Science.gov

Sample records for electromagnetic calorimeter performances

  1. The electromagnetic performance of the RD52 fiber calorimeter

    NASA Astrophysics Data System (ADS)

    Akchurin, N.; Bedeschi, F.; Cardini, A.; Cascella, M.; Cei, F.; De Pedis, D.; Ferrari, R.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; Genova, P.; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.; Meoni, E.; Moggi, A.; Pinci, D.; Policicchio, A.; Saraiva, J. G.; Scuri, F.; Sill, A.; Venturelli, T.; Wigmans, R.

    2014-01-01

    The RD52 calorimeter is an instrument intended to detect both electromagnetic and hadronic showers, as well as muons, using the dual-readout principle. Scintillation and Cherenkov light provide the two signals which, in combination, allow for superior hadronic performance. In this paper, we report on the electromagnetic performance of this instrument, and compare this performance with that of other calorimeters that were constructed with similar goals in mind.

  2. Current status and performance of the BESIII electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fang, Jian; Wang, Zhigang

    2012-12-01

    The design and construction of the BESIII electromagnetic calorimeter is introduced briefly. Radiation dose of CsI(Tl) crystals is monitored and history graph of integral dose of crystals is showed. LED-fiber system is used for monitoring the EMC light output, and large decrease of light output of several crystals is discussed. BESIII electromagnetic calorimeter works very well and its performance reach the design value.

  3. Performance of the GEM electromagnetic calorimeter

    SciTech Connect

    Hong Ma

    1993-06-25

    The GEM EM calorimeter is optimized for the best energy, position, angular resolution and jet rejection. The detailed simulation results are presented. In the barrel with LKr, an energy resolution of about 6%/{radical}{direct_sum}0.4%, pointing resolution of 40mrad/{radical}E + 0.5mrad, and jet rejection of a factor of 5 are expected.

  4. Performance of the PrimEx Electromagnetic Calorimeter

    SciTech Connect

    M. Kubantsev; I. Larin; A. Gasparian

    2006-06-05

    We report the design and performance of the hybrid electromagnetic calorimeter consisting of 1152 PbWO{sub 4} crystals and 576 lead glass blocks for the PrimEx experiment at the Jefferson Laboratory. The detector was built for high precision measurement of the neutral pion lifetime via the Primakoff effect. Calorimeter installation and commissioning was completed with the first physics run in fall of 2004. We present the energy and position resolution of the calorimeter. Obtained {pi}{sup 0} mass resolution of 1.3 MeV/c{sup 2} and its production angle resolution of 0.34 mrad demonstrate the ability of the experiment to extract the {pi}{sup 0} lifetime on one percent level.

  5. The CMS Electromagnetic Calorimeter

    SciTech Connect

    Paramatti, Riccardo

    2005-10-12

    The electromagnetic calorimeter of the CMS experiment at LHC will consist of about 76000 Lead Tungstate crystals. Its main purpose is the very precise energy measurement of electrons and photons produced at 14 TeV centre-of-mass energy. A review of its performances and its construction status is given. Then the calibration strategy is described in details.

  6. The ALICE Electromagnetic Calorimeter

    SciTech Connect

    Awes, Terry C; ALICE, Collaboration

    2010-05-01

    ALICE is the general purpose experiment at the LHC dedicated to the study of heavy-ion collisions. The electromagnetic calorimeter (EMCal) is a late addition to the ALICE suite of detectors with first modules installed in ALICE this year. The EMCal is designed to trigger on high energy gamma-rays and jets, and to enhance the capabilities of ALICE for these measurements. The EMCal is a Pb/scintillator sampling shish-kebab type calorimeter. The EMCal construction, readout, and performance in beam tests at the CERN SPS and PS are described.

  7. The ALICE Electromagnetic Calorimeter

    SciTech Connect

    Awes, Terry C; ALICE, Collaboration

    2010-01-01

    ALICE is the general purpose experiment at the LHC dedicated to the study of heavy-ion collisions. The electromagnetic calorimeter (EMCal) is a late addition to the ALICE suite of detectors with first modules installed in ALICE this year. The EMCal is designed to trigger on high energy gamma-rays and jets, and to enhance the capabilities of ALICE for these measurements. The EMCal is a Pb/scintillator sampling shish-kebab type calorimeter. The EMCal construction, readout, and performance in beam tests at the CERN SPS and PS are described.

  8. CMS electromagnetic calorimeter readout

    SciTech Connect

    Denes, P.; Wixted, R.

    1997-12-31

    The CMS Electromagnetic Calorimeter will consist of 109,008 crystals of Lead Tungstate (PbWO{sub 4}) arranged in a barrel (92880 crystals) and 2 endcaps (8064 crystals each). The crystals will be 25 radiation lengths long and cut in tapered shapes to make a hermetic calorimeter. The scintillation light from the crystals is captured by a photodetector, amplified and digitized. The properties of PbWO4, which is a new crystal still very much under development.

  9. The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab

    SciTech Connect

    Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

    2012-12-01

    The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm × 10 cm × 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/√E, and pion/electron (π/e) separation of about 100:1 has been achieved in energy range 1–5 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a “fly's eye” configuration of 14 columns and 16 rows. The active area of 120 × 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting

  10. The ALICE Electromagnetic Calorimeter

    SciTech Connect

    Gadrat, S.

    2010-06-01

    ALICE (A Large Ion Collider Experiment) is the only LHC experiment at CERN fully dedicated to the study of the quark and gluon plasma. Driven by the RHIC results on jet quenching, the ALICE collaboration has proposed to extend the capabilities of the ALICE detector for the study of high momentum photons and jets by adding a large acceptance calorimeter. This EMCal (ElectroMagnetic Calorimeter) is designed to provide an unbiased fast high-p{sub T} trigger and to measure the neutral energy of jets and photons up to 200 GeV. Four over ten supermodules of the calorimeter have been installed and commissioned at CERN in 2009 which represents 40% of the full acceptance.

  11. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    SciTech Connect

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G. C.; Dyshkant, A.; Lima, J. G.R.; Zutshi, V.; Hostachy, J. -Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P. D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J. -C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M. -C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J. -C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of this type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  12. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    DOE PAGESBeta

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; et al

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of thismore » type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.« less

  13. The CLAS Forward Electromagnetic Calorimeter

    SciTech Connect

    M. Amarian; Geram Asryan; Kevin Beard; Will Brooks; Volker Burkert; Tom Carstens; Alan Coleman; Raphael Demirchyan; Yuri Efremenko; Hovanes Egiyan; Kim Egiyan; Herb Funsten; Vladimir Gavrilov; Kevin L. Giovanetti; R.M. Marshall; Berhard Mecking; R.C. Minehart; H. Mkrtchan; Mavrik Ohandjanyan; Youri Sharabian; L.C. Smith; Stepan Stepanyan; W.A. Stephens; T.Y. Tung; Carl Zorn

    2001-05-01

    The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab utilizes six iron-free superconducting coils to provide an approximately toroidal magnetic field. The six sectors are instrumented individually to form six independent spectrometers. The forward region (8deg < (theta) < 45deg) of each sector is equipped with a lead-scintillator electromagnetic sampling calorimeter (EC), 16 radiation lengths thick, using a novel triangular geometry with stereo readout. With its good energy and position resolution, the EC is used to provide the primary electron trigger for CLAS. It is also used to reject pions, reconstruct pi-0 and eta decays and detect neutrons, This paper treats the design, construction and performance of the calorimeter.

  14. High performance interactive graphics for shower reconstruction in HPC, the DELPHI barrel electromagnetic calorimeter

    SciTech Connect

    Stanescu, C. )

    1990-08-01

    Complex software for shower reconstruction in DELPHI barrel electromagnetic calorimeter which deals, for each event, with great amounts of information, due to the high spatial resolution of this detector, needs powerful verification tools. An interactive graphics program, running on high performance graphics display system Whizzard 7555 from Megatek, was developed to display the logical steps in showers and their axes reconstruction. The program allows both operations on the image in real-time (rotation, translation and zoom) and the use of non-geometrical criteria to modify it (as the use of energy) thresholds for the representation of the elements that compound the showers (or of the associated lego plots). For this purpose graphics objects associated to user parameters were defined. Instancing and modelling features of the native graphics library were extensively used.

  15. The PHENIX electromagnetic calorimeter

    SciTech Connect

    Kistenev, E.; White, S.; Belikov, S.; Kochetkov, V.

    1993-12-31

    The main features of the Phenix EM calorimeter are presented. This a Pb/scintillator calorimeter with ``shish-kebab`` fiber readout, designed for low energy electron and photon measurements. Prototype calorimeters have been built with longitudinal segmentation, {approximately} 100 psec time of flight resolution and 8% energy resolution at 1GeV/c. The laser based monitoring system which has been incorporated into large scale prototypes is described. The dependence of light yield on fiber choice and scintillator surface preparation has been studied.

  16. Electromagnetic Calorimeter for Hades Experiment

    NASA Astrophysics Data System (ADS)

    Kugler, A.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Lapidus, K.; Lisowski, E.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Svoboda, O.; Tlusty, P.; Traxler, M.

    2014-06-01

    Electromagnetic calorimeter (ECAL) is being developed to complement the dilepton spectrometer HADES currently operating at GSI Darmstadt, Germany. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeV on the beam of future accelerator SIS100@FAIR. The calorimeter will also improve the electron-hadron separation and will as well be used for the detection of photons from strange resonances in elementary and heavy ion reactions. Calorimeter modules constructed of lead glass Cherenkov counter, photomultiplier, HV divider and optical fiber are described in the detail. Two prototypes of novel front-end electronics based on TRB3 are presented. A dedicated LED based system being developed to monitor the stability of the calorimeter during beamtime is introduced as well.

  17. Electromagnetic Calorimeter for HADES Experiment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, P.; Chlad, L.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Korcyl, G.; Kugler, A.; Lapidus, K.; Linev, S.; Lisowski, E.; Neiser, A.; Ott, O.; Otte, O.; Pethukov, O.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Svoboda, O.; Thomas, A.; Tlusty, P.; Traxler, M.

    2014-11-01

    Electromagnetic calorimeter (ECAL) is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.

  18. Performance of the prototype module of the GlueX electromagnetic barrel calorimeter

    SciTech Connect

    Leverington, Blake; Lolos, George; Papandreou, Zisis; Hakobyan, Rafael; Huber, Garth; Janzen, Kathryn; Semenov, Andrei; Scott, Eric; Shepherd, Matthew; Carman, Daniel; Lawrence, David; Smith, Elton; Taylor, Simon; Wolin, Elliott; Klein, Franz; Santoro, Joseph; Sober, Daniel; Kourkoumeli, Christina

    2008-11-01

    A photon beam test of the 4 m long prototype lead/scintillating-fibre module for the GlueX electromagnetic barrel calorimeter was carried out in Hall B at the Thomas Jefferson National Accelerator Facility with the objective of measuring the energy and timing resolutions of the module as well as the number of photoelectrons generated. Data were collected over an energy range of 150 - â 650 MeV at multiple positions and angles along the module. Details of the analysis at the centre of and perpendicular to the module are shown herein; the results are View the MathML source, View the MathML source ps, and 660 photoelectrons for 1 GeV at each end of the module.

  19. The ATLAS Liquid Argon Electromagnetic Calorimeter

    SciTech Connect

    Carminati, L.

    2005-10-12

    The construction of the ATLAS Liquid Argon Electromagnetic calorimeter has been completed and commissioning is in progress. After a brief description of the detector layout, readout electronics and calibration, a review of the present status of the integration and the detector qualification is reported. Finally a selection of performance results obtained during several test beams will be presented with particular attention to linearity, uniformity, position reconstruction and {gamma}/{pi}0 separation.

  20. ALICE electromagnetic calorimeter prototype test

    SciTech Connect

    Awes, Terry; /Oak Ridge

    2005-09-01

    This Memorandum of Understanding between the Test Beam collaborators and Fermilab is for the use of beam time at Fermilab during the Fall, 2005 Meson Test Beam Run. The experimenters plan to measure the energy, position, and time resolution of prototype modules of a large electromagnetic calorimeter proposed to be installed in the ALICE experiment at the LHC. The ALICE experiment is one of the three large approved LHC experiments, with ALICE placing special emphasis on the LHC heavy-ion program. The large electromagnetic calorimeter (EMCal) is a US initiative that is endorsed by the ALICE collaboration and is currently in the early stages of review by the Nuclear Physics Division of the DOE. The installation in the test beam at FNAL and test beam measurements will be carried out by the US members of the ALICE collaboration (ALICE-USA). The overall design of the ALICE EMCal is heavily influenced by its location within the ALICE L3 magnet. The EMCal is to be located inside the large room temperature magnet within a cylindrical integration volume approximately l12cm deep, by 5.6m in length, sandwiched between the ALICE TPC space frame and the L3 magnet coils. The chosen technology is a layered Pb-scintillator sampling calorimeter with a longitudinal pitch of 1.6mm Pb and 1.6mm scintillator. The full detector spans {eta} = -0.7 to {eta} = 0.7 with an azimuthal acceptance of {Delta}{phi} = 120{sup o}. The EMCal readout is of a ''Shish-Kabob'' type similar to the PHENIX Pb-scintillator sampling calorimeter in which the scintillation light is collected via wavelength shifting fibers running through the Pb-scintillator tiles perpendicular to the front surface. The detector is segmented into {approx}14000 towers. The basic structural units of the calorimeter are supermodules, each subtending approximately {approx}20{sup o} in {Delta}{phi} and 0.7 units in {Delta}{eta}. Supermodules are assembled from individual modules. The modules are further segmented into 2 x 2

  1. The BaBar electromagnetic calorimeter

    SciTech Connect

    Stahl, A.

    1997-07-01

    The progress on the design and construction of the BaBar electromagnetic calorimeter including its mechanical structure, the readout system, the mechanical and optical properties of the crystals, and the schedule for the final assembly and testing is summarized.

  2. Study of requirements and performances of the electromagnetic calorimeter for the Mu2e experiment at Fermilab

    SciTech Connect

    Soleti, S.

    2015-06-15

    In this thesis we discuss the simulation and tests carried out for the optimization and design of the electromagnetic calorimeter for the Mu2e (Muon to electron conversion) experiment, which is a proposed experiment part of the Muon Campus hosted at Fermi National Accelerator Laboratory (FNAL) in Batavia, United States.

  3. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    SciTech Connect

    T. S. Nigmanov; H. R. Gustafson; M. J. Longo; D. Rajaram

    2006-10-01

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons produced in π, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The purpose of the calorimeters is to measure the production of forward-going photons and neutrons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. We collected data with a variety of targets with beam energies from 5 GeV/c up to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons and protons is discussed. The performance of the calorimeters was tested on a neutron sample.

  4. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    SciTech Connect

    Nigmanov, T. S.; Gustafson, H. R.; Longo, M. J.; Rajaram, D.

    2006-10-27

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons produced in {pi}, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The purpose of the calorimeters is to measure the production of forward-going photons and neutrons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. We collected data with a variety of targets with beam energies from 5 GeV/c up to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons and protons is discussed. The performance of the calorimeters was tested on a neutron sample.

  5. Electromagnetic and hadron calorimeters in the MIPP experiment

    SciTech Connect

    Nigmanov, T.S.; Gustafson, H.R.; Longo, M.J.; Park, H.K.; Rajaram, D.; Dukes, C.; Lu, L.C.; Materniak, C.; Nelson, K.; Norman, A.; Meyer, H.; /Fermilab /Harvard U. /Indiana U. /Iowa U. /Purdue U.

    2008-10-01

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons in {pi}, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The function of the calorimeters is to measure the production of forward-going neutrons and photons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers. It was followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. The data presented were collected with a variety of targets and beam momenta from 5 to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons, and protons is discussed. The resolution for electrons was found to be 0.27/{radical}E, and for hadrons the resolution was 0.554/{radical}E with a constant term of 2.6%. The performance of the calorimeters was tested on a neutron sample.

  6. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    SciTech Connect

    T. S. Nigmanov; H. R. Gustafson; M. J. Longo; H. K. Park; D. Rajaram; and 13 others

    2008-10-15

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons in π, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The function of the calorimeters is to measure the production of forward-going neutrons and photons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers. It was followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. The data presented were collected with a variety of targets and beam momenta from 5 GeV/c to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons, and protons is discussed. The resolution for electrons was found to be 0.27/sqrt(E), and for hadrons the resolution was 0.554/sqrt(E) with a constant term of 2.6%. The performance of the calorimeters was tested on a neutron sample.

  7. Trigger circuits for the PHENIX electromagnetic calorimeter

    SciTech Connect

    Frank, S.S.; Britton, C.L. Jr.; Winterberg, A.L.; Young, G.R.

    1997-11-01

    Monolithic and discrete circuits have been developed to provide trigger signals for the PHENIX electromagnetic calorimeter detector. These trigger circuits are deadtimeless and create overlapping 4 by 4 energy sums, a cosmic muon trigger, and a 144 channel energy sum. The front end electronics of the PHENIX system sample the energy and timing channels at each bunch crossing (BC) but it is not known immediately if this data is of interest. The information from the trigger circuits is used to determine if the data collected is of interest and should be digitized and stored or discarded. This paper presents details of the design, issues affecting circuit performance, characterization of prototypes fabricated in 1.2 {micro}m Orbit CMOS, and integration of the circuits into the EMCal electronics system.

  8. The Electromagnetic Calorimeter of the future PANDA Detector

    SciTech Connect

    Novotny, Rainer

    2006-10-27

    Experiments with a cooled antiproton beam at the future accelerator facility FAIR at GSI, Darmstadt, will be performed with the 4{pi} detector PANDA comprising a high resolution, compact and fast homogeneous electromagnetic calorimeter to detect photons between 10MeV and 10GeV energy inside a superconducting solenoid (2T). The target calorimeter comprises more than 20,000 PbWO4 crystals of significantly enhanced quality read-out with large area avalanche photodiodes at an operating temperature of -25 degree sign C. The paper describes the quality of PWO-II and illustrates the future performance based on response measurements with high-energy photons.

  9. The lead-glass electromagnetic calorimeter for the SELEX experiment

    SciTech Connect

    M. Y. Balatz et al.

    2004-07-19

    A large-acceptance, highly segmented electromagnetic lead glass calorimeter for Experiment E781 (SELEX) at Fermi National Acceleration Laboratory was designed and built. This detector has been used to reconstruct photons and electrons with energies ranging from few GeV up to 500 GeV in the collisions of the 650 GeV {Sigma}{sup -} hyperons and {pi}{sup -} mesons with the target nucleons. The design, calibration and performance of the calorimeter are described. Energy resolution and position resolution are assessed using both calibration electron beams and {pi}{sup 0} mesons reconstructed in 650 GeV hadron-hadron interactions. The performance of the calorimeter in selecting resonant states that involve photons is demonstrated.

  10. Some studies of data using the STAR endcap electromagnetic calorimeter.

    SciTech Connect

    Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics

    2009-02-24

    A series of studies was performed using data from the STAR detector at the Brookhaven National Laboratory's RHIC accelerator from collisions of protons at {radical}s = 200 GeV. Many of these involved the shower maximum detector (SMD) of the STAR endcap electromagnetic calorimeter (EEMC). Detailed studies of photon candidates from {eta} {yields} {gamma}{gamma} decay, and of {gamma} + Jet inclusive data and simulated events were performed.

  11. Test beam performance of the CDF plug upgrade hadron calorimeter

    SciTech Connect

    de Barbaro, P.; CDF Plug Upgrade Group

    1998-01-13

    We report on the performance of the CDF End Plug Hadron Calorimeter in a test beam. The sampling calorimeter is constructed using 2 inch iron absorber plates and scintillator planes with wavelength shifting fibers for readout. The linearity and energy resolution of the calorimeter response to pions, and the transverse uniformity of the response to muons and pions are presented. The parameter e/h, representing the ratio of the electromagnetic to hadronic response, is extracted from the data.

  12. The GlueX Barrel Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Papandreou, Zisis; Lolos, George; Semenov, Andrei; GlueX Collaboration

    2011-04-01

    The goal of the GLUEX experiment at Jefferson Lab is to search for exotic hybrid mesons as evidence of gluonic excitations, in an effort to understand confinement in QCD. A key subsystem of the GLUEX detector is the electromagnetic barrel calorimeter (BCAL) located inside a 2-Tesla superconducting solenoid. BCAL is a ``spaghetti calorimeter,'' consisting of layers of corrugated lead sheets, interleaved with planes of 1-mm-diameter, double-clad, Kuraray SCSF-78MJ scintillating fibres, bonded in the lead grooves using optical epoxy. The detector will consist of 48 modules and will be readout using nearly 4,000 large-area (1.26 cm2 each) silicon photomultiplier arrays. BCAL construction is well under way at the University of Regina and test results will be shown. Supported by NSERC grant SAPJ-326516, DOE grant DE-FG02-0SER41374 and Jefferson Science Associates, LLC. under U.S. DOE Contract No. DE-AC05-06OR23177.

  13. Tungsten Scintillating Fibers Electromagnetic Calorimeters for sPHENIX upgrade

    NASA Astrophysics Data System (ADS)

    Li, Siyang; Loggins, Vera; Phipps, Michael; Sickles, Anne

    2015-10-01

    sPHENIX, a planned new detector at RHIC, features electromagnetic and hadronic calorimetry that covers | η| < 1.1 and φ = 2 π. The large acceptance calorimeter design is optimized for the study of jets in heavy ion collisions. The design includes a tungsten fiber EmCal that is made out of a tower array of plastic scintillating fiber embedded inside a mixture of tungsten powder and epoxy. For this calorimeter, silicon photomultipliers will be attached at the end of the module to convert scintillated optical photons into electrical signals. The sPHENIX group at Illinois is currently making samples of these modules to study the production process and achievable density. In addition, we have set up a silicon photomultiplier read out test system which will be used to evaluate the module performance. sPHENIX collaboration and Brookhaven National Laboratory.

  14. A Study on Thermal Design of the BGO Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Chen, Dengyi; Hu, Yiming; Wu, Jian; Feng, Changqing; Zhang, Yunlong; Chang, Jin

    The BGO Electromagnetic Calorimeter (BGO ECAL) is one of the most important payload of the Chinese DArk Matter Particle Explorer (DAMPE), which can precisely measure the incident energy of cosmic ray. However, thermal control of the BGO ECAL plays a key role on its running in the space. In this paper, the thermal design of the BGO ECAL and the thermal FEM modal created by hyper-mesh & NASTRAN FEM software will be introduced. Then the temperature distribution of the BGO calorimeter with the given on orbit conditions is performed. In the end, we depicts the thermal test which has been carried out in February. By the comparisons between the experiment results and the analyses results, the methodology in this paper was proved to be effective.

  15. Determination of the total absorption peak in an electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Cheng, Jia-Hua; Wang, Zhe; Lebanowski, Logan; Lin, Guey-Lin; Chen, Shaomin

    2016-08-01

    A physically motivated function was developed to accurately determine the total absorption peak in an electromagnetic calorimeter and to overcome biases present in many commonly used methods. The function is the convolution of a detector resolution function with the sum of a delta function, which represents the complete absorption of energy, and a tail function, which describes the partial absorption of energy and depends on the detector materials and structures. Its performance was tested with the simulation of three typical cases. The accuracy of the extracted peak value, resolution, and peak area was improved by an order of magnitude on average, relative to the Crystal Ball function.

  16. Performance of the HPC calorimeter in DELPHI

    SciTech Connect

    Chan, A.; Crawley, H.B.; Edsall, D.M. |

    1995-08-01

    The performance of the High-density Projection Chamber (HPC), the barrel electromagnetic calorimeter of the DELPHI experiment, is described. The detector adopts the time projection technique in order to obtain exceptionally fine spatial granularity in the three coordinates ({approximately}2{times}20 mrad{sup 2} in {theta}{times}{phi} with nine samplings along the shower axes), using a limited number of readout channels (18,432). Among the various topics concerning the HPC construction and operation, major emphasis is given to the aspects related to the calibration in energy of the calorimeter, based mainly on the analysis of the detector response to {sup 83m}Kr decays, and to the treatment of aging in the readout proportional counters.

  17. Simulation of the CLAS12 Forward Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Musalo, C. J.; Gilfoyle, G. P.; Carbonneau, J.

    2010-11-01

    The primary mission of Jefferson Lab (JLab) is to reveal the quark and gluon structure of nucleons and nuclei and to deepen our understanding of matter and quark confinement. At JLab there is a need for high-performance computing for data analysis and simulations. The precision of many future experiments will be limited by systematic uncertainties and not statistical ones; making accurate simulations vital. A physics-based simulation of a new detector (CLAS12) is currently being developed called gemc. This new program uses the package Geant4 to calculate the interactions of particles with matter in the components of CLAS12. We have added the electromagnetic calorimeter (EC) detector to the gemc simulation. The EC is a sampling electromagnetic calorimeter made up of alternating layers of lead and plastic scintillator used to detect electrons, photons, and neutrons. The mathematical model of the EC geometry was streamlined to make the code more robust. This geometry is stored in a mysql database on a server at JLab and it was modified using Perl scripts. The new geometry was tested by sending straight tracks (no magnetic field) through the edges of specific layers using the geantino, a Geant4 virtual particle that does not interact with materials. Work supported by US Department of Energy contract DE-FG02-96ER40980.

  18. The AMS-02 lead-scintillating fibres Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Basara, L.; Bigongiari, G.; Bosi, F.; Brun, P.; Cadoux, F.; Cervelli, F.; Chambert, V.; Chen, G.; Chen, G. M.; Chen, H. S.; Coignet, G.; Cougoulat, G.; Di Falco, S.; Dubois, J. M.; Elles, S.; Falchini, E.; Fiasson, A.; Fougeron, D.; Fouque, N.; Galeotti, S.; Gallucci, G.; Gherarducci, F.; Girard, L.; Giuseppe, F.; Goy, C.; Hermel, R.; Incagli, M.; Jacquemier, J.; Journet, L.; Kossakowski, R.; Lepareur, V.; Li, Z. H.; Lieunard, B.; Lomtadze, T.; Lu, Y. S.; Maestro, P.; Magazzù, C.; Maire, M.; Orsini, A.; Paniccia, M.; Pedreschi, E.; Peltier, F.; Piendibene, M.; Pilo, F.; Pochon, J.; Rambure, T.; Rosier-Lees, S.; Spinella, F.; Tang, X. W.; Tassan-Viol, J.; Tazzioli, A.; Vannini, C.; Vialle, J. P.; Zhuang, H. L.

    2013-06-01

    The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a fine grained lead-scintillating fibres sampling calorimeter that allows for a precise three-dimensional imaging of the longitudinal and lateral shower development. It provides a high (≥106) electron/hadron discrimination with the other AMS-02 detectors [1] and good energy resolution. The calorimeter also provides a standalone photon trigger capability to AMS-02. The mechanical assembly was realized to ensure minimum weight, still supporting the intrinsically heavy calorimeter during launch. ECAL light collection system and electronics are designed to measure electromagnetic particles over a wide energy range, from GeV up to TeV. A full-scale flight-like model was tested using electrons and proton beams with energies ranging from 6 to 250 GeV.

  19. The BaBar cesium iodide electromagnetic calorimeter

    SciTech Connect

    Wuest, C.R.

    1994-12-01

    The BABAR Cesium Iodide Electromagnetic Calorimeter is currently in the technical design stage. The calorimeter consists of approximately 10,000 individual thallium-doped cesium iodide crystals arranged in a near-hermetic barrel and endcap structure. Taking previous cesium iodide calorimeters as a benchmark, we hope to build a system with roughly two times better energy resolution. This will be achieved by a combination of high quality crystal growing, precision mechanical processing of crystals and support structure, highly efficient light collection and low noise readout electronics. The calorimeter described here represents the current state of the design and we are undertaking an active period of optimization before this design is finalized. We discuss here the physics motivation, the current design and options for optimization.

  20. GEANT SIMULATIONS OF PRESHOWER CALORIMETER FOR CLAS12 UPGRADE OF THE FORWARD ELECTROMAGNETIC CALORIMETER

    SciTech Connect

    Whitlow, K.; Stepanyan, S.

    2007-01-01

    Hall B at the Thomas Jefferson National Accelerator Facility uses the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS) to study the structure of the nucleon. An upgrade from a 6 GeV beam to a 12GeV beam is currently planned. With the beam energy upgrade, more high-energy pions will be created from the interaction of the beam and the target. Above 6GeV, the angle between the two-decay photons of high-energy pions becomes too small for the current electromagnetic calorimeter (EC) of CLAS to differentiate between two photon clusters and single photon events. Thus, a preshower calorimeter will be added in front of the EC to enable fi ner granularity and ensure better cluster separation for all CLAS experiments at higher energies. In order to optimize cost without compromising the calorimeter’s performance, three versions of the preshower, varying in number of scintillator and lead layers, were compared by their resolution and effi ciency. Using GSIM, a GEANT detector simulation program for CLAS, the passage of neutral pions and single photons through CLAS and the new preshower calorimeter (CLAS12 EC) was studied. The resolution of the CLAS12 EC was calculated from the Gaussian fi t of the sampling fraction, the energy CLAS12 EC detected over the Monte Carlo simulated energy. The single photon detection effi ciency was determined from the energy and position of the photon hits. The fractional energy resolution measured was ΔE/E = 0.0972 in the fi ve-module version, 0.111 in the four-module version, and 0.149 in the three-module version. Both the fi ve- and four-module versions had 99% single photon detection effi ciency above 0.5GeV while the 3 module version had 99% effi ciency above 1.5GeV. Based on these results, the suggested preshower confi guration is the four-module version containing twelve layers of scintillator and fi fteen layers of lead. This version provides a reasonable balance of resolution, effi ciency, and

  1. The electromagnetic calorimeter in JLab Real Compton Scattering Experiment

    SciTech Connect

    Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski

    2007-04-16

    A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.

  2. Fast Electromagnetic Calorimeters for the New Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Hertzog, David

    2012-10-01

    The Intensity Frontier era brings a host of challenges for detector systems that must both accumulate data at very high rates while also maintaining an unusually high level of performance stability to suppress systematic uncertainties. The new muon g-2 experiment at Fermilab is typical of a group of next-generation measurements that also includes muon-to-electron conversion and rare kaon decay experiments. A common theme is detectors that must endure very high rates embedded in strong magnetic fields. I will focus on our design of the g-2 electromagnetic calorimeters, which must be compact, very fast, and be placed inside the highly uniform muon storage ring magnetic field. No magnetic materials can be used and stringent constraints exist on local current-generating electronics. We examined home-built W/SciFi detectors, PbF2 crystals and a custom undoped PbWO4 crystal using the Fermilab test beam facility. Very fast PMTs and on-board, large-area silicon photomultipliers (SiPMs) were used for readout options. The leading design is based on PbF2, which produces very short pure Cherenkov light pulses that must be optimally coupled to SiPMs directly placed on the downstream surface. Custom electronics for the candidate SiPM arrays has been designed to preserve the intrinsic fast pulse signal. I will report on our test beam and lab results and our iterations with SiPM devices and electronics.

  3. Evaluating vacuum phototriodes designed for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Makónyi, K.; Marcks von Würtemberg, K.; Tegnér, P.-E.; Hansen, K.; Isaksson, L.; Lundin, M.; Schröder, B.; Balkeståhl, L.; Fransson, K.; Johansson, T.; Rosenbaum, C.; Wolke, M.; Erni, W.; Keshelashvili, I.; Krushe, B.

    2014-11-01

    In this work properties of a vacuum phototriode (VPT) and preamplifier unit designed for the electromagnetic calorimeter of the PANDA experiment being built at FAIR are investigated. With the use of lead tungstate and lanthanium bromide scintillators the VPT properties are studied at low photon energies, from tens of keV in the lanthanium bromide measurements and between 10 MeV and 60 MeV in the lead tungstate measurements. At these energies the noise of the VPT unit can be expected to influence its performance significantly. It is shown that the noise contribution to the measured energy resolution, under optimal conditions, is consistent with a fluctuation of (one standard deviation) approximately 200 electrons at the VPT anode. For a lead tungstate crystal this is equivalent to a noise of 1.2 MeV. For lanthanium bromide this makes it possible to use VPTs for gamma ray spectroscopy above a few hundreds of keV without noticeable effects on the energy resolution compared to measurements with a standard photomultiplier.

