Science.gov

Sample records for electrolyte non-pyrolytically produced

  1. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    DOEpatents

    Sharp, Donald J.; Armstrong, Pamela S.; Panitz, Janda Kirk G.

    1998-01-01

    A solid electrolytic capacitor having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

  2. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    DOEpatents

    Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.

    1998-03-17

    A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.

  3. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    SciTech Connect

    Sharp, D.J.; Armstrong, P.S.; Paintz, J.K.G.

    1998-04-01

    This report discusses the design of a solid electrolytic capacitor having a solid electrolyte comprised of manganese dioxide dispersed in an aromatic polyamide capable of to forming polyimide linkages. This solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

  4. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  5. Electric current-producing device having sulfone-based electrolyte

    DOEpatents

    Angell, Charles Austen; Sun, Xiao-Guang

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  6. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  7. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  8. Electrolytes

    MedlinePlus

    ... part of blood that doesn't contain cells. Sodium, potassium, and chloride levels can also be measured as part of ... in urine. It test the levels of calcium, chloride, potassium, sodium, and other electrolytes.

  9. Electrolytes

    MedlinePlus

    ... part of blood that doesn't contain cells. Sodium, potassium, and chloride levels can also be measured as part of ... in urine. It test the levels of calcium, chloride, potassium, sodium, and other electrolytes. References Chernecky CC, Berger BJ. ...

  10. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  11. Underwater microdischarge in arranged microbubbles produced by electrolysis in electrolyte solution using fabric-type electrode

    SciTech Connect

    Sakai, Osamu; Kimura, Masaru; Tachibana, Kunihide; Shirafuji, Tatsuru

    2008-12-08

    Pulsed microdischarge was generated in microbubbles produced by electrolysis in an electrolyte solution without external gas feed by using a fabric-type electrode. The electrode structure not only allowed low-voltage ignition of the atmospheric-pressure discharge in hydrogen or oxygen containing microbubbles but also worked effectively in producing and holding the bubbles on its surface. The generation of reactive species was verified by optical emissions from the produced microplasmas, and their transport into the solution was monitored by the change in hydrogen concentration.

  12. Cathodes for secondary electrochemical power-producing cells. [layers of porous substrates impregnated with S alternate with layers containing electrolyte

    DOEpatents

    Cairns, E.J.; Kyle, M.; Shimotake, H.

    1973-02-13

    A secondary electrochemical power-producing cell includes an anode containing lithium, an electrolyte containing lithium ions, and a cathode containing sulfur. The cathode comprises plates of a porous substrate material impregnated with sulfur alternating with layers (which may also comprise porous substrate plates) containing electrolyte.

  13. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    SciTech Connect

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  14. Compatibility of electrolytically produced sodium hypochlorite solutions on long- term implanted dialysis catheters.

    PubMed

    Mishkin, G J

    2007-01-01

    More than 20% of the world's population use a catheter for dialysis, despite guidelines limiting their use. Although the structure and design of the catheters differ by manufacturer, the material used in central venous catheters and peritoneal dialysis catheters are the same across manufacturers. Given the long-term use of these catheters in the dialysis population, the good compatibility of the antiseptics and disinfectants used on the catheters is imperative to prevent failure and cracking of the catheter material. Tensile strengths of commercially available catheters were measured after exposure to commonly used disinfectants. The tensile strength was then compared between the catheters by analyzing the displacement vs. force (N) curves produced during the evaluation. A total of 44 catheter lumens were evaluated. The electrolytically produced sodium hypochlorite solution, Alcavis 50/ExSept Plus, was the only solution shown to be compatible with all three catheter materials resulting in a deviation of less than 10% for each of the different catheter types. Electrolytically produced sodium hypochlorite solutions were the only solutions in this study that did not alter the physical properties of any of the catheters after long-term exposure. PMID:17099302

  15. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil.

    PubMed

    Rizwan, Muhammad Shahid; Imtiaz, Muhammad; Chhajro, Muhammad Afzal; Huang, Guoyong; Fu, Qingling; Zhu, Jun; Aziz, Omar; Hu, Hongqing

    2016-11-01

    Soil contamination with heavy metals has become a global environmental health concern. In the present study, European Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) techniques were used to evaluate the Pb and Cu subsequent transformations, immobilizing impact of pyrolytic and non-pyrolytic rice and castor straws and their efficiency to reduce the metals mobility and leachability in the polluted soil. Obtained results highlight the potential of biochar over non-pyrolytic residues to enhance the immobilization of Pb and Cu in the soil. Castor leaves-derived biochar (CLB), castor stem-derived biochar (CSB), and rice straw-derived biochar (RSB) prominently decreased the mobility (acid-soluble fraction) of Pb 49.8%, 31.1%, and 31.9%, respectively, while Cu decreased 15.8%, 11.5%, and 12%, respectively, as compare to control. Sequential extraction showed that biochar treatments prominently modified the proportioning of Pb and Cu from acid soluble to a less bioavailable fraction and increased the geochemical stability in the polluted soil as compared to relative feedstocks as well as the controlled soil. Additionally, the soil pH increased markedly after the addition of biochar. Compared with control, the TCLP-extractable Pb and Cu were reduced to 29.2-41.4% and 5.7-22.8% from the soil respectively by the application of CLB. The immobilization and reduction in leachability of Pb and Cu were correlated with the soil pH. The biochar effect on the Pb immobilization was much better as compared to Cu in co-contaminated soil. Overall addition of CLB offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil. PMID:26934087

  16. Electrocatalytic conversion of CO2 to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells.

    PubMed

    Ampelli, C; Genovese, C; Marepally, B C; Papanikolaou, G; Perathoner, S; Centi, G

    2015-01-01

    The electrocatalytic reduction of CO2 is studied on a series of electrodes (based on Cu, Co, Fe and Pt metal nanoparticles deposited on carbon nanotubes or carbon black and then placed at the interface between a Nafion membrane and a gas-diffusion-layer electrode) on two types of cells: one operating in the presence of a liquid bulk electrolyte and the other in the absence of the electrolyte (electrolyte-less conditions). The results evidence how the latter conditions allow productivity of about one order of magnitude higher and how to change the type of products formed. Under electrolyte-less conditions, the formation of >C2 products such as acetone and isopropanol is observed, but not in liquid-phase cell operations on the same electrodes. The relative order of productivity in CO2 electrocatalytic reduction in the series of electrodes investigated is also different between the two types of cells. The implications of these results in terms of possible differences in the reaction mechanism are commented on, as well as in terms of the design of photoelectrocatalytic (PEC) solar cells. PMID:26392133

  17. Ceramic distribution members for solid state electrolyte cells and method of producing

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J. (Inventor); Galica, Leo M. (Inventor); Losey, Robert W. (Inventor); Suitor, Jerry W. (Inventor)

    1993-01-01

    A solid state electrolyte cells apparatus and method of producing is disclosed. The apparatus can be used for separating oxygen from an oxygen-containing feedstock or as a fuel cell for reacting fluids. Cells can be stacked so that fluids can be introduced and removed from the apparatus through ceramic distribution members having ports designed for distributing the fluids in parallel flow to and from each cell. The distribution members can also serve as electrodes to membranes or as membrane members between electrodes. The distribution member design does not contain any horizontal internal ports which allows the member to be thin. A method of tape casting in combination with an embossing method allows intricate radial ribs and bosses to be formed on each distribution member. The bosses serve as seals for the ports and allow the distribution members to be made without any horizontal internal ports.

  18. Method of producing ceramic distribution members for solid state electrolyte cells

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J. (Inventor); Galica, Leo M. (Inventor); Losey, Robert W. (Inventor); Suitor, Jerry W. (Inventor)

    1995-01-01

    A solid state electrolyte cells apparatus and method of producing is disclosed. The apparatus can be used for separating oxygen from an oxygen-containing feedstock or as a fuel cell for reacting fluids. Cells can be stacked so that fluids can be introduced and removed from the apparatus through ceramic distribution members having ports designed for distributing the fluids in parallel flow to and from each cell. The distribution members can also serve as electrodes to membranes or as membrane members between electrodes, The distribution member design does not contain any horizontal internal ports which allows the member to be thin. A method of tape casting in combination with an embossing method allows intricate radial ribs and bosses to be formed on each distribution member. The bosses serve as seals for the ports and allow the distribution members to be made without any horizontal internal ports.

  19. Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration.

    PubMed

    Marques, Isabella da Silva Vieira; da Cruz, Nilson Cristino; Landers, Richard; Yuan, Judy Chia-Chun; Mesquita, Marcelo Ferraz; Sukotjo, Cortino; Mathew, Mathew T; Barão, Valentim Adelino Ricardo

    2015-01-01

    The objectives of the present study were to produce bioactive coatings in solutions containing Ca, P, and Si by plasma electrolytic oxidation (PEO) on commercially pure titanium, to investigate the influence of different electrolytes concentration and treatment duration on the produced anodic films and to evaluate biocompatibility properties. The anodic films were characterized using scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy, and x-ray diffraction and x-ray photoelectron spectroscopies. The surface energy and roughness were also evaluated. PEO process parameters influenced the crystalline structure formation and surface topography of the anodic films. Higher Ca content produced larger porous (volcanolike appearance) and thicker oxide layers when compared to the lower content. Treatment duration did not produce any topography difference. The treatment modified the surface chemistry, producing an enriched oxide layer with bioactive elements in the form of phosphate compounds, which may be responsible for mimicking bone surface. In addition, a rough surface with increased surface energy was generated. Optimal spreading and proliferation of human mesenchymal stem cells was achieved by PEO treatment, demonstrating excellent biocompatibility of the surface. The main finding is that the biofunctionalization with higher Ca/P on Ti-surface can improve surface features, potentially considered as a candidate for dental implants. PMID:26446191

  20. Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials

    SciTech Connect

    Kamali, Ali Reza Schwandt, Carsten; Fray, Derek J.

    2011-10-15

    The electrochemical erosion of a graphite cathode during the electrolysis of molten lithium chloride salt may be used for the preparation of nano-structured carbon materials. It has been found that the structures and morphologies of these carbon nanomaterials are dependent on those of the graphite cathodes employed. A combination of tubular and spherical carbon nanostructures has been produced from a graphite with a microstructure of predominantly planar micro-sized grains and a minor fraction of more irregular nano-sized grains, whilst only spherical carbon nanostructures have been produced from a graphite with a microstructure of primarily nano-sized grains. Based on the experimental results, a best-fit regression equation is proposed that relates the crystalline domain size of the graphite reactants and the carbon products. The carbon nanomaterials prepared possess a fairly uniform mesoporosity with a sharp peak in pore size distribution at around 4 nm. The results are of crucial importance to the production of carbon nanomaterials by way of the molten salt electrolytic method. - Highlights: {yields} Carbon nanomaterials are synthesised by LiCl electrolysis with graphite electrodes. {yields} The degree of crystallinity of graphite reactant and carbon product are related. {yields} A graphite reactant is identified that enables the preparation of carbon nanotubes. {yields} The carbon products possess uniform mesoporosity with narrow pore size distribution.

  1. Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yu, Kun; Wen, Li; Yao, Sujuan; Dai, Yilong; Wang, Zhifeng

    2016-02-01

    A new process is developed to obtain high-quality AA1235 aluminum foil stocks and to replace the traditional manufacture process. During the new manufacture process, AA1235 aluminum sheets are twin-roll casted directly through electrolytic aluminum melt (EAM), and subsequently the sheets are processed into aluminum foil stocks by cold rolling and annealing. Microstructure and mechanical properties of the AA1235 aluminum sheets produced through such new process are investigated in each state by optimal microscope, scanning electron microscopy, X-ray diffraction, orientation imaging microscopy, transmission electron microscopy, etc. The results show that compared with the traditional AA1235 aluminum foil stocks produced through re-melted aluminum melt (RAM), the amount of impurities is decreased in the EAM aluminum foil stocks. The EAM aluminum foil stock obtains less β-FeSiAl5 phases, but more α-Fe2SiAl8 phases. The elongation of EAM aluminum foil stocks is improved significantly owing to more cubic orientation. Especially, the elongation value of the EAM aluminum foil stocks is approximately 25 pct higher than that of the RAM aluminum foil stocks. As a result, the EAM aluminum foil stocks are at an advantage in increasing the processing performance for the aluminum foils during subsequent processes.

  2. Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte

    DOEpatents

    Mason, David M.

    1984-01-01

    Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

  3. Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions

    PubMed Central

    Yeung, W. K.; Sukhorukova, I. V.; Shtansky, D. V.; Levashov, E. A.; Zhitnyak, I. Y.; Gloushankova, N. A.; Kiryukhantsev-Korneev, P. V.; Petrzhik, M. I.; Matthews, A.

    2016-01-01

    The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of

  4. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  5. [Russian oxygen generation system "Elektron-VM": hydrogen content in electrolytically produced oxygen for breathing by International Space Station crews].

    PubMed

    Proshkin, V Yu; Kurmazenko, E A

    2014-01-01

    The article presents the particulars of hydrogen content in electrolysis oxygen produced aboard the ISS Russian segment by oxygen generator "Elektron-VM" (SGK) for crew breathing. Hydrogen content was estimated as in the course of SGK operation in the ISS RS, so during the ground life tests. According to the investigation of hydrogen sources, the primary path of H2 appearance in oxygen is its diffusion through the porous diaphragm separating the electrolytic-cell cathode and anode chambers. Effectiveness of hydrogen oxidation in the SGK reheating unit was evaluated. PMID:25035898

  6. S-N Fatigue Behavior of Anodized 7050-T7451 Produced in Different Electrolytes

    NASA Astrophysics Data System (ADS)

    Lee, Eungyeong; Jeong, Yooin; Kim, Sangshik

    2012-06-01

    The effect of anodizing layers processed in different electrolytes of chromic acid (chromic acid anodizing [CAA]), sulfuric acid (sulfuric acid anodizing [SAA]), and tartaric acid (tartaric acid anodizing [TAA]) on the S-N fatigue behavior of the 7050-T7451 specimen was examined. The fatigue tests were conducted at an R ratio of 0.1 and at three different stress levels of 200, 220, and 270 MPa. Some specimens were exposed to continuous salt spraying of 5 pct NaCl solution for 336 hours and subsequently fatigue tested at an applied stress of 200 MPa. The detrimental effect of anodizing on the S-N fatigue resistance of 7050-T7451 was observed. The fatigue resistance varied with different anodizing electrolytes particularly at low stress with the greatest resistance for the TAA followed by CAA and SAA. The fractographic and micrographic observations showed the morphological difference in each anodized layer, which seemed to determine the ease of crack initiation and the resistance to S-N fatigue. The resistance to S-N fatigue of anodized 7050-T7451 specimens was, for example, affected strongly by the nature of preanodized layer with different acid-pickling processes. The pits found in the pre-CAA specimens seemed to be slightly irregular and deeper than those in the pre-TAA counterparts, reducing the fatigue resistance of the 7050-T7451 specimens. The CAA, SAA, and TAA specimens showed similar resistance to corrosion plus fatigue.

  7. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    PubMed

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs. PMID:18587401

  8. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M.; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

  9. Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Qinian; Dong, Heng; Yu, Hongbing

    2014-12-01

    Carbon dioxide electrochemical reduction to produce formate (CERPF) basing on gas diffusion electrode (GDE) is a promising carbon cycle technology. However, its performance is still restrained by formate accumulation and catalyst loss in the catalyst layer (CL). In this study, a novel rolling Sn-loading GDE (SGDE) without porous hydrophilic CL is developed. The electrochemical behavior of CERPF on the SGDE is investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performance of the SGDE for CERPF is assessed by constant potential electrolysis. The results show that the CERPF process basing on the SGDE performs a double charge transfer and is dominated by the electron transfer rate. The highest partial current density for CERPF (17.43 ± 2.60 mA cm-2) and corresponding Faraday efficiency (78.60 ± 0.11%) are obtained under the applied potential of -1.8 V vs Ag/AgCl in 0.5 M KHCO3 solution. The produced formate is allowed to be released into the electrolyte easily and the catalyst holds steady during the CERPF process. Since its excellent electrochemical performance and low fabrication cost (ca. 30 m-2), bright prospect for SGDE application in CERPF can be convinced.

  10. Germicide wound pad with active, in situ, electrolytically produced hypochlorous acid.

    PubMed

    Rubinsky, L; Patrick, B; Mikus, P; Rubinsky, B

    2016-04-01

    We describe a new wound dressing technology that can actively generate an inorganic germicide agent, in situ, within the wound pad. The technology provides real time control over the quantitative, spatial and temporal delivery of the germicide. The identity of the germicide is hypochlorous acid (HClO). The HClO is produced in a flexible wound pad, made of a composite of thin (micrometer scale) layers of various materials, with different electrochemical properties that enhance HClO production. Active control over the production of HClO is achieved by control of the pH and of the electric potential across the layers. The effectiveness of the Active HClO Pad (AHClOP) concept is demonstrated in a study on sterilization of E. coli in a deep wound contamination simulating gel. The performance of the AHClOP is compared with that of four commercial wound dressings. Results show that the AHClOP can sterilize throughout the gel, while the commercial dressings cannot. PMID:26888442

  11. Solid oxide fuel cell electrolytes produced by a combination of suspension plasma spray and very low pressure plasma spray.

    SciTech Connect

    Slamovich, Elliot; Fleetwood, James; McCloskey, James F.; Hall, Aaron Christopher; Trice, Rodney Wayne

    2010-07-01

    Plasma spray coating techniques allow unique control of electrolyte microstructures and properties as well as facilitating deposition on complex surfaces. This can enable significantly improved solid oxide fuel cells (SOFCs), including non-planar designs. SOFCs are promising because they directly convert the oxidization of fuel into electrical energy. However, electrolytes deposited using conventional plasma spray are porous and often greater than 50 microns thick. One solution to form dense, thin electrolytes of ideal composition for SOFCs is to combine suspension plasma spray (SPS) with very low pressure plasma spray (VLPPS). Increased compositional control is achieved due to dissolved dopant compounds in the suspension that are incorporated into the coating during plasma spraying. Thus, it is possible to change the chemistry of the feed stock during deposition. In the work reported, suspensions of sub-micron diameter 8 mol.% Y2O3-ZrO2 (YSZ) powders were sprayed on NiO-YSZ anodes at Sandia National Laboratories (SNL) Thermal Spray Research Laboratory (TSRL). These coatings were compared to the same suspensions doped with scandium nitrate at 3 to 8 mol%. The pressure in the chamber was 2.4 torr and the plasma was formed from a combination of argon and hydrogen gases. The resultant electrolytes were well adhered to the anode substrates and were approximately 10 microns thick. The microstructure of the resultant electrolytes will be reported as well as the electrolyte performance as part of a SOFC system via potentiodynamic testing and impedance spectroscopy.

  12. N-ethyl-N-nitrosourea mutagenesis produced a small number of mice with altered plasma electrolyte levels

    PubMed Central

    Aigner, Bernhard; Rathkolb, Birgit; Klempt, Martina; Wagner, Sibylle; Michel, Dian; Hrabé de Angelis, Martin; Wolf, Eckhard

    2009-01-01

    Background Clinical chemical blood analysis including plasma electrolytes is routinely carried out for the diagnosis of various organ diseases. Phenotype-driven N-ethyl-N-nitrosourea (ENU) mouse mutagenesis projects used plasma electrolytes as parameters for the generation of novel animal models for human diseases. Methods Here, we retrospectively evaluated the use of the plasma electrolytes calcium, chloride, inorganic phosphorus, potassium and sodium in the Munich ENU mouse mutagenesis project where clinical chemical blood analysis was carried out on more than 20,000 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in various plasma parameter levels. Results We identified a small number of animals consistently exhibiting altered plasma electrolyte values. Transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of mutant lines for the parameters calcium and potassium. Published data from other phenotype-driven ENU projects also included only a small number of mutant lines which were generated according to altered plasma electrolyte levels. Conclusion Thus, use of plasma electrolytes detected few mouse mutants in ENU projects compared to other clinical chemical blood parameters. PMID:19505327

  13. Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  14. Electrolytes Test

    MedlinePlus

    ... include other tests such as BUN , creatinine , and glucose . Electrolyte measurements may be used to help investigate conditions that cause electrolyte imbalances such as dehydration , kidney disease , lung diseases , or heart conditions . Repeat testing may then ...

  15. Influence of the Ti microstructure on anodic self-organized TiO2 nanotube layers produced in ethylene glycol electrolytes

    NASA Astrophysics Data System (ADS)

    Macak, J. M.; Jarosova, M.; Jäger, A.; Sopha, H.; Klementová, M.

    2016-05-01

    The relationship between the microstructure of Ti substrates and the anodic growth of self-organized TiO2 nanotube layers obtained upon their anodization in the ethylene glycol based electrolytes on these substrates is reported for the first time. Polished Ti sheets with mirror-like surface as well as unpolished Ti foils were considered in this work. Grains with a wide range of crystallographic orientations and sizes were revealed by Electron Backscatter Diffraction (EBSD) and correlated with nanotube growth on both types of substrates. A preferred grain orientation with [0 0 0 1] axis perpendicular to the surface was observed on all substrates. Surfaces of all substrates were anodized for 18 h in ethylene glycol electrolytes containing 88 mM NH4F and 1.5% water and thoroughly inspected by SEM. By a precise comparison of Ti substrates before and after anodization, the uniformity of produced self-organized TiO2 nanotube layers was evaluated in regard to the specific orientation of individual grains. Grains with [0 0 0 1] axis perpendicular to the surface turned out to be the most growth-promoting orientation on polished substrates. No orientation was found to be strictly growth-retarding, but sufficient anodization time (24 h) was needed to obtain uniform nanotube layers on all grains without remnant porous initial oxide. In contrast with polished Ti sheets, no specific orientation was found to significantly promote or retard the nanotube growth in the case of unpolished Ti foils. Finally, the difference between the average nanotube diameters of nanotubes grown on various grains was investigated showing non-negligible differences in the diameter for different grain orientations and substrates.

  16. Electrolytic cell

    NASA Astrophysics Data System (ADS)

    Bullock, J. S.; Hale, B. D.

    1984-09-01

    An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end is located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

  17. Electrolytic dissolver

    DOEpatents

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  18. ELECTROLYTIC PROCESS FOR PRODUCING METALS

    DOEpatents

    Kopelman, B.; Holden, R.B.

    1961-06-01

    A method is described for reducing beryllium halides to beryllium. The beryllfum halide fs placed in an eutectic mixture of alkali halides and alkaline earth halides. The constituents of this eutectic bath are so chosen that it has a melting point less than the boiling point of mercury, which acts as a cathode for the system. The beryllium metal is then deposited in the mercury upon electrolysis.

  19. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  20. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  1. Electrolytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Ramani, M. P. S.

    In the role of a secondary energy carrier complementary to electricity in a postfossil-fuel era, hydrogen produced by the elecrolytic splitting of water may be obtained by a variety of methods whose technology development status is presently assessed. Nuclear heat can be converted into hydrogen either directly, via thermal splitting of water, or by means of water electrolysis, which can be of the unipolar tank type or the bipolar filter-press type. An evaluation is made of advanced electrolytic techniques involving exotic materials, as well as solid polymer electrolyte electrolysis and high-temperature water-vapor electrolysis.

  2. Electrolyte Racers

    ERIC Educational Resources Information Center

    Kellie, Shawn; Kellie, Tonya; Corbin-Tipton, Elizabeth

    2006-01-01

    A fast way to teach investigative skills in science is to tie them to NASCAR using Hot Wheels Formula Fuelers Race Cars. These inexpensive toy cars travel different distances based on the strength of the "electrolyte" (a substance that conducts electricity when dissolved in water) in their "fuel" tanks. Advertisements for these race cars urge kids…

  3. Solid electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  4. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  5. Fabrication of large ceramic electrolyte disks

    NASA Technical Reports Server (NTRS)

    Ring, S. A.

    1972-01-01

    Process for sintering compressed ceramic powders produces large ceramic disks for use as electrolytes in high-temperature electrolytic cells. Thin, strain-free uniformly dense disks as large as 30 cm squared have been fabricated by slicing ceramic slugs produced by this technique.

  6. Solid-oxide fuel cell electrolyte

    DOEpatents

    Bloom, Ira D.; Hash, Mark C.; Krumpelt, Michael

    1993-01-01

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  7. Electrolytic process for preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  8. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  9. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  10. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  11. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  12. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  13. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  14. Electrolytic pretreatment of urine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Electrolysis has been under evaluation for several years as a process to pretreat urine for ultimate recovery of potable water in manned spacecraft applications. The conclusions that were drawn from this investigation are the following: (1) A platinum alloy containing 10 percent rhodium has been shown to be an effective, corrosion-resistant anode material for the electrolytic pretreatment of urine. Black platinum has been found to be suitable as a cathode material. (2) The mechanism of the reactions occurring during the electrolysis of urine is two-stage: (a) a total Kjeldahl nitrogen and total organic carbon (TOC) removal in the first stage is the result of electrochemical oxidation of urea to CO2, H2O, and ammonia followed by chloride interaction to produce N2 from ammonia, (b) after the urea has been essentially removed and the chloride ions have no more ammonia to interact with, the chloride ions start to oxidize to higher valence states, thus producing perchlorates. (3) Formation of perchlorates can be suppressed by high/low current operation, elevated temperature, and pH adjustment. (4) UV-radiation showed promise in assisting electrolytic TOC removal in beaker tests, but was not substantiated in limited single cell testing. This may have been due to non-optimum configurations of the single cell test rig and the light source.

  15. A simple synthesis method to produce metal oxide loaded carbon paper using bacterial cellulose gel and characterization of its electrochemical behavior in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Miyajima, Naoya; Jinguji, Ken; Matsumura, Taiyu; Matsubara, Toshihiro; Sakane, Hideto; Akatsu, Takashi; Tanaike, Osamu

    2016-04-01

    A simple synthetic chemical process to produce metal oxide loaded carbon papers was developed using bacterial cellulose gel, which consisted of nanometer-sized fibrous cellulose and water. Metal ions were successfully impregnated into the gel via aqueous solution media before drying and carbonization methods resulting in metal oxide contents that were easy to control through variations in the concentration of aqueous solutions. The papers loaded by molybdenum oxides were characterized as pseudocapacitor electrodes preliminary, and the large redox capacitance of the oxides was followed by a conductive fibrous carbon substrate, suggesting that a binder and carbon black additive-free electrode consisting of metal oxides and carbon paper was formed.

  16. Formation of TiN Ir particle films using pulsed-laser deposition and their electrolytic properties in producing hypochlorous acid

    NASA Astrophysics Data System (ADS)

    Deno, H.; Kamemoto, T.; Nemoto, S.; Koshio, A.; Kokai, F.

    2008-02-01

    Using sintered TiN and TiN-Ir (Ir contents: 5.9-14.2 at.%) targets, pulsed-laser deposition (PLD) was carried out to produce thin films composed of nanoparticles and particulates in the presence of nitrogen gas. The size (2-100 nm) of the produced crystalline TiN nanoparticles increased as nitrogen pressure was increased in the range from 1.33 to 1.33 × 10 2 Pa. At a pressure of 1.33 × 10 3 Pa, amorphous TiN nanoparticles combined in the form of chains. Large Ir particulates with diameters of up to 2 μm were particularly prominent in TiN-Ir films. Size distributions of the Ir particulates were dependent on ablation laser wavelength; that is, the diameter decreased at laser wavelength shortened. The TiN-Ir films with different Ir contents and morphologies on Ti substrates were evaluated as electrolysis electrodes for water disinfection. The highest current efficiency was 0.45%, which is comparable to that of conventional Ti-Pt electrodes, for a chloride-ion concentration of 9 mg dm -3.

  17. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  18. Fuel cell having electrolyte

    DOEpatents

    Wright, Maynard K.

    1989-01-01

    A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.

  19. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, Rudolf; Larimer, Kirk T.

    1998-01-01

    A method of producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage.

  20. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  1. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, Hung-Sui; Geng, Lin; Skotheim, Terje A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  2. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  3. Fluid and Electrolyte Balance

    MedlinePlus

    ... They are in your blood, urine and body fluids. Maintaining the right balance of electrolytes helps your ... them from the foods you eat and the fluids you drink. Levels of electrolytes in your body ...

  4. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  5. Lithium ion conducting electrolytes

    SciTech Connect

    Angell, C.A.; Liu, C.; Xu, K.; Skotheim, T.A.

    1999-10-05

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  6. Lithium ion conducting electrolytes

    DOEpatents

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  7. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  8. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  9. Nanoporous polymer electrolyte

    SciTech Connect

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  10. Apparatus for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  11. Reserve, flowing electrolyte, high rate lithium battery

    NASA Astrophysics Data System (ADS)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  12. Portable electrophoresis apparatus using minimum electrolyte

    NASA Technical Reports Server (NTRS)

    Stevens, M. R.; Vickers, J. M. (Inventor)

    1976-01-01

    An electrophoresis unit for use in conducting electrophoretic analysis of specimens is described. The unit includes a sealable container in which a substrate mounted specimen is suspended in an electrolytic vapor. A heating unit is employed to heat a supply of electrolyte to produce the vapor. The substrate is suspended within the container by being attached between a pair of clips which also serve as electrodes to which a direct current power source may be connected.

  13. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  14. Electrolytic purification of metals

    DOEpatents

    Bowman, Kenneth A.

    1980-01-01

    A method of electrolytically separating metal from impurities comprises providing the metal and impurities in a molten state in a container having a porous membrane therein, the membrane having a thickness in the range of about 0.01 to 0.1 inch, being capable of containing the molten metal in the container, and being permeable by a molten electrolyte. The metal is electrolytically transferred through the membrane to a cathode in the presence of the electrolyte for purposes of separating or removing impurities from the metal.

  15. Hydrogen selenide treatment of electrolytes

    SciTech Connect

    Rasmussen, J. R.; Virkar, A. V.

    1985-01-29

    A method for lowering the activation energy of a polycrystalline ceramic electrolyte is disclosed. Polycrystalline ceramic electrolytes, such as beta-alumina, when contacted with hydrogen selenide exhibit a lower activation energy than untreated electrolytes.

  16. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  17. Solid electrolyte oxygen regeneration system

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; See, G. G.; Schubert, F. H.; Powell, J. D.

