Science.gov

Sample records for electrode optoelectronic tweezers

  1. Optoelectronic integrated tweezers

    NASA Astrophysics Data System (ADS)

    McGreehin, Simon J.; O'Faolin, Liam; Roberts, John; Krauss, Thomas; Dholakia, Kishan

    2004-10-01

    We demonstrate the optical manipulation of microscopic particles within a single optoelectronic device, whose footprint measures 2mm by 3mm, and which is realised entirely in planar technology. The device is fabricated in a GaAs/AlGaAs heterostructure, and consists of two facing banks of lasers that are separated by an etched channel. Particles within this channel experience the simple trapping force of two counter-propagating beams. The lasers operate at a wavelength of 980nm, and each gives up to 10mW of power in a single transverse optical mode. This power is sufficient to deflect, decelerate and hold a variety of micron-scale particles, including fluorescent polymer spheres, and cells in solution. The first results were obtained using planar etched facets, giving highly divergent beams. More elegant beam shapes can be produced by etching curved facets. The main attractions of this technology are its size and self-alignment properties: Many devices can fit into a fraction of the space occupied by a traditional tweezer set-up. Using photo-lithography, the alignment of the lasers is 'perfect', avoiding the difficulties experienced in traditional tweezers. The concept we demonstrate is a truly integrated optical tweezer that is mass-producible and does not require any complex instrumentation to operate.

  2. Cell rotation using optoelectronic tweezers.

    PubMed

    Liang, Yuan-Li; Huang, Yuan-Peng; Lu, Yen-Sheng; Hou, Max T; Yeh, J Andrew

    2010-01-01

    A cell rotation method by using optoelectronic tweezers (OET) is reported. The binary image of a typical OET device, whose light and dark sides act as two sets of parallel plates with different ac voltages, was used to create a rotating electric field. Its feasibility for application to electrorotation of cells was demonstrated by rotating Ramos and yeast cells in their pitch axes. The electrorotation by using OET devices is dependent on the medium and cells' electrical properties, the cells' positions, and the OET device's geometrical dimension, as well as the frequency of the electric field. PMID:21267435

  3. Optoelectronic tweezers for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Kremer, Clemens; Neale, Steven; Menachery, Anoop; Barrett, Mike; Cooper, Jonathan M.

    2012-01-01

    Optoelectronic tweezers (OET) allows the spatial patterning of electric fields through selected illumination of a photoconductive surface. This enables the manipulation of micro particles and cells by creating non-uniform electrical fields that then produce dielectrophoretic (DEP) forces. The DEP responses of cells differ and can produce negative or positive (repelled or attracted to areas of high electric field) forces. Therefore OET can be used to manipulate individual cells and separate different cell types from each other. Thus OET has many applications for medical diagnostics, demonstrated here with work towards diagnosing Human African Trypanosomiasis, also known as sleeping sickness.

  4. Single-sided lateral-field and phototransistor-based optoelectronic tweezers

    NASA Technical Reports Server (NTRS)

    Ohta, Aaron (Inventor); Chiou, Pei-Yu (Inventor); Hsu, Hsan-Yin (Inventor); Jamshidi, Arash (Inventor); Wu, Ming-Chiang (Inventor); Neale, Steven L. (Inventor)

    2011-01-01

    Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.

  5. Optoelectronic Tweezers for Microparticle and Cell Manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei-Yu (Inventor); Ohta, Aaron T. (Inventor)

    2014-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 micromillimeters or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  6. Optoelectronic tweezers for microparticle and cell manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei Yu (Inventor); Ohta, Aaron T. (Inventor)

    2009-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 .mu.m or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or groups of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  7. Optoelectronic Tweezers as a Tool for Parallel Single-Cell Manipulation and Stimulation

    PubMed Central

    Valley, Justin K.; Ohta, Aaron T.; Hsu, Hsan-Yin; Neale, Steven L.; Jamshidi, Arash; Wu, Ming C.

    2010-01-01

    Optoelectronic tweezers (OET) is a promising approach for the parallel manipulation of single cells for a variety of biological applications. By combining the manipulation capabilities of OET with other relevant biological techniques (such as cell lysis and electroporation), one can realize a true parallel, single-cell diagnostic and stimulation tool. Here, we demonstrate the utility of the OET device by integrating it onto single-chip systems capable of performing in-situ, electrode-based electroporation/lysis, individual cell, light-induced lysis, and light-induced electroporation. PMID:20543904

  8. Operational Regimes and Physics Present in Optoelectronic Tweezers

    PubMed Central

    Valley, Justin K.; Jamshidi, Arash; Ohta, Aaron T.; Hsu, Hsan-Yin; Wu, Ming C.

    2008-01-01

    Optoelectronic tweezers (OET) are a powerful light-based technique for the manipulation of micro- and nanoscopic particles. In addition to an optically patterned dielectrophoresis (DEP) force, other light-induced electrokinetic and thermal effects occur in the OET device. In this paper, we present a comprehensive theoretical and experimental investigation of various fluidic, optical, and electrical effects present during OET operation. These effects include DEP, light-induced ac electroosmosis, electrothermal flow, and buoyancy-driven flow. We present finite-element modeling of these effects to establish the dominant mode for a given set of device parameters and bias conditions. These results are confirmed experimentally and present a comprehensive outline of the operational regimes of the OET device. PMID:19079767

  9. Manipulating and assembling metallic beads with Optoelectronic Tweezers.

    PubMed

    Zhang, Shuailong; Juvert, Joan; Cooper, Jonathan M; Neale, Steven L

    2016-01-01

    Optoelectronic tweezers (OET) or light-patterned dielectrophoresis (DEP) has been developed as a micromanipulation technology for controlling micro- and nano-particles with applications such as cell sorting and studying cell communications. Additionally, the capability of moving small objects accurately and assembling them into arbitrary 2D patterns also makes OET an attractive technology for microfabrication applications. In this work, we demonstrated the use of OET to manipulate conductive silver-coated Poly(methyl methacrylate) (PMMA) microspheres (50 μm diameter) into tailored patterns. It was found that the microspheres could be moved at a max velocity of 3200 μm/s, corresponding to 4.2 nano-newton (10(-9) N) DEP force, and also could be positioned with high accuracy via this DEP force. The underlying mechanism for this strong DEP force is shown by our simulations to be caused by a significant increase of the electric field close to the particles, due to the interaction between the field and the silver shells coating the microspheres. The associated increase in electrical gradient causes DEP forces that are much stronger than any previously reported for an OET device, which facilitates manipulation of the metallic microspheres efficiently without compromise in positioning accuracy and is important for applications on electronic component assembling and circuit construction. PMID:27599445

  10. Manipulating and assembling metallic beads with Optoelectronic Tweezers

    PubMed Central

    Zhang, Shuailong; Juvert, Joan; Cooper, Jonathan M.; Neale, Steven L.

    2016-01-01

    Optoelectronic tweezers (OET) or light-patterned dielectrophoresis (DEP) has been developed as a micromanipulation technology for controlling micro- and nano-particles with applications such as cell sorting and studying cell communications. Additionally, the capability of moving small objects accurately and assembling them into arbitrary 2D patterns also makes OET an attractive technology for microfabrication applications. In this work, we demonstrated the use of OET to manipulate conductive silver-coated Poly(methyl methacrylate) (PMMA) microspheres (50 μm diameter) into tailored patterns. It was found that the microspheres could be moved at a max velocity of 3200 μm/s, corresponding to 4.2 nano-newton (10−9 N) DEP force, and also could be positioned with high accuracy via this DEP force. The underlying mechanism for this strong DEP force is shown by our simulations to be caused by a significant increase of the electric field close to the particles, due to the interaction between the field and the silver shells coating the microspheres. The associated increase in electrical gradient causes DEP forces that are much stronger than any previously reported for an OET device, which facilitates manipulation of the metallic microspheres efficiently without compromise in positioning accuracy and is important for applications on electronic component assembling and circuit construction. PMID:27599445

  11. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays.

    PubMed

    Zarowna-Dabrowska, Alicja; Neale, Steven L; Massoubre, David; McKendry, Jonathan; Rae, Bruce R; Henderson, Robert K; Rose, Mervyn J; Yin, Huabing; Cooper, Jonathan M; Gu, Erdan; Dawson, Martin D

    2011-01-31

    A novel, miniaturized optoelectronic tweezers (OET) system has been developed using a CMOS-controlled GaN micro-pixelated light emitting diode (LED) array as an integrated micro-light source. The micro-LED array offers spatio-temporal and intensity control of the emission pattern, enabling the creation of reconfigurable virtual electrodes to achieve OET. In order to analyse the mechanism responsible for particle manipulation in this OET system, the average particle velocity, electrical field and forces applied to the particles were characterized and simulated. The capability of this miniaturized OET system for manipulating and trapping multiple particles including polystyrene beads and live cells has been successfully demonstrated. PMID:21369093

  12. Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells.

    PubMed

    Jeorrett, Abigail H; Neale, Steven L; Massoubre, David; Gu, Erdan; Henderson, Robert K; Millington, Owain; Mathieson, Keith; Dawson, Martin D

    2014-01-27

    A compact optoelectronic tweezers system for combined cell manipulation and analysis is presented. CMOS-controlled gallium nitride micro-LED arrays are used to provide simultaneous spatio-temporal control of dielectrophoresis traps within an optoelectronic tweezers device and fluorescence imaging of contrasting dye labelled cells. This capability provides direct identification, selection and controlled interaction of single T-lymphocytes and dendritic cells. The trap strength and profile for two emission wavelengths of micro-LED array have been measured and a maximum trapping force of 13.1 and 7.6 pN was achieved for projected micro-LED devices emitting at λmax 520 and 450 nm, respectively. A potential application in biological research is demonstrated through the controlled interaction of live immune cells where there is potential for this method of OET to be implemented as a compact device. PMID:24515144

  13. Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform.

    PubMed

    Juvert, Joan; Zhang, Shuailong; Eddie, Iain; Mitchell, Colin J; Reed, Graham T; Wilkinson, James S; Kelly, Anthony; Neale, Steven L

    2016-08-01

    The integration of light sources on a photonic platform is a key aspect of the fabrication of self-contained photonic circuits with a small footprint that does not have a definitive solution yet. Several approaches are being actively researched for this purpose. In this work we propose optoelectronic tweezers for the manipulation and integration of light sources on a photonic platform and report the positional and angular accuracy of the micromanipulation of standard Fabry-Pérot InP semiconductor laser die. These lasers are over three orders of magnitude bigger in volume than any previously assembled with optofluidic techniques and the fact that they are industry standard lasers makes them significantly more useful than previously assembled microdisk lasers. We measure the accuracy to be 2.5 ± 1.4 µm and 1.4 ± 0.4° and conclude that optoelectronic tweezers are a promising technique for the micromanipulation and integration of optoelectronic components in general and semiconductor lasers in particular. PMID:27505781

  14. Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Nam, Seong-Won; Hwang, Hyundoo; Park, Sungsu; Park, Je-Kyun

    2008-10-01

    This paper describes a grayscale optoelectronic tweezers (OET) which allows adjustment of the electric field strength at each position of OET. A grayscale light image was used to pattern vertical electric field strength on an OET. As an electric field depends on the brightness at each point, the brighter light patterns generate the stronger electric field in the OET. Its feasibility for application to cell manipulation was demonstrated by aligning highly motile protozoan cells in vertical direction. Depending on the brightness of each pixel, the behaviors of aligned cells varied due to the different electric field strength to each cell.

  15. Optoelectronic tweezers for the measurement of the relative stiffness of erythrocytes

    NASA Astrophysics Data System (ADS)

    Neale, Steven L.; Mody, Nimesh; Selman, Colin; Cooper, Jonathan M.

    2012-10-01

    In this paper we describe the first use of Optoelectronic Tweezers (OET), an optically controlled micromanipulation method, to measure the relative stiffness of erythrocytes in mice. Cell stiffness is an important measure of cell health and in the case of erythrocytes, the most elastic cells in the body, an increase in cell stiffness can indicate pathologies such as type II diabetes mellitus or hypertension (high blood pressure). OET uses a photoconductive device to convert an optical pattern into and electrical pattern. The electrical fields will create a dipole within any polarisable particles in the device, such as cells, and non-uniformities of the field can be used to place unequal forces onto each side of the dipole thus moving the particle. In areas of the device where there are no field gradients, areas of constant illumination, the force on each side of the dipole will be equal, keeping the cell stationary, but as there are opposing forces on each side of the cell it will be stretched. The force each cell will experience will differ slightly so the stretching will depend on the cells polarisability as well as its stiffness. Because of this a relative stiffness rather than absolute stiffness is measured. We show that with standard conditions (20Vpp, 1.5MHz, 10mSm-1 medium conductivity) the cell's diameter changes by around 10% for healthy mouse erythrocytes and we show that due to the low light intensities required for OET, relative to conventional optical tweezers, multiple cells can be measured simultaneously.

  16. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

    NASA Astrophysics Data System (ADS)

    Yang, Yajia; Mao, Yufei; Shin, Kyeong-Sik; Chui, Chi On; Chiou, Pei-Yu

    2016-03-01

    Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT’s stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility.

  17. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

    PubMed Central

    Yang, Yajia; Mao, Yufei; Shin, Kyeong-Sik; Chui, Chi On; Chiou, Pei-Yu

    2016-01-01

    Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT’s stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility. PMID:26940301

  18. Transparent electrodes for organic optoelectronic devices: a review

    NASA Astrophysics Data System (ADS)

    Cao, Weiran; Li, Jian; Chen, Hongzheng; Xue, Jiangeng

    2014-01-01

    Transparent conductive electrodes are one of the essential components for organic optoelectronic devices, including photovoltaic cells and light-emitting diodes. Indium-tin oxide (ITO) is the most common transparent electrode in these devices due to its excellent optical and electrical properties. However, the manufacturing of ITO film requires precious raw materials and expensive processes, which limits their compatibility with mass production of large-area, low-cost devices. The optical/electrical properties of ITO are strongly dependent on the deposition processes and treatment conditions, whereas its brittleness and the potential damage to underlying films during deposition also present challenges for its use in flexible devices. Recently, several other transparent conductive materials, which have various degrees of success relative to commercial applications have been developed to address these issues. Starting from the basic properties of ITO and the effect of various ITO surface modification methods, here we review four different groups of materials, doped metal oxides, thin metals, conducting polymers, and nanomaterials (including carbon nanotubes, graphene, and metal nanowires), that have been reported as transparent electrodes in organic optoelectronic materials. Particular emphasis is given to their optical/electrical and other material properties, deposition techniques, and applications in organic optoelectronic devices.

  19. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    NASA Astrophysics Data System (ADS)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  20. Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics.

    PubMed

    Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan

    2015-01-01

    Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will be greatly demanded. Here, organics are introduced into dielectric-metal-dielectric structures to construct the transparent electrodes on rigid and flexible substrates. We show that organic-metal-organic (OMO) electrodes have excellent opto-electrical properties (sheet resistance of below 10 Ω sq(-1) at 85% transmission), mechanical flexibility, thermal and environmental stabilities. The OMO-based polymer photovoltaic cells show performance comparable to that of devices based on ITO electrodes. This OMO multilayer structure can therefore be used to produce transparent electrodes suitable for use in a wide range of optoelectronic devices. PMID:26014889

  1. Highly Conductive Transparent Organic Electrodes with Multilayer Structures for Rigid and Flexible Optoelectronics

    PubMed Central

    Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan

    2015-01-01

    Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will be greatly demanded. Here, organics are introduced into dielectric–metal–dielectric structures to construct the transparent electrodes on rigid and flexible substrates. We show that organic-metal-organic (OMO) electrodes have excellent opto-electrical properties (sheet resistance of below 10 Ω sq−1 at 85% transmission), mechanical flexibility, thermal and environmental stabilities. The OMO-based polymer photovoltaic cells show performance comparable to that of devices based on ITO electrodes. This OMO multilayer structure can therefore be used to produce transparent electrodes suitable for use in a wide range of optoelectronic devices. PMID:26014889

  2. Optoelectronic Tweezers Integrated with Lens-free Holographic Microscopy for Wide-field Interactive Cell and Particle Manipulation on a Chip

    PubMed Central

    Huang, Kuo-Wei; Su, Ting-Wei; Ozcan, Aydogan; Chiou, Pei-Yu

    2013-01-01

    We demonstrate an optoelectronic tweezer (OET) coupled to a lensfree holographic microscope for real-time interactive manipulation of cells and micro-particles over a large field-of-view (FOV). This integrated platform can record the holographic images of cells and particles over the entire active area of a CCD sensor array, perform digital image reconstruction to identify target cells, dynamically track the positions of cells and particles, and project light beams to trigger light-induced dielectrophoretic forces to pattern and sort cells on a chip. OET technology has been previously shown capable of performing parallel single cell manipulation over a large area. However, its throughput has been bottlenecked by the number of cells that can be imaged within the limited FOV of a conventional microscope objective lens. Integrating lensfree holographic imaging with OET solves this fundamental FOV barrier, while also creating a compact on-chip cell/particle manipulation platform. Using this unique platform, we have successfully demonstrated real-time interactive manipulation of thousands of single cells and micro-particles over an ultra-large area of e.g., 240 mm2 (i.e. 17.96 mm × 13.52 mm). PMID:23661233

  3. Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices.

    PubMed

    Kang, Saewon; Kim, Taehyo; Cho, Seungse; Lee, Youngoh; Choe, Ayoung; Walker, Bright; Ko, Seo-Jin; Kim, Jin Young; Ko, Hyunhyub

    2015-12-01

    Percolation networks of silver nanowires (AgNWs) are commonly used as transparent conductive electrodes (TCEs) for a variety of optoelectronic applications, but there have been no attempts to precisely control the percolation networks of AgNWs that critically affect the performances of TCEs. Here, we introduce a capillary printing technique to precisely control the NW alignment and the percolation behavior of AgNW networks. Notably, partially aligned AgNW networks exhibit a greatly lower percolation threshold, which leads to the substantial improvement of optical transmittance (96.7%) at a similar sheet resistance (19.5 Ω sq(-1)) as compared to random AgNW networks (92.9%, 20 Ω sq(-1)). Polymer light-emitting diodes (PLEDs) using aligned AgNW electrodes show a 30% enhanced maximum luminance (33068 cd m(-2)) compared to that with random AgNWs and a high luminance efficiency (14.25 cd A(-1)), which is the highest value reported so far using indium-free transparent electrodes for fluorescent PLEDs. In addition, polymer solar cells (PSCs) using aligned AgNW electrodes exhibit a power conversion efficiency (PCE) of 8.57%, the highest value ever reported to date for PSCs using AgNW electrodes. PMID:26540011

  4. Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode

    NASA Astrophysics Data System (ADS)

    Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon

    2015-09-01

    Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.

  5. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics

    NASA Astrophysics Data System (ADS)

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-01

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37-0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics.

  6. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics.

    PubMed

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-01

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37-0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics. PMID:26778621

  7. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics

    PubMed Central

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-01

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37–0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics. PMID:26778621

  8. Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Jones, Philip H.; Maragò, Onofrio M.; Volpe, Giovanni

    2015-12-01

    1. Introduction; Part I. Theory: 2. Ray optics; 3. Dipole approximation; 4. Optical beams and focusing; 5. Electromagnetic theory; 6. Computational methods; 7. Brownian motion; Part II. Practice: 8. Building an optical tweezers; 9. Data acquisition and optical tweezers calibration; 10. Photonic force microscope; 11. Wavefront engineering and holographic optical tweezers; 12. Advanced techniques; Part III. Applications: 13. Single molecule biophysics; 14. Cell biology; 15. Spectroscopy; 16. Optofluidics and lab on a chip; 17. Colloid science; 18. Microchemistry; 19. Aerosol science; 20. Statistical physics; 21. Nanothermodynamics; 22. Plasmonics; 23. Nanostructures; 24. Laser cooling and trapping of atoms; 25. Towards the quantum regime at the mesoscale; Index.

  9. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Lee, Donghwa; Lee, Hyungjin; Ahn, Yumi; Jeong, Youngjun; Lee, Dae-Young; Lee, Youngu

    2013-08-01

    A new AgNW-graphene hybrid transparent conducting electrode (TCE) was prepared by dry-transferring a chemical vapor deposition (CVD)-grown monolayer graphene onto a pristine AgNW TCE. The AgNW-graphene hybrid TCE exhibited excellent optical and electrical properties as well as mechanical flexibility. The AgNW-graphene hybrid TCE showed highly enhanced thermal oxidation and chemical stabilities because of the superior gas-barrier property of the graphene protection layer. Furthermore, the organic solar cells with the AgNW-graphene hybrid TCE showed excellent photovoltaic performance as well as superior long-term stability under ambient conditions.A new AgNW-graphene hybrid transparent conducting electrode (TCE) was prepared by dry-transferring a chemical vapor deposition (CVD)-grown monolayer graphene onto a pristine AgNW TCE. The AgNW-graphene hybrid TCE exhibited excellent optical and electrical properties as well as mechanical flexibility. The AgNW-graphene hybrid TCE showed highly enhanced thermal oxidation and chemical stabilities because of the superior gas-barrier property of the graphene protection layer. Furthermore, the organic solar cells with the AgNW-graphene hybrid TCE showed excellent photovoltaic performance as well as superior long-term stability under ambient conditions. Electronic supplementary information (ESI) available: Detailed electrical connection, mechanical flexibility, and chemical stability tests of the AgNW and AgNW-graphene hybrid TCEs are included. See DOI: 10.1039/c3nr02320f

  10. Interferometer Control of Optical Tweezers

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    This paper discusses progress in using spatial light modulators and interferometry to control the beam profile of an optical tweezers. The approach being developed is to use a spatial light modulator (SLM) to control the phase profile of the tweezers beam and to use a combination of the SLM and interferometry to control the intensity profile. The objective is to perform fine and calculable control of the moments and forces on a tip or tool to be used to manipulate and interrogate nanostructures. The performance of the SLM in generating multiple and independently controllable tweezers beams is also reported. Concurrent supporting research projects are mentioned and include tweezers beam scattering and neural-net processing of the interference patterns for control of the tweezers beams.

  11. Devil's lens optical tweezers.

    PubMed

    Pu, Jixiong; Jones, P H

    2015-04-01

    We demonstrate an optical tweezers using a laser beam on which is imprinted a focusing phase profile generated by a Devil's staircase fractal structure (Cantor set). We show that a beam shaped in this way is capable of stably trapping a variety of micron- and submicron-sized particles and calibrate the optical trap as a function of the control parameters of the fractal structure, and explain the observed variation as arising from radiation pressure exerted by unfocused parts of the beam in the region of the optical trap. Experimental results are complemented by calculation of the structure of the focus in the regime of high numerical aperture. PMID:25968658

  12. Optical tweezers on biaxial crystal

    NASA Astrophysics Data System (ADS)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.