  4. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Cole, Stephe

    2013-04-01

    The Tile Calorimeter is the central section (0 < |η| < 1.7) of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons decaying hadronically, and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired during 2011 and 2012. Results on the calorimeter performance will be presented, including the absolute energy scale, time resolution, and associated stabilities. These results demonstrate that the Tile Calorimeter is performing well within the design requirements and is giving essential input to the physics results.

  5. Verification of Electromagnetic Calorimeter Concept for the HADES spectrometer

    NASA Astrophysics Data System (ADS)

    Svoboda, O.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Kugler, A.; Lapidus, K.; Linev, S.; Lisowski, E.; Ott, P.; Otte, P.; Petukhov; Pietraszko, J.; Reshetin, A.; Rodríguez-Ramos, P.; Rost, A.; Salabura, P.; Skott, P.; Sobolev, Y. G.; Steffen, O.; Thomas, A.; Tlustý, P.; Traxler, M.

    2015-04-01

    The HADES spectrometer currently operating on the beam of SIS18 accelerator in GSI will be moved to a new position in the CBM cave of the future FAIR complex. Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeVon the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass modules read out by photomultipliers and a novel front-end electronics. Secondary gamma beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was used to verify selected technical solutions. Relative energy resolution was measured using modules with three different types of photomultipliers. Two types of developed front-end electronics as well as energy leakage between neighbouring modules under parallel and declined gamma beams were studied in detail.

  6. Light nuclear charge measurement with Alpha Magnetic Spectrometer Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Basara, Laurent; Choutko, Vitaly; Li, Qiang

    2016-06-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy particle detector installed and operating on board of the International Space Station (ISS) since May 2011. So far more than 70 billion cosmic ray events have been recorded by AMS. In the present paper the Electromagnetic Calorimeter (ECAL) detector of AMS is used to measure cosmic ray nuclear charge magnitudes up to Z=10. The obtained charge magnitude resolution is about 0.1 and 0.3 charge unit for Helium and Carbon, respectively. These measurements are important for an accurate determination of the interaction probabilities of various nuclei with the AMS materials. The ECAL charge calibration and measurement procedures are presented.

  7. Radiation damage studies for the SDC electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fazely, A. R.; Gunasingha, R.; Imlay, R. L.; Khosravi, E. S.; Lim, Jit-Ning; Lyndon, C.; McMills, G.; McNeil, R. R.; Metcalf, W. J.; Courtney, J. C.; Tashakkori, R.; Vegara, B. J.

    1993-01-01

    We report the results from a year long study aimed at radiation resistance and optical performance of scintillator tile with green wave shifter fiber readout. A careful investigation of several rad-hard plastic scintillators from Bicron and Kuraray, studies indicate that for a specific rad-hard Bicron scintillator, it is possible to build a tile/fiber EM calorimeter that can operate in the design luminosity of SSC. This calorimeter with excellent optical response would only have a light loss of about 5% after being exposed to 1 Mrad.

  8. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    SciTech Connect

    Beddo, M.E.; Bielick, E.; Dawson, J.W.; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  9. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Heelan, Louise; ATLAS Collaboration

    2015-06-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design requirements and it has given essential contribution to reconstructed objects and physics results. In addition, the data quality procedures used during the LHC data-taking are described and the outcome of the detector consolidation in the maintenance period is also presented.

  10. The backward end-cap for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Capozza, L.; Maas, F. E.; Noll, O.; Rodriguez Pineiro, D.; Valente, R.

    2015-02-01

    The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ⊕ 2%/√E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yield. With the exception of the very forward section, the light will be detected by large area avalanche photodiodes (APDs). The current pulses from the APDs will be integrated, amplified and shaped by ASIC chips which were developed for this purpose. The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). In this contribution, a status report on the development of the BWEC is presented.

  11. Determination of shower central position in laterally segmented lead-fluoride electromagnetic calorimeters

    NASA Astrophysics Data System (ADS)

    Mazouz, M.; Ghedira, L.; Voutier, E.

    2016-07-01

    The spatial resolution of laterally segmented electromagnetic calorimeters, built of lead fluoride material, is studied on the basis of Monte-Carlo simulations. Parametrization of the relative resolution on the shower position is proposed and optimized in terms of the energy of incoming particles and the elementary size of the calorimeter blocks. A new fit algorithm method is proposed that improves spatial resolution at high energies (> 5 GeV), and provides guidance for the design optimization of electromagnetic calorimeters.

  12. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    SciTech Connect

    Mkrtchyan, Hamlet; Carlini, Roger D.; Tadevosyan, Vardan H.; Arrington, John Robert; Asaturyan, Arshak Razmik; Christy, Michael Eric; Dutta, Dipangkar; Ent, Rolf; Fenker, Howard C.; Gaskell, David J.; Horn, Tanja; Jones, Mark K.; Keppel, Cynthia; Mack, David J.; Malace, Simona P.; Mkrtchyan, Arthur; Niculescu, Maria-Ioana; Seely, Charles Jason; Tvaskis, Vladas; Wood, Stephen A.; Zhamkochyan, Simon

    2013-08-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.

  13. Performance of CDF calorimeter simulation for Tevatron Run II

    SciTech Connect

    C. Currat

    2002-09-19

    The upgraded CDF II detector has collected first data during the initial operation of the Tevatron accelerator in Run II. The simulation of the CDF electromagnetic and hadronic central and upgraded plug (forward) calorimeter is based on the Gflash calorimeter parameterization package used within the GEANT based detector simulation of the Run II CDF detector. We present the results of tuning the central and plug calorimeter response to test beam data.

  14. Advanced Thin Ionization Calorimeter (ATIC) balloon experiment: expected performance

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk; Adams, James H.; Bashindzhagyan, G. L.; Dudnik, Alexey V.; Fazely, Ali R.; Garcia, L.; Grigorov, Naum L.; Guzik, T. Gregory; Inderhees, Susan E.; Isbert, Joachim; Jung, H. C.; Khein, L.; Kim, Sun-Kee; Kroeger, Richard A.; McDonald, Frank B.; Panasyuk, Mikhail I.; Park, Choong-Soo; Schmidt, Wolfgang K.; Dion-Schwartz, C.; Senchishin, V. G.; Wang, J. Z.; Wefel, John P.; Zatsepin, Viktor I.; Zinn, S. Y.

    1996-10-01

    An advanced thin ionization calorimeter (ATIC) will be used to investigate the charge composition and energy spectra of ultrahigh energy primary cosmic rays in a series of long- duration balloon flights. While obtaining new high priority scientific results, this balloon payload can also serve as a proof of concept for a BGO calorimeter-based instrument on the International Space Station. The ATIC technical details are presented in a companion paper at this conference. Here we discuss the expected performance of the instrument based on a GEANT code developed for simulating nuclear- electromagnetic cascades initiated by protons. For simulations of helium and heavy nuclei, a nucleus-nucleus interaction event generator LUCIAE was linked to the GEANT based program. Using these models, the design of the ATIC detector system has been optimized by simulating the instrument response to particles of different charges over the energy range to be covered. Results of these simulations are presented and discussed.

  15. Flash ADC readout of the GlueX forward electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Kornicer, Mihajlo

    2008-10-01

    The GlueX experiment at Jefferson Lab will use a 9 GeV high-rate (10^7 -10^8/s) photon beam, incident on a liquid hydrogen target, to search for hybrid-meson production in the mass range of 1.5-2.5 GeV/c^2. Abundant photon production from neutral meson decays is expected in the decay chains of hybrid mesons, which will result in several photons in the forward region. The forward electromagnetic calorimeter (FCAL) of the GlueX detector is designed to reconstruct final state photons using an array of 2800 lead-glass blocks. The FCAL will employ flash analog-to-digital converter (FADC) technology to measure both deposited energy and photon arrival time using pulses from FEU-84-3 photomultiplier tubes. A real-time sum of the total calorimeter energy will be used as an input to the trigger. Timing information from individual crystals will be used to suppress the expected high-level of electromagnetic background from the photon beam and forward-going charged particles. We present the performance characteristics of the calorimeter readout based on simulation and data taken with a prototype 12-bit, 250 MHz flash ADC.

  16. Cosmic ray calibration of the PbWO4 crystal electromagnetic calorimeter of CMS

    SciTech Connect

    Franzoni, G.

    2006-10-27

    The Compact Muon Solenoid experiment at the CERN LHC features a high precision PbWO4 crystal electromagnetic calorimeter. Each crystal is first precalibrated with a radioactive source and by means of optical measurements. After the assembly, each supermodule (1700 crystals) is exposed to comics rays.The comparison between intercalibration obtained from cosmic muons and electrons from test beam was performed at the end of 2004 for an initial set of 130 channels and showed that a precalibration with a statistical precision of 1 to 2% can be achieved within approximately one week. An important aspect of the comics muons analysis is that it is entirely based on the calorimeter data, without using any external tracking device.We will present the setup and results from the 2004 test as well as recent data recorded on many supermodule.

  17. Study of the response of ATLAS electromagnetic liquid argon calorimeters to muons

    SciTech Connect

    Schwemling, P.; Lanni, F.; Aharrouche, M.; Colas, J.; Di Ciaccio, L.; El Kacimi, M.; Gaumer, O.; Gouanere, M.; Goujdami, D.; Lafaye, R.; Laplace, S.; Le Maner, C.; Neukermans, L.; Perrodo, P.; Poggioli, L.; Prieur, D.; Przysiezniak, H.; Sauvage, G.; Wingerter-Seez, I.; Zitoun, R.; Lanni, F.; Ma, H.; Rajagopalan, S.; Rescia, S.; Takai, H.; Belymam, A.; Benchekroun, D.; Hakimi, M.; Hoummada, A.; Gao, Y.; Lu, L.; Stroynowski, R.; Aleksa, M.; Carli, T.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Lampl, W.; Collot, J.; Hostachy, J.Y.; Ledroit-Guillon, F.; Malek, F.; Martin, P.; Viret, S.; Leltchouk, M.; Parsons, J.A.; Simion, S.; Barreiro, F.; DelPeso, J.; Labarga, L.; Oliver, C.; Rodier, S.; Barrillon, P.; Djama, F.; Hubaut, F.; Mangeard, P.S.; Monnier, E.; Niess, V.; Pralavorio, P.; Resende, B.; Sauvage, D.; Serfon, C.; Tisserant, S.; Toth, J.; Zhang, H.; Banfi, D.; Carminati, L.; Cavalli, D.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Tartarelli, G.F.; Kotov, K.; Maslennikov, A.; Pospelov, G.; Tikhonov, Yu.; Bourdarios, C.; Fayard, L.; Fournier, D.; Iconomidou-Fayard, L.; Kado, M.; Parrour, G.; Plamondon, M.; Puzo, P.; Rousseau, D.; Sacco, R.; Serin, L.; Unal, G.; Zerwas, D.; Dekhissi, B.; Derkaoui, J.; El Kharrim, A.; Maaroufi, F.; Cleland, W.; Lacour, D.; Laforge, B.; Nikolic-Audit, I.; Schwemling, Ph.; Ghazlane, H.; Cherkaoui El Moursli, R.; Idrissi Fakhr-Eddine, A.; Boonekamp, M.; Mansoulie, B.; Meyer, P.; Schwindling, J.; Lund-Jensen,B.; Tayalat, Y.

    2009-01-01

    The response of the ATLAS electromagnetic calorimeter to muons has been studied in this paper. Results on signal over noise ratio, assessment of the detector response uniformity, and position resolution are presented. The possibility to study fine details of the structure of the detector through its response to muons is illustrated on a specific example. Finally, the performance obtained on muons in test-beam is used to estimate the detector uniformity and time alignment precision that will be reachable after the commissioning of the ATLAS detector with cosmic rays.

  18. STAR electromagnetic calorimeter R&D progress report, 1 October 1992--31 August 1993

    SciTech Connect

    Not Available

    1993-10-01

    A lead-scintillator sampling electromagnetic calorimeter (EMC) is planned as an upgrade to the STAR detector for the RHIC Accelerator at Brookhaven National Laboratory (BNL). Considerable work on the conceptual design of the calorimeter, and related interfacing issues with the solenoids magnet and the time projection chamber (TPC) subsystems of STAR occurred in the period 1 October 1992 to 31 August 1993 (FY 1993). This report documents and summarizes the conclusions and progress from this work.

  19. The Electromagnetic Calorimeter of the GLUEX Particle Detector

    NASA Astrophysics Data System (ADS)

    Katsaganis, Stamatios

    This thesis focuses on the GLUEX Barrel Calorimeter (BCAL), a key subsystem of the GLUE experiment, which is currently under construction. GLUE will shed light on an as yet unexplored area of the interaction between the fundamental constituents of matter, that of confinement. To achieve its goals, GLUE requires a hermetic detector with good acceptance and good energy and position resolution. To that end, a lot of effort has been spent on R&D in order to optimize the performance of the BCAL. Specifically, the effect of the thickness of the lead sheets, used to build the BCAL, on the performance of the BCAL was simulated using Monte Carlo techniques. Using the GEANT simulation package, three different geometry configurations were simulated and the shape of the longitudinal shower profile, energy resolution and the fractional energy deposition and energy leakage were extracted and the results comprise the first half of this thesis. The second half of the thesis consists of an analysis of data collected in 2006 from a beam test performed at Jefferson Lab on a BCAL prototype module. The analysis was done in order to extract the energy resolution for several different angles of incidence, including the 90° which was used as reference.

  20. Development of 4π Electro-Magnetic Calorimeter Complex Forest for Neutral Meson Photo-Production Experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Fujimura, H.; Fukasawa, H.; Hashimoto, R.; Ishikawa, T.; Kasagi, J.; Kuwasaki, S.; Mochizuki, K.; Nawa, K.; Okada, Y.; Onodera, Y.; Sato, M.; Shimizu, H.; Yamazaki, H.; Kawano, A.; Sakamoto, Y.; Maeda, K.

    2010-10-01

    A large solid angle electro-magnetic calorimeter system, FOREST, has been constructed at LNB-Sendai to study the π0 and η photo-production reactions. FOREST consists of three electro-magnetic calorimeters: pure CsI crystals, Lead/SciFi blocks and Lead Glass Cherenkov counters. It covers about 90% of the total solid angle.

  1. Performance of the GlueX Barrel Calorimeter

    NASA Astrophysics Data System (ADS)

    Smith, Elton; Dalton, Mark; McGinley, William; Papandreou, Zisis; GlueX Collaboration

    2015-10-01

    The GlueX experiment at Jefferson Lab will search for exotic hybrid mesons, a new form of hadronic matter that exhibits gluonic degrees of freedom. We have taken data to commission the experiment and report here on the construction and performance of the electromagnetic barrel calorimeter (BCAL). The BCAL is a ``spaghetti calorimeter,'' consisting of layers of corrugated lead sheets, interleaved with planes of 1-mm-diameter, double-clad, scintillating fibers, bonded in the lead grooves using optical epoxy. This detector consists of 48 modules that are readout using 3,840 large-area Multi-Photon Pixel counter (MPPC) arrays. The measured width of the π0 mass peak is approximately 10 MeV, only slightly higher than projections based on prototypes. Systematic studies are underway to understand the contributions to the resolution and improve its performance. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177.

  2. Design and status of the Mu2e electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Yu. I.; Di Falco, S.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pasciuto, D.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Soleti, S. R.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2016-07-01

    The Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5 ×10-17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.

  3. Design and status of the Mu2e electromagnetic calorimeter

    SciTech Connect

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dane, E.; Davydov, Yu. I.; Di Falco, S.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, Stefano; Miyashita, T.; Morescalchi, L.; Murat, P.; Pasciuto, D.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Soleti, S. R.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2015-10-02

    Here, the Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5×10–17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D; studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.

  4. Design and status of the Mu2e electromagnetic calorimeter

    DOE PAGESBeta

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dane, E.; Davydov, Yu. I.; et al

    2015-10-02

    Here, the Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5×10–17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to matchmore » these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D; studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.« less

  5. Test beam performance of CDF plug upgrade EM calorimeter

    SciTech Connect

    Fukui, Y.; CDF Upgrade Group

    1998-01-01

    CDF Plug Upgrade(tile-fiber) EM Calorimeter performed resolution of 15%/{radical}E{circle_plus}0.7% with non-linearity less than 1% in a energy range of 5-180 GeV at Fermilab Test Beam. Transverse uniformity of inside-tower-response of the EM Calorimeter was 2.2% with 56 GeV positron, which was reduced to 1.0% with response map correction. We observed 300 photo electron/GeV in the EM Calorimeter. Ratios of EM Calorimeter response to positron beam to that to {sup 137}Cs Source was stable within 1% in the period of 8 months.

  6. Performance of the SLD Warm Iron Calorimeter prototype

    SciTech Connect

    Callegari, G.; Piemontese, L.; De Sangro, R.; Peruzzi, I., Piccolo, M.; Busza, W.; Friedman, J.; Johnson, A.; Kendall, H.; Kistiakowsky, V.

    1986-03-01

    A prototype hadron calorimeter, of similar design to the Warm Iron Calorimeter (WIC) planned for the SLD experiment, has been built and its performance has been studied in a test beam. The WIC is an iron sampling calorimeter whose active elements are plastic streamer tubes similar to those used for the Mont-Blanc proton decay experiment. The construction and operation of the tubes will be briefly described together with their use in an iron calorimeter - muon tracker. Efficiency, resolution and linearity have been measured in a hadron/muon beam up to 11 GeV. The measured values correspond to the SLD design goals.

  7. Performance And Operation of the BaBar Calorimeter

    SciTech Connect

    Ruland, A.M.; /Texas U.

    2011-11-23

    The performance and operation of the CsI(Tl) crystal calorimeter of the BABAR detector during the last years of operation is discussed. The BABAR detector is located at the PEP-II B Factory at the Stanford Linear Accelerator Center (SLAC). PEP-II is an asymmetric e{sup +}e{sup -}-collider operating mainly at a center-of-mass energy of 10.58 GeV. This corresponds to the mass of the {Upsilon}(4S) resonance, which decays exclusively into B{sup 0}{bar B}{sup 0} and B{sup +}B{sup -} pairs. One main physics goal of the BABAR experiment was the measurement of CP-violating asymmetries in the decay of neutral B-mesons. Other goals of the experiment include precision measurements of the decays of bottom mesons to charm and {tau} leptons, as well as searches for rare decays utilizing the high luminosity delivered by the PEP-II accelerator. The BABAR detector (Fig 1) consists of 6 subdetectors. Starting from the interaction point and moving radially outwards there is a Silicon Vertex Detector, Drift Chamber, DRC (Cherenkov detector), an Electromagnetic Calorimeter, and an Instrumented Flux Return.

  8. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    NASA Astrophysics Data System (ADS)

    Spettel, Fabian

    2016-07-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of 8 ×1033cm-2s-1. During the next run, peak luminosities of 1.5 ×1034cm-2s-1 and even higher are expected at a 25 ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminosity as high as 3 ×1034cm-2s-1 are foreseen imposing an upgrade of the LAr trigger system to maintain its performance. A demonstrator containing prototypes of the upgraded trigger electronic architecture has been installed on one of the barrel electromagnetic calorimeter readout front end crates to test it during the Run-2 campaign. The new architecture and its benefits for data taking will be discussed below as well as the results from first beam splash events.

  9. Characterization of an Electromagnetic Calorimeter for the Proposed International Linear Collider

    SciTech Connect

    Frey, Merideth; /Wellesley Coll. /SLAC

    2006-09-11

    The International Linear Collider (ILC) is part of a new generation of accelerators enabling physicists to gain a deeper understanding of the fundamental components of the universe. The proposed ILC will accelerate positrons and electrons towards each other with two facing linear colliders, each twenty kilometers long. Designing and planning for the future accelerator has been undertaken as a global collaboration, with groups working on several possible detectors to be used at the ILC. The following research at the Stanford Linear Accelerator Center (SLAC) pertained to the design of an electromagnetic calorimeter. The energy and spatial resolution of the calorimeter was tested by using computer simulations for proposed detectors. In order to optimize this accuracy, different designs of the electromagnetic calorimeter were investigated along with various methods to analyze the data from the simulated detector. A low-cost calorimeter design was found to provide energy resolution comparable to more expensive designs, and new clustering algorithms offered better spatial resolution. Energy distribution and shape characteristics of electromagnetic showers were also identified to differentiate various showers in the calorimeter. With further research, a well-designed detector will enable the ILC to observe new realms of physics.

  10. Lead Tungstate Crystals for the Cms Electromagnetic Calorimeter at the Lhc

    NASA Astrophysics Data System (ADS)

    Dafinei, Ioan

    2002-11-01

    With its over 80,000 scintillating lead tungstate PbWO4 (PWO) crystals the CMS electromagnetic calorimeter (ECAL) will be the largest one ever constructed. It was designed to work in the demanding LHC environment and give a resolution of 0.5% for photon energies above 50 GeV/c. An important R & D effort was necessary in order to guarantee the production of PWO crystals able to satisfy such challenging constraints. The performance of the pre-production crystal batches (about 6000 barrel crystals) is consistent with the very strict quality parameters defined by the ECAL Collaboration. The meaning of quality controls as well as the main characteristics of these crystals are discussed. More, recent developments in the PWO crystal growth technology may speedup the crystal supplying for the ECAL construction.

  11. An electromagnetic calorimeter for the solenoidal tracker at the Relativistic Heavy Ion Collider

    SciTech Connect

    Westfall, G.D.; Llope, W.J.; Underwood, D.G.

    1993-10-01

    In this document, we outline a proposal to the National Science Foundation (NSF) for the construction of an electromagnetic calorimeter for STAR that fulfills these requirements. This proposal creates the opportunity for the NSF to make a major impact on the experimental program at RHIC by providing a crucial, but defensibly omitted, component of the STAR experiment as approved.

  12. Design, performance, and calibration of CMS forward calorimeter wedges

    NASA Astrophysics Data System (ADS)

    Abdullin, S.; Abramov, V.; Acharya, B.; Adams, M.; Akchurin, N.; Akgun, U.; Anderson, E. W.; Antchev, G.; Arcidy, M.; Ayan, S.; Aydin, S.; Baarmand, M.; Babich, K.; Baden, D.; Bakirci, M. N.; Banerjee, Sud.; Banerjee, Sun.; Bard, R.; Barnes, V.; Bawa, H.; Baiatian, G.; Bencze, G.; Beri, S.; Bhatnagar, V.; Bodek, A.; Budd, H.; Burchesky, K.; Camporesi, T.; Cankoçak, K.; Carrell, K.; Cerci, S.; Chendvankar, S.; Chung, Y.; Cremaldi, L.; Cushman, P.; Damgov, J.; de Barbaro, P.; Deliomeroglu, M.; Demianov, A.; de Visser, T.; Dimitrov, L.; Dindar, K.; Dugad, S.; Dumanoglu, I.; Duru, F.; Elias, J.; Elvira, D.; Emeliantchik, I.; Eno, S.; Eskut, E.; Fenyvesi, A.; Fisher, W.; Freeman, J.; Gamsizkan, H.; Gavrilov, V.; Genchev, V.; Gershtein, Y.; Golutvin, I.; Goncharov, P.; Grassi, T.; Green, D.; Gribushin, A.; Grinev, B.; Gülmez, E.; Gümüş, K.; Haelen, T.; Hagopian, S.; Hagopian, V.; Hashemi, M.; Hauptman, J.; Hazen, E.; Heering, A.; Ilyina, N.; Isiksal, E.; Jarvis, C.; Johnson, K.; Kaftanov, V.; Kalagin, V.; Kalinin, A.; Karmgard, D.; Kalmani, S.; Katta, S.; Kaur, M.; Kaya, M.; Kayis-Topaksu, A.; Kellogg, R.; Khmelnikov, A.; Kim, H.; Kisselevich, I.; Kodolova, O.; Kohli, J.; Kolossov, V.; Korablev, A.; Korneev, Y.; Kosarev, I.; Koylu, S.; Kramer, L.; Krinitsyn, A.; Krokhotin, A.; Kryshkin, V.; Kuleshov, S.; Kumar, A.; Kunori, S.; Kurt, P.; Kuzucu-Polatoz, A.; Laasanen, A.; Ladygin, V.; Laszlo, A.; Lawlor, C.; Lazic, D.; Levchuk, L.; Linn, S.; Litvintsev, D.; Litov, L.; Los, S.; Lubinsky, V.; Lukanin, V.; Ma, Y.; Machado, E.; Mans, J.; Markowitz, P.; Massolov, V.; Martinez, G.; Mazumdar, K.; Merlo, J. P.; Mermerkaya, H.; Mescheryakov, G.; Mestvirishvili, A.; Miller, M.; Mohammadi-Najafabadi, M.; Moissenz, P.; Mondal, N.; Nagaraj, P.; Norbeck, E.; Olson, J.; Onel, Y.; Onengut, G.; Ozdes-Koca, N.; Ozkan, C.; Ozkurt, H.; Ozkorucuklu, S.; Paktinat, S.; Pal, A.; Patil, M.; Penzo, A.; Petrushanko, S.; Petrosyan, A.; Pikalov, V.; Piperov, S.; Podrasky, V.; Pompos, A.; Posch, C.; Qiang, W.; Reddy, L.; Reidy, J.; Ruchti, R.; Rogalev, E.; Rohlf, J.; Ronzhin, A.; Ryazanov, A.; Safronov, G.; Sanders, D. A.; Sanzeni, C.; Sarycheva, L.; Satyanarayana, B.; Schmidt, I.; Sekmen, S.; Semenov, S.; Senchishin, V.; Sergeyev, S.; Serin-Zeyrek, M.; Sever, R.; Singh, J.; Sirunyan, A.; Skuja, A.; Sharma, S.; Sherwood, B.; Shumeiko, N.; Smirnov, V.; Sogut, K.; Sorokin, P.; Spezziga, M.; Stefanovich, R.; Stolin, V.; Sulak, L.; Suzuki, I.; Talov, V.; Teplov, K.; Thomas, R.; Topakli, H.; Tully, C.; Turchanovich, L.; Ulyanov, A.; Vankov, I.; Vardanyan, I.; Varela, F.; Vergili, M.; Verma, P.; Vesztergombi, G.; Vidal, R.; Vishnevskiy, A.; Vlassov, E.; Vodopiyanov, I.; Volkov, A.; Volodko, A.; Wang, L.; Wetstein, M.; Winn, D.; Wigmans, R.; Whitmore, J.; Wu, S. X.; Yazgan, E.; Yershov, A.; Yetkin, T.; Zalan, P.; Zarubin, A.; Zeyrek, M.

    2008-01-01

    We report on the test beam results and calibration methods using high energy electrons, pions and muons with the CMS forward calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3≤|η|≤5), and is essential for a large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels in Higgs production. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h≈5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/sqrt{E}oplus{b}. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%.

  13. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.

    1997-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splutters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX based on a high power YAG laser, is also given.

  14. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Kocak, F.

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO4 and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal-photodiode assemblies.

  15. The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Gras, Philippe; CMS Collaboration

    2015-02-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosity. The lead tungstate crystals forming the barrel part of the CMS Electromagnetic Calorimeter (ECAL) will still perform well, even after the expected 3000 fb-1 at the end of HL-LHC. The scintillation light from the crystals is measured with avalanche photodiodes (APDs). Although the APDs will continue to be operational, there will be some increase in noise due to radiation-induced dark-currents. Triggering on electromagnetic objects with ~140 pileup events necessitates a change of the front-end electronics. New developments in high-speed optical links will allow single-crystal readout at 40 MHz to upgraded off-detector processors, allowing maximum flexibility and enhanced triggering possibilities. The very-front- end system will also be upgraded, to provide improved rejection of anomalous signals in the APDs as well as to mitigate the increase in APD noise. We are also considering lowering the ECAL barrel operating temperature from 18°C to about 8 ~10°C, in order to increase the scintillation light output and reduce the APD dark current.

  16. New electronics of the spectrometric channel for the SND detector electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Achasov, M. N.; Aulchenko, V. M.; Bogdanchikov, A. G.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Koshuba, S. V.; Kovrizhin, D. P.; Serednyakov, S. I.; Surin, I. K.; Tekut`ev, A. I.; Usov, Yu. V.

    2016-07-01

    The Spherical Neutral Detector (SND) is intended for study of electron-positron annihilation at the VEPP-2000 e+e- collider (BINP, Novosibirsk) in the center-of-mass energy region below 2 GeV. The main part of the detector is a three-layer electromagnetic calorimeter based on NaI(Tl) crystals. The physics program of the SND experiment includes a high statistics study of neutron-antineutron production near threshold, for which time measurements in the calorimeter are required. In this paper we describe new shaping and digitizing calorimeter electronics, which allow to reach a time resolution of about 1 ns for 100 MeV signal and an amplitude resolution of about 250 keV.

  17. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Yildiz, H. Duran; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0.54^{+0.06}_{-0.04})% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61±0.07 mm/μs at 88.5 K and 1 kV/mm.

  18. ATLAS Tile Calorimeter performance with Run 1 data

    NASA Astrophysics Data System (ADS)

    Cerdá Alberich, L.

    2016-07-01

    The performance of the central hadronic calorimeter, TileCal, in the ATLAS Experiment at the Large Hadron Collider is studied using cosmic-ray muons and the large sample of proton-proton collisions acquired during the Run 1 of LHC (2010-2012). Results are presented for the precision of the absolute energy scale and timing, noise characterization, and time-stability of the detector. The results show that the Tile Calorimeter performance is within the design requirements of the detector.

  19. CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD

    SciTech Connect

    CHASE,B.CITTERIO,M.LANNI,F.MAKOWIECKI,D.RADEKA,S.RESCIA,S.TAKAI,H.ET AL.

    1999-09-20

    The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail.

  20. CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD

    SciTech Connect

    CHASE,R.L.; CITTERIO,M.; LANNI,F.; MAKOWIECKI,D.; RADEKA,V.; RESCIA,S.; TAKAI,H.; BAN,J.; PARSONS,J.; SIPPACH,W.

    2000-09-20

    The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail.

  1. Calibration of the LHCb electromagnetic calorimeter via reconstructing the neutral-pion invariant mass

    SciTech Connect

    Belyaev, I. M. Golubkov, D. Yu. Egorychev, V. Yu. Polikarpov, S. M. Savrina, D. V.

    2015-12-15

    The calibration of the LHCb electromagnetic calorimeter is a multistep procedure aimed at reconstructing photon and electron energies to a precision not poorer than 2%. A method based on measuring the neutral-pion invariantmass is applied at the last step of this procedure. A regular application of this method makes it possible to improve substantially the resolution for particles that decay through channels featuring electrons and photons in the final state.

  2. Temperature dependence calibration and correction of the DAMPE BGO electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Wei, Y. F.; Zhang, Z. Y.; Zhang, Y. L.; Wen, S. C.; Wang, C.; Li, Z. Y.; Feng, C. Q.; Wang, X. L.; Xu, Z. Z.; Huang, G. S.; Liu, S. B.

    2016-07-01

    A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter Particle Explorer (DAMPE) mission. The temperature effect on the BGO ECAL was investigated with a thermal vacuum experiment. The light output of a BGO crystal depends on temperature significantly, and the readout system is also affected by temperature. The temperature coefficient of each BGO detection unit has been calibrated, and a correction method is also presented in this paper.

  3. Fast Simulation of Electromagnetic Showers in the ATLAS Calorimeter: Frozen Showers

    SciTech Connect

    Barberio, E.; Boudreau, J.; Butler, B.; Cheung, S.L.; Dell'Acqua, A.; Di Simone, A.; Ehrenfeld, E.; Gallas, M.V.; Glazov, A.; Marshall, Z.; Mueller, J.; Placakyte, R.; Rimoldi, A.; Savard, P.; Tsulaia, V.; Waugh, A.; Young, C.C.; /SLAC

    2011-11-29

    One of the most time consuming process simulating pp interactions in the ATLAS detector at LHC is the simulation of electromagnetic showers in the calorimeter. In order to speed up the event simulation several parametrisation methods are available in ATLAS. In this paper we present a short description of a frozen shower technique, together with some recent benchmarks and comparison with full simulation. An expected high rate of proton-proton collisions in ATLAS detector at LHC requires large samples of simulated events (Monte Carlo) to study various physics processes. A detailed simulation of particle reactions ('full simulation') in the ATLAS detector is based on GEANT4 and is very accurate. However, due to complexity of the detector, high particle multiplicity and GEANT4 itself, the average CPU time spend to simulate typical QCD event in pp collision is 20 or more minutes for modern computers. During detector simulation the largest time is spend in the calorimeters (up to 70%) most of which is required for electromagnetic particles in the electromagnetic (EM) part of the calorimeters. This is the motivation for fast simulation approaches which reduce the simulation time without affecting the accuracy. Several of fast simulation methods available within the ATLAS simulation framework (standard Athena based simulation program) are discussed here with the focus on the novel frozen shower library (FS) technique. The results obtained with FS are presented here as well.

