affect glial reactions or neural cell-count. Coating with NP <10 nm may improve electrode's impedance stability without affecting biocompatibility. Increased impedance after NP-coating may improve neural recording due to better signal-to-noise ratio.

  10. iElectrodes: A Comprehensive Open-Source Toolbox for Depth and Subdural Grid Electrode Localization.

    PubMed

    Blenkmann, Alejandro O; Phillips, Holly N; Princich, Juan P; Rowe, James B; Bekinschtein, Tristan A; Muravchik, Carlos H; Kochen, Silvia

    2017-01-01

    The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2-3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions.

  11. iElectrodes: A Comprehensive Open-Source Toolbox for Depth and Subdural Grid Electrode Localization

    PubMed Central

    Blenkmann, Alejandro O.; Phillips, Holly N.; Princich, Juan P.; Rowe, James B.; Bekinschtein, Tristan A.; Muravchik, Carlos H.; Kochen, Silvia

    2017-01-01

    The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2–3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions. PMID:28303098

  12. Cell separation technique in dilectrophoretic chip with bulk electrode

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Tay, Francis E. H.; Xu, Guolin; Yu, Liming

    2006-01-01

    This paper presents a new technique for separation of two cell populations in a dielectrophoretic chip with bulk silicon electrode. A characteristic of the dielectrophoretic chip is its "sandwich" structure: glass/silicon/glass that generates a unique definition of the microfluidic channel with conductive walls (silicon) and isolating floor and ceiling (glass). The structure confers the opportunity to use the electrodes not only to generate a gradient of the electric field but also to generate a gradient of velocity of the fluid inside the channel. This interesting combination gives rise to a new solution for dielectrophoretic separation of two cell populations. The separation method consists of four steps. First, the microchannel is field with the cells mixture. Second, the cells are trapped in different locations of the microfluidic channel, the cell population which exhibits positive dielectrophoresis is trapped in the area where the distance between the electrodes is the minimum whilst, the other population that exhibit negative dielectrophoresis is trapped where the distance between electrodes is the maximum. In the next step, increasing the flow in the microchannel will result in an increased hydrodynamic force that sweeps the cells trapped by positive dielectrophoresis out of the chip. In the last step, the electric field is removed and the second population is sweep out and collected at the outlet. The device was tested for separation of dead yeast cells from live yeast cells. The paper presents analytical aspects of the separation method a comparative study between different electrode profiles and experimental results.

  13. A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage.

    PubMed

    Gao, Ping; Chen, Zhi; Zhao-Karger, Zhirong; Mueller, Jonathan E; Jung, Christoph; Klyatskaya, Svetlana; Diemant, Thomas; Fuhr, Olaf; Jacob, Timo; Behm, R Jürgen; Ruben, Mario; Fichtner, Maximilian

    2017-08-21

    The novel functionalized porphyrin [5,15-bis(ethynyl)-10,20-diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy-storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy-storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge-discharge rates up to 53 C and a specific energy density of 345 Wh kg -1 at a specific power density of 29 kW kg -1 . Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg -1 . Whereas the capacity is in the range of that of ordinary lithium-ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microresonator electrode design

    DOEpatents

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  15. Aerospace electrode line

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1980-01-01

    A facility which produces electrodes for spacecraft power supplies is described. The electrode assembly procedures are discussed. A number of design features in the production process are reported including a batch operation mode and an independent equipment module design approach for transfering the electrode materials from process tank to process tank.

  16. Insulated ECG electrodes

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  17. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  18. Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance.

    PubMed

    Fleischmann, Simon; Zeiger, Marco; Quade, Antje; Kruth, Angela; Presser, Volker

    2018-06-06

    Merging of supercapacitors and batteries promises the creation of electrochemical energy storage devices that combine high specific energy, power, and cycling stability. For that purpose, lithium-ion capacitors (LICs) that store energy by lithiation reactions at the negative electrode and double-layer formation at the positive electrode are currently investigated. In this study, we explore the suitability of molybdenum oxide as a negative electrode material in LICs for the first time. Molybdenum oxide-carbon nanotube hybrid materials were synthesized via atomic layer deposition, and different crystal structures and morphologies were obtained by post-deposition annealing. These model materials are first structurally characterized and electrochemically evaluated in half-cells. Benchmarking in LIC full-cells revealed the influences of crystal structure, half-cell capacity, and rate handling on the actual device level performance metrics. The energy efficiency, specific energy, and power are mainly influenced by the overpotential and kinetics of the lithiation reaction during charging. Optimized LIC cells show a maximum specific energy of about 70 W·h·kg -1 and a high specific power of 4 kW·kg -1 at 34 W·h·kg -1 . The longevity of the LIC cells is drastically increased without significantly reducing the energy by preventing a deep cell discharge, hindering the negative electrode from crossing its anodic potential limit.

  19. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  20. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A low noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free ranging subject is described. The electrode comprises a pocket shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member, remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  1. Negative differential resistance in oxidized zigzag graphene nanoribbons.

    PubMed

    Wang, Min; Li, Chang Ming

    2011-01-28

    A theoretical study of zigzag graphene nanoribbons (ZGNRs) with an epoxy-pair chain (ZGO) is performed. The electronic transport properties are mainly evaluated by non-equilibrium Green's functions using the TRANSIESTA package. The results indicate that the graphene oxide can have a negative differential resistance (NDR) phenomenon, supported by bias-dependent transmission curves of different spin orientations. Applying non-zero bias voltages makes the density of states (DOS) of the right electrodes shift down. Due to an energy gap between the LUMO and LUMO+1 in ZGOs, with a certain bias, the conduction band of the right electrode cannot match the LUMO of the scattering region, then NDR occurs. With a larger bias, NDR ends when the second conduction band of the right electrode's DOS covers the LUMO of the scattering region. Since most of proposed ZGO systems possess such a gap between the LUMO and LUMO+1, NDR can be widely observed and this discovery may provide great potential applications in NDR-based nanoelectronics by using modified graphene materials.

  2. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application.

    PubMed

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao

    2015-12-09

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.

  3. Synthesis and characterization of lithium intercalation electrodes based on iron oxide thin films

    NASA Astrophysics Data System (ADS)

    Sarradin, J.; Guessous, A.; Ribes, M.

    Sputter-deposited iron oxide thin films are investigated as a possible negative electrode for rocking-chair microbatteries. Experimental conditions related to the manufacturing of amorphous thin films suitable to a large number of available intercalation sites are described. Structural and physical properties of the thin layer films are presented. The conductivities of the amorphous thin films were found to be very high compared with those of the respective crystalline forms. Regarding the electrochemical behaviour, Fe 2O 3-based thin films electrodes are able to store and reversibly exchange lithium ions. At a C/2 charge/discharge rate with 100% depth-of-discharge (DOD), the specific capacity of these amorphous thin film electrodes remains almost constant and close to 330 Ah/kg after more than 120 charge/discharge cycles.

  4. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.

    PubMed

    Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard

    2010-05-05

    A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

  5. Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes

    NASA Astrophysics Data System (ADS)

    Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2017-10-01

    Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.

  6. Study of EHD flow generator's efficiencies utilizing pin to single ring and multi-concentric rings electrodes

    NASA Astrophysics Data System (ADS)

    Sumariyah; Kusminart; Hermanto, A.; Nuswantoro, P.

    2016-11-01

    EHD flow or ionic wind yield corona discharge is a stream coming from the ionized gas. EHD is generated by a strong electric field and its direction follows the electric field lines. In this study, the efficiency of the EHD flow generators utilizing pin-multi concentric rings electrodes (P-MRE) and the EHD pin-single ring electrode (P-SRE) have been measured. The comparison of efficiencies two types of the generator has been done. EHD flow was generated by using a high-voltage DC 0-10 KV on the electrode pin with a positive polarity and electrode ring/ multi-concentric rings of negative polarity. The efficiency was calculated by comparison between the mechanical power of flow to the electrical power that consumed. We obtained that the maximum efficiency of EHD flow generator utilizing pin-multi concentric rings electrodes was 0.54% and the maximum efficiency of EHD flow generator utilizing a pin-single ring electrode was 0.23%. Efficiency of EHD with P-MRE 2.34 times Efficiency of EHD with P-SRE

  7. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  8. Differents aspects du fer dans l'organisme

    PubMed Central

    Bessis, Marcel; Breton-Gorius, Janine

    1959-01-01

    On voit des molécules de ferritine apparaitre dans le cytoplasme des cellules réticulaires au cours de la digestion des érythrocytes, autour des stromas phagocytés. Cette ferritine s'accumule en amas dans lesquels entrent d'autres substances, en particulier des lipides, provenant aussi des stromas globulaires et qui apparaissent sous forme myélinique. Souvent la ferritine se dispose d'une manière cristalline. Parfois la ferritine et l'apoferritine alternent dans ces cristaux. Parfois l'hémosidérine contient des cristaux qui semblent bien être de l'apoferritine pure. L'injection de sels de fer donne lieu à l'apparition de ferritine dans les cellules réticulaires. Dans les conditions de nos expériences, la plus grande partie du fer injecté était sous forme de ferritine dans un délai de 3 jours. Un aspect intermédiaire entre celui du fer injecté et celui de la ferritine a été trouvé. Dans le cas des injections de saccharate de fer ce sont de fines aiguilles; dans le cas des injections de lactate de fer, il s'agit de masses fibreuses. PMID:13800106

  9. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    DOEpatents

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  10. Near-electrode imager

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, II, Rex E.

    2000-01-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  11. Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes

    NASA Astrophysics Data System (ADS)

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert

    2011-06-01

    Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation, suggesting that the level of stimulation applied was creating localized changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation.

  12. Synthesis and properties of Li2SnO3/polyaniline nanocomposites as negative electrode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qiufen; Huang, Ying; Miao, Juan; Zhao, Yang; Wang, Yan

    2012-10-01

    The nanocomposites Li2SnO3/polyaniline (Li2SnO3/PANI) have been synthesized by a micro emulsion polymerization method. The structure, morphology and electrochemical properties of the as-prepared materials are characterized by XRD, FTIR, Raman, XPS, TGA, TEM and electrochemical measurements. Results show that Li2SnO3/PANI nanocomposites are composed of uniform and blocky nano-sized particles (40-50 nm) with clear lattice fringes. Electrochemical measurement suggests that Li2SnO3/PANI exhibits better cycling properties and lower initial irreversible capacities than Li2SnO3 as negative electrodes materials for lithium-ion batteries. At a current density of 60 mA g-1 in the voltage about 0.05-2.0 V, the initial irreversible capacity of Li2SnO3/PANI is 563 mAh g-1 while it is 687.5 mAh g-1 to Li2SnO3. The capacity retained of Li2SnO3/PANI (569.2 mAh g-1) is higher than that of Li2SnO3 (510.2 mAh g-1) after 50 cycles. The PANI in the Li2SnO3/PANI nanocomposites can buffer the released stress caused by the drastic volume variation during the alloying/de-alloying process of Li-Sn.

  13. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Zhao, Xiao Li; Li, Fei; Zhang, Li Li; Zhang, Yu Xin

    2015-03-01

    Ultrathin MnO2 nanosheets arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the binder-free electrode for high-performance supercapacitors. This unique well-designed binder-free electrode exhibits a high specific capacitance (595.2 F g-1 at a current density of 0.5 A g-1), good rate capability (64.1% retention), and excellent cycling stability (89% capacitance retention after 3000 cycles). Moreover, an asymmetric supercapacitor is constructed using the as-prepared MnO2 nanosheets arrays as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode. The optimized asymmetric supercapacitor displays excellent electrochemical performance with an energy density of 25.8 Wh kg-1 and a maximum power density of 223.2 kW kg-1. These impressive performances suggest that the MnO2 nanosheet array is a promising electrode material for supercapacitors.

  14. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    NASA Astrophysics Data System (ADS)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  15. Low resistance fuel electrodes

    DOEpatents

    Maskalick, Nichols J.; Folser, George R.

    1989-01-01

    An electrode 6 bonded to a solid, ion conducting electrolyte 5 is made, where the electrode 6 comprises a ceramic metal oxide 18, metal particles 17, and heat stable metal fibers 19, where the metal fibers provide a matrix structure for the electrode. The electrolyte 5 can be bonded to an air electrode cathode 4, to provide an electrochemical cell 2, preferably of tubular design.

  16. Facile Synthesis of Mixed Metal Organic Frameworks: Electrode Materials for Supercapacitor with Excellent Areal Capacitance and Operational Stability.

    PubMed

    Kazemi, Sayed Habib; Hosseinzadeh, Batoul; Kazemi, Hojjat; Kiani, Mohammad Ali; Hajati, Shaaker

    2018-06-08

    Electrode materials with high surface area, tailored pore size and efficient capability for ion insertion and enhanced transport of electrons and ions are needed for advanced supercapacitors. In the present study, a mixed metal organic framework (cobalt and manganese based MOF) was synthesized through a simple one pot solvothermal method and employed as the electrode material for supercapacitor. Notably, Co-Mn MOF electrode displayed a large surface area and excellent cycling stability (over 95% capacitance retention after 1500 cycles). Also, superior pseudocapacitive behavior was observed for Co-Mn MOF electrode in KOH electrolyte with an exceptional areal capacitance of 1.318 F cm-2. Moreover, an asymmetric supercapacitor was assembled using Co-Mn MOF and activated carbon electrode as positive and negative electrodes, respectively. The fabricated supercapacitor showed specific capacitances of 106.7 F g-1 at a scan rate of 10 mV s-1 and delivered maximum energy density of 30 Wh kg-1 at 2285.7 W kg-1. Our studies suggest the Co-Mn MOF as promising electrode materials for supercapacitor applications.

  17. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application

    DOE PAGES

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; ...

    2015-11-24

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87%more » when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. Finally, the combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.« less

  18. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. J.; Dispennette, J. M.; Blank, E.; Kolb, A. C.

    1999-05-25

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH[sub 3]CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.

  19. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C Joseph [San Diego, CA; Dispennette, John M [Oceanside, CA; Blank, Edward [San Diego, CA; Kolb, Alan C [Rancho Santa Fe, CA

    1999-05-25

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  20. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  1. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.; Blank, E.; Kolb, A.C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH{sub 3}CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.

  2. The central electrode correction factor for high-Z electrodes in small ionization chambers.

    PubMed

    Muir, B R; Rogers, D W O

    2011-02-01

    Recent Monte Carlo calculations of beam quality conversion factors for ion chambers that use high-Z electrodes [B. R. Muir and D. W. O. Rogers, Med. Phys. 37, 5939-5950 (2010)] have shown large deviations of kQ values from values calculated using the same techniques as the TG-51 and TRS-398 protocols. This report investigates the central electrode correction factor, Pcel, for these chambers. Ionization chambers are modeled and Pcel is calculated using the EGSnrc user code egs_chamber for three cases: in photon and electron beams under reference conditions; as a function of distance from an iridium-192 point source in a water phantom; and as a function of depth in a water phantom on which a 200 kVp x-ray source or 6 MV beam is incident. In photon beams, differences of up to 3% between Pcel calculations for a chamber with a high-Z electrode and those used by TG-51 for a 1 mm diameter aluminum electrode are observed. The central electrode correction factor for a given value of the beam quality specifier is different depending on the amount of filtration of the photon beam. However, in an unfiltered 6 MV beam, Pcel, varies by only 0.3% for a chamber with a high-Z electrode as the depth is varied from 1 to 20 cm in water. The difference between Pcel calculations for chambers with high-Z electrodes and TG-51 values for a chamber with an aluminum electrode is up to 0.45% in electron beams. The central electrode correction, which is roughly proportional to the chambers absorbed dose sensitivity, is found to be large and variable as a function of distance for chambers with high-Z and aluminum electrodes in low-energy photon fields. In this work, ionization chambers that employ high-Z electrodes have been shown to be problematic in various situations. For beam quality conversion factors, the ratio of Pcel in a beam quality Q to that in a Co-60 beam is required; for some chambers, kQ is significantly different from current dosimetry protocol values because of central

  3. Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui

    2016-09-01

    By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 104 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios.

  4. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, C.W.

    1994-11-15

    A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  5. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, Carl W.

    1994-01-01

    A dual porosity electrode for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  6. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  7. L'astronomie dans le monde

    NASA Astrophysics Data System (ADS)

    Manfroid, J.

    2017-05-01

    matière sombre – Abell 2744 vu par ALMA – Bousculade dans Orion – Rotation stellaire – Tsunamis martiens – Planète X ou 9 – Formation d’étoiles dans les jets de trous noirs – Éjection d’un trou noir

  8. Dielectrophoretic manipulation and separation of microparticles using microarray dot electrodes.

    PubMed

    Yafouz, Bashar; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-04-03

    This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP) effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  9. Nanocrystalline LaOx/NiO composite as high performance electrodes for supercapacitors.

    PubMed

    Du, Guo; Zeng, Zifan; Xiao, Bangqing; Wang, Dengzhi; Yuan, Yuan; Zhu, Xiaohong; Zhu, Jiliang

    2017-12-21

    Nanocrystalline LaO x /NiO composite electrodes were synthesized via two types of facile cathodic electrodeposition methods onto nickel foam followed by thermal annealing without any binders. Scanning electron microscopy and transmission electron microscopy investigation revealed that LaO x nanocrystalline particles with an average diameter of 50 nm are uniformly distributed in the NiO layer or alternately deposited with the NiO layer onto the substrate. It is speculated that LaO x particles can participate in the faradaic reaction directly and offer more redox sites. Besides this, the unique Ni/La layered structure facilitates the diffusion of ions and retards the electrode polarization, thus leading to a better rate capability and cycling stability of NiO. As a result, the obtained electrodes display very competitive electrochemical performance (a specific capacitance of 1238 F g -1 at a current density of 0.5 A g -1 , excellent rate capability of 86% of the original capacitance at 10 A g -1 and excellent cycling stability of 93% capacitance after 10 000 cycles). In addition, asymmetric coin devices were assembled using LaO x /NiO as the positive electrode and active carbon as the negative electrode. The assembled asymmetric devices demonstrate a high energy density of 13.12 W h kg -1 at a power density of 90.72 W kg -1 .