    1976-01-01

    A program to design, develop, fabricate and assemble a one-man, self-contained, solid electrolyte oxygen regeneration system (SX-1) incorporating solid electrolyte electrolyzer drums was completed. The SX-1 is a preprototype engineering model designed to produce 0.952 kg (2.1 lb)/day of breathable oxygen (O2) from the electrolysis of metabolic carbon dioxide (CO2) and water vapor. The CO2 supply rate was established based on the metabolic CO2 generation rate for one man of 0.998 kg (2.2 lb)/day. The water supply rate (0.254 kg (0.56 lb)/day) was designed to be sufficient to make up the difference between the 0.952 kg (2.1 lb)/day O2 generation specification and the O2 available through CO2 electrolysis, 0.726 kg (1.6 lb)/day. The SX-1 was successfully designed, fabricated and assembled. Design verification tests (DVT) or the CO Disproportionators, H2 separators, control instrumentation, monitor instrumentation, water feed mechanism were successfully completed. The erratic occurrence of electrolyzer drum leakage prevented the completion of the CO2 electrolyzer module and water electrolyzer module DVT's and also prevented the performance of SX-1 integrated testing. Further development work is required to improve the solid electrolyte cell high temperature seals.

  18. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H.R.; Guthrie, R.J.; Katz, M.

    1987-03-17

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate. 5 figs.

  19. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  20. Electrochemically stable electrolytes

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1999-01-01

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.

  1. Electrochemically stable electrolytes

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1999-01-05

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.

  2. New Solid Polymer Electrolytes for Improved Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  3. Method of preparing thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles

    1997-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  4. Method of preparing thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  5. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I., Jr.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  6. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  7. Solid electrolyte cell

    NASA Technical Reports Server (NTRS)

    Richter, R. (Inventor)

    1982-01-01

    A solid electrolyte cell including a body of solid ionized gas-conductive electrolyte having mutually spaced surfaces and on which is deposited a multiplicity of mutually spaced electrodes is described. Strips and of bare substances are interposed between electrodes, so that currents of ionic gas may be established between the electrodes via the bare strips, whereby electrical resistance for the cells is lowered and the gas conductivity is enhanced.

  8. Electrolytic plating apparatus for discrete microsized particles

    DOEpatents

    Mayer, Anton

    1976-11-30

    Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur.

  9. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  10. Plasma electrolytic oxidation of AMCs

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Lampke, T.

    2016-03-01

    Aluminum Matrix Composites (AMCs) consisting of high-strength alloys and ceramic reinforcement phases exhibit a high potential for security relevant lightweight components due to their high specific mechanical properties. However, their application as tribologically stressed components is limited because of their susceptibility against fatigue wear and delamination wear. Oxide ceramic protective coatings produced by plasma electrolytic oxidation (PEO) can solve these problems and extend the possible applications of AMCs. The substrate material was powder metallurgically processed using alloy EN AW 2017 and SiC or Al2O3 particles. The influence of material properties like particle type, size and volume fraction on coating characteristics is clarified within this work. An alkaline silicate electrolyte was used to produce PEO coatings with technically relevant thicknesses under bipolar-pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The particle type proved to have the most significant effect on the coating properties. Whereas compactness and thickness are not deteriorated by the incorporation of thermodynamically stable alumina particles, the decomposition of silica particles during the PEO processes causes an increase of the porosity. The higher silica particle content decreases also the coating thickness and hardness, which leads in particular to reduction of the wear resistance of the PEO coatings. Finally, different approaches for the reduction of the coating porosity of silica reinforced AMCs are discussed.

  11. [Nephropathy associated with electrolyte disorders].

    PubMed

    Tsuchiya, K; Nakauchi, M; Hondo, I; Nihei, H

    1995-08-01

    It is well known that renal dysfunction is associated with several types of electrolyte disorders. On the other hand, renal manifestations have been attributed to electrolyte disorders. Hypokalemia is the most frequent electrolyte abnormality encountered in clinical practice. The main cause of hypokalemia is due to abuse of laxatives and diuretics or to anorexia nervosa. Hypercalcemia is another major electrolyte abnormality, associated with numerous renal manifestations. Renal tubules damages and chronic interstitial nephritis are characteristic pathological findings in prolonged electrolyte disorders. The mechanism of renal involvement and characteristic clinical manifestations of the electrolyte disorders are reviewed. PMID:7563640

  12. Method of fabrication of electrodes and electrolytes

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2004-01-06

    Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.

  13. Electrolytes in the Aging

    PubMed Central

    Schlanger, Lynn E.; Bailey, James Lynch; Sands, Jeff M.

    2010-01-01

    The elderly population in the United States continues to grow and is expected to double by 2050. With aging there are degenerative changes in many organs and the kidney is no exception. After age forty there is an increase in cortical glomerulosclerosis and a decline in both glomerular filtration rate and renal plasma flow. These changes may be associated with an inability to excrete a concentrated or a dilute urine, ammonium, sodium, or potassium. Hypernatremia and hyponatremia are the most common electrolyte abnormalities found in the elderly and both are associated with a high mortality. Under normal conditions the elderly are able to maintain water and electrolyte balance but this may be jeopardized by an illness, a decline in cognitive ability, and with certain medications. Therefore, it is important to be aware of the potential electrolyte abnormalities in the elderly that can arise under these various conditions in order to prevent adverse outcomes. PMID:20610358

  14. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  15. Improved electrolytes for fuel cells

    SciTech Connect

    Gard, G.L.; Roe, D.K.

    1991-06-01

    Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

  16. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, R.; Larimer, K.T.

    1998-09-22

    A method is described for producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage. 4 figs.

  17. Spin coating of electrolytes

    DOEpatents

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  18. Solid electrolyte structure

    DOEpatents

    Fraioli, Anthony V.

    1984-01-01

    A solid electrolyte structure for fuel cells and other electrochemical devices providing oxygen ion transfer by a multiplicity of exposed internal surfaces made of a composition containing an oxide of a multivalent transition metal and forming small pore-like passages sized to permit oxygen ion transfer while limiting the transfer of oxygen gas.

  19. MultiLayer solid electrolyte for lithium thin film batteries

    SciTech Connect

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  20. Crystallographic texture of light tinplate coatings made in various electrolytes

    NASA Astrophysics Data System (ADS)

    Gburík, R.; Černík, M.; Leggat, R.; Vranec, P.

    2015-04-01

    Two electrolytic tinplating processes are currently used in Europe: PSA (based on phenolsulfonic acid) and MSA (based on methanesulfonic acid). The Halogen Process is used in other parts of the world. The electrolyte composition and process parameters affect the electrodeposit and ultimately the tinplate appearance and performance. In order to better understand the impact of electrolyte composition on the crystallographic texture of tin coating tinplate, light tin coatings on single reduced, continuously annealed (CA) tinplate produced in three electrolytes: Halogen, PSA and MSA were analyzed. The crystallographic texture of thin tin coating (<2.8gm-2) was analyzed by X-ray Diffraction and Electron Backscatter Diffraction. The effect of reflow (melting of the tin followed by rapid solidification) and ironing during drawn and wall ironed (DWI) can forming on the tin crystallography were evaluated. Both texture analysis by XRD and EBSD confirmed that all un-melted tin coatings, made in three different electrolytes, contain texture fibers. The effect of steel sheet crystallographic texture was investigated by comparing the tin crystallographic orientation on continuously annealed steel substrate (with α and γ fiber texture) versus batch annealed (BA) steel with a strong γ fiber texture. The main electrolytic parameters, current density and line speed, did not affect the texture formation of tin coating produced in MSA-based electrolyte within the commercial ranges. Un-melted tin coatings produced in the MSA-based electrolyte showed sharper texture than those produced in PSA and Halogen electrolytes. The FeSn2 alloy structure was not observed in un-melted tin coatings; however, it was detected after ironing in the DWI process.

  1. A review of electrolyte materials and compositions for electrochemical supercapacitors.

    PubMed

    Zhong, Cheng; Deng, Yida; Hu, Wenbin; Qiao, Jinli; Zhang, Lei; Zhang, Jiujun

    2015-11-01

    Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references). PMID:26050756

  2. Reference electrode for electrolytic cell

    DOEpatents

    Kessie, R.W.

    1988-07-28

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane. 4 figs.

  3. Electrolytic cell with reference electrode

    DOEpatents

    Kessie, Robert W.

    1989-01-01

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane.

  4. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  5. Optimization of electrolytic cells

    SciTech Connect

    Alkire, R.; Soon, S-A.; Sradther, M.

    1985-05-01

    A methodology was developed for optimizing electrolytic cells described by a potential field distribution along with material, voltage, and economic balance equations. In the present study, the cell consisted of two flow-through porous electrodes separated by a membrane. The model consisted of two nonlinear differential equations, 1 variables, eight equality constraints, and five inequality constraints. The optimum solutions were obtained for simple economic objectives with use of a successive quadratic programming method. The sensitivity of the optimum to operating variables and design constraints was found with the use of Lagrange multipliers. The method may be applied to an electrolytic cell which can be modeled by a combination of differential, algebraic, and polynomial (curve-fit) equations.

  6. Electrolytes for advanced batteries

    NASA Astrophysics Data System (ADS)

    Blomgren, George E.

    The choices of the components of the electrolyte phase for advanced batteries (lithium and lithium ion batteries) are very sensitive to the electrodes which are used. There are also a number of other requirements for the electrolyte phase, which depend on the cell design and the materials chosen for the battery. The difficulty of choice is compounded when the cell is a rechargeable one. This paper looks at each of these requirements and the degree to which they are met for lithium and lithium ion batteries. The discussion is broken into sections on anode or negative electrode stability requirements, cathode or positive electrode stability requirements, conductivity needs, viscosity and wetting requirements. The effects of these properties and interactions on the performance of batteries are also discussed.

  7. Recovering copper using a combination of electrolytic cells

    NASA Astrophysics Data System (ADS)

    Wang, Shijie

    2002-06-01

    Electrolytic winning (or electrowinning), the most widely used pure metal production technique, permits the recovery of metal values from a greater variety of ever-decreasing grades of feedstock and compliance with increasingly stringent environmental regulations. Over the past decades, the metallurgical industry has made tremendous progress in recovering metals from tankhouse electrolytes, purified leaching solutions, and industrial wastewater. Improved solutionpurification and electrowinning techniques produce metal products swiftly and return or discharge environmentally compliant spent solutions immediately. This paper presents a new process for combining electrolytic cells to make a typical electrowinning process more practical, efficient, and economical.

  8. Ice electrode electrolytic cell

    DOEpatents

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  9. Ice electrode electrolytic cell

    DOEpatents

    Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  10. Solid polymer electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  11. Solid polymer electrolytes

    DOEpatents

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  12. Electrolyte Concentrates Treat Dehydration

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  13. Ice electrode electrolytic cell

    SciTech Connect

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1992-12-31

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  14. Dedicated nuclear facilities for electrolytic hydrogen production

    NASA Technical Reports Server (NTRS)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  15. Solid polymer electrolytes for rechargeable batteries. Final report

    SciTech Connect

    Narang, S.C.; Ventura, S.C.

    1992-02-01

    SRI International has synthesized and tested new, dimensionally stable polymer electrolytes for high energy density rechargeable lithium batteries. We have prepared semi-interpenetrating networks of sulfur-substituted polyethyleneoxide with tetmethylorthosilicate (TEOS). The in situ hydrolysis of TEOS produces a mechanically stable three-dimensional network that entangles the polymer electrolytes and makes the film dimensionally flexible and stable. With this approach, the best dimensionally stable polymer electrolyte of this type produced so far, has a room temperature lithium ion conductivity of 7.5 {times} 10{sup {minus}4} S cm{sup {minus}1}. Another type of solid polymer electrolytes, polydiacetylene-based single-ion conductors with high room temperature proton conductivity were also developed. The best conductivity of these polymers is two orders of magnitude higher than that of Nafion under comparable experimental conditions. With further appropriate chemical modification, the new polymers could be used in fuel cells.

  16. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  17. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  18. Polarization of ferroelectric films through electrolyte.

    PubMed

    Toss, Henrik; Sani, Negar; Fabiano, Simone; Simon, Daniel T; Forchheimer, Robert; Berggren, Magnus

    2016-03-16

    A simplified model is developed to understand the field and potential distribution through devices based on a ferroelectric film in direct contact with an electrolyte. Devices based on the ferroelectric polymer polyvinylidenefluoride-trifluoroethylene (PVDF-TrFE) were produced--in metal-ferroelectric-metal, metal-ferroelectric-dielectric-metal, and metal-ferroelectric-electrolyte-metal architectures--and used to test the model, and simulations based on the model and these fabricated devices were performed. From these simulations we find indication of progressive polarization of the films. Furthermore, the model implies that there is a relation between the separation of charge within the devices and the observed open circuit voltage. This relation is confirmed experimentally. The ability to polarize ferroelectric polymer films through aqueous electrolytes, combined with the strong correlation between the properties of the electrolyte double layer and the device potential, opens the door to a variety of new applications for ferroelectric technologies, e.g. regulation of cell culture growth and release, steering molecular self-assembly, or other large area applications requiring aqueous environments. PMID:26885704

  19. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  20. Electrolyte materials - Issues and challenges

    SciTech Connect

    Balbuena, Perla B.

    2014-06-16

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes.

  1. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    SciTech Connect

    Wang, Yufeng; Zeng, Yongbin Qu, Ningsong; Zhu, Di

    2015-07-15

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained.

  2. Study of novel lithium salt-based, plasticized polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Silva, Maria Manuela; Barros, Sandra Cerqueira; Smith, Michael J.; MacCallum, James R.

    The results of a preliminary investigation of a series of polymer electrolytes based on a novel polymer host, poly(trimethylene carbonate) (p(TMC)), with lithium triflate or lithium perchlorate and various plasticizing additives, are described in this presentation. Electrolytes with lithium salt compositions of about n=10 (where n represents the molar ratio of (OCOCH 2CH 2CH 2O) units per lithium ion) and additive compositions between 5 and 15 wt.% (with respect to p(TMC)), were prepared by co-dissolution of salt and polymer in anhydrous solvent with a controlled amount of additive. The homogeneous solutions obtained were evaporated within a preparative glovebox and under a dry argon atmosphere to form thin films of electrolyte. The solvent-free electrolyte films produced were characterized by measurements of total ionic conductivity, differential scanning calorimetry and thermogravimetry. In general the triflate-based electrolytes were found to show moderate ionic conductivity and good thermal stability while perchlorate-based electrolytes showed higher levels of conductivity but lower thermal stability. Electrolytes based on this host polymer, with both lithium salts, were obtained as very flexible, transparent, completely amorphous films.

  3. Ceramic electrolyte coating and methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  4. Solid state electrolyte systems

    SciTech Connect

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R.

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  5. Glass electrolyte composition

    DOEpatents

    Kucera, Gene H.; Roche, Michael F.

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  6. Electrolytic oxide reduction system

    SciTech Connect

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  7. Glass electrolyte composition

    DOEpatents

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  8. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  9. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOEpatents

    Li, Jian; Farooque, Mohammad; Yuh, Chao-Yi

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  10. Characteristics of tantalum electrolytic capacitors using soluble polypyrrole electrolyte

    NASA Astrophysics Data System (ADS)

    Jang, Kwan Sik; Moon, Bongjin; Oh, Eung Ju; Lee, Hoosung

    Polypyrrole (Ppy) electrolyte solutions in various organic solvents (dimethylformamide, DMF; N-methyl-2-pyrrolidone, NMP; chloroform; trifluoroacetic acid) were prepared using Ppy powder doped with di(2-ethylhexyl)sulfosuccinate sodium salt (Ppy-DEHS) and butylnaphthalene sulfonate sodium salt (Ppy-BNS), respectively. Several tantalum electrolytic capacitors were fabricated by dip coating in these solutions and their electrical properties such as capacitance and tan δ were measured. The capacitors prepared with Ppy-DEHS electrolyte in trifluoroacetic acid showed both high capacitance and low tan δ. Usage of a Ppy electrolyte solution containing both surfactant and a coupling agent also resulted in high capacitance and low tan δ. These phenomena were interpreted in terms of electrical conductivity and chemical structure of the electrolyte, and interactions such as hydrogen bonding, radical addition reaction, covalent bonding between the tantalum oxide layer and the solvent.

  11. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  12. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  13. Low electrolytic conductivity standards

    SciTech Connect

    Wu, Y.C.; Berezansky, P.A.

    1995-09-01

    The monitoring and control of the quality of feedwater and boiler water are necessary for power plants. The generation of steam at high temperature and pressure requires that contaminants be strictly limited to very low levels to prevent corrosion and scaling. Standards of low electrolytic conductivity were developed to satisfy the demands of the US Navy and American industry for the measurement of high quality water. The criteria for the selection of appropriate solvent and solutes, based on the principles of equivalent conductivity and Onsager`s limiting law, are described. Dilute solutions of potassium chloride and benzoic acid in 30% n-propanol-water have been chosen as standards. The electrolytic conductivity of both sets of these solutions as a function of molality was determined. Solutions of potassium chloride and of benzoic acid are recommended for use as 5, 10, 15, 20, and 25 {micro}S/cm conductivity standards. Solutions prepared from potassium chloride in 30% n-propanol-water have been certified as Standard Reference Materials (SRMs). SRM 3198 and SRM 3199 are certified nominally at 5 and 15 {micro}S/cm, respectively, at 25.000 C.

  14. Electrolytes - Technology review

    SciTech Connect

    Meutzner, Falk; Ureña de Vivanco, Mateo

    2014-06-16

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

  15. Gelled Electrolytes For Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Attia, Alan; Halpert, Gerald

    1993-01-01

    Gelled polymer electrolyte consists of polyacrylonitrile (PAN), LiBF4, and propylene carbonate (PC). Thin films of electrolyte found to exhibit stable bulk conductivities of order of 10 to the negative 3rd power S/cm at room temperature. Used in thinfilm rechargeable lithium batteries having energy densities near 150 W h/kg.

  16. Application of Organic Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    Sekido, S.

    1982-01-01

    If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability.

  17. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  18. High Energy Density Electrolytic Capacitor

    NASA Technical Reports Server (NTRS)

    Evans, David A.

    1996-01-01

    A new type of electrolytic capacitor which combines an electrolytic capacitor anode with an electrochemical capacitor cathode was developed. The resulting capacitor has a four time higher energy density than standard electrolytic capacitors, with comparable electric performance. The prototype, a 480 microFarad, 200 V device, has an energy density exceeding 4 J/cc. Now a 680 microFarad 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. The potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V hybrid capacitors and results from ongoing qualification testing of the MIL-style tantalum capacitors.

  19. High energy density electrolytic capacitor

    NASA Technical Reports Server (NTRS)

    Evans, David A.

    1995-01-01

    Recently a new type of electrolytic capacitor was developed. This capacitor, the Evans Hybrid, combines an electrolytic capacitor anode with an electrochemical capacitors cathode. The resulting capacitor has four times the energy density of other electrolytic capacitors, with comparable electrical performance. The prototype, a 480 micro F, 200 V device, had an energy density exceeding 4 J/cc. Now, a 680 micro F, 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. Potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V Hybrid capacitors and results of ongolng qualification status of the MJL-style tantalum.

  20. Electrolytic decontamination of conductive materials

    SciTech Connect

    Nelson, T.O.; Campbell, G.M.; Parker, J.L.; Getty, R.H.; Hergert, T.R.; Lindahl, K.A.; Peppers, L.G.

    1993-10-01

    Using the electrolytic method, the authors have demonstrated removal of Pu from contaminated conductive material. At EG&G Rocky Flats, they electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging > 1,000,000 counts per minute (cpm) down to levels ranging from 1,500 to < 250 cpm with the electrolytic method. More recently, the electrolytic work has continued at LANL as a joint project with EG&G. Impressively, electrolytic decontamination experiments on removal of Pu from oralloy coupons have shown decreases in swipable contamination that initially ranged from 500,000 to 1,500,000 disintegrations per minute (dpm) down to 0--2 dpm.

  1. Polymeric electrolytic hygrometer

    NASA Technical Reports Server (NTRS)

    Lawson, D. D. (Inventor)

    1978-01-01

    An improved flow-through electrolytic hygrometer is described which utilizes a long lasting oxidation-resistant, hollow fiber formed from persulfonic acid substituted polytetrafluoroethylene having closely spaced noble metal electrodes in contact with the inner and outer surfaces of the fiber. The fiber is disposed within a chamber so that the moisture-bearing gas passes in contact with at least one surface of the fiber. The electrodes are connected in series to a dc voltage supply and an ammeter. As the gas passes through the chamber, moisture absorbed into the wall of the fiber is electrolyzed to hydrogen and oxygen by the closely spaced electrodes. The amount of electricity required for electrolysis is proportional to the absorbed moisture and is observed on the ammeter.

  2. Electrolytes and thermoregulation

    NASA Technical Reports Server (NTRS)

    Nielsen, B.; Greenleaf, J. E.

    1977-01-01

    The influence of ions on temperature is studied for cases where the changes in ionic concentrations are induced by direct infusion or injection of electrolyte solutions into the cerebral ventricles or into specific areas of brain tissue; intravenous infusion or injection; eating food or drinking solutions of different ionic composition; and heat or exercise dehydration. It is shown that introduction of Na(+) and Ca(++) into the cerebral ventricles or into the venous system affects temperature regulation. It appears that the specific action of these ions is different from their osmotic effects. It is unlikely that their action is localized to the thermoregulatory centers in the brain. The infusion experiments demonstrate that the changes in sodium balance occurring during exercise and heat stress are large enough to affect sweat gland function and vasomotor activity.

  3. Electrolyte paste for molten carbonate fuel cells

    DOEpatents

    Bregoli, Lawrance J.; Pearson, Mark L.

    1995-01-01

    The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

  4. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  5. Photopolymerized Electrolytes For Electrochromic Devices

    NASA Technical Reports Server (NTRS)

    Cogan, Stuart; Rauh, R. David

    1994-01-01

    Thin ion-conducting electrolyte films for use in electrochromic devices now fabricated relatively easily and quickly with any of class of improved formulations containing ultraviolet-polymerizable components. Formulations are liquids in their monomeric forms and self-supporting, transparent solids in their polymeric forms. Thin solid electrolytes form quickly and easily between electrode-bearing substrates. Film thus polymerized acts not only as solid electrolyte but also as glue holding laminate together: feature simplifies fabrication by reducing need for sealants and additional mechanical supports.

  6. Organic electrolytes for sodium batteries

    NASA Astrophysics Data System (ADS)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  7. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  8. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  9. Hermetically sealed aluminum electrolytic capacitor

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S.; Liu, Yanming; Elias, William

    1995-01-01

    Aluminum electrolytic capacitors are presently not allowed on NASA missions because they outgas water and organic vapors, as well as H2. As a consequence, much larger and heavier packages of tantalum capacitors are used. A hermetically sealed aluminum capacitor has been developed under NASA-MSFC SBIR contracts. This capacitor contains a nongassing electrolyte that was developed for this application so internal pressure would remain low. Capacitors rated at 250 to 540 V have been operated under full load for thousands of hours at 85 and 105 C with good electrical performance and low internal pressure. Electrolyte chemistry and seal engineering concepts will be discussed.

  10. Electrolyte composition for electrochemical cell

    DOEpatents

    Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.

    1979-01-01

    A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.

  11. Adaption of kinetics to solid electrolyte interphase layer formation and application to electrolyte-soluble reaction products

    NASA Astrophysics Data System (ADS)

    Gourdin, Gerald; Zheng, Dong; Qu, Deyang

    2015-12-01

    During the electrochemical lithiation of a carbon electrode, carbonate-based electrolytes react with the electrode surface and undergo reductive decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode. In addition, reduction of the electrolyte also results in the generation of electrolyte-soluble products. Structural similarities between the soluble and insoluble products provide an opportunity to examine the formation kinetics of the SEI layer through an analysis of the kinetic behavior of the soluble products. In this work, the electrolyte-soluble products generated by reductive decomposition of a baseline electrolyte were analyzed at different stages and at different hold times during the initial lithiation of an amorphous carbon electrode. A statistical regression analysis of that data was used to produce a representative lithiation experiment from which was calculated the potential-dependent formation rates for the soluble decomposition products. The predicted formation rate data was fitted using an adapted rate equation that accounts for the effect of the SEI layer to obtain estimated formation rate constants and redox potentials.

  12. Cured composite materials for reactive metal battery electrolytes

    DOEpatents

    Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.

    2006-03-07

    A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.

  13. Non-aqueous electrolytes for electrochemical cells

    DOEpatents

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  14. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    PubMed

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. PMID:27372125

  15. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  16. Composite solid polymer electrolyte membranes

    SciTech Connect

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  17. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  18. EAF dust as an electrolytic zinc resource

    SciTech Connect

    Zunkel, A.D.

    1995-12-31

    Two viable options are presently available to the electrolytic zinc producer to supplement the zinc production capability significantly by using electric arc furnace dust (EAFD) or leady ZnO products derived from EAFD: Integrated processing of the materials using the Modified Zincex Process and commingling the zinc sulfate solution from that process with the neutral solution from the calcine leaching circuit; Installing a completely separate circuit for treating the material using technologies such as the Modified Zincex or Esinex Processes. EAFD and halogen-bearing EAFD derived products are a zinc resource which is virtually untapped by new or existing electrolytic zinc producers and which offers them, with the advent of new technologies able to deal with halides, the opportunity to maintain or increase their zinc production from a relatively cheap, if not ``free``, and already mined zinc source. Such an approach would also provide the EAFD producer an alternative, perhaps lower cost, outlet for their material to the currently rather closely held EAFD processing industry.

  19. High cation transport polymer electrolyte

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.; Klingler, Robert J.

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  20. Electrolytes for lithium ion batteries

    SciTech Connect

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  1. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  2. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  3. [Iatrogenic electrolyte disorders].

    PubMed

    Kettritz, R; Luft, F C

    2015-07-01

    The maintenance of water and electrolyte homeostasis is of enormous importance for the functioning of cells and tissues. A number of therapeutic procedures intentionally or unintentionally influence important regulatory mechanisms of these interdependent balanced systems. Excessive salt intake doesn't only expand the extracellular volume; it can also cause a considerable increase in tonicity. Owing to its insulin-dependent duality of action, glucose can represent an effective or an ineffective osmolyte. This fact has to be considered in patients with diabetic ketoacidosis. Diuretics reduce the volume expansion via renal excretion of sodium (and water); however, in addition to hypokalemia, diuretics can also cause severe alkalosis. Nowadays, hemodialysis is a routine procedure-but even routine procedures can deliver undesirable surprises. Can dialysis cause an increase in calcium levels, or does the procedure remove therapeutically administered radioactive iodine? The current article presents a series of cases we have come across in recent years. These case reports illustrate common, but also rare iatrogenic situations. The discussion of these cases is aimed at raising awareness of the issues involved in a pathophysiological approach to clinical problems. PMID:26036655

  4. Polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Gottesfeld, S.

    The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.

  5. Wetting in electrolyte solutions.

    PubMed

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2013-06-01

    Wetting of a charged substrate by an electrolyte solution is investigated by means of classical density functional theory applied to a lattice model. Within the present model the pure, i.e., salt-free solvent, for which all interactions are of the nearest-neighbor type only, exhibits a second-order wetting transition for all strengths of the substrate-particle and the particle-particle interactions for which the wetting transition temperature is nonzero. The influences of the substrate charge density and of the ionic strength on the wetting transition temperature and on the order of the wetting transition are studied. If the substrate is neutral, the addition of salt to the solvent changes neither the order nor the transition temperature of the wetting transition of the system. If the surface charge is nonzero, upon adding salt this continuous wetting transition changes to first-order within the wide range of substrate surface charge densities and ionic strengths studied here. As the substrate surface charge density is increased, at fixed ionic strength, the wetting transition temperature decreases and the prewetting line associated with the first-order wetting transition becomes longer. This decrease of the wetting transition temperature upon increasing the surface charge density becomes more pronounced by decreasing the ionic strength. PMID:23758391

  6. On-site production of electrolytic hydrogen for generator cooling

    NASA Astrophysics Data System (ADS)

    Mehta, B. R.

    Hydrogen produced by water electrolysis could be cost effective over the merchant hydrogen used for generator cooling. Advanced water electrolyzers are being developed specifically for this utility application. These designs are based on solid-polymer-electrolyte and alkaline water electrolysis technologies. This paper describes the status of electrolyzer development and demonstration projects.

  7. Fluid and Electrolyte Nutrition

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.

    1999-01-01

    Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.

  8. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.

    PubMed

    Skyllas-Kazacos, Maria; Cao, Liuyue; Kazacos, Michael; Kausar, Nadeem; Mousa, Asem

    2016-07-01

    The electrolyte is one of the most important components of the vanadium redox flow battery and its properties will affect cell performance and behavior in addition to the overall battery cost. Vanadium exists in several oxidation states with significantly different half-cell potentials that can produce practical cell voltages. It is thus possible to use the same element in both half-cells and thereby eliminate problems of cross-contamination inherent in all other flow battery chemistries. Electrolyte properties vary with supporting electrolyte composition, state-of-charge, and temperature and this will impact on the characteristics, behavior, and performance of the vanadium battery in practical applications. This Review provides a broad overview of the physical properties and characteristics of the vanadium battery electrolyte under different conditions, together with a description of some of the processing methods that have been developed to produce vanadium electrolytes for vanadium redox flow battery applications. PMID:27295523

  9. Apparatus and process for the electrolytic reduction of uranium and plutonium oxides

    DOEpatents

    Poa, David S.; Burris, Leslie; Steunenberg, Robert K.; Tomczuk, Zygmunt

    1991-01-01

    An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fills both containers, the level of the electrolyte in the first container being above the top of the second container so that the electrolyte can be circulated between the containers. The anode is positioned in the first container while the cathode is located in the second container. Means are provided for passing an inert gas into the electrolyte near the lower end of the anode to sparge the electrolyte and to remove gases which form on the anode during the reduction operation. Means are also provided for mixing and stirring the electrolyte in the first container to solubilize the metal oxide in the electrolyte and to transport the electrolyte containing dissolved oxide into contact with the cathode in the second container. The cell is operated at a temperature below the melting temperature of the metal product so that the metal forms as a solid on the cathode.

  10. Internal electrolyte supply system for reliable transport throughout fuel cell stacks

    DOEpatents

    Wright, Maynard K.; Downs, Robert E.; King, Robert B.