    2009-10-01

    In this paper, we propose optical tweezers based on a biaxial crystal. To control the movement of opaque particles, we use the shift polarization interferometer. The results of experimental study of laser tweezers are shown. We demonstrates movement of a microparticle of toner using singular-optical trap, rotate a particle due to orbital momentum, conversion of two traps when changing the plane of polarizer transmission and converging of two traps.

  13. Nanowire Optoelectronics

    NASA Astrophysics Data System (ADS)

    Wang, Zhihuan; Nabet, Bahram

    2015-12-01

    Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs), lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in "volumetric modes,"which have so far been presented in terms of Fabry-Perot (FP), and helical resonance modes. We report on finite-difference timedomain (FDTD) simulations with the aim of identifying the dependence of these modes on geometry (length, width), tapering, shape (cylindrical, hexagonal), core-shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs) form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption) and downward transitions (emission) of light inNWs; rather, the electronic transition rates should be considered. We discuss this "rate management" scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs) that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  14. Optical Tweezer Assembly and Calibration

    NASA Technical Reports Server (NTRS)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and

  15. Optoelectronic device

    DOEpatents

    Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.

    2014-09-09

    The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.

  16. Undergraduate Construction of Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Hubbell, Lawrence

    2012-10-01

    I will present a poster on the construction of optical tweezers. This will demonstrate the full process one must go through when working on a research project. First I sifted through the internet for papers and information pertaining to the tweezers. Afterwards I discussed the budget with the lab manager. Next I made purchases, however some items, such as the sample mount, needed to be custom made. These I built in the machine shop. Once the tweezers were operational I spent some time ensuring that the mirrors and lenses were adjusted just right, so that the trap performed at full strength. Finally, I used video data of the Brownian motion of trapped silica microspheres to get a reasonable estimate of the trapping stiffness with such particles. As a general note, all of this was done with the intent of leaving the tweezers for future use by other undergraduates. Because of this extra effort was taken to ensure the tweezers were as safe to use as possible. For this reason a visible LASER was chosen over an infrared LASER, in addition, the LASER was oriented parallel to the surface of the table in order to avoid stray upwards beams.

  17. Plasmon nano-optical tweezers

    NASA Astrophysics Data System (ADS)

    Juan, Mathieu L.; Righini, Maurizio; Quidant, Romain

    2011-06-01

    Conventional optical tweezers, formed at the diffraction-limited focus of a laser beam, have become a powerful and flexible tool for manipulating micrometre-sized objects. Extending optical trapping down to the nanometre scale would open unprecedented opportunities in many fields of science, where such nano-optical tweezers would allow the ultra-accurate positioning of single nano-objects. Among the possible strategies, the ability of metallic nanostructures to control light at the subwavelength scale can be exploited to engineer such nano-optical traps. This Review summarizes the recent advances in the emerging field of plasmon-based optical trapping and discusses the details of plasmon tweezers along with their potential applications to bioscience and quantum optics.

  18. Coaxial atomic force microscope tweezers

    NASA Astrophysics Data System (ADS)

    Brown, K. A.; Aguilar, J. A.; Westervelt, R. M.

    2010-03-01

    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force versus applied voltage. We show that the coaxial AFM tweezers can perform three-dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.

  19. Optical tweezers technique and its applications

    NASA Astrophysics Data System (ADS)

    Guo, HongLian; Li, ZhiYuan

    2013-12-01

    Since their advent in the 1980s, optical tweezers have attracted more and more attention due to their unique non-contact and non-invasion characteristics and their wide applications in physics, biology, chemistry, medical science and nanoscience. In this paper, we introduce the basic principle, the history and typical applications of optical tweezers and review our recent experimental works on the development and application of optical tweezers technique. We will discuss in detail several technological issues, including high precision displacement and force measurement in single-trap and dual-trap optical tweezers, multi-trap optical tweezers with each trap independently and freely controlled by means of space light modulator, and incorporation of cylindrical vector optical beams to build diversified optical tweezers beyond the conventional Gaussian-beam optical tweezers. We will address the application of these optical tweezers techniques to study biophysical problems such as mechanical deformation of cell membrane and binding energy between plant microtubule and microtubule associated proteins. Finally we present application of the optical tweezers technique for trapping, transporting, and patterning of metallic nanoparticles, which can be harnessed to manipulate surface plasmon resonance properties of these nanoparticles.

  20. Fluorescence support in optical tweezers

    NASA Astrophysics Data System (ADS)

    Animas, J. G.; Arronte, M.; Flores, T.; Ponce, L.

    2013-11-01

    This paper presents the development of an installation for proves for characterization by fluorescence of micrometer and nanometer particles supported on the trapping and manipulation by optical trapping technique (optical tweezers). The system features an laser operating at 480 nm, CCD camera for image acquisition, Thor Labs micrometric table X, Y, Z for the movement of the sample and the trap in the visual field. The design includes the use of intensity modulated optical trap, with the option of being used in pulsed, opening up possibilities for the use of resonant phenomena optomechanical type for particle capture.

  1. Dynamical stabilisation in optical tweezers

    NASA Astrophysics Data System (ADS)

    Jones, Philip H.; Richards, Christopher J.; Smart, Thomas J.; Cubero, David

    2015-03-01

    We present a study of dynamical stabilisation of an overdamped, microscopic pendulum realised using optical tweezers. We first derive an analytical expression for the equilibrium dynamically stabilised pendulum position in a regime of high damping and high modulation frequency of the pendulum pivot. This model implies a threshold behavior for stabilisation to occur, and a continuous evolution of the angular position which, unlike the underdamped case, does not reach the fully inverted position. We then test the theoretical predictions using an optically trapped microparticle subject to fluid drag force, finding reasonable agreement with the threshold and equilibrium behavior at high modulation amplitude. Analytical theory and experiments are complemented by Brownian motion simulations.

  2. Nanoscale Optoelectronic Photosynthetic Devices

    NASA Astrophysics Data System (ADS)

    Greenbaum, Elias; Lee, Ida; Guillorn, Michael; Lee, James W.; Simpson, Michael L.

    2001-03-01

    This presentation provides an overview and recent progress in the Oak Ridge National Laboratory research program in molecular electronics and green plant photosynthesis. The photosynthetic reaction center is a nanoscale molecular diode and photovoltaic device. The key thrust of our research program is the construction of molecular electronic devices from these nanoscale structures. Progress in this multidisciplinary research program has been demonstrated by direct electrical contact of emergent electrons with the Photosystem I (PS I) reaction center by nanoparticle precipitation. Demonstration of stable diode properties of isolated reaction centers combined with the ability to orient PS I by self-assembly on a planar surface, makes this structure a good building block for 2-D and potentially 3-D devices. Metallization of isolated PS I does not alter their fundamental photophysical properties and they can be bonded to metal surfaces. We report here the first measurement of photovoltage from single PS I reaction centers. Working at the Cornell University National Nanofabrication Facility, we have constructed sets of dissimilar metal electrodes separated by distances as small as 6 nm. We plan to use these structures to make electrical contact to both ends of oriented PSI reaction centers and thereby realize biomolecular logic circuits. Potential applications of PSI reaction centers for optoelectronic applications as well as molecular logic device construction will be discussed.

  3. Optical tweezers to study viruses.

    PubMed

    Arias-Gonzalez, J Ricardo

    2013-01-01

    A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. Recently, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods and its application to the study of viruses and viral molecules. PMID:23737055

  4. Quantum limited particle sensing in optical tweezers

    SciTech Connect

    Tay, J.W.; Hsu, Magnus T. L.; Bowen, Warwick P.

    2009-12-15

    Particle sensing in optical tweezers systems provides information on the position, velocity, and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper, we show that quadrant detection is nonoptimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacies of both quadrant and spatial homodyne detection are shown. We demonstrate that 1 order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.

  5. Experimental Optoelectronic Associative Memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1992-01-01

    Optoelectronic associative memory responds to input image by displaying one of M remembered images. Which image to display determined by optoelectronic analog computation of resemblance between input image and each remembered image. Does not rely on precomputation and storage of outer-product synapse matrix. Size of memory needed to store and process images reduced.

  6. Characterizing conical refraction optical tweezers.

    PubMed

    McDonald, C; McDougall, C; Rafailov, E; McGloin, D

    2014-12-01

    Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focusing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots, and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focusing on the trap stiffness, and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot, but benefit from rotational control. PMID:25490654

  7. Optical tweezers based on polarization interferometer

    NASA Astrophysics Data System (ADS)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.; Dominikov, Mykola M.

    2013-06-01

    In this paper, we propose optical tweezers based on a biaxial crystal. To control the movement of opaque particles, we use the shift polarization interferometer. The results of experimental study of laser tweezers are shown. We demonstrates movement of a microparticle of toner using singular-optical trap, rotate a particle due to orbital momentum, conversion of two traps when changing the plane of polarizer transmission and converging of two traps.

  8. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  9. Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications.

    PubMed

    Yu, Hyeonggeun; Dong, Zhipeng; Guo, Jing; Kim, Doyoung; So, Franky

    2016-04-27

    Direct integration of a vertical organic field-effect transistor (VOFET) and an optoelectronic device offers a single stacked, low power optoelectronic VOFET with high aperture ratios. However, a functional optoelectronic VOFET could not be realized because of the difficulty in fabricating transparent source and gate electrodes. Here, we report a VOFET with an on/off ratio up to 10(5) as well as output current saturation by fabricating a transparent gate capacitor consisting of a perforated indium tin oxide (ITO) source electrode, HfO2 gate dielectric, and ITO gate electrode. Effects of the pore size and the pore depth within the porous ITO electrodes on the on/off characteristic of a VOFET are systematically explained in this work. By combining a phosphorescent organic light-emitting diode with an optimized VOFET structure, a vertical organic light-emitting transistor with a luminance on/off ratio of 10(4) can be fabricated. PMID:27082815

  10. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic...

  11. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic...

  12. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic...

  13. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic...

  14. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic...

  15. Magnetic Tweezers for the Measurement of Twist and Torque

    PubMed Central

    Lipfert, Jan; Lee, Mina; Ordu, Orkide; Kerssemakers, Jacob W. J.; Dekker, Nynke H.

    2014-01-01

    Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a “conventional” magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the “conventional” magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument. PMID:24894412

  16. Tomographic phase microscopy using optical tweezers

    NASA Astrophysics Data System (ADS)

    Habaza, Mor; Gilboa, Barak; Roichman, Yael; Shaked, Natan T.

    2015-07-01

    We review our technique for tomographic phase microscopy with optical tweezers [1]. This tomographic phase microscopy approach enables full 3-D refractive-index reconstruction. Tomographic phase microscopy measures quantitatively the 3- D distribution of refractive-index in biological cells. We integrated our external interferometric module with holographic optical tweezers for obtaining quantitative phase maps of biological samples from a wide range of angles. The close-tocommon- path, off-axis interferometric system enables a full-rotation tomographic acquisition of a single cell using holographic optical tweezers for trapping and manipulating with a desired array of traps, while acquiring phase information of a single cell from all different angles and maintaining the native surrounding medium. We experimentally demonstrated two reconstruction algorithms: the filtered back-projection method and the Fourier diffraction method for 3-D refractive index imaging of yeast cells.

  17. Designing single-beam multitrapping acoustical tweezers.

    PubMed

    Silva, Glauber T; Baggio, André L

    2015-02-01

    The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focused transducer operating at 1 MHz in water medium. The ultrasound beam exerts a radiation force that may tweeze suspended microparticles in the medium. Simulations show that the acoustical tweezer can simultaneously trap microparticles in the pre-focal zone along the beam axis, i.e. between the transducer surface and its geometric focus. As acoustical tweezers are fast becoming a key instrument in microparticle handling, the development of acoustic multitrapping concept may turn into a useful tool in engineering these devices. PMID:25304994

  18. Fully dynamic multiple-beam optical tweezers.

    PubMed

    Eriksen, Rene; Daria, Vincent; Gluckstad, Jesper

    2002-07-15

    We demonstrate a technique for obtaining fully dynamic multiple-beam optical tweezers using the generalized phase contrast (GPC) method and a phase-only spatial light modulator (SLM). The GPC method facilitates the direct transformation of an input phase pattern to an array of high-intensity beams, which can function as efficient multiple optical traps. This straightforward process enables an adjustable number of traps and realtime control of the position, size, shape and intensity of each individual tweezer-beam in arbitrary arrays by encoding the appropriate phase pattern on the SLM. Experimental results show trapping and dynamic manipulation of multiple micro-spheres in a liquid solution. PMID:19436404

  19. Optoelectronic Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R. F.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reber, Cathleen A.; Reysen, Bill H.

    2004-10-05

    An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.

  20. Optoelectronic packaging: A review

    SciTech Connect

    Carson, R.F.

    1993-09-01

    Optoelectronics and photonics hold great potential for high data-rate communication and computing. Wide using in computing applications was limited first by device technologies and now suffers due to the need for high-precision, mass-produced packaging. The use of phontons as a medium of communication and control implies a unique set of packaging constraints that was not present in traditional telecommunications applications. The state-of-the-art in optoelectronic packaging is now driven by microelectric techniques that have potential for low cost and high volume manufacturing.

  1. A force calibration standard for magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Dulin, David; Cnossen, Jelmer; Köber, Mariana; van Oene, Maarten M.; Ordu, Orkide; Berghuis, Bojk A.; Hensgens, Toivo; Lipfert, Jan; Dekker, Nynke H.

    2014-12-01

    To study the behavior of biological macromolecules and enzymatic reactions under force, advances in single-molecule force spectroscopy have proven instrumental. Magnetic tweezers form one of the most powerful of these techniques, due to their overall simplicity, non-invasive character, potential for high throughput measurements, and large force range. Drawbacks of magnetic tweezers, however, are that accurate determination of the applied forces can be challenging for short biomolecules at high forces and very time-consuming for long tethers at low forces below ˜1 piconewton. Here, we address these drawbacks by presenting a calibration standard for magnetic tweezers consisting of measured forces for four magnet configurations. Each such configuration is calibrated for two commonly employed commercially available magnetic microspheres. We calculate forces in both time and spectral domains by analyzing bead fluctuations. The resulting calibration curves, validated through the use of different algorithms that yield close agreement in their determination of the applied forces, span a range from 100 piconewtons down to tens of femtonewtons. These generalized force calibrations will serve as a convenient resource for magnetic tweezers users and diminish variations between different experimental configurations or laboratories.

  2. Optical tweezers study life under tension

    NASA Astrophysics Data System (ADS)

    Fazal, Furqan M.; Block, Steven M.

    2011-06-01

    Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.

  3. Picosecond optoelectronic devices

    SciTech Connect

    Lee, C.L.

    1984-01-01

    Ever since the invention of picosecond lasers, scientists and electronic engineers have been dreaming of inventing electronic devices that can record in real time the physical and electronic events that take place on picosecond time scales. With the exception of the expensive streak camera, this dream has been largely unfullfilled. Today, a real-time oscilloscope with picosecond time resolution is still not available. To fill the need for even better time resolution, researchers have turned to optical pulses and thus a hybrid technology has emerged-picosecond optoelectronics. This technology, based on bulk photoconductors, has had a slow start. However, because of the simplicity, scaleability, and jitterfree nature of the devices, the technology has recently experienced a rapid growth. This volume reviews the major developments in the field of picosecond optoelectronics over the past decade.

  4. Towards optoelectronic urea biosensors.

    PubMed

    Pokrzywnicka, Marta; Koncki, Robert; Tymecki, Łukasz

    2015-03-01

    Integration of immobilized enzymes with light-emitting diodes (LEDs) leads to the development of optoelectronic enzyme-based biosensors. In this work, urease, used as a model enzyme, immobilized in the form of an open-tubular microbioreactor or biosensing membrane that has been integrated with two red LEDs. It forms complete, fiberless, miniaturized, and extremely economic biooptoelectronic devices useful for nonstationary measurements under flow analysis conditions. Both enzyme-based biodevices, operating according to the paired emitter detector diode (PEDD) principle, allow relatively fast, highly sensitive, and well-reproducible urea detection in the millimolar range of concentrations. Potential analytical applications of the developed urea bioPEDDs have been announced. Both presented constructions will be easily adapted for the development of other optoelectronic biosensors exploring various enzyme-based schemes of biodetection. PMID:25619983

  5. Complexation of Optoelectronic Systems

    NASA Astrophysics Data System (ADS)

    Boreisho, A. S.; Il‧in, M. Yu.; Konyaev, M. A.; Mikhailenko, A. S.; Morozov, A. V.; Strakhov, S. Yu.

    2016-06-01

    Problems of increasing the efficiency and the functionality of complex optoelectronic systems for monitoring real atmospheric conditions and of their use are discussed. It is shown by the example of a meteorological complex comprising an infrared wind-sensing lidar and an X-range Doppler radar that the complexation of probing systems working in different electromagnetic-radiation ranges opens up new opportunities for determining the meteorological parameters of a turbulent atmosphere and investigating the interaction of radiation with it.

  6. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  7. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers

    SciTech Connect

    Courtney, Charles R. P.; Demore, Christine E. M.; Wu, Hongxiao; Cochran, Sandy; Grinenko, Alon; Wilcox, Paul D.; Drinkwater, Bruce W.

    2014-04-14

    An electronically controlled acoustic tweezer was used to demonstrate two acoustic manipulation phenomena: superposition of Bessel functions to allow independent manipulation of multiple particles and the use of higher-order Bessel functions to trap particles in larger regions than is possible with first-order traps. The acoustic tweezers consist of a circular 64-element ultrasonic array operating at 2.35 MHz which generates ultrasonic pressure fields in a millimeter-scale fluid-filled chamber. The manipulation capabilities were demonstrated experimentally with 45 and 90-μm-diameter polystyrene spheres. These capabilities bring the dexterity of acoustic tweezers substantially closer to that of optical tweezers.

  8. Exploring unconventional capabilities of holographic tweezers

    NASA Astrophysics Data System (ADS)

    Hernandez, R. J.; Pagliusi, P.; Provenzano, C.; Cipparrone, G.

    2011-06-01

    We report an investigation of manipulation and trapping capabilities of polarization holographic tweezers. A polarization gradient connected with a modulation of the ellipticity shows an optical force related to the polarization of the light that can influence optically isotropic particles. While in the case of birefringent particles an unconventional trapping in circularly polarized fringes is observed. A liquid crystal emulsion has been adopted to investigate the capabilities of the holographic tweezers. The unusual trapping observed for rotating bipolar nematic droplets has suggested the involvement of the lift hydrodynamic force responsible of the Magnus effect, originating from the peculiar optical force field. We show that the Magnus force which is ignored in the common approach can contribute to unconventional optohydrodynamic trapping and manipulation.

  9. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    PubMed Central

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  10. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  11. The Smallest Tweezers in the World

    ERIC Educational Resources Information Center

    Lewalle, Alexandre

    2008-01-01

    A pair of fine tweezers and a steady hand may well be enough to pick up a grain of sand, but what would you use to hold something hundreds of times smaller still, the size of only one micron? The answer is to use a device that is not mechanical in nature but that relies instead on the tiny forces that light exerts on small particles: "optical…

  12. Tweezers for Chimeras in Small Networks

    NASA Astrophysics Data System (ADS)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Wolfrum, Matthias; Schöll, Eckehard

    2016-03-01

    We propose a control scheme which can stabilize and fix the position of chimera states in small networks. Chimeras consist of coexisting domains of spatially coherent and incoherent dynamics in systems of nonlocally coupled identical oscillators. Chimera states are generally difficult to observe in small networks due to their short lifetime and erratic drifting of the spatial position of the incoherent domain. The control scheme, like a tweezer, might be useful in experiments, where usually only small networks can be realized.

  13. The Smallest Tweezers in the World

    NASA Astrophysics Data System (ADS)

    Lewalle, Alexandre

    2008-11-01

    A pair of fine tweezers and a steady hand may well be enough to pick up a grain of sand, but what would you use to hold something hundreds of times smaller still, the size of only one micron? The answer is to use a device that is not mechanical in nature but that relies instead on the tiny forces that light exerts on small particles: "optical tweezers." In recent years, this technique has become central to nanotechnology for the manipulation of small particles, even individual molecules. It is also an ideal illustration of how classroom physics is applied to cutting-edge research, combining concepts such as the vector nature of momentum and force, Newton's laws, optics, the wave-particle duality of light, and thermodynamics. The physics behind optical tweezers has many layers of complexity, but it can be reduced to a basic principle: the conservation of momentum. This paper guides the reader through a much simplified demonstration of this "tweezing effect" using a question-answer approach, leaving the reader with the choice to treat each step as a problem exercise.

  14. Nanoprobes with optical tweezers for biological applications

    NASA Astrophysics Data System (ADS)

    Kendrick, Mark; McIntyre, David; Ostroverkhova, Oksana; Bychkova, Valeriya; Shvarev, Alexey

    2010-03-01

    We explore the use of sub-micron sized particles in optical tweezer traps as nanoprobes in microfluidic devices and biological cells. For applications that require high spatial resolution, the ability to suppress the particle's natural Brownian motion down to the nanometer or sub-nanometer scales is essential. However, the optical tweezer force scales with the volume of the particle making it difficult to confine and manipulate nanometer sized particles with high precision. To overcome this difficulty, we explore the possibility of using optically resonant particles as nanoprobes. The resonant particles should experience an increase in the optical tweezer force at wavelengths on the red side of the absorption resonance, resulting in a tighter confinement. We explore this phenomenon by measuring the trapping force acting on resonant particles (dye-filled polymeric and metallic particles) as a function of trapping laser wavelength and discuss the feasibility of using them as a high spatial resolution probe. In addition, we use similar particles as optically trapped nanoprobes to monitor temporal and spatial differences in an inhomogeneous environment; for example, we have developed pH-sensitive fluorescent nanoprobes for biological applications.

  15. Collisions of Biological Objects Using Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Helmerson, K.; Davies, B. J.; Kishore, R.; Phillips, W. D.; Mammen, M.; Choi, S.-K.; Whitesides, G. M.

    1997-04-01

    We have developed a new functional assay in which two mesoscale particles are caused to collide using two independently controlled optical tweezers. This assay involved measurement of the probability of adhesion on collision. Since the components of the solution, the orientation, and the relative collision velocity are all under the user's control, this assay can mimic closely a range of types of collisions involving biological objects. We illustrate the utility of our assay by evaluating the probability of adhesion of a single erythrocyte to a virus-coated microsphere, in the presence of a sialic acid-bearing inhibitor(M. Mammen, et al., Chemistry and Biology 3: 757-63 (1996).). This probability as a function of the concentration of the inhibitor is a measure of the effectiveness of the inhibitor; most of the inhibition constants obtained using optical tweezers agree well with those obtained from other techniques. Inhibition constants for the most effective inhibitors could not be measured using other types of assays; however, they were readily obtained using our optical tweezers based assay. The best inhibitor is the most potent inhibitor of attachment of influenza virus to erythrocytes ever measured.