  10. Effects of Different Materials Used for Internal Floating Electrode on the Photovoltaic Properties of Tandem Type Organic Solar Cell

    NASA Astrophysics Data System (ADS)

    Triyana, Kuwat; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2004-04-01

    Three thin heterojunctions sandwiched between indium tin oxide (ITO) and the top electrode as triple-heterojunction organic solar cells have been fabricated. Each heterojunction cell consists of CuPc as a donor layer and perilene tetracrboxylic-bis-benzimidazole (PTCBI) as an acceptor layer. Ultra thin (1 nm average thickness) layers of Ag or Au have been inserted between two heterojunctions as an internal electrode. Ag and Au were chosen as materials both for internal floating and top electrodes. Influences of different deposition sequences of the organic layer in each heterojunction cell and different electrode materials were also investigated. The optimum devices were obtained when the same material was used both as an internal electrode and a top electrode. When the deposition sequence of the heterojunction is PTCBI/CuPc, the most suitable electrode is Au and the ITO is negative relative to the top electrode. Meanwhile, Ag is suitable for an electrode when the deposition sequence is CuPc/PTCBI. In this second deposition sequence, the ITO is positive relative to the top electrode. The open circuit voltage (Voc) of both optimum devices is on the order of 1.35-1.5 V. These values are approximately three times higher than that in single-heterojunction organic solar cells.

  11. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    PubMed

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  12. Electrodes for microfluidic applications

    DOEpatents

    Crocker, Robert W [Fremont, CA; Harnett, Cindy K [Livermore, CA; Rognlien, Judith L [Livermore, CA

    2006-08-22

    An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.

  13. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  14. Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking

    NASA Astrophysics Data System (ADS)

    Rajaraman, Swaminathan; Bragg, Julian A.; Ross, James D.; Allen, Mark G.

    2011-08-01

    We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode-skin-electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasive 3D MEAs are demonstrated in this paper. The 3D MEAs used in these measurements consist of a metalized micro-tower array that can penetrate the outer layers of the skin in a painless fashion and are fabricated using MTM technology. Two techniques, an inclined UV lithography approach and a double-side exposure of thick negative tone resist, have been developed to fabricate the 3D MEA master structure. The MEAs themselves are fabricated from the master structure utilizing micromolding techniques. Metal patterns are transferred during the micromolding process, thereby ensuring reduced process steps compared to traditional silicon-based approaches. These 3D MEAs have been packaged utilizing biocompatible Kapton® substrates. ESEI measurements have been carried out on test human subjects with standard commercial wet electrodes as a reference. The 3D MEAs demonstrate an order of magnitude lower ESEI (normalized to area) compared to wet electrodes for an area that is 12.56 times smaller. This compares well with other demonstrated approaches in literature. For a nerve tracking demonstration, we have chosen EMG and nerve conduction measurements on test human subjects. The 3D MEAs show 100% improvement in signal power and SNR/√area as compared to standard electrodes. They also demonstrate larger amplitude signals and faster rise times during nerve conduction measurements. We believe that this microfabrication and packaging approach scales well to large-area, high-density arrays required for applications like nerve tracking. This development will increase the stimulation and recording fidelity of skin surface electrodes, while increasing their spatial resolution by an order of

  15. Studies of tin-transition metal-carbon and tin-cobalt-transition metal-carbon negative electrode materials prepared by mechanical attrition

    NASA Astrophysics Data System (ADS)

    Ferguson, P. P.; Martine, M. L.; George, A. E.; Dahn, J. R.

    Samples of Sn 30TM 30C 40 and of Sn 30Co 15TM 15C 40, with TM = 3d transition metals, were prepared by vertical-axis attritor milling. The structure and performance of these samples were studied by X-ray diffraction (XRD) and by electrochemical testing. The XRD patterns of Sn 30TM 30C 40 show an amorphous-like diffraction pattern only for the sample with TM = Co. The other prepared samples show broadened Bragg peaks of their main starting material, along with an amorphous-like background, even after 32 h of milling. Samples with TM = Co and TM = Ni show stable differential capacity versus potential plots and stable cycling for at least 100 cycles with reversible capacities of 425 and 250 mAh g -1, respectively. All samples prepared with 15 at.% Co show good capacity retention for at least 100 cycles ranging from 270 mAh g -1 for samples with TM = Ni to 500 mAh g -1 for samples with TM = Ti. The differential capacity versus potential plots for all the prepared Sn 30Co 15TM 15C 40 samples show similar structure to that of Sn 30Co 30C 40 except when TM = Cu. This shows the possibility of preparing tin-based negative electrode materials using a combination of cobalt and TM, especially if one looks to reduce the cobalt content.

  16. Electrode array for neural stimulation

    DOEpatents

    Wessendorf, Kurt O [Albuquerque, NM; Okandan, Murat [Edgewood, NM; Stein, David J [Albuquerque, NM; Yang, Pin [Albuquerque, NM; Cesarano, III, Joseph; Dellinger, Jennifer [Albuquerque, NM

    2011-08-16

    An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.

  17. Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.

    PubMed

    Bo, Zheng; Yu, Kehan; Lu, Ganhua; Mao, Shun; Chen, Junhong; Fan, Fa-Gung

    2010-08-15

    Ground-level ozone emitted from indoor corona devices poses serious health risks to the human respiratory system and the lung function. Federal regulations call for effective techniques to minimize the indoor ozone production. In this work, stable atmospheric corona discharges from nanomaterials are demonstrated using horizontally suspended carbon nanotubes (CNTs) as the discharge electrode. Compared with the conventional discharges employing micro- or macroscale electrodes, the corona discharge from CNTs could initiate and operate at a much lower voltage due to the small electrode diameter, and is thus energy-efficient. Most importantly, the reported discharge is environmentally friendly since no ozone (below the detection limit of 0.5 ppb) was detected for area current densities up to 0.744 A/m(2) due to the significantly reduced number of electrons and plasma volume generated by CNT discharges. The resulting discharge current density depends on the CNT loading. Contrary to the conventional wisdom, negative CNT discharges should be used to enhance the current density owing to the efficient field emission of electrons from the CNT surface.

  18. Original implementation of Electrochemical Impedance Spectroscopy (EIS) in symmetric cells: Evaluation of post-mortem protocols applied to characterize electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gordon, Isabel Jiménez; Genies, Sylvie; Si Larbi, Gregory; Boulineau, Adrien; Daniel, Lise; Alias, Mélanie

    2016-03-01

    Understanding ageing mechanisms of Li-ion batteries is essential for further optimizations. To determine performance loss causes, post-mortem analyses are commonly applied. For each type of post-mortem test, different sample preparation protocols are adopted. However, reports on the reliability of these protocols are rare. Herein, Li-ion pouch cells with LiNi1/3Mn1/3Co1/3O2 - polyvinylidene fluoride positive electrode, graphite-carboxymethyl cellulose-styrene rubber negative electrode and LiPF6 - carbonate solvents mixture electrolyte, are opened and electrodes are recovered following a specified protocol. Negative and positive symmetric cells are assembled and their impedances are recorded. A signal analysis is applied to reconstruct the Li-ion pouch cell impedance from the symmetric cells, then comparison against the pouch cell true impedance allows the evaluation of the sample preparation protocols. The results are endorsed by Transmission Electronic Microscopy (TEM) and Gas Chromatography - Mass Spectrometry (GC-MS) analyses. Carbonate solvents used to remove the salt impacts slightly the surface properties of both electrodes. Drying electrodes under vacuum at 25 °C produces an impedance increase, particularly very marked for the positive electrode. Drying at 50 °C under vacuum or/and exposition to the anhydrous room atmosphere is very detrimental.

  19. Improved biomedical electrode

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1972-01-01

    Newly designed electrode is prefilled, disposable, electrolyte-saturated spong. New design permits longe periods of storage without deterioration, and readiness in matter of seconds. Electrodes supply signals for electroencephalogram, electro-oculogram, and electrocardiogram.

  20. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    DOE PAGES

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; ...

    2014-11-03

    We report that the amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10 –5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g –1) had a positive rise potential of 59 ± 4 mVmore » in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g –1) had a negative rise potential (₋31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to ₋6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. In conclusion, these results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.« less

  1. Surgical implications of perimodiolar cochlear implant electrode design: avoiding intracochlear damage and scala vestibuli insertion.

    PubMed

    Briggs, R J; Tykocinski, M; Saunders, E; Hellier, W; Dahm, M; Pyman, B; Clark, G M

    2001-09-01

    To review the mechanisms and nature of intracochlear damage associated with cochlear implant electrode array insertion, in particular, the various perimodiolar electrode designs. Make recommendations regarding surgical techniques for the Nucleus Contour electrode to ensure correct position and minimal insertion trauma. The potential advantages of increased modiolar proximity of intracochlear multichannel electrode arrays are a reduction in stimulation thresholds, an increase in dynamic range and more localized neural excitation. This may improve speech perception and reduce power consumption. These advantages may be negated if increased intracochlear damage results from the method used to position the electrodes close to the modiolus. A review of the University of Melbourne Department of Otolaryngology experience with temporal bone safety studies using the Nucleus standard straight electrode array and a variety of perimodiolar electrode array designs; comparison with temporal bone insertion studies from other centres and postmortem histopathology studies reported in the literature. Review of our initial clinical experience using the Nucleus Contour electrode array. The nature of intracochlear damage resulting from electrode insertion trauma ranges from minor, localized, spiral ligament tear to diffuse organ of Corti disruption and osseous spiral lamina fracture. The type of damage depends on the mechanical characteristics of the electrode array, the stiffness, curvature and size of the electrode in relation to the scala, and the surgical technique. The narrow, flexible, straight arrays are the least traumatic. Pre-curved or stiffer arrays are associated with an incidence of basilar membrane perforation. The cochleostomy must be correctly sited in relation to the round window to ensure scala tympani insertion. A cochleostomy anterior to the round window rather than inferior may lead to scala media or scala vestibuli insertion. Proximity of electrodes to the modiolus

  2. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    NASA Astrophysics Data System (ADS)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with

  3. Fabrication of hollow nanorod electrodes based on RuO2//Fe2O3 for an asymmetric supercapacitor.

    PubMed

    Wang, Qiufan; Liang, Xiao; Ma, Yun; Zhang, Daohong

    2018-06-12

    In this work, hollow RuO2 nanotube arrays were successfully grown on carbon cloth by using a facile two-step method to fabricate a binder-free electrode. The well-aligned electrode displays excellent electrochemical performance. By using RuO2 hollow nanotube arrays as the positive electrode and Fe2O3 as the negative electrode, a flexible solid-state asymmetric supercapacitor (ASC) has been fabricated which exhibited excellent electrochemical performance, such as a high capacitance of 4.9 F cm-3, a high energy density of 1.5 mW h cm-3 and a high power density of 9.1 mW cm-3. In addition, the two-electrode SC shows high cycling stability with 97% capacitance retention after 5000 charge-discharge cycles. These excellent electrochemical performances are ascribed to the unique hollow structural design of electrodes, which can shorten the ion diffusion length, provide a fast ion transport channel, and offer a large electrode/electrolyte interface for the charge-transfer reaction. The structural design and the synthesis approach are general and can be extended to synthesizing a broad range of materials systems.

  4. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg [East Lansing, MI; Fischer, Anne [Arlington, VA; Bennett, Jason [Lansing, MI; Lowe, Michael [Holt, MI

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  5. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  6. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  7. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-06-07

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  8. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    PubMed Central

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  9. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  10. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Huang, Dekang; Cao, Kun; Wang, Mingkui; Zakeeruddin, Shaik M.; Grätzel, Michael

    2013-01-01

    We report on a new counter electrode for dye-sensitized solar cells (DSCs), which is prepared using layer-by-layer assembly of negatively charged graphene oxide and positively charged poly (diallyldimethylammonium chloride) followed by an electrochemical reduction procedure. The DSC devises using the heteroleptic Ru complex C106TBA as sensitizer and this new counter electrode reach power conversion efficiencies of 9.5% and 7.6% in conjunction with low volatility and solvent free ionic liquid electrolytes, respectively. The new counter electrode exhibits good durability (60°C for 1000 h in a solar simulator, 100 mW cm−2) during the accelerated tests when used in combination with an ionic liquid electrolyte. This work identifies a new class of electro-catalysts with potential for low cost photovoltaic devices. PMID:23508212

  11. Analysis of oxidation of self-baking electrodes (Soederberg electrodes) by means of three-dimensional model

    NASA Astrophysics Data System (ADS)

    Pashnin, S. V.

    2017-10-01

    The paper presents the methodology and results of the development of the temperature dependence of the oxidation speed of the self-baking electrode (Soederberg Electrodes) in the ore-thermal furnaces. For the study of oxidation, the working ends of the self-baking electrodes, which were taken out from the ore-thermal furnaces after their scabbings, were used. The temperature of the electrode surface by its height was calculated with the help of the mathematical model of heat work of self-baking electrode. The comparison of electrode surface temperatures with the speed of oxidation of the electrode allowed one to obtain the temperature dependency of the oxidation of the lateral electrode surface. Comparison of the experimental data, obtained in the laboratory by various authors, showed their qualitative coincidence with results of calculations of the oxidation rate presented in this article. With the help of the mathematical model of temperatures fields of electrode, the calculations of the sizes of the cracks, appearing after burnout ribs, were performed. Calculations showed that the sizes of the cracks after the ribs burnout, calculated by means of the obtained temperature dependence, coincide with the experimental data with sufficient accuracy.

  12. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  13. Inert electrode composition having agent for controlling oxide growth on electrode made therefrom

    DOEpatents

    Ray, S.P.

    1986-04-15

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. The electrode composition further includes a metal compound dopant which will aid in controlling the thickness of a protective oxide layer on at least the bottom portion of an electrode made therefrom during use. 12 figs.

  14. Inert electrode composition having agent for controlling oxide growth on electrode made therefrom

    DOEpatents

    Ray, Siba P.

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. The electrode composition further includes a metal compound dopant which will aid in controlling the thickness of a protective oxide layer on at least the bottom portion of an electrode made therefrom during use.

  15. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  16. Advanced electrodes for AMTEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiebig, Brad; Schuller, Michael; Hudson, Patricia

    1999-01-01

    Texas A&M University has begun an investigation of materials and fabrication methods which will improve AMTEC electrode performance. The study currently involves gathering data on materials which meet the basic requirements of operating in an AMTEC cell, and sorting out candidates possessing characteristics conducive to efficient AMTEC operation. An initial assessment has shown Iridium as a promising metal electrode candidate. Sodium-containing double-oxides, with melting temperatures above AMTEC operating temperatures, including NaNbO{sub 3} and Na{sub 2}Ti{sub 3}O{sub 7}, have been identified as possible electrode dopants, to enhance the sodium conductivity of an electrode. Photo-deposition and Evaporative-deposition will be investigated further asmore » electrode fabrication techniques. {copyright} {ital 1999 American Institute of Physics.}« less

  17. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando [Santa Fe, NM

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  18. Electrodes for solid state gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Rangachary; Brosha, Eric L; Garzon, Fernando

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within themore » die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.« less

  19. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-08-12

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  20. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low Earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  1. Snap-in compressible biomedical electrode

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Hillman, C. E., Jr. (Inventor)

    1977-01-01

    A replaceable, prefilled electrode enclosed in a plastic seal and suitably adapted for attachment to a reusable, washable cap having snaps thereon is disclosed. The apparatus is particularly adapted for quick positioning of electrodes to obtain an EEG. The individual electrodes are formed of a sponge body which is filled with a conductive electrolyte gel during manufacture. The sponge body is adjacent to a base formed of a conductive plastic material. The base has at its center a male gripper snap. The cap locates the female snap to enable the electrode to be positioned. The electrode can be stored and used quickly by attaching to the female gripper snap. The snap is correctly positioned and located by mounting it in a stretchable cap. The cap is reusable with new electrodes for each use. The electrolyte gel serves as the contact electrode to achieve a good ohmic contact with the scalp.

  2. Electrodeposited Porous Mn1.5Co1.5O₄/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors.

    PubMed

    Pan, Guan-Ting; Chong, Siewhui; Yang, Thomas C-K; Huang, Chao-Ming

    2017-03-31

    Mesoporous Mn 1.5 Co 1.5 O₄ (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO₃) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg -1 and a power density of 1.01 kW·kg -1 at 1 A·g -1 . After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling.

  3. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Fan, Huiqing; Ma, Jiangwei; Wang, Chao; Zhang, Mingchang; Zhao, Nan

    2018-05-01

    Hierarchically hollow Co3O4/polyaniline nanocages (Co3O4/PANI NCs) with enhanced specific capacitance and cycle performance for electrode material of supercapacitors are fabricated by combining self-sacrificing template and in situ polymerization route. Benefiting from the good conductivity of PANI improving an electron transport rate as well as high specific surface area from such a hollow structure, the electrode made of Co3O4/PANI NCs exhibits a large specific capacitance of 1301 F/g at the current density of 1 A/g, a much enhancement is obtained as compared with the pristine Co3O4 NCs electrode. The contact resistance (Re), charge-transfer (Rct) and Warburg resistance of Co3O4/PANI NCs electrode is significantly lower than that of the pristine Co3O4 NCs electrode, indicating the enhanced electrical conductivity. In addition, the Co3O4/PANI NCs electrode also displays superior cycling stability with 90 % capacitance retention after 2000 cycles. Moreover, an aqueous asymmetric supercapacitor was successfully assembled using Co3O4/PANI NCs as the positive electrode and activated carbon (AC) as the negative electrode, the assembled device exhibits a superior energy density of 41.5 Wh/kg at 0.8 kW/kg, outstanding power density of 15.9 kW/kg at 18.4 Wh/kg, which significantly transcending those of most previously reported. These results demonstrate that the hierarchically hollow Co3O4/PANI NCs composites have a potential for fabricating electrode of supercapacitors.

  4. Pitch ranking, electrode discrimination, and physiological spread-of-excitation using Cochlear's dual-electrode mode.

    PubMed

    Goehring, Jenny L; Neff, Donna L; Baudhuin, Jacquelyn L; Hughes, Michelle L

    2014-08-01

    This study compared pitch ranking, electrode discrimination, and electrically evoked compound action potential (ECAP) spatial excitation patterns for adjacent physical electrodes (PEs) and the corresponding dual electrodes (DEs) for newer-generation Cochlear devices (Cochlear Ltd., Macquarie, New South Wales, Australia). The first goal was to determine whether pitch ranking and electrode discrimination yield similar outcomes for PEs and DEs. The second goal was to determine if the amount of spatial separation among ECAP excitation patterns (separation index, Σ) between adjacent PEs and the PE-DE pairs can predict performance on the psychophysical tasks. Using non-adaptive procedures, 13 subjects completed pitch ranking and electrode discrimination for adjacent PEs and the corresponding PE-DE pairs (DE versus each flanking PE) from the basal, middle, and apical electrode regions. Analysis of d' scores indicated that pitch-ranking and electrode-discrimination scores were not significantly different, but rather produced similar levels of performance. As expected, accuracy was significantly better for the PE-PE comparison than either PE-DE comparison. Correlations of the psychophysical versus ECAP Σ measures were positive; however, not all test/region correlations were significant across the array. Thus, the ECAP separation index is not sensitive enough to predict performance on behavioral tasks of pitch ranking or electrode discrimination for adjacent PEs or corresponding DEs.