    1988-01-01

    An improved internal electrolyte supply system in a fuel cell stack employs a variety of arrangements of grooves and passages in bipolar plates of the multiplicity of repeating fuel cells to route gravity-assisted flowing electrolyte throughout the stack. The grooves route electrolyte flow along series of first paths which extend horizontally through the cells between the plates thereof. The passages route electrolyte flow along series of second paths which extend vertically through the stack so as to supply electrolyte to the first paths in order to expose the electrolyte to the matrices of the cells. Five different embodiments of the supply system are disclosed. Some embodiments employ wicks in the grooves for facilitating transfer of the electrolyte to the matrices as well as providing support for the matrices. Additionally, the passages of some embodiments by-pass certain of the grooves and supply electrolyte directly to other of the grooves. Some embodiments employ single grooves and others have dual grooves. Finally, in some embodiments the passages are connected to the grooves by a step which produces a cascading electrolyte flow.

  11. Electrolytic cell and methods combining electrowinning and electrochemical reactions employing a membrane or diaphragm

    SciTech Connect

    Smith, G.R.; Thompson, W.R.

    1986-12-09

    A process is described for combining at compatible cell geometries and current densities the electrowinning of a free metal element on a cathode in a catholytic electrolyte in a cell in which there is an anode with an anolytic electrolyte with a cationic permselective membrane between the catholytic electrolyte and anolytic electrolyte thereby forming a catholytic half-cell compartment and an anolytic half-cell compartment. The voltage for the combined catholytic half-cell and anolytic half-cell is reduced greater than 50% as compared to the sum of the cell voltages of two independently operating nonmembrane cells using an electrolyte selected from the catholytic electrolyte or the anolytic electrolyte and with water electrolysis at the anode. The process consists of (a) introducing a metal sulfate salt into the catholytic electrolyte in the half-cell catholytic compartment (b) introducing an alkali metal chlorate and an alkali metal perchlorate into the anolytic electrolyte in the half-cell anolytic compartment; and (c) applying an electromotive force across the cathode and anode whereby an oxidation electrochemical reaction occurs at the anode to produce a perchlorate while the free metal element of the metal salt is deposited at the cathode.

  12. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  13. Electrolytic decontamination of conductive materials for hazardous waste management

    SciTech Connect

    Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

    1996-12-31

    Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodium nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.

  14. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  15. Hermetically Sealed Aluminum Electrolytic Capacitor

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S.; Liu, Yanming; Elias, William

    1996-01-01

    Aluminum electrolytic capacitors are presently not allowed on NASA missions because they outgas water and organic vapors, as well as H2. As a consequence, for some applications, much larger and heavier packages of tantalum capacitors must be used. A hermetically sealed aluminum capacitor has been developed. This contains a nongassing electrolyte that was developed for this application so internal pressure would remain low. Capacitors rated from 250 V to 540 V have been operated under full load for thousands of hours at 85 and 105 C with good electrical performance and absence of gas generation. Electrolyte chemistry and seal engineering will be discussed, as well as the extension of this design concept to lower voltage ratings.

  16. High elastic modulus polymer electrolytes

    DOEpatents

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  17. Towards Prognostics of Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Biswas, Gautam; Goegel, Kai

    2011-01-01

    A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management research. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. In particular, experimental results of an accelerated aging test under electrical stresses are presented. The capacitors used in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors.

  18. Magnesium Battery Electrolytes in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Watkins, Tylan Strike

    A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution to the problem. Unfortunately, today's state of the art battery technologies fail to meet the desired metrics for full scale electric grid and/or electric vehicle role out. Considerable effort from scientists and engineers has gone into the pursuit of battery chemistries theoretically capable of far outperforming leading technologies like Li-ion cells. For instance, an anode of the relatively abundant and cheap metal, magnesium, would boost the specific energy by over 4.6 times that of the current Li-ion anode (LiC6). The work presented here explores the compatibility of magnesium electrolytes in TFSI---based ionic liquids with a Mg anode (TFSI = bis(trifluoromethylsulfonyl)imide). Correlations are made between the Mg2+ speciation conditions in bulk solutions (as determined via Raman spectroscopy) and the corresponding electrochemical behavior of the electrolytes. It was found that by creating specific chelating conditions, with an appropriate Mg salt, the desired electrochemical behavior could be obtained, i.e. reversible electrodeposition and dissolution. Removal of TFSI -- contact ion pairs from the Mg2+ solvation shell was found to be essential for reversible electrodeposition. Ionic liquids with polyethylene glycol chains pendent from a parent pyrrolidinium cation were synthesized and used to create the necessary complexes with Mg 2+, from Mg(BH4)2, so that reversible electrodeposition from a purely ionic liquid medium was achieved. The following document discusses findings from several electrochemical experiments on magnesium electrolytes in ionic liquids. Explanations for the failure of many of these systems to produce reversible Mg electrodeposition are provided. The key characteristics of ionic liquid systems that are capable of achieving reversible Mg

  19. Thermoelectricity in Confined Liquid Electrolytes.

    PubMed

    Dietzel, Mathias; Hardt, Steffen

    2016-06-01

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which-for narrow channels-may cause thermovoltages larger in magnitude than for the classical Soret equilibrium. PMID:27314730

  20. Thermoelectricity in Confined Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Dietzel, Mathias; Hardt, Steffen

    2016-06-01

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which—for narrow channels—may cause thermovoltages larger in magnitude than for the classical Soret equilibrium.

  1. Polymer Electrolytes for Lithium/Sulfur Batteries

    PubMed Central

    Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296

  2. Alkali metal crystalline polymer electrolytes.

    PubMed

    Zhang, Chuhong; Gamble, Stephen; Ainsworth, David; Slawin, Alexandra M Z; Andreev, Yuri G; Bruce, Peter G

    2009-07-01

    Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li(+) conductivity in crystalline poly(ethylene oxide)(6):LiAsF(6). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na(+), K(+) and Rb(+)), including the best conductor poly(ethylene oxide)(8):NaAsF(6) discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)(6):LiAsF(6). These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li(+) complex. PMID:19543313

  3. Solid polymer electrolyte photovoltaic cell

    SciTech Connect

    Skotheim, T.; Lundstrom, I.

    1982-04-01

    Solid photoelectrochemical cells are described based on PEO-KI/I/sub 2/ electrolytes, n-Si/Pt/PPy photoanodes, and conductive tin-oxide glass counter electrodes. The performance of the present devices is limited by a high series resistance in the polymer film. 22 refs.

  4. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  5. Improved fabrication of electrolytic capacitors

    NASA Technical Reports Server (NTRS)

    Gamari, F. J.; Moresi, J. L.

    1975-01-01

    After processing parts for assembly, insulative cup is fitted to bottom of can, then electrolytic solution consisting of white sulfuric acid gel is inserted into can. Pellet is put in can and is fitted tightly into cup. Finally, bead weld is formed between can and header plug.

  6. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  7. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    participation on a variety of other projects, including aero-gels and carbon graphite mat en als. The goals of the polymer electrolyte research are to improve the physical properties of the polymers. This includes improving conductivity, durability, and expanding the temperature range over which it is effective. Currently, good conductivity is only present at high temperatures. My goals are to experiment with different arrangements of rods and coils to achieve these desirable properties. Some of my experiments include changing the number of repeat units in the polymer, the size of the diamines, and the types of coil. Analysis of these new polymers indicates improvement in some properties, such as lower glass transition temperature; however, they are not as flexible as desired. With further research we hope to produce polymers that encompass all of these properties to a high degree.

  8. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  9. Electrolytes for high-energy lithium batteries

    NASA Astrophysics Data System (ADS)

    Schaefer, Jennifer L.; Lu, Yingying; Moganty, Surya S.; Agarwal, Praveen; Jayaprakash, N.; Archer, Lynden A.

    2012-06-01

    From aqueous liquid electrolytes for lithium-air cells to ionic liquid electrolytes that permit continuous, high-rate cycling of secondary batteries comprising metallic lithium anodes, we show that many of the key impediments to progress in developing next-generation batteries with high specific energies can be overcome with cleaver designs of the electrolyte. When these designs are coupled with as cleverly engineered electrode configurations that control chemical interactions between the electrolyte and electrode or by simple additives-based schemes for manipulating physical contact between the electrolyte and electrode, we further show that rechargeable battery configurations can be facilely designed to achieve desirable safety, energy density and cycling performance.

  10. Fuel cell with electrolyte feed system

    DOEpatents

    Feigenbaum, Haim

    1984-01-01

    A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.

  11. Electrolyte measurement device and measurement procedure

    DOEpatents

    Cooper, Kevin R.; Scribner, Louie L.

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  12. Insulated electrocardiographic electrodes. [without paste electrolyte

    NASA Technical Reports Server (NTRS)

    David, R. M.; Portnoy, W. A. (Inventor)

    1975-01-01

    An integrated system is disclosed including an insulated electrode and an impedance transformer which can be assembled in a small plastic housing and used for the acquisition of electrocardiographic data. The electrode may be employed without a paste electrolyte and may be attached to the body for extended usage without producing skin reaction. The electrode comprises a thin layer of suitable nontoxic dielectric material preferably deposited by radio frequency sputtering onto a conductive substrate. The impedance transformer preferably comprises an operational amplifier having an FET input stage connected in the unity gain configuration which provides a very low lower cut-off frequency, a high input impedance with a very small input bias current, a low output impedance, and a high signal-to-noise ratio.

  13. An investigation into magnetic electrolytic abrasive turning

    NASA Astrophysics Data System (ADS)

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  14. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    PubMed Central

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  15. Electrolytic production of neodymium metal from a molten chloride electrolyte

    SciTech Connect

    Chambers, M.F.; Murphy, J.E.

    1991-01-01

    This paper reports that the U.S. Bureau of Mines conducted experiments on electrowinning of neodymium metal by using a molten-metal cathode at 650{degrees} C and an electrolyte of 50 mol pet NdCl, (neodymium chloride) and 50 mol pet KCl (potassium chloride). The molten-metal cathodes were alloys of magnesium and zinc or magnesium and cadmium. Current efficiencies were 90 pct with a Mg-Zn cathode and 80 pct with a Mg-Cd cathode. The Mg-Cd cathode was easily separated from the electrolyte. In contrast, the Mg-Zn cathode tended to mix with the electrolyte, making separation difficult. The cathode metals were separated from the neodymium by distillation at 1,100{degrees} C under a vacuum of 10{sup {minus}4} torr. Neodymium metal of 99.9 + purity was recovered from the Mg-Cd alloy cathode after 30 min distillation time. The neodymium recovered from the Mg-Zn system contained almost 2 pct Zn after vacuum distillation. Continuous operation using the Mg-Cd alloy cathode was demonstrated.

  16. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  17. Electrochromic Device with Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Solovyev, Andrey A.; Zakharov, Alexander N.; Rabotkin, Sergey V.; Kovsharov, Nikolay F.

    2016-08-01

    In this study a solid-state electrochromic device (ECD) comprised of a WO3 and Prussian blue (Fe4[Fe(CN)6]3) thin film couple with a Li+-conducting solid polymer electrolyte is discussed. WO3 was deposited on K-Glass substrate by magnetron sputtering method, while Prussian blue layer was formed on the same substrate by electrodeposition method. The parameters of the electrochromic device K-Glass/WO3/Li+-electrolyte/PB/K-Glass, such as change of transmittance, response time and stability were successfully tested using coupled optoelectrochemical methods. The device was colored or bleached by the application of +2 V or -2 V, respectively. Light modulation with transmittance variation of up to 59% and coloration efficiency of 43 cm2/C at a wavelength of 550 nm were obtained. Numerous switching of the ECD over 1200 cycles without the observation of significant degradation has been demonstrated.

  18. New Polymer Electrolyte Cell Systems

    NASA Technical Reports Server (NTRS)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  19. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  20. Anion Solvation in Carbonate Electrolytes

    SciTech Connect

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  1. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  2. Electrochromic Device with Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Solovyev, Andrey A.; Zakharov, Alexander N.; Rabotkin, Sergey V.; Kovsharov, Nikolay F.

    2016-05-01

    In this study a solid-state electrochromic device (ECD) comprised of a WO3 and Prussian blue (Fe4[Fe(CN)6]3) thin film couple with a Li+-conducting solid polymer electrolyte is discussed. WO3 was deposited on K-Glass substrate by magnetron sputtering method, while Prussian blue layer was formed on the same substrate by electrodeposition method. The parameters of the electrochromic device K-Glass/WO3/Li+-electrolyte/PB/K-Glass, such as change of transmittance, response time and stability were successfully tested using coupled optoelectrochemical methods. The device was colored or bleached by the application of +2 V or -2 V, respectively. Light modulation with transmittance variation of up to 59% and coloration efficiency of 43 cm2/C at a wavelength of 550 nm were obtained. Numerous switching of the ECD over 1200 cycles without the observation of significant degradation has been demonstrated.

  3. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  4. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

  5. Low hydrostatic head electrolyte addition to fuel cell stacks

    DOEpatents

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  6. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These

  7. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    NASA Technical Reports Server (NTRS)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  8. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  9. Electrolyte for lead plate storage battery

    SciTech Connect

    Burke, D.

    1981-01-13

    An electrolyte for lead plate storage battery is disclosed comprising selenic acid (H/sub 2/SO/sub 4/) in aqueous solution at concentrations ranging from approximately 0.3 grams to approximately 4.0 grams of selenic acid per liter of electrolyte; the preferred embodiment of said electrolyte containing additional material selected from the group consisting of ferrous sulfate (FeSO/sub 4/) at concentrations ranging from approximately 0.1 grams to approximately 8.0 grams per liter of electrolyte, sodium chloride (NaCl) at concentrations ranging from approximately 0.1 grams to approximately 4.0 grams per liter of electrolyte, and manganous sulfate (MnSO/sub 4/) at concentrations ranging from approximately 005 grams to approximately 0.1 grams per liter of electrolyte.

  10. Safeguard monitoring of direct electrolytic reduction

    NASA Astrophysics Data System (ADS)

    Jurovitzki, Abraham L.

    Nuclear power is regaining global prominence as a sustainable energy source as the world faces the consequences of depending on limited fossil based, CO2 emitting fuels. A key component to achieving this sustainability is to implement a closed nuclear fuel cycle. Without achieving this goal, a relatively small fraction of the energy value in nuclear fuel is actually utilized. This involves recycling of spent nuclear fuel (SNF)---separating fissile actinides from waste products and using them to fabricate fresh fuel. Pyroprocessing is a viable option being developed for this purpose with a host of benefits compared to other recycling options, such as PUREX. Notably, pyroprocessing is ill suited to separate pure plutonium from spent fuel and thus has non-proliferation benefits. Pyroprocessing involves high temperature electrochemical and chemical processing of SNF in a molten salt electrolyte. During this batch process, several intermediate and final streams are produced that contain radioactive material. While pyroprocessing is ineffective at separating pure plutonium, there are various process misuse scenarios that could result in diversion of impure plutonium into one or more of these streams. This is a proliferation risk that should be addressed with innovative safeguards technology. One approach to meeting this challenge is to develop real time monitoring techniques that can be implemented in the hot cells and coupled with the various unit operations involved with pyroprocessing. Current state of the art monitoring techniques involve external chemical assaying which requires sample removal from these unit operations. These methods do not meet International Atomic Energy Agency's (IAEA) timeliness requirements. In this work, a number of monitoring techniques were assessed for their viability as online monitoring tools. A hypothetical diversion scenario for the direct electrolytic reduction process was experimentally verified (using Nd2O3 as a surrogate for PuO2

  11. Fuel cell assembly with electrolyte transport

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  12. Novel Electrolytes for Lithium Ion Batteries

    SciTech Connect

    Lucht, Brett L

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  13. Electrolytic cell. [For separating anolyte and catholyte

    DOEpatents

    Bullock, J.S.; Hale, B.D.

    1984-09-14

    An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

  14. Polymeric electrolytes based on hydrosilyation reactions

    DOEpatents

    Kerr, John Borland; Wang, Shanger; Hou, Jun; Sloop, Steven Edward; Han, Yong Bong; Liu, Gao

    2006-09-05

    New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.

  15. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, Paul A.; Bloom, Ira D.; Roche, Michael F.

    1987-01-01

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  16. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1986-04-17

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  17. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1987-04-21

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

  18. Rebalancing electrolytes in redox flow battery systems

    SciTech Connect

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  19. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes

    NASA Astrophysics Data System (ADS)

    Munuera, J. M.; Paredes, J. I.; Villar-Rodil, S.; Ayán-Varela, M.; Martínez-Alonso, A.; Tascón, J. M. D.

    2016-01-01

    Electrolytic - usually referred to as electrochemical - exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (i.e., almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes.Electrolytic - usually referred to as electrochemical - exfoliation of graphite in water under anodic potential holds enormous promise

  20. Interfacial behavior of polymer electrolytes

    SciTech Connect

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  1. Study on electrolytic plasma discharging behavior and its influence on the plasma electrolytic oxidation coatings

    NASA Astrophysics Data System (ADS)

    Hussein, Riyad Omran

    In this study, aluminum oxide was deposited on a pure aluminum substrate to produce hard ceramic coatings using a Plasma Electrolytic Oxidation (PEO) process. The process utilized DC, unipolar pulsed DC in the frequency range (0.2 KHz -- 20 KHz) and bipolar pulsed DC current modes. The effects of process parameters (i.e., electrolyte concentration, current density and treatment time) on the plasma discharge behavior during the PEO treatment were investigated using optical emission spectroscopy (OES) in the visible and near ultraviolet (NUV) band (285 nm -- 900 nm). The emission spectra were recorded and plasma temperature profile versus processing time was constructed using the line intensity ratios method. Scanning Electron Microscopy (SEM) with energy dispersive x-ray analysis (EDS) was used to study the coating microstructure. It was found that the plasma discharge behavior significantly influenced the microstructure and the morphology of the oxide coatings. The main effect came from the strongest discharges which were initiated at the interface between the substrate and the coating. Through manipulation of process parameters to control or reduce the strongest discharge, the density and quality of the coating layers could be modified. This work demonstrated that by adjusting the ratio of the positive to negative pulse currents as well as their timing in order to eliminate the strongest discharges, the quality of the coatings was considerably improved.

  2. High performance electrolytes for MCFC

    DOEpatents

    Kaun, Thomas D.; Roche, Michael F.

    1999-01-01

    A carbonate electrolyte of the Li/Na or CaBaLiNa system. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca.sub.2 CO.sub.3 and BaCO.sub.3, and preferably of equimolar amounts. The presence of both Ca and BaCO.sub.3 enables lower temperature fuel cell operation.

  3. High performance electrolytes for MCFC

    DOEpatents

    Kaun, T.D.; Roche, M.F.

    1999-08-24

    A carbonate electrolyte of the Li/Na or CaBaLiNa system is described. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca{sub 2}CO{sub 3} and BaCO{sub 3}, and preferably of equimolar amounts. The presence of both Ca and BaCO{sub 3} enables lower temperature fuel cell operation. 15 figs.

  4. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  5. Thin-film electrolytes for reduced temperature solid oxide fuel cells

    SciTech Connect

    Visco, S.J.; Wang, L.S.; De Souza, S.; De Jonghe, L.C.

    1994-11-01

    Solid oxide fuel cells produce electricity at very high efficiency and have very low to negligible emissions, making them an attractive option for power generation for electric utilities. However, conventional SOFC`s are operated at 1000{degrees}C or more in order to attain reasonable power density. The high operating temperature of SOFC`s leads to complex materials problems which have been difficult to solve in a cost-effective manner. Accordingly, there is much interest in reducing the operating temperature of SOFC`s while still maintaining the power densities achieved at high temperatures. There are several approaches to reduced temperature operation including alternative solid electrolytes having higher ionic conductivity than yttria stabilized zirconia, thin solid electrolyte membranes, and improved electrode materials. Given the proven reliability of zirconia-based electrolytes (YSZ) in long-term SOFC tests, the use of stabilized zirconia electrolytes in reduced temperature fuel cells is a logical choice. In order to avoid compromising power density at intermediate temperatures, the thickness of the YSZ electrolyte must be reduced from that in conventional cells (100 to 200 {mu}m) to approximately 4 to 10 {mu}m. There are a number of approaches for depositing thin ceramic films onto porous supports including chemical vapor deposition/electrochemical vapor deposition, sol-gel deposition, sputter deposition, etc. In this paper we describe an inexpensive approach involving the use of colloidal dispersions of polycrystalline electrolyte for depositing 4 to 10 {mu}m electrolyte films onto porous electrode supports in a single deposition step. This technique leads to highly dense, conductive, electrolyte films which exhibit near theoretical open circuit voltages in H{sub 2}/air fuel cells. These electrolyte films exhibit bulk ionic conductivity, and may see application in reduced temperature SOFC`s, gas separation membranes, and fast response sensors.

  6. Acidity of frozen electrolyte solutions.

    PubMed

    Robinson, Carmen; Boxe, C S; Guzman, M I; Colussi, A J; Hoffmann, M R

    2006-04-20

    Ice is selectively intolerant to impurities. A preponderance of implanted anions or cations generates electrical imbalances in ice grown from electrolyte solutions. Since the excess charges are ultimately neutralized via interfacial (H(+)/HO(-)) transport, the acidity of the unfrozen portion can change significantly and permanently. This insufficiently recognized phenomenon should critically affect rates and equilibria in frozen media. Here we report the effective (19)F NMR chemical shift of 3-fluorobenzoic acid as in situ probe of the acidity of extensively frozen electrolyte solutions. The sign and magnitude of the acidity changes associated with freezing are largely determined by specific ion combinations, but depend also on solute concentration and/or the extent of supercooling. NaCl solutions become more basic, those of (NH(4))(2)SO(4) or Na(2)SO(4) become more acidic, while solutions of the 2-(N-morpholino)ethanesulfonic acid zwitterion barely change their acidity upon freezing. We discuss how acidity scales based on solid-state NMR measurements could be used to assess the degree of ionization of weak acids and bases in frozen media. PMID:16610849

  7. Exploring zinc coordination in novel zinc battery electrolytes.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2014-06-14

    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device. PMID:24760367

  8. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  9. Features of anodic niobium oxide formation in aqueous-organic electrolyte solutions (influence of ethylene glycol)

    SciTech Connect

    Bairachnyi, B.I.; Gomozov, V.P.; Lyashok, L.V.; Glagolev, S.E.

    1992-02-10

    The formation of anodic oxide films (AOFs) on valve metals in electrolytes with different compositions has received little attention. Earlier investigations dealt mainly with AOF growth and properties in aqueous solutions of mineral and organic acids and salts. Less research was done on electrolytes containing aqueous-organic solvents. An empirically formulated electrolyte with a water/ethylene glycol mixture as the solvent is widely employed in forming the dielectric for semiconductor oxide capacitors (SOCs). The mechanism by which ethylene glycol acts on AOF properties is still not wholly clear. It has been found that AOFs produced in an ethylene glycol electrolyte are bilaminar, with the outer layer being less corrosion-resistant. The degradation resistance and crystalline phase content of AOFs have also been studied. The objective of the present study was to examine the effect of ethylene glycol as solvent on AOF formation on niobium.

  10. Apparatus for electrolytically tapered or contoured cavities

    NASA Technical Reports Server (NTRS)

    Williams, L. A. (Inventor)

    1967-01-01

    An electrolytic machining apparatus for forming tapered or contoured cavities in an electrically conductive and electrochemically erodible piece is presented. It supports the workpiece and an electrode for movement relatively toward each other and has means for pumping an electrolyte between the workpiece and the electrode.

  11. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  12. Evaluation of Electrochemical Methods for Electrolyte Characterization

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report documents summer research efforts in an attempt to develop an electrochemical method of characterizing electrolytes. The ultimate objective of the characterization would be to determine the composition and corrosivity of Martian soil. Results are presented using potentiodynamic scans, Tafel extrapolations, and resistivity tests in a variety of water-based electrolytes.

  13. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  14. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  15. [Study of pure titanium electrolytic polishing].

    PubMed

    Morita, N

    1990-03-01

    This study attempted to polish pure titanium test pieces electrolytically to mirror surface at the size of cast denture frames. Electrolytic polishing of pure titanium could be done on an area of 30 cm2 with a non-aqueous electrolyte. Small pure titanium plates could be polished electrolytically, but a uniformly smooth surface could not be obtained easily with large testpiece. The optimal electrolytic conditions were 30 V for 6 min at 25 degrees C using a solution consisting of 70 ml ethyl alcohol, 30 ml iso-propyl alcohol, 6 g aluminum chloride, and 25 g zinc chloride. The solution was safe and had less restriction of frequency of use. PMID:2135513

  16. Design of an efficient electrolyte circulation system for the lead-acid battery

    NASA Astrophysics Data System (ADS)

    Thuerk, D.

    The design and operation of an electrolyte circulation system are described. Application of lead acid batteries to electric vehicle and other repetitive deep cycle services produces a nondesirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The stratification problem was overcome by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates.

  17. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect

    Fauzi, Iqbal Arcana, I Made

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  18. Electrolyte for an electrochemical cell

    DOEpatents

    Bates, John B.; Dudney, Nancy J.

    1997-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  19. Electrolyte for an electrochemical cell

    DOEpatents

    Bates, J.B.; Dudney, N.J.

    1997-01-28

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

  20. Stretching short DNAs in electrolytes.

    PubMed

    Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2006-03-01

    This paper is aimed at a combined theoretical and numerical study of the force-extension relation of a short DNA molecule stretched in an electrolyte. A theoretical formula based on a recent discrete wormlike chain (WLC) model of Kierfeld et al. (Eur Phys. J. E, Vol. 14, pp.17-34, 2004) and the classical OSF mean-field theory on electrostatic stiffening of a charged polymer is numerically verified by a set of Brownian dynamics simulations based on a generalized bead-rod (GBR) model incorporating long-ranged electrostatic interactions via the Debye-Hueckel potential (DH). The analysis indicates that the stretching of a short DNA can be well described as a WLC with a constant effective persistent length. This contrasts the behavior of long DNA chains that are known to exhibit variable persistent lengths depending on the ion concentration levels and force magnitudes. PMID:16711068

  1. Modeling for CVD of Solid Oxide Electrolyte

    SciTech Connect

    Starr, T.L.

    2002-09-18

    Because of its low thermal conductivity, high thermal expansion and high oxygen ion conductivity yttria-stabilized zirconia (YSZ) is the material of choice for high temperature electrolyte applications. Current coating fabrication methods have their drawbacks, however. Air plasma spray (APS) is a relatively low-cost process and is suitable for large and relatively complex shapes. it is difficult to produce uniform, relatively thin coatings with this process, however, and the coatings do not exhibit the columnar microstructure that is needed for reliable, long-term performance. The electron-beam physical vapor deposition (EB-PVD) process does produce the desirable microstructure, however, the capital cost of these systems is very high and the line-of-sight nature of the process limits coating uniformity and the ability to coat large and complex shapes. The chemical vapor deposition (CVD) process also produces the desirable columnar microstructure and--under proper conditions--can produce uniform coatings over complex shapes. CVD has been used for many materials but is relatively undeveloped for oxides, in general, and for zirconia, in particular. The overall goal of this project--a joint effort of the University of Louisville and Oak Ridge National Laboratory (ORNL)--is to develop the YSZ CVD process for high temperature electrolyte applications. This report describes the modeling effort at the University of Louisville, which supports the experimental work at ORNL. Early work on CVD of zirconia and yttria used metal chlorides, which react with water vapor to form solid oxide. Because of this rapid gas-phase reaction the water generally is formed in-situ using the reverse water-gas-shift reaction or a microwave plasma. Even with these arrangements gas-phase nucleation and powder formation are problems when using these precursors. Recent efforts on CVD of zirconia and YSZ have focused on use of metal-organic precursors (MOCVD). These are more stable in the gas

  2. Design of an efficient electrolyte circulation system for the lead-acid battery

    SciTech Connect

    Thuerk, D.

    1982-01-01

    Application of lead-acid batteries to electric vehicle and other repetitive deep-cycle services produces a non-desirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. Water, which is generated during discharge, rises to the electrolyte surface due to gravity differences, whereas the concentrated sulfuric acid generated during charge falls to the bottom of the container. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The industry presently overcomes the stratification problem by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. The amount of recharge typically used to mix the electrolyte ranges from 120% to 140% of the prior discharge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates. The design and operation of an electrolyte circulation system are described. (WHK)

  3. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect

    Yang, Xiao-Qing

    2008-08-31

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  4. Solid biopolymer electrolytes came from renewable biopolymer

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhang, Xingxiang; Qiao, Zhijun; Liu, Haihui

    2009-07-01

    Solid polymer electrolytes (SPEs) have attracted many attentions as solid state ionic conductors, because of their advantages such as high energy density, electrochemical stability, and easy processing. SPEs obtained from starch have attracted many attentions in recent years because of its abundant, renewable, low price, biodegradable and biocompatible. In addition, the efficient utilization of biodegradable polymers came from renewable sources is becoming increasingly important due to diminishing resources of fossil fuels as well as white pollution caused by undegradable plastics based on petroleum. So N, N-dimethylacetamide (DMAc) with certain concentration ranges of lithium chloride (LiCl) is used as plasticizers of cornstarch. Li+ can complexes with the carbonyl atoms of DMAc molecules to produce a macro-cation and leave the Cl- free to hydrogen bond with the hydroxyl or carbonyl of starch. This competitive hydrogen bond formation serves to disrupt the intra- and intermolecular hydrogen bonding existed in starch. Therefore, melt extrusion process conditions are used to prepare conductive thermoplastic starch (TPS). The improvements of LiCl concentration increase the water absorption and conductance of TPS. The conductance of TPS containing 0.14 mol LiCl achieve to 10-0.5 S cm-1 with 18 wt% water content.

  5. O electrolyte for bio-application

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Almariri, A.

    2014-09-01

    Porous silicon (PS) has been prepared in the dark by anodic etching of n+-type (111) silicon substrate in a HF:HCl:C2H5OH:H2O2:H2O electrolyte. The processed PS layer is characterized by means of photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), water contact angle (CA) measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and micro-Raman scattering. The CA of fresh PS layer is found to be ~142°. On aging at ambient conditions, the CA decreases gently to reach ~133° after 3 month, and then it is stabilized for a prolonged time of aging. The visible PL emission from the PS layer also exhibits a good stability against aging time. The FTIR and XPS measurements and analysis show that the stable aged PS layer has rather SiO2-rich surface. The micro/nanostructure nature of the PS layer is revealed from SEM and micro-Raman results and correlated to CA results. Stable hydrophobic surface of oxidized PS layer is attractive for bio-applications. The efficiency of the produced PS layers as an entrapping template for specific immobilization of IgG2a antibody via physical absorption process is demonstrated.