  16. Digital holographic microscopy combined with optical tweezers

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.

    2011-02-01

    While optical tweezers have been widely used for the manipulation and organization of microscopic objects in three dimensions, observing the manipulated objects along axial direction has been quite challenging. In order to visualize organization and orientation of objects along axial direction, we report development of a Digital holographic microscopy combined with optical tweezers. Digital holography is achieved by use of a modified Mach-Zehnder interferometer with digital recording of interference pattern of the reference and sample laser beams by use of a single CCD camera. In this method, quantitative phase information is retrieved dynamically with high temporal resolution, only limited by frame rate of the CCD. Digital focusing, phase-unwrapping as well as online analysis and display of the quantitative phase images was performed on a software developed on LabView platform. Since phase changes observed in DHOT is very sensitive to optical thickness of trapped volume, estimation of number of particles trapped in the axial direction as well as orientation of non-spherical objects could be achieved with high precision. Since in diseases such as malaria and diabetics, change in refractive index of red blood cells occurs, this system can be employed to map such disease-specific changes in biological samples upon immobilization with optical tweezers.

  17. Probing the Casimir force with optical tweezers

    NASA Astrophysics Data System (ADS)

    Ether, D. S., Jr.; Pires, L. B.; Umrath, S.; Martinez, D.; Ayala, Y.; Pontes, B.; Araújo, G. R. de S.; Frases, S.; Ingold, G.-L.; Rosa, F. S. S.; Viana, N. B.; Nussenzveig, H. M.; Neto, P. A. Maia

    2015-11-01

    We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for revealing unprecedented features associated to the non-trivial role of the spherical curvatures. For a proof of concept, we measure femtonewton double-layer forces between polystyrene microspheres at distances above 400 nm by employing very soft optical tweezers, with stiffness of the order of fractions of a fN/nm. As a future application, we propose to tune the Casimir interaction between a metallic and a polystyrene microsphere in saline solution from attraction to repulsion by varying the salt concentration. With those materials, the screened Casimir interaction may have a larger magnitude than the unscreened one. This line of investigation has the potential for bringing together different fields including classical and quantum optics, statistical physics and colloid science, while paving the way for novel quantitative applications of optical tweezers in cell and molecular biology.

  18. Quantitative characterization for dielectrophoretic behavior of biological cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Park, In Soo; Hee Park, Se; Woo Lee, Sang; Sung Yoon, Dae; Kim, Beop-Min

    2014-02-01

    We report a method to precisely quantify dielectrophoretic (DEP) forces and cutoff frequencies (fc) of viable and nonviable yeast cells. The method consists of a two-step process in which generated DEP forces act upon a cell through a micro-electrode device, followed by direct measurement of DEP forces using optical tweezers. DEP behaviors of viable and nonviable yeast cells are monitored as a function of AC frequency. We believe that the proposed method can be used as a powerful platform for cell-based assays to characterize the DEP behavior of various cell types including cancer and normal cells.

  19. Broadband light based optoelectric tweezers

    NASA Astrophysics Data System (ADS)

    Mishra, Avanish; Clayton, Katherine; Wereley, Steve

    2015-11-01

    Trapping, sorting and transport of particles are fundamental operations in microfluidic platforms. However, very few methods exist that can dynamically trap and manipulate particles with high spatial resolution and accuracy. Recently, a new set of methods have emerged that can trap and sort particles by optically controlling electrokinetic effects. Rapid Electrokinetic Patterning (REP) is such an emerging optoelectric technique. It utilizes a laser activated electrothermal (ET) vortex and particle-electrode interactions for trapping particles. Trapped particles can be translated by optically steering the laser or by moving the trapping chamber. Previously demonstrated applications of REP have utilized a 1064 nm infrared laser, integrated in an inverted microscope, to create the necessary temperature rise for producing the ET flow. Use of an external laser for REP trapping is expensive and time intensive to integrate, making it difficult to design a portable REP system. Using experiments and simulations, we show that a non-coherent incandescent broadband light source can be used for REP trapping and manipulation. This allows for a microscope with a broadband lamp to be used for REP trapping without integrating an external laser.

  20. Dielectrophoretic Tweezers and Micropost Arrays for Cell and Particle Manipulation

    NASA Astrophysics Data System (ADS)

    Hunt, Tom; Lee, Hakho; Westervelt, Robert

    2005-03-01

    We describe a micromanipulator system that uses dielectrophoresis to capture and release cells or particles. Dielectrophoretic tweezers are capable of applying hundreds of piconewtons of force to micron scale objects suspended in liquid and precisely positioning objects in three dimensions. Metal electrodes on either side of a sharp pipette tip provide the electric field gradient necessary. This manipulation technique compliments our micropost array (1) for the manipulation of particles in a microfluidic system. We will discuss applications of dielectrophoresis using hybrid integrated circuit/microfluidic devices (2) with applications that include cell sorting and tissue assembly. This work made possible by a gift from Phillip Morris and the NSEC NSF grant PHY-0117795. 1. T. P. Hunt H. Lee and R. M. Westervelt, ``Addressable micropost array for the dielectrophoretic manipulation of particles in fluid," Appl. Phys. Lett. In Press. 2. H. Lee, et Al. ``An IC/ microfluidic hybrid microsystem for 2D magnetic manipulation of individual biological cells," To appear in IEEE ISSCC, Feb. 2005.

  1. Active laser tweezers microrheometry of microbial biofilms

    NASA Astrophysics Data System (ADS)

    Osterman, N.; Slapar, V.; Boric, M.; Stopar, D.; Babič, D.; Poberaj, I.

    2010-08-01

    Microbial biofilms are present on biotic and abiotic surfaces and have a significant impact on many fields in industry, health care and technology. Thus, a better understanding of processes that lead to development of biofilms and their chemical and mechanical properties is needed. In the following paper we report the results of active laser tweezers microrheology study of optically inhomogeneous extracellular matrix secreted by Visbrio sp. bacteria. One particle and two particle active microrheology were used in experiments. Both methods exhibited high enough sensitivity to detect viscosity changes at early stages of bacterial growth. We also showed that both methods can be used in mature samples where optical inhomogeneity becomes significant.

  2. Reusable acoustic tweezers for disposable devices

    PubMed Central

    Guo, Feng; Xie, Yuliang; Li, Sixing; Lata, James; Ren, Liqiang; Mao, Zhangming; Ren, Baiyang; Wu, Mengxi; Ozcelik, Adem

    2015-01-01

    We demonstrate acoustic tweezers used for disposable devices. Rather than forming an acoustic resonance, we locally transmitted standing surface acoustic waves into a removable, independent polydimethylsiloxane (PDMS)-glass hybridized microfluidic superstrate device for micromanipulation. By configuring and regulating the displacement nodes on a piezoelectric substrate, cells and particles were effectively patterned and transported into said superstrate, accordingly. With the label-free and contactless nature of acoustic waves, the presented technology could offer a simple, accurate, low-cost, biocompatible, and disposable method for applications in the fields of point-of-care diagnostics and fundamental biomedical studies. PMID:26507411

  3. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  4. Materials for optoelectronic devices

    DOEpatents

    Shiang, Joseph John; Smigelski, Jr., Paul Michael

    2015-01-27

    Energy efficient optoelectronic devices include an electroluminescent layer containing a polymer made up of structural units of formula I and II; ##STR00001## wherein R.sup.1 and R.sup.2 are independently C.sub.22-44 hydrocarbyl, C.sub.22-44 hydrocarbyl containing one or more S, N, O, P, or Si atoms, oxaalkylaryl, or a combination thereof; R.sup.3 and R.sup.4 are independently H, C.sub.1-44 hydrocarbyl or C.sub.1-44 hydrocarbyl containing one or more S, N, O, P, or Si atoms, or R.sup.3 and R.sup.4, taken together, form a C.sub.2-10 monocyclic or bicyclic ring containing up to three S, N, O, P, or Si heteroatoms; and X is S, Se, or a combination thereof.

  5. Multifrequency optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Jiang, Yang; Liang, Jianhui; Bai, Guangfu; Hu, Lin; Cai, Shaohong; Li, Hongxia; Shan, Yuanyuan; Ma, Chuang

    2014-11-01

    We propose a simple and cost-effective multifrequency optoelectronic oscillator (OEO) which is able to simultaneously generate two or more independent microwave signals by adding parallel filtering branches in the feedback loop. In the experimental demonstration, two signals with frequencies of 20 and 9 GHz are successfully generated. Compared with a conventional OEO, the generated signals have no additional noise and do not interfere with each other. The side-mode suppression by the optical dual-loop configuration is effective for both channels. The measured side-mode suppression ratios are larger than 65 dB, and the phase noises at a 10-kHz frequency offset are -108 and -113 dBc/Hz for 20 and 9-GHz signals, respectively.

  6. A compact holographic optical tweezers instrument

    NASA Astrophysics Data System (ADS)

    Gibson, G. M.; Bowman, R. W.; Linnenberger, A.; Dienerowitz, M.; Phillips, D. B.; Carberry, D. M.; Miles, M. J.; Padgett, M. J.

    2012-11-01

    Holographic optical tweezers have found many applications including the construction of complex micron-scale 3D structures and the control of tools and probes for position, force, and viscosity measurement. We have developed a compact, stable, holographic optical tweezers instrument which can be easily transported and is compatible with a wide range of microscopy techniques, making it a valuable tool for collaborative research. The instrument measures approximately 30×30×35 cm and is designed around a custom inverted microscope, incorporating a fibre laser operating at 1070 nm. We designed the control software to be easily accessible for the non-specialist, and have further improved its ease of use with a multi-touch iPad interface. A high-speed camera allows multiple trapped objects to be tracked simultaneously. We demonstrate that the compact instrument is stable to 0.5 nm for a 10 s measurement time by plotting the Allan variance of the measured position of a trapped 2 μm silica bead. We also present a range of objects that have been successfully manipulated.

  7. Optical tweezers calibration with Bayesian inference

    NASA Astrophysics Data System (ADS)

    Türkcan, Silvan; Richly, Maximilian U.; Le Gall, Antoine; Fiszman, Nicolas; Masson, Jean-Baptiste; Westbrook, Nathalie; Perronet, Karen; Alexandrou, Antigoni

    2014-09-01

    We present a new method for calibrating an optical-tweezer setup that is based on Bayesian inference1. This method employs an algorithm previously used to analyze the confined trajectories of receptors within lipid rafts2,3. The main advantages of this method are that it does not require input parameters and is insensitive to systematic errors like the drift of the setup. Additionally, it exploits a much larger amount of the information stored in the recorded bead trajectory than standard calibration approaches. The additional information can be used to detect deviations from the perfect harmonic potential or detect environmental influences on the bead. The algorithm infers the diffusion coefficient and the potential felt by a trapped bead, and only requires the bead trajectory as input. We demonstrate that this method outperforms the equipartition method and the power-spectrum method in input information required (bead radius and trajectory length) and in output accuracy. Furthermore, by inferring a higher order potential our method can reveal deviations from the assumed second-order potential. More generally, this method can also be used for magnetic-tweezer calibration.

  8. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  9. Quantitative Modeling and Optimization of Magnetic Tweezers

    PubMed Central

    Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H.

    2009-01-01

    Abstract Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply ≥40 pN stretching forces on ≈1-μm tethered beads. PMID:19527664

  10. Touching the microworld with force-feedback optical tweezers.

    PubMed

    Pacoret, Cécile; Bowman, Richard; Gibson, Graham; Haliyo, Sinan; Carberry, David; Bergander, Arvid; Régnier, Stéphane; Padgett, Miles

    2009-06-01

    Optical tweezers are a powerful tool for micromanipulation and measurement of picoNewton sized forces. However, conventional interfaces present difficulties as the user cannot feel the forces involved. We present an interface to optical tweezers, based around a low-cost commercial force feedback device. The different dynamics of the micro-world make intuitive force feedback a challenge. We propose a coupling method using an existing optical tweezers system and discuss stability and transparency. Our system allows the user to perceive real Brownian motion and viscosity, as well as forces exerted during manipulation of objects by a trapped bead. PMID:19506679

  11. Optoelectronic fringe projection operations

    NASA Astrophysics Data System (ADS)

    Garavaglia, Mario; Rabal, Hector J.; Aguirre, E.

    1990-07-01

    We present a simple optoelectronical fringe projection method for topographic or deformation study of objects. Programmed positioning and repositioning can also be performed. 1. DESCRIPTION An incoherent method for fringe projection operations was recently reported'' using photographic procedures. It is extended now to real time operation using an LCD video projector and a CCD camera. Fringes consisting in Rbnchitype rulings are generated in a personal computer and projected onto an object by using a Kodak LCD colour video projector. Its image is then read by a SVHS-CCD Panasonic camera and electronically memorized. This fringe pattern contains information concerning the position and topography of the object stored as fringe phase modulation. A standard state of the object can be frozen in the screen of a monitor and its evolution deformation or misspositioning followed through the Moire between current and stored fringes. Topography of the object expressed as a mathemati cal functi on h ( x y) and its time evolution can alsO be determined from the memorized data. . Besides a conjugated grid can be generated so that when the latter is projected onto the object the observed fringes are corrected to straight lines resembling the original Ronchi rul ings i. e. distortion produced by object topography is cancelled out. Deformations with respect to this state are straightforwardly interpreted by an observer both in magnitude and sign. The system can be made

  12. Investigating the potential applications of a Raman tweezer system

    NASA Astrophysics Data System (ADS)

    Wray, John Casey

    This thesis describes the construction of an Optical Tweezer apparatus to be used in conjunction with a confocal Raman spectrometer. The tweezer utilizes an infrared (e=1064 nm) laser directed into an inverted microscope with NA=1.4 oil immersion 100x objective lens that strongly focuses the laser light into a sample to function as a single-beam gradient force trap. The long term goal of this research program is to develop a single molecule Raman tweezers apparatus that allows one to control the position of a Raman nanoplasmonic amplifier. This thesis describes the construction of the Raman tweezer apparatus along with several Raman spectra obtained from optically trapped samples of polystyrene fluorescent orange, amine-modified latex beads. In addition, I explored the Raman spectra of bulk cytochrome c mixed with or injected onto Ag aggregates for SERs enhancement.

  13. Multiplexed spectroscopy with holographic optical tweezers

    NASA Astrophysics Data System (ADS)

    Cibula, Matthew A.; McIntyre, David H.

    2014-09-01

    We have developed a multiplexed holographic optical tweezers system with an imaging spectrometer to manipulate multiple optically trapped nanosensors and detect multiple fluorescence spectra. The system uses a spatial light modulator (SLM) to control the positions of infrared optical traps in the sample so that multiple nanosensors can be positioned into regions of interest. Spectra of multiple nanosensors are detected simultaneously with the application of an imaging spectrometer. Nanosensors are capable of detecting changes in their environment such as pH, ion concentration, temperature, and voltage by monitoring changes in the nanosensors' emitted fluorescence spectra. We use streptavidin labeled quantum dots bound to the surface of biotin labeled polystyrene microspheres to measure temperature changes by observing a corresponding shift in the wavelength of the spectral peak. The fluorescence is excited at 532 nm with a wide field source.

  14. Optical tweezers for studying taxis in parasites

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Fontes, A.; Stahl, C. V.; Pozzo, L. Y.; Ayres, D. C.; Almeida, D. B.; Farias, P. M. A.; Santos, B. S.; Santos-Mallet, J.; Gomes, S. A. O.; Giorgio, S.; Feder, D.; Cesar, C. L.

    2011-04-01

    In this work we present a methodology to measure force strengths and directions of living parasites with an optical tweezers setup. These measurements were used to study the parasites chemotaxis in real time. We observed behavior and measured the force of: (i) Leishmania amazonensis in the presence of two glucose gradients; (ii) Trypanosoma cruzi in the vicinity of the digestive system walls, and (iii) Trypanosoma rangeli in the vicinity of salivary glands as a function of distance. Our results clearly show a chemotactic behavior in every case. This methodology can be used to study any type of taxis, such as chemotaxis, osmotaxis, thermotaxis, phototaxis, of any kind of living microorganisms. These studies can help us to understand the microorganism sensory systems and their response function to these gradients.

  15. Toward the optoelectronic ULSI: drivers and barriers

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2004-06-01

    We describe the state of the art in optoelectronic component integration, and the current degree of commercial deployment of integrated optoelectronics as dictated by the balance of market pull and technology push. We also present the long-term outlook for optoelectronic integration, including the drivers and barriers that set the roadmap toward the optoelectronic ULSI. We discuss an optoelectronic integration platform that utilizes organic and inorganic materials for the hybrid integration of passive and active optical elements.

  16. Optoelectronics with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kinoshita, Megumi

    2011-12-01

    purified tubes aligned in parallel. While the operating principle is somewhat different from that of single-tube diodes because of the presence of metallic tubes in the material, the film diodes nonetheless show a rectifying behavior and much greater light intensity than single-tube devices. With their superior light output and robustness, they bring us one step closer to a real-world application of carbon nanotubes optoelectronics.

  17. Laser tweezers Raman spectroscopy of single cells

    NASA Astrophysics Data System (ADS)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  18. Coupled opto-electronic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor); Maleki, Lute (Inventor)

    1999-01-01

    A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.

  19. High-Resolution Optical Tweezers for Single-Molecule Manipulation

    PubMed Central

    Zhang, Xinming; Ma, Lu; Zhang, Yongli

    2013-01-01

    Forces hold everything together and determine its structure and dynamics. In particular, tiny forces of 1-100 piconewtons govern the structures and dynamics of biomacromolecules. These forces enable folding, assembly, conformational fluctuations, or directional movements of biomacromolecules over sub-nanometer to micron distances. Optical tweezers have become a revolutionary tool to probe the forces, structures, and dynamics associated with biomacromolecules at a single-molecule level with unprecedented resolution. In this review, we introduce the basic principles of optical tweezers and their latest applications in studies of protein folding and molecular motors. We describe the folding dynamics of two strong coiled coil proteins, the GCN4-derived protein pIL and the SNARE complex. Both complexes show multiple folding intermediates and pathways. ATP-dependent chromatin remodeling complexes translocate DNA to remodel chromatin structures. The detailed DNA translocation properties of such molecular motors have recently been characterized by optical tweezers, which are reviewed here. Finally, several future developments and applications of optical tweezers are discussed. These past and future applications demonstrate the unique advantages of high-resolution optical tweezers in quantitatively characterizing complex multi-scale dynamics of biomacromolecules. PMID:24058311

  20. Constructing Dual Beam Optical Tweezers for Undergraduate Biophysics Research

    NASA Astrophysics Data System (ADS)

    Daudelin, Brian; West-Coates, Devon; Del'Etoile, Jon; Grotzke, Eric; Paramanathan, Thayaparan

    Optical tweezing, or trapping, is a modern physics technique which allows us to use the radiation pressure from laser beams to trap micron sized particles. Optical tweezers are commonly used in graduate level biophysics research but seldom used at the undergraduate level. Our goal is to construct a dual beam optical tweezers for future undergraduate biophysical research. Dual beam optical tweezers use two counter propagating laser beams to provide a stronger trap. In this study we discuss how the assembly of the dual beam optical tweezers is done through three main phases. The first phase was to construct a custom compressed air system to isolate the optical table from the vibrations from its surroundings so that we can measure pico-newton scale forces that are observed in biological systems. In addition, the biomaterial flow system was designed with a flow cell to trap biomolecules by combining several undergraduate semester projects. During the second phase we set up the optics to image and display the inside of the flow cell. Currently we are in the process of aligning the laser to create an effective trap and developing the software to control the data collection. This optical tweezers set up will enable us to study potential cancer drug interactions with DNA at the single molecule level and will be a powerful tool in promoting interdisciplinary research at the undergraduate level.

  1. How safe is gamete micromanipulation by laser tweezers?

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Tromberg, Bruce J.; Tadir, Yona; Berns, Michael W.

    1998-04-01

    Laser tweezers, used as novel sterile micromanipulation tools of living cells, are employed in laser-assisted in vitro fertilization (IVF). For example, controlled spermatozoa transport with 1064 nm tweezers to human egg cells has been performed in European clinics in cases of male infertility. The interaction of approximately 100 mW near infrared (NIR) trapping beams at MW/cm2 intensity with human gametes results in low mean less than 2 K temperature increases and less than 100 pN trapping forces. Therefore, photothermal or photomechanical induced destructive effects appear unlikely. However, the high photon flux densities may induce simultaneous absorption of two NIR photons resulting in nonlinear interactions. These nonlinear interactions imply non-resonant two-photon excitation of endogenous cellular chromophores. In the case of less than 800 nm tweezers, UV- like damage effects may occur. The destructive effect is amplified when multimode cw lasers are used as tweezer sources due to longitudinal mode-beating effects and partial mode- locking. Spermatozoa damage within seconds using 760 nm traps due to formation of unstable ps pulses in a cw Ti:Sa ring laser is demonstrated. We recommend the use of greater than or equal to 800 nm traps for optical gamete micromanipulation. To our opinion, further basic studies on the influence of nonlinear effects of laser tweezers on human gamete are necessary.

  2. Low frequency dynamical stabilisation in optical tweezers

    NASA Astrophysics Data System (ADS)

    Richards, Christopher J.; Smart, Thomas J.; Jones, Philip H.; Cubero, David

    2015-08-01

    It is well known that a rigid pendulum with minimal friction will occupy a stable equilibrium position vertically upwards when its suspension point is oscillated at high frequency. The phenomenon of the inverted pendulum was explained by Kapitza by invoking a separation of timescales between the high frequency modulation and the much lower frequency pendulum motion, resulting in an effective potential with a minimum in the inverted position. We present here a study of a microscopic optical analogue of Kapitza's pendulum that operates in different regimes of both friction and driving frequency. The pendulum is realized using a microscopic particle held in a scanning optical tweezers and subject to a viscous drag force. The motion of the optical pendulum is recorded and analyzed by digital video microscopy and particle tracking to extract the trajectory and stable orientation of the particle. In these experiments we enter the regime of low driving frequency, where the period of driving is comparable to the characteristic relaxation time of the radial motion of the pendulum with finite stiffness. In this regime we find stabilization of the pendulum at angles other than the vertical (downwards) is possible for modulation amplitudes exceeding a threshold value where, unlike the truly high frequency case studied previously, both the threshold amplitude and equilibrium position are found to be functions of friction. Experimental results are complemented by an analytical theory for induced stability in the low frequency driving regime with friction.