  5. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  6. Dan Johnson's impact on hearing research

    NASA Astrophysics Data System (ADS)

    Shotland, Lawrence I.

    2003-04-01

    Daniel L. Johnson is well known for his many technical contributions to noise research. Throughout a long and distinguished career at Wright-Patterson Air Force Base, Dan published the results of several significant experiments, including his landmark experiments on asymptotic threshold shift and exposure to impulse noise. His work in the area of noise exposure laid much of the groundwork for a greater understanding of the physiologic response to hazardous noise, much of which has since been incorporated in national and international standards. Dan is highly regarded for his tireless work on technical and advisory committees in noise, and most recently, ototoxicity. Throughout his career, Dan has adhered to a self-imposed standard of intellectual honesty and discovery. Dan's most recent endeavor, the development of a personal noise dosimeter designed for self-monitoring by the employee, is characteristic of his creativity and energy. Perhaps less well known are his contributions over the years to the success of his younger colleagues. He has accomplished this in an unselfish and egalitarian manner, oftentimes challenging and even contradicting his own research. The focus of this talk will elaborate on these facets of Dan's professional contributions.

  7. Membrane Bioprobe Electrodes

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  8. Negative Correlations in Visual Cortical Networks

    PubMed Central

    Chelaru, Mircea I.; Dragoi, Valentin

    2016-01-01

    The amount of information encoded by cortical circuits depends critically on the capacity of nearby neurons to exhibit trial-to-trial (noise) correlations in their responses. Depending on their sign and relationship to signal correlations, noise correlations can either increase or decrease the population code accuracy relative to uncorrelated neuronal firing. Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive. We addressed this issue by performing multiple-electrode recording in the superficial layers of the primary visual cortex (V1) of alert monkey. Despite the fact that positive noise correlations decayed exponentially with the difference in the orientation preference between cells, negative correlations were uniformly distributed across the population. Using a statistical model for Fisher Information estimation, we found that a mild increase in negative correlations causes a sharp increase in network accuracy even when mean correlations were held constant. To examine the variables controlling the strength of negative correlations, we implemented a recurrent spiking network model of V1. We found that increasing local inhibition and reducing excitation causes a decrease in the firing rates of neurons while increasing the negative noise correlations, which in turn increase the population signal-to-noise ratio and network accuracy. Altogether, these results contribute to our understanding of the neuronal mechanism involved in the generation of negative correlations and their beneficial impact on cortical circuit function. PMID:25217468

  9. Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bareño, Javier; Shkrob, Ilya A.; Gilbert, James A.

    In this study we scrutinize the causes for capacity fade in lithium-ion cells containing silicongraphite (Si-Gr) blends in the negative electrode and examine approaches for minimizing this fade. The causal mechanisms are inferred from data obtained by electrochemistry, microscopy, spectroscopy and thermogravimetry techniques. The presence of SiOxFy signals in the Si-Gr electrode, LixPOyFz compounds in the electrolyte, and SiO2 species on the NCM523 positive electrode, highlight the crucial role of hydrolytically generated HF, which accelerates the degradation of Si particles. The hydrolysis could result from residual moisture in the current electrode fabrication process, which uses aqueous binders. Water can alsomore » be released when silanol groups on the Si nanoparticles react with HF to form Si-F compounds. We note that the primary cause of capacity fade in the full cells is the loss of solid electrolyte interphase (SEI) integrity resulting from volume changes in Si particles during electrochemical cycling. Adding fluoroethylene carbonate (FEC) to the conventional electrolyte slows capacity fade through the formation of a cross linked polymer with elastomeric properties. Further gains in cell longevity are possible by excluding water during electrode fabrication, using hydrolytically stable lithium salts, and adopting electrolyte systems that provide more elasticity to the SEI layers.« less

  10. [Desulphurization with multi-needle-water film electrodes by corona discharge].

    PubMed

    Huang, Xu-ran; Li, Guo-feng; Li, Jie; Wu, Yan

    2008-09-01

    The study of this paper adopted stainless steel multi-needle as a high voltage electrode system, and water film as low voltage electrode. The electrodes were supplied with negative DC high voltage. Polluted gas containing sulfur dioxide (SO2) flowed into the corona discharge field from the center of the high voltage electrode system in an axis direction, then get across the water surface. Under the effect of corona discharge plasma and water absorption, SO2 was removed by converting it into sulfuric acid. The effect of the three factors which were the applied voltage, SO2 inlet concentration and duration of the exposure to the corona discharge on desulphurization efficiency has been studied mostly. Moreover, the concentrations of SO3(2-) and SO4(2-) ions in the water were measured and the mechanism of desulphurization was analyzed. The results showed that there was a synergistic effect on the removal of SO2 when combining corona discharge and water absorption, and both the desulphurization efficiency and the amount of sulfuric acid increased evidently. As the applied voltage and the duration increased, the desulphurization efficiency increased. Also, the SO2 inlet concentration had effect on desulphurization efficiency. When the SO2 inlet concentration was 430 x 10(-6), the voltage was 14.5 kV and the duration was 7.5 s, a desulphurization efficiency of more than 90% could be attained.

  11. Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Anh, Trinh Tuan; Thuan, Vu Manh; Thang, Doan Ha; Hang, Bui Thi

    2017-06-01

    In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

  12. Transparent electrode for optical switch

    DOEpatents

    Goldhar, Julius; Henesian, Mark A.

    1986-01-01

    A low pressure gas electrode utilizing ionized gas in a glow discharge regime forms a transparent electrode for electro-optical switches. The transparent electrode comprises a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the electrode is a transparent electrode. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. The plasma can be created either by the main high voltage pulser used to charge up the crystal or by auxiliary discharges or external sources of ionization. A typical configuration utilizes 10 torr argon in the discharge region adjacent to each crystal face.

  13. Influence of air humidity and the distance from the source on negative air ion concentration in indoor air.

    PubMed

    Wu, Chih Cheng; Lee, Grace W M; Yang, Shinhao; Yu, Kuo-Pin; Lou, Chia Ling

    2006-10-15

    Although negative air ionizer is commonly used for indoor air cleaning, few studies examine the concentration gradient of negative air ion (NAI) in indoor environments. This study investigated the concentration gradient of NAI at various relative humidities and distances form the source in indoor air. The NAI was generated by single-electrode negative electric discharge; the discharge was kept at dark discharge and 30.0 kV. The NAI concentrations were measured at various distances (10-900 cm) from the discharge electrode in order to identify the distribution of NAI in an indoor environment. The profile of NAI concentration was monitored at different relative humidities (38.1-73.6% RH) and room temperatures (25.2+/-1.4 degrees C). Experimental results indicate that the influence of relative humidity on the concentration gradient of NAI was complicated. There were four trends for the relationship between NAI concentration and relative humidity at different distances from the discharge electrode. The changes of NAI concentration with an increase in relative humidity at different distances were quite steady (10-30 cm), strongly declining (70-360 cm), approaching stability (420-450 cm) and moderately increasing (560-900 cm). Additionally, the regression analysis of NAI concentrations and distances from the discharge electrode indicated a logarithmic linear (log-linear) relationship; the distance of log-linear tendency (lambda) decreased with an increase in relative humidity such that the log-linear distance of 38.1% RH was 2.9 times that of 73.6% RH. Moreover, an empirical curve fit based on this study for the concentration gradient of NAI generated by negative electric discharge in indoor air was developed for estimating the NAI concentration at different relative humidities and distances from the source of electric discharge.

  14. A calibration-free electrode compensation method

    PubMed Central

    Rossant, Cyrille; Fontaine, Bertrand; Magnusson, Anna K.

    2012-01-01

    In a single-electrode current-clamp recording, the measured potential includes both the response of the membrane and that of the measuring electrode. The electrode response is traditionally removed using bridge balance, where the response of an ideal resistor representing the electrode is subtracted from the measurement. Because the electrode is not an ideal resistor, this procedure produces capacitive transients in response to fast or discontinuous currents. More sophisticated methods exist, but they all require a preliminary calibration phase, to estimate the properties of the electrode. If these properties change after calibration, the measurements are corrupted. We propose a compensation method that does not require preliminary calibration. Measurements are compensated offline by fitting a model of the neuron and electrode to the trace and subtracting the predicted electrode response. The error criterion is designed to avoid the distortion of compensated traces by spikes. The technique allows electrode properties to be tracked over time and can be extended to arbitrary models of electrode and neuron. We demonstrate the method using biophysical models and whole cell recordings in cortical and brain-stem neurons. PMID:22896724

  15. Sodium transport modes in AMTEC electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Homer, M.L.; Lara, L.

    1998-07-01

    Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Sodium transport has been characterized in a variety of AMTEC electrodes and several different transport modes clearly exist. Free molecular flow is the dominant transport mechanism in clean porous molybdenum and tungsten electrodes, and contributes to sodium transport in all porous electrodes, including WPt{sub 2}, WRh{sub 3}, and TiN. Molybdenum and tungsten electrodes containing phases such as Na{sub 2}MoO{sub 4} and Na{sub 2}WO{sub 4} exhibit very efficient sodium ion transport through themore » electrode in the ionic conducting phase. These electrodes also show reversible electrochemical reactions in which sodium ions and electrons are inserted or removed from into phases such as Na{sub 2}MoO{sub 4} and Na{sub 2}Mo{sub 3}O{sub 6} which are present in the electrode WPt{sub 2} and WRh{sub 3} electrodes typically exhibit both free molecular flow transport as well as an enhanced thermally activated transport mode which is probably surface and/or grain boundary diffusion of sodium in the alloy electrode. Data for large area WPt{sub 2} electrodes within a cylindrical heat shield are reported in this paper. Sodium transport away from these electrodes is effected by both the electrode's properties and the exterior environment which inhibits sodium gas flow to the condenser. Liquid alloy electrodes have been examined and have fairly efficient transport properties by liquid phase diffusion, but have generally not been considered advantageous for development. Titanium nitride, TiN, electrodes used in AMTEC cells, and similar electronically conducting refractory compounds such as TiB{sub 2} and NbN are always physically porous to some degree as formed by sputter deposition or screen printing, and these compounds sinter quite slowly. Hence free molecular flow is

  16. Generalization of the Child-Langmuir law to the alternate extraction of positive and negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr; ONERA-The French Aerospace Lab, 91120 Palaiseau; Aanesland, A.

    Using a combined analytical and simulation approach, we investigate positive and negative ion extraction between two electrodes from an ion-ion plasma source. With a square voltage waveform applied to the electrodes, we obtain approximate analytical solutions for the time-averaged extracted current densities, which are given simply by: J{sub p}{sup ac}=[α−fL√((M{sub p})/(q{sub p}V{sub 0}) )]J{sub p}{sup dc}, and J{sub n}{sup ac}=[(1−α)−fL√((M{sub n})/(q{sub n}V{sub 0}) )]J{sub n}{sup dc}, where J{sup ac} is the time-averaged current density, α is the square waveform duty cycle, f is the frequency, L is the electrode gap length, M is the ion mass, q is the ionmore » charge, V{sub 0} is the applied voltage amplitude, J{sup dc} is the dc extracted current density, and the subscripts p and n refer to positive and negative ions, respectively. In particular, if J{sup dc} is the dc space-charge limited current density, then these equations describe the square waveform generalization of the Child-Langmuir law.« less

  17. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO2 Electrodes with Densely Stacked Architectures.

    PubMed

    Sheng, Lizhi; Jiang, Lili; Wei, Tong; Fan, Zhuangjun

    2016-10-01

    The well-matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high-performance asymmetric supercapacitors. Herein, a facile and cost-effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene-MnO 2 (G-MnO 2 ) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO 2 -intercalated graphite oxide (GO-MnO 2 ) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in-between the sheets, resulting in a high volumetric capacitance of 366 F cm -3 , almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G-MnO 2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg -1 and 54.4 Wh L -1 (based on total volume of two electrodes) in 1 m Na 2 SO 4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Tresset, Guillaume; Xu, Guolin

    2007-06-01

    This letter presents a dielectrophoretic (DEP) separation method of particles under continuous flow. The method consists of flowing two particle populations through a microfluidic channel, in which the vertical walls are the electrodes of the DEP device. The irregular shape of the electrodes generates both electric field and fluid velocity gradients. As a result, the particles that exhibit negative DEP can be trapped in the fluidic dead zones, while the particles that experience positive DEP are concentrated in the regions with high velocity and collected at the outlet. The device was tested with dead and living yeast cells.

  19. Pitch ranking, electrode discrimination, and physiological spread-of-excitation using Cochlear's dual-electrode mode

    PubMed Central

    Goehring, Jenny L.; Neff, Donna L.; Baudhuin, Jacquelyn L.; Hughes, Michelle L.

    2014-01-01

    This study compared pitch ranking, electrode discrimination, and electrically evoked compound action potential (ECAP) spatial excitation patterns for adjacent physical electrodes (PEs) and the corresponding dual electrodes (DEs) for newer-generation Cochlear devices (Cochlear Ltd., Macquarie, New South Wales, Australia). The first goal was to determine whether pitch ranking and electrode discrimination yield similar outcomes for PEs and DEs. The second goal was to determine if the amount of spatial separation among ECAP excitation patterns (separation index, Σ) between adjacent PEs and the PE-DE pairs can predict performance on the psychophysical tasks. Using non-adaptive procedures, 13 subjects completed pitch ranking and electrode discrimination for adjacent PEs and the corresponding PE-DE pairs (DE versus each flanking PE) from the basal, middle, and apical electrode regions. Analysis of d′ scores indicated that pitch-ranking and electrode-discrimination scores were not significantly different, but rather produced similar levels of performance. As expected, accuracy was significantly better for the PE-PE comparison than either PE-DE comparison. Correlations of the psychophysical versus ECAP Σ measures were positive; however, not all test/region correlations were significant across the array. Thus, the ECAP separation index is not sensitive enough to predict performance on behavioral tasks of pitch ranking or electrode discrimination for adjacent PEs or corresponding DEs. PMID:25096106

  20. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets.

    PubMed

    Lee, Jung Han; Kim, Jeong A; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-31

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V 2 O 5 ) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V 2 O 5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V 2 O 5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V 2 O 5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V 2 O 5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V 2 O 5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V 2 O 5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  1. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    NASA Astrophysics Data System (ADS)

    Lee, Jung Han; Kim, Jeong A.; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  2. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    PubMed Central

    Lee, Jung Han; Kim, Jeong A; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes. PMID:28139765

  3. Negative ion kinetics in RF glow discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottscho, R.A.; Gacbe, C.E.

    1986-04-01

    Using temporally and spatially resolved laser spectroscopy, the authors have determined the identities, approximate concentrations, effects on the local field, and kinetics of formation and loss of negative ions in RF discharges. CI/sup -/ and BCI/sub 3//sup -/ are the dominant negative ions found in low-frequency discharges through CI/sub 2/ and BCI/sub 3/, respectively. The electron affinity for CI is measured to be 3.6118 +- 0.0005 eV. Negative ion kinetics are strongly affected by application of the RF field. Formation of negative ions by attachment of slow electrons in RF discharges is governed by the extent and duration of electronmore » energy relaxation. Similarly, destruction of negative ions by collisional detachment and field extraction is dependent upon ion energy modulation. Thus, at low frequency, the anion density peaks at the beginning of the anodic and cathodic half-cycles after electrons have attached but before detachment and extraction have had time to occur. At higher frequencies, electrons have insufficient time to attach before they are reheated and the instantaneous anion density in the sheath is greatly reduced. When the negative ion density is comparable to the positive ion density, the plasma potential is observed to lie below the anode potential, double layers form between sheath and plasma, and anions and electrons are accelerated by large sheath fields to electrode surfaces.« less

  4. Multiple-electrode radiofrequency ablations using Octopus® electrodes in an in vivo porcine liver model

    PubMed Central

    Lee, E S; Lee, J M; Kim, W S; Choi, S H; Joo, I; Kim, M; Yoo, D H; Yoo, R-E; Han, J K; Choi, B I

    2012-01-01

    Objectives The objective of this study was to determine the in vivo efficacy of radiofrequency ablation (RFA) in porcine liver using Octopus® electrodes for creating a large coagulation compared with RFA using clustered electrodes. Methods A total of 39 coagulations were created using a 200-W generator and clustered electrodes or Octopus electrodes during laparotomy in 19 pigs. Radiofrequency was applied to the livers using four protocols: (1) Group A-1, monopolar mode using a clustered electrode (n=11); (2) Group A-2, monopolar mode using an Octopus electrode (n=11); (3) Group B-1, consecutive monopolar mode using three, clustered electrodes (n=8); and (4) Group B-2, switching monopolar mode using two Octopus electrodes (n=9). The energy efficiency, shape, diameters (D) and volume (V) of the coagulation volume were compared in each of the two groups. Results The mean maximum D and V of the coagulations in Group A-2 (4.7 cm and 33.1 cm3, respectively) were significantly larger than those in Group A-1 (4.1 cm and 20.3 cm3, respectively) (p<0.05). Furthermore, the mean minimum D, maximum D and V of the coagulations in Group B-2 were significantly larger than those in Group B-1, i.e. 5.3 vs 4.0 cm, 6.6 vs 4.9 cm and 66.9 vs 30.2 cm3, respectively (p<0.05). The energy efficiencies were also significantly higher in Groups A-2 and B-2 than in Groups A-1 and B-1 (p<0.05). Conclusion The Octopus electrodes were more efficient for creating a large ablation zone than clustered electrodes, and the efficacy of RFA with Octopus electrodes can be amplified in the switching monopolar mode. PMID:22422385

  5. Low-Noise Implantable Electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F.

    1982-01-01

    New implantable electrocardiogram electrode much less sensitive than previous designs to spurious biological potentials. Designed in novel "pocket" configuration, new electrode is intended as sensor for radiotelemetry of biological parameters in experiments on unrestrained subjects. Electrode is esentially squashed cylinder that admits body fluid into interior. Cylinder and electrical lead are made of stainless steel. Spot welding and crimping are used for assembly, rather than soldering.