  6. Electrolytic production and dispensing of hydrogen

    SciTech Connect

    Thomas, C.E.; Kuhn, I.F. Jr.

    1995-09-01

    The fuel cell electric vehicle (FCEV) is undoubtedly the only option that can meet both the California zero emission vehicle (ZEV) standard and the President`s goal of tripling automobile efficiency without sacrificing performance in a standard 5-passenger vehicle. The three major automobile companies are designing and developing FCEVs powered directly by hydrogen under cost-shared contracts with the Department of Energy. Once developed, these vehicles will need a reliable and inexpensive source of hydrogen. Steam reforming of natural gas would produce the least expensive hydrogen, but funding may not be sufficient initially to build both large steam reforming plants and the transportation infrastructure necessary to deliver that hydrogen to geographically scattered FCEV fleets or individual drivers. This analysis evaluates the economic feasibility of using small scale water electrolysis to provide widely dispersed but cost-effective hydrogen for early FCEV demonstrations. We estimate the cost of manufacturing a complete electrolysis system in large quantities, including compression and storage, and show that electrolytic hydrogen could be cost competitive with fully taxed gasoline, using existing residential off-peak electricity rates.

  7. Role of the electrolyte in cathodic lead dioxide reduction

    SciTech Connect

    Lyamina, L.I.; Gorbunova, K.M.; Tarasova, N.I.

    1985-09-01

    The electrolyte composition and particularly the anions are thought to be important in cathodic lead dioxide reduction. Data are reported for the process in 0.1 M Na/sub 2/B/sub 4/O/sub 7/, Na/sub 2/HPO/sub 4/, KOH, and KC1 solution and in 0.3 M K/sub 2/SO/sub 4/ solution. Deposits of alpha-PbO/sub 2/ were produced electrolytically on nickel. The potentials are reported on the hydrogen scale. The electrochemical behavior of lead dioxide in said solutions was evaluated from charging curves and from potentiodynamic curves obtained with a P-5848 potentiostat. The first stage of lead dioxide reduction in all solutions results in the formation of an intermediate oxide having the composition of PbO/sub 1/ /sub 43/ to PbO/sub 1/ /sub 24/. The second stage (reduction of the intermediate oxide to metallic lead) depends on the nature of the electrolyte. An examination of the results obtained action of lead dioxide with the electrophilic component increases in the order of KOH yields KC1 yields Na/sub 2/B/sub 4/O/sub 7/ yields Na/sub 2/HPO/sub 4/ yields K/sub 2/SO/sub 4/.

  8. Strength of an electrolyte supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-11-01

    For the proper function of solid oxide fuel cells (SOFC) their structural integrity must be maintained during their whole lifetime. Any cell fracture would cause leakage and partial oxidization of the anode, leading to a reduced performance, if not catastrophic failure of the whole stack. In this study, the mechanical strength of a state of the art SOFC, developed and produced by Hexis AG/Switzerland, was investigated with respect to the influence of temperature and ageing, whilst for the anode side of the cell the strength was measured under reducing and oxidizing atmospheres. Ball-on-3-Ball bending strength tests and fractography conducted on anode and cathode half-cells revealed the underlying mechanisms, which lead to cell fracture. They were found to be different for the cathode and the anode side and that they change with temperature and ageing. Both anode and cathode sides exhibit the lowest strength at T = 850 °C, which is greatly reduced to the initial strength of the bare electrolyte. This reduction is the consequence of the formation of cracks in the electrode layer which either directly penetrate into the electrolyte (anode side) or locally increase the stress intensity level of pre-existing flaws of the electrolytes at the interface (cathode side).

  9. New Polymer and Liquid Electrolytes for Lithium Batteries

    SciTech Connect

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-03-29

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF{sub 3}SO{sub 3{sup -}}. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10{sup -3} Scm{sup -1}. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn{sub 2}O{sub 4} cells.

  10. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  11. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  12. Inorganic-organic electrolyte materials for energy applications

    NASA Astrophysics Data System (ADS)

    Fei, Shih-To

    emphasizes the flammability studies. Chapter 4 expands the application of the ethyleneoxy phosphazene system to dye sensitized solar cell systems, and uses this material as a model for the study of electrode-electrolyte interfaces. We report here the results of our study on polymer electrolyte infiltration and its effect on dye-sensitized solar cells. In-depth studies have been made to compare the effects of different cell assembly procedures on the electrochemical properties as well as infiltration of electrolytes into various electrode designs. The first part of the study is based on the use of thermoplastic phosphazene electrolytes and how the overall fabrication procedure affects electrochemical performance, and the second is the use of cross-section microscopy to characterize the degree of electrolyte infiltration into various nanostructured titanium dioxide electrode surfaces. The results of this study should eventually improve the efficiency and longevity of thermally stable polymer dye solar cell systems. In Chapter 5 the effect of pendant polymer design on methanol fuel cell membrane performance was investigated. A synthetic method is described to produce a proton conductive polymer membrane with a polynorbornane backbone and inorganic-organic cyclic phosphazene pendent groups that bear sulfonic acid units. This hybrid polymer combines the inherent hydrophobicity and flexibility of the organic polymer with the tuning advantages of the cyclic phosphazene to produce a membrane with high proton conductivity and low methanol crossover at room temperature. The ion exchange capacity (IEC), the water swelling behavior of the polymer, and the effect of gamma radiation crosslinking were studied, together with the proton conductivity and methanol permeability of these materials. A typical membrane had an IEC of 0.329 mmolg-1 and had water swelling of 50 wt%. The maximum proton conductivity of 1.13x10 -4 Scm-1 at room temperature is less than values reported for some

  13. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents.

  14. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1998-10-20

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents. 9 figs.

  15. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.

    PubMed

    Munuera, J M; Paredes, J I; Villar-Rodil, S; Ayán-Varela, M; Martínez-Alonso, A; Tascón, J M D

    2016-01-28

    Electrolytic - usually referred to as electrochemical - exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (i.e., almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes. PMID:26782137

  16. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  17. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  18. Non-aqueous electrolytes for lithium batteries

    SciTech Connect

    Bakos, V.W.; Steklenski, D.J.

    1989-02-14

    An electrochemical cell is described comprising a lithium anode, a cathode and an electrolyte having a conductivity, and reciprocal ohms per cm, of at least 3.5 in, comprising a lithium salt, propylene carbonate and 1,2-dimethoxypropane.

  19. New interpenetrating network type siloxane polymer electrolyte.

    SciTech Connect

    Oh, B.; Hyung, Y.-E.; Vissers, D. R.; Amine, K.; Chemical Engineering

    2002-11-01

    An interpenetrating network (IPN), comb-type, siloxane-based solid polymer electrolyte solid polymer electrolyte was prepared and its electrochemical properties were evaluated. The cross-linking reaction conditions were established from accelerated rate calorimetry studies. An IPN solid ploymer electrolyte with 60 wt % of the comb-shaped siloxane showed an ionic conductivity of greater than 5x10{sup -4} S/cm at 37 C, with a wide electrochemical stability window of up to 4.5 V vs. lithium. A Li metal/solid polymer electrolyte/LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cell showed promising discharge capacities above 130 mAh/g and good cycling performance.

  20. Self-doped molecular composite battery electrolytes

    DOEpatents

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  1. Electrolytic silver ion cell sterilizes water supply

    NASA Technical Reports Server (NTRS)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  2. Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives

    NASA Astrophysics Data System (ADS)

    Xia, Jian; Dahn, J. R.

    2016-08-01

    An electrolyte mixture containing 1 M LiPF6 in sulfolane:ethylmethyl carbonate 3:7 with vinylene carbonate and other electrolyte additives exhibited promising cycling and storage performance in high voltage Li(Ni0·4Mn0·4Co0.2)O2/graphite pouch type Li-ion cells tested to 4.5 V. Voltage drop during storage, coulombic efficiency, charge endpoint capacity slippage during ultra high precision cycling, charge-transfer resistance after storage or cycling, gas evolution during storage and cycling as well as capacity retention during long-term cycling were examined. The results for cells with sulfolane-based electrolytes were compared with those for cells with ethylene carbonate-based electrolytes containing state-of-the-art electrolyte additives. This survey showed that the combination of vinylene carbonate and triallyl phosphate as electrolyte additives in sulfolane:ethylmethyl carbonate electrolyte yielded cells capable of better performance during tests to 4.5 V than cells with ethylene carbonate-based electrolytes. These results suggest that sulfolane-based electrolytes may be promising for high voltage Li-ion cells.

  3. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    SciTech Connect

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  4. Ionic conduction in polymer composite electrolytes

    NASA Astrophysics Data System (ADS)

    Dam, Tapabrata; Tripathy, Satya N.; Paluch, M.; Jena, S.; Pradhan, D. K.

    2016-05-01

    Conductivity and structural relaxation has been explored from modulus and dielectric loss formalisms respectively for a series of polymer composite electrolytes with zirconia as filler. The temperature dependence of conductivity followed Vogel-Tamman-Fulcher (VTF) behavior, which suggested a close correlation between conductivity and the segmental relaxation process in polymer electrolytes. Vogel temperature (T0) plays significant role in ion conduction process in these kind of materials.

  5. Fuel cell with electrolyte matrix assembly

    DOEpatents

    Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.

    1988-01-01

    This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.

  6. Regulation of body fluid volume and electrolyte concentrations in spaceflight

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Krauhs, J. M.; Leach, C. S.

    1997-01-01

    rhythms. Atrial natriuretic peptide does not seem to play an important role in the control of natriuresis during spaceflight. Inflight activity of the sympathetic nervous system, assessed by measuring catecholamines and their metabolites and precursors in body fluids, generally seems to be no greater than on Earth, but this system is usually activated at landing. Collaborative experiments on the Mir and the International Space Station should provide more of the data needed from long-term flights, and perhaps help to resolve some of the discrepancies between U.S. and Russian data. The use of alternative methods that are easier to execute during spaceflight, such as collection of saliva instead of blood and urine, should permit more thorough study of circadian rhythms and rapid hormone changes in weightlessness. More investigations of dietary intake of fluid and electrolytes must be performed to understand regulatory processes. Additional hormones that may participate in these processes, such as other natriuretic hormones, should be determined during and after spaceflight. Alterations in body fluid volume and blood electrolyte concentrations during spaceflight have important consequences for readaptation to the 1-G environment. The current assessment of fluid and electrolyte status during weightlessness and at landing and our still incomplete understanding of the processes of adaptation to weightlessness and readaptation to Earth's gravity have resulted in the development of countermeasures that are only partly successful in reducing the postflight orthostatic intolerance experienced by astronauts and cosmonauts. More complete knowledge of these processes can be expected to produce countermeasures that are even more successful, as well as expand our comprehension of the range of adaptability of human physiologic processes.

  7. Regulation of body fluid volume and electrolyte concentrations in spaceflight.

    PubMed

    Smith, S M; Krauhs, J M; Leach, C S

    1997-01-01

    rhythms. Atrial natriuretic peptide does not seem to play an important role in the control of natriuresis during spaceflight. Inflight activity of the sympathetic nervous system, assessed by measuring catecholamines and their metabolites and precursors in body fluids, generally seems to be no greater than on Earth, but this system is usually activated at landing. Collaborative experiments on the Mir and the International Space Station should provide more of the data needed from long-term flights, and perhaps help to resolve some of the discrepancies between U.S. and Russian data. The use of alternative methods that are easier to execute during spaceflight, such as collection of saliva instead of blood and urine, should permit more thorough study of circadian rhythms and rapid hormone changes in weightlessness. More investigations of dietary intake of fluid and electrolytes must be performed to understand regulatory processes. Additional hormones that may participate in these processes, such as other natriuretic hormones, should be determined during and after spaceflight. Alterations in body fluid volume and blood electrolyte concentrations during spaceflight have important consequences for readaptation to the 1-G environment. The current assessment of fluid and electrolyte status during weightlessness and at landing and our still incomplete understanding of the processes of adaptation to weightlessness and readaptation to Earth's gravity have resulted in the development of countermeasures that are only partly successful in reducing the postflight orthostatic intolerance experienced by astronauts and cosmonauts. More complete knowledge of these processes can be expected to produce countermeasures that are even more successful, as well as expand our comprehension of the range of adaptability of human physiologic processes. PMID:9048137

  8. Solid polymer electrolyte water electrolysis

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  9. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1993-02-03

    This invention is comprised of a new electrolytic process and apparatus using sodium, cerium or a similar metal in an alloy or within a sodium beta or beta-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for Cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then changed to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  10. Safer Electrolytes for Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Kejha, Joe; Smith, Novis; McCloseky, Joel

    2004-01-01

    A number of nonvolatile, low-flammability liquid oligomers and polymers based on aliphatic organic carbonate molecular structures have been found to be suitable to be blended with ethylene carbonate to make electrolytes for lithium-ion electrochemical cells. Heretofore, such electrolytes have often been made by blending ethylene carbonate with volatile, flammable organic carbonates. The present nonvolatile electrolytes have been found to have adequate conductivity (about 2 mS/cm) for lithium ions and to remain liquid at temperatures down to -5 C. At normal charge and discharge rates, lithiumion cells containing these nonvolatile electrolytes but otherwise of standard design have been found to operate at current and energy densities comparable to those of cells now in common use. They do not perform well at high charge and discharge rates -- an effect probably attributable to electrolyte viscosity. Cells containing the nonvolatile electrolytes have also been found to be, variously, nonflammable or at least self-extinguishing. Hence, there appears to be a basis for the development of safer high-performance lithium-ion cells.

  11. Lithium-Air Batteries with Hybrid Electrolytes.

    PubMed

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-01

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided. PMID:26977713

  12. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    1994-01-01

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta"-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then chanted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  13. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1994-09-20

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

  14. Nonaqueous electrolyte for electrical storage devices

    DOEpatents

    McEwen, Alan B.; Yair, Ein-Eli

    1999-01-01

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  15. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes**

    PubMed Central

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W

    2014-01-01

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electrolytes is very high. PMID:24519845

  16. Boron clusters as highly stable magnesium-battery electrolytes.

    PubMed

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W

    2014-03-17

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electrolytes is very high. PMID:24519845

  17. Self-doped microphase separated block copolymer electrolyte

    DOEpatents

    Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying

    2002-01-01

    A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

  18. Electrochemical power-producing cell. [Li/Se

    DOEpatents

    Cairns, E.J.; Chilenskas, A.A.; Steunenberg, R.K.; Shimotake, H.

    1972-05-30

    An electrochemical power-producing cell including a molten lithium metal anode, a molten selenium metal cathode, a paste electrolyte separating the anode from the cathode, an anode current collector, and a single layer of niobium expanded metal formed in corrugated shape as cathode current collector is described. In addition, means are provided for sealing the anode and the cathode from loss of lithium and selenium, respectively, and an insulator is provided between the anode housing and the paste electrolyte disk.

  19. The Role of Polymer Electrolytes in Drug Delivery

    NASA Astrophysics Data System (ADS)

    Latham, R. J.; Linford, R. G.; Schlindwein, W. S.

    2002-12-01

    30 years ago Michel Armand, who was working on intercalation cathode materials in high energy power sources, identified the need to develop flexible, ionically conducting, electronically insulating electrolyte materials to accommodate the gross dimensional changes that occur on charge and discharge. In 1973, Peter Wright produced the first such materials designed for this purpose. His "polymer electrolytes" consisted of thin films of sodium or potassium salts dissolved in poly (ethylene oxide) PEO. Many polymer electrolytes had been developed in the ensuing years. Those for power source use have focussed on Lithium as the conducting species whereas complementary materials have been utilised for sensor and other applications. It is well known that the flexible matrix, a heteropolymer usually modified by additives such as plasticisers and/or inert fillers, provides a facile conducting pathway for ions. It is a significant disadvantage of many early polymer electrolytes that both the electrochemically active cations and the charge-compensating anions were mobile. Classic methods of drug delivery have embraced a number of routes into the site of pharmacological action, including ingestion into the lung, the digestive tract or the colon; injection into muscle tissue; and intravenous delivery through a catheter (a "drip"). Modern preference, wherever possible, is for a non-invasive route to minimise the chance of cross infection, especially of the AIDS virus. The skin, which is the largest organ in the human body, is a particularly appealing route as, in the absence of wounds and blemishes, it offers a natural, high-integrity, barrier to the outside world. Skin patches containing active drug that is allowed to diffuse across the external skin barrier into the bloodstream now enjoy wide application but a problem is that the rate of egress is often slow. Transport can be enhanced by artificially dilating the skin pores and/or by opening up additional pores by the

  20. ELECTROLYTIC DISINFECTION OF ESCHERICHIA COLI AND COLIFORM BACTERIA IN A BATCH CELL WITH DSA ELECTRODES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrolytic treatment of dairy manure lagoon water using DSA electrodes is shown to produce a progressive disinfection of native coliforms and introduced E. coli. The disinfectant effect continues post-treatment for several minutes. To further examine the process, flow cytometry was employed to st...

  1. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOEpatents

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  2. 66 FR 1950 - Electrolytic Manganese Dioxide From Greece: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-01-10

    ... Register (54 FR 15243) the antidumping duty order on electrolytic manganese dioxide (EMD) from Greece. On... (65 FR 19736). Tosoh Hellas A.I.C. (Tosoh), a Greek producer, requested a review on April 27, 2000. In... 2, 2000, in accordance with 19 CFR 351.213(b) (65 FR 35320. The Department is conducting...

  3. Theoretical analysis of solid oxide fuel cells with two-layer, composite electrolytes - Electrolyte stability

    NASA Astrophysics Data System (ADS)

    Virkar, Anil V.

    1991-05-01

    Theoretical analysis of solid oxide fuel cells (SOFCs) using two-layer, composite electrolytes consisting of a solid electrolyte of a significantly higher conductivity compared to zirconia (such as ceria or bismuth oxide) with a thin layer of zirconia or thoria on the fuel side is presented. Electrochemical transport in the two-layer composite electrolytes is examined by taking both ionic and electronic fluxes into account. Similar to most electrochemical transport phenomena, it is assumed that local equilibrium prevails. An equivalent circuit approach is used to estimate the partial pressure of oxygen at the interface. It is shown that thermodynamic stability of the electrolyte (ceria or bismuth oxide) depends upon the transport characteristics of the composite electrolyte, in particular the electronic conductivity of the air-side part of the electrolyte. The analysis shows that it would be advantageous to use composite electrolytes instead of all-zirconia electrolytes, thus making low-temperature (about 600-800 C) SOFCs feasible. Implications of the analysis from the standpoint of the desired characteristics of SOFC components are discussed.

  4. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  5. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  6. Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture

    DOEpatents

    Hash, M.C.; Bloom, I.D.

    1992-10-13

    An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800--1200 C), for example 1000 C, than are typically required (1400 C) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250 C with conductivity values of 2.5 to 4[times]10[sup [minus]2](ohm-cm)[sup [minus]1]. The matrix exhibits chemical stability against sodium for 100 hours at 250 to 300 C. 1 figure.

  7. Direct electrowinning of lead from suspension galena concentrate anode in different electrolytes

    NASA Astrophysics Data System (ADS)

    Paramguru, R. K.; Küzeci, E.; Kammel, R.

    1988-02-01

    Electrochemical extraction of lead from galena by suspension electrolysis has been examined. Galvanostatic studies with slurry electrode as well as voltametric studies with carbon paste electrode in various electrolytes have been made in order to evaluate bath performance. Sodium hydroxide has been found to result in poor dissolution whereas ionic conduction through the electrolyte as well as oxide formation at the anode hinders lead dissolution in perchlorate media. Acetate bath results in substantial amount of oxide formation at anode even though solid bed conduction dominates. Sodium chloride bath has been found to have good prospects for producing lead ions and elemental sulfur with good current efficiencies.

  8. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    SciTech Connect

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  9. Acute Symptomatic Seizures Caused by Electrolyte Disturbances.

    PubMed

    Nardone, Raffaele; Brigo, Francesco; Trinka, Eugen

    2016-01-01

    In this narrative review we focus on acute symptomatic seizures occurring in subjects with electrolyte disturbances. Quite surprisingly, despite its clinical relevance, this issue has received very little attention in the scientific literature. Electrolyte abnormalities are commonly encountered in clinical daily practice, and their diagnosis relies on routine laboratory findings. Acute and severe electrolyte imbalances can manifest with seizures, which may be the sole presenting symptom. Seizures are more frequently observed in patients with sodium disorders (especially hyponatremia), hypocalcemia, and hypomagnesemia. They do not entail a diagnosis of epilepsy, but are classified as acute symptomatic seizures. EEG has little specificity in differentiating between various electrolyte disturbances. The prominent EEG feature is slowing of the normal background activity, although other EEG findings, including various epileptiform abnormalities may occur. An accurate and prompt diagnosis should be established for a successful management of seizures, as rapid identification and correction of the underlying electrolyte disturbance (rather than an antiepileptic treatment) are of crucial importance in the control of seizures and prevention of permanent brain damage. PMID:26754778

  10. Oxygen reduction in fuel cell electrolytes

    SciTech Connect

    Striebel, K.A.

    1987-01-01

    Voltage losses in the O{sub 2} cathode represent the major inefficiency in aqueous fuel cells for transportation or stationary applications. Experimental and theoretical studies of oxygen reduction (OR) in novel acid and alkaline electrolytes on smooth and supported Pt have been carried out. Similar kinetically limited rates for OR were measured in the super-acid electrolytes trifluoromethane sulfonic acid (TFMSA) and tetrafluoroethane-1,2-disulfonic acid (TFEDSA), with the rotating disk electrode (RDE) technique at 23 C and pH = 1. The mechanism for OR on Pt in alkaline electrolytes is complicated by the concurrent oxidation and reduction of Pt. Rotating ring-disk electrode (RRDE) studies carried out with anodic and cathodic potential sweeps in 0.1 to 6.9 M KOH and 0.1 to 4.0 M K{sub 2}CO{sub 3} revealed similar currents when corrected for O{sub 2} solubility differences. Porous gas diffusion electrodes (GDE) with supported Pt catalyst were studied in a special cell with low uncompensated solution resistance. Cyclic voltammograms yielded measurements of the wetted areas of carbon and Pt and the local electrolyte composition. Models for the steady-state operation of porous GDE's were developed. These models account for the diffusion and reaction of O{sub 2} and ionic transport in KOH and K{sub 2}CO{sub 3}. The results suggest that modifications of the GDE structure will be necessary to obtain good performance with aqueous carbonate electrolytes.

  11. Silicone as a binder in composite electrolytes

    NASA Astrophysics Data System (ADS)

    Inada, Taro; Takada, Kazunori; Kajiyama, Akihisa; Sasaki, Hideki; Kondo, Shigeo; Watanabe, Mamoru; Murayama, Masahiro; Kanno, Ryoji

    A liquid silicone was used as a binder to make composite solid electrolytes from lithium-ion conductive inorganic solid electrolytes (ISEs): an oxysulfide glass, 0.01Li 3PO 4-0.63Li 2S-0.36SiS 2 and/or a lithium germanium thio-phosphate, Li 3.25Ge 0.25P 0.75S 4. Ionic conductivities of the composites were of the order of 10 -4 Scm -1, even when the silicone was enriched to 10% (v/v). On the other hand, the composite with styrene-butadiene block co-polymer (SBR) or polypropylene oxide-polyethylene oxide (PO-EO) co-polymer as binder showed much lower conductivity. In the composite electrolyte, the silicone rubber must partly cover the surface of the ISE particles because the composite electrolyte is molded before the vulcanization of the fluid liquid silicone; and thus, it must rarely interfere with the conduction between the ISE particles. Hydrocarbons were found to be suitable in the preparation process of the composite solid electrolyte (CSE).

  12. Acute Symptomatic Seizures Caused by Electrolyte Disturbances

    PubMed Central

    Nardone, Raffaele; Brigo, Francesco

    2016-01-01

    In this narrative review we focus on acute symptomatic seizures occurring in subjects with electrolyte disturbances. Quite surprisingly, despite its clinical relevance, this issue has received very little attention in the scientific literature. Electrolyte abnormalities are commonly encountered in clinical daily practice, and their diagnosis relies on routine laboratory findings. Acute and severe electrolyte imbalances can manifest with seizures, which may be the sole presenting symptom. Seizures are more frequently observed in patients with sodium disorders (especially hyponatremia), hypocalcemia, and hypomagnesemia. They do not entail a diagnosis of epilepsy, but are classified as acute symptomatic seizures. EEG has little specificity in differentiating between various electrolyte disturbances. The prominent EEG feature is slowing of the normal background activity, although other EEG findings, including various epileptiform abnormalities may occur. An accurate and prompt diagnosis should be established for a successful management of seizures, as rapid identification and correction of the underlying electrolyte disturbance (rather than an antiepileptic treatment) are of crucial importance in the control of seizures and prevention of permanent brain damage. PMID:26754778

  13. Morphology control in solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Li, Christopher

    2015-03-01

    Solid polymer electrolytes (SPEs) with high ionic conductivity are important for energy-related applications, such as solid state batteries and fuel cells. In this talk, I will discuss how nanoscale morphology affects the properties of SPEs. In the first part of the talk, I will show quantitatively that the effect of polymer crystallization on ion transport is twofold: structural (tortuosity) and dynamic (tethered chain confinement). We decouple these two effects by designing and fabricating a model polymer single crystal electrolyte system with controlled crystal structure, size, crystallinity, and orientation. Ion conduction is confined within the chain fold region and guided by the crystalline lamellae. We show that, at low ion content, due to the tortuosity effect, the in-plane conductivity is 2000 times greater than through-plane one. Contradictory to the general view, the dynamic effect is negligible at moderate ion contents. Our results suggest that semicrystalline polymer is a valid system for practical polymer electrolytes design. In the second part of the talk, I will discuss how to use holographic photopolymerization (HP) to fabricate long-range, defect-free, ordered SPEs with tunable ion conducting pathways. By incorporating polymer electrolytes into the carefully selected HP system, electrolyte layers/ion channels with length scales of a few tens of nanometers to micrometers can be formed. Confinement effects on ion transport will be reported.

  14. Combination for electrolytic reduction of alumina

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  15. The buffer effect in neutral electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  16. Combination of an electrolytic pretreatment unit with secondary water reclamation processes

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Bonura, M. S.

    1973-01-01

    The design and fabrication of a flight concept prototype electrolytic pretreatment unit (EPU) and of a contractor-furnished air evaporation unit (AEU) are described. The integrated EPU and AEU potable water recovery system is referred to as the Electrovap and is capable of processing the urine and flush water of a six-man crew. Results of a five-day performance verification test of the Electrovap system are presented and plans are included for the extended testing of the Electrovap to produce data applicable to the combination of electrolytic pretreatment with most final potable water recovery systems. Plans are also presented for a program to define the design requirements for combining the electrolytic pretreatment unit with a reverse osmosis final processing unit.

  17. Basic investigation into the production of oxygen in a solid electrolyte process

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1981-01-01

    Mission analyses indicated that by extracting oxygen from the Martian atmosphere, which consists primarily of carbon dioxide, the launch mass of a spacecraft can be reduced by such an amount that samples from the planet can be returned to earth. The solid electrolyte process for producing O2 from CO2 was investigated. A model of the thermodynamic and electrochemical processes in the electrolyte cell was postulated, thereby establishing the parameters influencing the effectiveness and efficiency of an in situ O2 production system. The major operating parameters were investigated over a wide range of temperature and pressure. Operating limits imposed by the solid electrolyte material, 8% yttria stabilized zirconia, were determined as a function of the operating temperature.

  18. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries.

    PubMed

    Lu, Yingying; Korf, Kevin; Kambe, Yu; Tu, Zhengyuan; Archer, Lynden A

    2014-01-01

    Development of rechargeable lithium metal battery (LMB) remains a challenge because of uneven lithium deposition during repeated cycles of charge and discharge. Ionic liquids have received intensive scientific interest as electrolytes because of their exceptional thermal and electrochemical stabilities. Ionic liquid and ionic-liquid-nanoparticle hybrid electrolytes based on 1-methy-3-propylimidazolium (IM) and 1-methy-3-propylpiperidinium (PP) have been synthesized and their ionic conductivity, electrochemical stability, mechanical properties, and ability to promote stable Li electrodeposition investigated. PP-based electrolytes were found to be more conductive and substantially more efficient in suppressing dendrite formation on cycled lithium anodes; as little as 11 wt % PP-IL in a PC-LiTFSI host produces more than a ten-fold increase in cell lifetime. Both PP- and IM-based nanoparticle hybrid electrolytes provide up to 10 000-fold improvements in cell lifetime than anticipated based on their mechanical modulus alone. Galvanostatic cycling measurements in Li/Li4 Ti5 O12 half cells using IL-nanoparticle hybrid electrolytes reveal more than 500 cycles of trouble-free operation and enhanced rate capability. PMID:24282090

  19. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Febiyanti, Irine Ayu; Utami, Nissa; Ibrahim

    2015-12-01

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H2O2 amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  20. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    SciTech Connect

    Saksono, Nelson; Febiyanti, Irine Ayu Utami, Nissa; Ibrahim

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  1. Communication: Nanoscale ion fluctuations in Nafion polymer electrolyte

    SciTech Connect

    Rumberger, Brant; Bennett, Mackenzie; Zhang, Jingyun; Israeloff, N. E.; Dura, J. A.

    2014-08-21

    Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms.

  2. High-Energy-Density Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  3. Composite Solid Electrolyte Containing Li+- Conducting Fibers

    NASA Technical Reports Server (NTRS)

    Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu

    2006-01-01

    Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.

  4. Barrier anodic coatings formed on 6061-T6 aluminum alloy in electrolytes containing different ethanol to water ratios

    SciTech Connect

    Panitz, J.K.G.; Sharp, D.J.; Martinez, F.E.; Merrill, R.M.; Ward, K.J.