  3. Probing the Casimir force with optical tweezers

    NASA Astrophysics Data System (ADS)

    Maia Neto, Paulo; Ether, Diney; Pires, Luis; Ayala, Yareni; Rosa, Felipe; Umrath, Stefan; Ingold, Gert; Viana, Nathan; Nussenzveig, Moyses

    2015-03-01

    Optical tweezers (OT) are single-beam laser traps for neutral particles, usually applied to dielectric microspheres immersed in a fluid. The stiffness is proportional to the trapping beam power, and hence can be tuned to very small values, allowing one to measure femtonewton forces, once the device is carefully calibrated. We employ OT to measure the Casimir (or retarded van der Waals) force between polystyrene beads in ethanol, for distances between 50 nanometers and 1 micrometer. The spherical beads have diameters ranging from 3 to 7 micrometers. We find a rather large correction to the widely employed Proximity Force approximation (PFA), since the ratio between distances and sphere radii is much larger than the typical values probed in recent experiments. For the comparison with experimental data, we compute the Casimir force using the scattering approach applied to the spherical geometry, including the contribution of double-layer forces. We also present experimental results for the total force between a mercury microdroplet and a polystyrene bead immersed in ethanol, with similar distances and diameters. In short, we probe the Casimir force with different materials in a regime far from the validity of PFA, such that the spherical geometry plays a non-trivial role.

  4. Magnetic tweezers microscope for cellular manipulation

    NASA Astrophysics Data System (ADS)

    Dong, Chen-Yuan; Huang, Hayden; Sutin, Jason D. B.; Kwon, Hyuk-Sang; Cragg, George E.; Gilbert, R.; Lee, Richard T.; Gratton, Enrico; Kamm, Roger D.; Lauffenburger, Douglas A.; So, Peter T. C.

    2000-04-01

    We present the design of a magnetic tweezers microscope for cellular manipulation. Our design allows versatile and significant 3D stress application over a large sample region. For linear force application, forces up to 250 pN per 4.5 micrometers magnetic bead can be applied. Finite element analysis shows that variance in force level is around 10 percent within an area of 300 X 300 micrometers 2. Our eight-pole design potentially allows 3D liner force application and exertion of torsional stress. Furthermore, our design allows high resolution imaging using high numerical aperture objective. Both finite element analysis of magnetic field distribution and force calibration of our design are presented. As a feasibility study, we incubated fibronectin coated 4.5 micrometers polystyrene beads with Swiss 3T3 mouse fibroblast cells. Under application around 250 pN of force per magnetic particle, we observed relative movement between attached magnetic and polystyrene beads to be on the order of 1 micrometers . Elastic, viscoelastic, and creeping responses of cell surfaces were observed. Our results are consistent with previous observations using similar magnetic techniques.

  5. Atomic force microscopy combined with optical tweezers (AFM/OT)

    NASA Astrophysics Data System (ADS)

    Pierini, F.; Zembrzycki, K.; Nakielski, P.; Pawłowska, S.; Kowalewski, T. A.

    2016-02-01

    The role of mechanical properties is essential to understand molecular, biological materials, and nanostructures dynamics and interaction processes. Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. In this paper we present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The focused laser beam, on which optical tweezers are based, provides us with the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies. AFM/OT equipment is described and characterized by studying the ability to trap dielectric objects and quantifying the detectable and applicable forces. Finally, optical tweezers calibration methods and instrument applications are given.

  6. Mechanisms of HCV NS3 Helicase Monitored by Optical Tweezers

    PubMed Central

    Cheng, Wei

    2015-01-01

    As one of the essential enzymes for viral genome replication, the hepatitis C virus NS3 helicase is one of the best characterized RNA helicases to date in understanding the mechanistic cycles in a helicase-catalyzed strand separation reaction. Recently, single-molecule studies on NS3, in particular the use of optical tweezers with sub-base pair spatial resolution, have allowed people to examine the potential elementary steps of NS3 in unwinding the double-stranded RNA fueled by ATP binding and hydrolysis. In this chapter, I detail the essential technical elements involved in conducting a high-resolution optical tweezers study of NS3 helicase, starting from the purification of the recombinant helicase protein from E. coli to setting up a high-resolution single-molecule experiment using optical tweezers. PMID:25579590

  7. Optical tweezers force measurements to study parasites chemotaxis

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  8. Simple Optoelectronic Feedback in Microwave Oscillators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.

  9. Flexible and Stretchable Optoelectronic Devices using Silver Nanowires and Graphene.

    PubMed

    Lee, Hanleem; Kim, Meeree; Kim, Ikjoon; Lee, Hyoyoung

    2016-06-01

    Many studies have accompanied the emergence of a great interest in flexible or/and stretchable devices for new applications in wearable and futuristic technology, including human-interface devices, robotic skin, and biometric devices, and in optoelectronic devices. Especially, new nanodimensional materials enable flexibility or stretchability to be brought based on their dimensionality. Here, the emerging field of flexible devices is briefly introduced using silver nanowires and graphene, which are famous nanomaterials for the use of transparent conductive electrodes, as examples, and their unique functions originating from the intrinsic property of these nanomaterials are highlighted. It is thought that this work will evoke more interest and idea exchanges in this emerging field and hopefully can trigger a breakthrough on a new type of optoelectronics and optogenetic devices in the near future. PMID:26823085

  10. Using laser tweezers to measure twitching motility in Neisseria.

    PubMed

    Maier, Berenike

    2005-06-01

    Dynamic properties of type IV pili are essential for their function in bacterial infection, twitching motility and gene transfer. Laser tweezers are versatile tools to study the molecular mechanism underlying pilus dynamics at the single molecule level. Recently, these optical tweezers have been used to monitor pilus elongation and retraction in vivo at a resolution of several nanometers. The force generated by type IV pili exceeds 100 pN making pili the strongest linear motors characterized to date. The study of pilus dynamics at the single molecule level sheds light on kinetics, force generation, switching and mechanics of the Neisseria gonorrhoeae pilus motor. PMID:15939360

  11. Magnetic tweezers for manipulation of magnetic particles in single cells

    NASA Astrophysics Data System (ADS)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  12. Tunable optical tweezers for wavelength-dependent measurements

    PubMed Central

    Hester, Brooke; Campbell, Gretchen K.; López-Mariscal, Carlos; Filgueira, Carly Levin; Huschka, Ryan; Halas, Naomi J.; Helmerson, Kristian

    2012-01-01

    Optical trapping forces depend on the difference between the trap wavelength and the extinction resonances of trapped particles. This leads to a wavelength-dependent trapping force, which should allow for the optimization of optical tweezers systems, simply by choosing the best trapping wavelength for a given application. Here we present an optical tweezer system with wavelength tunability, for the study of resonance effects. With this system, the optical trap stiffness is measured for single trapped particles that exhibit either single or multiple extinction resonances. We include discussions of wavelength-dependent effects, such as changes in temperature, and how to measure them. PMID:22559522

  13. Marker-free cell discrimination by holographic optical tweezers

    NASA Astrophysics Data System (ADS)

    Schaal, F.; Warber, M.; Zwick, S.; van der Kuip, H.; Haist, T.; Osten, W.

    2009-06-01

    We introduce a method for marker-free cell discrimination based on optical tweezers. Cancerous, non-cancerous, and drug-treated cells could be distinguished by measuring the trapping forces using holographic optical tweezers. We present trapping force measurements on different cell lines: normal pre-B lymphocyte cells (BaF3; "normal cells"), their Bcr-Abl transformed counterparts (BaF3-p185; "cancer cells") as a model for chronic myeloid leukaemia (CML) and Imatinib treated BaF3-p185 cells. The results are compared with reference measurements obtained by a commercial flow cytometry system.

  14. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  15. Telemedicine optoelectronic biomedical data processing system

    NASA Astrophysics Data System (ADS)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  16. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  17. Optoelectronic device for hematocrit measurements

    NASA Astrophysics Data System (ADS)

    Pluta, M.; Milewska, D.; Mazikowski, A.

    2015-09-01

    An optoelectronic system for measurements of hematocrit level (HCT) in the whole human blood is presented. Proposed system integrates a dedicated optoelectronic sensor, a microcontroller and a small LCD display in a low cost, battery-powered, handheld device. Chosen method for determining blood hematocrit level is based on optical properties of whole blood in visible and NIR wavelength range. Measurements with the use of proposed system require blood samples (small drop in the range of microliters) which is placed in the micro cuvette. Then, absorption of the sample is measured at wavelengths of 570 nm and 880 nm. Prototype of the device was build and tested. Test results confirmed proper operation of the device with correct metrological parameters in application to HCT level measurements. Such a portable device can be used as a tool of bedside diagnosis, which becomes interesting alternative to full laboratory tests.

  18. Packaging investigation of optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Zhike, Zhang; Yu, Liu; Jianguo, Liu; Ninghua, Zhu

    2015-10-01

    Compared with microelectronic packaging, optoelectronic packaging as a new packaging type has been developed rapidly and it will play an essential role in optical communication. In this paper, we try to summarize the development history, research status, technology issues and future prospects, and hope to provide a meaningful reference. Project supported by the National High Technology Research and Development Program of China (Nos. 2013AA014201, 2013AA014203) and the National Natural Science Foundation of China (Nos. 61177080, 61335004, 61275031).

  19. Optoelectronic Apparatus Measures Glucose Noninvasively

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Rovati, Luigi L.

    2003-01-01

    An optoelectronic apparatus has been invented as a noninvasive means of measuring the concentration of glucose in the human body. The apparatus performs polarimetric and interferometric measurements of the human eye to acquire data from which the concentration of glucose in the aqueous humor can be computed. Because of the importance of the concentration of glucose in human health, there could be a large potential market for instruments based on this apparatus.

  20. Opto-electronic morphological processor

    NASA Technical Reports Server (NTRS)

    Yu, Jeffrey W. (Inventor); Chao, Tien-Hsin (Inventor); Cheng, Li J. (Inventor); Psaltis, Demetri (Inventor)

    1993-01-01

    The opto-electronic morphological processor of the present invention is capable of receiving optical inputs and emitting optical outputs. The use of optics allows implementation of parallel input/output, thereby overcoming a major bottleneck in prior art image processing systems. The processor consists of three components, namely, detectors, morphological operators and modulators. The detectors and operators are fabricated on a silicon VLSI chip and implement the optical input and morphological operations. A layer of ferro-electric liquid crystals is integrated with a silicon chip to provide the optical modulation. The implementation of the image processing operators in electronics leads to a wide range of applications and the use of optical connections allows cascadability of these parallel opto-electronic image processing components and high speed operation. Such an opto-electronic morphological processor may be used as the pre-processing stage in an image recognition system. In one example disclosed herein, the optical input/optical output morphological processor of the invention is interfaced with a binary phase-only correlator to produce an image recognition system.

  1. Trapping and patterning of biological objects using photovoltaic tweezers

    NASA Astrophysics Data System (ADS)

    Jubera, M.; Elvira, I.; García-Cabañes, A.; Bella, J. L.; Carrascosa, M.

    2016-01-01

    Photovoltaic tweezers are a recently proposed technique for manipulation and patterning of micro- and nano-objects. It is based in the dielectrophoretic forces associated to the electric fields induced by illumination of certain ferroelectrics due to the bulk photovoltaic effect. The technique has been applied to the patterning of dielectric and metal micro- and nano-particles. In this work, we report the use of photovoltaic tweezers to pattern biological objects on LiNbO3:Fe. Specifically, spores and pollen grains and their nanometric fragments have been trapped and patterned. 1D and 2D arrangements have been achieved by deposition in air or from a hexane suspension. The quality of patterns obtained with nanometric fragments is even better than previous results using photovoltaic tweezers with inorganic micro- and nano-particles. In fact, 1D patterns with a period of 2 μm, almost half of the minimum reported period achieved with photovoltaic tweezers, have been obtained with pollen fragments.

  2. Spin dynamics and Kondo physics in optical tweezers

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  3. Pulse laser assisted optical tweezers for biomedical applications.

    PubMed

    Sugiura, Tadao; Maeda, Saki; Honda, Ayae

    2012-01-01

    Optical tweezers which enables to trap micron to nanometer sized objects by radiation pressure force is utilized for manipulation of particles under a microscope and for measurement of forces between biomolecules. Weak force of optical tweezers causes some limitations such as particle adhesion or steric barrier like lipid membrane in a cell prevent further movement of objects. For biomedical applications we need to overcome these difficulties. We have developed a technique to exert strong instantaneous force by use of a pulse laser beam and to assist conventional optical tweezers. A pulse laser beam has huge instantaneous laser power of more than 1000 times as strong as a conventional continuous-wave laser beam so that the instantaneous force is strong enough to break chemical bonding and molecular force between objects and obstacles. We derive suitable pulse duration for pulse assist of optical tweezers and demonstrate particle manipulation in difficult situations through an experiment of particle removal from sticky surface of glass substrate. PMID:23366922

  4. Plasmon enhanced optical tweezers with gold-coated black silicon

    NASA Astrophysics Data System (ADS)

    Kotsifaki, D. G.; Kandyla, M.; Lagoudakis, P. G.

    2016-05-01

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects.

  5. Plasmon enhanced optical tweezers with gold-coated black silicon.

    PubMed

    Kotsifaki, D G; Kandyla, M; Lagoudakis, P G

    2016-01-01

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects. PMID:27195446

  6. Plasmon enhanced optical tweezers with gold-coated black silicon

    PubMed Central

    Kotsifaki, D. G.; Kandyla, M.; Lagoudakis, P. G.

    2016-01-01

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects. PMID:27195446

  7. Automated trapping, assembly, and sorting with holographic optical tweezers

    PubMed Central

    Chapin, Stephen C.; Germain, Vincent; Dufresne, Eric R.

    2008-01-01

    We combine real-time feature recognition with holographic optical tweezers to automatically trap, assemble, and sort micron-sized colloidal particles. Closed loop control will enable new applications of optical micromanipulation in biology, medicine, materials science, and possibly quantum computation. PMID:19096726

  8. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  9. Integrated Optoelectronics for Parallel Microbioanalysis

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert; Moynihan, Philip; Bearman, Gregory; Lane, Arthur

    2003-01-01

    Miniature, relatively inexpensive microbioanalytical systems ("laboratory-on-achip" devices) have been proposed for the detection of hazardous microbes and toxic chemicals. Each system of this type would include optoelectronic sensors and sensor-output-processing circuitry that would simultaneously look for the optical change, fluorescence, delayed fluorescence, or phosphorescence signatures from multiple redundant sites that have interacted with the test biomolecules in order to detect which one(s) was present in a given situation. These systems could be used in a variety of settings that could include doctors offices, hospitals, hazardous-material laboratories, biological-research laboratories, military operations, and chemical-processing plants.

  10. Functional Carbon Nanocomposite, Optoelectronic, and Catalytic Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Yu Teng

    coatings have been demonstrated. In particular, co-deposited platinum, silicon, and carbon nanomaterial films were fashioned into electronic hydrogen gas sensors, cost efficient dye sensitized solar cell electrodes, and high capacity lithium ion battery anodes. Furthermore, concentrated graphene inks were coated to form aligned graphene-polymer nanocomposites and outstanding carbon nanotube-graphene hybrid semitransparent electrical conductors. Nanocomposite graphene-titanium dioxide catalysts produced from these cellulosic inks have low covalent defect densities and were shown to be approximately two and seven times more active than those based on reduced graphene oxide in photo-oxidation and photo-reduction reactions, respectively. Using a broad range of material characterization techniques, mechanistic insight was obtained using composite photocatalysts fabricated from well defined nanomaterials. For instance, optical spectroscopy and electronic measurements revealed a direct correlation between graphene charge transport performance and composite photochemical activity. Moreover, investigations into multidimensional composites based on 1D carbon nanotubes, 2D graphene, and 2D titanium dioxide nanosheets generated additional mechanistic insight for extending photocatalytic spectral response and increasing reaction specificity. Together, these results demonstrate the versatility of vacuum co-deposition and cellulosic nanomaterial inks for fabricating carbon nanocomposite optoelectronic and energy conversion coatings.

  11. Analysis and implementation of optoelectronic network routers

    NASA Astrophysics Data System (ADS)

    Raksapatcharawong, Mongkol

    1999-11-01

    Network routers based on optoelectronic technology have the potential to solve the network bandwidth problem which is becoming more and more critical in multiprocessor systems. By combining high-bandwidth optoelectronic I/O technology and high-performance CMOS logic technology, optoelectronic network routers promise both sophisticated switching functions as well as ample bandwidth that scales well with the performance of current and next-generation processors. Performance analysis and implementation of optoelectronic routers or other optoelectronic chips with this level of complexity, however, have not been pursued to a great extent before. This dissertation uses analytical and semi-empirical models to quantify and estimate the performance of optoelectronic routers at the chip and system levels, and it studies the feasibility of implementing such routers using GaAs MESFET/LED/OPFET and CMOS/SEED integrated technologies. The results show that optoelectronic routers may not only be technologically viable but also can provide certain architectural advantages in multiprocessor systems. Nevertheless, as shown in this dissertation, three major requirements must be met to effectively utilize this new technology. First, small and robust packaging at the chip and system levels that ensure high-bandwidth operation at useful interconnection distances and topologies are needed. Second, optoelectronic compatible CAD tools that effectively integrate a large array of optoelectronic devices with complex circuitry while retaining the potential performance of optoelectronic chips are needed. Third, optoelectronic devices must have uniform characteristics and reliability. In addition, advanced architectural techniques that efficiently exploit high-bandwidth optical interconnects are also required.

  12. Mechanical force characterization in manipulating live cells with optical tweezers.

    PubMed

    Wu, Yanhua; Sun, Dong; Huang, Wenhao

    2011-02-24

    Laser trapping with optical tweezers is a noninvasive manipulation technique and has received increasing attentions in biological applications. Understanding forces exerted on live cells is essential to cell biomechanical characterizations. Traditional numerical or experimental force measurement assumes live cells as ideal objects, ignoring their complicated inner structures and rough membranes. In this paper, we propose a new experimental method to calibrate the trapping and drag forces acted on live cells. Binding a micro polystyrene sphere to a live cell and moving the mixture with optical tweezers, we can obtain the drag force on the cell by subtracting the drag force on the sphere from the total drag force on the mixture, under the condition of extremely low Reynolds number. The trapping force on the cell is then obtained from the drag force when the cell is in force equilibrium state. Experiments on numerous live cells demonstrate the effectiveness of the proposed force calibration approach. PMID:21087769

  13. Probing DNA with micro- and nanocapillaries and optical tweezers

    NASA Astrophysics Data System (ADS)

    Steinbock, L. J.; Otto, O.; Skarstam, D. R.; Jahn, S.; Chimerel, C.; Gornall, J. L.; Keyser, U. F.

    2010-11-01

    We combine for the first time optical tweezer experiments with the resistive pulse technique based on capillaries. Quartz glass capillaries are pulled into a conical shape with tip diameters as small as 27 nm. Here, we discuss the translocation of λ-phage DNA which is driven by an electrophoretic force through the nanocapillary. The resulting change in ionic current indicates the folding state of single λ-phage DNA molecules. Our flow cell design allows for the straightforward incorporation of optical tweezers. We show that a DNA molecule attached to an optically trapped colloid is pulled into a capillary by electrophoretic forces. The detected electrophoretic force is in good agreement with measurements in solid-state nanopores.

  14. Using optical tweezers to study mechanical properties of collagen

    NASA Astrophysics Data System (ADS)

    Rezaei, Naghmeh; Downing, Benjamin P. B.; Wieczorek, Andrew; Chan, Clara K. Y.; Welch, Robert Lindsay; Forde, Nancy R.

    2011-08-01

    The mechanical response of biological molecules at the microscopic level contributes significantly to their function. Optical tweezers are instruments that enable scientists to study mechanical properties at microscopic levels. They are based on a highly focused laser beam that creates a trap for microscopic objects such as dielectric spheres, viruses, bacteria, living cells and organelles, and then manipulates them by applying forces in the picoNewton range (a range that is biologically relevant). In this work, mechanical properties of single collagen molecules are studied using optical tweezers. We discuss the challenges of stretching single collagen proteins, whose length is much less than the size of the microspheres used as manipulation handles, and show how instrumental design and biochemistry can be used to overcome these challenges.

  15. Synthesis and Characterization of Carbazole-Linked Porphyrin Tweezers.

    PubMed

    Chang, Yi; Michelin, Clément; Bucher, Léo; Desbois, Nicolas; Gros, Claude P; Piant, Sébastien; Bolze, Frédéric; Fang, Yuanyuan; Jiang, Xiaoqin; Kadish, Karl M

    2015-08-17

    Herein the synthesis, spectroscopic characterization, two-photon absorption and electrochemical properties of 3,6-disubstituted carbazole tweezers is reported. A dimer resulting from a Glaser homocoupling was isolated during a Sonogashira coupling reaction between a diethynyl-carbazole spacer and a 5-bromo-triarylporphyrin and the properties of this original compound were compared with the 3,6-disubstituted carbazole bisporphyrin tweezers. The dyads reported herein present a two-photon absorption maximum at 920 nm with two-photon absorption cross-section in the 1200 GM range. Despite a strong linear absorption in the Soret region and moderate fluorescence quantum yield, they both lead to a high brightness reaching 30 000 M(-1)  cm(-1) . PMID:26177731

  16. A microscopic steam engine implemented in an optical tweezer

    NASA Astrophysics Data System (ADS)

    Quinto-Su, Pedro A.

    2014-12-01

    The introduction of improved steam engines at the end of the 18th century marked the start of the industrial revolution and the birth of classical thermodynamics. Currently, there is great interest in miniaturizing heat engines, but so far traditional heat engines operating with the expansion and compression of gas have not reached length scales shorter than one millimeter. Here, a micrometer-sized piston steam engine is implemented in an optical tweezer. The piston is a single colloidal microparticle that is driven by explosive vapourization of the surrounding liquid (cavitation bubbles) and by optical forces at a rate between a few tens of Hertz and one kilo-Hertz. The operation of the engine allows to exert impulsive forces with optical tweezers and induce streaming in the liquid, similar to the effect of transducers when driven at acoustic and ultrasound frequencies.

  17. A microscopic steam engine implemented in an optical tweezer.

    PubMed

    Quinto-Su, Pedro A

    2014-01-01

    The introduction of improved steam engines at the end of the 18th century marked the start of the industrial revolution and the birth of classical thermodynamics. Currently, there is great interest in miniaturizing heat engines, but so far traditional heat engines operating with the expansion and compression of gas have not reached length scales shorter than one millimeter. Here, a micrometer-sized piston steam engine is implemented in an optical tweezer. The piston is a single colloidal microparticle that is driven by explosive vapourization of the surrounding liquid (cavitation bubbles) and by optical forces at a rate between a few tens of Hertz and one kilo-Hertz. The operation of the engine allows to exert impulsive forces with optical tweezers and induce streaming in the liquid, similar to the effect of transducers when driven at acoustic and ultrasound frequencies. PMID:25523395

  18. Cluster formation in ferrofluids induced by holographic optical tweezers.

    PubMed

    Masajada, Jan; Bacia, Marcin; Drobczyński, Sławomir

    2013-10-01

    Holographic optical tweezers were used to show the interaction between a strongly focused laser beam and magnetic nanoparticles in ferrofluid. When the light intensity was high enough, magnetic nanoparticles were removed from the beam center and formed a dark ring. The same behavior was observed when focusing vortex or Bessel beams. The interactions between two or more separated rings of magnetic nanoparticles created by independent optical traps were also observed. PMID:24081086

  19. Optical tweezers and manipulation of PMMA beads in various conditions

    NASA Astrophysics Data System (ADS)

    Kotsifaki, D. G.; Makropoulou, M.; Serafetinides, A. A.