  6. Electrode reactions of iron oxide-hydroxide colloids.

    PubMed

    Mahmoudi, Leila; Kissner, Reinhard

    2014-11-07

    Small-sized FeO(OH) colloids stabilised by sugars, commercially available for the clinical treatment of iron deficiency, show two waves during cathodic polarographic sweeps, or two current maxima with stationary electrodes, in neutral to slightly alkaline aqueous medium. Similar signals are observed with Fe(III) in alkaline media, pH > 12, containing citrate in excess. Voltammetric and polarographic responses reveal a strong influence of fast adsorption processes on gold and mercury. Visible spontaneous accumulation was also observed on platinum. The voltammetric signal at more positive potential is caused by Fe(III)→Fe(II) reduction, while the one at more negative potential has previously been assigned to Fe(II)→Fe(0) reduction. However, the involvement of adsorption phenomena leads us to the conclusion that the second cathodic current is caused again by Fe(III)→Fe(II), of species deeper inside the particles than those causing the first wave. This is further supported by X-ray photoelectron spectra obtained after FeO(OH) particle adsorption and reduction on a gold electrode surface. The same analysis suggests that sucrose stabilising the colloid is still bound to the adsorbed material, despite dilution and rinsing.

  7. MHD Electrode and wall constructions

    DOEpatents

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  8. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    DOE PAGES

    Mohanty, D.; Hockaday, E.; Li, J.; ...

    2016-02-21

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi 0.5Mn 0.3Co 0.2O 2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher currentmore » densities than baseline NMC 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less

  9. A diffuse argon plume generated by a longitudinal slit jet equipped with a quadri-electrode barrier discharge

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Chu, Jingdi; Zhang, Qi; Zhang, Panpan; Jia, Pengying; Dong, Lifang

    2018-04-01

    A diffuse argon plume at atmospheric pressure is generated downstream of a longitudinal slit jet equipped with a dielectric barrier discharge in a quadri-electrode configuration. Results indicate that both the plume length and the spectral line intensities increase with the increase in the peak voltage. With fast photography it is found that there is a clear difference for discharges with different polarities. The positive discharge is composed of nonuniform branching filaments; however, it is fairly uniform for the negative discharge. Due to the charge overflow of the intra-electrode discharge, the streamer mechanism is involved in the plume discharge. In fact, the positive discharge and the negative one correspond to a cathode-directed streamer and an anode-directed streamer, respectively. The formation mechanisms of the branching filaments and the diffuse background are discussed at last.

  10. Disposable biomedical electrode

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Hillman, C. E., Jr.

    1977-01-01

    Reusable recording cap equipped with compressible snap-on bioelectronic electrodes is worn by patient to allow remote monitoring of electroencephalogram and electro-oculogram waveforms. Electrodes can be attached to inside surface of stretch-textile cap at twelve monitoring positions and at one or two ground positions.

  11. Double Sided-Design of Electrodes Driving Tunable Dielectrophoretic Miniature Lens.

    PubMed

    Almoallem, Yousuf; Jiang, Hongrui

    2017-10-01

    We demonstrate the design methodology, geometrical analysis, device fabrication, and testing of a double-sided design (DSD) of tunable-focus dielectrophoretic liquid miniature lenses. This design is intended to reduce the driving voltage for tuning the lens, utilizing a double-sided electrode design that enhances the electric field magnitude. Fabricated devices were tested and measurements on a goniometer showed changes of up to 14° in the contact angle when the dielectrophoretic force was applied under 25 V rms . Correspondingly, the back focal length of the liquid lens changed from 67.1 mm to 14.4 mm when the driving voltage was increased from zero to 25 V rms . The driving voltage was significantly lower than those previously reported with similar device dimensions using single-sided electrode designs. This design allows for a range of both positive and negative menisci dependent on the volume of the lens liquid initially dispensed.

  12. Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors

    PubMed Central

    Pan, Guan-Ting; Chong, Siewhui; Yang, Thomas C.-K.; Huang, Chao-Ming

    2017-01-01

    Mesoporous Mn1.5Co1.5O4 (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO3) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg−1 and a power density of 1.01 kW·kg−1 at 1 A·g−1. After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling. PMID:28772727

  13. Comparison of Foam-Based and Spring-Loaded Dry EEG Electrodes with Wet Electrodes in Resting and Moving Conditions*

    PubMed Central

    Yeung, Arnold; Garudadri, Harinath; Van Toen, Carolyn; Mercier, Patrick; Balkan, Ozgur; Makeig, Scott; Virji-Babul, Naznin

    2018-01-01

    The introduction of dry electrodes for EEG measurements has opened up possibilities of recording EEG outside of standard clinical environments by reducing required preparation and maintenance. However, the signal quality of dry electrodes in comparison with wet electrodes has not yet been evaluated under activities of daily life (ADL) or high motion tasks. In this study, we compared the performances of foam-based and spring-loaded dry electrodes with wet electrodes under three different task conditions: resting state, walking, and cycling. Our analysis showed signals obtained by the 2 types of dry electrodes and obtained by wet electrodes displayed high correlation for all conditions, while being prone to similar environmental and electrode-based artifacts. Overall, our results suggest that dry electrodes have a similar signal quality in comparison to wet electrodes and may be more practical for use in mobile and real-time motion applications due to their convenience. In addition, we conclude that as with wet electrodes, post-processing can mitigate motion artifacts in ambulatory EEG acquisition. PMID:26737936

  14. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  15. Extraction electrode geometry for a calutron

    DOEpatents

    Veach, A.M.; Bell, W.A. Jr.

    1975-09-23

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source. (auth)

  16. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  17. Microtitrimetry by differential electrolytic potentiometry using metallic electrodes and nanomaterials modified metallic electrodes

    NASA Astrophysics Data System (ADS)

    Amro, Abdulaziz Nabil

    For the first time silver wire electrodes have been coated with carbon nanotubes using floating catalyst chemical vapor deposition (CVD) method. The production of CNTs has been conducted in a horizontal tubular reactor. Acetylene gas was used as a carbon source. Ferrocene has been used as a catalyst precursor for the growth of CNT. Different parameters have been optimized to get a high yield of CNTs and ensure their growth on the silver electrodes using univariate method. The parameters studied include the hydrogen flow rate, acetylene flow rate, temperature of the furnace, time of the reaction and the location of the electrodes in the reactor tube. The optimum conditions for those parameters were: for hydrogen and acetylene, the flow rates were 25 mL /min and 75 mL / min respectively. The furnace temperature was found to be 700 °C and the reaction time was 15 minutes. Regarding the location of the silver wires it should be located in the first 10 cm of the front side of the tube. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) have been used to characterize carbon on silver electrodes. According to the experimental results, TEM figures show that CNT produced on Silver wire is multiwall carbon nanotubes MWCNT. Silver electrodes either pure or coated with CNT were used as indicating systems in micro titration using both dc differential electrolytic potentiometry (DEP) and mark-space bias DEP techniques. All types of titrimetric reactions were investigated using different types of electrodes like Pt and gold for oxidation reduction titrations, antimony electrodes for acid base titrations, silver electrodes for precipitation titrations in addition to Ag-CNT electrodes. End points at volumes of 1 microL were determined. Different parameters were optimized like the current density, the percentage bias, the volume of the sample and the concentrations of the reactants. Microtitrimetry has been applied on several types of analytes; Ferrous

  18. New electrodes for biofuel cells

    NASA Astrophysics Data System (ADS)

    Stom, D. I.; Zhdanova, G. O.; Lashin, A. F.

    2017-11-01

    Two new types of electrodes for biofuel elements (BFC) are proposed. One of them is based on a microchannel plate (MCP). Its peculiarity is a special structure with a large number of glass channels being 6-10 μm in diameter with an internal semiconducting surface. The MCP operation is based on the principle of the channel secondary emission multiplication of the electrons. The second type of electrode presented in the work is made of silicon carbide. This type of electrodes has a developed porous structure. The electrode pores account for at least 30% of the total volume. The pore size varies from 10 to 100 μm. Such porosity greatly increases the anode area and volume. This allows us to achieve sorption of a larger number of microorganisms interacting with the anode and transformed by electron donors. The work of the electrodes developed in BFC was tested, their effectiveness was estimated. A comparison is made with electrodes made of carbon cloth, the most widely used material for working with BFC. It is shown that the MCP based electrode is not inferior to the power characteristics of carbon cloth. The generated power when using silicon carbide was slightly lower than the other two electrodes. However, the stability of silicon carbide to aggressive media (alkalis, acids, strong oxidants, etc.), as well as to mechanical damages gives additional advantages to such electrodes compared to the materials that are commonly used in BFC. The noted features are extremely important for the BFC to work in harsh conditions of treatment facilities and to utilize wastewater components.

  19. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    NASA Astrophysics Data System (ADS)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  20. Conducting polymer coated neural recording electrodes.

    PubMed

    Harris, Alexander R; Morgan, Simeon J; Chen, Jun; Kapsa, Robert M I; Wallace, Gordon G; Paolini, Antonio G

    2013-02-01

    Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during acute implantation, inferring good biostability

  1. DAN DORNEY

    NASA Image and Video Library

    2016-03-16

    CHIEF ENGINEER OF THE LAUNCH VEHICLE FOR NASA'S COMMERCIAL CREW PROGRAM, DAN DORNEY GUIDES THE TEAM EVALUATING THE VEHICLES CREATED BY INDUSTRY PARTNERS AND ENSURES THE ROCKETS MEET THE REQUIREMENTS TO SAFELY CARRY ASTRONAUTS TO THE INTERNATIONAL SPACE STATION.

  2. In vivo electrode implanting system

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1989-01-01

    A cylindrical intramuscular implantable electrode is provided with a strip of fabric secured around it. The fabric is woven from a polyester fiber having loops of the fiber protruding. The end of the main cylindrical body is provided with a blunt conductive nose, and the opposite end is provided with a smaller diameter rear section with an annular groove to receive tips of fingers extending from a release tube. The fingers are formed to spring outwardly and move the fingertips out of the annular groove in order to release the electrode from the release tube when a sheath over the electrode is drawn back sufficiently. The sheath compresses the fingers of the release tube and the fabric loops until it is drawn back. Muscle tissue grows into the loops to secure the electrode in place after the sheath is drawn back. The entire assembly of electrode, release tube and sheath can be inserted into the patient's muscle to the desired position through a hypodermic needle. The release tube may be used to manipulate the electrode in the patient's muscle to an optimum position before the electrode is released.

  3. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  4. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance, thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder. The second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested, and evaluated at the electrode and cell level.

  5. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Wheeler, James R.; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder and the second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested and evaluated at the electrode and cell level.

  6. The development of insulated electrocardiogram electrodes

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; David, R. M.

    1971-01-01

    An integrated system was developed, consisting of an insulated electrode and an impedance transformer, which can be used for the acquisition of electrocardiographic data. The electrode consists of a thin layer of dielectric material deposited onto a silicon substrate. The impedance transformer is an operational amplifier used in the unity gain configuration. Both electrode and impedance transformer are contained in a plastic housing identical to that used with the NASA Apollo-type electrode. The lower cut off frequency of the electrode system is between 0.01 and 1.0 Hz, depending on the dielectric used and its thickness. Clinical quality electrocardiograms were obtained with these electrodes.

  7. Probing Electrode Heterogeneity Using Fourier-Transformed Alternating Current Voltammetry: Application to a Dual-Electrode Configuration.

    PubMed

    Tan, Sze-Yin; Unwin, Patrick R; Macpherson, Julie V; Zhang, Jie; Bond, Alan M

    2017-03-07

    Quantitative studies of electron transfer processes at electrode/electrolyte interfaces, originally developed for homogeneous liquid mercury or metallic electrodes, are difficult to adapt to the spatially heterogeneous nanostructured electrode materials that are now commonly used in modern electrochemistry. In this study, the impact of surface heterogeneity on Fourier-transformed alternating current voltammetry (FTACV) has been investigated theoretically under the simplest possible conditions where no overlap of diffusion layers occurs and where numerical simulations based on a 1D diffusion model are sufficient to describe the mass transport problem. Experimental data that meet these requirements can be obtained with the aqueous [Ru(NH 3 ) 6 ] 3+/2+ redox process at a dual-electrode system comprised of electrically coupled but well-separated glassy carbon (GC) and boron-doped diamond (BDD) electrodes. Simulated and experimental FTACV data obtained with this electrode configuration, and where distinctly different heterogeneous charge transfer rate constants (k 0 values) apply at the individual GC and BDD electrode surfaces, are in excellent agreement. Principally, because of the far greater dependence of the AC current magnitude on k 0 , it is straightforward with the FTACV method to resolve electrochemical heterogeneities that are ∼1-2 orders of magnitude apart, as applies in the [Ru(NH 3 ) 6 ] 3+/2+ dual-electrode configuration experiments, without prior knowledge of the individual kinetic parameters (k 0 1 and k 0 2 ) or the electrode size ratio (θ 1 :θ 2 ). In direct current voltammetry, a difference in k 0 of >3 orders of magnitude is required to make this distinction.

  8. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo.

    PubMed

    Meijs, S; Alcaide, M; Sørensen, C; McDonald, M; Sørensen, S; Rechendorff, K; Gerhardt, A; Nesladek, M; Rijkhoff, N J M; Pennisi, C P

    2016-10-01

    The goal of this study was to assess the electrochemical properties of boron-doped diamond (BDD) electrodes in relation to conventional titanium nitride (TiN) electrodes through in vitro and in vivo measurements. Electrochemical impedance spectroscopy, cyclic voltammetry and voltage transient (VT) measurements were performed in vitro after immersion in a 5% albumin solution and in vivo after subcutaneous implantation in rats for 6 weeks. In contrast to the TiN electrodes, the capacitance of the BDD electrodes was not significantly reduced in albumin solution. Furthermore, BDD electrodes displayed a decrease in the VTs and an increase in the pulsing capacitances immediately upon implantation, which remained stable throughout the whole implantation period, whereas the opposite was the case for the TiN electrodes. These results reveal that BDD electrodes possess a superior biofouling resistance, which provides significantly stable electrochemical properties both in protein solution as well as in vivo compared to TiN electrodes.

  9. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  10. 3D Printed Dry EEG Electrodes

    PubMed Central

    Krachunov, Sammy; Casson, Alexander J.

    2016-01-01

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise. PMID:27706094

  11. 3D Printed Dry EEG Electrodes.

    PubMed

    Krachunov, Sammy; Casson, Alexander J

    2016-10-02

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  12. Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries.

    PubMed

    Gaikwad, Abhinav M; Arias, Ana Claudia

    2017-02-22

    Flexible lithium-ion batteries are necessary for powering the next generation of wearable electronic devices. In most designs, the mechanical flexibility of the battery is improved by reducing the thickness of the active layers, which in turn reduces the areal capacity and energy density of the battery. The performance of a battery depends on the electrode composition, and in most flexible batteries, standard electrode formulation is used, which is not suitable for flexing. Even with considerable efforts made toward the development of flexible lithium-ion batteries, the formulation of the electrodes has received very little attention. In this study, we investigate the relation between the electrode formulation and the mechanical strength of the electrodes. Peel and drag tests are used to compare the adhesion and cohesion strength of the electrodes. The strength of an electrode is sensitive to the particle size and the choice of polymeric binder. By optimizing the electrode composition, we were able to fabricate a high areal capacity (∼2 mAh/cm 2 ) flexible lithium-ion battery with conventional metal-based current collectors that shows superior electrochemical and mechanical performance in comparison to that of batteries with standard composition.

  13. Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li 1.03 (Ni 0.5Co 0.2Mn 0.3) 0.97O 2/silicon-graphite full cells

    DOE PAGES

    Klett, Matilda; Gilbert, James A.; Trask, Stephen E.; ...

    2016-03-04

    Here, the capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li 1.03(Ni 0.5Co 0.2Mn 0.3) 0.97O 2–based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials aremore » used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a Li xSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0–4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells.« less

  14. Nanoscopic electrode molecular probes

    DOEpatents

    Krstic, Predrag S [Knoxville, TN; Meunier, Vincent [Knoxville, TN

    2012-05-22

    The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

  15. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    PubMed

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  16. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes

    PubMed Central

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-01-01

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 104. When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 106. PMID:25142376

  17. Free-standing graphene/vanadium oxide composite as binder-free electrode for asymmetrical supercapacitor.

    PubMed

    Deng, Lingjuan; Gao, Yihong; Ma, Zhanying; Fan, Guang

    2017-11-01

    Preparation of free-standing electrode materials with three-dimensional network architecture has emerged as an effective strategy for acquiring advanced portable and wearable power sources. Herein, graphene/vanadium oxide (GR/V 2 O 5 ) free-standing monolith composite has been prepared via a simple hydrothermal process. Flexible GR sheets acted as binder to connect the belt-like V 2 O 5 for assembling three-dimensional network architecture. The obtained GR/V 2 O 5 composite can be reshaped into GR/V 2 O 5 flexible film which exhibits more compact structure by ultrasonication and vacuum filtration. A high specific capacitance of 358Fg -1 for GR/V 2 O 5 monolith compared with that of GR/V 2 O 5 flexible film (272Fg -1 ) has been achieved in 0.5molL -1 K 2 SO 4 solution when used as binder free electrodes in three-electrode system. An asymmetrical supercapacitor has been assembled using GR/V 2 O 5 monolith as positive electrode and GR monolith as negative electrode, and it can be reversibly charged-discharged at a cell voltage of 1.7V in 0.5molL -1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 26.22Whkg -1 at a power density of 425Wkg -1 , much higher than that of the symmetrical supercapacitor based on GR/V 2 O 5 monolith electrode. Moreover, the asymmetrical supercapacitor preserves 90% of its initial capacitance over 1000 cycles at a current density of 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Improved levitation and trapping of particles by negative dielectrophoresis by the addition of amphoteric molecules

    NASA Astrophysics Data System (ADS)

    Flores-Rodriguez, Neftali; Markx, Gerard H.

    2004-02-01

    Addition of amphoteres could be used to improve the levitation and trapping of particles by negative dielectrophoresis. Addition of amphoteric molecules to electromanipulation media increases not only the permittivity of the medium and its viscosity but also its density. To investigate the effect of addition of amphoteres on levitation and trapping by negative dielectrophoresis, the electrokinetic behaviour of latex beads and viable yeast cells (Saccharomyces cerevisiae) was investigated in concentrated solutions of the amphoteric molecules N-[2-hydroxyethyl] piperazine-N'-[2-ethanesulfonic acid] (HEPES) and egr -aminocaproic acid (EACA) using different frequencies and voltages of the applied electrical signal and microelectrodes of different sizes. When using interdigitated electrodes without castellations, latex beads levitated an average of 43% higher when 0.67 M EACA solutions were used and a 54% higher after adding 0.67 M HEPES compared with the levitation heights when no amphoteres were added. Under the same conditions, yeast levitated 78% and 86% higher, respectively. At low voltages and low HEPES/EACA concentrations, the latex particles accumulated in bands between or above the electrodes. However, at the highest voltages and HEPES/EACA concentrations used, the particles formed a network of pearl chains above the electrode arrays. When using electrodes of the interdigitated castellated type of characteristic size 30 µm, latex particles levitated 32% and 40% higher when 0.67 M EACA and HEPES solutions were used in comparison with when no amphoteres were added. At these concentrations, the flow rate needed to dislodge the latex particles from the traps formed by the electric field pattern between the castellations of the interdigitated castellated electrodes was increased by 46% compared with the flow rate needed to achieve this when no amphoteres were added.