    1988-12-01

    We have studied barrier anodic film formation on 6061-T6 aluminum alloy substrates as a function of electrolyte composition for five mixtures of ammonium tartrate dissolved in water and diluted with different amounts of ethanol. The effects of electrolyte temperatures within the range of 18/degree/C to 38/degree/C were explored. The results of this study indicate that the best dielectric coatings and the shortest processing times occur for the 100% water-ammonium tartrate electrolyte. The second best coatings and processing times occur in conjunction with the use of 98% ethanol, 2% water plus ammonium tartrate electrolyte. In general, visibly flawed coatings, scintillation events at cell voltages in excess of approximately 750-800 volts and/or abnormally long processing times occur in conjunction with the use of electrolyte mixtures containing 20%, 60%, and 90% water. We analysed samples of electrolyte as a function of usage, and evaluated the composition of the coatings using Fourier Transform Infrared Analysis to better understand the mechanisms which contribute to anodic coating growth that result in the observed variations in the dielectric properties. All of the coatings exhibited similar compositions except with regard to the amount of CO2 that was physisorbed in the coatings. The dielectrically inferior coatings that were typically produced by the electrolytes containing ethanol contain substantially more CO2 than the coatings grown in the 100% water-based electrolyte. These results strongly suggest that the ethanol in the electrolyte oxidizes and forms CO2 which is incorporated in the coatings and results in inferior dielectric properties. 8 refs., 7 figs.

  5. Evaporation-Induced Self-Assembly of Nano-flaky Li3PS4 for Ultra thin Solid Electrolyte Membrane

    SciTech Connect

    Wang, Hui; Liang, Chengdu; Hood, Zachary; Hood, Zachary D; Xia, Younan

    2016-01-01

    Energy storage system is a critical technology to achieve efficient delivery and a steady supply of energy from intermittent sustainable sources (e.g. solar, wind). Lithium (Li) solid-state batteries are attractive candidates for next-generation batteries that require high energy density and stringent safety. In solid-state batteries, sulfides solid electrolytes are very promising to construct a large scale energy storage system. However, sulfide solid electrolyte pallets usually have an average thickness of 500-2000 m, which is 50 times that of the separators in conventional Li-ion batteries pose a huge challenge for their practical applications. Furthermore, the preparation of ultra-thin sulfide solid electrolyte membranes is difficult mainly due to the lack of efficient, low-cost solid electrolyte processing methods. Herein, we propose to use an evaporation-induced self-assembly (EISA) technique to produce ultra-thin sulfide solid electrolyte membranes. We designed and synthesized nano-flaky structured -Li3PS4 with high ionic conductivity, employed EISA method to produce ultra-thin -Li3PS4 membranes as thin as 8 m plus controllable thickness. It was clearly demonstrated that EISA method could be an facile approach to prepare solid electrolyte membranes.

  6. Quasi-solid electrolyte with polyamidoamine dendron modified-talc applied to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Andrade, Marcos A. S.; Nogueira, Ana F.; Miettunen, Kati; Tiihonen, Armi; Lund, Peter D.; Pastore, Heloise O.

    2016-09-01

    A sequence of generations of polyamidoamine dendron modified-talc, PAMAM-talc-Gn (n = 1, 3, 5 and 7), is proposed as additive in a composite gel electrolyte for dye-sensitized solar cells. Polyiodides are intercalated into the organotalc interlamellar space by adsorption of iodine vapor, producing triiodide and polyiodides. We investigate the effect of organotalc content on the charge transport in the electrolyte and solar cell performance and optimize the organotalc content. Without the previous adsorption of iodine molecules, the organotalcs appear to remove iodine from the electrolyte solution decreasing device's performance significantly. Instead, the samples with additional iodide had higher Jsc and efficiency approaching the values of the reference cells containing liquid, which suggests that this kind of gelling method would be suitable for dye solar cells. Charge transport in the gel electrolyte is investigated with electrochemical impedance spectroscopy and cyclic voltammetry analyses using symmetrical CE-CE electrochemical cells.

  7. Structural features and gas tightness of EB-PVD 1Ce10ScSZ electrolyte films

    NASA Astrophysics Data System (ADS)

    Andrzejczuk, M.; Vasylyev, O.; Brychevskyi, M.; Dubykivskyi, L.; Smirnova, A.; Lewandowska, M.; Kurzydłowski, K. J.; Steinberger-Wilckens, R.; Mertens, J.; Haanappel, V.

    2012-09-01

    The structure of Ceria doped Scandia Stabilized Zirconia (1Ce10ScSZ) electrolyte film deposited by EB-PVD (Electron Beam-Physical Vapour Deposition) technique on NiO-ZrO2 substrate was characterized by electron microscopy. The highly porous substrate was densely covered by deposited film without any spallation. The produced electrolyte layer was of a columnar structure with bushes, bundles of a diameter up to 30 μm and diverse height. Between the columns, delamination cracks of few microns length were visible. The annealing of zirconia film at 1000 °C resulted in its densification. The columnar grains and delaminating cracks changed their shape into a bit rounded. High magnification studies revealed nanopores 5-60 nm formed along the boundaries of the columnar grains during annealing. High-quality contacts between the electrolyte film and anode substrate ensured good conductivity of the electrolyte film and high efficiency of SOFC.

  8. Turbulent mixing of plasma and electrolyte in the multi-channel discharge between a droplet and electrolyte

    NASA Astrophysics Data System (ADS)

    Kayumov, R. R.; Gaysin, Al F.; Son, E. E.; Gaysin, Az F.; Gaysin, F. M.

    2010-12-01

    The multi-channel discharge between an electrolyte cathode and an electrolyte anode is of significant scientific and practical importance. The physical properties and characteristics of these types of discharges at atmospheric pressure have not yet been studied. This paper is devoted to the study of the multi-channel discharge between an electrolyte droplet cathode and an electrolyte cell anode. The experiments were carried out in the current range of 0.01-1.5 A and the voltage range of 50-1300 V. The flow rate of the droplet forming electrolyte was 0.2 g s-1. A NaCl solution was used as electrolyte.

  9. Solid electrolytes strengthened by metal dispersions

    DOEpatents

    Lauf, R.J.; Morgan, C.S.

    1981-10-05

    An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

  10. Solid electrolytes strengthened by metal dispersions

    DOEpatents

    Lauf, Robert J.; Morgan, Chester S.

    1983-01-01

    An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

  11. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  12. Research of advanced electrolytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Isaacs, H. S.; Yang, C. Y.; McBreen, J.

    1982-02-01

    Research on advanced electrolytic hydrogen production consisted of two areas. One was the development of an electrochemical method for investigation of the solid polymer electrolyte (SPE) electrocatalyst interface, the other was the development of stable photoanodes for photodecomposition of water by coating low barrier n type semiconductor with a thin film of n type TiO2. By using various types of contact electrodes on SPE membranes, it was possible to use modern electrochemical techniques to investigate the SPE electrocatalyst interface under conditions simulating electrolyzer operation. Low barrier heterojunctions of thin films of n type TiO2 on n type Fe2O3 were successfully demonstrated.

  13. Theory of electrohydrodynamic instabilities in electrolytic cells

    NASA Technical Reports Server (NTRS)

    Bruinsma, R.; Alexander, S.

    1990-01-01

    The paper develops the theory of the hydrodynamic stability of an electrolytic cell as a function of the imposed electric current. A new electrohydrodynamic instability is encountered when the current is forced to exceed the Nernst limit. The convection is driven by the volume force exerted by the electric field on space charges in the electrolyte. This intrinsic instability is found to be easily masked by extrinsic convection sources such as gravity or stirring. A linear stability analysis is performed and a dimensionless number Le is derived whose value determines the convection pattern.

  14. Project Produce

    ERIC Educational Resources Information Center

    Wolfinger, Donna M.

    2005-01-01

    The grocery store produce section used to be a familiar but rather dull place. There were bananas next to the oranges next to the limes. Broccoli was next to corn and lettuce. Apples and pears, radishes and onions, eggplants and zucchinis all lay in their appropriate bins. Those days are over. Now, broccoli may be next to bok choy, potatoes beside…

  15. Novel reversible and switchable electrolytes based on magneto-rheology

    PubMed Central

    Ding, Jie; Peng, Gangrou; Shu, Kewei; Wang, Caiyun; Tian, Tongfei; Yang, Wenrong; Zhang, Yuanchao; Wallace, Gordon G.; Li, Weihua

    2015-01-01

    Replacing organic liquid electrolytes with solid electrolytes has led to a new perspective on batteries, enabling high-energy battery chemistry with intrinsically safe cell designs. However, most solid/gel electrolytes are easily deformed; under extreme deformation, leakage and/or short-circuiting can occur. Here, we report a novel magneto-rheological electrolyte (MR electrolyte) that responds to changes in an external magnetic field; the electrolyte exhibits low viscosity in the absence of a magnetic field and increased viscosity or a solid-like phase in the presence of a magnetic field. This change from a liquid to solid does not significantly change the conductivity of the MR electrolyte. This work introduces a new class of magnetically sensitive solid electrolytes that can enhance impact resistance and prevent leakage from electronic devices through reversible active switching of their mechanical properties. PMID:26493967

  16. Lithium-ion batteries having conformal solid electrolyte layers

    SciTech Connect

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  17. Electrolytes: transport properties and non-equilibrium thermodynamics

    SciTech Connect

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

  18. Novel reversible and switchable electrolytes based on magneto-rheology

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Peng, Gangrou; Shu, Kewei; Wang, Caiyun; Tian, Tongfei; Yang, Wenrong; Zhang, Yuanchao; Wallace, Gordon G.; Li, Weihua

    2015-10-01

    Replacing organic liquid electrolytes with solid electrolytes has led to a new perspective on batteries, enabling high-energy battery chemistry with intrinsically safe cell designs. However, most solid/gel electrolytes are easily deformed; under extreme deformation, leakage and/or short-circuiting can occur. Here, we report a novel magneto-rheological electrolyte (MR electrolyte) that responds to changes in an external magnetic field; the electrolyte exhibits low viscosity in the absence of a magnetic field and increased viscosity or a solid-like phase in the presence of a magnetic field. This change from a liquid to solid does not significantly change the conductivity of the MR electrolyte. This work introduces a new class of magnetically sensitive solid electrolytes that can enhance impact resistance and prevent leakage from electronic devices through reversible active switching of their mechanical properties.

  19. Polyethylene glycol-electrolyte solution (PEG-ES)

    MedlinePlus

    Polyethylene glycol-electrolyte solution (PEG-ES) is used to empty the colon (large intestine, bowel) before a ... Polyethylene glycol-electrolyte solution (PEG-ES) comes as a powder to mix with water and take by ...

  20. Performance comparison: Aluminum electrolytic and solid tantalum capacitor

    NASA Technical Reports Server (NTRS)

    Hawthornthwaite, B. G.; Piper, J.; Holland, H. W.

    1981-01-01

    Several key electrical and environmental parameters of latest technology aluminum electrolytic and solid tantalum capacitors were evaluated in terms of price fluctuations of tantalum metal. Performance differences between solid tantalums and aluminum electrolytics are examined.

  1. Novel reversible and switchable electrolytes based on magneto-rheology.

    PubMed

    Ding, Jie; Peng, Gangrou; Shu, Kewei; Wang, Caiyun; Tian, Tongfei; Yang, Wenrong; Zhang, Yuanchao; Wallace, Gordon G; Li, Weihua

    2015-01-01

    Replacing organic liquid electrolytes with solid electrolytes has led to a new perspective on batteries, enabling high-energy battery chemistry with intrinsically safe cell designs. However, most solid/gel electrolytes are easily deformed; under extreme deformation, leakage and/or short-circuiting can occur. Here, we report a novel magneto-rheological electrolyte (MR electrolyte) that responds to changes in an external magnetic field; the electrolyte exhibits low viscosity in the absence of a magnetic field and increased viscosity or a solid-like phase in the presence of a magnetic field. This change from a liquid to solid does not significantly change the conductivity of the MR electrolyte. This work introduces a new class of magnetically sensitive solid electrolytes that can enhance impact resistance and prevent leakage from electronic devices through reversible active switching of their mechanical properties. PMID:26493967

  2. Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    The present invention relates to electrolyte solvents for use in liquid or rubbery electrolyte solutions. Specifically, this invention is directed to boron-containing electrolyte solvents and boron-containing electrolyte solutions.

  3. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    NASA Technical Reports Server (NTRS)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1983-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered.

  4. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.

    1985-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  5. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.

    1987-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  6. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  7. Role of hydroxyl radical during electrolytic degradation of contaminants.

    PubMed

    Li, Liang; Goel, Ramesh K

    2010-09-15

    The role of hydroxyl radical is investigated in electrochemical oxidation of organic contaminants with naphthalene as a model compound. The strategy employed was competitive kinetic for hydroxyl radical between naphthalene and other hydroxyl scavengers if the hydroxyl radical is produced in situ at the anode by the electrolysis of water. Methanol, d3-methanol, acetone and d6-acetone were used as competitors for hydroxyl radical and their molar concentrations were calculated based on their reaction constants with hydroxyl radical. The hydroxyl radical was not responsible for naphthalene loss in these experiments. The first order reaction rate constants in the batch experiments containing only naphthalene, 2 mM of each of acetone and d6-acetone were 0.093, 0.094 and 0.118 h(-1), respectively. Higher concentrations (4 mM) acetone and d6-acetone did not affect naphthalene degradation. Rate constants using methanol and d6-methanol as competitors for hydroxyl radical in batch degradations test were 0.128 and 0.099 h(-1), respectively. Based on the naphthalene degradation trends and reaction rate constants, it was concluded that, under the given set of conditions, hydroxyl radical was not responsible for naphthalene degradation during electrolytic degradation tests. This research suggests that the role of hydroxyl radical should be considered very carefully in modeling such indirect electrolytic oxidation processes. PMID:20580488

  8. Electrolytic smelting of lunar rock for oxygen, iron, and silicon

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Lindstrom, David J.; Lewis, Robert H.; Semkow, Krystyna W.

    1992-01-01

    Preliminary studies of the electrochemical properties of silicate melts such as those available from heating of lunar mare soils indicate that conductivities are high enough for design of a practical electrolytic cell. The nature and kinetics of the electrode reactions, which involve reduction of Fe(++) and Si(IV) and oxidation of silicate anions as the primary, product-forming reactions, are also satisfactory. A survey of the efficiencies for production (amount of product for a given current) of O2, Fe(sup 0), and Si(sup 0) as functions of potential and of electrolyte composition indicate that conditions can be chosen to yield high production efficiencies. We also conclude that electronic conductivity does not occur to a significant extent. Based on these data, a cell with electrodes of 30 sq m in area operating between 1 and 5V with a current between 1.6 and 3.5(10)(exp 5) A for a mean power requirement of 0.54 MW and total energy use of approximately 13 MWhr per 24-hr day would produce 1 ton of O2, 0.81 ton of Fe(sup 0), 0.65 ton of Si(sup 0) (as Fe(sup 0)-Si(sup 0) alloy), and about 3.5 tons of silicate melt of altered composition per 24 hr. Adjustable distance between electrodes could offer flexibility with respect to feedstock and power source.

  9. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  10. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  11. Electrolyte Imbalance in Patients with Sheehan's Syndrome

    PubMed Central

    Lim, Chur Hoan; Han, Ji Hyun; Jin, Joon; Yu, Ji Eun; Cho, Dong Hyeok; Chung, Dong Jin; Chung, Min Young

    2015-01-01

    Background We investigated the prevalence of electrolyte imbalance and the relationship between serum electrolyte and anterior pituitary hormone levels in patients with Sheehan's syndrome. Methods In a retrospective study, we investigated 78 patients with Sheehan's syndrome. We also included 95 normal control subjects who underwent a combined anterior pituitary hormone stimulation test and showed normal hormonal responses. Results In patients with Sheehan's syndrome, the serum levels of sodium, potassium, ionized calcium, magnesium, and inorganic phosphate were significantly lower than those in control subjects. The prevalence of hyponatremia, hypokalemia, hypocalcemia, hypomagnesemia, and hypophosphatemia in patients with Sheehan's syndrome was 59.0% (n=46), 26.9% (n=21), 35.9% (n=28), 47.4% (n=37), and 23.1% (n=18), respectively. Levels of sodium and ionized calcium in serum were positively correlated with levels of all anterior pituitary hormones (all P<0.05). Levels of potassium in serum were positively correlated with adrenocorticotrophic hormone (ACTH) and growth hormone (GH) levels (all P<0.05). Levels of inorganic phosphate in serum were positively correlated with levels of thyroid-stimulating hormone, prolactin, and GH (all P<0.05), and levels of magnesium in serum were positively correlated with delta ACTH (P<0.01). Conclusion Electrolyte imbalance was common in patients with Sheehan's syndrome. Furthermore, the degree of anterior pituitary hormone deficiency relates to the degree of electrolyte disturbance in patients with this disease. PMID:26485467

  12. Physical properties of molten carbonate electrolyte

    SciTech Connect

    Kojima, T.; Yanagida, M.; Tanimoto, K.

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  13. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  14. Polarization of ferroelectric films through electrolyte

    NASA Astrophysics Data System (ADS)

    Toss, Henrik; Sani, Negar; Fabiano, Simone; Simon, Daniel T.; Forchheimer, Robert; Berggren, Magnus

    2016-03-01

    A simplified model is developed to understand the field and potential distribution through devices based on a ferroelectric film in direct contact with an electrolyte. Devices based on the ferroelectric polymer polyvinylidenefluoride-trifluoroethylene (PVDF-TrFE) were produced—in metal-ferroelectric-metal, metal-ferroelectric-dielectric-metal, and metal-ferroelectric-electrolyte-metal architectures—and used to test the model, and simulations based on the model and these fabricated devices were performed. From these simulations we find indication of progressive polarization of the films. Furthermore, the model implies that there is a relation between the separation of charge within the devices and the observed open circuit voltage. This relation is confirmed experimentally. The ability to polarize ferroelectric polymer films through aqueous electrolytes, combined with the strong correlation between the properties of the electrolyte double layer and the device potential, opens the door to a variety of new applications for ferroelectric technologies, e.g. regulation of cell culture growth and release, steering molecular self-assembly, or other large area applications requiring aqueous environments.

  15. Polymeric Electrolytic Hygrometer For Harsh Environments

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; Shakkottai, Parthasarathy; Venkateshan, Shakkottai P.

    1989-01-01

    Design of polymeric electrolytic hygrometer improved to meet need for reliable measurements of relative humidity in harsh environments of pulpmills and papermills. Redesigned sensor head features shorter, more-rigidly-held sensing element, less vulnerable than previous version to swell and loss of electrical contact. Useful for control of batch dryers in food and pharmaceutical industries.

  16. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  17. Ultrasonic hydrometer. [Specific gravity of electrolyte

    DOEpatents

    Swoboda, C.A.

    1982-03-09

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  18. Method of making electrolytic capacitor anodes

    SciTech Connect

    Melody, B.; Eickelberg, E.W.

    1987-05-12

    A method is described of making an anode for an electrolytic capacitor. The method comprises providing a powder consisting of a film-forming metal, polyethylene oxide, and ammonium carbonate; pressing the powder to form an anode body; and heating the anode body to remove the polyethylene oxide and ammonium carbonate.

  19. Energetics of the Semiconductor-Electrolyte Interface.

    ERIC Educational Resources Information Center

    Turner, John A.

    1983-01-01

    The use of semiconductors as electrodes for electrochemistry requires an understanding of both solid-state physics and electrochemistry, since phenomena associated with both disciplines are seen in semiconductor/electrolyte systems. The interfacial energetics of these systems are discussed. (JN)

  20. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    DOEpatents

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  1. Miniaturized Amperometric Solid Electrolyte Carbon Dioxide Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Liu, C. C.; Hammond, J. W.; Ward, B.; Lukco, D.; Lampard, P.; Artale, M.; Androjna, D.

    2006-01-01

    A miniaturized electrochemical carbon dioxide (CO2) sensor using Na3Z r2Si2PO12 (NASICON) as a solid electrolyte has been fabricated and de monstrated. Microfabrication techniques were used for sensor fabricat ion to yield a sensing area around 1.0 mm x 1.1 mm. The NASICON solid electrolyte and the Na2CO3/BaCO3 (1:1.7 molar ratio) auxiliary elect rolyte were deposited by sputtering in between and on top of the inte rdigitated finger-shaped platinum electrodes. This structure maximize s the length of the three-phase boundary (electrode, solid electrolyt e, and auxiliary electrolyte), which is critical for gas sensing. The robust CO2 sensor operated up to 600 C in an amperometric mode and a ttempts were made to optimize sensor operating parameters. Concentrat ions of CO2 between 0.02% and 4% were detected and the overall sensor performance was evaluated. Linear response of sensor current output to ln[CO2 concentration] ranging from 0.02% to 1% was achieved.

  2. Macroscopic Modeling of Polymer-Electrolyte Membranes

    SciTech Connect

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  3. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  4. Development of electrolyte plate for molten carbonate fuel cell

    SciTech Connect

    Shoji, C.; Matsuo, T.; Suzuki, A.; Yamamasu, Y.

    1998-07-01

    It is important for the commercialization of molten carbonate fuel cell (MCFC) to improve the endurance and the reliability of the electrolyte plate. The electrolyte-loss in the electrolyte plate increases the cell resistance and deteriorates the cell voltage. The formulation of cracks in the electrolyte plate causes a gas cross leakage between the fuel gas and the oxidizer gas. The pore structure of electrolyte plate must be stable and fine to support liquid electrolyte under MCFC operation. It is necessary to prevent the formation of cracks in electrolyte plate during thermal cycling. The authors have improved the stability of electrolyte plate using advanced LiAlO{sub 2} powder and improved the durability of electrolyte plate for thermal cycling by the addition of the ceramic fiber. The initial cell voltage using electrolyte plate with advanced LiAlO{sub 2} powder was 820 mV at current density 150mA/cm{sup 2} and the decay rate of cell voltage was under 0.5%/1,000h for 8,800h. According to the post analyses, the pore structure of the electrolyte plate did not change. The stability of advanced LiAlO{sub 2} powder was confirmed. It was proved that the electrolyte plate reinforced with ceramic fiber is effective for thermal cycling.

  5. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  6. Superacid-Based Lithium Salts For Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Prakash, Surya; Shen, David H.; Surampudi, Subbarao; Olah, George

    1995-01-01

    Solid polymer electrolytes exhibiting high lithium-ion conductivities made by incorporating salts of superacids into thin films of polyethylene oxide (PEO). These and other solid-polymer electrolytes candidates for use in rechargeable lithium-based electrochemical cells. Increases in room-temperature lithium-ion conductivities of solid electrolytes desirable because they increase achievable power and energy densities.

  7. Ionometry in the analysis of electrolyte solutions (review)

    SciTech Connect

    Petrukhin, O.M.; Rogatinskaya, S.L.; Shipulo, E.V.

    1995-04-01

    The potential usefulness of ionometry in the analytical control of plating electrolytes, etching solutions, and waste effluents has been considered. Complete ionometric analysis of plating electrolytes and determination of metal cyanide complexes have been presented as examples. Ion-selective field-effect transistors (IEFT), semiconductor electrodes, and ISE pairs have been shown to have potential usefulness for the potentiometric titration of plating electrolytes.

  8. The effect of ionic liquid electrolyte concentrations in dye sensitized solar cell using gel electrolyte

    NASA Astrophysics Data System (ADS)

    Pujiarti, H.; Arsyad, W. S.; Wulandari, P.; Hidayat, R.

    2014-09-01

    Dye Sensitized Solar Cells (DSSCs) have received much attention because of some advantages, such as using environment-friendly materials and requiring less high-tech equipment. Commonly DSSCs are built using conventional electrolyte solution, which is prone to electrolyte leakage and low stability. In this paper, we present the characteristics of DSSCs using gel electrolyte, which was made of ionic liquid and hybrid polymer gel, and the effect of ionic liquid concentration on their characteristics. The hybrid composite polymer was composed of siloxane and ethylene glycol polymer networks. Their working performances were investigated by the current-voltage (J-V) characterizations and small ac impedance measurements, which are correlated with the concentrations of ionic liquid electrolyte. The experimental results showed that cell working performance slightly decreased but the solution leakage problem was eliminated.

  9. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-01-01

    A process for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H.sub.2 O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg.sub.2 Cl.sub.2. The method for doing this involves dissolving a precise amount of Hg.sub.2 Cl.sub.2 in an electrolyte solution comprised of concentrated HCl and H.sub.2 O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg.

  10. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1987-07-07

    A process is described for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H[sub 2]O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg[sub 2]Cl[sub 2]. The method for doing this involves dissolving a precise amount of Hg[sub 2]Cl[sub 2] in an electrolyte solution comprised of concentrated HCl and H[sub 2]O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg. 1 fig.

  11. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  12. Plasma electrolytic oxidation of Titanium Aluminides

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  13. Supersaturated Electrolyte Solutions: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.; Na, Han-Soo

    1995-01-01

    Highly supersaturated electrolyte solutions can be prepared and studied employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. In the approach suggested the metastable state for electrolyte solutions is described in terms of the conserved order parameter omega(r,t) associated with fluctuations of the mean solute concentration n(sub 0). Parameters of the corresponding Ginzburg-Landau free energy functional which defines the dynamics of metastable state relaxation are determined and expressed through the experimentally measured quantities. A correspondence of 96-99 % between theory and experiment for all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin), and its calculation for various electrolyte solutions at 298 K. The assumption that subcritical solute clusters consist of the electrically neutral Bjerrum pairs has allowed both analytical and numerical investigation of the number-size N(sub c) of nucleation monomers (aggregates of the Bjerrum pairs) which are elementary units of the solute critical clusters. This has also allowed estimations for the surface tension Alpha, and equilibrium bulk energy Beta per solute molecule in the nucleation monomers. The dependence of these properties on the temperature T and on the solute concentration n(sub 0) through the entire metastable zone (from saturation concentration n(sub sat) to spinodal n(sub spin) is examined. It has been demonstrated that there are the following asymptotics: N(sub c), = I at spinodal

  14. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. Substantial progress has been made on both characterizing thin films as well as developing methods to produce films on nanoporous substrates. The results of electrical conductivity measurements on ZrO{sub 2}:16%Sc nanocrystalline thin films under controlled oxygen partial pressure and temperature are presented. The experimental data have been interpreted using a defect model, which describes the interaction between Sc and oxygen vacancies resulting in the formation of donor - (Sc{sub Zr} - V{sub o} - e){sup x} and acceptor - (Sc{sub Zr}-h){sup x} levels. From this the electronic and ionic contribution to the electrical transport has been determined and correlated with the band structure. These results suggest that ZrO{sub 2}:16%Sc possesses higher electronic conductivity than ZrO{sub 2}:16%Y, which dominates the total conductivity in reducing atmospheres. This is an important result since it indicates that Sc-YSZ maybe useful in the anode regions of the cell. We have made important breakthroughs on depositing dense Ceria films on to porous LSM substrates. In previous studies we have found that in order to produce a surface which is smooth enough to coat with dense polymer precursor derived films, the required thickness of the colloidal film layer is determined by the maximum surface roughness. That is, if we wish to make 2 micron thick colloidal oxide layers, the roughness of the LSM surface can not exceed 2 microns. Currently, we are producing the composite CeO{sub 2}/LSM structures that can be coated with polymer precursor to produce 0.5 to 1.5 micron thickness dense YSZ films. In the next quarter, we will be testing SOFC's using these structures. YSZ/CeO{sub 2}/LSM composites have been formed by annealing at 800 C. Our studies show that the YSZ films are very dense with a 20 nm grain size. SOFC

  15. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity. PMID:26829967

  16. Self-consistent modeling of electrochemical strain microscopy of solid electrolytes.

    PubMed

    Tselev, Alexander; Morozovska, Anna N; Udod, Alexei; Eliseev, Eugene A; Kalinin, Sergei V

    2014-11-01

    Electrochemical strain microscopy (ESM) employs a strong electromechanical coupling in solid ionic conductors to map ionic transport and electrochemical processes with nanometer-scale spatial resolution. To elucidate the mechanisms of the ESM image formation, we performed self-consistent numerical modeling of the electromechanical response in solid electrolytes under the probe tip in a linear, small-signal regime using the Boltzmann-Planck-Nernst-Einstein theory and Vegard's law while taking account of the electromigration and diffusion. The characteristic time scales involved in the formation of the ESM response were identified. It was found that the dynamics of the charge carriers in the tip-electrolyte system with blocking interfaces can be described as charging of the diffuse layer at the tip-electrolyte interface through the tip contact spreading resistance. At the high frequencies used in the detection regime, the distribution of the charge carriers under the tip is governed by evanescent concentration waves generated at the tip-electrolyte interface. The ion drift length in the electric field produced by the tip determines the ESM response at high frequencies, which follows a 1/f asymptotic law. The electronic conductivity, as well as the electron transport through the electrode-electrolyte interface, do not have a significant effect on the ESM signal in the detection regime. The results indicate, however, that for typical solid electrolytes at room temperature, the ESM response originates at and contains information about the very surface layer of a sample, and the properties of the one-unit-cell-thick surface layer may significantly contribute to the ESM response, implying a high surface sensitivity and a high lateral resolution of the technique. On the other hand, it follows that a rigorous analysis of the ESM signals requires techniques that account for the discrete nature of a solid. PMID:25302673

  17. Self-consistent modeling of electrochemical strain microscopy of solid electrolytes

    DOE PAGESBeta

    Tselev, Alexander; Morozovska, Anna N.; Udod, Alexei; Eliseev, Eugene A.; Kalinin, Sergei V.

    2014-10-10

    Electrochemical strain microscopy (ESM) employs a strong electromechanical coupling in solid ionic conductors to map ionic transport and electrochemical processes with nanometer-scale spatial resolution. To elucidate the mechanisms of the ESM image formation, we performed self-consistent numerical modeling of the electromechanical response in solid electrolytes under the probe tip in a linear, small-signal regime using the Boltzmann–Planck–Nernst–Einstein theory and Vegard's law while taking account of the electromigration and diffusion. We identified the characteristic time scales involved in the formation of the ESM response and found that the dynamics of the charge carriers in the tip-electrolyte system with blocking interfaces canmore » be described as charging of the diffuse layer at the tip-electrolyte interface through the tip contact spreading resistance. At the high frequencies used in the detection regime, the distribution of the charge carriers under the tip is governed by evanescent concentration waves generated at the tip-electrolyte interface. The ion drift length in the electric field produced by the tip determines the ESM response at high frequencies, which follows a 1/f asymptotic law. The electronic conductivity, as well as the electron transport through the electrode-electrolyte interface, do not have a significant effect on the ESM signal in the detection regime. The results indicate, however, that for typical solid electrolytes at room temperature, the ESM response originates at and contains information about the very surface layer of a sample, and the properties of the one-unit-cell-thick surface layer may significantly contribute to the ESM response, implying a high surface sensitivity and a high lateral resolution of the technique. On the other hand, it follows that a rigorous analysis of the ESM signals requires techniques that account for the discrete nature of a solid.« less

  18. Self-consistent modeling of electrochemical strain microscopy of solid electrolytes

    SciTech Connect

    Tselev, Alexander; Morozovska, Anna N.; Udod, Alexei; Eliseev, Eugene A.; Kalinin, Sergei V.