    2009-07-01

    Laser optical trapping and micromanipulation of microparticles or cells and subcellular structures have gained remarkable interest in biomedical research and applications. Several laser sources are employed for the combination of a laser scalpel with an optical tweezers device, under microscopic control. However, although the principles and the mechanisms of pulsed laser ablation have been well described for macroscopic interventions, the microbeam operation, under microscopic guidance, necessitates further experiments and investigations. We present experimental results of controlled micro-ablation of PMMA beads of 3-8 μm diameters, trapped by laser tweezers in various media e.g. solutes of different index of refraction. An optical tweezers system, based on a continuous wave He-Ne laser emitting at 632.8 nm, was tested on beads and, despite the low power of the He-Ne laser, the optical trap was stable. Another optical system, based on a cw Nd:YAG laser emitting at 1.06 μm, was tested on microspheres too. Successful beads ablation was carried out by irradiation with multiple, or even a single nitrogen laser pulse of 7 ns pulse duration at a wavelength of 337 nm. The ablative perforation of the microspheres was estimated by controlling the laser fluence. Moreover, shape deformations of PMMA microspheres were observed. The experimentally obtained results are theoretically explained via the spatial intensity distribution based on Mie light scattering theory. Furthermore, the appearance of laser ablation holes in the back side of microspheres is explained by the ablation triggered shock waves propagation. The role of the stretching forces action is also discussed. Additionally, we report experimental results on measuring the optical trap force of PMMA beads. A powerful optical tweezers system based on a continuous wave Nd:YAG laser was used in order to estimate the trapping efficiency for several beads diameter.

  20. Multispectral optical tweezers for molecular diagnostics of single biological cells

    NASA Astrophysics Data System (ADS)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  1. Electromagnetic tweezers with independent force and torque control.

    PubMed

    Jiang, Chang; Lionberger, Troy A; Wiener, Diane M; Meyhofer, Edgar

    2016-08-01

    Magnetic tweezers are powerful tools to manipulate and study the mechanical properties of biological molecules and living cells. In this paper we present a novel, bona fide electromagnetic tweezer (EMT) setup that allows independent control of the force and torque applied via micrometer-sized magnetic beads to a molecule under study. We implemented this EMT by combining a single solenoid that generates force (f-EMT) with a set of four solenoids arranged into a symmetric quadrupole to generate torque (τ-EMT). To demonstrate the capability of the tweezers, we attached optically asymmetric Janus beads to single, tethered DNA molecules. We show that tension in the piconewton force range can be applied to single DNA molecules and the molecule can simultaneously be twisted with torques in the piconewton-nanometer range. Furthermore, the EMT allows the two components to be independently controlled. At various force levels applied to the Janus bead, the trap torsional stiffness can be continuously changed simply by varying the current magnitude applied to the τ-EMT. The flexible and independent control of force and torque by the EMT makes it an ideal tool for a range of measurements where tensional and torsional properties need to be studied simultaneously on a molecular or cellular level. PMID:27587135

  2. Optical tweezers theory near a flat surface: a perturbative method

    NASA Astrophysics Data System (ADS)

    Flyvbjerg, Henrik; Dutra, Rafael S.; Maia Neto, Paolo A.; Nussenzveig, H. Moyses

    We propose a perturbative calculation of the optical force exercised by a focused laser beam on a microsphere of arbitrary radius that is localized near a flat glass surface in a standard optical tweezers setup. Starting from the Mie-Debye representation for the electric field of a Gaussian laser beam, focused by an objective of high numerical aperture, we derive a recursive series that represents the multiple reflections that describe the reverberation of laser light between the microsphere and the glass slide. We present numerical results for the axial component of the optical force and the axial trap stiffness. Numerical results for a configuration typical in biological applications--a microsphere of 0.5 µm radius at a distance around 0.25 µm from the surface--show a 37 [1] Viana N B, Rocha M S. Mesquita O N, et al. (2007) Towards absolute calibration of optical tweezers. Phys Rev E 75:021914-1-14. [2] Dutra R S, Viana N B, Maia Neto P A, et al. (2014) Absolute calibration of forces in optical tweezers. Phys Rev A 90:013825-1-13. Rafael S. Dutra thanks the Brazilian ``Science without Borders'' program for a postdoctoral scholarship.

  3. Magnetic Forces and DNA Mechanics in Multiplexed Magnetic Tweezers

    PubMed Central

    van Loenhout, Marijn T. J.; Burnham, Daniel R.; Dekker, Cees

    2012-01-01

    Magnetic tweezers (MT) are a powerful tool for the study of DNA-enzyme interactions. Both the magnet-based manipulation and the camera-based detection used in MT are well suited for multiplexed measurements. Here, we systematically address challenges related to scaling of multiplexed magnetic tweezers (MMT) towards high levels of parallelization where large numbers of molecules (say 103) are addressed in the same amount of time required by a single-molecule measurement. We apply offline analysis of recorded images and show that this approach provides a scalable solution for parallel tracking of the xyz-positions of many beads simultaneously. We employ a large field-of-view imaging system to address many DNA-bead tethers in parallel. We model the 3D magnetic field generated by the magnets and derive the magnetic force experienced by DNA-bead tethers across the large field of view from first principles. We furthermore experimentally demonstrate that a DNA-bead tether subject to a rotating magnetic field describes a bicircular, Limaçon rotation pattern and that an analysis of this pattern simultaneously yields information about the force angle and the position of attachment of the DNA on the bead. Finally, we apply MMT in the high-throughput investigation of the distribution of the induced magnetic moment, the position of attachment of DNA on the beads, and DNA flexibility. The methods described herein pave the way to kilo-molecule level magnetic tweezers experiments. PMID:22870220

  4. A GSO tweezers-type coincidence detector for tumor detection.

    PubMed

    Yamamoto, Seiichi; Higashi, Tatsuya; Senda, Michio

    2013-07-01

    A Gd2SiO5 (GSO) tweezers-type coincidence detector was developed and tested for tumor detection in procedures such as (18)F-fluorodeoxyglucose (FDG)-guided surgery. The detector consists of a pair of GSO scintillators, a pair of metal-packaged small-sized photomultiplier tubes (PMTs), and a coincidence circuit. Because the GSO scintillators are located on the tips of tweezers, a target organ such as a lymph node or the colon can be easily positioned between them. The size of a single GSO was 8 × 14 × 14 mm. The results show that the energy resolution was 30 % full-width at half-maximum (FWHM) and the timing resolution was 6 ns FWHM for 511-keV gamma photons. The point-spread function perpendicular to the detector was 4.5 mm FWHM, and the point-spread function parallel to the detector was 7.5 mm FWHM. The absolute sensitivity of the coincidence detector was 0.6% at the center of the detector when the two GSOs were 5 mm apart. Background counts due to the accidental and scatter coincidence were 2 cps up to 48 MBq from the positron source contained in a 20-cm-diameter, 20-cm-high cylindrical phantom. From these results, we conclude that the proposed tweezers-type coincidence detector is useful for tumor detection by the use of FDG, such as that in radio-guided surgery. PMID:23283753

  5. Optoelectronic bistability effect in semiconductors

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Stefano

    2008-09-01

    A recombination bistability driven only by light irradiance, without any intervention of an externally imposed electric or magnetic field, is possible in doped semiconductors in which recombination is assured by multiply charged centers. This effect is allowed by the competition between two or more different recombination channels, providing that the shallower charged centers capture more likely charge carriers of the same polarity than the deep neutral ones, in spite of columbic repulsion. A close algebraic condition guaranteeing this effect is given, involving the trap parameters of the recombination centers. Deep multiple recombination centers in germanium, silicon, and silicon carbide are identified whose trap parameters make those materials good candidates to the realization of optoelectronic switching devices based on this effect.

  6. Metal nanowire-graphene composite transparent electrodes

    NASA Astrophysics Data System (ADS)

    Mankowski, Trent; Zhu, Zhaozhao; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine; Mansuripur, Masud; Falco, Charlies M.

    2014-10-01

    Silver nanowires with 40 nm diameter and copper nanowires with 150 nm diameter were synthesized using low-temperature routes, and deposited in combination with ultrathin graphene sheets for use as transparent conductors. A systematic and detailed analysis involving nature of capping agent for the metal nanowires, annealing of deposited films, and pre-treatment of substrates revealed critical conditions necessary for preparing high performance transparent conducting electrodes. The best electrodes show ~90% optical transmissivity and sheet resistance of ~10 Ω/□, already comparable to the best available transparent electrodes. The metal nanowire-graphene composite electrodes are therefore well suited for fabrication of opto-electronic and electronic devices.

  7. Bio-Inspired Chemical Fabrication of Stretchable Transparent Electrodes.

    PubMed

    Yu, You; Zhang, Yaokang; Li, Kan; Yan, Casey; Zheng, Zijian

    2015-07-01

    Stretchable and transparent electrodes are fabricated by chemical deposition of metal thin films on natural veins of leaves at ambient conditions. These vein-based transparent electrodes show excellent electro-optical property (0.9 Ω sq(-1) at 83% T) even at 50% tensile strains, ideal for flexible and stretchable optoelectronic devices. PMID:25786920

  8. Linear microrheology with optical tweezers of living cells 'is not an option'!

    PubMed

    Tassieri, Manlio

    2015-08-01

    Optical tweezers have been successfully adopted as exceptionally sensitive transducers for microrheology studies of complex fluids. Despite the general trend, in this article I explain why a similar approach should not be adopted for microrheology studies of living cells. This conclusion is acheived on the basis of statistical mechanics principles that indicate the unsuitability of optical tweezers for such purpose. PMID:26100967

  9. MatLab program for precision calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik

    2004-06-01

    Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for

  10. Metal oxides for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Yu, Xinge; Marks, Tobin J.; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

  11. Metal oxides for optoelectronic applications.

    PubMed

    Yu, Xinge; Marks, Tobin J; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories. PMID:27005918

  12. Optoelectronic ally automated system for carbon nanotubes synthesis via arc-discharge in solution

    SciTech Connect

    Bera, Debasis; Brinley, Erik; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Kabes, Bradley

    2005-03-01

    The method of arc discharge in the solution is unique and inexpensive route for synthesis of the carbon nanotubes (CNTs), carbon onions, and other carbon nanostructures. Such a method can be used for in situ synthesis of CNTs decorated with nanoparticles. Herein, we report a simple and inexpensive optoelectronically automated system for arc discharge in solution synthesis of CNTs. The optoelectronic system maintains a constant gap between the two electrodes allowing a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analog electronic unit, as controller. This computerized feeding system of the anode was used for in situ nanoparticles incorporated CNTs. For example, we have successfully decorated CNTs with ceria, silica, and palladium nanoparticles. Characterizations of nanostructures are performed using high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy.

  13. Optoelectronically automated system for carbon nanotubes synthesis via arc-discharge in solution

    NASA Astrophysics Data System (ADS)

    Bera, Debasis; Brinley, Erik; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Kabes, Bradley

    2005-03-01

    The method of arc discharge in the solution is unique and inexpensive route for synthesis of the carbon nanotubes (CNTs), carbon onions, and other carbon nanostructures. Such a method can be used for in situ synthesis of CNTs decorated with nanoparticles. Herein, we report a simple and inexpensive optoelectronically automated system for arc discharge in solution synthesis of CNTs. The optoelectronic system maintains a constant gap between the two electrodes allowing a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analog electronic unit, as controller. This computerized feeding system of the anode was used for in situ nanoparticles incorporated CNTs. For example, we have successfully decorated CNTs with ceria, silica, and palladium nanoparticles. Characterizations of nanostructures are performed using high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy.

  14. A simple optical tweezers for trapping polystyrene particles

    NASA Astrophysics Data System (ADS)

    Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana

    2013-09-01

    Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.

  15. Interferometer-Controlled Optical Tweezers Constructed for Nanotechnology and Biotechnology

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    A new method to control microparticles was developed in-house at the NASA Glenn Research Center in support of the nanotechnology project under NASA's Aerospace Propulsion and Power Base Research Program. A prototype interferometer-controlled optical tweezers was constructed to manipulate scanning probe microscope (SPM) tips. A laser beam passed through a Mach-Zehnder interferometer, and a microscope objective then produced an optical trap from the coaxial beams. The trap levitated and generated the coarse motion of a 10-mm polystyrene sphere used to simulate a SPM tip. The interference between the beams provided fine control of the forces and moments on the sphere. The interferometer included a piezoelectric-scanned mirror to modulate the interference pattern. The 10-mm sphere was observed to oscillate about 1 mm as the mirror and fringe pattern oscillated. The prototype tweezers proved the feasibility of constructing a more sophisticated interferometer tweezers to hold and manipulate SPM tips. The SPM tips are intended to interrogate and manipulate nanostructures. A more powerful laser will be used to generate multiple traps to hold nanostructures and SPM tips. The vibrating mirror in the interferometer will be replaced with a spatial light modulator. The modulator will allow the optical phase distribution in one leg of the interferometer to be programmed independently at 640 by 480 points for detailed control of the forces and moments. The interference patterns will be monitored to measure the motion of the SPM tips. Neuralnetwork technology will provide fast analysis of the interference patterns for diagnostic purposes and for local or remote feedback control of the tips. This effort also requires theoretical and modeling support in the form of scattering calculations for twin coherent beams from nonspherical particles.

  16. Opto-Electronic Oscillator and its Applications

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1996-01-01

    We present the theoretical and experimental results of a new class of microwave oscillators called opto-electronic oscillators (OEO). We discuss techniques of achieving high stability single mode operation and demonstrate the applications of OEO in photonic communication systems.

  17. Role of condenser iris in optical tweezer detection system.

    PubMed

    Samadi, Akbar; Reihani, S Nader S

    2011-10-15

    Optical tweezers have proven to be very useful in various scientific fields, from biology to nanotechnology. In this Letter we show, both by theory and experiment, that the interference intensity pattern at the back focal plane of the condenser consists of two distinguishable areas with anticorrelated intensity changes when the bead is moved in the axial direction. We show that the space angle defining the border of two areas linearly depends on the NA of the objective. We also propose a new octant photodiode, which could significantly improve the axial resolution compared to the commonly used quadrant photodiode technique. PMID:22002384

  18. Single molecule studies of helicases with magnetic tweezers.

    PubMed

    Hodeib, Samar; Raj, Saurabh; Manosas, M; Zhang, Weiting; Bagchi, Debjani; Ducos, Bertrand; Allemand, Jean-François; Bensimon, David; Croquette, Vincent

    2016-08-01

    Helicases are a broad family of enzymes that perform crucial functions in DNA replication and in the maintenance of DNA and RNA integrity. A detailed mechanical study of helicases on DNA and RNA is possible using single molecule manipulation methods. Among those, magnetic tweezers (or traps) present a convenient, moderate throughput assay (tens of enzymes can be monitored simultaneously) that allow for high resolution (single base-pair) studies of these enzymes in various conditions and on various substrates (double and single stranded DNA and RNA). Here we discuss various implementation of the basic assay relevant for these studies. PMID:27371121

  19. Single optical tweezers based on elliptical core fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Li; Chen, Yunhao; Liu, Zhihai; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2016-04-01

    We propose and demonstrate a new single optical tweezers based on an elliptical core fiber, which can realize the trapped yeast cell rotation with a precise and simple control. Due to the elliptical shape of the fiber core, the LP11 mode beam can propagate stably. When we rotate the fiber tip, the LP11 mode beam will also rotate along with the fiber tip, which helps to realize the trapped micro-particle rotation. By using this method, we can easily realize the rotation of the trapped yeast cells, the rotating angle of the yeast cell is same as the elliptical core fiber tip.

  20. Microfluidic system for single cell sorting with optical tweezers

    NASA Astrophysics Data System (ADS)

    Bruns, Thomas; Becsi, Laszlo; Talkenberg, Marc; Wagner, Michael; Weber, Petra; Mescheder, Ulrich; Schneckenburger, Herbert

    2010-11-01

    A microfluidic system was developed and combined with optical tweezers for single cell sorting. This system consists of a glass chip of 300 μm thickness with an etched crosswise channel structure, a silicon layer for sealing and a PMMA substrate for tubular coupling. Selected cells are trapped and moved in perpendicular direction to the main flow for recovery in special reservoirs and further evaluation (e.g. by polymerase chain reaction, PCR). In addition, maximum light doses and exposure times for maintaining cell viability were determined.

  1. Optical Tweezers for Sample Fixing in Micro-Diffraction Experiments

    SciTech Connect

    Amenitsch, H.; Rappolt, M.; Sartori, B.; Laggner, P.; Cojoc, D.; Ferrari, E.; Garbin, V.; Di Fabrizio, E.; Burghammer, M.; Riekel, Ch.

    2007-01-19

    In order to manipulate, characterize and measure the micro-diffraction of individual structural elements down to single phospholipid liposomes we have been using optical tweezers (OT) combined with an imaging microscope. We were able to install the OT system at the microfocus beamline ID13 at the ESRF and trap clusters of about 50 multi-lamellar liposomes (< 10 {mu}m large cluster). Further we have performed a scanning diffraction experiment with a 1 micrometer beam to demonstrate the fixing capabilities and to confirm the size of the liposome cluster by X-ray diffraction.

  2. Radiation effects in optoelectronic devices. [Review

    SciTech Connect

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given.

  3. Transparent heat-spreader for optoelectronic applications

    DOEpatents

    Minano, Juan Carlos; Benitez, Pablo

    2014-11-04

    An optoelectronic cooling system is equally applicable to an LED collimator or a photovoltaic solar concentrator. A transparent fluid conveys heat from the optoelectronic chip to a hollow cover over the system aperture. The cooling system can keep a solar concentrator chip at the same temperature as found for a one-sun flat-plate solar cell. Natural convection or forced circulation can operate to convey heat from the chip to the cover.

  4. Design of a high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Vankov, Alexander; Huie, Phil; Baccus, Stephen

    2005-03-01

    It has been demonstrated that electrical stimulation of the retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. However, current retinal implants provide very low resolution (just a few electrodes), whereas at least several thousand pixels would be required for functional restoration of sight. This paper presents the design of an optoelectronic retinal prosthetic system with a stimulating pixel density of up to 2500 pix mm-2 (corresponding geometrically to a maximum visual acuity of 20/80). Requirements on proximity of neural cells to the stimulation electrodes are described as a function of the desired resolution. Two basic geometries of sub-retinal implants providing required proximity are presented: perforated membranes and protruding electrode arrays. To provide for natural eye scanning of the scene, rather than scanning with a head-mounted camera, the system operates similar to 'virtual reality' devices. An image from a video camera is projected by a goggle-mounted collimated infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. The goggles are transparent to visible light, thus allowing for the simultaneous use of remaining natural vision along with prosthetic stimulation. Optical delivery of visual information to the implant allows for real-time image processing adjustable to retinal architecture, as well as flexible control of image processing algorithms and stimulation parameters.

  5. Boosting the Performance of Organic Optoelectronic Devices Using Multiple-Patterned Plasmonic Nanostructures.

    PubMed

    Lee, Yoon Ho; Lee, Tae Kyung; Song, Inho; Yu, Hojeong; Lee, Jiwon; Ko, Hyunhyub; Kwak, Sang Kyu; Oh, Joon Hak

    2016-07-01

    Multiple-patterned nanostructures prepared by synergistically combining block-copolymer lithography with nano-imprinting lithography have been used as back reflectors for enhancing light absorption in organic optoelectronic devices. The multiple-patterned electrodes have significantly boosted the performance of organic photovoltaics and photo-transistors, owed to the highly effective light scattering and plasmonic effects, extending the range of their practical applications. PMID:27146332

  6. Optical tweezers: Characterization and systems approach to high bandwidth force estimation

    NASA Astrophysics Data System (ADS)

    Sehgal, Hullas

    In recent times, the hard boundaries between classical fields of sciences have almost disappeared. There is a cross-pollination of ideas between sciences, engineering and mathematics. This work investigates a modern tool of micro-manipulation of microscopic particles that is used primarily by bio-physicists and bio-chemists for single cell, single molecule studies. This tool called the Optical Tweezers can trap microscopic dielectric particles using radiation pressure of light. Optical tweezers is increasingly being used in bio-assays as it provides a means to observe bio-molecules non invasively and offers a spatial resolution in nanometers and force resolution in femto-Newtons at millisecond timescales. In this work, physics governing the operating principle behind optical tweezers is presented, followed by a step by step procedure to build an optical tweezers system having measurement and actuation capability along with a controller logic for feedback implementation. The working of optical tweezers system is presented using a spring mass damper model and the traditional methods of optical tweezers characterization are discussed. A comprehensive view of Optical tweezers is then presented from a system theoretic perspective, underlying the limitations of traditional methods of tweezers characterization that are based on the first principle. The role of feedback in Optical tweezers is presented along with the fundamental limitations that the plant model imposes on optical tweezers performance to be used as a force sensor for fast dynamics input force. The purpose of optical tweezers as a pico-newton force probe is emphasized and a classical controls based method to improve the bandwidth of force estimation using an ad-hoc approach of system inversion is presented. The efficacy of system inversion based method in improving the force probe capability of feedback enhanced optical tweezers is validated by experimental results. It is shown experimentally that the system

  7. A tunable optoelectronic oscillator based on a tunable microwave attenuator

    NASA Astrophysics Data System (ADS)

    Wei, Zhihu; Wang, Rong; Pu, Tao; Sun, Guodan; Fang, Tao; Zheng, Jilin

    2013-10-01

    A novel realization of a wideband tunable optoelectronic oscillator (OEO) based on dual-port electrode Mach-Zehnder modulator (DMZM), a tunable microwave attenuator (TMA), and a chirped fiber Bragg grating (CFBG) is proposed and demonstrated. By simply adjusting the power ratio between the two arms of DMZM, the chirp of the DMZM will be tuned, and the center frequency of the microwave photonic filter will be tuned. When the OEO loop in the proposed system is closed, the output frequency of OEO is determined by the microwave photonic filter, and a high spectral purity microwave signal with a tunable frequency from 5.8 to 11 GHz is generated. The single sideband (SSB) phase noise of the generated signal could reach -107.4 dBc/Hz at an offset frequency of 10 kHz.