  4. Test beam performance of CDF plug upgrade EM calorimeter

    SciTech Connect

    Fukui, Y.

    1998-11-01

    CDF Plug Upgrade(tile-fiber) EM Calorimeter performed resolution of 15{percent}/{radical} (E) {circle_plus}0.7{percent} with non-linearity less than 1{percent} in a energy range of 5{endash}180 GeV at Fermilab Test Beam. Transverse uniformity of inside-tower-response of the EM Calorimeter was 2.2{percent} with 56 GeV positron, which was reduced to 1.0{percent} with response map correction. We observed 300 photo electron/GeV in the EM Calorimeter. Ratios of EM Calorimeter response to positron beam to that to {sup 137}C{sub s} Source was stable within 1{percent} in the period of 8 months. {copyright} {ital 1998 American Institute of Physics.}

  5. A Silicon-Tungsten Electromagnetic Calorimeter with Integrated Electronics for the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Brau, J.; Breidenbach, M.; Frey, R.; Freytag, D.; Gallagher, C.; Graf, N.; Haller, G.; Herbst, R.; Holbrook, B.; Jaros, J.; Lander, R.; Radloff, P.; Strom, D.; Tripathi, M.; Woods, M.

    2012-12-01

    We present an update of the development of an electromagnetic calorimeter for the Silicon Detector concept for a future linear electron-positron collider. After reviewing the design criteria and related simulation studies, we discuss progress in the research and development of the detector. This concept has from the outset made the case for highly integrated electronic readout with small (1 mm) readout gaps in order to maintain a small Moliere radius for electromagnetic showers and to avoid active heat removal. We now have fully functioning 1024-channel readout chips which have been successfully bonded to 15 cm silicon sensors. We present initial results from these assemblies.

  6. Status of the ATLAS Liquid Argon Calorimeter; Performance after 2 years of LHC operation

    NASA Astrophysics Data System (ADS)

    AbouZeid, Hass; ATLAS Collaboration

    2012-12-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo-rapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response without any gap. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particle flow is higher. All detectors are housed in three cryostats kept at about 88 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 9 fb-1 (as of June, 2012) of data have been collected at a center of mass energy of 7 and 8 TeV. During all these stages, the calorimeter and its electronics have been operating almost optimally, with performances very close to the specifications.

  7. The Forward Endcap of the Electromagnetic Calorimeter for the PANDA Detector at FAIR

    NASA Astrophysics Data System (ADS)

    Albrecht, Malte; PANDA Collaboration

    2015-02-01

    The versatile 4π-detector PANDA will be built at the Facility for Antiproton and Ion Research (FAIR), an accelerator complex, currently under construction near Darmstadt, Germany. A cooled antiproton beam in a momentum range of 1.5 - 15GeV/c will be provided by the High Energy Storage Ring (HESR). All measurements at PANDA rely on an excellent performance of the detector with respect to tracking, particle identification and energy measurement. The electromagnetic calorimeter (EMC) of the PANDA detector will be equipped with 15744 PbWO4 crystals (PWO-II), which will be operated at a temperature of - 25° C in order to increase the light output. The design of the forward endcap of the EMC has been finalized. The crystals will be read out with Large Area Avalanche Photo Diodes (LAAPDs) in the outer regions and with Vacuum Photo Tetrodes (VPTTs) in the innermost part. Production of photosensor units utilizing charge integrating preamplifiers has begun. A prototype comprised of 216 PbWO4 crystals has been built and tested at various accelerators (CERN SPS, ELSA/Bonn, MAMI/Mainz), where the crystals have been exposed to electron and photon beams of 25MeV up to 15GeV. The results of these test measurements regarding the energy and position resolution are presented.

  8. Maintaining and improving the control and safety systems for the Electromagnetic Calorimeter of the CMS experiment

    NASA Astrophysics Data System (ADS)

    Di Calafiori, D.; Adzic, P.; Dissertori, G.; Holme, O.; Jovanovic, D.; Lustermann, W.; Zelepoukine, S.

    2012-12-01

    This paper presents the current architecture of the control and safety systems designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). An evaluation of system performance during all CMS physics data taking periods is reported, with emphasis on how software and hardware solutions are used to overcome limitations, whilst maintaining and improving reliability and robustness. The outcomes of the CMS ECAL Detector Control System (DCS) Software Analysis Project were a fundamental step towards the integration of all control system applications and the consequent piece-by-piece software improvements allowed a smooth transition to the latest revision of the system. The ongoing task of keeping the system in-line with new hardware technologies and software platforms specified by the CMS DCS Group is discussed. The structure of the comprehensive support service with detailed incident logging is presented in addition to a complete test setup for reproducing failures and for testing solutions prior to deployment into production. A correlation between the acquired experience, the development of new software tools and a reduction in the DCS support load is highlighted.

  9. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Adams, T.; Adzic, P.; Ahuja, S.; Anderson, D.; Andrews, M. B.; Antropov, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Argirò, S.; Askew, A.; Attikis, A.; Auffray, E.; Baccaro, S.; Baffioni, S.; Bailleux, D.; Baillon, P.; Barney, D.; Barone, L.; Bartoloni, A.; Bartosik, N.; Becheva, E.; Bein, S.; Silva, C. Beirāo Da Cruz E.; Bell, K. W.; Benaglia, A.; Bendavid, J.; Berry, D.; Besancon, M.; Betev, B.; Bialas, W.; Bianchini, L.; Biino, C.; Bitioukov, S.; Bornheim, A.; Brianza, L.; Brinkerhoff, A.; Brown, R. M.; Brummitt, A.; Busson, P.; Candelise, V.; Carrillo Montoya, C. A.; Cartiglia, N.; Cavallari, F.; Chang, Y. W.; Chen, K. F.; Chevenier, G.; Chipaux, R.; Clement, E.; Cockerill, D. J. A.; Corpe, L.; Couderc, F.; Courbon, B.; Cox, B.; Cucciati, G.; Cussans, D.; D'imperio, G.; Da Silva Di Calafiori, D. R.; Dafinei, I.; Daguin, J.; Daskalakis, G.; Tinoco Mendes, A. D.; De Guio, F.; Degano, A.; Dejardin, M.; Del Re, D.; Della Ricca, G.; Denegri, D.; Depasse, P.; Dev, N.; Deyrail, D.; Di Marco, E.; Diamond, B.; Diemoz, M.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Doan, T. H.; Dobrzynski, L.; Dolgopolov, A.; Donegà, M.; Dordevic, M.; Dröge, M.; Durkin, T.; Dutta, D.; El Mamouni, H.; Elliott-Peisert, A.; Elmalis, E.; Fabbro, B.; Fasanella, G.; Faure, J.; Fay, J.; Fedorov, A.; Ferri, F.; Francis, B.; Frank, N.; Franzoni, G.; Funk, W.; Ganjour, S.; Gascon, S.; Gastal, M.; Geerebaert, Y.; Gelli, S.; Gerosa, R.; Ghezzi, A.; Giakoumopoulou, V. A.; Givernaud, A.; Gninenko, S.; Godinovic, N.; Goeckner-Wald, N.; Golubev, N.; Govoni, P.; Gras, P.; Guilloux, F.; Haller, C.; Hamel de Monchenault, G.; Hansen, M.; Hansen, P.; Hardenbrook, J.; Heath, H. F.; Hill, J.; Hirosky, R.; Hobson, P. R.; Holme, O.; Honma, A.; Hou, W.-S.; Hsiung, Y.; Iiyama, Y.; Ille, B.; Ingram, Q.; Jain, S.; Jarry, P.; Jessop, C.; Jovanovic, D.; Kachanov, V.; Kalafut, S.; Kao, K. Y.; Kellams, N.; Kesisoglou, S.; Khatiwada, A.; Konoplyannikov, A.; Konstantinov, D.; Korzhik, M.; Kovac, M.; Kubota, Y.; Kucher, I.; Kumar, A.; Kumar, A.; Kuo, C.; Kyberd, P.; Kyriakis, A.; Latyshev, G.; Lecoq, P.; Ledovskoy, A.; Lei, Y. J.; Lelas, D.; Lethuillier, M.; Li, H.; Lin, W.; Liu, Y. F.; Locci, E.; Longo, E.; Loukas, D.; Lu, R.-S.; Lucchini, M. T.; Lustermann, W.; Mackay, C. K.; Magniette, F.; Malcles, J.; Malhotra, S.; Mandjavidze, I.; Maravin, Y.; Margaroli, F.; Marinelli, N.; Marini, A. C.; Martelli, A.; Marzocchi, B.; Massironi, A.; Matveev, V.; Mechinsky, V.; Meng, F.; Meridiani, P.; Micheli, F.; Milosevic, J.; Mousa, J.; Musella, P.; Nessi-Tedaldi, F.; Neu, C.; Newman, H.; Nicolaou, C.; Nourbakhsh, S.; Obertino, M. M.; Organtini, G.; Orimoto, T.; Paganini, P.; Paganis, E.; Paganoni, M.; Pandolfi, F.; Panov, V.; Paramatti, R.; Parracho, P.; Pastrone, N.; Paulini, M.; Pauss, F.; Pauwels, K.; Pellegrino, F.; Pena, C.; Perniè, L.; Peruzzi, M.; Petrakou, E.; Petyt, D.; Pigazzini, S.; Piroué, P.; Planer, M.; Plestina, R.; Polic, D.; Prosper, H.; Ptochos, F.; Puljak, I.; Quittnat, M.; Ragazzi, S.; Rahatlou, S.; Rander, J.; Ranjan, K.; Rasteiro Da Silva, J.; Razis, P. A.; Romanteau, T.; Rosowsky, A.; Rovelli, C.; Rusack, R.; Salerno, R.; Santanastasio, F.; Santra, A.; Schönenberger, M.; Seez, C.; Sharma, V.; Shepherd-Themistocleous, C.; Shiu, J. G.; Shivpuri, R. K.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Smiljkovic, N.; Soffi, L.; Sun, M.; Symonds, P.; Tabarelli de Fatis, T.; Tambe, N.; Tarasov, I.; Taroni, S.; Teixeira De Lima, R.; Thea, A.; Theofilatos, K.; Thiant, F.; Titov, M.; Torbet, M.; Trapani, P. P.; Tropea, P.; Tsai, J. f.; Tsirou, A.; Turkewitz, J.; Tyurin, N.; Tzeng, Y. M.; Uzunian, A.; Valls, N.; Varela, J.; Veeraraghavan, V.; Verdini, P. G.; Vichoudis, P.; Vlassov, E.; Wang, J.; Wang, T.; Weinberg, M.; Wolfe, E.; Wood, J.; Zabi, A.; Zahid, S.; Zelepoukine, S.; Zghiche, A.; Zhang, L.; Zhu, K.; Zhu, R.; Zuyeuski, R.

    2016-04-01

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1× 1013 and 1.3× 1014 cm‑2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb‑1 and 3000 fb‑1 respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. The experimental results obtained can be used to estimate the long term performance of the CMS ECAL.

  10. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.; White, S.; Woody, C.; Bazilevsky, A.; Belikov, S.; Chernichenkov, S.; Denisov, A.; Gilitzky, Y.; Kochetkov, V.; Melnikov, Y.; Onuchin, V.; Semenov, A.; Shelikhov, V.; Soldatov, A.

    1998-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splitters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX, based on a high power YAG laser, is also given. {copyright} {ital 1998 American Institute of Physics.}

  11. The ATLAS tile calorimeter performance at the LHC

    SciTech Connect

    Calkins, R.

    2011-07-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read out system exploiting different signal sources: laser light, charge injection and a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demonstrates a very good understanding of the performance of the Tile Calorimeter that is proved to be well within the design expectations. (authors)

  12. Electromagnetic calorimeter for the Heavy Photon Search Experiment at Jefferson Lab

    SciTech Connect

    Buchanan, Emma

    2014-11-01

    The Heavy Photon Search Experiment (HPS) seeks to detect a hypothesised hidden sector boson, the A', predicted to be produced in dark matter decay or annihilation. Theories suggest that the A' couples weakly to electric charge through kinetic mixing, allowing it, as a result, to decay to Standard Matter (SM) lepton pair, which may explain the electron and positron excess recently observed in cosmic rays. Measuring the lepton pair decay of the A' could lead to indirect detection of dark matter. The HPS experiment is a fixed target experiment that will utilize the electron beam produced at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The detector set-up includes a silicon vertex tracker (SVT) and an Electromagnetic Calorimeter (ECal). The ECal will provide the trigger and detect e+e- pairs and its construction and testing forms the focus of this thesis. The ECal consists of 442 PbWO4- tapered crystals with a length 16cm and a 1.6x1.6cm2 cross-section, stacked into a rectangular array and are coupled to Large Area APDs and corresponding pre-amplifiers. Supplementary to the ECal is a Light Monitoring System (LMS) consisting of bi-coloured LEDs that will monitor changes in APD gain and crystal transparency due to radiation damage. Before construction of the ECal each of the components were required to be individually tested to determine a number of different characteristics. Irradiation tests were performed on PbWO4 ECal crystals and, as a comparison, one grown by a different manufacturer to determine their radiation hardness. A technique for annealing the radiation damage by optical bleaching, which involves injecting light of various wavelengths into the crystal, was tested using the blue LED from the LMS as a potential candidate. The light yield dependence on temperature was also measured for one of the PbWO4 crystal types. Each APD was individually tested to determine if they functioned correctly and

  13. Design, performance, and upgrade of the D0 calorimeter

    SciTech Connect

    Kotcher, J.

    1995-01-01

    The D0 detector, located at the Fermi National Accelerator Laboratory in Batavia, Illinois, USA, is a large hermetic detector designed for the study of proton-antiproton collisions at a center-of-mass energy of 2 TeV. The calorimeter is a sampling device that employs uranium absorber and liquid argon as the active material. It has been designed for the high-precision energy measurement of electrons and jets over the full solid angle, and excellent missing transverse energy resolution for enhanced neutrino {open_quotes}detection{close_quotes}. The authors report on some fundamental aspects of the D0 calorimeter`s design and performance (the latter having been measured in both test beams and during recent data taking at the Fermilab collider), and their plan for the upgrade, which has been designed to accomodate the higher luminosities anticipated after completion of the Fermilab Main Injector.

  14. Performance of the DELPHI small angle tile calorimeter

    SciTech Connect

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1996-06-01

    The DELPHI STIC detector is a lead-scintillator sampling calorimeter with wave length shifting optical fibers used for light collection. The main goal of the calorimeter at LEP100 is to measure the luminosity with an accuracy better than 0.1%. The detector has been in operation since the 1994 LEP run. Presented here is the performance measured during the 1994--1995 LEP runs, with the emphasis on the achieved energy and space resolution, the long-term stability and the efficiency of the detector. The new bunchtrains mode of LEP requires a rather sophisticated trigger and timing scheme which is also presented. To control the trigger efficiency and stability of the calorimeter channels, a LED-based monitoring system has been developed.

  15. Response of a close to final prototype for the P bar ANDA Electromagnetic Calorimeter to photons at energies below 1 GeV

    NASA Astrophysics Data System (ADS)

    Rosenbaum, C.; Diehl, S.; Dormenev, V.; Drexler, Peter; Kavatsyuk, M.; Kuske, T.; Nazarenko, S.; Novotny, R. W.; Rosier, P.; Ryazantsev, A.; Wieczorek, P.; Wilms, A.; Wohlfahrt, B.; Zaunick, H.-G.

    2016-07-01

    The response of two generations of prototypes of the P bar ANDA Electromagnetic Calorimeter (EMC), PROTO60 and PROT120, to photons in the energy range between 50 MeV and 800 MeV was obtained. Furthermore, the performance of the pre-amplifier ASIC (APFEL) under real experimental conditions, the position dependence of the energy resolution within the crystal and the implementation of higher order energy correction algorithms with a 15 GeV/c positron beam were studied.

  16. Precision machining, polishing and measurement of mechanical and toxicological properties of lead tungstate crystals for the CMS electromagnetic calorimeter

    SciTech Connect

    Wuest, C.R.; Fuchs, B.A.; Shi, X.

    1995-08-01

    We have developed new machining and polishing techniques that have previously been applied to large scintillating crystal arrays for high energy physics experiments such as the Barium Fluoride Electromagnetic Calorimeter for the GEM Detector at SSCL, the LCsI Electromagnetic Calorimeter for the BaBar Detector at PEP-II B Factory at SLAC and the 110,000 crystal CMS Lead Tungstate Electromagnetic Calorimeter at LHC at CERN. We discuss earlier results achieved with diamond machining and polishing methods and present new results on diamond machining of lead tungstate crystals. Additionally we present new results on mechanical properties of lead tungstate including toxicological data important for the safe handling and processing of this material.

  17. Status of the ATLAS Liquid Argon Calorimeter and its Performance after Three Years of LHC Operation

    NASA Astrophysics Data System (ADS)

    Lampl, W.

    2014-06-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo-rapidity region up to 3.2, as well as for hadron calorimetry in the range 1.5-4.9. The electromagnetic calorimeters use lead as passive material and are characterised by an accordion geometry that allows a fast and uniform azimuthal response without any gap. Copper and tungsten were chosen as passive material for the hadron calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at approximately 89 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three-year period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 27 fb-1 of data have been collected at centre of mass energies of 7-8 TeV. During all these stages, the calorimeter has been operating almost optimally, with performance very close to specifications. The talk will cover all aspects of these first years of operation, including the calibration efforts and the data quality assessment procedure. The excellent performance achieved will also be briefly reviewed, especially in the context of the recently announced discovery of the Higgs boson.

  18. A CMOS variable gain amplifier for PHENIX electromagnetic calorimeter and RICH energy measurements

    SciTech Connect

    Wintenberg, A.L.; Simpson, M.L.; Young, G.R.; Palmer, R.L.; Moscone, C.G.; Jackson, R.G.

    1996-12-31

    A variable gain amplifier (VGA) has been developed equalizing the gains of integrating amplifier channels used with multiple photomultiplier tubes operating from common high-voltage supplies. The PHENIX lead-scintillator electromagnetic calorimeter will operate in that manner, and gain equalization is needed to preserve the dynamic range of the analog memory and ADC following the integrating amplifier. The VGA is also needed for matching energy channel gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held between 15 and 23 ns using switched compensation in the VGA. An additional feature is gated baseline restoration. Details of the design and results from several prototype devices fabricated in 1.2-{mu}m Orbit CMOS are presented.

  19. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    NASA Astrophysics Data System (ADS)

    Strizenec, P.

    2014-09-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid Argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudorapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a parallel plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at 88.5 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 27 fb-1 of data have been collected at a unprecedented center of mass energies between 7 TeV and 8 TeV. During all these stages, the calorimeter and its electronics have been operating with performances very close to the specification ones. After 2019, the instantaneous luminosity will reach 2-3 × 1034 cm-2s-1, well above the luminosity for which the calorimeter was designed. In order to preserve its triggering capabilities, the detector will be upgraded with a new fully digital trigger system with a refined granularity. In 2023, the instantaneous luminosity will ultimately reach 5-7 × 1034 cm-2s-1, requiring a complete replacement of the readout electronics. Moreover, with an increased particle flux, several phenomena (liquid argon boiling, space charge effects...) will affect the performance of the forward calorimeter (FCal). A replacement with a new FCal with smaller LAr gaps or a new calorimeter module are considered. The performance of these new

  20. RESEARCH NOTES FROM COLLABORATIONS: Intercalibration of the CMS electromagnetic calorimeter crystals in φ using symmetry of energy deposition

    NASA Astrophysics Data System (ADS)

    Futyan, D.; Seez, C.

    2003-06-01

    This paper describes the investigation of a first step in a strategy for rapidly obtaining electromagnetic calorimeter crystal intercalibration at start-up in the absence of test beam precalibration of the complete detector. In the case of the CMS (compact muon solenoid) electromagnetic calorimeter, the precision to which crystals can be intercalibrated in phi using 18 million fully simulated minimum-bias events, and assuming complete ignorance of the distribution of material in front of the calorimeter, is determined as a function of the pseudorapidity (eta) and has been found to be close to 1.5% for |eta| < 1.0 and between 2% and 3.5% for the remainder of the barrel. Similar values are found for the endcap. The precision is limited by the inhomogeneity of tracker material. With increasing knowledge of the material distribution in the tracker, after the start of LHC running, the attainable precision of the method will increase, with the potential of providing rapid and repeated calibration of the calorimeter.

  1. Improvement of the technique of identification of electrons and positrons with use of electromagnetic calorimeter of the CLAS detector

    SciTech Connect

    Gevorgyan, N. E.; Dashyan, N. B.; Paremuzyan, R. G.; Stepanyan, S. G.

    2010-01-01

    We study the dependence of the sensitivity of response of the electromagnetic calorimeter of CLAS plant on the momenta of electrons and positrons. We made calculation of this dependence and elaborated a method for its employment in identification of e- and e+. We have shown that the new method of selection of e- and e+ improves the quality of identification by about 10%. We used the experimental data obtained with the plant CLAS of linear accelerator at Jefferson laboratory (USA).

  2. The γn -->K0 Λ photoproduction studied with an electromagnetic calorimeter complex FOREST

    NASA Astrophysics Data System (ADS)

    Tsuchikawa, Yusuke; Hashimoto, Ryo; He, Qinghua; Ishikawa, Takatsugu; Masumoto, Shinichi; Miyabe, Manabu; Muramatsu, Norihito; Shimizu, Hajime; Tajima, Yasuhisa; Yamazaki, Hirohito; Yamazaki, Ryuji; Forest Collaboration

    2014-09-01

    Nucleon resonance have been experimentally studied by means of meson production reactions for understanding low-energy scale QCD. Photoproduction is one of the useful tools to reveal properties of excited nucleons. Indeed, the π and η photoproduction reactions have been intensively investigated until now. Kaon photoproduction is the best probe to study highly excited nucleons, which hardly couple to πN and ηN . Simultaneous K0 Λ production is more advantageous than K+ Λ production which is reported by many experimental groups. It is because the kaon exchange is forbidden in the K0 Λ photoproduction, and because Born term contribution is small. The γd --> (K0 Λ) p --> (π0π0 pπ-) p reaction is experimentally investigated with an electromagnetic calorimeter FOREST at Research Center for Electron Photon Science, Tohoku University. The K0 and Λ particles are clearly observed in π0π0 and π- p invariant mass distributions. We will present the current status of the exclusive γn -->K0 Λ reaction.

  3. Current Status and Performance of the Crystal Ball and TAPS Calorimeter

    NASA Astrophysics Data System (ADS)

    Neiser, Andreas; A2 Collaboration

    2015-02-01

    In the A2 experiment at the Mainz microtron (MAMI) electron accelerator, the production of nucleon resonances and light mesons off protons and nuclei using energy-tagged bremsstrahlung photons is studied. Decay products are measured with two electromagnetic calorimeters: Crystal Ball (CB), whose 672 NaI crystals cover almost the entire solid angle, and TAPS, which consists of 366 BaF2 and 72 PbWO4 crystals in the forward direction. Here, we report on the current performance and status of both detectors after 10 years of operation in Mainz. In addition, we present the new CB high-voltage system, a new fast readout scheme for TAPS, and the planned upgrade of the CB data-acquisition system.

  4. Design, performance, and calibration of the CMS hadron-outer calorimeter

    NASA Astrophysics Data System (ADS)

    Abdullin, S.; Abramov, V.; Acharya, B.; Adam, N.; Adams, M.; Akchurin, N.; Akgun, U.; Albayrak, E.; Anderson, E. W.; Antchev, G.; Arcidy, M.; Ayan, S.; Aydin, S.; Aziz, T.; Baarmand, M.; Babich, K.; Baden, D.; Bakirci, M. N.; Banerjee, Sudeshna; Banerjee, Sunanda; Bard, R.; Barnes, V.; Bawa, H.; Baiatian, G.; Bencze, G.; Beri, S.; Berntzon, L.; Bhandari, V.; Bhatnagar, V.; Bhatti, A.; Bodek, A.; Bose, S.; Bose, T.; Budd, H.; Burchesky, K.; Camporesi, T.; Cankoçak, K.; Carrell, K.; Cerci, S.; Chendvankar, S.; Chung, Y.; Clarida, W.; Cremaldi, L.; Cushman, P.; Damgov, J.; de Barbaro, P.; Debbins, P.; Deliomeroglu, M.; Demianov, A.; de Visser, T.; Deshpande, P. V.; Diaz, J.; Dimitrov, L.; Dugad, S.; Dumanoglu, I.; Duru, F.; Efthymiopoulos, I.; Elias, J.; Elvira, D.; Emeliantchik, I.; Eno, S.; Ershov, A.; Erturk, S.; Esen, S.; Eskut, E.; Fenyvesi, A.; Fisher, W.; Freeman, J.; Ganguli, S. N.; Gaultney, V.; Gamsizkan, H.; Gavrilov, V.; Genchev, V.; Gleyzer, S.; Golutvin, I.; Goncharov, P.; Grassi, T.; Green, D.; Gribushin, A.; Grinev, B.; Guchait, M.; Gurtu, A.; Murat Güler, A.; Gülmez, E.; Gümüş, K.; Haelen, T.; Hagopian, S.; Hagopian, V.; Halyo, V.; Hashemi, M.; Hauptman, J.; Hazen, E.; Heering, A.; Heister, A.; Hunt, A.; Ilyina, N.; Ingram, D.; Isiksal, E.; Jarvis, C.; Jeong, C.; Johnson, K.; Jones, J.; Kaftanov, V.; Kalagin, V.; Kalinin, A.; Kalmani, S.; Karmgard, D.; Kaur, M.; Kaya, M.; Kaya, O.; Kayis-Topaksu, A.; Kellogg, R.; Khmelnikov, A.; Kim, H.; Kisselevich, I.; Kodolova, O.; Kohli, J.; Kolossov, V.; Korablev, A.; Korneev, Y.; Kosarev, I.; Kramer, L.; Krinitsyn, A.; Krishnaswamy, M. R.; Krokhotin, A.; Kryshkin, V.; Kuleshov, S.; Kumar, A.; Kunori, S.; Laasanen, A.; Ladygin, V.; Laird, E.; Landsberg, G.; Laszlo, A.; Lawlor, C.; Lazic, D.; Lee, S. W.; Levchuk, L.; Linn, S.; Litvintsev, D.; Lobolo, L.; Los, S.; Lubinsky, V.; Lukanin, V.; Ma, Y.; Machado, E.; Maity, M.; Majumder, G.; Mans, J.; Marlow, D.; Markowitz, P.; Martinez, G.; Mazumdar, K.; Merlo, J. P.; Mermerkaya, H.; Mescheryakov, G.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Mohammadi-Najafabadi, M.; Moissenz, P.; Mondal, N.; Mossolov, V.; Nagaraj, P.; Narasimham, V. S.; Norbeck, E.; Olson, J.; Onel, Y.; Onengut, G.; Ozkan, C.; Ozkurt, H.; Ozkorucuklu, S.; Ozok, F.; Paktinat, S.; Pal, A.; Patil, M.; Penzo, A.; Petrushanko, S.; Petrosyan, A.; Pikalov, V.; Piperov, S.; Podrasky, V.; Polatoz, A.; Pompos, A.; Popescu, S.; Posch, C.; Pozdnyakov, A.; Qian, W.; Ralich, R. M.; Reddy, L.; Reidy, J.; Rogalev, E.; Roh, Y.; Rohlf, J.; Ronzhin, A.; Ruchti, R.; Ryazanov, A.; Safronov, G.; Sanders, D. A.; Sanzeni, C.; Sarycheva, L.; Satyanarayana, B.; Schmidt, I.; Sekmen, S.; Semenov, S.; Senchishin, V.; Sergeyev, S.; Serin, M.; Sever, R.; Singh, B.; Singh, J. B.; Sirunyan, A.; Skuja, A.; Sharma, S.; Sherwood, B.; Shumeiko, N.; Smirnov, V.; Sogut, K.; Sonmez, N.; Sorokin, P.; Spezziga, M.; Stefanovich, R.; Stolin, V.; Sudhakar, K.; Sulak, L.; Suzuki, I.; Talov, V.; Teplov, K.; Thomas, R.; Tonwar, S.; Topakli, H.; Tully, C.; Turchanovich, L.; Ulyanov, A.; Vanini, A.; Vankov, I.; Vardanyan, I.; Varela, F.; Vergili, M.; Verma, P.; Vesztergombi, G.; Vidal, R.; Vishnevskiy, A.; Vlassov, E.; Vodopiyanov, I.; Volobouev, I.; Volkov, A.; Volodko, A.; Wang, L.; Werner, J.; Wetstein, M.; Winn, D.; Wigmans, R.; Whitmore, J.; Wu, S. X.; Yazgan, E.; Yetkin, T.; Zalan, P.; Zarubin, A.; Zeyrek, M.

    2008-10-01

    The Outer Hadron Calorimeter (HCAL HO) of the CMS detector is designed to measure the energy that is not contained by the barrel (HCAL HB) and electromagnetic (ECAL EB) calorimeters. Due to space limitation the barrel calorimeters do not contain completely the hadronic shower and an outer calorimeter (HO) was designed, constructed and inserted in the muon system of CMS to measure the energy leakage. Testing and calibration of the HO was carried out in a 300 GeV/c test beam that improved the linearity and resolution. HO will provide a net improvement in missing E T measurements at LHC energies. Information from HO will also be used for the muon trigger in CMS.

  5. Hadron calorimeter performance with a PbWO4 EM compartment

    SciTech Connect

    Green, D.

    1996-01-01

    The CMS detector[1] at the LHC has chosen PbWO4 in order to achieve the superior photon energy resolution which is crucial in searching for the 2 photon decay of low mass Higgs bosons. The hadronic compartment is thought to be Cu absorber, since one is immersed in a 4 T magnetic field, read out by scintillator tiles coupled to wavelength shifter (WLS) fibers. The combined performance of this calorimeter is of interest in the study of jets and missing transverse energy (neutrino, SUSY signatures). For this reason, a test was made of the electromagnetic (EM) compartment combined with a reasonable approximation to the baseline HCAL ``barrel`` calorimeter. Data was taken in the H4 CERN beamline. The EM compartment was a 7 {times} 7 square array of PbWO4 crystals, which for the purposes of this study are considered as a single readout in depth (or ``compartment``) [2]. The HCAL module consisted of large scintillator plates with 24 individual longitudinal readout channels. The EM compartment was followed by 10 Cu plates each 3 cm thick, followed by 9 Cu plates each 6 cm thick. This set of absorber plates represented the HCAL compartments inside the coil. The coil itself [1] was approximated as Al and Fe plates, of a total thickness of about 1.4 absorption lengths. The coil mockup was sampled and then followed by 4 plates of 8 cm thick Cu, each with an individual readout which represented a test of the ``Tailcatcher`` concept.

  6. Calibration of a calorimeter for measuring the performance of thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Houseman, John; Siebes, Georg

    1993-01-01

    The calibration to evaluate the heat leak in terms of the deviation from a perfect calorimeter is described. A thermal vacuum test was carried out to characterize the performance of the calorimeter. The calorimeter was equipped with a heater to control the sample disc temperature and with specific instrumentation to measure the heat leak. The radiation sink temperature of the black cavity target was varied from -192 to +31C, while the heater power was varied from 0 to 311 milliwatts. A steady state thermal model was developed to correlate the results. The calorimeter performance was characterized in terms of the heat leak as a percentage of the ideal heat flow of the calorimeter disc. Large deviations from ideal performance occur at low sink temperatures. The effect of the use of the heater is discussed. The effects of transient conditions during low Earth orbit are discussed. It is concluded that heat leak calibrations are necessary for a wide range of conditions.

  7. Status of the construction and performances of the neutron Zero Degree Calorimeters of the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Siddi, E.; Arnaldi, R.; Chiavassa, E.; Cicaló, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; De Marco, N.; Ferretti, A.; Gallio, M.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Puddu, G.; Scomparin, E.; Serci, S.; Travaglia, G.; Usai, G.; Vercellin, E.