  19. Control of edge effects of oxidant electrode

    DOEpatents

    Carr, Peter; Chi, Chen H.

    1981-09-08

    Described is an electrode assembly comprising; a. a porous electrode having a first and second exterior face with a cavity formed in the interior between said exterior faces thereby having first and second interior faces positioned opposite the first and second exterior faces; b. a counter electrode positioned facing each of the first and second exterior faces of the porous electrode; c. means for passing an oxidant through said porous electrode; and d. screening means for blocking the interior face of the porous electrode a greater amount than the blocking of the respective exterior face of the porous electrode, thereby maintaining a differential of oxidant electrode surface between the interior face and the exterior face. The electrode assembly is useful in a metal, halogen, halogen hydrate electrical energy storage device.

  20. Development of a lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, D. L.; Reid, M. A.

    1984-01-01

    Nickel electrodes made using lightweight plastic plaque are about half the weight of electrodes made from state of the art sintered nickel plaque. This weight reduction would result in a significant improvement in the energy density of batteries using nickel electrodes (nickel hydrogen, nickel cadmium and nickel zinc). These lightweight electrodes are suitably conductive and yield comparable capacities (as high as 0.25 AH/gm (0.048 AH/sq cm)) after formation. These lightweight electrodes also show excellent discharge performance at high rates.

  1. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    PubMed

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  2. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization

    DOE PAGES

    Hatzell, Kelsey B.; Hatzell, Marta C.; Cook, Kevin M.; ...

    2015-01-29

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. We examine chemical oxidation of granular activated carbon (AC) here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (~21 Pa s)more » to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g –1) without sacrificing flowability (viscosity). The electrical energy required to remove ~18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (~60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. Finally, it is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.« less

  3. Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making.

    PubMed

    Amemori, Ken-ichi; Graybiel, Ann M

    2012-05-01

    The pregenual anterior cingulate cortex (pACC) has been implicated in human anxiety disorders and depression, but the circuit-level mechanisms underlying these disorders are unclear. In healthy individuals, the pACC is involved in cost-benefit evaluation. We developed a macaque version of an approach-avoidance decision task used to evaluate anxiety and depression in humans and, with multi-electrode recording and cortical microstimulation, we probed pACC function as monkeys performed this task. We found that the macaque pACC has an opponent process-like organization of neurons representing motivationally positive and negative subjective value. Spatial distribution of these two neuronal populations overlapped in the pACC, except in one subzone, where neurons with negative coding were more numerous. Notably, microstimulation in this subzone, but not elsewhere in the pACC, increased negative decision-making, and this negative biasing was blocked by anti-anxiety drug treatment. This cortical zone could be critical for regulating negative emotional valence and anxiety in decision-making.

  4. Electrode stabilizing materials

    DOEpatents

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  5. Influence of electrolyte composition and temperature on behaviour of AB5 hydrogen storage alloy used as negative electrode in Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Karwowska, Malgorzata; Jaron, Tomasz; Fijalkowski, Karol J.; Leszczynski, Piotr J.; Rogulski, Zbigniew; Czerwinski, Andrzej

    2014-10-01

    The AB5-type metal alloy (Mm-Ni4.1Al0.2Mn0.4Co0.45) has been investigated in different electrolytes (LiOH, NaOH, KOH, RbOH, CsOH). All of the electrochemical measurements have been performed using limited volume electrode technique (LVE). Thickness of the working electrode is nearly equal to the diameter of the grain (ca. 50 μm). Hydrogen diffusion coefficient has been determined using chronoamperometry. Hydrogen diffusion coefficient calculated for 100% state of charge reaches maximum value in KOH (DH = 4.65·10-10 cm2 s-1). We have obtained the highest value of capacity for the electrode in KOH and the lowest - in CsOH. The temperature influence on alloy capacity has been also tested. The alloy has been also characterised with SEM coupled with EDS, TGA/DSC and powder XRD. The unit cell of MmNi4.1Al0.2Mn0.4Co0.45 have been refined in the Cu5.4Yb0.8 structure type (a modified LaNi5 structure); the structure is unaffected by the electrochemical treatment.

  6. Fabrication and characterization of microsieve electrode array (µSEA) enabling cell positioning on 3D electrodes

    NASA Astrophysics Data System (ADS)

    Schurink, B.; Tiggelaar, R. M.; Gardeniers, J. G. E.; Luttge, R.

    2017-01-01

    Here the fabrication and characterization of a novel microelectrode array for electrophysiology applications is described, termed a micro sieve electrode array (µSEA). This silicon based µSEA device allows for hydrodynamic parallel positioning of single cells on 3D electrodes realized on the walls of inverted pyramidal shaped pores. To realize the µSEA, a previously realized silicon sieving structure is provided with a patterned boron doped poly-silicon, connecting the contact electrodes with the 3D sensing electrodes in the pores. A LPCVD silicon-rich silicon nitride layer was used as insulation. The selective opening of this insulation layer at the ends of the wiring lines allows to generate well-defined contact and sensing electrodes according to the layout used in commercial microelectrode array readers. The main challenge lays in the simultaneously selective etching of material at both the planar surface (contact electrode) as well as in the sieving structure containing the (3D) pores (sensing electrodes). For the generation of 3D electrodes in the pores a self-aligning technique was developed using the pore geometry to our advantage. This technique, based on sacrificial layer etching, allows for the fine tuning of the sensing electrode surface area and thus supports the positioning and coupling of single cells on the electrode surface in relation to the cell size. Furthermore, a self-aligning silicide is formed on the sensing electrodes to favour the electrical properties. Experiments were performed to demonstrate the working principle of the µSEA using different types of neuronal cells. Capture efficiency in the pores was  >70% with a 70% survival rate of the cell maintained for up to 14 DIV. The TiSi2-boron-doped-poly-silicon sensing electrodes of the µSEA were characterized, which indicated noise levels of  <15 µV and impedance values of 360 kΩ. These findings potentially allow for future electrophysiological measurements using the µSEA.

  7. Dry EEG Electrodes

    PubMed Central

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  8. The interactive electrode localization utility: software for automatic sorting and labeling of intracranial subdural electrodes

    PubMed Central

    Tang, Wei; Peled, Noam; Vallejo, Deborah I.; Borzello, Mia; Dougherty, Darin D.; Eskandar, Emad N.; Widge, Alik S.; Cash, Sydney S.; Stufflebeam, Steven M.

    2018-01-01

    Purpose Existing methods for sorting, labeling, registering, and across-subject localization of electrodes in intracranial encephalography (iEEG) may involve laborious work requiring manual inspection of radiological images. Methods We describe a new open-source software package, the interactive electrode localization utility which presents a full pipeline for the registration, localization, and labeling of iEEG electrodes from CT and MR images. In addition, we describe a method to automatically sort and label electrodes from subdural grids of known geometry. Results We validated our software against manual inspection methods in twelve subjects undergoing iEEG for medically intractable epilepsy. Our algorithm for sorting and labeling performed correct identification on 96% of the electrodes. Conclusions The sorting and labeling methods we describe offer nearly perfect performance and the software package we have distributed may simplify the process of registering, sorting, labeling, and localizing subdural iEEG grid electrodes by manual inspection. PMID:27915398

  9. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  10. Study of the Charge Transfer Process of LaNi5 Type Electrodes in Ni-MH Batteries

    NASA Astrophysics Data System (ADS)

    Le, Xuan Que; Nguyen, Phu Thuy

    2002-12-01

    As a result of the charge process of LaNi5 type electrode, hydrogen is reversibly absorbed on the electrode surface. The process consists two principal steps. During the both processes, the first reaction step occurs in the interface solid/liquid, negatively charged, with high static electric field, where the double layer structure became more compact. The transfer of charge under high electric field depends on many factors, principally on compositions of the electrode materials. Effects on that of Co, Fe, Mn substitutes, with different concentrations, have been comparatively studied using electrochemical technique. The analyse of interface C -.V study results has been realised, respecting Mott-Schottky relation. Optimal contents of some additives have been discussed. Some advantages of the applied electrochemical methods have been confirmed. The mechanism of the charges transfer and of the hydrogen reversible storage in the crystal structure in the batteries has been discussed. With the proposed mechanism, one can more explicitly understand the difference of the magnetic effect of the electrode materials before and after charge-discharge process can be explained.

  11. Electro-optic device with gap-coupled electrode

    DOEpatents

    Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.

    2013-08-20

    An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.

  12. Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain-machine interfaces.

    PubMed

    Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G

    2015-05-07

    Electrode impedance is used to assess the thermal noise and signal-to-noise ratio for brain-machine interfaces. An intermediate frequency of 1 kHz is typically measured, although other frequencies may be better predictors of device performance. PEDOT-PSS, PEDOT-DBSA and PEDOT-pTs conducting polymer modified electrodes have reduced impedance at 1 kHz compared to bare metal electrodes, but have no correlation with the effective electrode area. Analytical solutions to impedance indicate that all low-intermediate frequencies can be used to compare the electrode area at a series RC circuit, typical of an ideal metal electrode in a conductive solution. More complex equivalent circuits can be used for the modified electrodes, with a simplified Randles circuit applied to PEDOT-PSS and PEDOT-pTs and a Randles circuit including a Warburg impedance element for PEDOT-DBSA at 0 V. The impedance and phase angle at low frequencies using both equivalent circuit models is dependent on the electrode area. Low frequencies may therefore provide better predictions of the thermal noise and signal-to-noise ratio at modified electrodes. The coefficient of variation of the PEDOT-pTs impedance at low frequencies was lower than the other conducting polymers, consistent with linear and steady-state electroactive area measurements. There are poor correlations between the impedance and the charge density as they are not ideal metal electrodes.

  13. Electrode and method of interconnection sintering on an electrode of an electrochemical cell

    DOEpatents

    Ruka, R.J.; Kuo, L.J.H.

    1994-01-11

    An electrode structure is made by applying a base layer of doped LaCrO[sub 3] particles on a portion of an electrode and then coating the particles with a top layer composition such as CaO+Al[sub 2]O[sub 3], SrO+Al[sub 2]O[sub 3], or BaO+Al[sub 2]O[sub 3], and then heating the composition for a time effective to melt the composition and allow it to fill any open porosity in the base layer of doped LaCrO[sub 3] to form an interconnection, after which solid oxide electrolyte can be applied to the remaining portion of the electrode and the electrolyte can be covered with a cermet exterior electrode. 2 figures.

  14. HVDC Ground Electrodes and Tectonic Setting

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pereira, S. Y.

    2017-12-01

    Ground electrodes in HVDC transmission are huge grounding systems for the DC part of the converter substation, about 1 km wide, sized to inject in the ground DC currents up to 3.5 kA. This work presents an analysis of how the tectonic setting at converter substation location is determinant for the search of the best electrode location (Site Selection) and on its design and performance. It will briefly present the author experience on HVDC electrode design, summarized as follows: Itaipu - Foz do Iguaçu electrodes (transmitter side) located in the middle of Paraná Sedimentary Basin, and Ibiúna electrodes (receiving side) on the border of the basin, 6 km from the geological strike, where the crystalline basement outcrops in São Paulo state; Madeira River - North electrodes (transmitting side) located on the Northwest border of South Amazon Craton, where the crystalline basement is below a shallow sediments layer, and South electrodes (receiving side) located within Paraná Sedimentary Basin; Chile - electrodes located on the Andean forearc, where the Nazca Plate plunges under the South American Plate; Kenya - Ethiopia - electrodes located in the African Rift; Belo Monte - North electrodes (transmitter side) located within the Amazonian Sedimentary Basin, about 35 km of its South border, and South electrodes (receiving side) within Paraná Sedimentary Basin (bipole 1) and on crystalline metamorphic terrain "Brasília Belt" (bipole 2). This diversity of geological conditions results on ground electrodes of different topologies and dimensions, with quite different electrical and thermal performances. A brief study of the geology of the converter stations regions, the so-called Desktop Study, allows for the preview of several important parameters for the site selection and design of the electrodes, such as localization, type, size and estimate of the interference area, which are important predictors of the investment to be made and indications of the design to be

  15. Electrochemistry in ethanol. I. Reference electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, A.J.; de S. Bulhoes, L.O.

    1982-01-01

    The silver/silver nitrate electrode was found to be a suitable reference electrode in ethanolic solutions (2% v/v in water). The concentration of Ag/sup +/ inside the reference electrode is satisfactory in teh 0.1 to 10 mM concentration range. The liquid junction potential is minimized with sufficient supporting electrolyte (e.g., 0.1 to 0.5 M sodium perchlorate). The electrode is suitable for use as reference electrode in potentiometry and in polarography. Preparation is uncomplicated and the product is stable. 4 figures.

  16. [Design and experiment of a needle-to-cylinder electrode structure realizing the negative DC glow discharge in ambient air].

    PubMed

    Li, Hua; Wei, Chang-Yan; Liu, Chun-Xia; Shen, Xian-Hao; Chen, Zhen-Cheng

    2014-07-01

    A new needle-to-cylinder electrode structure was designed to realize the stable glow discharge in ambient air. The stainless steel needle tip with diameter 56.4 microm and the copper cylinder with diameter 4mm were chosen as the cathode and the anode respectively, which were kept parallel by accurate mechanical structure. In the condition that the distance between the needle and the cylinder is 2 mm, the ballasting resistor is 10 M(omega), the discharge resistor is 10 M(omega), the testing resistor is 1 k(omega), and the discharge voltage is -2 740 V, without air flow in ambient air and at room temperature, the stable glow discharge between the needle and the cylinder was realized. Three different discharge modes can be observed: corona discharge, glow discharge and spark, which were verified by the discharge waveform stored in the oscilloscope, and the discharge pictures were recorded by digital camera. The needle-to-cylinder electrode structure is easy to fabricate by the MEMS technology, which can be used as the ion source of the portable analyzing instruments.

  17. An Asymmetric Supercapacitor with Mesoporous NiCo2O4 Nanorod/Graphene Composite and N-Doped Graphene Electrodes

    NASA Astrophysics Data System (ADS)

    Mao, J. W.; He, C. H.; Qi, J. Q.; Zhang, A. B.; Sui, Y. W.; He, Y. Z.; Meng, Q. K.; Wei, F. X.

    2018-01-01

    In the present work, mesoporous NiCo2O4 nanorod/graphene oxide (NiCo2O4/GO) composite was prepared by a facile and cost-effective hydrothermal method and meanwhile, N-doped graphene (N-G) was fabricated also by a hydrothermal synthesis process. NiCo2O4/GO composite and N-G were used as positive and negative electrodes for the supercapacitor, respectively, which all displayed excellent electrochemical performances. The NiCo2O4/GO composite electrode exhibited a high specific capacitance of 709.7 F g-1 at a current density of 1 A g-1 and excellent rate capability as well as good cycling performance with 84.7% capacitance retention at 6 A g-1 after 3000 cycles. A high-voltage asymmetric supercapacitor (ASC) was successfully fabricated using NiCo2O4/GO composite and N-G as the positive and negative electrodes, respectively, in 1 M KOH aqueous electrolyte. The ASC delivered a high energy density of 34.4 Wh kg-1 at a power density of 800 W kg-1 and still maintained 28 Wh kg-1 at a power density of 8000 W kg-1. Furthermore, this ASC showed excellent cycling stability with 94.3% specific capacitance retained at 5 A g-1 after 5000 cycles. The impressive results can be ascribed to the positive synergistic effects of the two electrodes. Evidently, our work provides useful information for assembling high-performance supercapacitor devices.

  18. Conducting polymer coated neural recording electrodes

    NASA Astrophysics Data System (ADS)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.

    2013-02-01

    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during

  19. Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes.

    PubMed

    Sun, Hong; Hu, Naifei

    2004-08-01

    A novel hemoglobin (Hb)-coated polystyrene (PS) latex bead film was deposited on pyrolytic graphite (PG) electrode surface. In the first step, positively charged Hb molecules in pH 5.0 buffers were adsorbed on the surface of negatively charged, 500 nm diameter PS latex beads bearing sulfate groups by electrostatic interaction. The aqueous dispersion of Hb-coated PS particles was then deposited on the surface of PG electrodes and, after evaporation of the solvent, Hb-PS films were formed. The Hb-PS film electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about -0.36 V vs. SCE in pH 7.0 buffers, characteristic of Hb heme Fe(III)/Fe(II) redox couples. Positions of Soret absorption band of Hb-PS films suggest that Hb retains its near-native structure in the films in its dry form and in solution at medium pH. The Hb in PS films was also acted as a catalyst to catalyze electrochemical reduction of various substrates such as trichloroacetic acid (TCA), nitrite, oxygen and hydrogen peroxide.

  20. Method for fabrication of electrodes

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.; Barksdale, Randy

    2004-06-22

    Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.

  1. Enhanced electrodes for solid state gas sensors

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    2001-01-01

    A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.

  2. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-01

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm-2 at 5 mA cm-2 and quality specific capacitance of 466.6 F g-1 at 0.125 A g-1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm-2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  3. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor.

    PubMed

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-11

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm -2 at 5 mA cm -2 and quality specific capacitance of 466.6 F g -1 at 0.125 A g -1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm -2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  4. Effects of positive and negative delusional ideation on memory.

    PubMed

    Sugimori, Eriko; Tanno, Yoshihiko

    2010-04-01

    We investigated the relationship between levels of delusional ideation (whether positive or negative delusions) and the activation and distortion of memory by using pairs of positive and negative adjectives describing personality traits where those adjectives had similar meanings. We presented one of each pair of adjectives in the learning phase. Immediately after the learning phase in Experiment 1, we asked whether each adjective had been presented. Participants with high (positive or negative) delusional ideation were more likely to indicate that they had learned adjectives that they had not actually learned. This finding suggested that non-learned positive (or negative) adjectives that were associated with learned negative (or positive) adjectives were more likely to be activated in participants prone to positive (or negative) delusional ideation. However, in Experiment 2, two forced-choice tests were conducted immediately after the learning phase. In this context, participants, regardless of their proneness to delusional ideation, could almost always correctly distinguish what had and had not been presented, suggesting that the activation of learned items was still stronger than that for non-learned items in the immediate test. As time passed, the proportion of false alarms for positive or negative adjectives was higher in the two forced-choice tests among those with high proneness to (positive or negative) delusional ideation, suggesting that participants with delusional ideation were increasingly likely to depend on internal conditions for retrieval over time. Nous avons examiné la relation entre les niveaux d'idéation illusoire (qu'elle soit positive ou négative) et l'activation et la distorsion de la mémoire, en utilisant des paires d'adjectifs positifs et négatifs à significations similaires décrivant des traits de personnalité. Nous avons présenté un membre de chaque paire d'adjectifs lors d'une phase d'apprentissage. Dans une première exp

  5. Depositing bulk or micro-scale electrodes

    DOEpatents

    Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.