    2014-10-10

    Electrochemical strain microscopy (ESM) employs a strong electromechanical coupling in solid ionic conductors to map ionic transport and electrochemical processes with nanometer-scale spatial resolution. To elucidate the mechanisms of the ESM image formation, we performed self-consistent numerical modeling of the electromechanical response in solid electrolytes under the probe tip in a linear, small-signal regime using the Boltzmann–Planck–Nernst–Einstein theory and Vegard's law while taking account of the electromigration and diffusion. We identified the characteristic time scales involved in the formation of the ESM response and found that the dynamics of the charge carriers in the tip-electrolyte system with blocking interfaces can be described as charging of the diffuse layer at the tip-electrolyte interface through the tip contact spreading resistance. At the high frequencies used in the detection regime, the distribution of the charge carriers under the tip is governed by evanescent concentration waves generated at the tip-electrolyte interface. The ion drift length in the electric field produced by the tip determines the ESM response at high frequencies, which follows a 1/f asymptotic law. The electronic conductivity, as well as the electron transport through the electrode-electrolyte interface, do not have a significant effect on the ESM signal in the detection regime. The results indicate, however, that for typical solid electrolytes at room temperature, the ESM response originates at and contains information about the very surface layer of a sample, and the properties of the one-unit-cell-thick surface layer may significantly contribute to the ESM response, implying a high surface sensitivity and a high lateral resolution of the technique. On the other hand, it follows that a rigorous analysis of the ESM signals requires techniques that account for the discrete nature of a solid.

  19. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    NASA Astrophysics Data System (ADS)

    Winslow, R.; Wu, C. H.; Wang, Z.; Kim, B.; Keif, M.; Evans, J.; Wright, P.

    2013-12-01

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H2O, while an electrolyte produced in ambient conditions contained 12400 ppm of H2O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm2, while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm2. Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage.

  20. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    SciTech Connect

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  1. DNA based electrolyte/separator for lithium battery application

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Ouchen, Fahima; Smarra, Devin A.; Subramanyam, Guru; Grote, James G.

    2015-09-01

    In this study, we demonstrated the use of DNA-CTMA (DC) in combination with PolyVinylidene Fluoride (PVDF) as a host matrix or separator for Lithium based electrolyte to form solid polymer/gel like electrolyte for potential application in Li-ion batteries. The addition of DC provided a better thermal stability of the composite electrolyte as shown by the thermos-gravimetric analysis (TGA). The AC conductivity measurements suggest that the addition of DC to the gel electrolyte had no effect on the overall ionic conductivity of the composite. The obtained films are flexible with high mechanical stretch-ability as compared to the gel type electrolytes only.

  2. Method and apparatus for storage battery electrolyte circulation

    DOEpatents

    Inkmann, Mark S.

    1980-09-09

    An electrolyte reservoir in fluid communication with the cell of a storage battery is intermittently pressurized with a pulse of compressed gas to cause a flow of electrolyte from the reservoir to the upper region of less dense electrolyte in the cell. Upon termination of the pressure pulse, more dense electrolyte is forced into the reservoir from the lower region of the cell by the differential pressure head between the cell and reservoir electrolyte levels. The compressed gas pulse is controlled to prevent the entry of gas from the reservoir into the cell.

  3. Ceramic and polymeric solid electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.

  4. Non-aqueous electrolytes for lithium ion batteries

    SciTech Connect

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  5. Terahertz characteristics of electrolytes in aqueous Luria-Bertani media

    NASA Astrophysics Data System (ADS)

    Oh, Seung Jae; Son, Joo-Hiuk; Yoo, Ocki; Lee, Dong-Hee

    2007-10-01

    We measured the optical constants of aqueous biomaterial mixtures with various electrolyte concentrations using terahertz time-domain spectroscopy. The mixtures were divided into water and other electrolyte parts in mass fractions for analysis. The optical constants of the electrolyte, excluding water, were obtained by applying the ideal mixture equation, and the power absorption of the electrolyte was observed to be larger than that of water above 1THz. Data from the measurement were fitted with the modified double Debye model, and the reorientation and hydrogen-bond formation decomposition times were found to decrease as the electrolyte concentration increased.

  6. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  7. Fuel cell and system for supplying electrolyte thereto

    DOEpatents

    Adlhart, Otto J.; Feigenbaum, Haim

    1984-01-01

    An electrolyte distribution and supply system for use with a fuel cell having means for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells of the stack. Individual storage compartments are coupled by capillary tubes to the respective fuel cells. Hydrostatic pressure is maintained individually for each of the fuel cells by separately elevating each compartment of the storing means to a specific height above the corresponding fuel cell which is to be fed from that compartment of the storing means. The individual compartments are filled with electrolyte by allowing the compartments to overflow thereby maintaining the requisite depth of electrolyte in each of the storage compartments.

  8. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    SciTech Connect

    Poa, D.S.; Pierce, R.D.; Mulcahey, T.P.; Johnson, G.K.

    1993-07-06

    A process is described of electrolytically recovering a metal from an oxide of the metal comprising the steps of: (a) providing an electrolytic cell including a molten salt electrolyte containing the metal oxide and one or more halide salts of the metal, a pair of spaced apart electrodes in the electrolyte, and a source of electrical voltage to the electrodes, one of the electrodes being an anode and a source of particulate carbon contamination of the electrolyte during operation of the cell, (b) operating the cell to recover the metal as an element at the other electrode while confining the contaminant to a zone in the electrolyte about the one electrode, and (c) periodically removing the contaminant from the electrolyte zone while interrupting operation of the cell.

  9. Primary certification of reference material for electrolytic conductivity of bioethanol

    NASA Astrophysics Data System (ADS)

    da Silva, L. F.; Gomes, M. R. F.; Cassini, G. C.; Faria, A. C. V.; Fraga, I. C. S.

    2016-07-01

    Nowadays the preservation of the planet is spreading into the international scene with the use of renewable energy sources such as bioethanol. The challenge is to guarantee the quality of produced bioethanol, and the electrolytic conductivity (EC) is one of the specified parameters for this purpose. However, is necessary to demonstrate the metrological traceability of the measurement results for EC in this matrix. This study presents the certification of a reference material for EC in bioethanol by using only primary measurements. The value of primary certified reference material (CRM) is (0.77 ± 0.06) µS.cm-1, and its use will provide the metrological traceability needed for measurement results in laboratories.

  10. Porous matrix structures for alkaline electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Vine, R. W.; Narsavage, S. T.

    1975-01-01

    A number of advancements have been realized by a continuing research program to develop higher chemically stable porous matrix structures with high bubble pressure (crossover resistance) for use as separators in potassium hydroxide electrolyte fuel cells. More uniform, higher-bubble-pressure asbestos matrices were produced by reconstituting Johns-Manville asbestos paper; Fybex potassium titanate which was found compatible with 42% KOH at 250 F for up to 3000 hr; good agreement was found between bubble pressures predicted by an analytical study and those measured with filtered structures; Teflon-bonded Fybex matrices with bubble pressures greater than 30 psi were obtained by filtering a water slurry of the mixture directly onto fuel cell electrodes; and PBI fibers have satisfactory compatibility with 42% KOH at 250 F.

  11. Development of solid electrolytes for water electrolysis at higher temperature

    SciTech Connect

    Linkous, C.A.

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  12. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, Steven T.; Contolini, Robert J.; Bernhardt, Anthony F.

    1992-01-01

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed.

  13. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, S.T.; Contolini, R.J.; Bernhardt, A.F.

    1992-03-17

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed. 6 figs.

  14. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    SciTech Connect

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses produced during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.

  15. Frequency of Electrolyte Derangement after Transurethral Resection of Prostate: Need for Postoperative Electrolyte Monitoring

    PubMed Central

    Aziz, Wajahat; Ather, M. Hammad

    2015-01-01

    Objective. To determine the electrolyte derangement following transurethral resection of prostate (TURP). Methods. All patients undergoing TURP from June 2012 to April 2013 were included. Preoperative electrolytes were performed within a week of procedures. Monopolar TURP using 1.5% glycine was performed. Serum Na+ and K+ were assessed within 1 hour postoperatively and subsequently if clinically indicated. Results. The study included 280 patients. Sixty-six patients (23.6%) had electrolyte derangement after TURP. Patients with deranged electrolytes were older (mean age of 73.41 ± 4.08 yrs. versus 68.93 yrs. ± 10.34) and had a longer mean resection time (42.5 ± 20.04 min versus 28.34 ± 14.64 min). Mean weight of tissue resected (41.49 ± 34.46 g versus 15.33 ± 9.74 g) and volume of irrigant used (23.55 ± 15.20 L versus 12.81 ± 7.57 L) were also significantly higher in patients with deranged electrolytes (all p = 0.00). On multivariate logistic regression analysis preoperative sodium level was found to be a significant predictor of postoperative electrolyte derangement (odds ratio 0.267, S.E. = 0.376, and p value = 0.00). Conclusion. Electrolyte derangement occurs in older patients, with larger amount of tissue and longer time of resection and higher volume of irrigant, and in those with lower serum preoperative sodium levels. PMID:26089874

  16. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect

    Eric D. Wachsman; Keith L. Duncan

    2002-03-31

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid startup is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower

  17. Electrolyte compositions for lithium ion batteries

    DOEpatents

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  18. Development of latent fingermarks by aqueous electrolytes.

    PubMed

    Jasuja, Om Prakash; Singh, Gagandeep; Almog, Joseph

    2011-04-15

    In this work we present our observations on the interaction between metallic (copper, aluminum, iron, brass, zinc) and non-metallic (glass and plastic) surfaces bearing latent fingermarks and several aqueous electrolytic solutions. Good quality fingermarks could be observed on some of the metallic and even on non-metallic surfaces after such treatment. The influence of factors such as time interval from deposition, pH of the electrolytes, wiping the latent marks prior to processing and the presence of a second metal on the quality and permanence of the developed impressions have been studied. As a rule, sebaceous marks provided much better quality impressions on all the surfaces. Initial explanations based on electrochemical processes are suggested. PMID:21067875

  19. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOEpatents

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  20. Electrolyte reservoir for carbonate fuel cells

    DOEpatents

    Iacovangelo, C.D.; Shores, D.A.

    1984-05-23

    An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  1. Electrolyte reservoir for carbonate fuel cells

    DOEpatents

    Iacovangelo, Charles D.; Shores, David A.

    1985-01-01

    An electrode for a carbonate fuel cell and method of making same wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  2. Improved Liquid-Electrode/Solid-Electrolyte Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Williams, Roger M.; Bankston, Clyde P.

    1990-01-01

    Organic liquid in cathode extends working life. Rechargeable solid-electrolyte electrochemical cell includes novel mixture of organic and inorganic materials in liquid cathode. Operates at temperature about 120 to 170 degrees C lower than sodium/sulfur cells. Offers energy density comparable to that of sodium/sulfur cells - about 10 Wh/kg - and suited to such applications as military systems and electric vehicles.

  3. Functional electrolyte for lithium-ion batteries

    DOEpatents

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-04-14

    Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.

  4. Fluid and Electrolyte Balance model (FEB)

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1973-01-01

    The effects of various oral input water loads on solute and water distribution throughout the body are presented in the form of a model. The model was a three compartment model; the three compartments being plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea were the only major solutes considered explicitly. The control of body water and electrolyte distribution was affected via drinking and hormone levels.

  5. Anti-perovskite solid electrolyte compositions

    SciTech Connect

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  6. Correlations Between Electrolyte Concentration and Solid Electrolyte Interphase Composition in Electrodeposited Lithium.

    PubMed

    Jeong, Soon-Ki; Kim, Jin Hee; Jeong, Yoon-Taek; Kim, Yang Soo

    2016-03-01

    This study examined the electrochemical deposition and dissolution of lithium on nickel electrodes in propylene carbonate (PC) electrolytes containing different concentrations of lithium salts, including LiN(SO2C2F5)2 or LiPF6. The electrode reactions were significantly affected by the electrolyte concentration. The cyclability of the electrodes was considerably improved by increasing the electrolyte concentration. X-ray photoelectron spectroscopy (XPS) showed that the composition of the solid electrolyte interphase (SEI) was also affected by the electrolyte concentration. The SEI formed in the 1st cycle consisted mainly of LiF in 1 and 2.15 M LiN(SO2C2F5)2/PC solutions. After the 30th cycle in the former solution, there was a large decrease in the amount of LiF and a large increase in the amount of LiOH. On the other hand, in the latter solution there was a smaller decrease and a smaller increase in the amount of LiF and LiOH, respectively, as compared to the former solution after the 30th cycle. PMID:27455758

  7. Ionic Conduction Mechanism of Polymer Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Saito, Yuria; Kataoka, Hiroshi

    2002-12-01

    Carrier migration mechanism of polymer gel electrolyte for lithium secondary batteries was investigated through the dynamic behavior of diffusion coefficient and conductivity. The gel prepared with PEO showed a homogeneous structure with any fraction of the electrolyte solution. The diffusion coefficient of the ionic species decreased with the increase in the polymer fraction in the gel. Cation migration is closely associated with the polymer, showing the reduced activation energy for diffusion with polymer in contrast to the increasing feature of the activation energy of the anion diffusion. The PVDF-gel electrolytes have a solid solubility limit due to the swelling saturation. The excess solution was then trapped in the cavities of the swollen polymer network. As a result, the diffusion showed two components. One is the fast migration of the carriers similar to that in the solution and the other is the relatively slow migration in the swollen region. The latter was influenced by the polymer due to the physical blocking and chemical interactive effects.

  8. Increasing the conductivity of crystalline polymer electrolytes.

    PubMed

    Christie, Alasdair M; Lilley, Scott J; Staunton, Edward; Andreev, Yuri G; Bruce, Peter G

    2005-01-01

    Polymer electrolytes consist of salts dissolved in polymers (for example, polyethylene oxide, PEO), and represent a unique class of solid coordination compounds. They have potential applications in a diverse range of all-solid-state devices, such as rechargeable lithium batteries, flexible electrochromic displays and smart windows. For 30 years, attention was focused on amorphous polymer electrolytes in the belief that crystalline polymer:salt complexes were insulators. This view has been overturned recently by demonstrating ionic conductivity in the crystalline complexes PEO6:LiXF6 (X = P, As, Sb); however, the conductivities were relatively low. Here we demonstrate an increase of 1.5 orders of magnitude in the conductivity of these materials by replacing a small proportion of the XF6- anions in the crystal structure with isovalent N(SO2CF3)2- ions. We suggest that the larger and more irregularly shaped anions disrupt the potential around the Li+ ions, thus enhancing the ionic conductivity in a manner somewhat analogous to the AgBr(1-x)I(x) ionic conductors. The demonstration that doping strategies can enhance the conductivity of crystalline polymer electrolytes represents a significant advance towards the technological exploitation of such materials. PMID:15635406

  9. Direct Lorentz force compensation flowmeter for electrolytes

    NASA Astrophysics Data System (ADS)

    Vasilyan, S.; Froehlich, Th.

    2014-12-01

    A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known "electromagnetic force" compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20 S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 106 S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1 S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.

  10. Hindered Glymes for Graphite-Compatible Electrolytes.

    PubMed

    Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stephane; Armand, Michel

    2015-08-24

    Organic carbonate mixtures are used almost exclusively as lithium battery electrolyte solvents. The linear compounds (dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate) act mainly as thinner for the more viscous and high-melting ethylene carbonate but are the least stable component and have low flash points; these are serious handicaps for lifetime and safety. Polyethers (glymes) are useful co-solvents, but all formerly known representatives solvate Li(+) strongly enough to co-intercalate in the graphite negative electrode and exfoliate it. We have put forward a new electrolyte composition comprising a polyether to which a bulky tert-butyl group is attached ("hindered glyme"), thus completely preventing co-intercalation while maintaining good conductivity. This alkyl-carbonate-free electrolyte shows remarkable cycle efficiency of the graphite electrode, not only at room temperature, but also at 50 and 70 °C in the presence of lithium bis(fluorosulfonimide). The two-ethylene-bridge hindered glyme has a high boiling point and a flash point of 80 °C, a considerable advantage for safety. PMID:26212607

  11. Nonaqueous Electrolyte Development for Electrochemical Capacitors

    SciTech Connect

    K. Xu; S. P. Ding; T. R. Jow

    1999-09-01

    The objectives of this project were to demonstrate and develop new nonaqueous electrolytes that enable the development of high power (in excess of 2 kW/kg) and high energy (in excess of 8 Wh/kg) capacitors. Electrochemical capacitors are attractive to use because of their long cycle life and inherent high-power (or fast charge/discharge) capabilities. To realize the inherent high-power nature of the capacitor, the resistance of the capacitor needs to be low. The main focus of this project is on the ionic part of capacitor resistance, which is largely determined by the electrolyte, especially the electrolyte's conductivity. To achieve the objectives of this project, two approaches were used. The first was to search for the proper solvent mixtures within the commercially available quaternary ammonium salts such as tetraethyl ammonium tetrafluoroborate (Et4NBF4) or tetraethyl ammonium hexafluorophosphate (Et4NPF6). The second approach was to use the commonly available solvent system s but develop new salts. Substantial advances were made in quaternary ammonium salts and solvent systems were identified that can withstand high voltage operations. However, improvement in the salt alone is not sufficient. Improvements in the low-temperature stability of a capacitor rely not only on the salts but also on the solvents. Likewise, the high-temperature stability of the capacitor will depend not only on the salts but also on the solvents and carbon electrode materials.

  12. Direct Lorentz force compensation flowmeter for electrolytes

    SciTech Connect

    Vasilyan, S. Froehlich, Th.

    2014-12-01

    A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known “electromagnetic force” compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20 S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 10{sup 6 }S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1 S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.

  13. Proton Conductivity Studies on Biopolymer Electrolytes

    SciTech Connect

    Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.

    2010-07-07

    Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH{sub 4}NO{sub 3}) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R{sub b}) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10{sup -4} Scm{sup -1} for the sample with composition ratio of MC(50): NH{sub 4}NO{sub 3}(50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH{sub 4}NO{sub 3}-PC was enhanced up to 4.91x10{sup -3} Scm{sup -1} while for the MC-NH{sub 4}NO{sub 3}-EC system, the highest conductivity was 1.74x10{sup -2} Scm{sup -1}. The addition of more plasticizer however decreases in mechanical stability of the membranes.

  14. Electrolytic pretreatment unit gaseous effluent conditioning

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1976-01-01

    The electrolytic pretreatment of urine is an advanced process that eliminates the need for handling and storing the highly corrosive chemicals that are normally used in water reclamation systems. The electrolytic pretreatment process also converts the organic materials in urine to gases (N2 and O2) that can be used to replenish those lost to space by leakage, venting, and air lock operations. The electrolytic process is more than a pretreatment, since it decreases the urine solids content by approximately one third, thus reducing the load and eventual solids storage requirements of the urine processing system. The evolved gases from the pretreatment step cannot, however, be returned directly to the atmosphere of a spacecraft without first removing several impurities including hydrogen, chlorine, and certain organic compounds. A treatment concept was developed that would decrease the impurities in the gas stream that emanates from an electrolysis unit to levels sufficiently low to allow the conditioned gas stream to be safely discharged to a spacecraft atmosphere. Two methods were experimentally demonstrated that can accomplish the desired cleanup. The bases of the two methods are, repectively: (1) raw urine scrubbing and (2) silica gel sorption.

  15. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect

    Eric D. Wachsman; Keith L. Duncan

    2001-09-30

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate1 temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid start-up is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research are to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower

  16. Evaporation-Induced Self-Assembly of Nano-flaky Li3PS4 for Ultra thin Solid Electrolyte Membrane

    DOE PAGESBeta

    Wang, Hui; Liang, Chengdu; Hood, Zachary; Hood, Zachary D; Xia, Younan

    2016-01-01

    Energy storage system is a critical technology to achieve efficient delivery and a steady supply of energy from intermittent sustainable sources (e.g. solar, wind). Lithium (Li) solid-state batteries are attractive candidates for next-generation batteries that require high energy density and stringent safety. In solid-state batteries, sulfides solid electrolytes are very promising to construct a large scale energy storage system. However, sulfide solid electrolyte pallets usually have an average thickness of 500-2000 m, which is 50 times that of the separators in conventional Li-ion batteries pose a huge challenge for their practical applications. Furthermore, the preparation of ultra-thin sulfide solid electrolytemore » membranes is difficult mainly due to the lack of efficient, low-cost solid electrolyte processing methods. Herein, we propose to use an evaporation-induced self-assembly (EISA) technique to produce ultra-thin sulfide solid electrolyte membranes. We designed and synthesized nano-flaky structured -Li3PS4 with high ionic conductivity, employed EISA method to produce ultra-thin -Li3PS4 membranes as thin as 8 m plus controllable thickness. It was clearly demonstrated that EISA method could be an facile approach to prepare solid electrolyte membranes.« less

  17. High voltage electric double layer capacitor using a novel solid-state polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sato, Takaya; Marukane, Shoko; Morinaga, Takashi; Kamijo, Toshio; Arafune, Hiroyuki; Tsujii, Yoshinobu

    2015-11-01

    We designed and fabricated a bipolar-type electric double layer capacitor (EDLC) with a maximum 7.5 V operating voltage using a new concept in solid electrolytes. A cell having a high operating voltage, that is free from liquid leakage and is non-flammable is achieved by a bipolar design utilizing a solid polymer electrolyte made up of particles in a three-dimensional array, such as crystals composed of 75 wt% of hybrid particles decorated with a concentrated ionic liquid polymer brush (PSiP) and 25wt% of an ionic liquid (IL). The resulting solid film had sufficient physical strength and a high enough ionic conductivity to function as an electrolyte. Solidification as well as ionic conduction is due to the regular array of PSiPs, thereby producing a high ion-conductivity from a networked path between cores containing an appropriate amount of IL as a plasticizer. The demonstration cell shows a relatively good cycle durability and rate properties up to a 10C discharge process. It also has a very small leakage current in continuous charging and better self-discharge properties, even at 60 °C, compared with conventional cells. This paper demonstrates the first successful fabrication of a bipolar EDLC in a simple structure using this novel polymer solid electrolyte.

  18. Lithium cell having a solid electrolyte constituted by a conductive vitreous compound

    SciTech Connect

    Gabano, J.P.; Duchange, J.P.

    1984-10-23

    The electrolyte is constituted by a conductive vitreous compound having the formula aP/sub 2/S/sub 5/, bLi/sub 2/S, cLiX, where X represents chlorine, bromine, or iodine, and where a, b, and c are numbers chosen so that the ratio b/(a+b) lies between 0.61 and 0.70, and so that the ratio c/(a+b+c) is less than or equal to a limit corresponding to the solubility in vitreous phase of LiX in the compound aP/sub 2/S/sub 5/, bLi/sub 2/S, with the positive active material comprising 20% to 80% by volume solid electrolyte together with an electron conductor, the improvement wherein a substance chosen from the halogens and the chalcogens is included in the electrolyte in order to produce an in situ chemical reaction at the lithium electrolyte interface thereby creating an ionically conductive bonding layer comprising a lithium halogenide or chalcogenide.

  19. All-Polymer Electrolytic Tilt Sensor with Conductive Poly(dimethylsiloxane) Electrodes

    NASA Astrophysics Data System (ADS)

    Kyoo Lee, June; Choi, Ju Chan; Kong, Seong Ho

    2013-06-01

    In this study, an all-polymer electrolytic tilt sensor with conductive and corrosion-resistant poly(dimethylsiloxane) (PDMS) electrodes was designed and its performances were characterized. A PDMS cavity in the sensor for holding an electrolyte was fabricated by soft lithography using an ultraviolet-sensitive polymer. A conductive PDMS composite (gPDMS) with graphite powder was used for the electrode to measure the inclination angle of the electrolyte. A gPDMS composite with a graphite concentration above 40 wt % was able to function as a conductive polymer. The fabricated all-polymer tilt sensor exhibited a detectable inclination range of +/-60° and showed a relatively linear output signal compared with those exhibited by conventional micromachined tilt sensors with axis asymmetrical cavities. The maximum hysteresis of the output signal was approximately 0.1 Vrms when the sensor repeatedly tilted and leveled off. In addition to the fundamental characterization of the sensor, various characteristics of the all-polymer tilt sensor, such as time-dependent and electrolyte-volume-dependent variations in the output signal, were investigated in this study. While the performance of the proposed sensor was comparable to that of conventional silicon-micromachined tilt sensors, the sensor could be produced at a fraction of the cost required to fabricate the conventional sensors.

  20. All-Polymer Electrolytic Tilt Sensor with Conductive Poly(dimethylsiloxane) Electrodes

    NASA Astrophysics Data System (ADS)

    Lee, June Kyoo; Choi, Ju Chan; Kong, Seong Ho

    2013-06-01

    In this study, an all-polymer electrolytic tilt sensor with conductive and corrosion-resistant poly(dimethylsiloxane) (PDMS) electrodes was designed and its performances were characterized. A PDMS cavity in the sensor for holding an electrolyte was fabricated by soft lithography using an ultraviolet-sensitive polymer. A conductive PDMS composite (gPDMS) with graphite powder was used for the electrode to measure the inclination angle of the electrolyte. A gPDMS composite with a graphite concentration above 40 wt % was able to function as a conductive polymer. The fabricated all-polymer tilt sensor exhibited a detectable inclination range of ± 60° and showed a relatively linear output signal compared with those exhibited by conventional micromachined tilt sensors with axis asymmetrical cavities. The maximum hysteresis of the output signal was approximately 0.1 V\\text{rms when the sensor repeatedly tilted and leveled off. In addition to the fundamental characterization of the sensor, various characteristics of the all-polymer tilt sensor, such as time-dependent and electrolyte-volume-dependent variations in the output signal, were investigated in this study. While the performance of the proposed sensor was comparable to that of conventional silicon-micromachined tilt sensors, the sensor could be produced at a fraction of the cost required to fabricate the conventional sensors.

  1. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    DOEpatents

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  2. Fabrication of micro-lenticular patterns using WEDM-grooving and electrolytic polishing

    NASA Astrophysics Data System (ADS)

    Park, Jong Wuk; Song, Ki Young; Chung, Do Kwan; Chu, Chong Nam

    2013-12-01

    Lenticular pattern panels have been used for displaying 3D effects and their precise fabrication methods have attracted great attention. In this study, we present a novel fabrication method for lenticular patterns on a stainless steel mold (AISI 304). The fabrication process was composed of two steps. First, the lenticular shape groove was machined by wire-electrical discharge machining (EDM) (WEDM-grooving). In this step, EDM was adopted because it is useful for machining hard-to-cut material such as WC-Co, stainless steel and titanium, and a newly developed wire grooving system ensures highly accurate machining. Second, electrolytic polishing was carried out afterward to improve the surface quality since the machined surface resulting from the WEDM-grooving was rough. The entire fabrication processes required a single machine and deionized water only; thus, the step change time was minimized and the method was eco-friendly. Parametric tests for the WEDM-grooving conditions as well as for the proper electrolytic polishing conditions (voltage, offset and feedrate) were executed to fabricate the grooves with fine surface. Excessive electrolytic polishing conditions caused pitting and damage from the additional sparks on the surface of the mold. On the other hand, inadequate machining conditions resulted in an incomplete electrolytic polishing process. Using this multi-step process, a lenticular pattern mold with high surface quality was machined. The lenticular pattern PDMS lens was successfully produced using the stainless steel mold.

  3. Study of triallyl phosphate as an electrolyte additive for high voltage lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, J.; Madec, L.; Ma, L.; Ellis, L. D.; Qiu, W.; Nelson, K. J.; Lu, Z.; Dahn, J. R.

    2015-11-01

    The role of triallyl phosphate as an electrolyte additive in Li(Ni0.42Mn0.42Co0.16)O2/graphite pouch cells was studied using ex-situ gas measurements, ultra high precision coulometry, automated storage experiments, electrochemical impedance spectroscopy, long-term cycling and X-ray photoelectron spectroscopy. Cells containing triallyl phosphate produced less gas during formation, cycling and storage than control cells. The use of triallyl phosphate led to higher coulombic efficiency and smaller charge endpoint capacity slippage during ultra high precision charger testing. Cells containing triallyl phosphate showed smaller potential drop during 500 h storage at 40 °C and 60 °C and the voltage drop decreased as the triallyl phosphate content in the electrolyte increased. However, large amounts of triallyl phosphate (>3% by weight in the electrolyte) led to large impedance after cycling and storage. Symmetric cell studies showed large amounts of triallyl phosphate (5% or more) led to significant impedance increase at both negative and positive electrodes. X-ray photoelectron spectroscopy studies suggested that the high impedance came from the polymerization of triallyl phosphate molecules which formed thick solid electrolyte interphase films at the surfaces of both negative and positive electrodes. An optimal amount of 2%-3% triallyl phosphate led to better capacity retention during long term cycling.

  4. Computer model for characterizing, screening, and optimizing electrolyte systems

    Energy Science and Technology Software Center (ESTSC)

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced modelsmore » are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at the INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.« less

  5. Computer model for characterizing, screening, and optimizing electrolyte systems

    SciTech Connect

    Gering, Kevin L.

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced models are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at the INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.

  6. Oxygen reduction in fuel cell electrolytes

    SciTech Connect

    Striebel, K.A.; McLarnon, F.R.; Cairns, E.J.