    2004-12-01

    The details of the construction of the neutron Zero Degree Calorimeters (ZN) of the ALICE Experiment, as well as their performances, will be presented. These spaghetti calorimeters will measure the energy lost by spectator nucleons in heavy-ion collisions. They are made of an absorber (tungsten alloy) filled with silica fibers, in which the charged particles of the shower produce Cherenkov light. The final neutron calorimeters have been built and their performances studied at the CERN SPS using pion and positron beams with momentum ranging from 50 to 150 GeV/ c. The main features like linearity of the response and resolution as a function of energy will be presented.

  8. The Scintillating Optical Fiber Calorimeter Instrument Performance (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Benson, C. M.; Berry, F. A.; Fountain, W. F.; Gregory, J. C.; Johnson, J. S.; Munroe, R. B.; Parnell, T. A.; Takahashi, Y.; Watts, J. W.

    1999-01-01

    SOFCAL is a balloon-borne instrument designed to measure the P-He cosmic ray spectra from about 200 GeV/amu - 20 TeV/amu. SOFCAL uses a thin lead and scintillating-fiber ionization calorimeter to measure the cascades produced by cosmic rays interacting in the hybrid detector system. Above the fiber calorimeter is an emulsion chamber that provides the interaction target, primary particle identification and in-flight energy calibration for the scintillating fiber data. The energy measurement technique and its calibration are described, and the present results from the analysis of a 1 day balloon flight will be presented.

  9. The ATIC Experiment : Performance of the Scintillator Hodoscope and the BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its first flight from McMurdo, Antarctica, 28/12/00 to 13/01/01, recording over 360 hours of data. The design goal for ATIC was to measure the Cosmic Ray composition and energy spectra from approximately 50 GeV to near 100 TeV utilizing a Si-matrix detector, a scintillator hodoscope, carbon targets and a calorimeter consisting of a stack of BGO scintillator crystals. The design, operation, and in-flight performance of the scintillator hodoscope and the BGO calorimeter are described.

  10. The ATIC Experiment: Performance of the Scintillator Hodoscopes and the BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, Joachim; Adams, J. H.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its first flight from Mcmurdo, Antarctica 28/12/2000 to 13/01/2001, local time, recording over 360 hours of data. The design goal of ATIC was to measure the Cosmic Ray composition and energy spectra from approximately 50 GeV to near 100 TeV utilizing a Si-matrix detector, a scintillator hodoscope, carbon targets and a calorimeter consisting of a stack of BGO scintillator crystals. The design, the operations and in-flight performance of the scintillator hodoscope and the BGO calorimeter are described.

  11. Design and expected performance of a fast scintillator hadron calorimeter

    SciTech Connect

    Palmer, R.B.; Ghosh, A.K.

    1983-01-01

    A typical pulse from the 807 calorimeter is shown. This was generated by 4 GeV electrons but the pulses from hadrons and at different energies are not significantly different. The width and shape of this pulse comes from the convolution of a number of sources: (a) The time spread of energy deposition by a shower including time of flight of slow protons and neutrons, (b) scintillator phosphor rise and decay times, (c) shifter rise and decay times, (d) phototube response, (e) time delays in the light collection from different parts of the calorimeter and time dispersion in transmission. The objective of the first phase of this study was to isolate these spearate contributions, estimate how they could be speeded up and find what costs are involved. In the second phase we constructed an extremely crude calorimeter whose pulses should have the same characteristic as in a real device. With this we have observed signals whose mean width was 7 nsec and whose width at 10% of maximum height was 15 nsec. Clipping could reduce these widths to 6 and 12 nsec respectively. We conclude that gate times of less than 20 nsec would be appropriate for such a calorimeter.

  12. Resolution Performance of HERA-B Lead-Glass Calorimeters

    NASA Astrophysics Data System (ADS)

    Losada, Anthony; Brash, Edward; Thomas, Jordan; Ayerbe-Gayoso, Carlos; Burton, Matthew; Perdisat, Charles; Jones, Mark; Punjabi, Vina; Hast, Carsten; Szalata, Zenon

    2013-10-01

    In preparation of upcoming 12 GeV experiments at Thomas Jefferson National Accelerator Facility it is necessary to upgrade existing systems or install new detectors. As part of this effort, an array of lead-glass sampling calorimeters is need for use in the GEP-5 experiment. A sampling calorimeter can be used to determine the energy and spatial position of a high energy particle that enters it while simultaneously stopping the particle. To determine the appropriate construction to meet the needs of upcoming experiments, it was necessary to take an existing model and confirm its energy and position resolution. This model could then be confirmed as an option for the final construction, or used as a starting point to design a better detector. For our test we obtained ten lead-glass calorimeters used in HERA-B and tested them in End Station A at SLAC. I will report on our findings for the HERA-B lead-glass sampling calorimeters. I will cover the results of both the energy and position resolutions as well as the methods used to determine these quantities.

  13. A tungsten/scintillating fiber electromagnetic calorimeter prototype for a high-rate muon (g-2) experiment

    NASA Astrophysics Data System (ADS)

    McNabb, R.; Blackburn, J.; Crnkovic, J. D.; Hertzog, D. W.; Kiburg, B.; Kunkle, J.; Thorsland, E.; Webber, D. M.; Lynch, K. R.

    2009-04-01

    A compact and fast electromagnetic calorimeter prototype was designed, built, and tested in preparation for a next-generation, high-rate muon (g-2) experiment. It uses a simple assembly procedure: alternating layers of 0.5-mm-thick tungsten plates and 0.5-mm-diameter plastic scintillating fiber ribbons. This geometry leads to a detector having a calculated radiation length of 0.69 cm, a Molière radius of 1.73 cm, and a measured intrinsic sampling resolution term of (11.8±1.1)%/√{E(GeV)}, in the range 1.5-3.5 GeV. The construction procedure, test beam results, and GEANT-4 comparative simulations are described.

  14. Performance of the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Case, G.; Ellison, S.; Gould, R.; Granger, D.; Guzik, T. G.; Isbert, J.; Price, B.; Stewart, M.; Wefel, J. P.; Adams, J. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The ATIC instrument is a balloon-borne experiment capable of measuring cosmic ray elemental spectra from 50 GeV to 100 TeV for nuclei from H to Fe with a fully active Bismuth Germanate calorimeter. Several Long Duration Balloon flights from McMurdo station, Antarctica are scheduled. The detector was tested with high energy electron, proton, and pion beams at CERN. We present results for 150 and 375 GeV protons, and 150 GeV pions and comparison with a GEANT Monte Carlo.

  15. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    SciTech Connect

    Aleksa, Martin

    2006-10-27

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors.

  16. Design and performance of a vacuum-bottle solid-state calorimeter

    SciTech Connect

    Bracken, D.S.; Biddle, R.; Cech, R.

    1997-11-01

    EG and G Mound Applied Technologies calorimetry personnel have developed a small, thermos-bottle solid-state calorimeter, which is now undergoing performance testing at Los Alamos National Laboratory. The thermos-bottle solid-state calorimeter is an evaluation prototype for characterizing the heat output of small heat standards and other homogeneous heat sources. The current maximum sample size is 3.5 in. long with a diameter of 0.8 in. The overall size of the thermos bottle and thermoelectric cooling device is 9.25 in. high by 3.75 in. diameter and less than 3 lb. Coupling this unit with compact electronics and a laptop computer makes this calorimeter easily hand carried by a single individual. This compactness was achieved by servo controlling the reference temperature below room temperature and replacing the water bath used in conventional calorimeter design with the thermos-bottle insulator. Other design features will also be discussed. The performance of the calorimeter will be presented.

  17. Performance evaluation of a commercially available heat flow calorimeter and applicability assessment for safeguarding special nuclear materials

    SciTech Connect

    Bracken, D.S.; Biddle, R.; Rudy, C.

    1998-12-31

    The performance characteristics of a commercially available heat-flow calorimeter will be presented. The heat-flow sensors within the calorimeter are based on thermopile technology with a vendor-quoted sensitivity of 150 {micro}V/mW. The calorimeter is a full-twin design to compensate for ambient temperature fluctuations. The efficacy of temperature fluctuation compensations will also be detailed. Finally, an assessment of design applicability to special nuclear materials control and accountability and safeguarding will be presented.

  18. The CREAM Calorimeter: Performance In Tests And Flights

    SciTech Connect

    Lee, M. H.; Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lutz, L.; Malinine, A.; Sina, R.; Walpole, P.; Wu, J.; Zinn, S. Y.; Allison, P.; Beatty, J. J.; Brandt, T. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Zei, R.; Barbier, L.

    2006-10-27

    The Cosmic Ray Energetics And Mass (CREAM) balloon-borne experiment, designed to directly measure cosmic-ray particle energies from {approx}1011 to {approx}1015 eV, had two successful flights since December 2004, with a total duration of 70 days. The CREAM calorimeter is comprised of 20 layers of 1 radiation length (X0) tungsten interleaved with 20 active layers each made up of fifty 1 cm wide scintillating fiber ribbons. The scintillation signals are read out with multi pixel Hybrid Photo Diodes (HPDs), VA32-HDR2/TA32C ASICs and LTC1400 ADCs. During detector construction, various tests were carried out using radioactive sources, UV-LEDs, and particle beams. We will present results from these tests and show preliminary results from the two flights.

  19. Design and Performance Tests of Ultra-Compact Calorimeters for High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Salgado, Carlos W.

    2003-01-01

    This R&D project had two goals: a) the study of general-application ultra-compact calorimetry technologies for use in High Energy Astrophysics and, b) contribute to the design of an efficient calorimeter for the ACCESS mission. The direct measurement of galactic cosmic ray fluxes is performed from space or from balloon-borne detectors. Detectors used in those studies are limited in size and, specially, in weight. Since galactic cosmic ray fluxes are very small, detectors with high geometrical acceptances and long exposures are usually required for collecting enough statistics. We have studied calorimeter techniques that could produce large geometrical acceptance per unit of mass (G/w) and that may be used to study galactic cosmic rays at intermediate energies (knee energies).-The most important asset for detection of primary cosmic rays at and about the knee is large acceptance. To construct a large acceptance calorimeter (this term is used here in its most general accepted meaning of calorimeter as a device to measure particle energies ) the detector needs to be verv liaht or verv shallow . We studied two possible technologies to built compact calorimeters: the use of lead-tungstate crystals (PWO) and the use of sampling calorimetry using scintillating fibers embedded in a matrix of powder tungsten. For a very light detector, we considered the possibility of using Optical Transition Radiation (OTR) to measure the energy (and perhaps also direction and identity) of VHE cosmic rays.

  20. PROGRAM TO DETERMINE PERFORMANCE OF FLUORINATED ETHERS AND FLUORINATED PROPANES IN A COMPRESSOR CALORIMETER

    EPA Science Inventory

    The paper discusses a program to determine the performance of fluorinated ethers and fluorinated propanes in a compressor calorimeter. These chlorine free ethers and propanes are being considered as potential long-term replacements for CFC-11, -12, -114, and -115. A standard comp...

  1. Development of a forward calorimeter system for the STAR experiment

    NASA Astrophysics Data System (ADS)

    Tsai, O. D.; Aschenauer, E.; Christie, W.; Dunkelberger, L. E.; Fazio, S.; Gagliardi, C. A.; Heppelmann, S.; Huang, H. Z.; Jacobs, W. W.; Igo, G.; Kisilev, A.; Landry, K.; Liu, X.; Mondal, M. M.; Pan, Y. X.; Sergeeva, M.; Shah, N.; Sichtermann, E.; Trentalange, S.; Visser, G.; Wissink, S.

    2015-02-01

    We present results of an R&D program to develop a forward calorimeter system (FCS) for the STAR experiment at the Relativistic Heavy Ion Collider at BNL. The FCS is a very compact, compensated, finely granulated, high resolution calorimeter system being developed for p+p and p+A program at RHIC. The FCS prototype consists of both electromagnetic and hadron calorimeters. The electromagnetic portion of the detector is constructed with W powder and scintillation fibers. The hadronic calorimeter is a traditional Pb/Sc-plate sandwich design. Both calorimeters were readout with Hamamatsu MPPCs. A full- scale prototype of the FCS was tested with a beam at FNAL in March 2014. We present details of the design, construction technique and performance of the FCS prototype during the test run at FNAL.

  2. Multiple-neutral-meson decays of the /tau/ lepton and electromagnetic calorimeter requirements at Tau-Charm Factory

    SciTech Connect

    Gan, K.K.

    1989-08-01

    This is a study of the physics sensitivity to the multiple-neutral-meson decays of the /tau/ lepton at the Tau-Charm Factory. The sensitivity is compared for a moderate and an ultimate electromagnetic calorimeter. With the high luminosity of the Tau- Charm Factory, a very large sample of the decays /tau//sup /minus// /yields/ /pi//sup /minus//2/pi//sup 0//nu//sub /tau// and /tau//sup /minus// /yields/ /pi//sup /minus//3/pi//sup 0//nu//sub /tau// can be collected with both detectors. However, with the ultimate detector, 2/pi//sup 0/ and 3/pi//sup 0/ can be unambiguously reconstructed with very little background. For the suppressed decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//pi//sup 0//nu//sub /tau//, only the ultimate detector has the sensitivity. The ultimate detector is also sensitive to the more suppressed decay /tau//sup /minus// /yields/ K/sup /minus///eta//nu//sub /tau// and the moderate detector may have the sensitivity if the hadronic background is not significantly larger than that predicted by Lund. In the case of the highly suppressed second-class-current decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//nu//sub /tau//, only the ultimate detector has sensitivity. The sensitivity can be greatly enhanced with a small-angle photon veto. 16 refs., 9 figs., 2 tabs.

  3. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    NASA Astrophysics Data System (ADS)

    Solovyanov, O.

    2014-10-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal. These partially overlapping systems are described in detail, their individual performance is discussed as well as the comparative results from measurements of the evolution of the calorimeter response with time during the full LHC data-taking period. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals will be directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. For the off-detector electronics a special pre-processor board is being developed, which will take care of the initial trigger processing, while the main data are temporarily stored in the pipeline and de-randomiser memories.

  4. Performance analysis of superconducting generator electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Xia, D.; Xia, Z.

    2015-12-01

    In this paper, the shielding performance of electromagnetic shielding systems is analyzed using the finite element method. Considering the non-iron-core rotor structure of superconducting generators, it is proposed that the stator alternating magnetic field generated under different operating conditions could decompose into oscillating and rotating magnetic field, so that complex issues could be greatly simplified. A 1200KW superconducting generator was analyzed. The distribution of the oscillating magnetic field and the rotating magnetic field in rotor area, which are generated by stator winding currents, and the distribution of the eddy currents in electromagnetic shielding tube, which are induced by these stator winding magnetic fields, are calculated without electromagnetic shielding system and with three different structures of electromagnetic shielding system respectively. On the basis of the results of FEM, the shielding factor of the electromagnetic shielding systems is calculated and the shielding effect of the three different structures on the oscillating magnetic field and the rotating magnetic field is compared. The method and the results in this paper can provide reference for optimal design and loss calculation of superconducting generators.

  5. A photon calorimeter using lead tungstate crystals for the CEBAF HAll A Compton polarimeter

    SciTech Connect

    D. Neyret; T. Pussieux; T. Auger; M. Baylac; E. Burtin; C. Cavata; R. Chipaux; S. Escoffier; N. Falletto; J. Jardillier; S. Kerhoas; D. Lhuillier; F. Marie; C. Veyssiere; J. Ahrens; R. Beck; M. Lang

    2000-05-01

    A new Compton polarimeter is built on the CEBAF Hall A electron beam line. Performances of 10% resolution and 1% calibration are required for the photon calorimeter of this polarimeter. This calorimeter is built with lead tungstate scintillators coming from the CMS electromagnetic calorimeter R&D. Beam tests of this detector have been made using the tagged photon beam line at MAMI, Mainz, and a resolution of 1.76%+2.75%/v+0.41%/E has been measured.

  6. CDF End Plug calorimeter Upgrade Project

    SciTech Connect

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R&D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R&D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, {gamma} and {pi}{sup 0} has been designed. Its performance requirements, R&D results and mechanical design are discussed.

  7. High-Density, Scintillating, Fluoride Glass Calorimeters

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Xie, Qiuchen

    2014-03-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Here, we propose to use high density, scintillating, fluoride glasses as active media in calorimeters. CHG3 is a special example of this glass family, which has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. In this presentation, the results from a computational study on the performances of the two different designs of CHG3 glass calorimeters are reported. First design reads the signal directly from the edge of the glass plate; the second design utilizes wavelength-shifting fibers to carry the signal out of the glass plate. Each simulation model is a sampling calorimeter with 20 alternating layers of glass and iron absorber. By changing the absorber thickness we tested hadronic as well as electromagnetic capabilities of the calorimeter models.

  8. PERFORMANCE OF A LIQUID XENON CALORIMETER CRYOGENIC SYSTEM FOR THE MEG EXPERIMENT

    SciTech Connect

    Haruyama, T.; Kasami, K.; Hisamitsu, Y.; Iwamoto, T.; Mihara, S.; Mori, T.; Nishiguchi, H.; Otani, W.; Sawada, R.; Uchiyama, Y.; Nishitani, T.

    2008-03-16

    The {mu}-particle rare decay physics experiment, the MU-E-GAMMA (MEG) experiment, will soon be operational at the Paul Scherrer Institute in Zurich. To achieve the extremely high sensitivity required to detect gamma rays, 800 L of liquid xenon is used as the medium in the calorimeter, viewed by 830 photomultiplier tubes (PMT) immersed in it. The required liquid xenon purity is of the order of ppb of water, and is obtained by using a cryogenic centrifugal pump and cold molecular sieves. The heat load of the calorimeter at 165 K is to be approximately 120 W, which is removed by a pulse-tube cryocooler developed at KEK and built by Iwatani Industrial Gas Corp., with a cooling power of about 200 W at 165 K. The cryogenic system is also equipped with a 1000-L dewar. This paper describes the results of an initial performance test of each cryogenic component.

  9. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Moreno, P.; Valero, A.

    2016-03-01

    The Tile Calorimeter PreProcessor demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter Demonstrator project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived to receive and process the data coming from the front-end electronics of the TileCal Demonstrator module, as well as to configure it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the front-end electronics. The TilePPr demonstrator represents 1/8 of the final TilePPr that will be designed and installed into the detector for the ATLAS Phase II Upgrade.

  10. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  11. Performance of the ATLAS Tile Calorimeter in pp collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Fiascaris, Maria; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. This detector is instrumented for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off- detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale is transferred to the rest of the detector via the response to radioactive sources. The calibrated scale is validated in situ with muons and single hadrons whereas the timing performance is checked with muons and jets. The data quality procedures used during the LHC data-taking and the evolution of the detector status during the LHC Run 1 are presented. The energy and the time reconstruction performance of the digitized signals is summarized and the calorimeter response to hadrons is investigated with collision data.

  12. Performance of a lead radiator, gas tube calorimeter

    SciTech Connect

    Spiegel, L.; Arenton, M.; Chen, T.Y.; Conetti, S.; Cox, B.; Delchamps, S.W.; Etemadi, B.; Fortney, L.; Guffey, K.; Haire, M.

    1989-03-13

    Design and performance of a 4.2 radiation length lead-sandwich, gas tube hodoscope are discussed. The device, measuring 1 /times/ 2 m/sup 2/ in area and 12 cm in depth, was employed in Fermi National Accelerator Laboratory experiment 705. Multiple samplings of anode wires situated within three-walled aluminum tubes were used to generate an X coordinate; similarly, capacitively coupled copper-clad strips were ganged together to yield a Y coordinate. The results reviewed are based on an analysis of electron calibration data taken during a recent six-month running period. In particular, position resolution (in millimeters) is seen to be 0.8 + 3.3/..sqrt..E + 31/E for the 9.92 mm spaced wires and 0.6 + 3.2/..sqrt..E + 32/E for the 12.5 mm strips, where E represents the electron beam energy in GeV. 5 refs., 6 figs.

  13. The Snellen human calorimeter revisited, re-engineered and upgraded: design and performance characteristics.

    PubMed

    Reardon, Francis D; Leppik, Kalle E; Wegmann, René; Webb, Paul; Ducharme, Michel B; Kenny, Glen P

    2006-08-01

    The measurement of whole body heat loss in humans and the performance characteristics of a modified Snellen whole body air calorimeter are described. Modifications included the location of the calorimeter in a pressurized room, control of operating temperature over a range of - 15 to + 35 degrees C, control of ambient relative humidity over a range of 20-65%, incorporation of an air mass flow measuring system to provide real time measurement of air mass flow through the calorimeter, incorporation of a constant load 'eddy current' resistance ergometer and an open circuit, expired gas analysis calorimetry system. The performance of the calorimeter is a function of the sensitivity, precision, accuracy and response time characteristics of the fundamental measurement systems including: air mass flow; thermometry and hygrometry. Calibration experiments included a calibration of the air mass flow sensor, the response of the thermometric measurement system for dry heat loss and the response of the hygrometric measurement system for evaporative heat loss. The air mass flow system was evaluated using standard differential temperature procedures to demonstrate linearity and sensitivity of the device. A novel procedure based on differential hygrometry was developed to ascertain the absolute calibration of air mass flow by resolving the unique system coefficient K. The results of the hygrometric calibration demonstrate the air mass flow response of the system is linear over the range of air mass flows from 6 to 15 kg min(-1). R(2) was 0.995. The average half response time (tR50) was 14.5 +/- 2.1 s. Similarly the results of the thermometric calibration demonstrate that the response of the apparatus is linear over the range of power input measured (coefficient of linearity R(2)=0.9997) with a precision of 0.72 W and an accuracy to within 0.36 W. The average (tR50) over all conditions was 6.0 +/- 1.9 min. In summary, modifications brought to the Snellen calorimeter have

  14. Performance of a tungsten-cerium fluoride sampling calorimeter in high-energy electron beam tests

    NASA Astrophysics Data System (ADS)

    Becker, R.; Bianchini, L.; Dissertori, G.; Djambazov, L.; Donega, M.; Lustermann, W.; Marini, A. C.; Nessi-Tedaldi, F.; Pandolfi, F.; Peruzzi, M.; Schönenberger, M.; Cavallari, F.; Dafinei, I.; Diemoz, M.; Lope, C. Jorda; Meridiani, P.; Nuccetelli, M.; Paramatti, R.; Pellegrino, F.; Micheli, F.; Organtini, G.; Rahatlou, S.; Soffi, L.; Brianza, L.; Govoni, P.; Martelli, A.; Fatis, T. Tabarelli de; Monti, V.; Pastrone, N.; Trapani, P. P.; Candelise, V.; Ricca, G. Della

    2015-12-01

    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a GEANT4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.

  15. Performance of the prototype readout system for the CMS endcap hadron calorimeter upgrade

    NASA Astrophysics Data System (ADS)

    Pastika, N. J.

    2016-03-01

    The CMS experiment at the CERN Large Hadron Collider (LHC) will upgrade the photon detection and readout systems of its barrel and endcap hadron calorimeters (HCAL) through the second long shutdown of the LHC in 2018. The upgrade includes new silicon photomultipliers (SiPMs), SiPM control electronics, signal digitization via the Fermilab QIE11 ASIC, data formatting and serialization via a Microsemi FPGA, and data transmission via CERN Versatile Link technology. The first prototype system for the endcap HCAL has been assembled and characterized on the bench and in a test beam. The design of this new system and prototype performance are described.

  16. Design, performance, and calibration of CMS hadron-barrel calorimeter wedges

    NASA Astrophysics Data System (ADS)

    Abdullin, S.; Abramov, V.; Acharya, B.; Adams, M.; Akchurin, N.; Akgun, U.; Anderson, E. W.; Antchev, G.; Ayan, S.; Aydin, S.; Baarmand, M.; Baden, D.; Banerjee, Sud.; Banerjee, Sun.; Bard, R.; Barnes, V.; Bawa, H.; Baiatian, G.; Bencze, G.; Beri, S.; Bhatnagar, V.; Bodek, A.; Budd, H.; Burchesky, K.; Camporesi, T.; Cankoçak, K.; Carrell, K.; Chendvankar, S.; Chung, Y.; Cremaldi, L.; Cushman, P.; Damgov, J.; de Barbaro, P.; Demianov, A.; de Visser, T.; Dimitrov, L.; Dugad, S.; Dumanoglu, I.; Duru, F.; Elias, J.; Elvira, D.; Emeliantchik, I.; Eno, S.; Ershov, A.; Eskut, E.; Fisher, W.; Freeman, J.; Gavrilov, V.; Genchev, V.; Gershtein, Y.; Golutvin, I.; Goncharov, P.; Grassi, T.; Green, D.; Gribushin, A.; Grinev, B.; Gülmez, E.; Gümüş, K.; Haelen, T.; Hagopian, S.; Hagopian, V.; Hauptman, J.; Hazen, E.; Heering, A.; Imboden, M.; Isiksal, E.; Jarvis, C.; Johnson, K.; Kaftanov, V.; Kalagin, V.; Karmgard, D.; Kalmani, S.; Katta, S.; Kaur, M.; Kaya, M.; Kayis-Topaksu, A.; Kellogg, R.; Khmelnikov, A.; Kisselevich, I.; Kodolova, O.; Kohli, J.; Kolossov, V.; Korablev, A.; Korneev, Y.; Kosarev, I.; Krinitsyn, A.; Krokhotin, A.; Kryshkin, V.; Kuleshov, S.; Kumar, A.; Kunori, S.; Polatoz, A.; Laasanen, A.; Lawlor, C.; Lazic, D.; Levchuk, L.; Litvintsev, D.; Litov, L.; Los, S.; Lubinsky, V.; Lukanin, V.; Machado, E.; Mans, J.; Massolov, V.; Mazumdar, K.; Merlo, J. P.; Mescheryakov, G.; Mestvirishvili, A.; Miller, M.; Mondal, N.; Nagaraj, P.; Norbeck, E.; O'Dell, V.; Olson, J.; Onel, Y.; Onengut, G.; Ozdes-Koca, N.; Ozkorucuklu, S.; Ozok, F.; Paktinat, S.; Patil, M.; Petrushanko, S.; Pikalov, V.; Piperov, S.; Podrasky, V.; Pompos, A.; Posch, C.; Qian, W.; Ralich, R.; Reddy, L.; Reidy, J.; Ruchti, R.; Rohlf, J.; Ronzhin, A.; Ryazanov, A.; Sanders, D. A.; Sanzeni, C.; Sarycheva, L.; Satyanarayana, B.; Schmidt, I.; Senchishin, V.; Sergeyev, S.; Serin-Zeyrek, M.; Sever, R.; Singh, J.; Sirunyan, A.; Skuja, A.; Sherwood, B.; Shumeiko, N.; Smirnov, V.; Sorokin, P.; Stefanovich, R.; Stolin, V.; Sudhakar, K.; Suzuki, I.; Talov, V.; Thomas, R.; Tully, C.; Turchanovich, L.; Ulyanov, A.; Vankov, I.; Vardanyan, I.; Verma, P.; Vesztergombi, G.; Vidal, R.; Vlassov, E.; Vodopiyanov, I.; Volkov, A.; Volodko, A.; Winn, D.; Whitmore, J.; Wu, S. X.; Zalan, P.; Zarubin, A.; Zeyrek, M.

    2008-05-01

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the compact muon solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/ c. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. The energy dependent time slewing effect was measured and tuned for optimal performance.

  17. LHCb calorimeters high voltage system

    NASA Astrophysics Data System (ADS)

    Gilitsky, Yu.; Golutvin, A.; Konoplyannikov, A.; Lefrancois, J.; Perret, P.; Schopper, A.; Soldatov, M.; Yakimchuk, V.

    2007-02-01

    The calorimeter system in LHCb aims to identify electrons, photons and hadrons. All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600-00-M64 for Scintillator-Pad/Preshower detectors. The calorimeter high voltage (HV) system is based on a Cockroft Walton (CW) voltage converter and a control board connected to the Experiment Control System (ECS) by serial bus. The base of each photomultiplier tube (PMT) is built with a high voltage converter and constructed on an individual printed circuit board, using compact surface mount components. The base is attached directly to the PMT. There are no HV cables in the system. A Field Programmable Gate Array (FPGA) is used on the control board as an interface between the ECS and the 200 control channels. The FPGA includes also additional functionalities allowing automated monitoring and ramp up of the high voltage values. This paper describes the HV system architecture, some technical details of the electronics implementation and summarizes the system performance. This safe and low power consumption HV electronic system for the photomultiplier tubes can be used for various biomedical apparatus too.

  18. The ATLAS Forward Calorimeter

    NASA Astrophysics Data System (ADS)

    Artamonov, A.; Bailey, D.; Belanger, G.; Cadabeschi, M.; Chen, T.-Y.; Epshteyn, V.; Gorbounov, P.; Joo, K. K.; Khakzad, M.; Khovanskiy, V.; Krieger, P.; Loch, P.; Mayer, J.; Neuheimer, E.; Oakham, F. G.; O'Neill, M.; Orr, R. S.; Qi, M.; Rutherfoord, J.; Savine, A.; Schram, M.; Shatalov, P.; Shaver, L.; Shupe, M.; Stairs, G.; Strickland, V.; Tompkins, D.; Tsukerman, I.; Vincent, K.

    2008-02-01

    Forward calorimeters, located near the incident beams, complete the nearly 4π coverage for high pT particles resulting from proton-proton collisions in the ATLAS detector at the Large Hadron Collider at CERN. Both the technology and the deployment of the forward calorimeters in ATLAS are novel. The liquid argon rod/tube electrode structure for the forward calorimeters was invented specifically for applications in high rate environments. The placement of the forward calorimeters adjacent to the other calorimeters relatively close to the interaction point provides several advantages including nearly seamless calorimetry and natural shielding for the muon system. The forward calorimeter performance requirements are driven by events with missing ET and tagging jets.

  19. Fast Shower Simulation in the ATLAS Calorimeter

    SciTech Connect

    Barberio, E.; Boudreau, J.; Butler, B.; Cheung, S.L.; Dell'Acqua, A.; Di Simone, A.; Ehrenfeld, W.; Gallas, M.V.; Glazov, A.; Marshall, Z.; Mueller, J.; Placakyte, R.; Rimoldi, A.; Savard, P.; Tsulaia, V.; Waugh, A.; Young, C.C.; /SLAC

    2011-11-08

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterization is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to {approx} 1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper.

  20. Missing Transverse Momentum Trigger Performance Studies for the ATLAS Calorimeter Trigger Upgrades

    NASA Astrophysics Data System (ADS)

    Stamas, Brianna; Parrish, Elliot; Lisi, Luc; Dudley, Christopher; Majewski, Stephanie

    2016-03-01

    The ATLAS Experiment is one of two general purpose detectors at the Large Hadron Collider at CERN in Geneva, Switzerland. In anticipation of discovering new physics, the detector will undergo numerous hardware upgrades including improvements to the Liquid Argon Calorimeter trigger electronics. For the upgrade, one component of the Level-1 trigger system will be the global feature extractor, gFEX, which will house three field programmable gate arrays (FPGAs). Specifically, in order to improve the missing transverse energy (ETmiss)trigger, an adapted topological clustering algorithm is being investigated for implementation on the FPGAs for reconstruction of proton-proton interactions in the ATLAS detector. Using simulated data, this study analyzes the performance of the adapted algorithm in software.

  1. Performance of the electronics for the Liquid Argon Calorimeter system of the SLC large detector

    SciTech Connect

    Vella, E.; Abt, I.; Haller, G.M.; Honma, A.

    1988-10-01

    Results of performance tests on electronics for the Liquid Argon Calorimeter (LAC) for the SLD experiment at SLAC are presented. The behavior of a sub-unit called a ''tophat,'' which processes 720 detector signals, is described. The electronics consists of charge sensitive preamplifiers, analog memories, A/D converters, and associated control and readout circuitry. An internal charge injection system is used to calibrate the overall response of the devices. Linearity is better than 1% of 0--28 pC charge at the input of the amplifiers. Noise (expressed as equivalent input charge) is less than 3000 electrons at a shaping time of 4 ..mu..s, with a slope of 2600 e/sup /minus///nF. Crosstalk to adjacent channels is less than 0.5%. The power consumption at a duty cycle of 13% is 61 W. 3 refs., 7 figs.