    2016-11-01

    Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.

  6. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  7. Electrode and method of interconnection sintering on an electrode of an electrochemical cell

    DOEpatents

    Ruka, Roswell J.; Kuo, Lewis J. H.

    1994-01-01

    An electrode structure (10) is made by applying a base layer of doped LaCrO.sub.3 particles on a portion of an electrode (16) and then coating the particles with a top layer composition such as CaO+Al.sub.2 O.sub.3, SrO+Al.sub.2 O.sub.3, or BaO+Al.sub.2 O.sub.3, and then heating the composition for a time effective to melt the composition and allow it to fill any open porosity in the base layer of doped LaCrO.sub.3 to form an interconnection (26), after which solid oxide electrolyte (18) can be applied to the remaining portion of the electrode (16) and the electrolyte (18) can be covered with a cermet exterior electrode (20).

  8. Amperometric Enzyme Electrodes

    DTIC Science & Technology

    1989-12-01

    form of carbon (glascy carbon , graphite, reticulated vitreous carbon , carbon paste, fiber or foil). Carbon is favored for enzyme immoblization...the surface for covalent bonding. The most frequently used electrode material, glassy carbon , often displays complex behavior. Although attempts have...Mixed Carbon Paste Electrode with an Immobilized Layer of D-Gluconate Dehydrogenase from Bacteral Membranes," Agric. Biol. Chelm., 51 (1987), 747-754

  9. Physics-based investigation of negative ion behavior in a negative-ion-rich plasma using integrated diagnostics

    NASA Astrophysics Data System (ADS)

    Tsumori, K.; Takeiri, Y.; Ikeda, K.; Nakano, H.; Geng, S.; Kisaki, M.; Nagaoka, K.; Tokuzawa, T.; Wada, M.; Sasaki, K.; Nishiyama, S.; Goto, M.; Osakabe, M.

    2017-08-01

    Total power of 16 MW has been successfully delivered to the plasma confined in the Large Helical Device (LHD) from three Neutral Beam Injectors (NBIs) equipped with negative hydrogen (H-) ion sources. However, the detailed mechanisms from production through extraction of H- ions are still yet to be clarified and a similar size ion source on an independent acceleration test bench called Research and development Negative Ion Source (RNIS) serves as the facility to study physics related to H- production and transport for further improvement of NBI. The production of negative-ion-rich plasma and the H- ions behavior in the beam extraction region in RNIS is being investigated by employing an integrated diagnostic system. Flow patterns of electrons, positive ions and H- ions in the extraction region are described in a two-dimensional map. The measured flow patterns indicate the existence a stagnation region, where the H- flow changes the direction at a distance about 20 mm from the plasma grid. The pattern also suggested the H- flow originated from plasma grid (PG) surface that turned back toward extraction apertures. The turning region seems formed by a layer of combined magnetic field produced by the magnetic filter field and the Electron-Deflection Magnetic (EDM) field created by magnets installed in the extraction electrode.

  10. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  11. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2002-09-17

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  12. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  13. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  14. Wearable polyimide-PDMS electrodes for intrabody communication

    NASA Astrophysics Data System (ADS)

    Moon, Jin-Hee; Baek, Dong Hyun; Choi, Yoon Young; Lee, Kwang Ho; Kim, Hee Chan; Lee, Sang-Hoon

    2010-02-01

    In this paper, we introduce a novel wearable electrode for an intra-body area network (I-BAN) by employing the advantages of polyimide (PI) which is a well-known substrate material for flexible electrodes and polydimethylsiloxane (PDMS) which is a biocompatible and representative soft-lithography adaptable material. Electrodes were patterned onto thin and flexible PI substrates and encapsulated in PDMS to enhance skin compatibility. For this purpose, we developed an electrode fabrication process on thin PI substrates and a PDMS encapsulation technique by bonding two PDMS layers on the front and back surfaces of the PI electrode. The mechanical property and communication performance of electrodes were characterized through spectrum analysis to optimize the role as an I-BAN electrode. Skin-compatibility and cyto-toxicity tests using human mesenchymal stem cells (hMSCs) were carried out to demonstrate the non-toxicity of the electrode after continuous wearing. Sinusoidal signals of 45 MHz were successfully transmitted with high fidelity between electrodes separated by 30 cm.

  15. Glucose endothelial cytotoxicity and protection by Dan Gua-Fang, a Chinese herb prescription in huVEC in hyperglycemia medium.

    PubMed

    Xian-pei, Heng; Ke-ji, Chen; Zheng-feng, Hong; Wei-dong, He; Ke-dan, Chu; Wen-lie, Chen; Xu-zheng, Chen; Hai-xia, Zheng; Ling, Chen; Liu-qing, Yang; Fang, Guo; Mao-long, Lin

    2009-01-01

    Low success rate of blood glucose in diabetes is an international problem. The endothelia cytotoxicity of hyperglycemia has been widely accepted. However, it has not been seen in reports of the value of concentration of high glucose beginning to produce cytotoxicity and the relationship between hyperglycemia and cytotoxicity as well as how to effectively prevent and control hyperglycemia cytotoxicity. Dan Gua prescription is an effective Chinese herb prescription for diabetic vascular complications. Dan Gua prescription was contained in Dan Gua liquor utilized in experiments. (1) The cytotoxicity experiment of Dan Gua was carried out with M199 medium whose glucose (Glu) was 5.55 mmol/l to seek for a suitable experimental concentration of Dan Gua. (2) The human vessel endotheliocyte was cultivated for 72 h with mediums containing glucose in different concentrations (Group G1 to Group G11, Glu: 5.5 to 99.9 mmol/l, respectively), and assayed an optical density (OD) value using the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method. (3) Experiment 2 was repeated. However, the medium of each group (Groups Y1 to Y11) contained Dan Gua liquor whose concentration was 1/300. There was a negative correlation between means of cell OD values and glucose concentrations (r=-.927, R(2)=.844), and it presented a notable linear correlation (y=0.681-0.002x). Based on the OD value of 5.5-mmol/l glucose concentration (group G1), when glucose concentration reached 22.2 mmol/l (G4), the difference in OD values has a statistical significance. OD values in Y1-Y11 were not less than that of G1. There is a notable linear correlation between the endothelial cytotoxicities of Glu and its concentrations. The spinodal point concentration of statistical significance of hyperglycemia cytotoxicity is 22.2 mmol/l; 1/300 Dan Gua can reverse the endothelia cytotoxicity in different concentrations of hyperglycemia.

  16. Electrode for a lithium cell

    DOEpatents

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  17. Negative surface streamers propagating on TiO2 and γ-Al2O3-supported Ag catalysts: ICCD imaging and modeling study

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Kang, Woo Seok; Hur, Min; Song, Young-Hoon

    2018-06-01

    Surface streamers propagating on the surface of titanium dioxide (TiO2) and alumina (γ-Al2O3) were studied in negative polarity using intensified charge coupled device (ICCD) imaging and numerical simulation. Detailed time-resolved ICCD images of cathode-directed streamers (CDSs) emanating from a ground electrode are first presented in this report. Instead of primary streamers in positive polarity, only a glow-like discharge appeared in the early stage at the cathode under negative polarity. After this discharge disappeared, a counter-propagating CDS initiated from the ground electrode (anode). Numerical simulation indicated that strong electric fields at the pellet-anode and the formation of positive ion rich local spots were the main reason for the CDS formation near the ground electrode. The maximum velocity was 750 km s‑1 for Ag-supported γ-Al2O3 and 550 km s‑1 for Ag-supported TiO2, respectively. In contrast to the CDS in the gas-phase with a positive polarity, the CDS in a catalyst packed-bed under negative polarity showed more branching and a larger number of streamers in the presence of oxygen than in pure N2.

  18. In situ spectroscopic monitoring of CO2 reduction at copper oxide electrode.

    PubMed

    Wang, Liying; Gupta, Kalyani; Goodall, Josephine B M; Darr, Jawwad A; Holt, Katherine B

    2017-04-28

    Copper oxide modified electrodes were investigated as a function of applied electrode potential using in situ infrared spectroscopy and ex situ Raman and X-ray photoelectron spectroscopy. In deoxygenated KHCO 3 electrolyte bicarbonate and carbonate species were found to adsorb to the electrode during reduction and the CuO was reduced to Cu(i) or Cu(0) species. Carbonate was incorporated into the structure and the CuO starting material was not regenerated on cycling to positive potentials. In contrast, in CO 2 saturated KHCO 3 solution, surface adsorption of bicarbonate and carbonate was not observed and adsorption of a carbonato-species was observed with in situ infrared spectroscopy. This species is believed to be activated, bent CO 2 . On cycling to negative potentials, larger reduction currents were observed in the presence of CO 2 ; however, less of the charge could be attributed to the reduction of CuO. In the presence of CO 2 CuO underwent reduction to Cu 2 O and potentially Cu, with no incorporation of carbonate. Under these conditions the CuO starting material could be regenerated by cycling to positive potentials.

  19. Study of positive and negative plasma catalytic oxidation of ethylene.

    PubMed

    Van Wesenbeeck, K; Hauchecorne, B; Lenaerts, S

    2017-06-01

    The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO 2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15 kV. This shows the potential of plasma catalysis as indoor air purification technology.

  20. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes.

    PubMed

    Taylor, I Mitch; Robbins, Elaine M; Catt, Kasey A; Cody, Patrick A; Happe, Cassandra L; Cui, Xinyan Tracy

    2017-03-15

    Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enhanced Dopamine Detection Sensitivity by PEDOT/Graphene Oxide Coating on in vivo Carbon Fiber Electrodes

    PubMed Central

    Taylor, I. Mitch; Robbins, Elaine M.; Catt, Kasey A.; Cody, Patrick A.; Weaver, Cassandra L.; Cui, Xinyan Tracy

    2016-01-01

    Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA’s oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo. PMID:27268013

  2. Creating virtual electrodes with 2D current steering

    NASA Astrophysics Data System (ADS)

    Spencer, Thomas C.; Fallon, James B.; Shivdasani, Mohit N.

    2018-06-01

    Objective. Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that ‘virtual’ electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. Approach. Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to ‘steer’ current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. Main results. Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p  >  0.05 neural spread: one-way ANOVA on Ranks, p  >  0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. Significance. The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number

  3. The use of hydrogel as an electrode-skin interface for electrode array FES applications.

    PubMed

    Cooper, Glen; Barker, Anthony T; Heller, Ben W; Good, Tim; Kenney, Laurence P J; Howard, David

    2011-10-01

    Functional electrical stimulation is commonly used to restore function in post-stroke patients in upper and lower limb applications. Location of the electrodes can be a problem hence some research groups have begun to experiment with electrode arrays. Electrode arrays are interfaced with a thin continuous hydrogel sheet which is high resistivity to reduce transverse currents between electrodes in the array. Research using electrode arrays has all been conducted in a laboratory environment over short time periods but it is suspected that this approach will not be feasible over longer time periods due to changes in hydrogel resistivity. High resistivity hydrogel samples were tested by leaving them in contact with the skin over a seven day period. The samples became extremely conductive with resistivities reaching around 10-50 Ωm. The effect of these resistivity changes was studied using finite element analysis to solve for the stationary current quasi-static electric field gradient in the tissue. Electrical stimulation efficiency and focality were calculated for both a high and low resistivity electrode-skin interface layer at different tissue depths. The results showed that low resistivity hydrogel produced significant decreases in stimulation efficiency and focality compared to high resistivity hydrogel. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Building to be Named for Former Rep. Dan Schaefer

    Science.gov Websites

    Building to be Named for Former Rep. Dan Schaefer For more information contact: e:mail: Public Renewable Energy Laboratory will be renamed to honor retired U.S. Rep. Dan Schaefer on Monday, Jan. 11. In ceremonies beginning at 11 a.m., the center formally will become the Dan Schaefer Federal Building. Congress

  5. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Armstrong, A. Robert; Bruce, Peter G.

    1996-06-01

    RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.

  6. Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Munteshari, Obaidallah; Lau, Jonathan; Krishnan, Atindra; Dunn, Bruce; Pilon, Laurent

    2018-01-01

    Heat generation in electric double layer capacitors (EDLCs) may lead to temperature rise and reduce their lifetime and performance. This study aims to measure the time-dependent heat generation rate in individual carbon electrode of EDLCs under various charging conditions. First, the design, fabrication, and validation of an isothermal calorimeter are presented. The calorimeter consisted of two thermoelectric heat flux sensors connected to a data acquisition system, two identical and cold plates fed with a circulating coolant, and an electrochemical test section connected to a potentiostat/galvanostat system. The EDLC cells consisted of two identical activated carbon electrodes and a separator immersed in an electrolyte. Measurements were performed on three cells with different electrolytes under galvanostatic cycling for different current density and polarity. The measured time-averaged irreversible heat generation rate was in excellent agreement with predictions for Joule heating. The reversible heat generation rate in the positive electrode was exothermic during charging and endothermic during discharging. By contrast, the negative electrode featured both exothermic and endothermic heat generation during both charging and discharging. The results of this study can be used to validate existing thermal models, to develop thermal management strategies, and to gain insight into physicochemical phenomena taking place during operation.

  7. Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors.

    PubMed

    Dall'Agnese, Yohan; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2015-06-18

    Ion capacitors store energy through intercalation of cations into an electrode at a faster rate than in batteries and within a larger potential window. These devices reach a higher energy density compared to electrochemical double layer capacitor. Li-ion capacitors are already produced commercially, but the development of Na-ion capacitors is hindered by lack of materials that would allow fast intercalation of Na-ions. Here we investigated the electrochemical behavior of 2D vanadium carbide, V2C, from the MXene family. We investigated the mechanism of Na intercalation by XRD and achieved capacitance of ∼100 F/g at 0.2 mV/s. We assembled a full cell with hard carbon as negative electrode, a known anode material for Na ion batteries, and achieved capacity of 50 mAh/g with a maximum cell voltage of 3.5 V.

  8. Direct Observation of Virtual Electrode Formation Through a Novel Electrolyte-to-Electrode Transition

    NASA Astrophysics Data System (ADS)

    Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin

    2014-03-01

    Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.

  9. Radiologic and functional evaluation of electrode dislocation from the scala tympani to the scala vestibuli in patients with cochlear implants.

    PubMed

    Fischer, N; Pinggera, L; Weichbold, V; Dejaco, D; Schmutzhard, J; Widmann, G

    2015-02-01

    Localization of the electrode after cochlear implantation seems to have an impact on auditory outcome, and conebeam CT has emerged as a reliable method for visualizing the electrode array position within the cochlea. The aim of this retrospective study was to evaluate the frequency and clinical impact of scalar dislocation of various electrodes and surgical approaches and to evaluate its influence on auditory outcome. This retrospective single-center study analyzed a consecutive series of 63 cochlear implantations with various straight electrodes. The placement of the electrode array was evaluated by using multiplanar reconstructed conebeam CT images. For the auditory outcome, we compared the aided hearing thresholds and the charge units of maximum comfortable loudness level at weeks 6, 12, and 24 after implantation. In 7.9% of the cases, the electrode array showed scalar dislocation. In all cases, the electrode array penetrated the basal membrane within 45° of the electrode insertion. All 3 cases of cochleostomy were dislocated in the first 45° segment. No hearing differences were noted, but the charge units of maximum comfortable loudness level seemed to increase with time in patients with dislocations. The intracochlear dislocation rate of various straight electrodes detected by conebeam CT images is relatively low. Scalar dislocation may not negatively influence the hearing threshold but may require an increase of the necessary stimulus charge and should be reported by the radiologist. © 2015 by American Journal of Neuroradiology.

  10. Electrode Processes in Porous Electrodes.

    DTIC Science & Technology

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  11. A Spark Chamber With Thin Electrodes and a Study of the Position of the Alignment Point; KAMERA S TONKIMI ELEKTRODAMI IZUCHENIE POLOZHENIYA TOCHKI SPRYAMLENIYA ISKRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legar, F.; Nikanorov, V.I.; Peter, G.

    1964-01-01

    A technique for making the foil electrodes with twosided working surface for spark chambers is described. Some characteristics of spark chambers with thin electrodes are given. The variation of the distance from the negative electrode to the alignment point of a spark with the energy of the detected particles and the angie of their passage through the charaber was studied. It is shown that with the increasing initial density of the gas ionization in the chamber the Townsend coefficient a becomes greater due to the charge interaction of avalanches. (auth)

  12. Temporal and spatial evolution of EHD particle flow onset in air in a needle-to-plate negative DC corona discharge

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, J.; Berendt, A.; Podlinski, J.

    2016-05-01

    In this paper we present images showing the temporal and spatial evolution of the electrohydrodynamic (EHD) flow of dust particles (cigarette smoke) suspended in still air in a needle-to-plate negative DC corona discharge arrangement just after the corona onset, i.e. in the first stage of development of the EHD particle flow. The experimental apparatus for our study of the EHD flow onset consisted of a needle-to-plate electrode arrangement, high voltage power supply and time-resolved EHD imaging system based on 2D time-resolved particle image velocimetry equipment. The time-resolved flow images clearly show the formation of a ball-like flow structure at the needle tip just after the corona discharge onset, and its evolution into a mushroom-like object moving to the collecting electrode. After a certain time, when the mushroom-like object is still present in the interelectrode gap a second mushroom-like object forms near the needle electrode and starts to move towards the collecting electrode. Before the first mushroom-like object reaches the collecting electrode several similar mushroom-like objects can be formed and presented simultaneously in the interelectrode gap. They look like a series of mushroom-like minijets shot from the needle electrode vicinity towards the collecting electrode. The simultaneous presence of mushroom-like minijets in the interelectrode gap in the corona discharge in particle-seeded air resembles the negative-ion-charged ‘clouds’ (induced by the Trichel pulses) traversing simultaneously the interelectrode gap of the corona discharge in air, predicted a long time ago by Loeb, and Lama and Gallo and recently by Dordizadeh et al. Analysing the time behaviours of the mushroom-like minijets and current waveform in the corona discharge in particle-seeded air, we found that the Trichel pulse trains, formed just after the corona onset initiates the mushroom-like minijets. The first stage of development of the EHD particle flow, the area of

  13. Submolecular Structure and Orientation of Oligonucleotide Duplexes Tethered to Gold Electrodes Probed by Infrared Reflection Absorption Spectroscopy: Effect of the Electrode Potentials.