  8. Optoelectronic microdevices for combined phototherapy

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Menyaev, Yulian A.; Hamaev, V. A.; Antropov, G. M.; Waner, Milton

    2000-03-01

    In photomedicine in some of cases radiation delivery to local zones through optical fibers can be changed for the direct placing of tiny optical sources like semiconductor microlasers or light diodes in required zones of ears, nostrils, larynx, nasopharynx cochlea or alimentary tract. Our study accentuates the creation of optoelectronic microdevices for local phototherapy and functional imaging by using reflected light. Phototherapeutic micromodule consist of the light source, microprocessor and miniature optics with different kind of power supply: from autonomous with built-in batteries to remote supply by using pulsed magnetic field and supersmall coils. The developed prototype photomodule has size (phi) 8X16 mm and work duration with built-in battery and light diode up several hours at the average power from several tenths of mW to few mW. Preliminary clinical tests developed physiotherapeutic micrimodules in stomatology for treating the inflammation and in otolaryngology for treating tonsillitis and otitis are presented. The developed implanted electro- optical sources with typical size (phi) 4X0,8 mm and with remote supply were used for optical stimulation of photosensitive retina structure and electrostimulation of visual nerve. In this scheme the superminiature coil with 30 electrical integrated levels was used. Such devices were implanted in eyes of 175 patients with different vision problems during clinical trials in Institute of Eye's Surgery in Moscow. For functional imaging of skin layered structure LED arrays coupled photodiodes arrays were developed. The possibilities of this device for study drug diffusion and visualization small veins are discussed.

  9. Invited Article: A review of haptic optical tweezers for an interactive microworld exploration

    NASA Astrophysics Data System (ADS)

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 1012 to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.

  10. Invited article: a review of haptic optical tweezers for an interactive microworld exploration.

    PubMed

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 10(12) to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts. PMID:24007046

  11. Determination of motility forces on isolated chromosomes with laser tweezers

    PubMed Central

    Khatibzadeh, Nima; Stilgoe, Alexander B.; Bui, Ann A. M.; Rocha, Yesenia; Cruz, Gladys M.; Loke, Vince; Shi, Linda Z.; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina; Berns, Michael W.

    2014-01-01

    Quantitative determination of the motility forces of chromosomes during cell division is fundamental to understanding a process that is universal among eukaryotic organisms. Using an optical tweezers system, isolated mammalian chromosomes were held in a 1064 nm laser trap. The minimum force required to move a single chromosome was determined to be ≈0.8–5 pN. The maximum transverse trapping efficiency of the isolated chromosomes was calculated as ≈0.01–0.02. These results confirm theoretical force calculations of ≈0.1–12 pN to move a chromosome on the mitotic or meiotic spindle. The verification of these results was carried out by calibration of the optical tweezers when trapping microspheres with a diameter of 4.5–15 µm in media with 1–7 cP viscosity. The results of the chromosome and microsphere trapping experiments agree with optical models developed to simulate trapping of cylindrical and spherical specimens. PMID:25359514

  12. Use of optical tweezers to probe epithelial mechanosensation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    2010-01-01

    Cellular mechanosensation mechanisms have been implicated in a variety of disease states. Specifically in renal tubules, the primary cilium and associated mechanosensitive ion channels are hypothesized to play a role in water and salt homeostasis, with relevant disease states including polycystic kidney disease and hypertension. Previous experiments investigating ciliary-mediated cellular mechanosensation have used either fluid flow chambers or micropipetting to elicit a biological response. The interpretation of these experiments in terms of the ``ciliary hypothesis'' has been difficult due the spatially distributed nature of the mechanical disturbance-several competing hypotheses regarding possible roles of primary cilium, glycocalyx, microvilli, cell junctions, and actin cytoskeleton exist. I report initial data using optical tweezers to manipulate individual primary cilia in an attempt to elicit a mechanotransduction response-specifically, the release of intracellular calcium. The advantage of using laser tweezers over previous work is that the applied disturbance is highly localized. I find that stimulation of a primary cilium elicits a response, while stimulation of the apical surface membrane does not. These results lend support to the hypothesis that the primary cilium mediates transduction of mechanical strain into a biochemical response in renal epithelia.

  13. Polymer light harvesting composites for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sun, Sam-Shajing; Wang, Dan

    2015-09-01

    Polymer based optoelectronic composites and thin film devices exhibit great potential in space applications due to their lightweight, flexible shape, high photon absorption coefficients, and robust radiation tolerance in space environment. Polymer/dye composites appear promising for optoelectronics applications due to potential enhancements in both light harvesting and charge separation. In this study, the optoelectronic properties of a series of molecular dyes paired with a conjugated polymer Poly(3-hexylthiophene-2,5-diyl) (P3HT) were investigated. Specifically, the solution PL quenching coefficients (Ksv) of dye/polymer follows a descending order from dyes of Chloro(protoporphyrinato)iron(III) (Hemin), Protoporphyrin, to meso-Tetra(4-carboxyphenyl)porphine (TCPP). In optoelectronic devices made of the P3HT/dye/PCBM composites, the short circuit current densities Jsc as well as the overall power conversion efficiencies (PCE) also follow a descending order from Hemin, Protoporphyrin, to TCPP, despite Hemin exhibits the intermediate polymer/dye LUMO (lowest unoccupied molecular orbital) offset and lowest absorption coefficient as compared to the other two dyes, i.e., the cell optoelectronic efficiency did not follow the LUMO offsets which are the key driving forces for the photo induced charge separations. This study reveals that too large LUMO offset or electron transfer driving force may result in smaller PL quenching and optoelectronic conversion efficiency, this could be another experimental evidence for the Marcus electron transfer model, particularly for the Marcus `inverted region'. It appears an optimum electron transfer driving force or strong PL quenching appears more critical than absorption coefficient for optoelectronic conversion devices.

  14. Structure and dynamics of single DNA molecules manipulated by magnetic tweezers and or flow

    PubMed Central

    Leuba, Sanford H.; Wheeler, Travis B.; Cheng, Chao-Min; LeDuc, Philip R.; Fernández-Sierra, Mónica; Quiñones, Edwin

    2009-01-01

    Here we describe experiments which employ magnetic tweezers and or microfluidics to manipulate single DNA molecules. We describe the use of magnetic tweezers coupled to an inverted microscope as well as the use of a magnetic tweezers setup with an upright microscope. Using a chamber prepared via soft lithography, we also describe a microfluidic device for the manipulation of individual DNA molecules. Finally, we present some past successful examples of using these approaches to elucidate unique information about protein-nucleic acid interactions. PMID:19015032

  15. Inducing trauma into neuroblastoma cells and synthetic neural networks using optical tweezers

    NASA Astrophysics Data System (ADS)

    Schneider, Patrick William

    The laser tweezers have become a very useful tool in the fields of physics, chemistry, and biology. My intent is to use the laser tweezers to induce trauma into neuroblastoma cells, cells that resemble neural cells when treated with retinoic acid, to try to surmise what happens when neural cells and networks are disrupted or destroyed. The issues presented will deal with the obtaining, maintenance, and differentiation of the cells, as well as the inner operations of the laser tweezers themselves, and what kind of applications it has been applied to, as well as to my work in this project.

  16. TweezPal - Optical tweezers analysis and calibration software

    NASA Astrophysics Data System (ADS)

    Osterman, Natan

    2010-11-01

    Optical tweezers, a powerful tool for optical trapping, micromanipulation and force transduction, have in recent years become a standard technique commonly used in many research laboratories and university courses. Knowledge about the optical force acting on a trapped object can be gained only after a calibration procedure which has to be performed (by an expert) for each type of trapped objects. In this paper we present TweezPal, a user-friendly, standalone Windows software tool for optical tweezers analysis and calibration. Using TweezPal, the procedure can be performed in a matter of minutes even by non-expert users. The calibration is based on the Brownian motion of a particle trapped in a stationary optical trap, which is being monitored using video or photodiode detection. The particle trajectory is imported into the software which instantly calculates position histogram, trapping potential, stiffness and anisotropy. Program summaryProgram title: TweezPal Catalogue identifier: AEGR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 44 891 No. of bytes in distributed program, including test data, etc.: 792 653 Distribution format: tar.gz Programming language: Borland Delphi Computer: Any PC running Microsoft Windows Operating system: Windows 95, 98, 2000, XP, Vista, 7 RAM: 12 Mbytes Classification: 3, 4.14, 18, 23 Nature of problem: Quick, robust and user-friendly calibration and analysis of optical tweezers. The optical trap is calibrated from the trajectory of a trapped particle undergoing Brownian motion in a stationary optical trap (input data) using two methods. Solution method: Elimination of the experimental drift in position data. Direct calculation of the trap stiffness from the positional

  17. Optoelectronic Oscillator Based on Polarization Modulation

    NASA Astrophysics Data System (ADS)

    Pan, Shilong; Zhou, Pei; Tang, Zhenzhou; Zhang, Yamei; Zhang, Fangzheng; Zhu, Dan

    2015-07-01

    A polarization modulator together with a polarizer can implement phase modulation, intensity modulation with tunable chirp, and frequency-doubling intensity modulation. If an optical filter is incorporated, frequency-quadrupling and frequency-sextupling intensity modulations and a microwave photonic phase shifter can also be realized. By using a polarization modulator to replace the intensity modulator in an optoelectronic oscillator, various new features are enabled. In this article, an analytical model for the polarization modulator-based systems is established. The recent development in employing polarization modulators for constructing optoelectronic oscillators is discussed. The emerging applications enabled by the polarization modulator-based optoelectronic oscillators and the possible future development are also discussed.

  18. Bio-inspired networks for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Han, Bing; Huang, Yuanlin; Li, Ruopeng; Peng, Qiang; Luo, Junyi; Pei, Ke; Herczynski, Andrzej; Kempa, Krzysztof; Ren, Zhifeng; Gao, Jinwei

    2014-11-01

    Modern optoelectronics needs development of new materials characterized not only by high optical transparency and electrical conductivity, but also by mechanical strength, and flexibility. Recent advances employ grids of metallic micro- and nanowires, but the overall performance of the resulting material composites remains unsatisfactory. In this work, we propose a new strategy: application of natural scaffoldings perfected by evolution. In this context, we study two bio-inspired networks for two specific optoelectronic applications. The first network, intended for solar cells, light sources and similar devices, has a quasi-fractal structure and is derived directly from a chemically extracted leaf venation system. The second network is intended for touch screens and flexible displays, and is obtained by metalizing a spider’s silk web. We demonstrate that each of these networks attain an exceptional optoelectonic and mechanical performance for its intended purpose, providing a promising direction in the development of more efficient optoelectronic devices.

  19. Organics in optoelectronics: advances and roadmap

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2006-02-01

    Over a four-year period from 2001 to 2005, the Microphotonics Center Industry Consortium at MIT evaluated the vast array of new technologies that have disrupted the telecommunications industry. As part of its mission, the consortium researched a variety of communications-related technical and business topics, presented recommendations for the rational restructuring of the industry, and developed a 30-year communications technology roadmap (CTR). The CTR program was guided by industry-led Technology Working Groups (TWGs), with the support of MIT faculty and students. We present the findings of the Organics in Optoelectronics TWG in terms of advances in organic-material based optoelectronic integrated circuits (OEICs), and we propose a roadmap for optoelectronic integration enabled by hybrid organic-inorganic OEICs.

  20. Opto-electronic oscillators having optical resonators

    NASA Technical Reports Server (NTRS)

    Yao, Xiaotian Steve (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor)

    2003-01-01

    Systems and techniques of incorporating an optical resonator in an optical part of a feedback loop in opto-electronic oscillators. This optical resonator provides a sufficiently long energy storage time and hence to produce an oscillation of a narrow linewidth and low phase noise. Certain mode matching conditions are required. For example, the mode spacing of the optical resonator is equal to one mode spacing, or a multiplicity of the mode spacing, of an opto-electronic feedback loop that receives a modulated optical signal and to produce an electrical oscillating signal.

  1. Mechanical properties of a giant liposome studied using optical tweezers

    NASA Astrophysics Data System (ADS)

    Shitamichi, Yoko; Ichikawa, Masatoshi; Kimura, Yasuyuki

    2009-09-01

    The mechanical properties of a micrometer-sized giant liposome are studied by deforming it from the inside using dual-beam optical tweezers. As the liposome is extended, its shape changes from a sphere to a lemon shape, and finally, a tubular part is generated. The surface tension σ and the bending rigidity κ of the lipid membrane are obtained from the measured force-extension curve. In a one-phase liposome, it was found that σ increases as the charged component increases but κ remains approximately constant. In a two-phase liposome, the characteristic deformation and the force-extension curve differ from those observed for the one-phase liposome.

  2. Skewed Brownian Fluctuations in Single-Molecule Magnetic Tweezers

    PubMed Central

    Burnham, Daniel R.; De Vlaminck, Iwijn; Henighan, Thomas; Dekker, Cees

    2014-01-01

    Measurements in magnetic tweezers rely upon precise determination of the position of a magnetic microsphere. Fluctuations in the position due to Brownian motion allows calculation of the applied force, enabling deduction of the force-extension response function for a single DNA molecule that is attached to the microsphere. The standard approach relies upon using the mean of position fluctuations, which is valid when the microsphere axial position fluctuations obey a normal distribution. However, here we demonstrate that nearby surfaces and the non-linear elasticity of DNA can skew the distribution. Through experiment and simulations, we show that such a skewing leads to inaccurate position measurements which significantly affect the extracted DNA extension and mechanical properties, leading to up to two-fold errors in measured DNA persistence length. We develop a simple, robust and easily implemented method to correct for such mismeasurements. PMID:25265383

  3. Investigating collagen self-assembly with optical tweezers microrheology

    NASA Astrophysics Data System (ADS)

    Forde, Nancy; Shayegan, Marjan; Altindal, Tuba

    Collagen is the fundamental structural protein in vertebrates. Assembled from individual triple-helical proteins to make strong fibres, collagen is a beautiful example of a hierarchical self-assembling system. Using optical tweezers to perform microrheology measurements, we explore the dynamics of interactions between collagens responsible for their self-assembly and examine the development of heterogeneous mechanics during assembly into fibrillar gels. Telopeptides, short non-helical regions that flank the triple helix, have long been known to facilitate fibril self-assembly. We find that their removal not only slows down fibril nucleation but also results in a significant frequency-dependent reduction in the elastic modulus of collagens in solution. We interpret these results in terms of a model in which telopeptides facilitate transient intermolecular interactions, which enhance network connectivity in solution and lead to more rapid assembly in fibril-forming conditions. Current address: Department of Physics, McGill University.

  4. Using Optical Tweezers to Study Cell Mechanics during Airway Reopening

    NASA Astrophysics Data System (ADS)

    Yalcin, Huseyin; Wang, Jing; Ghadiali, Samir; Ou-Yang, H. Daniel

    2006-03-01

    Patients suffering from the acute respiratory distress syndrome (ARDS) must be mechanically ventilated in order to survive. However, these ventilation protocols may generate injurious hydrodynamic stresses especially during low tidal volume (VT) ventilation when the flow of micron-sized air bubbles displace the surrounding liquid. In-vitro studies in our lab revealed that microbubble flows can severally damage lung epithelial cells (EC). The degree of injury was elevated for sub-confluent monolayers in small channel heights. Under these conditions, the micromechanics of individual EC may influence the degree of cellular injury. To investigate the role of cell mechanics, we used an oscillating Optical Tweezers (OT) technique to measure the intrinsic mechanical properties of EC before and after the flow of microbubbles. Knowledge of how the EC's micromechanical properties influence cell viability may lead to the development of novel treatment therapies that enhance the EC's ability to withstand injurious hydrodynamic stresses during ventilation treatment.

  5. A tunable line optical tweezers instrument with nanometer spatial resolution.

    PubMed

    Rogers, W Benjamin; Crocker, John C

    2014-04-01

    We describe a simple scanning-line optical tweezers instrument for measuring pair interactions between micrometer-sized colloidal particles. Our instrument combines a resonant scanning mirror and an acousto-optic modulator. The resonant scanning mirror creates a time-averaged line trap whose effective one-dimensional intensity profile, and corresponding trapping potential energy landscape can be programmed using the acousto-optic modulator. We demonstrate control over the confining potential by designing and measuring a family of one-dimensional harmonic traps. By adjusting the spring constant, we balance scattering-induced repulsive forces between a pair of trapped particles, creating a flat potential near contact that facilitates interaction measurements. We also develop a simple method for extracting the out-of-plane motion of trapped particles from their relative brightness, allowing us to resolve their relative separation to roughly 1 nm. PMID:24784615

  6. Combined holographic-mechanical optical tweezers: construction, optimization, and calibration.

    PubMed

    Hanes, Richard D L; Jenkins, Matthew C; Egelhaaf, Stefan U

    2009-08-01

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45 degrees, smaller angles give a full 2pi phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method. PMID:19725658

  7. Combined holographic-mechanical optical tweezers: Construction, optimization, and calibration

    SciTech Connect

    Hanes, Richard D. L.; Jenkins, Matthew C.; Egelhaaf, Stefan U.

    2009-08-15

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45 deg., smaller angles give a full 2{pi} phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method.

  8. Near-field-magnetic-tweezer manipulation of single DNA molecules.

    PubMed

    Yan, Jie; Skoko, Dunja; Marko, John F

    2004-07-01

    We have developed an instrument for micromanipulation of single DNA molecules end labeled with 3-microm-diameter paramagnetic particles. A small, permanent magnet that can be moved as close as 10 microm to the particle being manipulated can generate forces in excess of 200 pN, significantly larger than obtained in other recent "magnetic-tweezer" studies. Our instrument generates these forces in the focal plane of a microscope objective, allowing straightforward real-time observation of molecule extension with a position resolution of approximately 30 nm. We show how our magnetic manipulation system can be combined with manipulation and force measurement using glass micropipettes to allow rapid switching between measurements in fixed-force and fixed-extension ensembles. We demonstrate the use of our system to study formation of DNA loops by an enzyme which strongly binds two copies of a specific 6-base-pair sequence. PMID:15324086

  9. Microrheology Using Optical Tweezers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Boatwright, Thomas; Levine, Alex; Dennin, Michael

    2010-11-01

    Microrheological techniques have been used successfully to determine mechanical properties of materials important in cellular structure. Also critical to cellular mechanical functions are biological membranes. Many aspects of biological membranes can be modeled using Langmuir monolayers, which are single layers surfactants at the air-water interface. The macroscopic mechanical properties of Langmuir monolayers have been extensively characterized. In contrast to macroscopic measurements, we report on experimental methods for studying the rheological properties of Langmuir monolayers on the micron scale. A water immersion optical tweezers system is used to trap ˜1 micron diameter beads in a monolayer. The passive motion of the trapped beads is recorded at high frequency and the complex shear modulus is calculated. Preliminary microrheological data of a fatty acid monolayer showing dependence on surface pressure will be presented. Experimental obstacles will also be discussed.

  10. Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers.

    PubMed

    Lin, Pin-Tso; Chu, Heng-Yi; Lu, Tsan-Wen; Lee, Po-Tsung

    2014-12-21

    We propose and demonstrate a trapping configuration integrating coupled waveguides and gold bowtie structures to form near-field plasmonic tweezers. Compared with excitation from the top, waves coupled through the waveguide can excite specific bowties on the waveguide and trap particles precisely. Thus this scheme is more efficient and compact, and will assist the circuit design on a chip. With lightning rod and gap effects, the gold bowtie structures can generate highly concentrated resonant fields and induce trapping forces as strong as 652 pN W(-1) on particles with diameters as small as 20 nm. This trapping capability is investigated numerically and verified experimentally with observations of the transport, trapping, and release of particles in the system. PMID:25288366

  11. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  12. iTweezers: optical micromanipulation controlled by an Apple iPad

    NASA Astrophysics Data System (ADS)

    Bowman, R. W.; Gibson, G.; Carberry, D.; Picco, L.; Miles, M.; Padgett, M. J.

    2011-04-01

    The 3D interactive manipulation of multiple particles with holographic optical tweezers is often hampered by the control system. We use a multi-touch interface implemented on an Apple iPad to overcome many of the limitations of mouse-based control, and demonstrate an elegant and intuitive interface to multi-particle manipulation. This interface connects to the tweezers system hardware over a wireless network, allowing it to function as a remote monitor and control device.

  13. Measurement of interaction forces between red blood cells in aggregates by optical tweezers

    SciTech Connect

    Maklygin, A Yu; Priezzhev, A V; Karmenian, A; Nikitin, Sergei Yu; Obolenskii, I S; Lugovtsov, Andrei E; Kisun Li

    2012-06-30

    We have fabricated double-beam optical tweezers and demonstrated the possibility of their use for measuring the interaction forces between red blood cells (erythrocytes). It has been established experimentally that prolonged trapping of red blood cells in a tightly focused laser beam does not cause any visible changes in their shape or size. We have measured the interaction between red blood cells in the aggregate, deformed by optical tweezers.

  14. Measuring red blood cell aggregation forces using double optical tweezers.

    PubMed

    Fernandes, Heloise P; Fontes, Adriana; Thomaz, André; Castro, Vagner; Cesar, Carlos L; Barjas-Castro, Maria L

    2013-04-01

    Classic immunohematology approaches, based on agglutination techniques, have been used in manual and automated immunohematology laboratory routines. Red blood cell (RBC) agglutination depends on intermolecular attractive forces (hydrophobic bonds, Van der Walls, electrostatic forces and hydrogen bonds) and repulsive interactions (zeta potential). The aim of this study was to measure the force involved in RBC aggregation using double optical tweezers, in normal serum, in the presence of erythrocyte antibodies and associated to agglutination potentiator solutions (Dextran, low ionic strength solution [LISS] and enzymes). The optical tweezers consisted of a neodymium:yattrium aluminium garnet (Nd:YAG) laser beam focused through a microscope equipped with a minicam, which registered the trapped cell image in a computer where they could be analyzed using a software. For measuring RBC aggregation, a silica bead attached to RBCs was trapped and the force needed to slide one RBC over the other, as a function of the velocities, was determined. The median of the RBC aggregation force measured in normal serum (control) was 1 × 10(-3) (0.1-2.5) poise.cm. The samples analyzed with anti-D showed 2 × 10(-3) (1.0-4.0) poise.cm (p < 0.001). RBC diluted in potentiator solutions (Dextran 0.15%, Bromelain and LISS) in the absence of erythrocyte antibodies, did not present agglutination. High adherence was observed when RBCs were treated with papain. Results are in agreement with the imunohematological routine, in which non-specific results are not observed when using LISS, Dextran and Bromelain. Nevertheless, false positive results are frequently observed in manual and automated microplate analyzer using papain enzyme. The methodology proposed is simple and could provide specific information with the possibility of meansuration regarding RBC interaction. PMID:23402665

  15. Extending the Range for Force Calibration in Magnetic Tweezers

    PubMed Central

    Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf

    2015-01-01

    Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733

  16. Extending the range for force calibration in magnetic tweezers.

    PubMed

    Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J; Seidel, Ralf

    2015-05-19

    Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733

  17. Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.