  2. Performance analysis for the CALIFA Barrel calorimeter of the R3B experiment

    NASA Astrophysics Data System (ADS)

    Alvarez-Pol, H.; Ashwood, N.; Aumann, T.; Bertini, D.; Cabanelas, P.; Casarejos, E.; Cederkall, J.; Cortina-Gil, D.; Díaz Fernández, P.; Duran, I.; Fiori, E.; Galaviz, D.; Labiche, M.; Nacher, E.; Pietras, B.; Savran, D.; Tengblad, O.; Teubig, P.

    2014-12-01

    The CALIFA calorimeter is an advanced detector for gamma rays and light charged particles, accordingly optimized for the demanding requirements of the physics programme proposed for the R3B facility at FAIR. The multipurpose character of CALIFA is required to fulfil challenging demands in energy resolution (5-6% at 1 MeV for gamma rays) and efficiency. Charged particles, e.g. protons of energies up to 320 MeV in the Barrel section, should also be identified with an energy resolution better to 1%. CALIFA is divided into two well-separated sections: a "Forward EndCap" and a cylindrical "Barrel" covering an angular range from 43.2° to 140.3°. The Barrel section, based on long CsI(Tl) pyramidal frustum crystals coupled to large area avalanche photodiodes (LAAPDs), attains the requested high efficiency for calorimetric purposes. The construction of the CALIFA Demonstrator, comprising 20% of the total detector, has already been initiated, and commissioning experiments are expected for 2014. The assessment of the capabilities and expected performance of the detector elements is a crucial step in their design, along with the prototypes evaluation. For this purpose, the Barrel geometry has been carefully implemented in the simulation package R3BRoot, including easily variable thicknesses of crystal wrapping and carbon fibre supports. A complete characterization of the calorimeter response (including efficiency, resolution, evaluation of energy and reconstruction losses) under different working conditions, with several physics cases selected to probe the detector performance over a wide range of applications, has been undertaken. Prototypes of different sections of the CALIFA Barrel have been modeled and their responses have been evaluated and compared with the experimental results. The present paper summarizes the outcome of the simulation campaign for the entire Barrel section and for the corresponding prototypes tested at different European installations.

  3. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  4. Array-scale performance of TES X-ray Calorimeters Suitable for Constellation-X

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A. D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.; Doriese, W. B.; Irwin, K. D.

    2008-01-01

    Having developed a transition-edge-sensor (TES) calorimeter design that enables high spectral resolution in high fill-factor arrays, we now present array-scale results from 32-pixel arrays of identical closely packed TES pixels. Each pixel in such an array contains a Mo/Au bilayer with a transition temperature of 0.1 K and an electroplated Au or Au/Bi xray absorber. The pixels in an array have highly uniform physical characteristics and performance. The arrays are easy to operate due to the range of bias voltages and heatsink temperatures over which solution better than 3 eV at 6 keV can be obtained. Resolution better than 3 eV has also been obtained with 2x8 time-division SQUID multiplexing. We will present the detector characteristics and show spectra acquired through the read-out chain from the multiplexer electronics through the demultiplexer software to real-time signal processing. We are working towards demonstrating this performance over the range of count rates expected in the observing program of the Constellation-X observatory. We mill discuss the impact of increased counting rate on spectral resolution, including the effects of crosstalk and optimal-filtering dead time.

  5. Secondary Emission Calorimeter Sensor Development

    NASA Astrophysics Data System (ADS)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is

  6. Prototype design of DAMPE Calorimeter readout electronics and performance in CERN beam test

    NASA Astrophysics Data System (ADS)

    Feng, Changqing; Hu, Yiming; Gao, Shanshan; Zhang, Deliang; Zhang, Yunlong; Liu, Shubin; An, Qi

    A high energy cosmic ray detector to be in space, called DArk Matter Particle Explorer (DAMPE), is now being developed in China. The major scientific objectives of the DAMPE mission are primary cosmic ray, gamma ray astronomy and dark matter particles, by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The DAMPE detector is intended to operate in a 500 km satellite orbit, and a calorimeter, which is composed of 308 BGO (Bismuth Germanate) crystal logs with a size of 2.5cm*2.5cm*60cm for each log, is a critical sub-detector for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. Each BGO crystal log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. In order to achieve a large dynamic range, each PMT base incorporates a three dynode (2, 5, 8) pick off, which results in 616 PMTs and 1848 signal channels. According to the design specification, a dynamic range of 10(5) is need for each BGO detector units. The large amount of detector components and signal channels, as well as large dynamic range, greatly challenge the design of readout electronics, because the physical space of PCB (Printed Circuit Board) and cable layout, crosstalk between signal channels and power budget, are strictly constrained. In year 2012, a prototype of DAMPE was accomplished, including a scaled-down BGO calorimeter with 132 short BGO bars. Each short BGO bar, with a size of 2.5cm*2.5cm*30cm, is coupled with a R5610A PMT on one end, while the other end is wrapped by heat-shrinkable black sleeves. A prototype of the readout electronics, using VA32 ASIC (Application Specific Integrated Circuit) and Actel Flash-based FPGA (Field Programmable Gate Array), are developed and assembled with the detector. After 1 month ground-based cosmic ray tests in China, an accelerator

  7. Nose-Cone Calorimeter: upgrade of PHENIX detector

    NASA Astrophysics Data System (ADS)

    Chvala, Ondrej

    2008-10-01

    PHENIX experiment at RHIC is efficient at measuring processes involving rare probes, but has limited acceptance in azimuth and pseudorapidity (η). The Nose Cone Calorimeter (NCC), a W-Si sampling calorimeter in the region of 0.9,<η<,, is one of the upgrades which will dramatically increase coverage in azimuth and pseudorapidity. The NCC will expand PHENIX's precision measurements of electromagnetic probes in η, reconstruct jets, and enhance triggering capabilities. It will significantly contribute to measurements of γ-jets, quarkonia, and low-x nuclear structure functions. Details of the detector design, performance, and a sample of the physics topics which will benefit from the NCC, will be discussed.

  8. HARP: high-pressure argon readout for calorimeters

    SciTech Connect

    Barranco-Luque, M.; Fabjan, C.W.; Frandsen, P.K.

    1982-01-01

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx. 200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described.

  9. Performance Results of Assembled Sensor Plane Prototypes for Special Forward Calorimeters at Future E+E Colliders

    NASA Astrophysics Data System (ADS)

    Novgorodova, O.; Aguilar, J. A.; Kulis, S.; Zawiejski, L.; Chrzaszcz, M.; Henschel, H.; Lohmann, W.; Schuwalow, S.; Afanaciev, K.; Ignatenko, A.; Kollowa, S.; Levy, I.; Idzik, M.

    2012-08-01

    The FCAL Collaboration prepared two sensor plane prototypes for the Luminosity Calorimeter (LumiCal) and Beam Calorimeter (BeamCal) for a future linear collider detector. For both several challenges appeared. The luminosity measurement has to be done with a precision of 10-3, requiring LumiCal to be a precision device. BeamCal has to operate in a harsh radiation environment and needs radiation hard sensors. Two sensor technologies are considered - Si sensors for LumiCal and GaAs:Cr for BeamCal. A full chain comprising a sensor, fan-out and front-end ASIC was successfully studied in the lab and in a 4.5 GeV electron beam at DESY. Performance parameters like Charge Collection Efficiency (CCE), the Signal to Noise ratio (SIN) were measured. In a second beam test the readout is completed by a multi-channel ADC chip and data concentrator.

  10. Nose-cone calorimeter: PHENIX forward upgrade

    NASA Astrophysics Data System (ADS)

    Chvala, Ondrej

    2009-07-01

    PHENIX is a high rate experiment efficient at measuring rare processes, but has limited acceptance in azimuth and pseudorapidity ( η). The Nose Cone Calorimeter (NCC), a W-Si sampling calorimeter in the region of 0.9< η<3, is one of the upgrades which will significantly increase coverage in both azimuth and pseudorapidity. The NCC will expand PHENIX’s precision measurements of electromagnetic probes in η, reconstruct jets, perform a wide scope of correlation measurements, and enhance triggering capabilities. The detector will significantly contribute to measurements of γ-jet correlations, quarkonia production, and low- x nuclear structure functions. This report discusses details of the detector design and its performance concerning a sample of the physics topics which will benefit from the NCC. In view of recent funding difficulties, outlook of the activities is discussed.

  11. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; Kelley, Richard L.; Leutenegger, Maurice A.; McCammon, Dan; Porter, F. Scott; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  12. LYSO crystal calorimeter readout with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Berra, A.; Bonvicini, V.; Cecchi, C.; Germani, S.; Guffanti, D.; Lietti, D.; Lubrano, P.; Manoni, E.; Prest, M.; Rossi, A.; Vallazza, E.

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger-Muller avalanche mode, and thus working as independent photon counters with a very high gain (~106). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9 ~ 18X0 LYSO crystals. The crystals were readout by 36 4×4 mm2 SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100-500 MeV energy range.

  13. Novel Planar Electromagnetic Sensors: Modeling and Performance Evaluation

    PubMed Central

    Mukhopadhyay, Subhas C.

    2005-01-01

    High performance planar electromagnetic sensors, their modeling and a few applications have been reported in this paper. The researches employing planar type electromagnetic sensors have started quite a few years back with the initial emphasis on the inspection of defects on printed circuit board. The use of the planar type sensing system has been extended for the evaluation of near-surface material properties such as conductivity, permittivity, permeability etc and can also be used for the inspection of defects in the near-surface of materials. Recently the sensor has been used for the inspection of quality of saxophone reeds and dairy products. The electromagnetic responses of planar interdigital sensors with pork meats have been investigated.

  14. Measurement of the response of the ATLAS liquid argon barrel calorimeter to electrons at the 2004 combined test-beam

    SciTech Connect

    Aharrouche, M.; Ma, H.; Adam-Bourdarios, C.; Aleksa, M.; Banfi, D.; Benchekroun, D.; Benslama, K.; Boonekamp, M.; Carli, T.; Carminati, L.; Chen, H.; Citterio, M.; Dannheim, D.; Delmastro, M.; Derue, F.; Di Girolamo, B.; El Kacimi, M.; Fanti, M.; Froeschl, R.; Fournier, D.; Grahn, K.-J.; Kado, M.; Kerschen, N.; Lafaye, R.; Laforge, B.; Lampl, W.; Laplace, S.; Lechowski, M.; Lelas, D.; Liang, Z.; Loureiro, K.; Lund-Jensen, B.; Mandelli, L.; Mazzanti, M.; McPherson, R.; Meng, Z.; Paganis, S.; Prieur, D.; Puzo, P.; Ridel, M.; Riu, I.; Rousseau, D.; Sauvage, G.; Schwemling, P.; Simon, S.; Spano, F.; Straessner, A.; Tarrade, F.; Tartarelli, F.; Thioye, M.; Unal, G.; Wilkens, H.; Wingerter-Seez, I. and Zhang, H.

    2010-03-11

    During summer and fall 2004, the response of a full slice of the ATLAS barrel detector to different particles was studied in controlled beam. One module of the ATLAS liquid argon barrel calorimeter - identical to the production modules and read out by the final front-end and back-end electronics - was used for electromagnetic calorimetry. This paper presents and discusses the electron performance of the LAr barrel calorimeter, including linearity, uniformity, and resolution with different amounts of material upstream the calorimeter and energies ranging from 1 to 250 GeV.

  15. Precision Timing Calorimeter for High Energy Physics

    DOE PAGESBeta

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  16. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  17. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  18. Magnetically Coupled Calorimeters

    NASA Technical Reports Server (NTRS)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  19. Control of large antennas based on electromagnetic performance criteria

    NASA Technical Reports Server (NTRS)

    Lin, Y. H.; Hamidi, M.; Manshadi, M.

    1985-01-01

    The electromagnetic (EM) performance of large flexible antennas is traditionally achieved by imposing stringent geometric restrictions on the structural distortions from a nominal optimum configuration. An approach to alleviate the stringency of the geometrical criteria of satisfactory performance is presented. The approach consists of generating a linear optimal control problem with quadratic cost functional where the cost functional is obtained from the EM characteristics of the antenna and the dynamic system constraint is given by the structural model of the antenna. It is established that the EM based optimal controller is considerably more efficient than the traditional geometrical based controllers. The same EM performance can be achieved with a much reduced control effort.

  20. Feasibility study of a high-performance LaBr3(Ce) calorimeter for future lepton flavor violation experiments

    NASA Astrophysics Data System (ADS)

    Papa, A.; De Gerone, M.; Dussoni, S.; Galli, L.; Nicolò, D.; Signorelli, G.

    2014-03-01

    LaBr3(Ce) is a very attractive material due to its ultra high light output and its fast response, resulting in a good candidate as a crystal for a calorimeter able to provide simultaneously very high energy and timing performances. We report here a first test with a cylindrical 3″×3″ LaBr3(Ce) crystal coupled to PMT (Photonics XP53A2B), where we explore the detector performances at relative high energies, on the region of interest for future charged Lepton Flavor Violation (cLFV) experiments, using photons in the interval of 55 ÷ 83 MeV from π0 decays up to 129 MeV from the radiative capture of negative pions on protons.

  1. Characterization and Performance of Magnetic Calorimeters for Applications in X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Porst, J.-P.; Bandler, S. R.; Adams, J. S.; Balvin, M. A.; Busch, S. E.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; Lee, S. J.; Nagler, P. C.; Porter, F. S.; Sadleir, J. E.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2014-09-01

    We have developed prototype arrays of metallic magnetic calorimeters for applications in X-ray astronomy. Each pixel consists of an all-gold X-ray absorber in good thermal contact to a gold-erbium paramagnetic thin film thermometer that is operated in the temperature range of 30-100 mK. The para-magnetic response is coupled to a SQUID amplifier. We have characterized pixels in an array and observed the expected temperature dependence of the magnetization and heat capacity. We have demonstrated a full width at half maximum energy resolution of 1.7 0.1 eV at 6 keV and have also read out these devices using time-division multiplexing.

  2. Design and performance of a thin-film calorimeter for quantitative characterization of photopolymerizable systems

    NASA Astrophysics Data System (ADS)

    Roper, Todd M.; Guymon, C. Allan; Hoyle, Charles E.

    2005-05-01

    A thin-film calorimeter (TFC) was designed for the quantitative characterization of photopolymerizable systems. A detailed description of its construction indicates the ease with which a TFC can be assembled and the flexibility inherent in its design. The mechanics of operation were optimized to yield a significantly faster instrument response time than other calorimetric methods such as photodifferential scanning calorimetry (photo-DSC). The TFC has enhanced sensitivity, more than an order of magnitude greater linear response range to changes in light intensity than that of the photo-DSC, resulting in the ability to measure both smaller and larger signals more accurately. The photopolymerization exotherm curves are reproducible and can be collected over a broad range of film thicknesses.

  3. Precision timing calorimeter for high energy physics

    NASA Astrophysics Data System (ADS)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  4. Performance of a remote High Voltage power supply for the Phase II upgrade of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Vazeille, F.

    2016-02-01

    The experience gained in the operation of the present High Voltage system of the Tile calorimeter in the ATLAS detector and the new HL-LHC constraints, in particular the increase of the radiation, lead to the proposal of changing the currently embedded regulation system to be a remote system in the counting room, by adding easily new functionalities. The system described in this note is using the same regulation scheme as the current one and distributes the individual High Voltage settings with 100 m long multi-conductor cables. The tests show that it reaches the same good performance in terms of regulation stability and noise, while allowing a permanent access to the electronics.

  5. Cerenkov fiber sampling calorimeters

    SciTech Connect

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R. ); Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W. ); Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E. )

    1994-08-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1[degree]--7[degree]). The 7 [lambda] deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented.

  6. Isothermal Calorimeter

    NASA Technical Reports Server (NTRS)

    Rowlette, John J.

    1990-01-01

    Pressure-feedback signal indicates rate of heating. Improved isothermal calorimeter measures rate of heating in object under test. Called "isothermal" because chamber holding object and its environment maintained at or near constant temperature to minimize spurious tranfers of heat introducing errors into measurements. When item under test generates heat, rate of boiling and pressure in inner chamber increase. Servo-valve opens wider to maintain preset differential pressure. Valve-control voltage used as measure of rate of heating.

  7. DSWA calorimeter bomb experiments

    SciTech Connect

    Cunningham, B

    1998-10-01

    Two experiments were performed in which 25 grams of TNT were detonated inside an expended detonation calorimeter bomb. The bomb had a contained volume of approximately 5.28 liters. In the first experiment, the bomb was charged with 3 atmospheres of nitrogen. In the second, it was charged with 2.58 atmospheres (23.1 psi gage) of oxygen. In each experiment pressure was monitored over a period of approximately 1200 microseconds after the pulse to the CDU. Monitoring was performed via two 10,000 psi 102AO3 PCB high frequency pressure transducers mounted symmetrically in the lid of the calorimeter bomb. Conditioners used were PCB 482As. The signals from the transducers were recorded in digital format on a multi channel Tektronix scope. The sampling frequency was 10 Mhz (10 samples per microsecond). After a period of cooling following detonation, gas samples were taken and were subsequently submitted for analysis using gas mass spectrometry. Due to a late request for post shot measurement, it was only possible to make a rough estimate of the weight of debris (carbon) remaining in the calorimeter bomb following the second experiment.

  8. Muon g-2 Calorimeter Prototypes

    SciTech Connect

    Polly, Chris; /Fermilab

    2010-05-03

    The proposed design is a tungsten-scintillating fiber calorimeter with 35 segments, each read out by a separate PMT. Tungsten, which is significantly denser than lead, produces compact showers. This is necessary, in order to improve shower separation in analysis and to fully contain the showers within a calorimeter that satisfies the strict space constraints of the experiment. A single calorimeter segment (4 x 6 x 15 cm{sup 3}) has been constructed in order establish the feasibility of the new design and study its properties. Initial tests of the detector segment at the Paul Scherrer Institute were conducted with a low energy < 400 MeV/c electron beam. A higher-energy test with electrons up to a few GeV/c was performed at the Test Beam Facility under the experimental number T-967. All data from that test have been analyzed and published, and the tungsten-scintillating fiber calorimeter still appears to be a viable candidate. For this test beam run, a larger calorimeter (15 x 15 x 11 cm{sup 3}) has been constructed and an emphasis will be placed on understanding shower leakage and the ability to separate pileup events with a more granular readout. The experimenters will measure the energy resolution, linearity, and shower size of the calorimeter segment. This will provide important information for finalizing decisions on the angle of the fibers relative to the incoming electrons and the optimal granularity of the readout.

  9. T-1018 UCLA Spacordion Tungsten Powder Calorimeter

    SciTech Connect

    Trentalange, Stephen; Tsai, Oleg; Igo, George; Huang, Huan; Pan, Yu Xi; Dunkelberger, Jay; Xu, Wen Qin; Soha, Aria; Heppelmann, Steven; Gagliardi, Carl; /Texas A-M

    2011-11-16

    The present experiments at the BNL-RHIC facility are evolving towards physics goals which require the detection of medium energy electromagnetic particles (photons, electrons, neutral pions, eta mesons, etc.), especially at forward angles. New detectors will place increasing demands on energy resolution, hadron rejection and two-photon resolution and will require large area, high performance electromagnetic calorimeters in a variety of geometries. In the immediate future, either RHIC or JLAB will propose a facility upgrade (Electron-Ion Collider, or EIC) with physics goals such as electron-heavy ion collisions (or p-A collisions) with a wide range of calorimeter requirements. An R and D program based at Brookhaven National Laboratory has awarded the group funding of approximately $110,000 to develop new types of calorimeters for EIC experiments. The UCLA group is developing a method to manufacture very flexible and cost-effective, yet high quality calorimeters based on scintillating fibers and tungsten powder. The design and features of the calorimeter can be briefly stated as follows: an arbitrarily large number of small diameter fibers (< 0.5 mm) are assembled as a matrix and held rigidly in place by a set of precision screens inside an empty container. The container is then back-filled with tungsten powder, compacted on a vibrating table and infused with epoxy under vacuum. The container is then removed. The resulting sub-modules are extremely uniform and achieve roughly the density of pure Lead. The sub-modules are stacked together to achieve a final detector of the desired shape. There is no dead space between sub-modules and the fibers can be in an accordion geometry bent to prevent 'channeling' of the particles due to accidental alignment of their track with the module axis. This technology has the advantage of being modular and inexpensive to the point where the construction work may be divided among groups the size of typical university physics departments

  10. Calorimeter Timing System at CDF

    SciTech Connect

    Goncharov, Max

    2006-10-27

    We report on the design and performance of the electromagnetic calorimeter timing readout system (EMTiming) for the Collider Detector at Fermilab (CDF). The system is used in searches for rare events with high-energy photons to verify that the photon is in time with the event collision, and to reject cosmic-ray and beam-halo backgrounds. The installation and commissioning of all 862 channels was completed in Fall 2004 as part of an upgrade to the Run II version of the detector. Using in-situ data, we measure the energy threshold for a time to be recorded to be 3.8{+-}0.3 GeV and 1.9{+-}0.1 GeV in the central (CEM) and plug (PEM) portions of the detector. Similarly, for the central and plug portions we measure a timing resolution of 600{+-}10 ps and 610{+-}10 ps for electrons above 10 GeV (6 GeV). Pathologies such as noise and non-Gaussian tails are virtually non-existent.

  11. Mission Performance of High-Power Electromagnetic Thruster Systems

    NASA Astrophysics Data System (ADS)

    Gilland, James; McGuire, Melissa; Corle, Tyacie; Clem, Michelle

    2006-01-01

    Electromagnetic thrusters such as the Magnetoplasmadynamic (MPD) thruster and Pulsed Inductive Thruster provide the relatively unique capability to process megawatts (MW) of power compactly at specific impulses (Isp) of 2,000 to 10,000 seconds. This capability is well suited to demanding future missions such as cargo and piloted missions to Mars, in which large payload masses or short trip times require MW power levels. These two thrusters have been modeled at both the performance and system mass level, addressing thruster efficiency, Isp, voltage and current, and the mass of thrusters as well as their corresponding heat rejection and power processing subsystems. The resulting data have been assessed for representative Mars exploration missions using detailed low thrust trajectory codes in conjunction with the thruster system models. Analyses indicate that the thruster type and technology levels have less impact on overall mission performance than the total power level. For the 2.5 and 5 MW cases considered, the lower power delivered 50% more payload.

  12. Uranium scintillator calorimeter at the CERN ISR

    SciTech Connect

    Gordon, H; Killian, T; Ludlam, T

    1980-01-01

    The design, Monte Carlo studies and test beam results of a uranium/scintillator calorimeter to be installed in the Intersecting Storage Ring (ISR) at CERN are described. In its final stage the calorimeter will cover the full azimuth over a polar region of 45/sup 0/ < theta < 135/sup 0/. The full calorimeter is built in a modular way from 128 stacks, with each stack internally subdivided into six cells of 20 x 20 cm/sup 2/ cross section. The readout is by wavelength shifting (WLS) plates with a separate readout of the front part of the calorimeter (first ten plates) to allow electromagnetic/hadronic separation. Since the readout plates are on both sides of the cells, position information is obtained from the left/right ratio.

  13. The ITER core imaging x-ray spectrometer: x-ray calorimeter performance.

    PubMed

    Beiersdorfer, P; Brown, G V; Clementson, J; Dunn, J; Morris, K; Wang, E; Kelley, R L; Kilbourne, C A; Porter, F S; Bitter, M; Feder, R; Hill, K W; Johnson, D; Barnsley, R

    2010-10-01

    We describe the anticipated performance of an x-ray microcalorimeter instrument on ITER. As part of the core imaging x-ray spectrometer, the instrument will augment the imaging crystal spectrometers by providing a survey of the concentration of heavy ion plasma impurities in the core and possibly ion temperature values from the emission lines of different elemental ions located at various radial positions. PMID:21034021

  14. Assessment of the performance of the SMERF indoor fire facility with the use of an active calorimeter

    SciTech Connect

    Koski, J.A.; Gill, W.; Kent, L.A.; Wix, S.D.

    1994-12-31

    Tests with a water cooled calorimeter in the SMokE Reduction Facility (SMERF) at Sandia National Laboratories demonstrate that the facility is operational and ready for thermal regulatory testing of containers for radioactive materials. The facility is briefly described, and initial test results summarized.

  15. Status of the CDF II Calorimeters

    SciTech Connect

    Mattson, Mark

    2006-10-27

    The status of the CDF calorimeters was reported at the CALOR2002 conference, about a year after Run II started at the Tevatron Collider. I will review upgrades to the system since that conference, as well as the operation and performance of the calorimeters.

  16. Study of collisons of supersymmetric top Quark in the channel stop anti-stop -> e+- mu-+ sneutrino anti-sneutrino b anti-b with the experience of D0 at the Tevatron. Callibration of the electromagnetic calorimeter at D0.

    SciTech Connect

    Mendes, Aurelien; /Marseille U., Luminy

    2006-10-01

    Supersymmetry is one of the most natural extensions of the Standard Model. At low energy it may consist in the Minimal Supersymmetric Standard Model which is the framework chosen to perform the search of the stop with 350 pb{sup -1} of data collected by D0 during the RunIIa period of the TeVatron. They selected the events with an electron, a muon, missing transverse energy and non-isolated tracks, signature for the stop decay in 3-body ({bar t} {yields} bl{bar {nu}}). Since no significant excess of signal is seen, the results are interpreted in terms of limit on the stop production cross-sections, in such a way that they extend the existing exclusion region in the parameter space (m{sub {bar t}},m{sub {bar {nu}}}) up to stop masses of 168 (140) GeV for sneutrino masses of 50 (94) GeV. Finally because of the crucial role of the electromagnetic calorimeter, a fine calibration was performed using Z {yields} e{sup +}e{sup -} events, which improved significantly the energy resolution.

  17. Performance of the Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Dumont Dayot, N.

    2016-01-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS LAr Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, which are grouped into 34000 so-called Super Cells, with 12 bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which extracts the Super Cell energies. A demonstrator version of the complete system has now been installed and operated on the ATLAS detector. Results from the commissioning and performance measurements are reported.

  18. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  19. Design and Performance Estimates of an Ablative Gallium Electromagnetic Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.

    2012-01-01

    The present study details the high-power condensable propellant research being conducted at NASA Glenn Research Center. The gallium electromagnetic thruster is an ablative coaxial accelerator designed to operate at arc discharge currents in the range of 10-25 kA. The thruster is driven by a four-parallel line pulse forming network capable of producing a 250 microsec pulse with a 60 kA amplitude. A torsional-type thrust stand is used to measure the impulse of a coaxial GEM thruster. Tests are conducted in a vacuum chamber 1.5 m in diameter and 4.5 m long with a background pressure of 2 microtorr. Electromagnetic scaling calculations predict a thruster efficiency of 50% at a specific impulse of 2800 seconds.

  20. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    NASA Astrophysics Data System (ADS)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN 2).

  1. Advances in Electromagnetic Modelling through High Performance Computing

    SciTech Connect

    Ko, K.; Folwell, N.; Ge, L.; Guetz, A.; Lee, L.; Li, Z.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Xiao, L.; /SLAC

    2006-03-29

    Under the DOE SciDAC project on Accelerator Science and Technology, a suite of electromagnetic codes has been under development at SLAC that are based on unstructured grids for higher accuracy, and use parallel processing to enable large-scale simulation. The new modeling capability is supported by SciDAC collaborations on meshing, solvers, refinement, optimization and visualization. These advances in computational science are described and the application of the parallel eigensolver Omega3P to the cavity design for the International Linear Collider is discussed.

  2. Significantly improving electromagnetic performance of nanopaper and its shape-memory nanocomposite by aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Gou, Jan

    2012-04-01

    A new nanopaper that exhibits exciting electrical and electromagnetic performances is fabricated by incorporating magnetically aligned carbon nanotube (CNT) with carbon nanofibers (CNFs). Electromagnetic CNTs were blended with and aligned into the nanopaper using a magnetic field, to significantly improve the electrical and electromagnetic performances of nanopaper and its enabled shape-memory polymer (SMP) composite. The morphology and structure of the aligned CNT arrays in nanopaper were characterized with scanning electronic microscopy (SEM). A continuous and compact network of CNFs and aligned CNTs indicated that the nanopaper could have highly conductive properties. Furthermore, the electromagnetic interference (EMI) shielding efficiency of the SMP composites with different weight content of aligned CNT arrays was characterized. Finally, the aligned CNT arrays in nanopapers were employed to achieve the electrical actuation and accelerate the recovery speed of SMP composites.

  3. The DELPHI small angle tile calorimeter

    SciTech Connect

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-08-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region for the DELPHI experiment at the CERN LEP collider. A veto system composed of two scintillator layers allows to trigger on single photon events and provides e{minus}{gamma} separation. The authors present here some results of extensive measurements performed on part of the calorimeter and the veto system in the CERN test beams prior to installation and report on the performance achieved during the 1994 LEP run.

  4. Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    1997-01-01

    The scintillating optical fiber calorimeter is a hybrid instrument with both active and passive components for measuring the proton and helium cosmic ray spectra from 0.2 to IO TeV kinetic energy. A thin emulsion/x-ray film chamber is situated between a cerenkov counter and an imaging calorimeter. Scintillating optical fibers sample the electromagnetic showers that develop in the calorimeter and identify the trajectory of cosmic rays that interact in SOFCAL. The emulsion/x-ray film data provide an in flight calibration for SOFCAL. The data reduction techniques used will be discussed and interim results of the analysis from a 20 hour balloon flight will be presented.

  5. Status of the CALICE analog calorimeter technological prototypes

    NASA Astrophysics Data System (ADS)

    Terwort, Mark; CALICE Collaboration

    2012-12-01

    The CALICE collaboration is currently developing engineering prototypes of electromagnetic and hadronic calorimeters for a future linear collider detector. This detector is designed to be used in particle-flow based event reconstruction. In particular, the calorimeters are optimized for the individual reconstruction and separation of electromagnetic and hadronic showers. They are conceived as sampling calorimeters with tungsten and steel absorbers, respectively. Two electromagnetic calorimeters are being developed, one with silicon-based active layers and one based on scintillator strips that are read out by MPPCs, allowing highly granular readout. The analog hadron calorimeter is based on scintillating tiles that are also read out individually by silicon photomultipliers. The multi-channel, auto-triggered front-end chips are integrated into the active layers of the calorimeters and are designed for minimal power consumption (power pulsing). The goal of the construction of these prototypes is to demonstrate the feasibility of building and operating detectors with fully integrated front-end electronics. The concept and engineering status of these prototypes are reported here.

  6. The CDF miniplug calorimeters

    SciTech Connect

    Lami, Stefano

    2002-06-28

    Two MiniPlug calorimeters, designed to measure the energy and lateral position of particles in the (forward) pseudorapidity region of 3.6 < |{nu}| < 5.2 of the CDF detector, have been recently installed as part of the Run II CDF upgrade at the Tevatron {bar p}p collider. They consist of lead/liquid scintillator read out by wavelength shifting fibers arranged in a pixel-type towerless geometry suitable for ''calorimetric tracking''. The design concept, the prototype performance and the final design of the MiniPlugs are here described. A recent cosmic ray test resulted in a light yield of approximately 100 pe/MIP, which exceeds our design requirements.

  7. A heat flow calorimeter

    NASA Technical Reports Server (NTRS)

    Johnston, W. V.

    1973-01-01

    Reaction mechanism for nickel-cadmium cell is not known well enough to allow calculation of heat effects. Calorimeter can measure heat absorbed or evolved in cell, by determining amount of external heat that must be supplied to calorimeter to maintain constant flow isothermal heat sink.

  8. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  9. Evolution of the dual-readout calorimeter

    NASA Astrophysics Data System (ADS)

    Penzo, Aldo

    2007-12-01

    Measuring the energy of hadronic jets with high precision is essential at present and future colliders, in particular at ILC. The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of fluctuations in this fraction on the overall energy resolution. In this respect, 4th is orthogonal to the other three concepts, which rely on particle flow analysis (PFA). The DREAM test-beam results hold promises for excellent performances, coupled with relatively simple construction and moderate costs, making such a solution an interesting alternative to the PFA paradigm. The next foreseen steps are to extend the dual-readout principle to homogeneous calorimeters (with the potential of achieving even better performances) and to tackle another source of fluctuation in hadronic showers, originating from binding energy losses in nuclear break-up (measuring neutrons of few MeV energy).