    1987-12-01

    Experimental and theoretical studies of oxygen reduction (OR) in novel acid and alkaline electrolytes on smooth and supported Pt have been carried out. Similar kinetically limited rates for OR were measured in the /open quotes/super-acid/close quotes/ electrolytes trifluoromethane sulfonic acid (TFMSA) and tetrafluoroethane-1,2-disulfonic acid (TFEDSA), with the rotating disk electrode (RDE) technique at 23/degree/C and pH = 1. A first-order dependence on O/sub 2/ pressure was measured. The mechanism for OR on Pt in alkaline electrolytes is complicated by the concurrent oxidation and reduction of Pt. Rotating ring-disk electrode (RRDE) studies carried out with anodic and cathodic potential sweeps in 0.1 to 6.9 M KOH and 0.1 to 4.0 M K/sub 2/CO/sub 3/ revealed similar currents when corrected for O/sub 2/ solubility differences. In dilute electrolytes, OR proceeds primarily through the 4-electron pathway to water, independent of pH. In KOH, the mechanism for Pt oxidation changes and the fraction of current yielding a peroxide product increases at 2 to 3 M. These changes were not observed in K/sub 2/CO/sub 3/. Porous gas diffusion electrodes (GDE) with supported Pt catalyst were studied in a special cell with low uncompensated solution resistance. Cyclic voltammograms yielded measurements of the wetted areas of carbon and Pt and the local electrolyte composition. GDE galvanostatic steady-state performance with 100% O/sub 2/ was measured in 2 to 11 M KOH and 2 to 5.5 M K/sub 2/CO/sub 3/. Results suggest that OR on carbon contributes to the high currents in 6.9 M KOH at high overpotentials. In K/sub 2/CO/sub 3/, lower wetted areas and slow OH/sup /minus// ion transport are responsible for the poor performance when compared with KOH. Models for the steady-state operation of porous GDE's were developed. These models account for the diffusion and reaction of O/sub 2/ and ionic transport in KOH and K/sub 2/CO/sub 3/. 120 refs., 71 figs., 11 tabs.

  7. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2000-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Microstructural changes in unsupported nanocrystalline yttrium stabilized zirconia (ZrO{sub 2}:16%Y, or YSZ) thin films were examined as a function of temperature and annealing time in order to determine the grain growth exponent and the mechanisms of pinhole formation. Grain growth and pinhole formation were measured using high resolution transmission electron microscopy (HRTEM), normal imaging mode transmission electron microscopy (TEM), electron diffraction, and energy dispersive X-ray microanalysis (EDS). Grain growth was found to vary with a time exponent of about one half before pinhole formation and about one third after. Pinhole formation in 70 nm thick films occurred at temperatures near 600 C, corresponding to a grain size of about 15 nm, or a grain size to film thickness ration of approximately 0.25. The deposition of films on porous substrates is hampered by the penetration of the polymer precursor solution into the substrate whose pores as > 0.2 {micro}m, therefore much attention has to be paid to the development of porous colloidal oxide films onto surfaces. Thus during this line period we have been studying these films. Optical properties have proven to be an excellent way to study the quality of these nanoporous films. The influence of porosity and densification on optical properties of films on sapphire substrates that were prepared from water colloidal suspensions of small ({approx}5nm) particles of ceria was investigated. The colloidal ceria films have initially very porous structure (porosity about 50%) and densification starts at about 600 C accompanied by

  8. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    DOE PAGESBeta

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses producedmore » during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.« less

  9. Microbial Electrolytic Carbon Capture for Carbon Negative and Energy Positive Wastewater Treatment.

    PubMed

    Lu, Lu; Huang, Zhe; Rau, Greg H; Ren, Zhiyong Jason

    2015-07-01

    Energy and carbon neutral wastewater management is a major goal for environmental sustainability, but current progress has only reduced emission rather than using wastewater for active CO2 capture and utilization. We present here a new microbial electrolytic carbon capture (MECC) approach to potentially transform wastewater treatment to a carbon negative and energy positive process. Wastewater was used as an electrolyte for microbially assisted electrolytic production of H2 and OH(-) at the cathode and protons at the anode. The acidity dissolved silicate and liberated metal ions that balanced OH(-), producing metal hydroxide, which transformed CO2 in situ into (bi)carbonate. Results using both artificial and industrial wastewater show 80-93% of the CO2 was recovered from both CO2 derived from organic oxidation and additional CO2 injected into the headspace, making the process carbon-negative. High rates and yields of H2 were produced with 91-95% recovery efficiency, resulting in a net energy gain of 57-62 kJ/mol-CO2 captured. The pH remained stable without buffer addition and no toxic chlorine-containing compounds were detected. The produced (bi)carbonate alkalinity is valuable for wastewater treatment and long-term carbon storage in the ocean. Preliminary evaluation shows promising economic and environmental benefits for different industries. PMID:26076212

  10. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    NASA Astrophysics Data System (ADS)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    , promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li3PO4 has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li3PO4 has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H3PO4. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li3PO4, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li3PO4 was around 10-8 S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li3PO4 for lithium ion battery will give more added values to the researches and national industry.

  11. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, C.A.; Maricle, D.L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

  12. Safer lithium ion batteries based on nonflammable electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Ziqi; Wu, Bingbin; Xiao, Lifen; Jiang, Xiaoyu; Chen, Yao; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-04-01

    The safety of lithium ion batteries has long been a critical obstacle for their high-power and large-scale applications because of the flammable nature of their carbon anode and organic carbonate electrolytes. To eliminate the potential safety hazards, lithium ion batteries should be built up with thermal-stable electrodes and nonflammable electrolytes. Here we report safer lithium ion batteries using nonflammable phosphonate electrolyte, thermal-stable LiFePO4 cathode and alloy anodes. Benefiting from the electrochemical compatibility and strong fire-retardancy of the phosphonate electrolyte, the cathode and anode materials in the nonflammable phosphonate electrolyte demonstrate similar charge-discharge performances with those in the conventional carbonate electrolyte, showing a great prospect for large-scale applications in electric vehicles and grid-scale electric energy storage.

  13. Pharmacologic Approaches to Electrolyte Abnormalities in Heart Failure.

    PubMed

    Grodin, Justin L

    2016-08-01

    Electrolyte abnormalities are common in heart failure and can arise from a variety of etiologies. Neurohormonal activation from ventricular dysfunction, renal dysfunction, and heart failure medications can perturb electrolyte homeostasis which impact both heart failure-related morbidity and mortality. These include disturbances in serum sodium, chloride, acid-base, and potassium homeostasis. Pharmacological treatments differ for each electrolyte abnormality and vary from older, established treatments like the vaptans or acetazolamide, to experimental or theoretical treatments like hypertonic saline or urea, or to newer, novel agents like the potassium binders: patiromer and zirconium cyclosilicate. Pharmacologic approaches range from limiting electrolyte intake or directly repleting the electrolyte, to blocking or promoting their resorption, and to neurohormonal antagonism. Because of the prevalence and clinical impact of electrolyte abnormalities, understanding both the older and newer therapeutic options is and will continue to be necessity for the management of heart failure. PMID:27278221

  14. Theoretical and experimental study of mixed solvent electrolytes

    SciTech Connect

    Cummings, P.T.; O'Connell, J.P.

    1991-07-01

    The goals of the research program have evolved into the following: Molecular simulation of phase equilibria in aqueous and mixed solvent electrolyte solutions; molecular simulation of solvation and structure in supercritical aqueous systems; extension of experimental database on mixed solvent electrolytes; analysis of the thermodynamic properties of mixed solvent electrolyte solutions and mixed electrolyte solutions using fluctuation solution theory; development of analytic expressions for thermodynamic properties of mixed solvent electrolyte solutions using analytically solved integral equation approximations; and fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories. We report and evaluate our progress during the period of the grant in light of these six goals in detail in this paper.

  15. Self-compensating heating system for a reserve electrolyte battery

    SciTech Connect

    Weber, K.

    1987-03-17

    A self-compensating heating system is described for a reserve electrolyte battery comprising, a storage tank for electrolyte to be supplied to the battery, and means defining a flow path from the storage tank to the battery including a laminar flow device having flow passages sufficiently small to establish viscosity-sensitive flow impedance to assure that the rate of electrolyte flow is dependent on the viscosity of the electrolyte and a heat exchanger downstream of the laminar flow device. It also includes a solid propellant gas generator having a gas outlet connected to the heat exchanger for burning a solid propellant with a burn rate which increases with the temperature at which the solid propellant is stored whereby there is a relation between the electrolyte flow and heat generated to have longer exposure of the electrolyte to gas in the heat exchanger when the battery is stored at low temperature.

  16. Thermal Modeling of Snap-in Type Aluminum Electrolytic Capacitor

    NASA Astrophysics Data System (ADS)

    Koizumi, Katsuhiro; Ishizuka, Masaru; Nakagawa, Shinji; Hatakeyama, Tomoyuki

    The electrolytic capacitor is one of the most important components for the thermal analysis of electronic equipment. To predict component and system temperatures, the thermal flow simulation technique has been applied to thermal design of electronic equipment. In this study, we examined a compact modeling method for electrolytic capacitors in order to simulate thermal flow based on the computational fluid dynamics (CFD) code. To obtain fundamental data for the thermal modeling method, first, we conducted experiments to identify the major thermal path of electrolytic capacitors in actual electronic equipment by using a switch mode power supply unit. Next, to verify the validity of the thermal model, a benchmark experiment was conducted to obtain actual measurement data of the temperature rise of electrolytic capacitors under various operating conditions. The thermal model of the electrolytic capacitor was presented based on the CFD code. In this paper, we describe in particular the snap-in type electrolytic capacitor.

  17. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, Carl A.; Maricle, Donald L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.

  18. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect

    Eric D. Wachsman

    2000-10-01

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based

  19. Boron compounds as anion binding agents for nonaqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili

    2000-02-08

    Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

  20. Mechanism of hydrofluoric acid formation in ethylene carbonate electrolytes with fluorine salt additives

    NASA Astrophysics Data System (ADS)

    Tebbe, Jonathon L.; Fuerst, Thomas F.; Musgrave, Charles B.

    2015-11-01

    We utilized density functional theory to examine HF generation in lithium-ion battery electrolytes from reactions between H2O and the decomposition products of three electrolyte additives: LiPF6, LiPOF4, and LiAsF6. Decomposition of these additives produces PF5, AsF5, and POF3 along with LiF precipitates. We found PF5 and AsF5 react with H2O in two sequential steps to form two HF molecules and POF3 and AsOF3, respectively. PF5 (or AsF5) complexes with H2O and undergoes ligand exchange to form HF and PF4OH (AsF4OH) with an activation barrier of 114.2 (30.5) kJ mol-1 and reaction enthalpy of 14.6 (-11.3) kJ mol-1. The ethylene carbonate (EC) electrolyte forms a Lewis acid-base complex with the PF4OH (AsF4OH) product, reducing the barrier to HF formation. Reactions of POF3 were examined and are not characterized by complexation of POF3 with H2O or EC, while PF5 and AsF5 complex favorably with H2O and EC. HF formation from POF3 occurs with a reaction enthalpy of -3.8 kJ mol-1 and a 157.7 kJ mol-1 barrier, 43.5 kJ mol-1 higher than forming HF from PF5. HF generation in electrolytes employing LiPOF4 should be significantly lower than those using LiPF6 or LiAsF6 and LiPOF4 should be further investigated as an alternative electrolyte additive.

  1. Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Yao-Min; G Nicolau, Bruno; Esbenshade, Jennifer L; Gewirth, Andrew A

    2016-07-19

    The solid electrolyte interface (SEI) formed via electrolyte decomposition on the anode of lithium ion batteries is largely responsible for the stable cycling of conventional lithium ion batteries. Similarly, there is a lesser-known analogous layer on the cathode side of a lithium ion battery, termed the cathode electrolyte interface (CEI), whose composition and role are debated. To confirm the existence and composition of the CEI, desorption electrospray ionization mass spectrometry (DESI-MS) is applied to study common lithium ion battery cathodes. We observe CEI formation on the LiMn2O4 cathode material after cycling between 3.5 and 4.5 V vs Li/Li(+) in electrolyte solution containing 1 M LiPF6 or LiClO4 in 1:1 (v/v) ethylene carbonate (EC) and dimethyl carbonate (DMC). Intact poly(ethylene glycol) dimethyl ether is identified as the electrolyte degradation product on the cathode surface by the high mass-resolution Orbitrap mass spectrometer. When EC is paired with ethyl methyl carbonate (EMC), poly(ethylene glycol) dimethyl ether, poly(ethylene glycol) ethyl methyl ether, and poly(ethylene glycol) are found on the surface simultaneously. The presence of ethoxy and methoxy end groups indicates both methoxide and ethoxide are produced and involved in the process of oligomerization. Au surfaces cycled under different electrochemical windows as model systems for Li-ion battery anodes are also examined. Interestingly, the identical oligomeric species to those found in the CEI are found on Au surfaces after running five cycles between 2.0 and 0.1 V vs Li/Li(+) in half-cells. These results show that DESI-MS provides intact molecular information on battery electrodes, enabling deeper understanding of the SEI or CEI composition. PMID:27346184

  2. An amino acid-electrolyte beverage may increase cellular rehydration relative to carbohydrate-electrolyte and flavored water beverages

    PubMed Central

    2014-01-01

    Background In cases of dehydration exceeding a 2% loss of body weight, athletic performance can be significantly compromised. Carbohydrate and/or electrolyte containing beverages have been effective for rehydration and recovery of performance, yet amino acid containing beverages remain unexamined. Therefore, the purpose of this study is to compare the rehydration capabilities of an electrolyte-carbohydrate (EC), electrolyte-branched chain amino acid (EA), and flavored water (FW) beverages. Methods Twenty men (n = 10; 26.7 ± 4.8 years; 174.3 ± 6.4 cm; 74.2 ± 10.9 kg) and women (n = 10; 27.1 ± 4.7 years; 175.3 ± 7.9 cm; 71.0 ± 6.5 kg) participated in this crossover study. For each trial, subjects were dehydrated, provided one of three random beverages, and monitored for the following three hours. Measurements were collected prior to and immediately after dehydration and 4 hours after dehydration (3 hours after rehydration) (AE = −2.5 ± 0.55%; CE = −2.2 ± 0.43%; FW = −2.5 ± 0.62%). Measurements collected at each time point were urine volume, urine specific gravity, drink volume, and fluid retention. Results No significant differences (p > 0.05) existed between beverages for urine volume, drink volume, or fluid retention for any time-point. Treatment x time interactions existed for urine specific gravity (USG) (p < 0.05). Post hoc analysis revealed differences occurred between the FW and EA beverages (p = 0.003) and between the EC and EA beverages (p = 0.007) at 4 hours after rehydration. Wherein, EA USG returned to baseline at 4 hours post-dehydration (mean difference from pre to 4 hours post-dehydration = -0.0002; p > 0.05) while both EC (-0.0067) and FW (-0.0051) continued to produce dilute urine and failed to return to baseline at the same time-point (p < 0.05). Conclusion Because no differences existed for fluid retention, urine or drink volume at any time point, yet USG returned to

  3. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    DOEpatents

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  4. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    NASA Technical Reports Server (NTRS)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1984-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.

  5. Theoretical and experimental study of mixed solvent electrolytes

    SciTech Connect

    Cummings, P.T.; O'Connell, J.P.

    1990-01-01

    In the original proposal to study mixed solvent electrolyte solutions, four major goals were formulated: fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories; evaluation of intermolecular pair potential models by computer simulation of selected systems for comparison with experiment and the numerical integral equation studies; development of fundamentally based correlations for the thermodynamic properties of mixed solvent electrolyte solutions using analytically solvable statistical mechanical models; and extension of experimental database on mixed solvent electrolytes by performing vapor-liquid equilibrium measurements on selected systems. This paper discusses the progress on these goals.

  6. Monitoring electrolyte concentrations in redox flow battery systems

    DOEpatents

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  7. Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes

    SciTech Connect

    Tenhaeff, Wyatt E; Yu, Xiang; Hong, Kunlun; Perry, Kelly A; Dudney, Nancy J

    2011-01-01

    A study of lithium cation transport across solid-solid electrolyte interfaces to identify critical resistances in nanostructured solid electrolytes is reported. Bilayers of glass and polymer thin film electrolytes were fabricated and characterized for this study. The glass electrolyte was lithium phosphorous oxynitride (Lipon), and two polymer electrolytes were studied: poly(methyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) and poly(styrene-co-poly(ethylene glycol) methyl ether methacrylate). Both copolymers contained LiClO{sub 4} salt. In bilayers where polymer electrolyte layers are fabricated on top of Lipon, the interfacial resistance dominates transport. At 25 C, the interfacial resistance is at least three times greater than the sum of the Lipon and polymer electrolyte resistances. By reversing the structure and fabricating Lipon on top of the polymer electrolytes, the interfacial resistance is eliminated. Experiments to elucidate the origin of the interfacial resistance in the polymer-on-Lipon bilayers reveal that the solvent mixtures used to fabricate the polymer layers do not degrade the Lipon layer. The importance of the polymer electrolytes' mechanical properties is also discussed.

  8. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    SciTech Connect

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-05-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  9. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    SciTech Connect

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-01-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  10. Short protection device for stack of electrolytic cells

    DOEpatents

    Katz, M.; Schroll, C.R.

    1984-11-29

    The present invention relates to a device for preventing the electrical shorting of a stack of electrolytic cells during an extended period of operation. The device has application to fuel cell and other electrolytic cell stacks operating in low or high temperature corrosive environments. It is of particular importance for use in a stack of fuel cells operating with molten metal carbonate electrolyte for the production of electric power. Also, the device may have application in similar technology involving stacks of electrolytic cells for electrolysis to decompose chemical compounds.

  11. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  12. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  13. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  14. Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Zhu, Lu; Wu, Feng; Li, Li; Zhang, Rong; Chen, Shi

    2014-01-01

    Lithium difluoromono(oxalato)borate (LiODFB) has been used as a novel lithium salt for battery in recent studies. In this study, a series of novel electrolytes has been prepared by adding 30 vol% dimethyl sulfite (DMS) or dimethyl carbonate (DMC) as co-solvent into an ethylene carbonate (EC)/ethyl methyl carbonate (EMC) + LiX mixture, in which the LiX could be LiClO4, LiODFB, LiBOB, LiTFSI, or LiCF3SO3. These ternary electrolytes have been investigated for use in lithium ion batteries. FT-IR spectroscopy analysis shows that characteristic functional groups (-CO3, -SO3) undergo red-shift or blue-shift with the addition of different lithium salts. The LiODFB-EC/EMC/DMS electrolyte exhibits high ionic conductivity, which is mainly because of the low melting point of DMS, and LiODFB possessing high solubility. The Li/MCMB cells containing this novel electrolyte exhibit high capacities, good cycling performance, and excellent rate performance. These performances are probably because both LiODFB and DMS can assist in the formation of SEI films by reductive decomposition. Additionally, the discharge capacity of Li/LiCoO2 half cell containing LiODFB-EC/EMC/DMS electrolyte is 130.9 mAh g-1 after 50 cycles, and it is very comparable with the standard-commercial electrolyte. The results show that this study produces a promising electrolyte candidate for lithium ion batteries.

  15. Application of the thin electrolyte layer technique to corrosion testing of dental materials

    NASA Astrophysics Data System (ADS)

    Ledvina, Martin

    activity of pores and seemed to produce an inhibitive action against localized corrosion. The same trends were observed in human saliva. To clarify the mechanisms of protein-surface interaction, electrochemical impedance spectroscopy (EIS) was employed with the same alloy-electrolyte combinations. Based on the results, it was hypothesized that proteins are adsorbed to the anodic areas where pits may be forming or casting porosity exists. The electrostatic interaction and affinity of proteins for metallic ions plays a significant role. The absorbed macromolecules physically block transport of reactants to and from the interface and slow down the corrosion reaction appreciably. Overall, this investigation contributed to the further understanding of the electrochemistry of the oral environment, particularly the contribution of proteinaceous species.

  16. Interface Engineering of Garnet Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Lei

    Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low

  17. Electrolytic decontamination of the 3013 inner can

    SciTech Connect

    Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E.; Limback, S.

    1998-12-31

    Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. This standard specifies both the requirements for containment and furthermore specifies that the inner container be decontaminated to a level of {le}20 dpm/100 cm{sup 2} swipable and {le}500 dpm/100 cm{sup 2} direct alpha such that a failure of the outer containment barrier will have a lower probability of resulting in a spread of contamination. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. The passage of current through this electrolytic cell results in a uniform anodic dissolution of the surface metal layers of the can. This process results in a rapid decontamination of the can. The electrolyte is fully recyclable, and the separation of the chromium from the actinides results in a compact, non RCRA secondary waste product.

  18. Cantera and Cantera Electrolyte Thermodynamics Objects

    Energy Science and Technology Software Center (ESTSC)

    2015-10-19

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia’s contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Canteramore » that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a “Get the

  19. Polarization of anthracite electrodes in electrolyte solutions

    SciTech Connect

    A.N. Lopanov; E.V. Blaido; O.V. Smirnova

    2007-10-15

    The regularities of the polarization of anthractie electrodes for the liberation of hydrogen from electrolyte (potassium chloride and hydrogen chloride) solutions were found, and electrode processes occurring at the surface of coals in the Fe{sup 2+}/Fe{sup 3+} redox system were studied. It was found that the deviations of standard electrode potentials from the equilibrium values of redox systems depend on the exchange current densities of electrochemical processes occurring at the surface of coal matter. Low transfer coefficients (0.04-0.051) for the discharge reaction of hydrogen ions on anthracites indicate that the reaction occurs under conditions close to those of an activationless process.

  20. On the thermal characteristics of electrolytic cell

    SciTech Connect

    Ogata, Y.; Hine, F.; Kainuma, S.; Yasuda, M.

    1985-11-01

    Mathematical analysis of the heat balance of electrolytic cell was investigated. Experimental results with a verticaltype water electrolysis cell under normal conditions agreed with calculation. The water vaporization is a major factor of heat loss from the cell and, hence, it must be reduced. The thermal behavior of a water electrolysis cell was simulated under normal and pressurized conditions with the equations proposed. It was clarified that the hea loss from the cell could be reduced by increasing the operating pressure because the water vaporization was a large factor of heat dissipation at high temperatures. The effects of the thermal insulation and the emissivity of the cell wall were also discussed.

  1. Flowing electrolyte battery testing and evaluation

    SciTech Connect

    Butler, P.; Miller, D.; Verardo, A.

    1982-08-01

    A laboratory to evaluate the performance and cycle life of flowing electrolyte battery systems has been established at Sandia National Laboratories. Four unique flow batteries are being tested in the laboratory using a four-variable two-level factorial experimental plan. Two Exxon zinc bromine batteries and one Gould zinc bromine battery are under test. One NASA Redox battery is on test. This paper describes results obtained to date from the test program. Cycle history, efficiency values, and general performance observations for these batteries are reported. The factorial test program and available statistical results are also discussed.

  2. Flowing-electrolyte-battery testing and evaluation

    SciTech Connect

    Butler, P.C.; Miller, D.W.; Verardo, A.E.

    1982-01-01

    A laboratory to evaluate the performance and cycle life of flowing electrolyte battery systems has been established at Sandia National Laboratories. Four unique flow batteries are being tested in the laboratory using a four-variable two-level factorial experimental plan. Two Exxon zinc bromine batteries and one Gould zinc bromine battery are under test. One NASA Redox battery is on test. This paper describes results obtained to date from the test program. Cycle history, efficiency values, and general performance observations for these batteries are reported. The factorial test program and available statistical results are also discussed.

  3. Flowing electrolyte battery testing and evaluation

    NASA Astrophysics Data System (ADS)

    Butler, P. C.; Miller, D. W.; Verardo, A. E.

    A laboratory to evaluate the performance and cycle life of flowing electrolyte battery systems has been established at Sandia National Laboratories. Four unique flow batteries are being tested in the laboratory using a four-variable two-level factorial experimental plan. Two Exxon zinc bromine batteries and one Gould zinc bromine battery are under test. One NASA Redox battery is on test. This paper describes results obtained to date from the test program. Cycle history, efficiency values, and general performance observations for these batteries are reported. The factorial test program and available statistical results are also discussed.

  4. The Radioimmunoassay of Fluid and Electrolyte Hormones

    NASA Technical Reports Server (NTRS)

    Keil, Lanny C.

    1985-01-01

    The subject of the paper will be the assay of fluid/electrolyte hormones. ADH (antidiuretic hormone also referred to as vasopressin) reduces fluid loss by increasing water reabsorption by the kidney. The stimuli for its release from the pituitary are loss of blood, dehydration, or increased salt intake. Angiotensin II is the next hormone of interest. It is "generated" from a blood protein by the release of renin from the kidney. One of its functions is to stimulate the secretion of aldosterone from the adrenal gland. Release of renin is also stimulated by volume and sodium loss.

  5. Cantera and Cantera Electrolyte Thermodynamics Objects

    SciTech Connect

    John Hewson, Harry Moffat

    2015-10-19

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia’s contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Cantera that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a “Get the numbers

  6. Electrolyte additive for improved battery performance

    DOEpatents

    Bellows, Richard J.; Kantner, Edward

    1989-04-04

    In one embodiment of the present invention, there is provided an electrochemical cell having a metal bromine couple. The cell includes an electrode structure on which to deposit the metal of the couple and a counterelectrode at which to generate bromine. A microporous membrane separates the electrode and counterelectrode. Importantly, the aqueous electrolyte comprises an aqueous metal bromide solution containing a water soluble bromine complexing agent capable of forming a water immiscible complex with bromine and an additive capable of decreasing the wettability of the microporous separators employed in such cells by such water immiscible bromine complexes.

  7. Electrolytic production of oxygen from lunar resources

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1991-01-01

    Some of the most promising approaches to extract oxygen from lunar resources involve electrochemical oxygen generation. In a concept called magma electrolysis, suitable oxides (silicates) which are molten at 1300 to 1500 C are then electrolyzed. Residual melt can be discarded after partial electrolysis. Alternatively, lunar soil may be dissolved in a molten salt and electrolyzed. In this approach, temperatures are lower and melt conductances higher, but electrolyte constituents need to be preserved. In a different approach ilmenite is reduced by hydrogen and the resulting water is electrolyzed.

  8. Production of porous diaphragm for electrolytic cell

    SciTech Connect

    Cairns, J.F.

    1983-02-01

    A process for the production of a porous diaphragm suitable for use in an electrolytic cell, particularly a chlor-alkali cell, characterized in that the process comprises irradiating a porous shaped article of an organic polymeric material, for example, a sheet of a fluoropolymer, with high energy radiation, the irradiation being effected in the presence of, or the irradiated shaped article being subsequently contacted with, a reactant selected from ammonia, carbon monoxide and phosgene, and the sheet preferably being subsequently contacted with an aqueous alkaline solution.

  9. Huge Seebeck coefficients in nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Bonetti, M.; Nakamae, S.; Roger, M.; Guenoun, P.

    2011-03-01

    The Seebeck coefficients of the nonaqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide, and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol, and ethylene-glycol are measured in a temperature range from T = 30 °C to T = 45 °C. The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1 M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or "structure making" effects of tetraalkylammonium ions on the structure of alcohols.

  10. Effects of a coal-fired power plant on the rock lichen Rhizoplaca melanophthalma: chlorophyll degradation and electrolyte leakage

    USGS Publications Warehouse

    Belnap, Jayne; Harper, Kimball T.

    1990-01-01

    Chlorophyll degradation and electrolyte leakage were measured for the umbilicate desert lichen Rhizoplaca melanophthalma (Ram.) Leuck. & Poelt in the vicinity of a coal-fired power plant near Page, Arizona. Patterns of lichen damage indicated by chlorophyll degradation were similar to those indicated by electrolyte leakage. Regression analyses of chlorophyll degradation as well as electrolyte leakage on distance from the power plant were significant (p < 0.001), suggesting that lichen damage decreased with increasing distance from the power plant. Mean values for both variables at the two sites closest to the power plant (7 and 12 km) differed significantly from values for the two sites farthest from the plant (21 and 42 km; p < 0.001). Mean values within each group (7 and 12 km; 21 and 42 km) do not differ significantly for either parameter. It is suggested that effluents from the power plant combine with local weather factors to produce the observed levels of damage.

  11. In situ Poly(methyl methacrylate)/Graphene Composite Gel Electrolytes for Highly Stable Dye-Sensitized Solar Cells.

    PubMed

    Kang, Yu-il; Moon, Jun Hyuk

    2015-11-01

    Dye-sensitized solar cells (DSCs) with long-term stability are produced using polymer-gel electrolytes (PGEs). In this study, we introduce the formation of PGEs using in situ gelation with poly(methyl methacrylate) (PMMA) particles and graphene fillers that are pre-deposited on the counter electrodes. We obtain a high concentration PMMA-based PGEs (i.e., over 10 wt%). A DSC composed of a PMMA/graphene composite PGEs exhibits an 8.49% photon-to-electric conversion efficiency, which is comparable to conventional liquid electrolyte DSCs. This finding is attributed to increased ion diffusivity and conductivity of the PMMA-based PGEs resulting from the incorporation of graphene nanofillers. The PMMA-based PGE DSCs exhibit highly stable long-term efficiencies, maintaining up to 90% of their initial efficiency during thermal soaking, whereas the efficiencies of liquid electrolyte cells decrease significantly, by up to 60%. PMID:26471468

  12. The role of electrolyte pH on phase evolution and magnetic properties of CoFeW codeposited films

    NASA Astrophysics Data System (ADS)

    Ghaferi, Z.; Sharafi, S.; Bahrololoom, M. E.

    2016-07-01

    In this research, nanocrystalline Co-Fe-W alloy coatings were electrodeposited from a citrate-borate bath. The influence of electrolyte pH on the morphology, microstructure and magnetic properties of these films was also studied. By increasing pH value, the amount of iron content increased from 30 to 55 wt.% which indicates anomalous fashion at higher pH electrolytes. X-ray diffraction patterns showed that the structure of these films depend on electrolyte pH effectively. However, two-phase structure coatings showed smaller average grain size compared with one- phase solid solutions. Vibrating sample magnetometer measurements indicated that the coercivity of the coatings was in the range of 21-76 Oe. However, the highest pH value produced coating with superior magnetic behaviour. Microhardness of the coatings reached its maximum value at about 260HV which is referred to the highest tungsten content.

  13. Water balance and magnesium control in electrolytic zinc plants using the E.Z. selective zinc precipitation process

    NASA Astrophysics Data System (ADS)

    Matthew, I. G.; Newman, O. M. G.; Palmer, D. J.

    1980-03-01

    There is an increasing tendency for modern electrolytic zinc plants to experience water balance and magnesium control problems because of the simultaneous need to maximize zinc recovery and produce environmentally acceptable leach residues and precipitates. The Selective Zinc Precipitation process developed by the Electrolytic Zinc Company of Australasia involves the precipitation of basic zinc sulfate using limestone. Water balance and magnesium control may be achieved by either discarding the process filtrate, or by using it to wash precipitates in a closed circuit operation. The process filter cake is used as a neutralizing agent in the zinc plant. The process can be operated over a wide range of temperatures and calcined zinc concentrate may be preferred to limestone as a zinc precipitant to minimize the discard of sulfate. This paper is particularly concerned with a quantitative assessment of various modes of integrating the process into modern electrolytic zinc plants.