    PubMed

    Yang, Shih-Mo; Tseng, Sheng-Yang; Chen, Hung-Po; Hsu, Long; Liu, Cheng-Hsien

    2013-10-01

    A laser diffraction-induced dielectrophoresis (DEP) phenomenon for the patterning and manipulation of individual HepG2 cells and polystyrene beads via positive/negative DEP forces is reported in this paper. The optoelectronic substrate was fabricated using an organic photoconductive material, TiOPc, via a spin-coating process on an indium tin oxide glass surface. A piece of square aperture array grid grating was utilized to transform the collimating He-Ne laser beam into the multi-spot diffraction pattern which forms the virtual electrodes as the TiOPc-coating surface was illuminated by the multi-spot diffraction light pattern. HepG2 cells were trapped at the spot centers and polystyrene beads were trapped within the dim region of the illuminated image. The simulation results of light-induced electric field and a Fresnel diffraction image illustrated the distribution of trapped microparticles. The HepG2 morphology change, adhesion, and growth during a 5-day culture period demonstrated the cell viability through our manipulation. The power density inducing DEP phenomena, the characteristics of the thin TiOPc coating layer, the operating ac voltage/frequency, the sandwiched medium, the temperature rise due to the ac electric fields and the illuminating patterns are discussed in this paper. This concept of utilizing laser diffraction images to generate virtual electrodes on our TiOPc-based optoelectronic DEP chip extends the applications of optoelectronic dielectrophoretic manipulation. PMID:23925640

  18. Efficient Optoelectronics Teaching in Undergraduate Engineering Curriculum

    ERIC Educational Resources Information Center

    Matin, M. A.

    2005-01-01

    The Engineering Department's vision for undergraduate education for the next century is to develop a set of laboratory experiences that are thoughtfully sequenced and integrated to promote the full development of students in all courses. Optoelectronics is one of the most important and most demanding courses in Electrical and Computer Engineering.…

  19. Using optoelectronic sensors in the system PROTEUS

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Szustakowski, M.; Ciurapinski, W.; Piszczek, M.

    2010-10-01

    The paper presents the concept of optoelectronic devices for human protection in rescue activity. The system consists of an ground robots with predicted sensor. The multisensor construction of the system ensures significant improvement of security of using on-situ like chemical or explosive sensors. The article show a various scenario of use for individual sensor in system PROTEUS.

  20. Functionalized polyfluorenes for use in optoelectronic devices

    DOEpatents

    Chichak, Kelly Scott; Lewis, Larry Neil; Cella, James Anthony; Shiang, Joseph John

    2011-11-01

    The present invention relates to process comprising reacting a polyfluorenes comprising at least one structural group of formula I ##STR00001## with an iridium (III) compound of formula II ##STR00002## The invention also relates to the polyfluorenes, which are products of the reaction, and the use of the polyfluorenes in optoelectronic devices.

  1. GaAs optoelectronic neuron arrays

    NASA Technical Reports Server (NTRS)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  2. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  3. Silicon photomultiplier-based optoelectronic mixing

    NASA Astrophysics Data System (ADS)

    Yishuo, Song; Xiaoping, Du; Zhaoyang, Zeng; Shengjun, Wang

    2013-09-01

    Silicon photomultiplier (SiPM)-based optoelectronic mixing (OEM) is studied for the first time. The validity of SiPM-based OEM is experimentally verified. Compared with the avalanche photodiodes-based OEM, the SiPM-based OEM is less noisy and easy to realize for its low voltage operation and high responsivity.

  4. Optoelectronic Inner-Product Neural Associative Memory

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1993-01-01

    Optoelectronic apparatus acts as artificial neural network performing associative recall of binary images. Recall process is iterative one involving optical computation of inner products between binary input vector and one or more reference binary vectors in memory. Inner-product method requires far less memory space than matrix-vector method.

  5. OLED-on-CMOS integration for optoelectronic sensor applications

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Kreye, Daniel; Reckziegel, Sven; Törker, Michael; Grillberger, Christiane; Amelung, Jörg

    2007-02-01

    Highly-efficient, low-voltage organic light emitting diodes (OLEDs) are well suitable for post-processing integration onto the top metal layer of CMOS devices. This has been proven for OLED microdisplays so far. Moreover, OLEDon- CMOS technology may also be excellently suitable for various optoelectronic sensor applications by combining highly efficient emitters, use of low-cost materials and cost-effective manufacturing together with silicon-inherent photodetectors and CMOS circuitry. The use of OLEDs on CMOS substrates requires a top-emitting, low-voltage and highly efficient OLED structure. By reducing the operating voltage for the OLED below 5V, the costs for the CMOS process can be reduced, because a process without high-voltage option can be used. Red, orange, white, green and blue OLED-stacks with doped charge transport layers were prepared on different dualmetal layer CMOS test substrates without active transistor area. Afterwards, the different devices were measured and compared with respect to their performance (current, luminance, voltage, luminance dependence on viewing angle, optical outcoupling etc.). Low operating voltages of 2.4V at 100cd/m2 for the red p-i-n type phosphorescent emitting OLED stack, 2.5V at 100cd/m2 for the orange phosphorescent emitting OLED stack and 3.2V at 100cd/m2 for the white fluorescent emitting OLED have been achieved here. Therefore, those OLED stacks are suitable for use in a CMOS process even within a regular 5V process option. Moreover, the operating voltage achieved so far is expected to be reduced further when using different top electrode materials. Integrating such OLEDs on a CMOS-substrate provide a preferable choice for silicon-based optical microsystems targeted towards optoelectronic sensor applications, as there are integrated light barriers, optocouplers, or lab-onchip devices.

  6. Automated multi-parametric sorting of micron-sized particles via multi-trap laser tweezers

    NASA Astrophysics Data System (ADS)

    Kaputa, Daniel S.

    The capabilities of laser tweezers have rapidly expanded since the first demonstration by Ashkin and co-workers in 1970 of the ability to trap particles using optical energy. Laser tweezers have been used to measure piconewton forces in many biological and material science application, sort bacteria, measure DNA bond strength, and even perform microsurgery. The laser tweezers system developed for this dissertation foreshadows the next generation of laser tweezer systems that provide automated particle sorted based upon multiple criteria. Many laser tweezer sorting applications today entail the operator sorting cells from a bulk sample, one by one. This dissertation demonstrates the technologies of pattern recognition and image processing that allow for an entire microscope slide to be sorted without any operator intervention. We already live in an automated world where the cars we drive are built by machines instead of humans. The technology is there, and the only factors limiting the advancements of fully automated biological instrumentation is the lack of developers with the appropriate knowledge sets. This dissertation introduces the concept of sorting particles via a multi-parametric approach where several parameters such as size, fluorescence, and Raman spectra are used as sorting criteria. Since the advent of laser tweezers, several groups have demonstrated the ability to sort cells and other particle by size, or by fluorescence, or by any other parameter, but to our knowledge there does not exist a laser tweezer sorting system that can sort particles based upon multiple parameters. Sorting via a single parameter can be a severe limitation as the method lacks the robustness and class specificity that exists when sorting based upon multiple parameters. Simply put, it makes more sense to determine the worth of a baseball card by considering it's condition as well as it's age, rather then solely upon its condition. By adding another parameter such as the name of

  7. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  8. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  9. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  10. Computer-automated program for calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Taylor, C. D.; Foley, T. W.; Chang, A. N.; Mowa, S.; Burris, J. L.; Hester, B. C.

    2012-10-01

    An optical tweezers (OT) system uses focused laser light to contain and manipulate nano-scale to micro-scale particles. Trap stiffness is the quantitative measurement of the ability to trap a particle. For some techniques, this measurement depends on an accurate knowledge of the particle's position in time. A position sensing detector (PSD) is used to track particle motion by detecting laser light from the trapping region. The PSD outputs voltages corresponding to the x- and y-coordinates of particle motion, providing a means of knowing the location of the particle in time. An OT system requires a calibration to convert the measured voltages into accurate distances. This process is time-consuming and frequently needs to be repeated, however, with the growing availability of computer-aided data acquisition and control, the complete process can now be automated, reducing time spent by researchers and increasing level of accuracy of future measurements. We have developed a program written in LabVIEW that will, after initialization, 1) via image processing, calibrate the pixel size of the camera, 2) calibrate the optical tweezer position detector by controlling a motorized mirror to move a trapped bead through a detection laser with simultaneous position detector signal measurements, 3) re-align the trap beam and the detection beam by motorized mirror control, 4) measure position data for the same trapped particle being illuminated by the detection beam, and 5) analyze the position signal via the power spectrum method and equipartition method to give two trap stiffness values for comparison. Previous automated calibration methods require additional and sometimes costly equipment as well as some precalibration of stage motion or pixel size. Here, the user only needs to input the known size of the bead (provided by the manufacturer) into the program, insert their prepared slide into their microscope, input some parameters and make selections, and click "start" in order

  11. Working Electrodes

    NASA Astrophysics Data System (ADS)

    Komorsky-Lovrić, Šebojka

    In electrochemistry an electrode is an electronic conductor in contact with an ionic conductor. The electronic conductor can be a metal, or a semiconductor, or a mixed electronic and ionic conductor. The ionic conductor is usually an electrolyte solution; however, solid electrolytes and ionic melts can be used as well. The term "electrode" is also used in a technical sense, meaning the electronic conductor only. If not specified otherwise, this meaning of the term "electrode" is the subject of the present chapter. In the simplest case the electrode is a metallic conductor immersed in an electrolyte solution. At the surface of the electrode, dissolved electroactive ions change their charges by exchanging one or more electrons with the conductor. In this electrochemical reaction both the reduced and oxidized ions remain in solution, while the conductor is chemically inert and serves only as a source and sink of electrons. The technical term "electrode" usually also includes all mechanical parts supporting the conductor (e.g., a rotating disk electrode or a static mercury drop electrode). Furthermore, it includes all chemical and physical modifications of the conductor, or its surface (e.g., a mercury film electrode, an enzyme electrode, and a carbon paste electrode). However, this term does not cover the electrolyte solution and the ionic part of a double layer at the electrode/solution interface. Ion-selective electrodes, which are used in potentiometry, will not be considered in this chapter. Theoretical and practical aspects of electrodes are covered in various books and reviews [1-9].

  12. Technologies for highly parallel optoelectronic integrated circuits

    SciTech Connect

    Lear, K.L.

    1994-10-01

    While summarily reviewing the range of optoelectronic integrated circuits (OEICs), this paper emphasizes technology for highly parallel optical interconnections. Market volume and integration suitability considerations highlight board-to-board interconnects within systems as an initial insertion point for large OEIC production. The large channel count of these intrasystem interconnects necessitates two-dimensional laser transmitter and photoreceiver arrays. Surface normal optoelectronic components are promoted as a basis for OEICs in this application. An example system is discussed that uses vertical cavity surface emitting lasers for optical buses between layers of stacked multichip modules. Another potentially important application for highly parallel OEICs is optical routing or packet switching, and examples of such systems based on smart pixels are presented.

  13. Optoelectronic Systems Trained With Backpropagation Through Time.

    PubMed

    Hermans, Michiel; Dambre, Joni; Bienstman, Peter

    2015-07-01

    Delay-coupled optoelectronic systems form promising candidates to act as powerful information processing devices. In this brief, we consider such a system that has been studied before in the context of reservoir computing (RC). Instead of viewing the system as a random dynamical system, we see it as a true machine-learning model, which can be fully optimized. We use a recently introduced extension of backpropagation through time, an optimization algorithm originally designed for recurrent neural networks, and use it to let the network perform a difficult phoneme recognition task. We show that full optimization of all system parameters of delay-coupled optoelectronics systems yields a significant improvement over the previously applied RC approach. PMID:25137733

  14. Widely tunable opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Maxin, J.; Pillet, G.; Morvan, L.; Dolfi, D.

    2012-03-01

    We present here a widely tunable opto-electronic oscillator (OEO) based on an Er,Yb:glass Dual Frequency Laser (DFL) at 1.53 μm. The beatnote is stabilized with an optical fiber delay line. Compared to classical optoelectronic oscillators, this architecture does not need RF filter and offers a wide tunability. We measured a reduction of 67 dB of the phase noise power spectral density (PSD) at 10 Hz of the carrier optical fiber leading to a level of -27 dBc/Hz with only 100 m optical fiber. Moreover, the scheme offers a microwave signal tunability from 2.5 to 5.5 GHz limited by the RF components.

  15. Optoelectronic memory using two-dimensional materials.

    PubMed

    Lei, Sidong; Wen, Fangfang; Li, Bo; Wang, Qizhong; Huang, Yihan; Gong, Yongji; He, Yongmin; Dong, Pei; Bellah, James; George, Antony; Ge, Liehui; Lou, Jun; Halas, Naomi J; Vajtai, Robert; Ajayan, Pulickel M

    2015-01-14

    An atomically thin optoelectronic memory array for image sensing is demonstrated with layered CuIn7Se11 and extended to InSe and MoS2 atomic layers. Photogenerated charge carriers are trapped and subsequently retrieved from the potential well formed by gating a 2D material with Schottky barriers. The atomically thin layered optoelectronic memory can accumulate photon-generated charges during light exposure, and the charges can be read out later for data processing and permanent storage. An array of atomically thin image memory pixels was built to illustrate the potential of fabricating large-scale 2D material-based image sensors for image capture and storage. PMID:25517502

  16. Fiber optical tweezers for microscale and nanoscale particle manipulation and force sensing

    NASA Astrophysics Data System (ADS)

    Liu, Yuxiang

    2011-12-01

    Optical tweezers have been an important tool in biology and physics for studying single molecules and colloidal systems. Most of current optical tweezers are built with microscope objectives, which are: i) expensive, ii) bulky and hard to integrate, iii) sensitive to environmental fluctuations, iv) limited in terms of working distances from the substrate, and v) rigid with the requirements on the substrate (transparent substrate made with glass and with a fixed thickness). These limitations of objective-based optical tweezers prevent them from being miniaturized. Fiber optical tweezers can provide a solution for cost reduction and miniaturization, and these optical tweezers can be potentially used in microfluidic systems. However, the existing fiber optical tweezers have the following limitations: i) low trapping efficiency due to weakly focused beams, ii) lack of the ability to control the positions of multiple particles simultaneously, and iii) limited functionalities. The overall objective of this dissertation work is to further the fundamental understanding of fiber optical tweezers through experimental study and modeling, and to develop novel fiber optical tweezers systems to enhance the capability and functionalities of fiber optical tweezers as microscale and nanoscale manipulators/sensors. The contributions of this dissertation work are summarized as follows. i) An enhanced understanding of the inclined dual-fiber optical tweezers (DFOTs) system has been achieved. Stable three dimensional (3D) optical trapping of a single micron-sized particle has been experimentally demonstrated. This is the first time that the trapping efficiency has been calibrated and the stiffness of the trap has been obtained in the experiments, which has been carried out by using two methods: the drag force method and power spectrum analysis. Such calibration enables the system to be used as a picoNewton-level force sensor in addition to a particle manipulator. The influence of

  17. Optoelectronic Ranging Sensor For Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    1991-01-01

    Proposed optoelectronic ranging system for robotic vehicle provides information on distances to points in natural scene by use of pinhole mask to sample texture in scene and determines whether portion of scene corresponds to each pinhole in focus (whether it lies at focal distance). System has no moving parts, requires little computation, and consumes only few watts of power. Passive in sense that it does not include any artificial sources of light, relying instead on sunlight reflected from scene.

  18. Optoelectronic Instruments For Analysis Of Surface Defects

    NASA Technical Reports Server (NTRS)

    Collins, J. David; Mueller, Robert P.; Davis, Richard M.; Gleman, Stuart M.; Hallberg, Carl G.; Thayer, Stephen W.; Thompson, David L.; Thompson, James E.

    1995-01-01

    Family of portable optoelectronic instruments developed to facilitate inspection of surface flaws like gouges, scratches, raised metal, and dents on large metal workpieces subject to surface-finish requirements. Instrument brought to workpiece and semiautomatically makes electronic record of three-dimensional shape of flaw. Entire inspection process takes only minutes. Prototype instrument includes structured-light microscope. Concept involves projection of known pattern of light onto surface inspected. Topography of surface determined from distortion of pattern as viewed through instrument.

  19. New bridged oligofuran for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Tibaoui, T.; Ayachi, S.; Chemek, M.; Alimi, K.

    2015-05-01

    Based on density functional theory (DFT) calculations, we have investigated the structural and optoelectronic properties of oligofuran (OFu)-bridged systems via useful electron donating groups (>S, >CH2, >SiH2 and >NH) and electron accepting ones (>Cdbnd C(CN)2, >Cdbnd O, >Cdbnd S and >Cdbnd CH2). The results were then discussed and compared with those obtained with the corresponding unbridged form. It was found that the optical band gap of OFu decreases significantly when it is bridged by >NH group arranged through an alternating way with >Cdbnd S or >Cdbnd C(CN)2 group, which gives bridged polyfuran (PFu) with desirable opto-electronic properties. Further, an intra-molecular charge transfer for the systems was undertaken in support of time-dependent DFT (TD-DFT) and semi-empirical ZINDO calculations. In this frame, we have shown that >Cdbnd C(CN)2 and >S bridging groups leads to a new oligomer possessing favorable optoelectronic parameter for its use as an active layer in organic photovoltaic cells.

  20. Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene

    SciTech Connect

    Huang, Bing; Yoon, Mina; Smith, Sean C; Wei, Su-Huai; Deng, Hui-Xiong; Liu, Feng; Lee, Hoonkyung; Sumpter, Bobby G

    2014-01-01

    Silicon is arguably the best electronic material, but not as good an optoelectronic material. By employing first-principles calculations and the cluster-expansion approach, we discover that hydrogenated bilayer silicene (BS) shows promising potential as a new kind of optoelectronic material. Most significantly, hydrogenation converts the intrinsic BS, a strongly indirect semiconductor, into a direct-gap semiconductor with a widely tunable bandgap. At low hydrogen concentrations, four ground states of single- and double-side hydrogenated BS are characterized with dipole-allowed direct (or quasidirect) bandgaps in the desirable range from 1 to 1.5 eV, suitable for solar applications. At high hydrogen concentrations, three well-ordered double-side hydrogenated BS structures exhibit direct (or quasidirect) bandgaps in the color range of red, green, and blue, affording white light-emitting diodes. Our findings open opportunities to search for new silicon-based light-absorption and light-emitting materials for earth-abundant, high-efficiency, optoelectronic applications.

  1. New bridged oligofuran for optoelectronic applications.

    PubMed

    Tibaoui, T; Ayachi, S; Chemek, M; Alimi, K

    2015-05-01

    Based on density functional theory (DFT) calculations, we have investigated the structural and optoelectronic properties of oligofuran (OFu)-bridged systems via useful electron donating groups (>S, >CH2, >SiH2 and >NH) and electron accepting ones (>CC(CN)2, >CO, >CS and >CCH2). The results were then discussed and compared with those obtained with the correspondingunbridged form. It was found that the optical band gap of OFu decreases significantly when it is bridged by >NH group arranged through an alternating way with >CS or >CC(CN)2 group, which gives bridged polyfuran (PFu) with desirable opto-electronic properties. Further, an intra-molecular charge transfer for the systems was undertaken in support of time-dependent DFT (TD-DFT) and semi-empirical ZINDO calculations. In this frame, we have shown that >CC(CN)2 and >S bridging groups leads to a new oligomer possessing favorable optoelectronic parameter for its use as an active layer in organic photovoltaic cells. PMID:25698440

  2. Automatic real time evaluation of red blood cell elasticity by optical tweezers

    NASA Astrophysics Data System (ADS)

    Moura, Diógenes S.; Silva, Diego C. N.; Williams, Ajoke J.; Bezerra, Marcos A. C.; Fontes, Adriana; de Araujo, Renato E.

    2015-05-01

    Optical tweezers have been used to trap, manipulate, and measure individual cell properties. In this work, we show that the association of a computer controlled optical tweezers system with image processing techniques allows rapid and reproducible evaluation of cell deformability. In particular, the deformability of red blood cells (RBCs) plays a key role in the transport of oxygen through the blood microcirculation. The automatic measurement processes consisted of three steps: acquisition, segmentation of images, and measurement of the elasticity of the cells. An optical tweezers system was setup on an upright microscope equipped with a CCD camera and a motorized XYZ stage, computer controlled by a Labview platform. On the optical tweezers setup, the deformation of the captured RBC was obtained by moving the motorized stage. The automatic real-time homemade system was evaluated by measuring RBCs elasticity from normal donors and patients with sickle cell anemia. Approximately 150 erythrocytes were examined, and the elasticity values obtained by using the developed system were compared to the values measured by two experts. With the automatic system, there was a significant time reduction (60 × ) of the erythrocytes elasticity evaluation. Automated system can help to expand the applications of optical tweezers in hematology and hemotherapy.

  3. Automatic real time evaluation of red blood cell elasticity by optical tweezers.

    PubMed

    Moura, Diógenes S; Silva, Diego C N; Williams, Ajoke J; Bezerra, Marcos A C; Fontes, Adriana; de Araujo, Renato E

    2015-05-01

    Optical tweezers have been used to trap, manipulate, and measure individual cell properties. In this work, we show that the association of a computer controlled optical tweezers system with image processing techniques allows rapid and reproducible evaluation of cell deformability. In particular, the deformability of red blood cells (RBCs) plays a key role in the transport of oxygen through the blood microcirculation. The automatic measurement processes consisted of three steps: acquisition, segmentation of images, and measurement of the elasticity of the cells. An optical tweezers system was setup on an upright microscope equipped with a CCD camera and a motorized XYZ stage, computer controlled by a Labview platform. On the optical tweezers setup, the deformation of the captured RBC was obtained by moving the motorized stage. The automatic real-time homemade system was evaluated by measuring RBCs elasticity from normal donors and patients with sickle cell anemia. Approximately 150 erythrocytes were examined, and the elasticity values obtained by using the developed system were compared to the values measured by two experts. With the automatic system, there was a significant time reduction (60×) of the erythrocytes elasticity evaluation. Automated system can help to expand the applications of optical tweezers in hematology and hemotherapy. PMID:26026527

  4. Dispersive light-matter interaction in programmable optical tweezers

    NASA Astrophysics Data System (ADS)

    Sawyer, Bianca J.; Horvath, Milena S. J.; Deb, Amita B.; Kjørgaard, Niels

    2015-08-01

    We have developed a robust interrogation system using frequency modulation spectroscopy to measure the quantum state-dependent phase shift incurred on an off-resonant optical probe when transmitted by an atomic medium. Recently, our focus has been on extending this technique for the detection of Feshbach resonances in 87Rb atoms. Feshbach resonance is a mechanism which allows the atomic interaction strength to be precisely tuned via an external magnetic field. To access a Feshbach resonance atoms must be independently prepared in certain internal states, during which we utilize programmable optical tweezers to perform precise spatial micro-manipulation of the ensemble in laser "test-tubes." We use our dispersive probing system to identify the resonant magnetic field value in a sample with a dense "ball" geometry. An important design consideration for such a probing scheme is the three-dimensional mode-matching at the interface between light and the atomic sample when coupled by the dispersive interaction. We discuss challenges which dealing with this new geometry compared to the previously used prolate geometry, and consider the possibility of dipole-dipole interactions in our sample leading to cooperative light scattering processes.