  10. Calorimeter Data Acquisition and Reporting Software

    Energy Science and Technology Software Center (ESTSC)

    1998-08-27

    The calorimeter Data Acquisition and Reporting Program performs the calculations necessary to calculate the calorimetric sample results in grams and provide a printable report for up to twelve Mound Calorimeters. To determine a standard''s wattage or sample gram fill, the reporting program retrieves the output voltage from the power supply at the calorimeter and a temperature resistant resistor via a voltmeter and digital input card in a Hewlett Packard Data Acquisition Unit (DAQ). From themore » retrieved voltage data, the reporting program can calculate a standard''s wattage output and sample gram fill. The reporting program also determines equilibrium (stability) by performing a stability algorithm bassed on user defined slope an/or sigma values for the previous forty values. Once the stability is determined, the reporting program will notify the user that the calorimeter has reached equilibrium. The Calorimeter Data Acquisition and Reporting Program operates continuously as described to monitor for calorimeter equilibrium and to generate a printable report with sample results.« less

  11. Calorimeter Control Program

    Energy Science and Technology Software Center (ESTSC)

    1998-11-03

    The Calorimeter Control Software provides PID (Proportional, Integral, and Derivative) Control for up to twelve Mound Calorimeters and five Calorimeter Waterbaths. The software accepts a Voltage input, compares it to a user defined setpoint, calculates a new voltage output designed to bring the input closer to the setpoint using a PID control algorithm, then sets the analog voltage output to the calculated value. The software is designed to interface with HP 3852A Data Acquisition Unitmore » via an HP-1B PC board. All field inputs are wired into Digital Input cards and field outputs are wired from Analog Output cards.« less

  12. Calorimeter Control Program

    SciTech Connect

    Plummer, Jean R.; Levi, Gerald

    1998-11-03

    The Calorimeter Control Software provides PID (Proportional, Integral, and Derivative) Control for up to twelve Mound Calorimeters and five Calorimeter Waterbaths. The software accepts a Voltage input, compares it to a user defined setpoint, calculates a new voltage output designed to bring the input closer to the setpoint using a PID control algorithm, then sets the analog voltage output to the calculated value. The software is designed to interface with HP 3852A Data Acquisition Unit via an HP-1B PC board. All field inputs are wired into Digital Input cards and field outputs are wired from Analog Output cards.

  13. CCP. Calorimeter Control Program

    SciTech Connect

    Plummer, J.; Levi, G.

    1998-10-01

    The Calorimeter Control Software provides PID (Proportional, Integral, and Derivative) Control for up to twelve Mound Calorimeters and five Calorimeter Waterbaths. The software accepts a Voltage input, compares it to a user defined setpoint, calculates a new voltage output designed to bring the input closer to the setpoint using a PID control algorithm, then sets the analog voltage output to the calculated value. The software is designed to interface with HP 3852A Data Acquisition Unit via an HP-1B PC board. All field inputs are wired into Digital Input cards and field outputs are wired from Analog Output cards.

  14. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    NASA Astrophysics Data System (ADS)

    Simard, Olivier; ATLAS Liquid Argon Calorimeter Group

    2015-02-01

    The ATLAS experiment is designed to study the proton-proton (pp) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, as well as for hadronic calorimetry in the range 1.5 < |η| < 4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5 K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and timing boards. In the first three years of LHC operation, approximately 27 fb-1 of pp collision data were collected at centre-of-mass energies of 7-8 TeV. Throughout this period, the calorimeter consistently operated with performances very close to specifications, with high data-taking efficiency. This is in large part due to a sophisticated data monitoring procedure designed to quickly identify issues that would degrade the detector performance, to ensure that only the best quality data are used for physics analysis. After a description of the detector design, main characteristics and operation principles, this paper details the data quality assessment procedures developed during the 2011 and 2012 LHC data-taking periods, when more than 98% of the luminosity recorded by ATLAS had high quality LAr calorimeter data suitable for physics analysis.

  15. Tale of Two Curricula: The Performance of 2000 Students in Introductory Electromagnetism

    ERIC Educational Resources Information Center

    Kohlmyer, Matthew A.; Caballero, Marcos D.; Catrambone, Richard; Chabay, Ruth W.; Ding, Lin; Haugan, Mark P.; Marr, M. Jackson; Sherwood, Bruce A.; Schatz, Michael F.

    2009-01-01

    The performance of over 2000 students in introductory calculus-based electromagnetism (E&M) courses at four large research universities was measured using the Brief Electricity and Magnetism Assessment (BEMA). Two different curricula were used at these universities: a traditional E&M curriculum and the Matter & Interactions (M&I) curriculum. At…

  16. An imaging calorimeter for ACCESS concept study

    NASA Astrophysics Data System (ADS)

    Parnell, T. A.; Adams, J. H.; Binns, R. W.; Christl, M. J.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Lee, J.; Pendleton, G. N.; Takahashi, Y.; Watts, J. W.

    2001-08-01

    A mission concept study to define the "Advanced Cosmic-ray Composition Experiment for Space Station (ACCESS)" was sponsored by the National Aeronautics and Space Administration (NASA). The ACCESS instrument complement contains a transition radiation detector and an ionization calorimeter to measure the spectrum of protons, helium, and heavier nuclei up to ~1015 eV to search for the limit of S/N shock wave acceleration, or evidence for other explanations of the spectra. Several calorimeter configurations have been studied, including the "baseline" totally active bismuth germanate instrument and sampling calorimeters utilizing various detectors. The Imaging Calorimeter for ACCESS (ICA) concept comprises a carbon target and a calorimeter using a high atomic number absorber sampled approximately each radiation length (rl) by thin scintillating fiber (SCIFI) detectors. The main features and options of the ICA instrument configuration are described in this paper. Since direct calibration is not possible over most of the energy range, the best approach must be decided from simulations of calorimeter performance extrapolated from CERN calibrations at 0.375 TeV. This paper presents results from the ICA simulations study.

  17. The NA62 Liquid Krypton calorimeter readout architecture

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Ryjov, V.; De Simone, N.; Venditti, S.

    2016-01-01

    The NA62 experiment [1] at the CERN SPS (Super Proton Synchrotron) accelerator studies the ultra-rare decays of charged kaons. The high-resolution Liquid Krypton (LKr) electromagnetic calorimeter of the former NA48 experiment [2] is a key component of the experiment photon-veto system. The new LKr readout system comprises 14,000 14-bit ADC acquisition channels, 432× 1 Gbit Ethernet data request and readout links routed by 28× 10 Gbit network switches to the experiment computer farm, and timing, trigger and control (TTC) distribution system. This paper presents the architecture of the LKr readout and TTC systems, the overall performance and the first successfully collected experiment physics data.

  18. Calibration of BGO Calorimeter of the DAMPE in Space

    NASA Astrophysics Data System (ADS)

    Wang, Chi

    2016-07-01

    The Dark Matter Particle Explore (DAMPE) is a satellite based experiment which launched on December 2015 and aims at indirect searching for dark matter by measuring the spectra of high energy e±, γ from 5GeV up to 10TeV originating from deep space. The 3D imaging BGO calorimeter of DAMPE was designed to precisely measurement the primary energy of the electromagnetic particle and provides a highly efficient rejection of the hadronic background by reconstruct the longitudinal and lateral profiles of showers. To achieve the expected accuracy on the energy measurement, each signal channel has to be calibrated. The energy equalization is performed using the signal that Minimum Ionizing Particles (MIP) leave in each BGO bar, the MIPs measurement method with orbit data and, data quality, time stability using MIPs data will be presented, too.

  19. The Forward Calorimeter of the GlueX Experiment

    NASA Astrophysics Data System (ADS)

    Bennett, Daniel; GlueX Collaboration

    2013-10-01

    The Forward Calorimeter (FCAL) of the GlueX experiment is a lead glass electromagnetic calorimeter currently being built in Hall D of Jefferson Lab. The GlueX experiment is a photoproduction experiment that will utilize coherent bremsstrahlung radiation to map out the light meson spectrum, including a search for hybrid mesons with exotic quantum numbers (JPC). The FCAL will detect photons between 1° and 10 .8° downstream from the target. The calorimeter is built out of 2800 elements, each of which consists of a lead glass block, an FEU 84-3 PMT, and a custom Cockcroft-Walton electronic base. In the Fall of 2011, a 25 element prototype detector was installed in Hall B of Jefferson Lab to measure the energy and timing resolution of the calorimeter using electrons between 100 and 250 MeV. The design and construction of FCAL and the results from the prototype test will be discussed.

  20. Sum and buffer amplifier for lead-glass barrel calorimeter in the TOPAZ detector

    SciTech Connect

    Ujiie, N.; Ikeda, M.; Inaba, S.

    1988-02-01

    Analog sum and buffer amplifiers have been developed to provide a fast trigger signal from the lead-glass electromagnetic calorimeter in the TOPAZ detector for TRISTAN e/sup +/e/sup -/ collider experiments at KEK. The total kick-back noise from the 4300 channel gate signals of the LeCroy FASTBUS ADC 1885N has been suppressed to less than 40 mV (equivalent to a 0.4 GeV electron signal). The performances of the analog sum and buffer amplifiers that have been developed are described.

  1. Performance of an electromagnetic bearing for the vibration control of a supercritical shaft

    NASA Technical Reports Server (NTRS)

    Bradfield, C. D.; Roberts, J. B.; Karunendiran, R.

    1987-01-01

    The flexural vibrations of a rotating shaft, running through one or more critical speeds, can be reduced to an acceptably low level by applying suitable control forces at an intermediate span position. If electromagnets are used to produce the control forces then it is possible to implement a wide variety of control strategies. A test rig is described which includes a microprocessor-based controller, in which such strategies can be realised in terms of software-based algorithms. The electromagnet configuration and the method of stabilising the electromagnet force-gap characteristic are discussed. The bounds on the performance of the system are defined. A simple control algorithm is outlined, where the control forces are proportional to the measured displacement and velocity at a single point on the shaft span; in this case the electromagnet behaves in a similar manner to that of a parallel combination of a linear spring and damper. Experimental and predicted performance of the system are compared, for this type of control, where various programmable rates of damping are applied.

  2. The STAR EM calorimeter design and small prototype test results

    SciTech Connect

    Underwood, D.G.

    1995-01-01

    The basis for several design features of The STAR Electromagnetic Calorimeter and Shower Maximum Detector is presented. This includes some of the tile-fiber optical design. The authors describe both the barrel and the end cap. Some preliminary analysis of electron acceptance vs pion rejection in test beam data is also discussed.

  3. Electromagnetic Scattering Model Performance Assessment of the Global Ice Sheet Mapping Orbiter Concept

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Johnson, J. T.; Gogineni, P.; Jezek, K. C.

    2006-12-01

    Conditions beneath polar ice are important factors in ice dynamics. Obtaining information on subsurface structures that may be under several km of ice requires use of low frequency electromagnetic sensors. Such measurements have been demonstrated from both ground and airborne platforms in recent experimental campaigns. For larger scale measurements, the Global Ice Sheet Mapping Orbiter (GISMO) mission has been proposed. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an INSAR strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. Current simulations of GISMO performance and interpretability are limited by a lack of knowledge of possible electromagnetic scattering interactions at the ice base, including the influence of the base topographical structure and the presence or absence of any water layers. An improved electromagnetic wave scattering model is therefore needed in order to describe the possible range of scattering effects at the basal layered rough surface, and to include these effects in GISMO simulations. This presentation will discuss three distinct electromagnetic models for scattering from a layered rough surface: the Small Perturbation Method (SPM), the Kirchhoff approximation (also know as physical optics (PO)) and the associated geometrical optics method, and numerical methods based on exact simulations of the electromagnetic boundary value problem. The formulation of each of these approaches will be reviewed, as well as the associated advantages and limitations of each. Sample scattering results from the three models for a one-dimensional surface profile will be illustrated for varying assumed base-layers in order

  4. The Calorimeter Systems for the sPHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2012-12-01

    A major upgrade is being planned for the PHENIX experiment that will have greatly enhanced physics capabilities to measure jets in relativistic heavy ion collisions at RHIC, as well as in polarized proton interactions, and eventually electron ion collisions at an Electron Ion Collider. This upgrade, sPHENIX, will include two new calorimeter systems. One will be a hadronic calorimeter, which will be the first hadronic calorimeter ever used in an experiment at RHIC, and another will be a new compact electromagnetic calorimeter. Both calorimeters will cover a region of +/-1.1 in pseudorapidity and 2π in phi. The hadron calorimeter will be based on scintillator plates interspersed between steel absorber plates and read out with wavelength shifting fibers. The electromagnetic calorimeter will be an accordion design that will utilize scintillating fibers embedded in a matrix consisting of tungsten plates, tungsten powder and epoxy. The readout for both calorimeters will use silicon photomultipliers. The overall design of these two calorimeter systems is described along with the R&D efforts currently being pursued to develop them along with their readout.

  5. Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet system

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Zhu, Jiawu; Gao, Xiang; Shen, Fengshun; Chen, Siming

    2015-09-01

    The Chinese Fusion Engineering Test Reactor (CFETR) superconducting magnet system was designed by the National Integration Design Group for Magnetic Confinement Fusion Reactor. The CFETR magnet system consists mainly of a central solenoid (CS) coil with six modules, 16 toroidal field (TF) coils, 8 poloidal field (PF) coils, and a set of correction coils (CC). The electromagnetic stresses and stored magnetic energy are huge on the CFETR magnets since they experience both large current densities and high magnetic field. The electromagnetic, structural and thermal performance needs to be evaluated to ensure that the magnetic field, stress, and hot spot temperature of the magnet system are within the allowed criteria. The evaluation of the electromagnetic performance of the CFETR superconducting magnet system under normal operation and fault conditions was performed. The two-dimensional finite element method was adopted to analyse the stress/strain behaviour of the CFETR CS coils. In addition, the thermal-hydraulic behaviour on quench propagation performance of the CFETR CS and TF coils was analysed to evaluate the hot spot temperature of the cable and the helium pressure inside a jacket during a quench.

  6. Spaghetti calorimeter results and prospects

    SciTech Connect

    Desalvo, R.

    1992-12-31

    In the guidelines of the SPACAL-LAA project the authors have built and beam-tested a prototype of spaghetti calorimeter with full hadronic shower containment. The results proved that the spaghetti technology (lead and scintillating fibers) can perform very accurate calorimetric measurements at the 15 ns LHC or SSC crossing rate and can compete with advantage over the other calorimetric technologies. In this paper they present the experimental results obtained so far and some future development foreseen in view of a hermetic supercollider detector.

  7. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  8. Electromagnetic design analysis and performance improvement of axial field permanent magnet generator for small wind turbine

    NASA Astrophysics Data System (ADS)

    Jung, Tae-Uk

    2012-04-01

    Axial field permanent magnet (AFPM) generators are widely applied for the small wind turbine. The output power of conventional AFPM generator, AFER-NS (Axial Field External Rotor-Non Slotted) generator, is limited by the large reluctance by the long air-gap flux paths. In this paper, the novel structure of AFPM generator, AFIR-S (Axial Field Inner Rotor-Slotted) generator, is suggested to improve the output characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio and skew angle to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other.

  9. Polyaniline-copper oxide composite: A high performance shield against electromagnetic pollution

    NASA Astrophysics Data System (ADS)

    Rahul, Duvvuri Surya; Pais, Tyson P. M.; Sharath, N.; Ali, Syed Amjad; Faisal, Muhammad

    2015-06-01

    This work reports the electromagnetic interference (EMI) shielding properties of polyaniline-copper oxide PAni/CuO composites prepared by in-situ emulsion polymerization. The shielding measurements have been carried out in the microwave frequency range of 8 to 12 GHz (X-band). The composites showed total EMI shielding effectiveness (SE) of -32 to -37.3 dB (> 99.99 % attenuation) with higher dielectric loss (ɛ″) in the range of 142 to 165, indicating their potential as high performance shield throughout the X-band. The results indicate that the electromagnetic properties of the composites depend on the content of CuO in PAni matrix.

  10. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  11. High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects

    NASA Technical Reports Server (NTRS)

    Schutt-Aine, Jose E.

    1996-01-01

    The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.

  12. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2010-01-08

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  13. An Inexpensive Solution Calorimeter

    ERIC Educational Resources Information Center

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  14. Finite element and integral equation formulations for high-performance micromagnetic and electromagnetic solvers

    NASA Astrophysics Data System (ADS)

    Chang, Ruinan

    The ability to have a good understanding of and to manipulate electromagnetic elds has been increasingly important for many hardware technologies. There is a strong need for advanced numeric algorithms that yield fast and accuracy controllable solvers for electromagnetic and micromagnetic simulations. The first part of the dissertation presents methods constituting the core of the high-performance simulator FastMag. FastMag derives its high speed from three aspects. First, it leverages the state-of-the-art graphics processing unit computational architectures, which can be hundreds of times faster than a single central processing unit. Moreover, ecient and and accurate implementations of numeric quadrature was invoked. Thirdly, we provide an analytic method for Jacobian vector products. Some advanced features are provided in FastMag. Quadratic basis functions are used to provide better accuracy. Hexahedral elements were also implemented because they are more accurate, consume less memory. The second part of the dissertation is devoted to electromagnetic scattering problems. We developed new algorithms that signicantly improved the traditional methods. First of all, potential volume integral equations were implemented, where the potential quantities (vector and scalar potential). Another important contribution of this disertation is quadrilateral barycentric basis functions (QBBFs). The QBBFs can serve as a fundamental block for primary basis functions (PBFs) and dual basis functions (DBFs). The PBFs and DBFs, when applied in combination into traditional electric and magnetic eld integral equations (EFIE and MFIE), give rise to accurate and robust results. Moreover, the DBFs make the famous Calderon preconditioner multiplicative.

  15. Charge Detector for the Imaging Calorimeter for ACCESS (ICA)

    NASA Technical Reports Server (NTRS)

    Lee, Jeongin; Adams, J. H., Jr.

    2000-01-01

    NASA's Advanced Cosmic Ray Experiment for the Space Station (ACCESS) Mission is planned to consist of a transition radiation detector (TRD) and a thin ionization calorimeter. In order to measure the charge of the primary cosmic ray, it is necessary for the calorimeter to have its own charge detector. Silicon detectors are chosen for the charge detector because of their excellent resolution, small size and nearly square shape. Monte Carlo simulations are performed to find the probability of misidentifying protons as alpha particles due to backscattered radiation from the calorimeter. Simulations were also used to investigate identifying primary cosmic rays that fragmented in the TRD before reaching the calorimeter. For this study algorithms have been developed for determining a direction of the core shower in the calorimeter. These algorithms are used to find the approximate location of the primary particle in the silicon detectors. Results show the probability to misidentify the charge depends upon the energy and direction of the primary particles.

  16. The Zeus calorimeter first level trigger

    SciTech Connect

    Smith, W.J.

    1989-04-01

    The design of the Zeus Detector Calorimeter Level Trigger is presented. The Zeus detector is being built for operation at HERA, a new storage ring that will provide collisions between 820 GeV protons and 30 GeV electrons in 1990. The calorimeter is made of depleted uranium plates and plastic scintillator read out by wavelength shifter bars into 12,864 photomultiplier tubes. These signals are combined into 974 trigger towers with separate electromagnetic and hadronic sums. The calorimeter first level trigger is pipelined with a decision provided 5 {mu}sec after each beam crossing, occurring every 96 nsec. The trigger determines the total energy, the total transverse energy, the missing energy, and the energy and number of isolated electrons and muons. It also provides information on the number and energy of clusters. The trigger rate needs to be held to 1 kHz against a rate of proton-beam gas interactions of approximately 500 kHz. The summed trigger tower pulseheights are digitized by flash ADC`s. The digital values are linearized, stored and used for sums and pattern tests.

  17. Phthalonitrile-Based Carbon Foam with High Specific Mechanical Strength and Superior Electromagnetic Interference Shielding Performance.

    PubMed

    Zhang, Liying; Liu, Ming; Roy, Sunanda; Chu, Eng Kee; See, Kye Yak; Hu, Xiao

    2016-03-23

    Electromagnetic interference (EMI) performance materials are urgently needed to relieve the increasing stress over electromagnetic pollution problems arising from the growing demand for electronic and electrical devices. In this work, a novel ultralight (0.15 g/cm(3)) carbon foam was prepared by direct carbonization of phthalonitrile (PN)-based polymer foam aiming to simultaneously achieve high EMI shielding effectiveness (SE) and deliver effective weight reduction without detrimental reduction of the mechanical properties. The carbon foam prepared by this method had specific compressive strength of ∼6.0 MPa·cm(3)/g. High EMI SE of ∼51.2 dB was achieved, contributed by its intrinsic nitrogen-containing structure (3.3 wt% of nitrogen atoms). The primary EMI shielding mechanism of such carbon foam was determined to be absorption. Moreover, the carbon foams showed excellent specific EMI SE of 341.1 dB·cm(3)/g, which was at least 2 times higher than most of the reported material. The remarkable EMI shielding performance combined with high specific compressive strength indicated that the carbon foam could be considered as a low-density and high-performance EMI shielding material for use in areas where mechanical integrity is desired. PMID:26910405

  18. Influence of Ni/Co molar ratio on electromagnetic properties and microwave absorption performances for Ni/Co paraffin composites

    NASA Astrophysics Data System (ADS)

    Yan, S. J.; Dai, S. L.; Ding, H. Y.; Wang, Z. Y.; Liu, D. B.

    2014-05-01

    Ni and Co metallic microparticles with submicron size were synthesized with a simple wet chemical reduction method at a relatively low temperature. Then their morphologies and structures were characterized by SEM and XRD. Ni metallic microparticles have spherical-shape morphology with fcc crystalline structure, however, Co has a distinct leaf-like morphology with the fcc and hcp mixed phases crystalline structures. For the characterization of their electromagnetic properties, paraffin matrix composites containing different molar ratio Ni and Co mixture powder as fillers were prepared. It was found that both the electromagnetic properties and electromagnetic microwave absorption performances of absorber layer were remarkably influenced by Ni/Co molar ratio. The electromagnetic microwave absorption performances were significantly improved by blending Ni and Co metallic microparticles into paraffin matrix with changing Ni/Co molar ratio, and enhanced mechanism were discussed.

  19. Radionuclide calorimeter system

    DOEpatents

    Donohoue, Thomas P.; Oertel, Christopher P.; Tyree, William H.; Valdez, Joe L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated.

  20. Radionuclide calorimeter system

    DOEpatents

    Donohoue, T.P.; Oertel, C.P.; Tyree, W.H.; Valdez, J.L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a Wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated. 7 figures.

  1. CALET: a calorimeter for cosmic-ray measurements in space

    NASA Astrophysics Data System (ADS)

    Mori, Nicola

    2013-06-01

    The CALorimetric Electron Telescope (CALET) instrument is scheduled for a launch in 2014 and attached to the Exposed Facility of the Japanese Experimental Module (JEM-EF) on the International Space Station. Its main objective is to perform precise measurements of the electron+positron spectrum in cosmic rays at energies up to some TeV, searching for signals from dark matter and/or contributions from nearby astrophysical sources like pulsars. Other scientific goals include the investigation of heavy ions spectra up to Fe, elemental abundance of trans-iron nuclei and a measurement of the diffuse γ ray emission with high energy resolution. The instrument is now under construction, and consists of a charge detection device (CHD) composed of two layers of plastic scintillators, a finely-segmented sampling calorimeter (IMC) and a deep, homogeneous calorimeter (TASC) made of PbWO scintillating bars. The good containment of electromagnetic showers (total depth ˜3X0(IMC)+27X0(TASC)=30X0) together with the homogeneity of TASC give an energy resolution for electrons and γ rays about 2%. CHD can discriminate the charge of primary particles with a resolution between 15% and 30% up to Fe. The finely-segmented IMC, made by tungsten layers and 1mm-wide scintillating fibers, can provide detailed information about the start and early development of particle showers. Lateral and longitudinal shower-development information from TASC, together with informations from IMC, can be used to achieve an electron/proton rejection power about 105. High-statistics for collected data will be achieved by means of the planned 5-years exposure time together with a geometrical factor of 0.12 m sr. Furthermore, a Gamma-Ray Burst monitor will complement the main detector. In this paper the status of the mission, the design and expected performance of the instrument will be detailed.

  2. Modeling Complex Calorimeters

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali

    2004-01-01

    We have developed a software suite that models complex calorimeters in the time and frequency domain. These models can reproduce all measurements that we currently do in a lab setting, like IV curves, impedance measurements, noise measurements, and pulse generation. Since all these measurements are modeled from one set of parameters, we can fully describe a detector and characterize its behavior. This leads to a model than can be used effectively for engineering and design of detectors for particular applications.

  3. Performance test of electromagnetic pump on heavy liquid metal in PREKY-I facility

    NASA Astrophysics Data System (ADS)

    li, X. L.; Ma, X. D.; Zhu, Z. Q.; Li, Y.; Lv, K. F.

    2016-05-01

    Pump is a key sub-system which drives the heavy liquid metal circulation in experimental loops. In the paper, the hydraulic and mechanical performances of an electromagnetic pump (EMP) were tested in the liquid metal test facility named PREKY-I. The test results showed that the EMP worked at good state when the working current was up to 170 ampere. In this condition, the flow rate was 5m3/h, and pressure head 7.5bar, when the outlet temperature was kept at 380°C during the test. The performance was close to the expected design parameters. The EMP had run continuously for 200 hours with stable performance. From the test results, the EMP could be used in KYLIN-II loop, which is the upgrade liquid metal test loop of PREKY-I.

  4. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping

    2013-10-01

    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  5. High performance patch antenna using circular split ring resonators and thin wires employing electromagnetic coupling improvement

    NASA Astrophysics Data System (ADS)

    Abdelrehim, Adel A. A.; Ghafouri-Shiraz, H.

    2016-09-01

    In this paper, three dimensional periodic structure composed of circular split ring resonators and thin wires is used to improve the performance of a microstrip patch antenna. The three dimensional periodic structure is placed at the top of the patch within a specific separation distance to construct the proposed antenna. The radiated electromagnetic waves intensity of the proposed antenna is improved compared with the conventional patch antenna due to the electric and magnetic coupling enhancements. These enhancements occur between the patch and the periodic structure resonators and between the different resonator pairs of the periodic structure. As a result, the electric and the magnetic fields at the top of the patch are improved, the radiated electromagnetic beam size reduces which results in a highly focused beam and hence the antenna directivity and gain are improved, while the beam are is reduced. The proposed antenna has been designed and simulated using CST microwave studio at 10 GHz. An infinite two dimensional periodicity unit cell of circular split ring resonator and thin wire is designed to resonate at a 10 GHz and simulated in CST software, the scattering parameters are extracted, the results showed that the infinite periodicity two dimensional structure has a pass band frequency response of good transmission and reflection characteristics around 10 GHz. The infinite periodicity of the two dimensional periodic structure is then truncated and multi layers of such truncated structure is used to construct a three dimensional periodic structure. A parametric analysis has been performed on the proposed antenna incorporated with the three dimensional periodic structure. The impacts of the separation distance between the patch and three dimensional periodic structures and the size of the three dimensional periodic structure on the radiation and impedance matching parameters of the proposed antenna are studied. For experimental verification, the proposed

  6. Study of response nonuniformity for the LHCb calorimeter module and the prototype of the CBM calorimeter module

    SciTech Connect

    Korolko, I. E.; Prokudin, M. S.

    2009-02-15

    A spatial nonuniformity of the response to high-energy muons is studied in the modules of the LHCb electromagnetic calorimeter and the prototype of the calorimeter module with lead plates and scintillator tiles 0.5 mm thick. The nonuniformity of the response of the inner LHCb modules to 50-GeV electrons is also measured. Software is developed for a thorough simulation of light collection in scintillator plates of a shashlik calorimeter. A model is elaborated to describe light transmission from the initial scintillation to the wavelength-shifting fiber with a subsequent reradiation and propagation of light over the fiber to the photodetector. The results of the simulation are in good agreement with data.

  7. ATLAS LAr calorimeters readout electronics upgrade R&D for sLHC

    NASA Astrophysics Data System (ADS)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    2011-04-01

    The ATLAS Liquid Argon (LAr) calorimeters consist of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters. A total of 182,468 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the Level-1 trigger. A luminosity upgrade of the LHC will occur in the years ~2020. The current readout electronics will need to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The front-end readout will send out data continuously at each bunch crossing through high speed radiation resistant optical links, the data will be processed real-time with the possibility of implementing trigger algorithms. This article is an overview of the R&D activities and architectural studies the ATLAS LAr Calorimeter Group is developing.

  8. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  9. Radioactively induced noise in gas-sampling uranium calorimeters

    SciTech Connect

    Gordon, H.A.; Rehak, P.

    1982-01-01

    The signal induced by radioactivity of a U/sup 238/ absorber in a cell of a gas-sampling uranium calorimeter was studied. By means of Campbell's theorem, the levels of the radioactively induced noise in uranium gas-sampling calorimeters was calculated. It was shown that in order to obtain similar radioactive noise performance as U-liquid argon or U-scintillator combinations, the ..cap alpha..-particles from the uranium must be stopped before entering the sensing volume of gas-uranium calorimeters.

  10. Comparison of an Electromagnetic Energy Harvester Performance using Wound Coil Wire and PCB Coil

    NASA Astrophysics Data System (ADS)

    Resali, MSM; Salleh, H.

    2016-03-01

    This paper presents the performance of two types of electromagnetic energy harvester, one using manually wound coil wire (EH-EC) and the other one using printed circuit board (PCB) coil (EH-EP). The objective of the study is to measure the corresponding output voltage and power by varying the number of coils and the position of the magnet. The experiment was conducted at a fix 50 Hz of frequency and at 0.25g of acceleration. The EH-EP was found to be more effective than the 350 turns of the wound coil wire, with maximum power of 26 μW. Overall, the performance of the EH-EC showed better result with maximum power of 125 μW for 1050 turns when compared to the EH-EP.

  11. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors

    PubMed Central

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-01-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit. PMID:23082282

  12. A Review of High-Performance Computational Strategies for Modeling and Imaging of Electromagnetic Induction Data

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.

    2014-01-01

    Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.

  13. High-sensitivity microfluidic calorimeters for biological and chemical applications

    PubMed Central

    Lee, Wonhee; Fon, Warren; Axelrod, Blake W.; Roukes, Michael L.

    2009-01-01

    High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described. PMID:19706406

  14. Design and Development of a Dense, Fine Grained Silicon Tungsten Calorimeter with Integrated Electronics

    NASA Astrophysics Data System (ADS)

    Strom, D.; Frey, R.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; Radeka, V.

    2005-02-01

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector that is optimized for particle-flow reconstruction. Our design is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Molière radius. The size of the Molière radius is an important figure of merit for energy-flow detectors.

  15. Results of R&D on a new construction technique for W/ScFi Calorimeters

    NASA Astrophysics Data System (ADS)

    Tsai, O. D.; Dunkelberger, L. E.; Gagliardi, C. A.; Heppelmann, S.; Huang, H. Z.; Igo, G.; Landry, K.; Pan, Y. X.; Trentalange, S.; Xu, W.; Zhang, Q.

    2012-12-01

    We report on results of an R&D program to develop new, simple and cost effective techniques to build compact sampling calorimeters utilizing tungsten powder and scintillating fibers. Such calorimeter detectors are under consideration for experiments at the planned Electron Ion Collider and the future upgrade of the STAR experiment at RHIC (BNL). In the first year of this R&D project we built two prototypes of very compact electromagnetic calorimeters and tested them at FNAL test beam T1018 in January 2012. Details of the construction technique, results of the test run and future plan will be presented.

  16. Scintillating fiber ribbon --- tungsten calorimeter

    SciTech Connect

    Bross, A.; Crisler, M.; Kross, B.; Wrbanek, J.

    1989-07-14

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs.

  17. Electromagnetic Effects in SDF Explosions

    SciTech Connect

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise

  18. Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs

    NASA Astrophysics Data System (ADS)

    Marker, P. A.; Foged, N.; He, X.; Christiansen, A. V.; Refsgaard, J. C.; Auken, E.; Bauer-Gottwein, P.