  14. Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes.

    PubMed

    Schwenke, K Uta; Meini, Stefano; Wu, Xiaohan; Gasteiger, Hubert A; Piana, Michele

    2013-07-28

    Glyme-based electrolytes were studied for the use in lithium-air batteries because of their greater stability towards oxygen reduction reaction intermediates (e.g., superoxide anion radicals (O2˙(-))) produced upon discharge at the cathode compared to previously employed carbonate-based electrolytes. However, contradictory results of glyme stability tests employing KO2 as an O2˙(-) source were reported in the literature. For clarification, we investigated the reaction of KO2 with glymes of various chain lengths qualitatively using (1)H NMR and FTIR spectroscopy as well as more quantitatively using UV-Vis spectroscopy. During our experiments we found a huge impact of small quantities of impurities on the stability of the solvents. Therefore, we studied further the influence of impurities in the glymes on the cycling behavior of Li-O2 cells, demonstrating the large effect of electrolyte impurities on Li-O2 cell performance. PMID:23760527

  15. Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xue, Leigang; Lee, Seung-Yul; Zhao, Zuofeng; Angell, C. Austen

    2015-11-01

    Safety and high energy density are the two focus issues for current lithium ion batteries. For safety, it has been demonstrated that sulfone electrolytes are much less flammable than the prevailing all-carbonate type, and they are also promising for high voltage batteries due to the high oxidization resistance. However, the high melting points and viscosities greatly restricted their application. Based on our previous work on use of fluidity-enhancing cosolvents to make binary sulfone-carbonate electrolytes, we report here a three-component system that is more conductive and should be even less flammable while additionally having better low temperature stability. The conductivity-viscosity relations have been determined for this electrolyte and are comparable to those of the "standard" carbonate electrolyte. The additional component also produces much improved capacity retention for the LiNi0.5Mn1.5O4 cathode. As with carbonate electrolytes, increase of temperature to 55 °C leads to rapid capacity decrease during cycling, but the capacity loss is due to the salt, not the solvent. The high discharge capacity observed at 25 °C when LiBF4 replaces LiPF6, is fully retained at 55 °C.

  16. Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes.

    PubMed

    He, Xiaojun; Zhang, Hebao; Xie, Kang; Xia, Youyi; Zhao, Zhigang; Wang, Xiaoting

    2016-03-01

    High-performance mesoporous carbons (MCs) for supercapacitors were made from rice husk by one-step microwave-assisted ZnCl2 activation. The microstructures of MCs as-made were characterized by field emission scanning electron microscopy and transmission electron microscopy. The pore structure parameters of MCs were obtained by N2 adsorption technique. The electrochemical properties of MC electrodes were studied by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy in different electrolytes. The results showed that the specific surface area of MC4 made at the ZnCl2/rice husk mass of 4:1 reached 1737 m2 g(-1). The specific capacitance and energy density of the electrodes fabricated from the mixture of MC4 and microporous carbon increased with the mass percentage of MC4, reaching 157 F g(-1) and 84 Wh kg(-1) at 0.05 A g(-1), and showed good cycle stability in 1-butyl-3-methylimidazolium hexafluorophosphate electrolyte. Compared to the often-used aqueous and organic electrolytes, MC4 capacitor exhibited extremely high energy density in ionic liquid electrolyte, remaining at 28 Wh kg(-1) at 1684 W kg(-1). This work paves a new way to produce cost-effective MCs from biomass for supercapacitors with extremely high energy density in ionic liquid electrolytes. PMID:27455718

  17. Improved efficiency and stability of flexible dye sensitized solar cells on ITO/PEN substrates using an ionic liquid electrolyte.

    PubMed

    Han, Yu; Pringle, Jennifer M; Cheng, Yi-Bing

    2015-01-01

    Flexible dye-sensitized solar cells (DSSCs) built on plastic substrates have attracted great interest as they are lightweight and can be roll-to-roll printed to accelerate production and reduce cost. However, plastic substrates such as PEN and PET are permeable to water, oxygen and volatile electrolyte solvents, which is detrimental to the cell stability. Therefore, to address this problem, in this work, an ionic liquid (IL) electrolyte is used to replace the volatile solvent electrolyte. The initial IL-based devices only achieved around 50% of the photovoltaic conversion efficiency of the cells using the solvent electrolyte. Current-voltage and electrochemical impedance spectroscopy (EIS) analysis of the cells in the dark indicated that this lower efficiency mainly originated from (i) a lack of blocking layer to reduce recombination, and (ii) a lower charge collection efficiency. To combat these problems, cells were developed using a 12 nm thick blocking layer, produced by atomic layer deposition, and 1 μm thick P25 TiO2 film sensitized with the hydrophobic MK-2 dye. These flexible DSSCs utilizing an IL electrolyte exhibit significantly improved efficiencies and a <10% drop in performance after 1000 h aging at 60°C under continuous light illumination. PMID:25476521

  18. Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings

    NASA Astrophysics Data System (ADS)

    Gao, Yonghao; Yerokhin, Aleksey; Matthews, Allan

    2014-10-01

    Plasma electrolytic oxidation (PEO) coatings were produced on commercially pure magnesium in a biologically friendly electrolyte composed of 2 g L-1 Ca(OH)2 and 12 g L-1 Na3PO4·12H2O using pulsed unipolar and bipolar current regimes with negative biasing varying from 0 to 20 mA cm-2. Analysis of voltage transients was performed to characterise the PEO processes. The coating morphology and phase composition were studied by scanning electron microscopy and X-ray diffraction technique, respectively. In vitro corrosion performance of the coatings was evaluated in a simulated body fluid at 37 ± 1 °C, using electrochemical techniques including open circuit potential monitoring, electrochemical impedance spectroscopy and potentiodynamic polarisation scans. The influence of the negative biasing on the PEO process and resulting coating characteristics is discussed. Unlike generally recognised beneficial effects of the negative biasing in PEO treatments of some other metal-electrolyte systems, it was found that detrimental effects are induced to the coatings on cp-Mg produced in the studied electrolyte when the negative current amplitude increases, which may be attributed to hydrogen liberation at the coating/substrate interface during the negative biasing cycles. As a result, a deterioration of vitro corrosion performance was observed for the pulsed bipolar PEO coatings compared to those produced using the pulsed unipolar regime which provides better quality coatings.

  19. Diminution of supercooling of electrolytes by carbon particles

    SciTech Connect

    Ding, S.P.; Xu, K.; Zhang, S.S.; Jow, T.R.; Amine, K.; Henriksen, G.L.

    1999-11-01

    A liquid solution composed of a pure or mixed solvent and a dissolved salt is the most common form of electrolyte used in electrochemical devices for energy storage and conversion, such as batteries and capacitors. For such an electrolyte, one of the most important properties is its crystallization temperature, which limits the low-temperature operation of a device containing such an electrolyte. If thermodynamic equilibria were strictly followed, crystallization of an electrolyte would start as soon as it is cooled to its liquidus temperature. But such is seldom the case, as an electrolyte by itself often supercools well below this temperature. This supercooling can delay or even eliminate the crystallization of an electrolyte, thus substantially extending its apparent liquid range. The authors studied the supercooling behavior of a number of solutions of LiPF{sub 6} in ethylene carbonate-ethyl methyl carbonate in 1:1 weight ratio with and without the presence of one of these carbons: activated carbon, carbon black, and mesocarbon microbeads. The results of differential scanning calorimetry (DSC) show that the supercooling of less concentrated solutions is significantly diminished by the presence of a carbon, the degree and the nature of which depends on the concentration of the electrolyte and the type of carbon present. The results of conductivity measurements also indicate precipitation in some of the electrolytes at low temperatures, which correlates well with the DSC results. The authors therefore conclude that the temperature range in which an electrolyte supercools without a nucleating material is unreliable for the operation of an electrochemical device containing such an electrolyte. Instead, the liquidus temperature of an electrolyte should be used as the lower limit of operation if the possibility of its crystallization is to be excluded.

  20. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  1. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte

    SciTech Connect

    Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

    2005-02-28

    A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

  2. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions.

    PubMed

    Geiger, William E; Barrière, Frédéric

    2010-07-20

    Electrochemistry is a powerful tool for the study of oxidative electron-transfer reactions (anodic processes). Since the 1960s, the electrolytes of choice for nonaqueous electrochemistry were relatively small (heptaatomic or smaller) inorganic anions, such as perchlorate, tetrafluoroborate, or hexafluorophosphate. Owing to the similar size-to-charge ratios of these "traditional" anions, structural alterations of the electrolyte anion are not particularly valuable in effecting changes in the corresponding redox reactions. Systematic variations of supporting electrolytes were largely restricted to cathodic processes, in which interactions of anions produced in the reactions are altered by changes in electrolyte cations. A typical ladder involves going from a weakly ion-pairing tetraalkylammonium cation, [N(C(n)H(2n+1))(4)](+), with n > or = 4, to more strongly ion-pairing counterparts with n < 4, and culminating in very strongly ion-pairing alkali metal ions. A new generation of supporting electrolyte salts that incorporate a weakly coordinating anion (WCA) expands anodic applications by providing a dramatically different medium in which to generate positively charged electrolysis products. A chain of electrolyte anions is now available for the control of anodic reactions, beginning with weakly ion-pairing WCAs, progressing through the traditional anions, and culminating in halide ions. Although the electrochemical properties of a number of different WCAs have been reported, the most systematic work involves fluoro- or trifluoromethyl-substituted tetraphenylborate anions (fluoroarylborate anions). In this Account, we focus on tetrakis(perfluorophenyl)borate, [B(C(6)F(5))(4)](-), which has a significantly more positive anodic window than tetrakis[(3,5-bis(trifluoromethyl)phenyl)]borate, [BArF(24)](-), making it suitable in a larger range of anodic oxidations. These WCAs also have a characteristic of specific importance to organometallic redox processes. Many electron

  3. Endurance testing with Li/Na electrolyte

    SciTech Connect

    Ong, E.T.; Remick, R.J.; Sishtla, C.I.

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  4. Carbons and electrolytes for advanced supercapacitors.

    PubMed

    Béguin, François; Presser, Volker; Balducci, Andrea; Frackowiak, Elzbieta

    2014-04-01

    Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors. PMID:24497347

  5. Solid-polymer-electrolyte fuel cells

    SciTech Connect

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  6. Gelled-electrolyte batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  7. Annealing Would Improve beta" - Alumina Solid Electrolyte

    NASA Technical Reports Server (NTRS)

    Williams, Roger; Homer, Margie; Ryan, Margaret; Cortez, Roger; Shields, Virgil; Kisor, Adam

    2003-01-01

    A pre-operational annealing process is under investigation as a potential means of preventing a sudden reduction of ionic conductivity in a Beta"-alumina solid electrolyte (BASE) during use. On the basis of tests, the sudden reduction of ionic conductivity, followed by a slow recovery, has been found to occur during testing of the solid electrolyte and electrode components of an alkali metal thermal-to-electric converter (AMTEC) cell. At this time, high-temperature tests of limited duration have indicated the superiority of the treated BASE, but reproducible tests over thousands of hours are necessary to confirm that microcracking has been eliminated. The ionic conductivity of the treated BASE is also measured to be higher than untreated BASE at 1,073 K in low-pressure sodium vapor. Microcracking resulting in loss of conductivity was not observed with treated BASE in one high-temperature experiment, but this result must be duplicated over very long testing times to be sure of the effect. Shorter annealing times (10 to 20 hours) were found to result in significantly less loss of mass; it may be necessary for the packed powder mixture to evolve some Na2O before the Na2O can leave the ceramic.

  8. ELECTROLYTIC MEMBRANE DIALYSIS FOR TREATING WASTEWATER STREAMS

    SciTech Connect

    Ronald C. Timpe

    2000-04-01

    This project will determine whether electrolytic dialysis has promise in the separation of charged particles in an aqueous solution. The ability to selectively move ions from one aqueous solution to another through a semipermeable membrane will be studied as a function of emf, amperage, and particle electrical charge. The ions selected for the study are Cl{sup -} and SO{sub 4}{sup 2-}. These ions are of particular interest because of their electrical conduction properties in aqueous solution resulting with their association with the corrosive action of metals. The studies will be performed with commercial membranes on solutions prepared in the laboratory from reagent salts. pH adjustments will be made with dilute reagent acid and base. Specific objectives of the project include testing a selected membrane currently available for electrolytic dialysis, membrane resistance to extreme pH conditions, the effectiveness of separating a mixture of two ions selected on the basis of size, the efficiency of the membranes in separating chloride (Cl{sup 1-}) from sulfate (SO{sub 4}{sup 2-}), and separation efficiency as a function of electromotive force (emf).

  9. Electrolyte-Mediated Assembly of Charged Nanoparticles.

    PubMed

    Kewalramani, Sumit; Guerrero-García, Guillermo I; Moreau, Liane M; Zwanikken, Jos W; Mirkin, Chad A; Olvera de la Cruz, Monica; Bedzyk, Michael J

    2016-04-27

    Solutions at high salt concentrations are used to crystallize or segregate charged colloids, including proteins and polyelectrolytes via a complex mechanism referred to as "salting-out". Here, we combine small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and liquid-state theory to show that salting-out is a long-range interaction, which is controlled by electrolyte concentration and colloid charge density. As a model system, we analyze Au nanoparticles coated with noncomplementary DNA designed to prevent interparticle assembly via Watson-Crick hybridization. SAXS shows that these highly charged nanoparticles undergo "gas" to face-centered cubic (FCC) to "glass-like" transitions with increasing NaCl or CaCl2 concentration. MD simulations reveal that the crystallization is concomitant with interparticle interactions changing from purely repulsive to a "long-range potential well" condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces that originate from the interelectrolyte ion and electrolyte-ion-nanoparticle positional correlations. Our work provides fundamental insights into the effect of ionic correlations in the salting-out mechanism and suggests new routes for the crystallization of colloids and proteins using concentrated salts. PMID:27163052

  10. Mathematical modeling of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  11. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality.

    PubMed

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-01-01

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability. PMID:26516860

  12. Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture

    DOEpatents

    Hash, Mark C.; Bloom, Ira D.

    1992-01-01

    An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800.degree. C.-1200.degree. C.), for example 1000.degree. C., than are typically required (1400.degree. C.) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250.degree. C. with conductivity values of 2.5 to 4.times.10.sup.-2 (ohm-cm).sup.-1. The matrix exhibits chemical stability against sodium for 100 hours at 250.degree. to 300.degree. C.

  13. Electrode assembly for use in a solid polymer electrolyte fuel cell

    DOEpatents

    Raistrick, Ian D.

    1989-01-01

    A gas reaction fuel cell may be provided with a solid polymer electrolyte membrane. Porous gas diffusion electrodes are formed of carbon particles supporting a catalyst which is effective to enhance the gas reactions. The carbon particles define interstitial spaces exposing the catalyst on a large surface area of the carbon particles. A proton conducting material, such as a perfluorocarbon copolymer or ruthenium dioxide contacts the surface areas of the carbon particles adjacent the interstitial spaces. The proton conducting material enables protons produced by the gas reactions adjacent the supported catalyst to have a conductive path with the electrolyte membrane. The carbon particles provide a conductive path for electrons. A suitable electrode may be formed by dispersing a solution containing a proton conducting material over the surface of the electrode in a manner effective to coat carbon surfaces adjacent the interstitial spaces without impeding gas flow into the interstitial spaces.

  14. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    SciTech Connect

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin

    2013-11-27

    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  15. Cyclic resistive switching effect in plasma electrolytically oxidized mesoporous Pt/TiO2 structures

    NASA Astrophysics Data System (ADS)

    Fullam, S.; Ray, N. J.; Karpov, E. G.

    2015-06-01

    Understanding the resistive switching phenomenon in metal oxide semiconductors is necessary in producing reliable resistive random access memory and other variable resistance devices. An alternative technique for fabricating resistive switching elements is presented. Using plasma electrolytic oxidation, 10-11 μ m thick oxide layers were galvanostatically grown on Ti substrates in a 3 M H2SO4 electrolyte. Analysis of the TiO2 layer by SEM, AFM, and XRD found the mesoporous titania surface to have a high ratio of rutile to anatase phases. The samples demonstrated pinched I-V hysteresis attributed to the resistive switching effect, when subjected to cyclic loading (±2.5, 1.6, 0.7 V; 23-736 μ Hz) at room temperature. Ratio with magnitude of 6 is reported for the resistance switching effect during 1.6 V 368 μ Hz loads.

  16. Utilizing in Situ Electrochemical SHINERS for Oxygen Reduction Reaction Studies in Aprotic Electrolytes.

    PubMed

    Galloway, Thomas A; Hardwick, Laurence J

    2016-06-01

    Spectroscopic detection of reaction intermediates upon a variety of electrode surfaces is of major interest within physical chemistry. A notable technique in the study of the electrochemical interface has been surface-enhanced Raman spectroscopy (SERS). The drawback of SERS is that it is limited to roughened gold and silver substrates. Herein we report that shell-isolated nanoparticles for enhanced Raman spectroscopy (SHINERS) can overcome the limitations of SERS and has followed the oxygen reduction reaction (ORR), within a nonaqueous electrolyte, on glassy carbon, gold, palladium, and platinum disk electrodes. The work presented demonstrates SHINERS for spectroelectrochemical studies for applied and fundamental electrochemistry in aprotic electrolytes, especially for the understanding and development of future metal-oxygen battery applications. In particular, we highlight that with the addition of Li(+), both the electrode surface and solvent influence the ORR mechanism, which opens up the possibility of tailoring surfaces to produce desired reaction pathways. PMID:27195529

  17. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality

    PubMed Central

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-01-01

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability. PMID:26516860

  18. A portable air-aluminum power source with an alkaline electrolytic solution

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Galkin, P. S.; Kashinskii, O. N.; Markovich, D. M.; Novopashin, S. A.; Randin, V. V.; Kharlamov, S. M.

    2014-04-01

    The results from development of a portable air-aluminum chemical power source (AA CPS) with an alkaline electrolytic solution without any additional service circuits are presented. The feasibility of making air cathodes on the basis of a metal-carbon composite produced by the plasma method has been shown. Special features of the operational conditions of a portable AA CPS have been investigated. It has been found that the aluminum cathode passivation when aluminum hydroxide precipitates from a solution significantly restricts the specific capacity of such power sources. It was shown that it is possible to overcome the anode passivation and to considerably increase the specific capacity of an AA CPS with an alkaline electrolytic solution by means of modifying an anode alloy.

  19. Obtention and evaluation of polyethylene-based solid polymer electrolyte membranes fro hydrogen production

    NASA Astrophysics Data System (ADS)

    Masson, J. P.; Molina, R.; Roth, E.; Gaussens, G.; Lemaire, F.

    The fabrication and testing of a polyethylene-based solid polymer electrolyte for use in hydrogen production by water electrolysis are discussed. The fabrication process involves the radiation grafting of styrene groups onto a polyethylene matrix, followed by the chemical sulphonation of the resulting polymer. The membrane produced has exhibited resistivities as low as 60 ohm cm for a 1-mm thickness, and other properties of the same order of magnitude as those of the commercially available but more expensive Nafion 014 membrane. Life tests carried out at a current density of 2 kA/sq m in single-cell modules with 10-sq cm active surface have revealed no noticeable degradation in membrane mechanical or electrical properties after 3000 hours for membranes reinforced by an organic polymer fabric. The development of an electrolyzer specifically designed for operation with a solid polymer electrolyte is currently under way.

  20. Characterization of ɽ -carrageenan and its derivative based green polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin

    2013-11-01

    The new types of green polymer electrolytes based on ɽ -carrageenan derivative have been prepared. ɽ -carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ɽ -carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and 1H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ɽ -carrageenan. The green polymer electrolyte based on ɽ -carrageenan and carboxymethyl ɽ -carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ɽ -carrageenan film were higher than carboxymethyl ɽ -carrageenan which 4.87 ×10-6 S cm-1 and 2.19 ×10-8 S cm-1, respectively.

  1. Conductivity, Mechanical and Thermal Studies on Poly(methyl methacrylate)-Based Polymer Electrolytes Complexed with Lithium Tetraborate and Propylene Carbonate

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Bing, Khoo Ne

    2012-01-01

    A series of different composition ratio of polymer electrolytes based on poly(methyl methacrylate) (PMMA) as host polymer, lithium tetraborate (Li2B4O7) as salt, and propylene carbonate (PC) as plasticizer is produced by solution casting method. Fourier transform infrared (FTIR) spectroscopy studies are used to confirm the formation of polymer electrolyte complex. PMMA: Li2B4O7: PC (52.5:22.5:25.0 wt.%) is obtained as the highest conducting polymer electrolyte with a conductivity of 5.14 × 10-6 S/cm at room temperature (23 °C). The temperature-dependent conductivity of the polymer films shows Arrhenius-like behavior which reveals that the charge carriers move in a liquid-like environment. The addition of PC decreases the Young's modulus and stress at peak values of the complexes. Thermogravimetric analysis (TGA) is employed to study the thermal stability of the electrolytes.

  2. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  3. Fuel cells with solid polymer electrolyte and their application on vehicles

    SciTech Connect

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  4. Electrochemical Stability of Model Polymer Electrolyte/Electrode Interfaces

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Yang, Guang

    2015-03-01

    Polymer electrolytes are promising materials for high energy density rechargeable batteries. However, typical polymer electrolytes are not electrochemically stable at the charging voltage of advanced positive electrode materials. Although not yet reported in literature, decomposition is expected to adversely affect the performance and lifetime of polymer-electrolyte-based batteries. In an attempt to better understand polymer electrolyte oxidation and design stable polymer electrolyte/positive electrode interfaces, we are studying electron transfer across model interfaces comprising gold nanoparticles and organic protecting ligands assembled into monolayer films. Gold nanoparticles provide large interfacial surface area yielding a measurable electrochemical signal. They are inert and hence non-reactive with most polymer electrolytes and lithium salts. The surface can be easily modified with ligands of different chemistry and molecular weight. In our study, poly(ethylene oxide) (PEO) will serve as the polymer electrolyte and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) will be the lithium salt. The effect of ligand type and molecular weight on both optical and electrical properties of the gold nanoparticle film will be presented. Finally, the electrochemical stability of the electrode/electrolyte interface and its dependence on interfacial properties will be presented.

  5. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, H.L.; Kramer, S.A.; Spears, M.A.

    1995-04-04

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.

  6. Electrolyte Loss Tendencies of Primary Silver-Zinc Cells

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Juvinall, Gordon L.

    1997-01-01

    Since silver zinc cells are not hermetically sealed, care must be taken to prevent the loss of electrolyte which can result in shorting paths within the battery box. Prelaunch battery processing is important in being able to minimize any problems with expelled electrolyte.

  7. Metallography of Aluminum and Its Alloys : Use of Electrolytic Polishing

    NASA Technical Reports Server (NTRS)

    Jacquet, Pierre A

    1955-01-01

    Recent methods are described for electropolishing aluminum and aluminum alloys. Numerous references are included of electrolytic micrographic investigations carried out during the period 1948 to 1952. A detailed description of a commercial electrolytic polishing unit, suitable for micrographic examination of aluminum and its alloys, is included.

  8. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520.550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine/electrolyte. (a) Specifications. The product...

  9. Performance of electric double layer capacitors with polymer gel electrolytes

    SciTech Connect

    Ishikawa, Masashi; Kishino, Takahiro; Katada, Naoji; Morita, Masayuki

    2000-07-01

    Polymer gel electrolytes consisting of poly(vinylidene fluoride) (PVdF), tetraethylammonium tetrafluoroborate (TEABF{sub 4}), and propylene carbonate (PC) as a plasticizer have been investigated for electric double layer capacitors. The PVdF gel electrolytes showed high ionic conductivity (ca. 6 mS/cm at 298 K). To assemble model capacitors with the PVdF gel electrolytes and activated carbon fiber cloth electrodes, a pair of the fixed electrodes was soaked in a precursor solution containing PC, PVdF, and TEABF{sub 4}, followed by evaporation of the PC solvent in a vacuum oven. The resulting gel electrolytes were in good contact with the electrodes. The model capacitors with the PVdF gel electrolytes showed a large value of capacitance and high coulombic efficiency in operation voltage ranges of 1--2 and 1--3 V. It is worth noting that the capacitors with the PVdF electrolytes showed long voltage retention in a self-discharge test. These good characteristics of the gel capacitors were comparable to those of typical double layer capacitors with a liquid organic electrolyte containing PC and TEABF{sub 4}; rather, the voltage retentivity of the PVdF gel capacitors was much superior to that of the capacitors with the organic electrolyte.

  10. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.

    1995-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.

  11. Layered charge transfer complex cathodes or solid electrolyte cells

    SciTech Connect

    Louzos, D.V.

    1981-05-12

    Layered charge transfer complex cathodes for use in solid electrolyte cells are described wherein one layer of the cathode contains an electronic conductor which is isolated from the cell's solid electrolyte by a second layer of the cathode that does not contain an electronic conductor.

  12. Lithium-ion transport in inorganic solid state electrolyte

    NASA Astrophysics Data System (ADS)

    Jian, Gao; Yu-Sheng, Zhao; Si-Qi, Shi; Hong, Li

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. Project supported by the National Natural Science Foundation of China (Grant No. 51372228), the Shanghai Pujiang Program, China (Grant No. 14PJ1403900), and the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission, China (Grant No. 14DZ2261200).

  13. 64 FR 23675 - Electrolytic Manganese Dioxide From Greece and Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-05-03

    ... orders on imports of electrolytic manganese dioxide from Greece and Japan (54 FR 15243). The Commission..., including the text of subpart F of part 207, are published at 63 FR 30599, June 5, 1998, and may be... COMMISSION Electrolytic Manganese Dioxide From Greece and Japan AGENCY: United States International...

  14. Electrophoretic mobility of particles in concentrated solutions of electrolytes

    SciTech Connect

    Deinega, Yu.F.; Polyakova, V.M.; Aleksandrova, L.N.

    1986-11-01

    The electrophoretic mobility of particles of phenol-formaldehyde and aniline-formaldehyde resins in zinc sulfate solutions has been investigated. It is shown that as the electrolyte concentration rises, the electrophoretic mobility falls, reaches a minimum, and then increases. A possible mechanism for the formation of an electric double layer on the surface of particles in concentrated solutions of electrolytes is proposed.

  15. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    PubMed

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. PMID:26783056

  16. Electrical Studies On Hexanoyl Chitosan-based Nanocomposite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Muhammad, F. H.; Subban, R. H. Y.; Wime, Tan

    2009-06-01

    Hexanoyl chitosan-based nanocomposite polymer electrolytes were prepared using solution casting technique. The effect of addition of nanosize titanium oxide, TiO2 as the filler on the electrical properties of the prepared electrolyte system was investigated by impedance spectroscopy. The maximum conductivity of 3.06×10-4 S cm-1 was achieved with addition of 6 wt%. TiO2 which is 1 order of magnitude higher than the filler-free electrolyte sample (σ = 1.83×10-5 S cm-1). The Rice and Roth model was proposed to explain the conductivity variation for the prepared electrolyte system. The ac conductivity of hexanoyl chitosan-based nanocomposite electrolytes was also analyzed.

  17. Polymer electrolyte membranes with exceptional conductivity anisotropy via holographic polymerization

    NASA Astrophysics Data System (ADS)

    Smith, Derrick M.; Cheng, Shan; Wang, Wenda; Bunning, Timothy J.; Li, Christopher Y.

    2014-12-01

    Polymer electrolyte membranes using an ionic liquid as electrolyte with an ionic conductivity anisotropy of ∼5000 have been fabricated using a holographic polymerization nanomanufacturing technique. The resultant structure is referred to as holographic polymer electrolyte membranes (hPEMs), which are comprised of alternating nanolayers of a room temperature ionic liquid and crosslinked polymer resin, confirmed under TEM imaging. These hPEMs also show no reduction in room temperature conductivity with respect to the loaded ionic liquid when characterized in the plane of ionic liquid nanolayers. At elevated temperatures with the optimal electrolyte volume loading, calculation shows that the free ion concentration is higher than the pure ionic liquid, suggesting that the photopolymer dual-functionalizes as a loadbearing scaffold and an ion-complexing agent, allowing for more ions to participate in charge transfer. These hPEMs provide a promising solution to decoupling mechanical enhancement and ion transport in polymer electrolyte membranes.

  18. Coalescence of bubbles in aqueous solutions of electrolytes

    SciTech Connect

    Weissenborn, P.K.; Pugh, R.J.

    1995-12-31

    Salt water has been known to float coal (without use of collector or frother) for over 50 years. The contrasting behavior of electrolytes in inhibiting coalescence of bubbles was explained by the positive and negative distribution of anions and cations at the gas/water interface. Further, the efficiency of electrolytes which do inhibit coalescence of gas bubbles can be linked to a counter ion hydration mechanism and the effect of electrolyte concentration on gas solubility. A correlation was found between the transition concentration of electrolyte needed to prevent the coalescence of bubbles and the reduction in gas solubility. Hence, the inhibition of bubble coalescence in electrolyte solutions appears to be linked with the utilization of water molecules in the hydration of cations and a consequent reduction of water available for gas solubility.

  19. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  20. Effect of Electrolyte Composition on Characteristics of Plasma Electrolysis Nitrocarburizing

    NASA Astrophysics Data System (ADS)

    Tavakoli, H.; Mousavi Khoie, S. M.; Marashi, S. P. H.; Bolhasani, O.

    2013-08-01

    In this article, the effect of electrolyte composition on the characteristics of generated layer by plasma electrolytic nitrocarburizing process is studied. The characterization of the layer was carried out by means of SEM, x-ray diffraction, and EIS techniques. The relationship between workpiece temperature and the chemical composition of electrolyte was determined during the process. Three distinct regions in the temperature-voltage curves were observed. The effect of electrolyte's composition on the electrical parameters such as critical voltage, voltage of plasma formation, current density, and electrolyte conductivity was investigated. XRD studies showed that in addition to nitride phases, Fe3O4 phase also is generated. Moreover, EIS studies indicated that the corrosion resistance of the samples processed with higher water contents is less than the samples processed with lower water contents.