    PubMed

    Kékedy-Nagy, László; Ferapontova, Elena E; Brand, Izabella

    2017-02-23

    Unique electronic and ligand recognition properties of the DNA double helix provide basis for DNA applications in biomolecular electronic and biosensor devices. However, the relation between the structure of DNA at electrified interfaces and its electronic properties is still not well understood. Here, potential-driven changes in the submolecular structure of DNA double helices composed of either adenine-thymine (dAdT) 25 or cytosine-guanine (dGdC) 20 base pairs tethered to the gold electrodes are for the first time analyzed by in situ polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) performed under the electrochemical control. It is shown that the conformation of the DNA duplexes tethered to gold electrodes via the C 6 alkanethiol linker strongly depends on the nucleic acid sequence composition. The tilt of purine and pyrimidine rings of the complementary base pairs (dAdT and dGdC) depends on the potential applied to the electrode. By contrast, neither the conformation nor orientation of the ionic in character phosphate-sugar backbone is affected by the electrode potentials. At potentials more positive than the potential of zero charge (pzc), a gradual tilting of the double helix is observed. In this tilted orientation, the planes of the complementary purine and pyrimidine rings lie ideally parallel to each other. These potentials do not affect the integral stability of the DNA double helix at the charged interface. At potentials more negative than the pzc, DNA helices adopt a vertical to the gold surface orientation. Tilt of the purine and pyrimidine rings depends on the composition of the double helix. In monolayers composed of (dAdT) 25 molecules the rings of the complementary base pairs lie parallel to each other. By contrast, the tilt of purine and pyrimidine rings in (dGdC) 20 helices depends on the potential applied to the electrode. Such potential-induced mobility of the complementary base pairs can destabilize the helix

  14. Recent advances in graphite powder-based electrodes.

    PubMed

    Bellido-Milla, Dolores; Cubillana-Aguilera, Laura Ma; El Kaoutit, Mohammed; Hernández-Artiga, Ma Purificación; Hidalgo-Hidalgo de Cisneros, José Luis; Naranjo-Rodríguez, Ignacio; Palacios-Santander, José Ma

    2013-04-01

    Graphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility. All these characteristics make them a very interesting option for obtaining a large variety of electrodes to resolve different kinds of analytical problems. This review summarizes the state-of-the-art, advantages, and disadvantages of graphite powder-based electrodes in electrochemical analysis in the 21st century. It includes recent trends in carbon paste electrodes, devoting special attention to the use of emergent materials as new binders and to the development of other composite electrodes. The most recent advances in the use of graphite powder-modified sol-gel electrodes are also described. The development of sonogel-carbon electrodes and their use in electrochemical sensors and biosensors is included. These materials extend the possibilities of applications, especially for industrial technology-transfer purposes, and their development could affect not only electroanalytical green chemistry but other interesting areas also, for example catalysis and energy conversion and storage.

  15. Resonant tunnelling and negative differential conductance in graphene transistors

    PubMed Central

    Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L.

    2013-01-01

    The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene’s unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices. PMID:23653206

  16. Negative response of HgCdTe photodiode induced by nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Zuodong; Zhang, Jianmin; Lin, Xinwei; Shao, Bibo; Yang, Pengling

    2017-05-01

    Photodetectors' behavior and mechanism of transient response are still not understood very well, especially under high photon injection. Most of the researches on this topic were carried out with ultra-short laser pulse, whose pulse width ranged from femtosecond scale to picosecond scale. However, in many applications the durations of incident light are in nanosecond order and the light intensities are strong. To investigate the transient response characteristics and mechanisms of narrow-bandgap photovoltaic detectors under short laser irradiation, we performed an experiment on HgCdTe photodiodes. The n+-on-p type HgCdTe photodiodes in the experiment were designed to work in spectrum from 1.0μm to 3.0μm, with conditions of zero bias and room temperature. They were exposed to in-band short laser pulses with dwell time of 20 nanosecond. When the intensity of incident laser beam rose to 0.1J/cm2 order, the photodiodes' response characteristics turned to be bipolar from unipolar. A much longer negative response with duration of about 10μs to 100μs followed the positive light response. The amplitude of the negative response increased with the laser intensity, while the dwell time of positive response decreased with the laser intensity. Considering the response characteristics and the device structure, it is proposed that the negative response was caused by space charge effect at the electrodes. Under intense laser irradiation, a temperature gradient formed in the HgCdTe material. Due to the temperature gradient, the majority carriers diffused away from upper surface and left space charge at the electrodes. Then negative response voltage could be measured in the external circuit. With higher incident laser intensity, the degree of the space charge effect would become higher, and then the negative response would come earlier and show larger amplitude.

  17. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    PubMed

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  18. A figure of merit for AMTEC electrodes

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.

    1991-01-01

    As a method to compare the results of alkali metal thermoelectric converter (AMTEC) electrode performance measured under different conditions, an AMTEC figure of merit called ZA is proposed. This figure of merit is the ratio of the experimental maximum power for an electrode to a calculated maximum power density as determined from a recently published electrode performance model. The calculation of a maximum power density assumes that certain loss terms in the electrode can be reduced to essentially zero by improved cell design and construction, and that the electrochemical exchange current is determined from a standard value. Other losses in the electrode are considered inherent to the electrode performance. Thus, these terms remain in the determination of the calculated maximum power. A value of ZA near one, then, indicates an electrode performance near the maximum possible performance. The primary limitation of this calculation is that the small electrode effect cannot be included. This effect leads to anomalously high values of ZA. Thus, the electrode area should be reported along with the figure of merit.

  19. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    PubMed

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  20. A future, intense source of negative hydrogen ions

    NASA Technical Reports Server (NTRS)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  1. Composite electrode for use in electrochemical cells

    DOEpatents

    Vanderborgh, N.E.; Huff, J.R.; Leddy, J.

    1987-10-16

    A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode. 4 figs., 1 tab.

  2. Composite electrode for use in electrochemical cells

    DOEpatents

    Vanderborgh, Nicholas E.; Huff, James R.; Leddy, Johna

    1989-01-01

    A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode.

  3. Cognitive safety of intracranial electrodes for epilepsy.

    PubMed

    Meador, Kimford J; Halpern, Casey H; Hermann, Bruce P

    2018-06-01

    Two recent articles in Epilepsia have raised concerns about adverse cognitive effects associated with intracranial electrode implantation. However, both studies have important limitations, and their results contrast with studies that report no adverse cognitive effects of intracranial electrodes for diagnosis or neurostimulation in epilepsy. Furthermore, no data are provided on the relative safety of depth electrodes implanted along the longitudinal axis of the hippocampus vs other electrode locations or types of electrodes. Instituting changes in the use of depth electrodes based solely on these 2 studies is not clinically indicated. Further research is needed. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  4. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  5. Evaluation and Testing of Commercially-Available Carbon Nanotubes as Negative Electrodes for Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    2007-01-01

    Rechargeable lithium ion (Li-ion) battery technology offers significant performance advantages over the nickel-based technologies used for energy storage for the majority of NASA's missions. Specifically Li-ion technology offers a threefold to fourfold increase in gravimetric and volumetric energy densities and produces voltages in excess of three times the value of typical nickel-based battery systems. As part of the Advanced Battery Technology program at NASA Glenn Research Center (GRC), a program on the evaluation of anodes for Li-ion cells and batteries was conducted. This study focused on the feasibility of using carbon nanotubes as anodes in Li-Ion cells. Candidate materials from multiple sources were evaluated. Their performance was compared to a standard anode comprised of mesocarbon microbeads. In all cases, the standard MCMB electrode exhibited superior performance. The details and results of the study are presented.

  6. [Survival is associated with time to reach PSA nadir (DAN) and the ratio DAN/nadir value after androgen deprivation for prostate cancer].

    PubMed

    Gagnat, A; Larré, S; Fromont, G; Pirès, C; Doré, B; Irani, J

    2011-05-01

    The objective of this study was to assess the prognostic decrease rate of PSA in patients treated with androgen suppression (AS) for prostate cancer (PCa). We identified in our database CaP patients with histologically documented, treated with SA alone and for whom vital status with a minimum follow-up of 6 months (except death beforehand) was established. Patient characteristics and CaP and PSA at baseline, PSA nadir, time of reaching the nadir PSA (DAN) and the ratio of the DAN/nadir value (ratio DAN/Nadir) were analyzed in relation to progression-free survival, specific and overall survival. One hundred ninety eight patients met the inclusion criteria and the median was 61.5 months (range 4.8 to 233). The median PSA at the start of the SA were 37.1 ng/mL and the median nadir PSA was 0.48 ng/mL. The median time to progression was 23.6 months. The median specific and overall survivals were 94 and 78 months, respectively. In univariate analysis, predictors of progression-free survival were PSA before SA, PSA nadir, DAN, DAN ratio/nadir, Gleason score, the percentage of core positive prostate biopsy and the status of bone scintigraphy. Except for PSA before SA which was no longer significant, predictors of specific and overall survival were similar and added the biochemical response (decrease of more than 50% of PSA) to a second hormonal manipulation during the biological progression. In multivariate analysis, the nadir PSA and the ratio DAN/Nadir remained significant predictors. These results have confirmed in one hand the predictive value of survival in patients DAN SA for CaP: achieving faster nadir PSA was associated with shorter survival. They have introduced in the other hand the new concept of DAN/Nadir PSA which provides independent prognostic information. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. Improvement in Electrode Performance of Novel SWCNT Loaded Three-Dimensional Porous RVC Composite Electrodes by Electrochemical Deposition Method

    PubMed Central

    Almoigli, Mohammed; Meriey, Al Yahya; Alharbi, Khalid N.

    2018-01-01

    The three-dimensional (3D) composite electrodes were prepared by depositing different amounts of acid-functionalized single-walled carbon nanotubes (a-SWCNTs) on porous reticulated vitreous carbon (RVC) through the electrochemical deposition method. The SWCNT was functionalized by the reflux method in nitric acid and was proven by Raman and visible spectra. The optimum time for sonication to disperse the functionalized SWCNT (a-SWCNT) in dimethyl formamide (DMF) well was determined by UV spectra. The average pore size of RVC electrodes was calculated from scanning electron microscopy (SEM) images. Moreover, the surface morphology of composite electrodes was also examined by SEM study. All 3D electrodes were evaluated for their electrochemical properties by cyclic voltammetry. The result showed that the value of specific capacitance of the electrode increases with the increase in the amount of a-SWCNT in geometric volume. However, the value of specific capacitance per gram decreases with the increase in scan rate as well as the amount of a-SWCNT. The stability of the electrodes was also tested. This revealed that all the electrodes were stable; however, lower a-SWCNT-loaded electrodes had excellent cyclic stability. These results suggest that the a-SWCNT-coated RVC electrodes have promise as an effective technology for desalination. PMID:29301258

  8. Improvement in Electrode Performance of Novel SWCNT Loaded Three-Dimensional Porous RVC Composite Electrodes by Electrochemical Deposition Method.

    PubMed

    Aldalbahi, Ali; Rahaman, Mostafizur; Almoigli, Mohammed; Meriey, Al Yahya; Alharbi, Khalid N

    2018-01-01

    The three-dimensional (3D) composite electrodes were prepared by depositing different amounts of acid-functionalized single-walled carbon nanotubes (a-SWCNTs) on porous reticulated vitreous carbon (RVC) through the electrochemical deposition method. The SWCNT was functionalized by the reflux method in nitric acid and was proven by Raman and visible spectra. The optimum time for sonication to disperse the functionalized SWCNT (a-SWCNT) in dimethyl formamide (DMF) well was determined by UV spectra. The average pore size of RVC electrodes was calculated from scanning electron microscopy (SEM) images. Moreover, the surface morphology of composite electrodes was also examined by SEM study. All 3D electrodes were evaluated for their electrochemical properties by cyclic voltammetry. The result showed that the value of specific capacitance of the electrode increases with the increase in the amount of a-SWCNT in geometric volume. However, the value of specific capacitance per gram decreases with the increase in scan rate as well as the amount of a-SWCNT. The stability of the electrodes was also tested. This revealed that all the electrodes were stable; however, lower a-SWCNT-loaded electrodes had excellent cyclic stability. These results suggest that the a-SWCNT-coated RVC electrodes have promise as an effective technology for desalination.

  9. Circular electrode geometry metal-semiconductor-metal photodetectors

    NASA Technical Reports Server (NTRS)

    Mcaddo, James A. (Inventor); Towe, Elias (Inventor); Bishop, William L. (Inventor); Wang, Liang-Guo (Inventor)

    1994-01-01

    The invention comprises a high speed, metal-semiconductor-metal photodetector which comprises a pair of generally circular, electrically conductive electrodes formed on an optically active semiconductor layer. Various embodiments of the invention include a spiral, intercoiled electrode geometry and an electrode geometry comprised of substantially circular, concentric electrodes which are interposed. These electrode geometries result in photodetectors with lower capacitances, dark currents and lower inductance which reduces the ringing seen in the optical pulse response.

  10. Ion and Bio-Selective Membrane Electrodes.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1983-01-01

    Discusses topics on membrane electrodes corresponding to approximately six hours of lecture time. These include glass, liquid, crystal, gas-sensing membrane electrodes as well as enzyme and other bioselective membrane electrodes. Instructional strategies and other topics which might be discussed are provided. (JN)

  11. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  12. Optimal geometry toward uniform current density electrodes

    NASA Astrophysics Data System (ADS)

    Song, Yizhuang; Lee, Eunjung; Woo, Eung Je; Seo, Jin Keun

    2011-07-01

    Electrodes are commonly used to inject current into the human body in various biomedical applications such as functional electrical stimulation, defibrillation, electrosurgery, RF ablation, impedance imaging, and so on. When a highly conducting electrode makes direct contact with biological tissues, the induced current density has strong singularity along the periphery of the electrode, which may cause painful sensation or burn. Especially in impedance imaging methods such as the magnetic resonance electrical impedance tomography, we should avoid such singularity since more uniform current density underneath a current-injection electrode is desirable. In this paper, we study an optimal geometry of a recessed electrode to produce a well-distributed current density on the contact area under the electrode. We investigate the geometry of the electrode surface to minimize the edge singularity and produce nearly uniform current density on the contact area. We propose a mathematical framework for the uniform current density electrode and its optimal geometry. The theoretical results are supported by numerical simulations.

  13. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Warner, K.A.

    1999-06-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  14. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    PubMed

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  16. Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Göbel, G.; Parak, W. J.; Lisdat, F.

    2014-03-01

    Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.

  17. Sputter-deposited fuel cell membranes and electrodes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  18. Thin metal electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Wheeler, Bob L. (Inventor); Jefferies-Nakamura, Barbara (Inventor); Lamb, James L. (Inventor); Bankston, C. Perry (Inventor); Cole, Terry (Inventor)

    1989-01-01

    An electrode having higher power output is formed of a thin, porous film (less than 1 micrometer) applied to a beta-alumina solid electrolyte (BASE). The electrode includes an open grid, current collector such as a series of thin, parallel, grid lines applied to the thin film and a plurality of cross-members such as loop of metal wire surrounding the BASE tube. The loops are electrically connected by a bus wire. The overall impedance of the electrode considering both the contributions from the bulk BASE and the porous electrode BASE interface is low, about 0.5 OHM/cm.sup.2 and power densities of over 0.3 watt/cm.sup.2 for extended periods.

  19. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  20. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  1. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    PubMed

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  2. Lithium battery electrodes with ultra-thin alumina coatings

    DOEpatents

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  3. Electrodes for sealed secondary batteries

    NASA Technical Reports Server (NTRS)

    Boies, D. B.; Child, F. T.

    1972-01-01

    Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries.

  4. A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes.

    PubMed

    Kim, Myeongjin; Yoo, Jeeyoung; Kim, Jooheon

    2017-05-23

    A unique redox active flexible solid-state asymmetric supercapacitor with ultra-high capacitance and energy density was fabricated using a composite comprising MgCo 2 O 4 nanoneedles and micro and mesoporous silicon carbide flakes (SiCF) (SiCF/MgCo 2 O 4 ) as the positive electrode material. Due to the synergistic effect of the two materials, this hybrid electrode has a high specific capacitance of 516.7 F g -1 at a scan rate of 5 mV s -1 in a 1 M KOH aqueous electrolyte. To obtain a reasonable matching of positive and negative electrode pairs, a composite of Fe 3 O 4 nanoparticles and SiCF (SiCF/Fe 3 O 4 ) was synthesized for use as a negative electrode material, which shows a high capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 . Therefore, by pairing the SiCF/MgCo 2 O 4 positive electrode and the SiCF/Fe 3 O 4 negative electrode with a redox active quasi-solid-state PVA-KOH-p-nitroaniline (PVA-KOH-PNA) gel electrolyte, a novel solid-state asymmetric supercapacitor device was assembled. Because of the synergistic effect between the highly porous SiCF and the vigorous redox-reaction of metal oxides, the hybrid nanostructure electrodes exhibited outstanding charge storage and transport. In addition, the redox active PVA-KOH-PNA electrolyte adds additional pseudocapacitance, which arises from the nitro-reduction and oxidation and reduction process of the reduction product of p-phenylenediamine, resulting in an enhancement of the capacitance (a specific capacitance of 161.77 F g -1 at a scan rate of 5 mV s -1 ) and energy density (maximum energy density of 72.79 Wh kg -1 at a power density of 727.96 W kg -1 ).

  5. Graphene electrodes for stimulation of neuronal cells

    NASA Astrophysics Data System (ADS)

    Koerbitzer, Berit; Krauss, Peter; Nick, Christoph; Yadav, Sandeep; Schneider, Joerg J.; Thielemann, Christiane

    2016-06-01

    Graphene has the ability to improve the electrical interface between neuronal cells and electrodes used for recording and stimulation purposes. It provides a biocompatible coating for common electrode materials such as gold and improves the electrode properties. Graphene electrodes are also prepared on SiO2 substrate to benefit from its optical properties like transparency. We perform electrochemical and Raman characterization of gold electrodes with graphene coating and compare them with graphene on SiO2 substrate. It was found that the substrate plays an important role in the performance of graphene and show that graphene on SiO2 substrate is a very promising material combination for stimulation electrodes.