    2015-09-01

    Large-scale hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data alone. Due to sparse sampling in space, lithological borehole logs may overlook structures that are important for groundwater flow at larger scales. Good spatial coverage along with high spatial resolution makes airborne electromagnetic (AEM) data valuable for the structural input to large-scale groundwater models. We present a novel method to automatically integrate large AEM data sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study. Benchmarking hydrological performance by comparison of performance statistics from comparable hydrological models, the cluster model performed competitively. Calibrations of 11 hydrostratigraphic cluster models with 1-11 hydraulic conductivity zones showed improved hydrological performance with an increasing number of clusters. Beyond the 5-cluster model hydrological performance did not improve. Due to reproducibility and possibility of method standardization and automation, we believe that hydrostratigraphic model generation with the proposed method has important prospects for groundwater models used in water resources management.

  19. Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks?

    PubMed

    Dubreuil, Diane; Jay, Thérèse; Edeline, Jean-Marc

    2002-02-01

    The rapid expansion of mobile communication has generated intense interest, but has also fuelled ongoing concerns. In both humans and animals, radiofrequency radiations are suspected to affect cognitive functions. More specifically, several studies performed in rodents have suggested that spatial learning can be impaired by electromagnetic field exposure. However, none of these previous studies have simulated the common conditions of GSM mobile phones use. This study is the first using a head-only exposure system emitting a 900-MHz GSM electromagnetic field (pulsed at 217 Hz). The two behavioural tasks that were evaluated here have been used previously to demonstrate performance deficits in spatial learning after electromagnetic field exposure: a classical radial maze elimination task and a spatial navigation task in an open-field arena (dry-land version of the Morris water maze). The performances of rats exposed for 45 min to a 900-MHz electromagnetic field (1 and 3.5 W/kg) were compared to those of sham-exposed and cage-control rats. There were no differences among exposed, sham, and cage-control rats in the two spatial learning tasks. The discussion focuses on the potential reasons that led previous studies to conclude that learning deficits do occur after electromagnetic field exposure. PMID:11809512

  20. D0 Silicon Upgrade: End Calorimeter Transfer Bridge Modification

    SciTech Connect

    Stredde, H.J.; /Fermilab

    1996-07-10

    submitted to the panel for review before the bridge is put into use. It is noted here, that M.Q.S. did perform an ultrasonic test on the critical welds of the EC-CC installation bridge on Oct. 2, 1990. That test demonstrated the weld penetrations between the T1 and A-36 materials. Copies were given to the committee at that time. A copy of the original North End Cap Calorimeter Installation Note is attached for reference.

  1. The BGO Calorimeter of BGO-OD Experiment

    NASA Astrophysics Data System (ADS)

    Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Bieling, J.; Bleckwenn, M.; Böse, S.; Braghieri, A.; Brinkmann, K.-Th; Burdeynyi, D.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.-F.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Mei, P.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2015-02-01

    The BGO Rugby Ball is a large solid angle electromagnetic calorimeter now installed in the ELSA Facility in Bonn. The BGO is operating in the BGO-OD experiment aiming to study meson photoproduction off proton and neutron induced by a Bremsstrahlung polarized gamma beam of energies from 0.2 to 3.2 GeV and an intensity of 5 × 107 photons per second. The scintillating material characteristics and the photomultiplier read-out make this detector particularly suited for the detection of medium energy photons and electrons with very good energy resolution. The detector has been equipped with a new electronics read-out system, consisting of 30 sampling ADC Wie-Ne-R modules which perform the off-line reconstruction of the signal start-time allowing for a good timing resolution. Performances in linearity, resolution and time response have been carefully tested at the Beam Test Facility of the INFN National Laboratories in Frascati by using a matrix of 7 BGO crystals coupled to photomultipliers and equipped with the Wie-Ne-R sampling ADCs.

  2. Installation and operation of recording calorimeters

    SciTech Connect

    Kersey, A.F.

    1984-04-01

    The Cutler-Hammer recording calorimeter is illustrated in this paper. This calorimeter measures the total calorific value of combustible gas, and continuously samples, indicates, and records BTU per cubic foot. The paper emphasizes the importance of calorimeter accuracy. It is suggested that the calorimeter manufacturer be consulted for advice and assistance in developing a sound service program for trouble shooting and for service.

  3. Students' Performance Awareness, Motivational Orientations and Learning Strategies in a Problem-Based Electromagnetism Course

    ERIC Educational Resources Information Center

    Saglam, Murat

    2010-01-01

    This study aims to explore problem-based learning (PBL) in conjunction with students' confidence in the basic ideas of electromagnetism and their motivational orientations and learning strategies. The 78 first-year geology and geophysics students followed a three-week PBL instruction in electromagnetism. The students' confidence was assessed…

  4. The new UA1 calorimeter trigger processor

    SciTech Connect

    Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagadera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.

    1989-02-01

    The UA1 First Level Trigger Processor (TP) is a fast digital machine with a highly parallel pipelined architecture of fast TTL combinational and programmable logic controlled by programmable microsequencers. The TP uses 100,000 IC's housed in 18 crates each containing 21 fastbus sized modules. It is hardwired with a very high level of interconnection. The energy deposited in the upgraded calorimeter is digitised into 1700 bytes of input data every beam crossing. The Processor selects in 1.5 microseconds events for further processing. The new electron trigger has improved hadron jet rejection, achieved by requiring low energy deposition around the electro-magnetic cluster. A missing transverse energy trigger and a total energy trigger have also been implemented.

  5. Relating Engineering Technology Students' Experiences in Electromagnetics with Performance in Communications Coursework: A Mixed-Methods Study

    ERIC Educational Resources Information Center

    Richards, Grant P.

    2009-01-01

    This study presents the results of a multi-year mixed-methods study of students' performance (n = 94) and experiences (n = 28) with electromagnetics in an elective Electrical and Computer Engineering Technology RF communications course. Data sources used in this study include academic transcripts, course exams, interviews, a learning styles…

  6. Precision closed bomb calorimeter for testing flame and gas producing initiators

    NASA Technical Reports Server (NTRS)

    Carpenter, D. R., Jr.; Taylor, A. C., Jr.

    1972-01-01

    A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.

  7. Level-2 Calorimeter Trigger Upgrade at CDF

    SciTech Connect

    Flanagan, G.U.; /Purdue U.

    2007-04-01

    The CDF Run II Level-2 calorimeter trigger is implemented in hardware and is based on an algorithm used in Run I. This system insured good performance at low luminosity obtained during the Tevatron Run II. However, as the Tevatron instantaneous luminosity increases, the limitations of the current system due to the algorithm start to become clear. In this paper, we will present an upgrade of the Level-2 calorimeter trigger system at CDF. The upgrade is based on the Pulsar board, a general purpose VME board developed at CDF and used for upgrading both the Level-2 tracking and the Level-2 global decision crate. This paper will describe the design, hardware and software implementation, as well as the advantages of this approach over the existing system.

  8. Tale of two curricula: The performance of 2000 students in introductory electromagnetism

    NASA Astrophysics Data System (ADS)

    Kohlmyer, Matthew A.; Caballero, Marcos D.; Catrambone, Richard; Chabay, Ruth W.; Ding, Lin; Haugan, Mark P.; Marr, M. Jackson; Sherwood, Bruce A.; Schatz, Michael F.

    2009-12-01

    The performance of over 2000 students in introductory calculus-based electromagnetism (E&M) courses at four large research universities was measured using the Brief Electricity and Magnetism Assessment (BEMA). Two different curricula were used at these universities: a traditional E&M curriculum and the Matter & Interactions (M&I) curriculum. At each university, postinstruction BEMA test averages were significantly higher for the M&I curriculum than for the traditional curriculum. The differences in post-test averages cannot be explained by differences in variables such as preinstruction BEMA scores, grade point average, or SAT Reasoning Test (SAT) scores. BEMA performance on categories of items organized by subtopic was also compared at one of the universities; M&I averages were significantly higher in each topic. The results suggest that the M&I curriculum is more effective than the traditional curriculum at teaching E&M concepts to students, possibly because the learning progression in M&I reorganizes and augments the traditional sequence of topics, for example, by increasing early emphasis on the vector field concept and by emphasizing the effects of fields on matter at the microscopic level.

  9. An absorbed dose to water calorimeter for collimated radiation fields

    NASA Astrophysics Data System (ADS)

    Brede, H. J.; Hecker, O.; Hollnagel, R.

    2000-12-01

    A transportable calorimeter of compact design has been developed as a device for the absolute determination of the absorbed dose to water. The ease of operation of the calorimeter allows the application in clinical therapy beams of various energies, specifically for neutron, proton and heavy ion beams. The calorimeter requires collimated radiation fields with diameters lesser than 40 mm. The temperature rise caused by radiation is measured with a thermistor probe which is located in the centre of the calorimeter core. The calorimeter core consists of a cylindrical water-filled gilded aluminium can suspended by three thin nylon threads in a vacuum block in order to reduce the heat transfer by conduction. In addition, it operates at a temperature of 4°C, preventing heat transfer in water by convection. Heat transfer from the core to the surrounding by radiation is minimised by the use of two concentric temperature-controlled jackets, the inner jacket being operated at core temperature. A description of the mechanical and electrical design, of the construction and operation of the water calorimeter is given. In addition, calculations with a finite-element program code performed to determine correction factors for various radiation conditions are included.

  10. An Imaging Calorimeter for Access-Concept Study

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Adams, James H.; Binns, R. W.; Christl, M. J.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    A mission concept study to define the "Advanced Cosmic-ray Composition Experiment for Space Station (ACCESS)" was sponsored by the National Aeronautics and Space Administration (NASA). The ACCESS instrument complement contains a transition radiation detector and an ionization calorimeter to measure tile spectrum of protons, helium, and heavier nuclei up to approximately 10(exp 15) eV to search for the limit of S/N shock wave acceleration, or evidence for other explanations of the spectra. Several calorimeter configurations have been studied, including the "baseline" totally active bismuth germanate instrument and sampling calorimeters utilizing various detectors. The Imaging Calorimeter for ACCESS (ICA) concept comprises a carbon target and a calorimeter using a high atomic number absorber sampled approximately each radiation length (rl) by thin scintillating fiber (SCIFI) detectors. The main features and options of the ICA instrument configuration are described in this paper. Since direct calibration is not possible over most of the energy range, the best approach must be decided from simulations of calorimeter performance extrapolated from CERN calibrations at 0.375 TeV. This paper presents results from the ICA simulations study.

  11. The CMS central hadron calorimeter

    SciTech Connect

    Freeman, J.

    1998-11-01

    The CMS central hadron calorimeter is a brass absorber/scintillator sampling structure. We describe details of the mechanical and optical structure. We also discuss calibration techniques, and finally the anticipated construction schedule. {copyright} {ital 1998 American Institute of Physics.}

  12. Containerless high temperature calorimeter apparatus

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B. (Inventor)

    1981-01-01

    A calorimeter apparatus for measuring high temperature thermophysical properties of materials is disclosed which includes a containerless heating apparatus in which the specimen is suspended and heated by electron bombardment.

  13. Test and evaluation of an Argonne National Laboratory bulk assay calorimeter

    SciTech Connect

    Rodenburg, W.W.; Fellers, C.L.; Lemming, J.F.

    1981-06-30

    The Argonne National Laboratory bulk assay calorimeter (BAC) was subjected to a series of tests, using plutonium-238 heat standards, to evaluate the performance of the calorimeter over its operating range. The results of these tests provide baseline information of the instrument performance under laboratory conditions.

  14. TECHNICAL DESIGN REPORT FOR A NOSECONE CALORIMETER (NCC) FOR THE PHENIX EXPERIMENT.

    SciTech Connect

    PHENIX EXPERIMENT; OBRIEN,E.; BOOSE, S.; CHIU, M.; JOHNSON, B.M.; KISTENEV, E.P.; LYNCH, D.; NOUICER, R.; PAK, R.; PISANI, R.; STOLL, S.P.; SUKHANOV, A.; WOODY, C.L.; LI, Z.; RADEKA, V.; RESCIA, S.

    2007-08-01

    A remarkable result has emerged from the first several years of data taking at RHIC--the high temperature and density phase of QCD matter created in heavy ion collisions at RHIC is best described as a near perfect fluid--the strongly interacting Quark-Gluon-Plasma (sQGP). This state is characterized by a small viscosity to entropy ratio, and a high density of color charges which induces huge energy losses of partons transversing the medium. The task for the future is to understand the characteristics of the sQGP, and perhaps more importantly--to gain some insight into how and why such a medium is created. The PHENIX detector has been one of the primary experimental tools at RHIC; in particular the electromagnetic calorimeter has been a critical component of many of the measurements leading to this discovery. The coverage of the present PHENIX electromagnetic calorimeter is rather limited, covering half the azimuth and -0.35< {eta} <0.35 Further progress requires larger coverage of electromagnetic calorimetry, both to increase the rate for low cross section phenomena, and to cover a broader range of pseudorapidity to study the rapidity dependence of the medium. A pair of Nosecone Calorimeters (NCC) has been designed covering both positive and negative rapidity regions 1< |{eta}| <3 of the PHENIX detector. The NCC will make it possible to perform tomographic studies of the jet energy dependence of energy loss and medium response, by using direct photons as trigger particles over a large rapidity range. The technique of correlating trigger hadrons with low momentum hadrons has been powerfully exploited at RHIC to study the evolution of back to back jets [1, 2] and hence the response of the medium. The NCC will make it possible to do such studies using direct photons as the trigger particles. The direct photon in such ''photon-jet'' events tags the transverse momentum of outgoing parton which then fragments into lower energy particles. Together with the Forward Silicon

  15. Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter

    PubMed Central

    Neisius, Andreas; Smith, Nathan B.; Sankin, Georgy; Kuntz, Nicholas John; Madden, John Francis; Fovargue, Daniel E.; Mitran, Sorin; Lipkin, Michael Eric; Simmons, Walter Neal; Preminger, Glenn M.; Zhong, Pei

    2014-01-01

    The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The −6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters. PMID:24639497

  16. Nanostructured graphene/Fe₃O₄ incorporated polyaniline as a high performance shield against electromagnetic pollution.

    PubMed

    Singh, Kuldeep; Ohlan, Anil; Pham, Viet Hung; R, Balasubramaniyan; Varshney, Swati; Jang, Jinhee; Hur, Seung Hyun; Choi, Won Mook; Kumar, Mukesh; Dhawan, S K; Kong, Byung-Seon; Chung, Jin Suk

    2013-03-21

    The development of high-performance shielding materials against electromagnetic pollution requires mobile charge carriers and magnetic dipoles. Herein, we meet the challenge by building a three-dimensional (3D) nanostructure consisting of chemically modified graphene/Fe3O4(GF) incorporated polyaniline. Intercalated GF was synthesized by the in situ generation of Fe3O4 nanoparticles in a graphene oxide suspension followed by hydrazine reduction, and further in situ polymerization with aniline to form a polyaniline composite. Spectroscopic analysis demonstrates that the presence of GF hybrid structures facilitates strong polarization due to the formation of a solid-state charge-transfer complex between graphene and polyaniline. This provides proper impedance matching and higher dipole interaction, which leads to the high microwave absorption properties. The higher dielectric loss (ε'' = 30) and magnetic loss (μ'' = 0.2) contribute to the microwave absorption value of 26 dB (>99.7% attenuation), which was found to depend on the concentration of GF in the polyaniline matrix. Moreover, the interactions between Fe3O4, graphene and polyaniline are responsible for superior material characteristics, such as excellent environmental (chemical and thermal) degradation stability and good electric conductivity (as high as 260 S m(-1)). PMID:23400248

  17. Design and Application of the Reconstruction Software for the BaBar Calorimeter

    SciTech Connect

    Strother, Philip David; /Imperial Coll., London

    2006-07-07

    The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e{sup +}e{sup -} collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B{sup 0} {yields} J/{Psi}K{sub S}{sup 0} has been studied in the two lepton, two {pi}{sup 0} final state. The contribution of this channel to the evaluation of the angle sin 2{beta} of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity.

  18. Forward hadron calorimeter for measurements of projectile spectators in heavy-ion experiment

    SciTech Connect

    Golubeva, M. B. Guber, F. F. Ivashkin, A. P. Kurepin, A. B. Marin, V. N. Sadovsky, A. S. Petukhov, O. A.

    2012-06-15

    The construction and performance of a modular hadron calorimeter for NA61 experiment at CERN are described. The calorimeter consists of individual lead/scintillator sandwich modules with the sampling satisfying the compensating condition. The light from the individual scintillator tiles is captured and transported with the WLS-fibers embedded in the scintillator grooves. The light readout is done by avalanche micro-pixel photodiodes. The construction ensures a fine transverse granulation of the calorimeter and a longitudinal segmentation of each module in 10 independent sections. The results of beam tests of the calorimeter prototype are presented.

  19. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  20. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances

    NASA Astrophysics Data System (ADS)

    Chen, Mengting; Zhang, Ling; Duan, Shasha; Jing, Shilong; Jiang, Hao; Luo, Meifang; Li, Chunzhong

    2014-03-01

    New flexible and conductive materials (FCMs) comprising a quartz fiber cloth (QFC) reinforced multi-walled carbon nanotubes (MWCNTs)-carbon aerogel (QMCA) and poly(dimethylsiloxane) (PDMS) have been successfully prepared. The QMCA-PDMS composite with a very low loading of MWCNTs (~1.6 wt%) demonstrates enhanced performance in tensile strength (129.6 MPa), modulus (3.41 GPa) and electromagnetic interference (EMI) shielding efficiency (SE) (~16 dB in X-band (8.2-12.4 GHz) region). Compared to the QC (where MWCNTs were simply deposited on the QFCs without forming aerogel networks) based PDMS composite, a ~120%, 330% and 178% increase of tensile strength, modulus, and EMI SE was obtained, respectively. Moreover, the EMI SE of the QMCA-PDMS composite can further reach 20 dB (a SE level needed for commercial applications) with only 2 wt% MWCNTs. Furthermore, the conductivity of the QMCA-PDMS laminate can reach 1.67 S cm-1 even with very low MWCNTs (1.6 wt%), which still remains constant even after 5000 times bending and exhibits an increase of ~170% than that of MWCNT-carbon aerogel (MCA)-PDMS at 20% strain. Such intriguing performances are mainly attributed to their unique networks in QMCA-PDMS composites. In addition, these features can also protect electronics against harm from external forces and EMI, giving the brand-new FCMs huge potential in next-generation devices, like E-skin, robot joints and so on.New flexible and conductive materials (FCMs) comprising a quartz fiber cloth (QFC) reinforced multi-walled carbon nanotubes (MWCNTs)-carbon aerogel (QMCA) and poly(dimethylsiloxane) (PDMS) have been successfully prepared. The QMCA-PDMS composite with a very low loading of MWCNTs (~1.6 wt%) demonstrates enhanced performance in tensile strength (129.6 MPa), modulus (3.41 GPa) and electromagnetic interference (EMI) shielding efficiency (SE) (~16 dB in X-band (8.2-12.4 GHz) region). Compared to the QC (where MWCNTs were simply deposited on the QFCs without forming

  1. Assessing the potential for improved scramjet performance through application of electromagnetic flow control

    NASA Astrophysics Data System (ADS)

    Lindsey, Martin Forrester

    Sustained hypersonic flight using scramjet propulsion is the key technology bridging the gap between turbojets and the exoatmospheric environment where a rocket is required. Recent efforts have focused on electromagnetic (EM) flow control to mitigate the problems of high thermomechanical loads and low propulsion efficiencies associated with scramjet propulsion. This research effort is the first flight-scale, three-dimensional computational analysis of a realistic scramjet to determine how EM flow control can improve scramjet performance. Development of a quasi-one dimensional design tool culminated in the first open source geometry of an entire scramjet flowpath. This geometry was then tested extensively with the Air Force Research Laboratory's three-dimensional Navier-Stokes and EM coupled computational code. As part of improving the model fidelity, a loosely coupled algorithm was developed to incorporate thermochemistry. This resulted in the only open-source model of fuel injection, mixing and combustion in a magnetogasdynamic (MGD) flow controlled engine. In addition, a control volume analysis tool with an electron beam ionization model was presented for the first time in the context of the established computational method used. Local EM flow control within the internal inlet greatly impacted drag forces and wall heat transfer but was only marginally successful in raising the average pressure entering the combustor. The use of an MGD accelerator to locally increase flow momentum was an effective approach to improve flow into the scramjet's isolator. Combustor-based MGD generators proved superior to the inlet generator with respect to power density and overall engine efficiency. MGD acceleration was shown to be ineffective in improving overall performance, with all of the bypass engines having approximately 33% more drag than baseline and none of them achieving a self-powered state.

  2. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances.

    PubMed

    Chen, Mengting; Zhang, Ling; Duan, Shasha; Jing, Shilong; Jiang, Hao; Luo, Meifang; Li, Chunzhong

    2014-04-01

    New flexible and conductive materials (FCMs) comprising a quartz fiber cloth (QFC) reinforced multi-walled carbon nanotubes (MWCNTs)-carbon aerogel (QMCA) and poly(dimethylsiloxane) (PDMS) have been successfully prepared. The QMCA-PDMS composite with a very low loading of MWCNTs (∼1.6 wt%) demonstrates enhanced performance in tensile strength (129.6 MPa), modulus (3.41 GPa) and electromagnetic interference (EMI) shielding efficiency (SE) (∼16 dB in X-band (8.2-12.4 GHz) region). Compared to the QC (where MWCNTs were simply deposited on the QFCs without forming aerogel networks) based PDMS composite, a ∼120%, 330% and 178% increase of tensile strength, modulus, and EMI SE was obtained, respectively. Moreover, the EMI SE of the QMCA-PDMS composite can further reach 20 dB (a SE level needed for commercial applications) with only 2 wt% MWCNTs. Furthermore, the conductivity of the QMCA-PDMS laminate can reach 1.67 S cm(-1) even with very low MWCNTs (1.6 wt%), which still remains constant even after 5000 times bending and exhibits an increase of ∼170% than that of MWCNT-carbon aerogel (MCA)-PDMS at 20% strain. Such intriguing performances are mainly attributed to their unique networks in QMCA-PDMS composites. In addition, these features can also protect electronics against harm from external forces and EMI, giving the brand-new FCMs huge potential in next-generation devices, like E-skin, robot joints and so on. PMID:24577052

  3. The Development of a 3D Imaging Calorimeter of DAMPE for Cosmic Ray Physics

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlong; Hu, Yiming; Feng, Changqing; Liu, Shubin; Wang, Chi; Zhang, Zhiyong; Wei, Yifeng; Huang, Guangshun

    2016-07-01

    The DArk Matter Particle Explorer (DAMPE) experiment began its on-orbit operations on December 17, 2015. The BGO Electromagnetic Calorimeter (BGO ECAL) of the DAMPE is a total absorption calorimeter that allows for a precise three-dimensional imaging of the shower shape. It provides a good energy resolution (<1%@200GeV) and high electron/hadron discrimination (>10^5). The calorimeter also provides a trigger capability to DAMPE. The BGO ECAL light collection system and electronics are designed to measure electromagnetic particles over a wide energy range, from 5 GeV to 10 TeV. An Engineering qualified model was built and tested using high energy electron and proton beams with energy ranging from 1 GeV to 250GeV. Some pre results will be introduced in this talk.

  4. Electron Calorimeter Experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H.

    2008-01-01

    Boron loaded scintillators are suitable for measuring secondary neutrons produced by high-energy particles: protons & electrons Neutron flux can be used to discriminate hadron and electro-magnetic particles Combined effectiveness of all e/p discriminators techniques employedTBD Only moderate improvement in detection efficiency for B-10 concentrations >few% in thick moderators Bottom scintillator might serve as cascade penetration counter (TBC)

  5. The calorimeter of the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Grove, J. Eric; Johnson, W. Neil

    2010-07-01

    The Large Area Telescope (LAT), the primary instrument on the Fermi Gamma-ray Space Telescope, has been making revolutionary observations of the high-energy (20 MeV - 300 GeV) gamma-ray sky since its launch in June 2008. The LAT calorimeter is a modular array of 1536 CsI(Tl) crystals supported within 16 carbon fiber structures and read out at each crystal end with silicon PIN photodiodes to provide both energy and position information. The hodoscopic crystal stack allows imaging of electromagnetic showers and cosmic rays for improved energy measurement and background rejection. Signals from the array of photodiodes are processed by custom ASICs and commercial ADCs. We describe the calorimeter design and the primary factors that led those design choices.

  6. Simulation of the Hermes Lead Glass Calorimeter using a Look-Up Table

    SciTech Connect

    Vandenbroucke, A.; Miller, C. A.

    2006-10-27

    This contribution describes the Monte Carlo simulation of the Hermes Electromagnetic Lead-Glass Calorimeter. The simulation is based on the GEANT3 simulation package in combination with a Look-Up Table. Details of the simulation as well as a comparison with experimental data are reported.

  7. Thermal dynamics of bomb calorimeters

    NASA Astrophysics Data System (ADS)

    Lyon, Richard E.

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter.

  8. Thermal dynamics of bomb calorimeters.

    PubMed

    Lyon, Richard E

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter. PMID:26724069

  9. A compact light readout system for longitudinally segmented shashlik calorimeters

    NASA Astrophysics Data System (ADS)

    Berra, A.; Brizzolari, C.; Cecchini, S.; Cindolo, F.; Jollet, C.; Longhin, A.; Ludovici, L.; Mandrioli, G.; Mauri, N.; Meregaglia, A.; Paoloni, A.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Prest, M.; Sirri, G.; Terranova, F.; Vallazza, E.; Votano, L.

    2016-09-01

    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5 GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the e / π separation capability and the response of the photosensors to direct ionization.

  10. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  11. Triggering with the LHCb calorimeters

    NASA Astrophysics Data System (ADS)

    Lefevre, Regis; LHCb Collaboration

    2009-04-01

    The LHCb experiment at the LHC has been conceived to pursue high precision studies of CP violation and rare phenomena in b hadron decays. The online selection is crucial in LHCb and relies on the calorimeters to trigger on high transverse energy electrons, photons, π0 and hadrons. In this purpose a dedicated electronic has been realized. The calorimeter trigger system has been commissioned and is used to trigger on cosmic muons before beams start circulating in the LHC. When the LHC will start, it will also provide a very useful interaction trigger.

  12. D-Zero Calorimeter Multiplan

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1987-06-15

    This short report explains the parameters, and their basis, of the D-Zero calorimeter multiplan spread sheet Macintosh Multiplan worksheets have been found to be a valuable asset to the D-Zero design effort. The spread sheet contains parameters (constants) and results that come from the parameters. The full effect of changes in D-Zero calorimeter parameters can be calculated quite easily with Multiplan. When a change in a parameter is made, any results that pertain to that parameter automatically change also. This report will explain how some of the unobvious results were obtained.

  13. Calorimeters for pulsed lasers: calibration.

    PubMed

    Thacher, P D

    1976-07-01

    A calibration technique is developed and tested in which a calorimeter used for single-shot laser pulse energy measurements is calibrated with reference to a cw power standard using a chopped cw laser beam. A pulsed laser is required only to obtain the relative time response of the calorimeter to a pulse. With precautions as to beam alignment and wavelength, the principal error of the technique is that of the cw standard. Calibration of two thermopiles with cone receivers showed -2.5% and -3.5% agreement with previous calibrations made by the National Bureau of Standards. PMID:20165270

  14. Response of the D0 calorimeter to cosmic ray muons

    SciTech Connect

    Kotcher, J.

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multipurpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 47{pi} muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February--May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run. We have compared the shapes of the experimentally-obtained pulse height spectra to the Landau prediction for the ionization loss in a continuous thin absorber in the four electromagnetic and four hadronic layers of the calorimeter, and find good agreement after experimental effects are folded in. We have also determined an absolute energy calibration using two independent methods: one which measures the response of the electronics to a known amount of charge injected at the preamplifiers, and one which uses a carry-over of the calibration from a beam test of central calorimeter modules. Both absolute energy conversion factors agree with one another, within their errors. The calibration determined from the test beam carryover, relevant for use with collider physics data, has an error of 2.3%. We believe that, with further study, a final error of {approx}1% will be achieved. The theory-to-experiment comparison of the peaks (or most probable values) of the muon spectra was used to determine the layer-to-layer consistency of the muon signal. We find that the mean response in the 3 fine hadronic layers is (12 {plus_minus} 2%) higher than that in the 4 electromagnetic layers. These same comparisons have been used to verify the absolute energy conversion factors. The conversion factors work well for the electromagnetic sections.

  15. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  16. Simulations of a Thin Sampling Calorimeter with GEANT/FLUKA

    NASA Technical Reports Server (NTRS)

    Lee, Jeongin; Watts, John; Howell, Leonard; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS) will investigate the origin, composition and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays up to 10(exp 15) eV. These measurements will be made with a thin ionization calorimeter and a transition radiation detector. This paper reports studies of a thin sampling calorimeter concept for the ACCESS thin ionization calorimeter. For the past year, a Monte Carlo simulation study of a Thin Sampling Calorimeter (TSC) design has been conducted to predict the detector performance and to design the system for achieving the ACCESS scientific objectives. Simulation results show that the detector energy resolution function resembles a Gaussian distribution and the energy resolution of TSC is about 40%. In addition, simulations of the detector's response to an assumed broken power law cosmic ray spectra in the region where the 'knee' of the cosmic ray spectrum occurs have been conducted and clearly show that a thin sampling calorimeter can provide sufficiently accurate estimates of the spectral parameters to meet the science requirements of ACCESS. n

  17. The KTeV Pure CsI Calorimeter

    SciTech Connect

    Ray, R.E.

    1994-12-01

    KTeV is currently building a state-of-the-art pure CsI electromagnetic calorimeter with a sophisticated digital readout. The CsI array is expected to have better than 1% resolution over a dynamic range of 2--64 GeV. The design of the CsI array is driven by the difficult physics goal of attempting to measure the CP violation parameter Re({epsilon}{prime}/{epsilon}) to 1 part in 10000 in a high-rate neutral beam environment. The physics requirements and their impact on the final design will be discussed.

  18. Test beam results on the Proton Zero Degree Calorimeter for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Arnaldi, R.; Chiavassa, E.; Cicalò, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; De Marco, N.; Ferretti, A.; Floris, M.; Gagliardi, M.; Gallio, M.; Gemme, R.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Puddu, G.; Scomparin, E.; Serci, S.; Siddi, E.; Stocco, D.; Usai, G.; Vercellin, E.; Yermia, F.

    2006-10-01

    The proton Zero Degree Calorimeter (ZP) for the ALICE experiment will measure the energy of the spectator protons in heavy ion collisions at the CERN LHC. Since all the spectator protons have the same energy, the calorimeter's response is proportional to their number, providing a direct information on the centrality of the collision. The ZP is a spaghetti calorimeter, which collects and measures the Cherenkov light produced by the shower particles in silica optical fibers embedded in a brass absorber. The details of its construction will be shown. The calorimeter was tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. The response of the calorimeter and its energy resolution have been studied as a function of the beam energy. Also, the signal uniformity and a comparison between the transverse profile of the hadronic and electromagnetic shower are presented. Moreover, the differences between the calorimeter's responses to protons and pions of the same energy have been investigated, exploiting the proton contamination in the positive pion beams.

  19. Test beam results on the Proton Zero Degree Calorimeter for the ALICE experiment

    SciTech Connect

    Arnaldi, R.; Chiavassa, E.; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Gemme, R.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Stocco, D.; Vercellin, E.; Yermia, F.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.

    2006-10-27

    The proton Zero Degree Calorimeter (ZP) for the ALICE experiment will measure the energy of the spectator protons in heavy ion collisions at the CERN LHC. Since all the spectator protons have the same energy, the calorimeter's response is proportional to their number, providing a direct information on the centrality of the collision. The ZP is a spaghetti calorimeter, which collects and measures the Cherenkov light produced by the shower particles in silica optical fibers embedded in a brass absorber. The details of its construction will be shown. The calorimeter was tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. The response of the calorimeter and its energy resolution have been studied as a function of the beam energy. Also, the signal uniformity and a comparison between the transverse profile of the hadronic and electromagnetic shower are presented. Moreover, the differences between the calorimeter's responses to protons and pions of the same energy have been investigated, exploiting the proton contamination in the positive pion beams.