  5. Probing DNA Helicase Kinetics with Temperature‐Controlled Magnetic Tweezers

    PubMed Central

    Gollnick, Benjamin; Carrasco, Carolina; Zuttion, Francesca; Gilhooly, Neville S.; Dillingham, Mark S.

    2015-01-01

    Motor protein functions like adenosine triphosphate (ATP) hydrolysis or translocation along molecular substrates take place at nanometric scales and consequently depend on the amount of available thermal energy. The associated rates can hence be investigated by actively varying the temperature conditions. In this article, a thermally controlled magnetic tweezers (MT) system for single‐molecule experiments at up to 40 °C is presented. Its compact thermostat module yields a precision of 0.1 °C and can in principle be tailored to any other surface‐coupled microscopy technique, such as tethered particle motion (TPM), nanopore‐based sensing of biomolecules, or super‐resolution fluorescence imaging. The instrument is used to examine the temperature dependence of translocation along double‐stranded (ds)DNA by individual copies of the protein complex AddAB, a helicase‐nuclease motor involved in dsDNA break repair. Despite moderately lower mean velocities measured at sub‐saturating ATP concentrations, almost identical estimates of the enzymatic reaction barrier (around 21–24 k B T) are obtained by comparing results from MT and stopped‐flow bulk assays. Single‐molecule rates approach ensemble values at optimized chemical energy conditions near the motor, which can withstand opposing loads of up to 14 piconewtons (pN). Having proven its reliability, the temperature‐controlled MT described herein will eventually represent a routinely applied method within the toolbox for nano‐biotechnology. PMID:25400244

  6. Probing the bulk viscosity of particles using aerosol optical tweezers

    NASA Astrophysics Data System (ADS)

    Power, Rory; Bones, David L.; Reid, Jonathan P.

    2012-10-01

    Holographic aerosol optical tweezers can be used to trap arrays of aerosol particles allowing detailed studies of particle properties and processes at the single particle level. Recent observations have suggested that secondary organic aerosol may exist as ultra-viscous liquids or glassy states at low relative humidity, potentially a significant factor in influencing their role in the atmosphere and their activation to form cloud droplets. A decrease in relative humidity surrounding a particle leads to an increased concentration of solute in the droplet as the droplet returns to equilibrium and, thus, an increase in the bulk viscosity. We demonstrate that the timescales for condensation and evaporation processes correlate with particle viscosity, showing significant inhibition in mass transfer kinetics using ternary sucrose/sodium chloride/water droplets as a proxy to atmospheric multi-component aerosol. We go on to study the fundamental process of aerosol coagulation in aerosol particle arrays, observing the relaxation of non-spherical composite particles formed on coalescence. We demonstrate the use of bright-field imaging and elastic light scattering to make measurements of the timescale for the process of binary coalescence contrasting the rheological properties of aqueous sucrose and sodium chloride aerosol over a range of relative humidities.

  7. Optical tweezers as manufacturing and characterization tool in microfluidics

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Ghadiri, R.; Ksouri, S. I.; Gurevich, E. L.; Ostendorf, A.

    2014-09-01

    Pumping and mixing of small volumes of liquid samples are basic processes in microfluidic applications. Among the number of different principles for active transportation of the fluids microrotors have been investigated from the beginning. The main challenge in microrotors, however, has been the driving principle. In this work a new approach for a very simple magnetic driving principle has been realized. More precisely, we take advantage of optical grippers to fabricate various microrotors and introduce an optical force method to characterize the fluid flow generated by rotating the structures through magnetic actuation. The microrotors are built of silica and magnetic microspheres which are initially coated with Streptavidin or Biotin molecules. Holographic optical tweezers (HOT) are used to trap, to position, and to assemble the microspheres with the chemical interaction of the biomolecules leading to a stable binding. Using this technique, complex designs of microrotors can be realized. The magnetic response of the magnetic microspheres enables the rotation and control of the structures through an external magnetic field. The generated fluid flow around the microrotor is measured optically by inserting a probe particle next to the rotor. While the probe particle is trapped by optical forces the flow force leads to a displacement of the particle from the trapping position. This displacement is directly related to the flow velocity and can be measured and calibrated. Variations of the microrotor design and rotating speed lead to characteristic flow fields.

  8. Torsional sensing of small-molecule binding using magnetic tweezers.

    PubMed

    Lipfert, Jan; Klijnhout, Sven; Dekker, Nynke H

    2010-11-01

    DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove binding anti-microbial drug; and topotecan, a clinically used anti-tumor drug. In the low-force limit in which biologically relevant torques can be accessed (<10 pN), we show that ethidium intercalation lengthens DNA ∼1.5-fold and decreases the persistence length, from which we extract binding constants. Using our control of supercoiling, we measure the decrease in DNA twist per intercalation to be 27.3±1° and demonstrate that ethidium binding delays the accumulation of torsional stress in DNA, likely via direct reduction of the torsional modulus and torque-dependent binding. Furthermore, we observe that EtBr stabilizes the DNA duplex in regimes where bare DNA undergoes structural transitions. In contrast, minor groove binding by netropsin affects neither the contour nor persistence length significantly, yet increases the twist per base of DNA. Finally, we show that topotecan binding has consequences similar to those of EtBr, providing evidence for an intercalative binding mode. These insights into the torsional consequences of ligand binding can help elucidate the effects of small-molecule drugs in the cellular environment. PMID:20624816

  9. Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers.

    PubMed

    Zakrisson, Johan; Singh, Bhupender; Svenmarker, Pontus; Wiklund, Krister; Zhang, Hanqing; Hakobyan, Shoghik; Ramstedt, Madeleine; Andersson, Magnus

    2016-05-10

    Bacterial cells display a diverse array of surface organelles that are important for a range of processes such as intercellular communication, motility and adhesion leading to biofilm formation, infections, and bacterial spread. More specifically, attachment to host cells by Gram-negative bacteria are mediated by adhesion pili, which are nanometers wide and micrometers long fibrous organelles. Since these pili are significantly thinner than the wavelength of visible light, they cannot be detected using standard light microscopy techniques. At present, there is no fast and simple method available to investigate if a single cell expresses pili while keeping the cell alive for further studies. In this study, we present a method to determine the presence of pili on a single bacterium. The protocol involves imaging the bacterium to measure its size, followed by predicting the fluid drag based on its size using an analytical model, and thereafter oscillating the sample while a single bacterium is trapped by an optical tweezer to measure its effective fluid drag. Comparison between the predicted and the measured fluid drag thereby indicate the presence of pili. Herein, we verify the method using polymer coated silica microspheres and Escherichia coli bacteria expressing adhesion pili. Our protocol can in real time and within seconds assist single cell studies by distinguishing between piliated and nonpiliated bacteria. PMID:27088225

  10. Particle interaction measurements using laser tweezers optical trapping.

    SciTech Connect

    Koehler, Timothy P.; Brinker, C. Jeffrey; Brotherton, Christopher M.; Grillet, Anne M.; Molecke, Ryan A.

    2008-08-01

    Laser tweezers optical trapping provides a unique noninvasive capability to trap and manipulate particles in solution at the focal point of a laser beam passed through a microscope objective. Additionally, combined with image analysis, interaction forces between colloidal particles can be quantitatively measured. By looking at the displacement of particles within the laser trap due to the presence of a neighboring particle or looking at the relative diffusion of two particles held near each other by optical traps, interparticle interaction forces ranging from pico- to femto-Newtons can be measured. Understanding interaction forces is critical for predicting the behavior of particle dispersions including dispersion stability and flow rheology. Using a new analysis method proposed by Sainis, Germain, and Dufresne, we can simultaneously calculate the interparticle velocity and particle diffusivity which allows direct calculation of the interparticle potential for the particles. By applying this versatile tool, we measure difference in interactions between various phospholipid bilayers that have been coated onto silica spheres as a new type of solid supported liposome. We measure bilayer interactions of several cell membrane lipids under various environmental conditions such as pH and ionic strength and compare the results with those obtained for empty liposomes. These results provide insight into the role of bilayer fluctuations in liposome fusion, which is of fundamental interest to liposome based drug delivery schemes.

  11. A transparent electrode based on a metal nanotrough network

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Kong, Desheng; Ruan, Zhichao; Hsu, Po-Chun; Wang, Shuang; Yu, Zongfu; Carney, Thomas J.; Hu, Liangbing; Fan, Shanhui; Cui, Yi

    2013-06-01

    Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide--the prototypical transparent electrode material--demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial applications. Alternatives to indium tin oxide have recently been reported and include conducting polymers, carbon nanotubes and graphene. However, although flexibility is greatly improved, the optoelectronic performance of these carbon-based materials is limited by low conductivity. Other examples include metal nanowire-based electrodes, which can achieve sheet resistances of less than 10Ω □-1 at 90% transmission because of the high conductivity of the metals. To achieve these performances, however, metal nanowires must be defect-free, have conductivities close to their values in bulk, be as long as possible to minimize the number of wire-to-wire junctions, and exhibit small junction resistance. Here, we present a facile fabrication process that allows us to satisfy all these requirements and fabricate a new kind of transparent conducting electrode that exhibits both superior optoelectronic performances (sheet resistance of ~2Ω □-1 at 90% transmission) and remarkable mechanical flexibility under both stretching and bending stresses. The electrode is composed of a free-standing metallic nanotrough network and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical suitability of our transparent conducting electrode by fabricating a flexible touch-screen device and a transparent conducting tape.

  12. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  13. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment

    PubMed Central

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-01-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments. PMID:26203364

  14. New optoelectronic sensor for measuring biologically effective irradiance

    NASA Astrophysics Data System (ADS)

    Kosyachenko, Leonid A.; Sklyarchuk, Valery M.

    1997-12-01

    A new optoelectronic sensor whose spectral responsivity to UV radiation is almost identical with that of the human skin or of the eyes is presented. The sensor comprises two closely-spaced UV-sensitive Au-SiC diode, one of which is fitted with a glass filter. The photodiodes are connected to electronics that amplifies, combines and subtracts electrical signals generated by radiation in the photodiodes. The responsivity of the Au-SiC diode structure with a semitransparent gold electrode covers the whole UV spectrum, with the long-wavelength end bounded by the semiconductor bandgap. The photodiode with a filter absorbing wavelengths shorter than 315-320 nm is responsive in the UV-A region, while the difference between the electrical signals generated in the filter-containing and filter-free diodes is determined by the UV-B + IV-C radiation. The measuring of biologically effective radiation over the entire UV spectral range is achieved through combining the signal generated by UV-A radiation and the previously amplified difference signal generated by UV-B + UV-C radiation. The sensor spectral responsivity thus obtained is very close to the tabular curve of the relative spectral effectiveness of UV radiation on the normal human skin or eyes.

  15. Hong-Ou-Mandel atom interferometry in tunnel-coupled optical tweezers

    NASA Astrophysics Data System (ADS)

    Lester, Brian; Kaufman, Adam; Reynolds, Collin; Wall, Michael; Foss-Feig, Michael; Hazzard, Kaden; Rey, Ana Maria; Regal, Cindy

    2014-05-01

    We present recent work in which we demonstrate near-complete control over all the internal and external degrees of freedom of laser-cooled 87Rb atoms trapped in sub-micron optical tweezers. Utilizing this control for two atoms in two optical tweezers, we implement a massive-particle analog of the Hong-Ou-Mandel interferometer where atom tunneling plays the role of the photon beamsplitter. The interferometer is used to probe the effect of atomic indistinguishability on the two-atom dynamics for a variety of initial conditions. These experiments demonstrate the viability of the optical tweezer platform for bottom-up generation of low-entropy quantum systems and pave the way toward the direct observation of quantum dynamics in more complex finite-sized systems.

  16. A high-speed magnetic tweezer beyond 10,000 frames per second.

    PubMed

    Lansdorp, Bob M; Tabrizi, Shawn J; Dittmore, Andrew; Saleh, Omar A

    2013-04-01

    The magnetic tweezer is a single-molecule instrument that can apply a constant force to a biomolecule over a range of extensions, and is therefore an ideal tool to study biomolecules and their interactions. However, the video-based tracking inherent to most magnetic single-molecule instruments has traditionally limited the instrumental resolution to a few nanometers, above the length scale of single DNA base-pairs. Here we have introduced superluminescent diode illumination and high-speed camera detection to the magnetic tweezer, with graphics processing unit-accelerated particle tracking for high-speed analysis of video files. We have demonstrated the ability of the high-speed magnetic tweezer to resolve particle position to within 1 Å at 100 Hz, and to measure the extension of a 1566 bp DNA with 1 nm precision at 100 Hz in the presence of thermal noise. PMID:23635212

  17. Calibration of a dual-trap optical tweezers for single molecule force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Hu, Chunguang; Gao, Xiaoqing; Su, Chenguang; Wang, Sirong; Lei, Hai; Hu, Xiaodong; Li, Hongbin; Hu, Xiaotang

    2015-10-01

    Optical tweezers has shown its significant advantages in applying pico-Newton force on micro beads and handling them with nanometer-level precision, and becomes a powerful tool for single-molecule biology. Many excellent researching results in use of the optical tweezers have been reported. Most of them focus on the single-trap optical tweezers experiments. However, when a single-trap optical tweezers is applied to biological molecule, there is often an obvious noise from the sample chamber holder to which one end of the sample molecule is tethered. In contrast, a dual-trap optical tweezers can intrinsically avoid this problem because both ends of the sample tethered to microspheres are manipulated with two separate optical traps. In order to force the molecule precisely, it is of importance to do calibrations for both traps. Many approaches have been studied to obtain the stiffness and sensitivity of the trap, but those are not quite suitable for making calibration during experiment. Here, we use a modified method of power spectrum density (PSD) for the calibrations of the stiffness and sensitivity of the traps, which combines a sinusoidal motion of the sample stage. The main strength of the method is that the beads used for the calibration also can be used in experiment later. In addition, the calibration can be performed during experiment. Finally, an experiment using a dsDNA molecule to test the system is presented. The results show that the calibration approach for the dual-trap optical tweezers is efficient and accurate.

  18. Micromanipulation system for handling of biological molecule and screening of microbes in a microchannel by electric field and laser tweezers

    NASA Astrophysics Data System (ADS)

    Morishima, Keisuke; Arai, Fumihito; Fukuda, Toshio; Matsuura, Hideo; Yoshikawa, Kenichi

    1998-09-01

    In this paper, we propose a novel methodology on noncontact transportation of DNA molecules by dielectrophoretic force and high throughput screening of microbes. First, we utilize the conformational transition in the higher order structure of DNA for transportation. We designed a simple micro electrode-flow system. Experimental demonstration of DNA transportation in the globule state using dielectrophoretic force and direct observation of the DNA molecule in a non- uniform electric field were carried out with fluorescence microscopy. We discuss the experimental results on the motion of the DNA molecule. We show that transportation of DNA with the state of compacted globule is profitable in the future practical application for the separation of giant DNAs such as human gene. Next, we have developed a prototype of Microchannel system for high throughput screening of Escherichia coli. Experimental demonstration of noncontact transportation and manipulation of Escherichia coli by dielectrophoretic force and radiation pressure of laser tweezers were carried out with laser manipulator system. We discussed the basic strategies to improve the working efficiency and the operability of the micromanipulation and presented a new direction in this field. In experiments, we show that transportation and separation of E. coli cells by dielectrophoretic force and optical trapping is useful for future practical application to the high throughput screening of microbes. We showed the possibility of the Microchannel system as one of the biomanipulation and automation systems for DNA sequencing and pharmaceutical field.

  19. Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene

    NASA Astrophysics Data System (ADS)

    Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo

    2016-02-01

    The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.

  20. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    PubMed Central

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems. PMID:26601297

  1. Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates

    SciTech Connect

    Kotsifaki, D. G. Kandyla, M.; Lagoudakis, P. G.

    2015-11-23

    We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force and the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, indicative of evanescent plasmonic enhancement.

  2. Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates

    NASA Astrophysics Data System (ADS)

    Kotsifaki, D. G.; Kandyla, M.; Lagoudakis, P. G.

    2015-11-01

    We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force and the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, indicative of evanescent plasmonic enhancement.

  3. Improved High-Force Magnetic Tweezers for Stretching and Refolding of Proteins and Short DNA

    PubMed Central

    Chen, Hu; Fu, Hongxia; Zhu, Xiaoying; Cong, Peiwen; Nakamura, Fumihiko; Yan, Jie

    2011-01-01

    Although magnetic tweezers have many unique advantages in terms of specificity, throughput, and force stability, this tool has had limited application on short tethers because accurate measurement of force has been difficult for short tethers under large tension. Here, we report a method that allows us to apply magnetic tweezers to stretch short biomolecules with accurate force calibration over a wide range of up to 100 pN. We demonstrate the use of the method by overstretching of a short DNA and unfolding/refolding a protein of filamin A immunoglobulin domains 1–8. Other potential applications of this method are also discussed. PMID:21244848

  4. Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer

    NASA Astrophysics Data System (ADS)

    Shivashankar, G. V.; Libchaber, A.

    1997-12-01

    In this letter, we report on spatially selecting and grafting a DNA-tethered bead to an atomic force microscope (AFM) cantilever, using an optical tweezer. To quantify this technique, we measure force versus extension of a single DNA molecule using AFM. For such studies, we have developed a micromanipulation approach by combining an AFM, an optical tweezer, and visualization setup. The ability to select a single DNA polymer and specifically graft it to a localized position on a substrate opens up new possibilities in biosensors and bioelectronic devices.

  5. Mechanical property analysis of stored red blood cell using optical tweezers.

    PubMed

    Li, Yanjie; Wen, Cheng; Xie, Huimin; Ye, Anpei; Yin, Yajun

    2009-05-01

    The deformation of human red blood cells subjected to direct stretching by optical tweezers was analyzed. The maximum force exerted by optical tweezers on the cell via a polystyrene microbead 5microm in diameter was 315pN. Digital image correlation (DIC) method was introduced to calculate the force and the deformation of the cell for the first time. Force-extension relation curves of the biconcave cell were quantitatively assessed when erythrocytes were stored in Alsever's Solution for 2 days, 5 days, 7 days and 14 days respectively. Experiment results demonstrated that the deformability of red blood cells was impaired with the stored time. PMID:19168336

  6. Airborne particle generation for optical tweezers by thermo-mechanical membrane actuators

    NASA Astrophysics Data System (ADS)

    Polster, T.; Leopold, S.; Hoffmann, M.

    2011-06-01

    This article presents a new approach for airborne particle generation for optical tweezers. The used element is a 500 nm thin aluminum nitride membrane with an integrated heating element. Thus the membrane works as thermo-mechanical actor. The membrane device is characterized concerning their mechanical and thermal behavior. Successful airborne particle generation is demonstrated with 10 μm silicon dioxide spheres. They are lifted up some 10th of μm from the membrane surface. The development and test of this device serves as starting point for experiments with optical tweezers in air.

  7. Raman tweezers on bacteria: following the mechanisms of bacteriostatic versus bactericidal action

    NASA Astrophysics Data System (ADS)

    Bernatova, Silvie; Samek, Ota; Pilat, Zdenek; Sery, Mojmir; Jezek, Jan; Jakl, Petr; Siler, Martin; Krzyzanek, Vladislav; Zemanek, Pavel; Hola, Veronika; Dvorackova, Milada; Ruzicka, Filip

    2014-05-01

    Raman tweezers represents a unique method for identification of different microorganisms on the basis of Raman scattering. Raman tweezers allows us to fix and sterile manipulate with the trapped object and in the same time check the growth, viability, response to the external environment etc. by Raman signal evaluating. The investigations presented here include distinction of bacteria in general (staphylococcal cells), identification of bacteria strains (biofilm-positive and biofilm-negative) by using principal component analysis (PCA) and monitoring the influence of antibiotics.

  8. On-site manipulation of single whole-genome DNA molecules using optical tweezers

    NASA Astrophysics Data System (ADS)

    Oana, Hidehiro; Kubo, Koji; Yoshikawa, Kenichi; Atomi, Haruyuki; Imanaka, Tadayuki

    2004-11-01

    In this letter, we describe a noninvasive methodology for manipulating single Mb-size whole-genome DNA molecules. Cells were subjected to osmotic shock and the genome DNA released from the burst cells was transferred to a region of higher salt concentration using optical tweezers. The transferred genome DNA exhibits a conformational transition from a compact state into an elongated state, accompanied by the change in its environment. The applicability of optical tweezers to the on-site manipulation of giant genome DNA is suggested, i.e., lab-on-a-plate.

  9. Mechanical and electrical properties of red blood cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, A.; Barjas Castro, M. L.; Brandão, M. M.; Fernandes, H. P.; Thomaz, A. A.; Huruta, R. R.; Pozzo, L. Y.; Barbosa, L. C.; Costa, F. F.; Saad, S. T. O.; Cesar, C. L.

    2011-04-01

    Optical tweezers are a very sensitive tool, based on photon momentum transfer, for individual, cell by cell, manipulation and measurements, which can be applied to obtain important properties of erythrocytes for clinical and research purposes. Mechanical and electrical properties of erythrocytes are critical parameters for stored cells in transfusion centers, immunohematological tests performed in transfusional routines and in blood diseases. In this work, we showed methods, based on optical tweezers, to study red blood cells and applied them to measure apparent overall elasticity, apparent membrane viscosity, zeta potential, thickness of the double layer of electrical charges and adhesion in red blood cells.

  10. Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells.

    PubMed

    Chan, James W

    2013-01-01

    Laser tweezers Raman spectroscopy (LTRS), a technique that integrates optical tweezers with confocal Raman spectroscopy, is a variation of micro-Raman spectroscopy that enables the manipulation and biochemical analysis of single biological particles in suspension. This article provides an overview of the LTRS method, with an emphasis on highlighting recent advances over the past several years in the development of the technology and several new biological and biomedical applications that have been demonstrated. A perspective on the future developments of this powerful cytometric technology will also be presented. PMID:23175434