  6. "Shawthan Dan," "Shawthan Kwanje": Good People, Good Words--Creating a "dan k'e" Speech Community in an Elementary School

    ERIC Educational Resources Information Center

    Ferguson, Jenanne

    2010-01-01

    This paper investigates how the processes of language transmission among speakers of Southern Tutchone ("dan k'e"), an indigenous Athapaskan language of the southern Yukon Territory, Canada, bear out an emerging theoretical interest in how bottom-up communicative practices shape language policy. An examination of "dan k'e"…

  7. In-electrode vs. on-electrode: ultrasensitive Faraday cage-type electrochemiluminescence immunoassay.

    PubMed

    Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Wang, Sui

    2016-03-28

    A new-concept of an "in-electrode" Faraday cage-type electrochemiluminescence immunoassay (ECLIA) method for the ultrasensitive detection of neurotensin (NT) was reported with capture antibody (Ab1)-nanoFe3O4@graphene (GO) and detector antibody (Ab2)&N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@GO, which led to about 1000-fold improvement in sensitivity by extending the Helmholtz plane (OHP) of the proposed electrode assembly effectively.

  8. Additively Manufactured Pneumatically Driven Skin Electrodes.

    PubMed

    Schubert, Martin; Schmidt, Martin; Wolter, Paul; Malberg, Hagen; Zaunseder, Sebastian; Bock, Karlheinz

    2017-12-23

    Telemedicine focuses on improving the quality of health care, particularly in out-of-hospital settings. One of the most important applications is the continuous remote monitoring of vital parameters. Long-term monitoring of biopotentials requires skin-electrodes. State-of-the-art electrodes such as Ag/AgCl wet electrodes lead, especially during long-term application, to complications, e.g., skin irritations. This paper presents a low-cost, on-demand electrode approach for future long-term applications. The fully printed module comprises a polymeric substrate with electrodes on a flexible membrane, which establishes skin contact only for short time in case of measurement. The membranes that produce airtight seals for pressure chambers can be pneumatically dilated and pressed onto the skin to ensure good contact, and subsequently retracted. The dilatation depends on the pressure and membrane thickness, which has been tested up to 150 kPa. The electrodes were fabricated in screen and inkjet printing technology, and compared during exemplary electrodermal activity measurement (EDA). The results show less amplitude compared to conventional EDA electrodes but similar behavior. Because of the manufacturing process the module enables high individuality for future applications.

  9. Electrode systems for in situ vitrification

    DOEpatents

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1990-01-01

    An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.

  10. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  11. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, Thomas R.; Chilko, Robert J.

    1986-01-01

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask.

  12. Profil anatomopathologique du cancer du sein dans le cap bon tunisien

    PubMed Central

    Sahraoui, Ghada; Khanchel, Fatma; Chelbi, Emna

    2017-01-01

    Le cancer du sein est le cancer le plus fréquent de la femme en Tunisie et dans le monde. Dans le Cap Bon tunisien, les particularités anatomopathologiques de ce cancer n'ont pas été précisées auparavant. Leur connaissance est nécessaire pour l'adaptation des systèmes de prévention et de soins dans la région. Le but de notre étude était de déterminer le profil anatomopathologique des carcinomes mammaires dans l'unique laboratoire d'anatomie pathologique publique de la région. Il s'agissait d'une étude descriptive rétrospective des carcinomes mammaires diagnostiqués chez 116 malades dans notre laboratoire sur une période de 5 ans de Juillet 2010 à Juillet 2015. Notre étude a inclus 116 patientes. L'âge moyen était de 51 ans. La taille tumorale histologique moyenne était de 31 mm. Le diagnostic initial était posé sur pièce de tumorectomie dans 83% des cas. Le carcinome infiltrant de type non spécifique était le type histologique le plus fréquent. Le grade SBR III était majoritaire. L'invasion lympho-vasculaire était présente dans 33% des cas. Le curage axillaire était positif dans 72% des cas. Les récepteurs hormonaux étaient positifs dans 73% des cas. Les récepteurs de l'Her2-Neu étaient surexprimés dans 19% des cas. Le ki67 était ≥ 14% dans 38%. Le sous-type moléculaire le plus fréquent était le luminal A. Le carcinome mammaire dans la région du Cap Bon se caractérise par sa survenue à un âge jeune, son importante taille tumorale et la fréquence de facteurs histopronostiques péjoratifs. PMID:28450990

  13. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward

    A method of making a double layer capacitior includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodesmore » are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two arts of the capacitor case are conductive and function as the capacitor terminals.« less

  14. Long term flight electrodes

    NASA Technical Reports Server (NTRS)

    Mosier, B.

    1975-01-01

    The reproducibility, stability, and methods of preparation for the various types and forms of biomedical electrodes are discussed. A critical and selective compilation of information on biological and/or physiological electrodes is presented. A discussion of plant hydrocolloids, clays, hydrophyllic colloids, synthetic waxes, and acrylic polymers is included.

  15. Engineering and characterizing inverse tunneling magnetoresistance magnetic tunnel junctions with novel ferromagnetic electrodes

    NASA Astrophysics Data System (ADS)

    Xiang, Hua

    Magnetic tunnel junctions (MTJs) have attracted great interest for applications in read heads and nonvolatile magnetic random access memories. MTJs exhibit tunneling magnetoresistance (TMR), which is proportional to the spin polarization (SP) of ferromagnetic (FM) electrodes. This thesis describes the fabrication and characterization of inverse TMR MTJs with novel FM electrodes and tunnel barriers, including Fe3O4 and Fe4N electrodes and Ta2O5 tunnel barriers. Fe3O4 has been predicted to have perfect negative SP at the Fermi level, making it a promising FM electrode for inverse TMR MTJs. Two approaches were developed to grow epitaxial Fe3O 4 films on Si substrates, reactive sputtering and selective oxidation, and the physical properties were characterized. Epitaxial Fe3O 4 films with smooth surfaces were achieved using a TiN buffer and low temperature selective oxidation. Fe4N has also been predicted to have nearly perfect negative SP. Epitaxial Fe4N films were fabricated on Si substrates by reactive sputtering, and the magnetic properties and thermal stability were characterized. Fe4N is metastable with respect to decomposition into Fe and N 2. During room temperature air oxidation, an epitaxial Fe3O 4 layer formed on Fe4N surface, by incorporation of oxygen, decomposition of Fe4N, and release of N. We fabricated Fe4N/AlOx/Fe MTJs and found normal TMR for the as-prepared junction but inverse TMR with abnormal bias dependence after annealing. The TMR inversion is caused by an Fe3O4 layer at the Fe4N/AlO, interface. The abnormal bias dependence is caused by an imperfect Fe3O4/AlOx interface. Fe3O4 (or Fe4N)/Ta2O5/Fe MTJs show relatively low junction resistance and noisy TMR signals, due to the difficulty of preparing high quality Ta2O5 barriers. The effect of composition of bcc Co100-xFex electrodes on the TMR for AlOx-based MTJs has been studied. The TMR increases with x until it reaches a maximum of 66.7% at 28 at.% Fe, and then decreases. The reason for this TMR

  16. Layered electrode for electrochemical cells

    DOEpatents

    Swathirajan, Swathy; Mikhail, Youssef M.

    2001-01-01

    There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.

  17. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    PubMed

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Flow through electrode with automated calibration

    DOEpatents

    Szecsody, James E [Richland, WA; Williams, Mark D [Richland, WA; Vermeul, Vince R [Richland, WA

    2002-08-20

    The present invention is an improved automated flow through electrode liquid monitoring system. The automated system has a sample inlet to a sample pump, a sample outlet from the sample pump to at least one flow through electrode with a waste port. At least one computer controls the sample pump and records data from the at least one flow through electrode for a liquid sample. The improvement relies upon (a) at least one source of a calibration sample connected to (b) an injection valve connected to said sample outlet and connected to said source, said injection valve further connected to said at least one flow through electrode, wherein said injection valve is controlled by said computer to select between said liquid sample or said calibration sample. Advantages include improved accuracy because of more frequent calibrations, no additional labor for calibration, no need to remove the flow through electrode(s), and minimal interruption of sampling.

  19. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries

    DOE PAGES

    Wang, Yuesheng; Mu, Linqin; Liu, Jue; ...

    2015-08-06

    In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na 0.44MnO 2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na 0.66[Mn 0.66Ti 0.34]O 2. The tunnel-type structure of Na 0.44MnO 2 obtained for thismore » compound was confirmed by XRD and atomic-scale STEM/EELS. When cycled as positive electrode in full cells using NaTi 2(PO 4) 3/C as negative electrode in 1M Na 2SO 4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g -1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na 0.66[Mn 0.66Ti 0.34]O 2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.« less

  20. Dan Olis | NREL

    Science.gov Websites

    | 303-384-7398 Dan Olis is a mechanical engineer with experience in mechanical and systems design, plant for the U.S. Department of Defense, Department of the Interior, National Park Service, and the

  1. Nanofiber membrane-electrode-assembly and method of fabricating same

    DOEpatents

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2016-02-02

    In one aspect of the present invention, a fuel cell membrane-electrode-assembly (MEA) has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode. At least one of the anode electrode, the cathode electrode and the membrane is formed of electrospun nanofibers.

  2. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, T.R.; Chilko, R.J.

    1986-09-02

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

  3. Effect of Transcutaneous Electrode Temperature on Accuracy and Precision of Carbon Dioxide and Oxygen Measurements in the Preterm Infants.

    PubMed

    Jakubowicz, Jessica F; Bai, Shasha; Matlock, David N; Jones, Michelle L; Hu, Zhuopei; Proffitt, Betty; Courtney, Sherry E

    2018-05-01

    High electrode temperature during transcutaneous monitoring is associated with skin burns in extremely premature infants. We evaluated the accuracy and precision of CO 2 and O 2 measurements using lower transcutaneous electrode temperatures below 42°C. We enrolled 20 neonates. Two transcutaneous monitors were placed simultaneously on each neonate, with one electrode maintained at 42°C and the other randomized to temperatures of 38, 39, 40, 41, and 42°C. Arterial blood was collected twice at each temperature. At the time of arterial blood sampling, values for transcutaneously measured partial pressure of CO 2 (P tcCO 2 ) were not significantly different among test temperatures. There was no evidence of skin burning at any temperature. For P tcCO 2 , Bland-Altman analyses of all test temperatures versus 42°C showed good precision and low bias. Transcutaneously measured partial pressure of O 2 (P tcO 2 ) values trended arterial values but had large negative bias. Transcutaneous electrode temperatures as low as 38°C allow an assessment of P tcCO 2 as accurate as that with electrodes at 42°C. Copyright © 2018 by Daedalus Enterprises.

  4. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery.

    PubMed

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2013-03-13

    Employing electrolytes containing Bi(3+), bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). The influence of the Bi nanoparticles on the electrochemical performance of the VRFB is thoroughly investigated. It is confirmed that Bi is only present at the negative electrode and facilitates the redox reaction between V(II) and V(III). However, the Bi nanoparticles significantly improve the electrochemical performance of VRFB cells by enhancing the kinetics of the sluggish V(II)/V(III) redox reaction, especially under high power operation. The energy efficiency is increased by 11% at high current density (150 mA·cm(-2)) owing to faster charge transfer as compared with one without Bi. The results suggest that using Bi nanoparticles in place of noble metals offers great promise as high-performance electrodes for VRFB application.

  5. Means for limiting and ameliorating electrode shorting

    DOEpatents

    Van Konynenburg, Richard A.; Farmer, Joseph C.

    1999-01-01

    A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  6. Fabrication methods for low impedance lithium polymer electrodes

    DOEpatents

    Chern, T.S.; MacFadden, K.O.; Johnson, S.L.

    1997-12-16

    A process is described for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

  7. Fabrication methods for low impedance lithium polymer electrodes

    DOEpatents

    Chern, Terry Song-Hsing; MacFadden, Kenneth Orville; Johnson, Steven Lloyd

    1997-01-01

    A process for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

  8. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries.

    PubMed

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2016-01-07

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.

  9. Photoelectrochemical electrodes

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rembaum, A. (Inventor)

    1983-01-01

    The surface of a moderate band gap semiconductor such as p-type molybdenum sulfide is modified to contain an adherent film of charge mediating ionene polymer containing an electroactive unit such as bipyridimium. Electron transport between the electrode and the mediator film is favorable and photocorrosion and recombination processes are suppressed. Incorporation of particles of catalyst such as platinum within the film provides a reduction in overvoltage. The polymer film is readily deposited on the electrode surface and can be rendered stable by ionic or addition crosslinking. Catalyst can be predispersed in the polymer film or a salt can be impregnated into the film and reduced therein.

  10. Charged Water Droplets can Melt Metallic Electrodes

    NASA Astrophysics Data System (ADS)

    Elton, Eric; Rosenberg, Ethan; Ristenpart, William

    2016-11-01

    A water drop, when immersed in an insulating fluid, acquires charge when it contacts an energized electrode. Provided the electric field is strong enough, the drop will move away to the opposite electrode, acquire the opposite charge, and repeat the process, effectively 'bouncing' back and forth between the electrodes. A key implicit assumption, dating back to Maxwell, has been that the electrode remains unaltered by the charging process. Here we demonstrate that the electrode is physically deformed during each charge transfer event with an individual water droplet or other conducting object. We used optical, electron, and atomic force microscopy to characterize a variety of different metallic electrodes before and after drops were electrically bounced on them. Although the electrodes appear unchanged to the naked eye, the microscopy reveals that each charge transfer event yielded a crater approximately 1 micron wide and 50 nm deep, with the exact dimensions proportional to the applied field strength. We present evidence that the craters are formed by localized melting of the electrodes via Joule heating in the metal and concurrent dielectric breakdown of the surrounding fluid, suggesting that the electrode locally achieves temperatures exceeding 3400°C. Present address: Dept. Materials Sci. Engineering, MIT.

  11. Inexpensive and Disposable pH Electrodes

    ERIC Educational Resources Information Center

    Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily

    2010-01-01

    Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…

  12. Storage battery aspects of air-electrode research

    NASA Astrophysics Data System (ADS)

    Buzelli, E. S.; Berk, L. B.; Demczyk, B. G.; Zuckerbrod, D.

    The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary battery for an EV application is the development of a bifunctinal air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.

  13. Electric filter with movable belt electrode

    DOEpatents

    Bergman, W.

    1983-09-20

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched there between. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants. 4 figs.

  14. Electric filter with movable belt electrode

    DOEpatents

    Bergman, Werner

    1983-01-01

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched therebetween. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants.

  15. Sterilization by negative and positive DC plasma with a micro discharge gap at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Hua; Jiang, Lin-Xiu; Jiang, Yong-Rong; Zhu, Jian-Min; Chen, Zhen-Cheng

    2017-11-01

    A new needle-to-droplet electrode structure with a micro discharge gap (2 mm) was designed to achieve direct current (DC) discharge plasma in ambient air with the aim of using the plasma to sterilize liquids. Without using noble gases or an external air flow, we succeeded in generating both a negative and positive DC plasma at atmospheric pressure. The plasma was driven by a 0 to -20,000 V, 100 W DC power supply. A stainless steel needle with a tip diameter of ˜ 50μm and a 200-μL droplet of bacteria-containing liquid served as the electrodes. At atmospheric pressure and room temperature (23∘C), utilizing the negative DC plasma, the discharge time lasted 10 s; the results showed that the higher the discharge voltage, the more efficient the sterilization effect. Conversely, when we applied a voltage of -5.5 kV, we found that the sterilization effect was more efficient for longer discharge times. Our findings demonstrate that Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) can be killed in about 30 s. Our experiments show that our sterilization method required less time and was more efficient for positive than for negative DC plasma under the same conditions.

  16. Conducting polymer electrodes for visual prostheses.

    PubMed

    Green, R A; Devillaine, F; Dodds, C; Matteucci, P; Chen, S; Byrnes-Preston, P; Poole-Warren, L A; Lovell, N H; Suaning, G J

    2010-01-01

    Conducting polymers (CPs) have the potential to provide superior neural interfaces to conventional metal electrodes by introducing more efficient charge transfer across the same geometric area. In this study the conducting polymer poly(ethylene dioxythiophene) (PEDOT) was coated on platinum (Pt) microelectrode arrays. The in vitro electrical characteristics were assessed during biphasic stimulation regimes applied between electrode pairs. It was demonstrated that PEDOT could reduce the potential excursion at a Pt electrode interface by an order of magnitude. The charge injection limit of PEDOT was found to be 15 x larger than Pt. Additionally, PEDOT coated electrodes were acutely implanted in the suprachoroidal space of a cat retina. It was demonstrated that PEDOT coated electrodes also had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the vision cortex.

  17. Guided cracking of electrodes by stretching prism-patterned membrane electrode assemblies for high-performance fuel cells.

    PubMed

    Ahn, Chi-Yeong; Jang, Segeun; Cho, Yong-Hun; Choi, Jiwoo; Kim, Sungjun; Kim, Sang Moon; Sung, Yung-Eun; Choi, Mansoo

    2018-01-19

    Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane. An electrode with guided cracks was formed by stretching the catalyst-coated Nafion membrane. The morphological features of the stretched membrane electrode assembly (MEA) were investigated with respect to variation in the prism pattern dimension (prism pitches of 20 μm and 50 μm) and applied strain (S ≈ 0.5 and 1.0). The behaviour of water on the surface of the cracked electrode was examined using environmental scanning electron microscopy. Guided cracks in the electrode layer were shown to be efficient water reservoirs and liquid water passages. The MEAs with and without guided cracks were incorporated into fuel cells, and electrochemical measurements were conducted. As expected, all MEAs with guided cracks exhibited better performance than conventional MEAs, mainly because of the improved water transport.

  18. Storage battery aspects of air-electrode research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzzelli, E.S.; Berk, L.B.; Demczyk, B.G.

    1983-08-01

    The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary batterymore » for an EV application is the development of a bifunctional air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.« less

  19. Membrane-electrode assemblies for electrochemical cells

    DOEpatents

    Swathirajan, Sundararajan; Mikhail, Youssef M.

    1993-01-01

    A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  20. Method of making biocompatible electrodes

    DOEpatents

    Wollam, John S.

    1992-01-01

    A process of improving the sensing function of biocompatible electrodes and the product so made are disclosed. The process is designed to alter the surfaces of the electrodes at their tips to provide increased surface area and therefore decreased contact resistance at the electrode-tissue interface for increased sensitivity and essentially includes rendering the tips atomically clean by exposing them to bombardment by ions of an inert gas, depositing an adhesion layer on the cleaned tips, forming a hillocked layer on the adhesion layer by increasing the temperature of the tips, and applying a biocompatible coating on the hillocked layer. The resultant biocompatible electrode is characterized by improved sensitivity, minimum voltage requirement for organ stimulation and a longer battery life for the device in which it is employed.