  20. A Fast, Compact, Segmented Tungsten/SciFi Calorimeter

    NASA Astrophysics Data System (ADS)

    Crnkovic, Jason; McNabb, Ronald; Lynch, Kevin; Hertzog, David

    2007-04-01

    The new E969 muon g-2 experiment at BNL will need to run at significantly higher stored muon rate to collect the necessary statistics in a reasonable time. The higher instantaneous decay electron rate will require a new segmented calorimeter to keep the systematic error from pileup small. A fast, tungsten-scintillating fiber calorimeter with PMT readout has been designed for this purpose. The high density of tungsten results in compact showers, which are necessary both to distinguish multiple simultaneous showers and to satisfy strict space constraints. Beam tests and Monte Carlo simulations of a single calorimeter segment have been performed. Analysis of these studies indicates that the new design should satisfy the requirements of the g-2 experiment.

  1. The Neutron Zero Degree Calorimeter for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Arnaldi, R.; Chiavassa, E.; Cicalò, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; De Marco, N.; Ferretti, A.; Gallio, M.; Gemme, R.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Puddu, G.; Scomparin, E.; Serci, S.; Siddi, E.; Travaglia, G.; Usai, G.; Vercellin, E.

    2006-08-01

    In this paper, we present the performance of the Neutron Zero Degree Calorimeter (ZN) for the ALICE experiment. The ZN is a quartz-fiber spaghetti calorimeter, which will measure the energy of the spectator neutrons in heavy ion collisions at the CERN LHC. Its principle of operation is based on the detection of the Cherenkov light produced by the charged particles of the shower in silica optical fibers, embedded in a W-alloy absorber. The detector was tested at CERN SPS using positive hadron and positron beams with momenta ranging from 50 to 150 GeV/c. The response of the calorimeter, the energy resolution, the localizing capability, the signal uniformity and the transverse profile of the detectable hadronic shower are presented.

  2. The NA62 liquid Krypton calorimeter's new readout system

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Lamanna, G.; Rouet, J.; Ryjov, V.; Venditti, S.

    2014-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the experiment photon-veto system; to cope with the new requirements, the back-end electronics of the LKr had to be completely renewed. Due to the huge number of the calorimeter readout channels ( ~ 14 K) and the maintenance requirement over 10 years of the experiment lifetime, the decision to sub-contract the development and production to industry was taken in 2011. This paper presents the primary test results of the Calorimeter REAdout Module (CREAM) [3] prototype delivered by the manufacturer in March 2013. All essential features, analog performance, data processing and readout, are covered.

  3. Search for new physics in the Compact Muon Solenoid (CMS) experiment and the response of the CMS calorimeters to particles and jets

    SciTech Connect

    Gumus, Kazim Ziya; /Texas Tech.

    2008-08-01

    A Monte Carlo study of a generic search for new resonances beyond the Standard Model (SM) in the CMS experiment is presented. The resonances are axigluon, coloron, E{sub 6} diquark, excited quark, W{prime}, Z{prime}, and the Randall-Sundrum graviton which decay to dijets. The dijet resonance cross section that the CMS can expect to discover at a 5{sigma} significance or to exclude at 95% confidence level for integrated luminosities of 100 pb{sup -1}, 1 fb{sup -1}, and 10 fb{sup -1} is evaluated. It is shown that a 5{sigma} discovery of a multi-TeV dijet resonance is possible for an axigluon, excited quark, and E{sub 6} diquark. However, a 5{sigma} discovery can not be projected with confidence for a W{prime}, Z{prime} and the Randall-Sundrum graviton. On the other hand, 95% CL exclusion mass regions can be measured for all resonances at high luminosities. In the second part of this dissertation, the analyses of the 2006 test beam data from the combined electromagnetic and hadronic barrel calorimeters are presented. The CMS barrel calorimeters response to a variety of beam particles in a wide momenta range (1 to 350 GeV/c) is measured. Furthermore, using these beam data, the expected performance of the barrel calorimeters to jets is predicted.

  4. The electrical properties of a planar coil electromagnetic acoustic transducer and their implications for noise performance

    NASA Astrophysics Data System (ADS)

    Seher, Matthias; Challis, Richard

    2016-02-01

    This paper is concerned with the electrical properties of an electromagnetic acoustic transducer (EMAT) formed of a flat spiral coil coupled to steel sheet components and operating over a narrow band of frequencies around 50 kHz, well below significant resonances. The electromagnetic skin effect is a significant contributor to the terminal impedance of the EMAT and hence to signal sensitivity, Johnson noise generation and the achievable signal-to-noise ratios (SNR). A transformer model is developed to simulate these effects and to assist in the optimization of the SNR. In this analysis Johnson noise in the system is compared to the unknown emf generated in the eddy current path by an incident acoustic wave to yield a fundamental SNR. The attainable SNR of the whole system is normalized to this in the form of a noise figure.

  5. Improvements in a calorimeter for high-power CW lasers

    NASA Technical Reports Server (NTRS)

    Chamberlain, G. E.; Simpson, P. A.; Smith, R. L.

    1978-01-01

    A technique for improving the measurement certainty with the BB series (Smith et al., 1972) of electrically calibrated calorimeters used in high-energy lasers is described. The technique is based on monitoring the energy which is backscattered from the meter and monitoring the overspill radiation impinging on the calorimeter at the entrance aperture. The design and performance of a second generation BB meter is discussed and compared to that of the original device in terms of number of electrical calibrations, the residual standard deviation of electrical calibration, the calibration constant for laser energy, the correcting factor for systematics, inaccuracy, imprecision, and uncertainty.

  6. Calorimeter probes for measuring high thermal flux. [in arc jets

    NASA Technical Reports Server (NTRS)

    Russell, L. D.

    1979-01-01

    Expendable, slug-type calorimeter probes were developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes were constructed with thin tungsten caps mounted on Teflon bodies. The temperature of the back surface of the tungsten cap is measured, and its time rate of change gives the steady-state absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. Design, construction, test, and performance data are presented.

  7. Imaging Calorimeter for ACCESS Simulations with GEANT/FLUKA

    NASA Technical Reports Server (NTRS)

    Watts, John; Lee, Jeongin

    2000-01-01

    Imaging Calorimeter for ACCESS (ICA) is a candidate of the calorimeter for the NASA's ACCESS program to be flown on the International Space Station. The ICA studies the origin and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays in the energy up to 10(exp 16) eV. For the past year, Monte Carlo simulation study for the ICA has been conducted using GEANT/FLUKA to predict the detector performance and to design the system for match the scientific objectives. Simulation results will be shown for the detector response and the energy resolution for various configurations.

  8. COE1 Calorimeter Operations Manual

    SciTech Connect

    Santi, Peter Angelo

    2015-12-15

    The purpose of this manual is to describe the operations of the COE1 calorimeter which is used to measure the thermal power generated by the radioactive decay of plutonium-bearing materials for the purposes of assaying the amount of plutonium within the material.

  9. Calorimeter Optimization for Jet Identification

    SciTech Connect

    Bower, G.

    2004-10-11

    During LCWS 1999 at Sitges, Spain, we presented a set of discriminators for reconstructing jets in high energy lepton colliders. We have extended that study by adding new event types, by adding new discriminators, and by using a neural net rather than cuts to identify jets. We apply these techniques to detector simulations to begin a study of calorimeter optimization.

  10. The CMS central hadron calorimeter

    SciTech Connect

    Freeman, J.; E892 Collaboration

    1996-12-31

    The CMS central hadron calorimeter is a copper absorber/ scintillator sampling structure. We describe design choices that led us to this concept, details of the mechanical and optical structure, and test beam results. We discuss calibration techniques, and finally the anticipated construction schedule.

  11. Barrel calorimeter of the CMD-3 detector

    NASA Astrophysics Data System (ADS)

    Shebalin, V. E.; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2015-12-01

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ˜6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  12. Barrel calorimeter of the CMD-3 detector

    SciTech Connect

    Shebalin, V. E. Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  13. Results of the R&D program on a magnetized SCIFI calorimeter

    NASA Astrophysics Data System (ADS)

    De Mitri, Ivan

    2002-02-01

    A comprehensive R&D program has been developed on a magnetized scintillating fiber imaging calorimeter to be used for hadronic and electromagnetic energy measurements on neutrino events in a LBL ν beam. In this paper we report on the optimization of the optical readout, in particular on gain, linearity, time resolution and cathode uniformity measurements on several PMT types with standard, fine mesh or channel multiplier structure. The PMT response in the presence of the magnetized calorimeter fringe fields has also been studied.

  14. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    NASA Astrophysics Data System (ADS)

    Boumediene, Djamel; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. The TileCal provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses iron plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by means of wavelength shifting fibers to photomultiplier tubes (PMTs). The TileCal readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read by two PMTs. A brief description of the individual calibration systems (Cs radioactive source, laser, charge injection, minimum bias) is provided. Their combination allows to calibrate each part of the data acquisition chain (optical part, photomultiplier, readout electronics) and to monitor its stability to better than 1%. The procedure for setting and preserving the electromagnetic energy scale during Run 1 data taking is discussed. The issues of linearity and stability of the response, as well as the timing adjustment are also shown.

  15. The pad readout electronics of the SLD Warm Iron Calorimeter

    SciTech Connect

    Burrows, P.N.; Busza, W.; Cartwright, S.L.; Friedman, J.I.; Fuess, S.; Gonzalez, S.; Hansl-Kozanecka, T.; Kendall, H.W.; Lath, A.; Lyons, T.; Osborne, L.S.; Rosenson, L.; Schneekloth, U.; Taylor, F.E.; Verdier, R.; Wadsworth, B.; Williams, D.C.; Yamartino, J.M. ); Byers, B.L.; Escalera, J.; Gioumousis, A.; Gray, R.; Horelick, D.; Kharakh, D.; Messner, R.L.; Moss, J.; Zdark

    1990-08-01

    The design of the pad readout electronics of the Warm Iron Calorimeter for the SLD detector at SLAC, consisting of about 9000 analog channels, is described. Results of various tests performed during the construction, installation and commissioning of the electronics mounted on the detector are presented. 10 refs., 12 figs.

  16. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    SciTech Connect

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  17. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Bates, Cameron Russell

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  18. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    DOEpatents

    Goyal, Amit , Kang; Sukill

    2012-02-21

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  19. sPHENIX Hadronic Calorimeter Scintillator Studies

    NASA Astrophysics Data System (ADS)

    Byrd, Reuben; Sphenix Collaboration

    2015-10-01

    A new form of matter called the Quark-Gluon Plasma (QGP) was discovered with the Relativistic Heavy Ion Collider (RHIC). PHENIX is an experiment at RHIC that helped with this discovery, but plans are being made to replace it with a new spectrometer with different capabilities. The sPHENIX detector will consist of a superconducting solenoid magnet, hadronic and electromagnetic calorimetry and charged particle tracking. sPHENIX will enable a rich jet physics program that will address fundamental questions about of the nature of the QGP. The new detector will provide full azimuthal coverage and +/- 1.1 in pseudorapidity. The Hadronic Calorimeter is a major subsystem in this detector. It is made of alternating layers of scintillating tiles and steel plates. In the current prototype the tiles are covered with a reflective coating and contain wavelength shifting fibers. As the second round of prototypes are developed for an upcoming beam test, special care is being taken to provide uniform light collection efficiency across the detector. Studies are being conducted to ensure this by careful alignment of the silicon photomultipliers to the fibers and varying coatings on the tiles. The effects of the coating will be presented along with the current status and ongoing plans.

  20. Hierarchical trigger of the ALICE calorimeters

    NASA Astrophysics Data System (ADS)

    Muller, Hans; Awes, Terry C.; Novitzky, Norbert; Kral, Jiri; Rak, Jan; Schambach, Jo; Wang, Yaping; Wang, Dong; Zhou, Daicui

    2010-05-01

    The trigger of the ALICE electromagnetic calorimeters is implemented in 2 hierarchically connected layers of electronics. In the lower layer, level-0 algorithms search shower energy above threshold in locally confined Trigger Region Units (TRU). The top layer is implemented as a single, global trigger unit that receives the trigger data from all TRUs as input to the level-1 algorithm. This architecture was first developed for the PHOS high pT photon trigger before it was adopted by EMCal also for the jet trigger. TRU units digitize up to 112 analogue input signals from the Front End Electronics (FEE) and concentrate their digital stream in a single FPGA. A charge and time summing algorithm is combined with a peakfinder that suppresses spurious noise and is precise to single LHC bunches. With a peak-to-peak noise level of 150 MeV the linear dynamic range above threshold spans from MIP energies at 215 up to 50 GeV. Local level-0 decisions take less than 600 ns after LHC collisions, upon which all TRUs transfer their level-0 trigger data to the upstream global trigger module which searches within the remaining level-1 latency for high pT gamma showers (PHOS) and/or for Jet cone areas (EMCaL).

  1. Energy harvesting performance of a broadband electromagnetic vibration energy harvester for powering industrial wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ren, Long; Chen, Renwen; Xia, Huakang; Zhang, Xiaoxiao

    2016-04-01

    To supply power to wireless sensor networks, a type of broadband electromagnetic vibration energy harvester (VEH) using bistable vibration scavenging structure is proposed. It consists of a planar spring, an electromagnetic transducer with an annular magnetic circuit, and a coil assembly with a ferrite bobbin inside. A nonlinear magnetic force respecting to the relative displacement is generated by the ferrite bobbin, and to broaden the working frequency bandwidth of the VEH. Moreover, the ferrite bobbin increases the magnetic flux linkage gradient of the coil assembly in its moving region, and further to improve its output voltage. The dynamic behaviors of the VEH are analyzed and predicted by finite element analysis and ODE calculation. Validation experiments are carried out and show that the VEH can harvest high energy in a relatively wide excitation frequency band. The further test shows that the load power of the VEH with a load resistor of 90Ω can reach 10mW level in a wide frequency bandwidth when the acceleration level of the harmonic excitation is 1g. It can ensure the intermittent work of many sensors as well as wireless communication modules at least.

  2. Em Calorimeter Complex Forest for the π0 and η Photo-Production Experiments at Lns-Sendai

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Fujimura, H.; Hashimoto, R.; Ishikawa, T.; Kasagi, J.; Kuwasaki, S.; Mochizuki, K.; Nawa, K.; Okada, Y.; Onodera, Y.; Sato, M.; Shimizu, H.; Yamazaki, H.; Kawano, A.; Sakamoto, Y.; Maeda, K.

    A large solid angle γ-ray detector system, FOREST, has been constructed at LNS-Sendai to study the π0 and η photo-production reactions. The FOREST detector consists of three electro-magnetic calorimeters: pure CsI crystals, Lead/SciFi blocks and Lead Glass Cherenkov counters. It covers about 90% of the total solid angle. A new data acquisition system for the FOREST detector has been developed to handle high rate trigger events with a high efficiency. To investigate performances of FOREST and the DAQ system, a test experiment has been conducted. The π0 and η mesons are clearly observed. A DAQ efficiency of 76% has been obtained at a 2 kHz trigger request.

  3. Optimization and performance improvement of an electromagnetic-type energy harvester with consideration of human walking vibration

    NASA Astrophysics Data System (ADS)

    Seo, Jongho; Kim, Jin-Su; Jeong, Un-Chang; Kim, Yong-Dae; Kim, Young-Cheol; Lee, Hanmin; Oh, Jae-Eung

    2016-02-01

    In this study, we derived an equation of motion for an electromechanical system in view of the components and working mechanism of an electromagnetic-type energy harvester (ETEH). An electromechanical transduction factor (ETF) was calculated using a finite-element analysis (FEA) based on Maxwell's theory. The experimental ETF of the ETEH measured by means of sine wave excitation was compared with and FEA data. Design parameters for the stationary part of the energy harvester were optimized in terms of the power performance by using a response surface method (RSM). With optimized design parameters, the ETEH showed an improvement in performance. We experimented with the optimized ETEH (OETEH) with respect to changes in the external excitation frequency and the load resistance by taking human body vibration in to account. The OETEH achieved a performance improvement of about 30% compared to the initial model.

  4. Experimental verification and analytical approach to influence stator skew on electromagnetic performance of permanent magnet generators with multipole rotor

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Young; Jang, Seok-Myeong; Ko, Kyoung-Jin

    2009-04-01

    This paper deals with experimental verification and analytical approach to influence stator skew on electromagnetic performance of a permanent magnet generator (PMG) with multipole rotor. The analytical expressions for magnetic field distributions are due to permanent magnets and the two-dimensional permeance function considering skew effects are established. On the basis of these analytical solutions, the analytical solutions for cogging torque and back-emf considering skew effects are also derived. Then, by applying estimated electrical parameters to a simple equivalent circuit of one phase for the PMG, output performances of the PMG with/without a skewed stator are investigated. Finally, by confirming that all analytical results are validated extensively by nonlinear finite element calculations and measurements, the validity of analysis methods presented in this paper is verified, and the influence stator skew on cogging torque, back-emf, and output performances of the PMG is also clearly described.

  5. The limited streamer tubes system for the SLD warm iron calorimeter

    SciTech Connect

    Benvenuti, A.C.; Camanzi, B.; Piemontese, L.; Zucchelli, P. |; Calcaterra, A.; De Sangro, R.; De Simone, P.; De Simone, S.; Gallinaro, M.; Peruzzi, I.; Piccolo, M.; Burrows, P.N.; Busza, W.; Cartwright, S.L.; Fuess, S.; Gonzalez, S.; Hansl-Kozanecka, T.; Lath, A.; Lyons, T.; Osborne, L.S.; Rosenson, L.; Schneekloth, U.; Taylor, F.E.; Verdier, R.; Williams, D.C.; Yamartino, J.M.; Bacchetta, N.; Bisello, D.; Castro, A.; Galvagni, S.; Loreti, M.; Pescara, L.; Wyss, J. |; Battiston, R.; Biasini, M.; Bilei, G.M.; Checcucci, B; Mancinelli, G.; Mantovani, G.; Pauluzzi, M.; Santocchia, A.; Servoli, L. |; Carpinelli, M.; Castaldi, R.; Cazzola, U.; Dell`Orso, R.; Pieroni, E.; Vannini, C.; Verdini, P.G. |; Byers, B.L.; Escalera, J.; Kharakh, D.; Messner, R.L.; Zdarko, R.W.; Johnson, J.R.

    1992-01-01

    The SLD detector at the Stanford Linear Accelerator Center is a general purpose device for studying e{sup +}{epsilon}{sup {minus}} interaction at the Z{sup 0}. The SLD calorimeter system consists of two parts: a lead Liquid Argon Calorimeter (LAC) with both electromagnetic (22 radiation lengths) and hadronic sections (2.8 absorption lengths) housed inside the coil, and the Warm Ion limited streamer tubes Calorimeter (WIC) outside the coil which uses as radiator the iron of the flux return for the magnetic field. The WIC completes the measurement of the hadronic shower energy ({approximately}85% on average is contained in the LAC) and it provides identification and tracking for muons over 99% of the solid angle. In this note we report on the construction, test and commissioning of such a large system.

  6. Containerless high-temperature calorimeter

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B.; Robinson, M. B.

    1979-01-01

    Samples are heated by electron bombardment in high-temperature calorimeter that operates from 1,000 to 3,600 C yet consumes less that 100 watts at temperatures less than 2,500 C. Contamination of samples is kept to minimum by suspending them from wire in vacuum chamber. Various sample slopes such as wires, dishs, spheres, rods, or irregular bodies can be accommodated and only about 100 nq of samples are needed for accurate measurements.

  7. Jet Reconstruction and Calibration in the ATLAS Calorimeters

    SciTech Connect

    Jorgensen Roca, Sigrid

    2006-10-27

    Many physics studies in ATLAS require precise reconstruction and calibration of particle jet kinematics. Among these are the reconstruction of the top quark mass, the search for the Higgs boson, and possible supersymmetric particles. The ATLAS calorimeter system has been designed to meet these requirements across a wide acceptance in pseudorapidity (|{eta}|<5). Different calorimeter technologies are applied in different rapidity regions to optimize the performance with respect to coverage, containment, highest possible spatial granularity, and the best possible energy resolution, in the difficult and changing experimental conditions characteristic for each of these regions.In this talk we briefly illustrate the ATLAS calorimeter features most relevant for the jet measurement. The general approach to calorimeter jet calibration is two-fold. First, the jet signal shape is used to correct for detector effects such as non-compensation and energy losses in inactive materials. This followed by corrections for biases introduced by the jet clustering algorithms and effects from the collision physics environment. We intend to discuss this calibration procedure and the different strategies available to implement it, in the context of the evaluation of the jet reconstruction performance for various available jet clustering algorithms, including a fixed cone and the Kt algorithm. A focus in this discussion is on the expected initial run condition at ATLAS start-up.

  8. Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding.

    PubMed

    Ma, Jingjing; Zhan, Maosheng; Wang, Kai

    2015-01-14

    Ultralightweight silver nanowires (AgNWs) hybrid polyimide (PI) composite foams with microcellular structure and low density of 0.014-0.022 g/cm(3) have been fabricated by a facile and effective one-pot liquid foaming process. The tension flow generated during the cell growth induced the uniform dispersion of AgNWs throughout the cell walls. The interconnected AgNWs network in the cell walls combined with the large 3D AgNWs network caused by 3D structure of foams provided fast electron transport channels inside foams. The electromagnetic interference (EMI) shielding effectiveness (SE) of these foams increased with increasing AgNWs loading as well as the nanowire aspect ratio due to the increasing connections of the conduction AgNWs network. Appropriate surface treatment like etching or spraying facilitated the construction of the seamlessly interconnected 2D AgNWs network on the surface, which could effectively reflect electromagnetic waves. Maximum specific EMI SE of values of 1210 dB·g(-1)·cm(3) at 200 MHz, 957 dB·g(-1)·cm(3) at 600 MHz, and 772 dB·g(-1)·cm(3) at 800-1500 MHz were achieved in sprayed composite foams containing <0.044 vol % AgNWs loading, which far surpasses the best values of other composite materials. The reflections of interconnected AgNWs networks on the surface and inside foams combined with the multiple reflections at interfaces contributed to the shielding effect. PMID:25518040

  9. Room-temperature calorimeter for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (˜4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

  10. Room-temperature calorimeter for x-ray free-electron lasers

    SciTech Connect

    Tanaka, T. Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-15

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%)

  11. Rugged calorimeter with a fast rise time

    SciTech Connect

    McMurtry, W.M.; Dolce, S.R.

    1980-01-01

    An intrinsic 1-mil-thick gold foil calorimeter has been developed which rises to 95% of the energy deposited in less than 2 microseconds. This calorimeter is very rugged, and can withstand rough handling without damage. The time constant is long, in the millisecond range, because of its unique construction. Use of this calorimeter has produced 100% data recovery, and agreement with true deposition to less than 10%.

  12. Impact of polymer matrix on the electromagnetic interference shielding performance for single-walled carbon nanotubes-based composites.

    PubMed

    Liang, Jiajie; Huang, Yi; Li, Ning; Bai, Gang; Liu, Zunfeng; Du, Feng; Li, Feifei; Ma, Yanfeng; Chen, Yongsheng

    2013-02-01

    Composites of acrylonitrile butadiene styrene (ABS), epoxy and soluble cross-linked polyurethane (SCPU) with various loadings of single-walled carbon nanotubes (SWCNTs) were prepared. Their electromagnetic interference (EMI) shielding effectiveness (SE) in the frequency range of 8.2-12.4 GHz (X band) was studied. Well-dispersed SWCNT composites were created in these three representative polymer matrixes. The choice of polymer matrix greatly affects the conductivity, percolation threshold, and EMI shielding properties of the SWCNT/polymer composites. Enhanced EMI SE performances were observed for the composites with better dispersed SWCNTs. Moreover, the EMI SE performances strongly correlated with SWCNT loading in the polymer matrix. The best SWCNT dispersion was achieved in the epoxy matrix: 20-30 dB EMI SE was obtained with 15 wt% SWCNTs. PMID:23646584

  13. A Triggerless readout system for the bar PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Tiemens, M.; PANDA Collaboration

    2015-02-01

    One of the physics goals of the future bar PANDA experiment at FAIR is to research newly discovered exotic states. Because the detector response created by these particles is very similar to the background channels, a new type of data readout had to be developed, called "triggerless" readout. In this concept, each detector subsystem preprocesses the signal, so that in a later stage, high-level phyiscs constraints can be applied to select events of interest. A dedicated clock source using a protocol called SODANET over optical fibers ensures proper synchronisation between the components. For this new type of readout, a new way of simulating the detector response also needed to be developed, taking into account the effects of pile-up caused by the 20 MHz interaction rate.

  14. Fabrication and Characterization of a Multichannel 3D Thermopile for Chip Calorimeter Applications

    PubMed Central

    Huynh, Tho Phuoc; Zhang, Yilei; Yehuda, Cohen

    2015-01-01

    Thermal sensors based on thermopiles are some of the most robust and popular temperature sensing technologies across industries and research disciplines. A chip calorimeter with a 3D thermopile layout with a large sensing area and multichannel capacity has been developed, which is highly desired for many applications requiring large reaction chambers or high throughputs, such as biofilm research, drug screening, etc. The performance of the device, including temperature sensitivity and heat power sensitivity, was evaluated. The capability to split the chip calorimeter to multiple channels was also demonstrated, which makes the chip calorimeter very flexible and powerful in many applications. PMID:25654716

  15. Evaluation of a bulk calorimeter and heat balance for determination of supersonic combustor efficiency

    NASA Technical Reports Server (NTRS)

    Mcclinton, C. R.; Anderson, G. Y.

    1980-01-01

    Results are presented from the shakedown and evaluation test of a bulk calorimeter. The calorimeter is designed to quench the combustion at the exit of a direct-connect, hydrogen fueled, scramjet combustor model, and to provide the measurements necessary to perform an analysis of combustion efficiency. Results indicate that the calorimeter quenches reaction, that reasonable response times are obtained, and that the calculated combustion efficiency is repeatable within + or -3 percent and varies in a regular way with combustor model parameters such as injected fuel equivalence ratio.

  16. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs

    NASA Astrophysics Data System (ADS)

    Ji, Keju; Zhao, Huihui; Zhang, Jun; Chen, Jia; Dai, Zhendong

    2014-08-01

    A lightweight multi-layered electromagnetic interference (EMI) shielding material made of open-cell foam of a Cu-Ni alloy integrated with carbon nanotubes (CNTs) was prepared by electroless copper plating, then nickel electroplating, and finally electrophoretic deposition of CNTs. The foamed Cu-Ni-CNT composite comprises, from inside to outside, Cu, Ni, and CNT layers. Scanning electron microscopy, energy dispersive spectroscopy, and EMI tests were employed to characterize the morphology, composition, and EMI performance of the composite, respectively. The results indicated that the shielding effectiveness (SE) of the composite increased with increasing pore density (indicated as pores per inch (PPI)) and increasing thickness. A specimen with a PPI of 110 and a 1.5-mm thickness had a maximum SE of up to 54.6 dB, and a SE as high as 47.5 dB on average in the 8-12 GHz range. Integrating the inherent superiority of Cu, Ni, and CNTs, the porous structure of the composite can attenuate the incident electromagnetic microwaves by reflecting, scattering, and absorbing them between the metallic skeleton and the CNT layer. The multiple reflections and absorptions make it difficult for the microwaves to escape from the composite before being absorbed, thereby making the composite a potential shielding material.

  17. Progress status for the Mu2e calorimeter system

    SciTech Connect

    Pezzullo, Gianantonio; Budagov, J.; Carosi, R.; Cervelli, F.; Cheng, C.; Cordelli, M.; Corradi, G.; Davydov, Yu.; Echenard, B.; Giovannella, S.; Glagolev, V.; Happacher, F.; Hitlin, D.; Luca, A.; Martini, M.; Miscetti, S.; Murat, P.; Ongmonkolkul, P.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Stomaci, V.; Tassielli, G.

    2015-01-01

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerful $\\mu/e$ particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~<1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal $BaF_2$ crystals of 20 cm length. Each crystal is readout by two large area APD's. In this study, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.

  18. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively. PMID:21976250

  19. Processing of the Liquid Xenon calorimeter's signals for timing measurements

    NASA Astrophysics Data System (ADS)

    Epshteyn, L. B.; Yudin, Yu V.

    2014-09-01

    One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of nucleons production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs by 5 ns or later after beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with accuracy of about 3 ns. The LXe-calorimeter consists of 14 layers of ionization chambers with anode and cathode readout. The duration of charge collection to the anodes is about 4.5 mks, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that. Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. At the first stage, the signal arrival time is determined with an accuracy of 1-2 discretization periods, and initial values of parameters for subsequent fitting procedure are calculated. At the second stage, the signal arrival time is determined with the required accuracy by means of fitting of the signal waveform with a template waveform. To implement that, a special electronics has been developed which performs waveform digitization and On-Line measurement of signals' arrival times and amplitudes.

  20. Progress status for the Mu2e calorimeter system

    NASA Astrophysics Data System (ADS)

    Pezzullo, Gianantonio; Budagov, J.; Carosi, R.; Cervelli, F.; Cheng, C.; Cordelli, M.; Corradi, G.; Davydov, Yu; Echenard, B.; Giovannella, S.; Glagolev, V.; Happacher, F.; Hitlin, D.; Luca, A.; Martini, M.; Miscetti, S.; Murat, P.; Ongmonkolkul, P.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Stomaci, V.; Tassielli, G.

    2015-02-01

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerful μ/e particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~ < 1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal BaF2 crystals of 20 cm length. Each crystal is readout by two large area APD's. In this paper, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.

  1. Progress status for the Mu2e calorimeter system

    DOE PAGESBeta

    Pezzullo, Gianantonio; Budagov, J.; Carosi, R.; Cervelli, F.; Cheng, C.; Cordelli, M.; Corradi, G.; Davydov, Yu.; Echenard, B.; Giovannella, S.; et al

    2015-01-01

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerfulmore » $$\\mu/e$$ particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~<1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal $BaF_2$ crystals of 20 cm length. Each crystal is readout by two large area APD's. In this study, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.« less

  2. Hadronic models validation in GEANT4 with CALICE highly granular calorimeters

    NASA Astrophysics Data System (ADS)

    Ramilli, Marco; CALICE Collaboration

    2012-12-01

    The CALICE collaboration has constructed highly granular hadronic and electromagnetic calorimeter prototypes to evaluate technologies for the use in detector systems at a future Linear Collider, and to validate hadronic shower models with unprecedented spatial segmentation. The electromagnetic calorimeter is a sampling structure of tungsten and silicon with 9720 readout channels. The hadron calorimeter uses 7608 small plastic scintillator cells individually read out with silicon photomultipliers. This high granularity opens up the possibility for precise three-dimensional shower reconstructions and for software compensation techniques to improve the energy resolution of the detector. We discuss the latest results on the studies of shower shapes and shower properties and the comparison to the latest developed GEANT4 models for hadronic showers. A satisfactory agreement at better than 5% is found between data and simulations for most of the investigated variables. We show that applying software compensation methods based on reconstructed clusters the energy resolution for hadrons improves by a factor of 15%. The next challenge for CALICE calorimeters will be to validate the 4th dimension of hadronic showers, namely their time evolution.

  3. The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/ c

    NASA Astrophysics Data System (ADS)

    Abdullin, S.; Abramov, V.; Acharya, B.; Adam, N.; Adams, M.; Adzic, P.; Akchurin, N.; Akgun, U.; Albayrak, E.; Alemany-Fernandez, R.; Almeida, N.; Anagnostou, G.; Andelin, D.; Anderson, E. W.; Anfreville, M.; Anicin, I.; Antchev, G.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Auffray, E.; Argiro, S.; Askew, A.; Atramentov, O.; Ayan, S.; Arcidy, M.; Aydin, S.; Aziz, T.; Baarmand, M.; Babich, K.; Baccaro, S.; Baden, D.; Baffioni, S.; Bakirci, M. N.; Balazs, M.; Banerjee, Sud.; Banerjee, Sun.; Bard, R.; Barge, D.; Barnes, V.; Barney, D.; Barone, L.; Bartoloni, A.; Baty, C.; Bawa, H.; Baiatian, G.; Bandurin, D.; Beauceron, S.; Bell, K. W.; Bencze, G.; Benetta, R.; Bercher, M.; Beri, S.; Bernet, C.; Berntzon, L.; Berthon, U.; Besancon, M.; Betev, B.; Beuselinck, R.; Bhatnagar, V.; Bhatti, A.; Biino, C.; Blaha, J.; Bloch, P.; Blyth, S.; Bodek, A.; Bornheim, A.; Bose, S.; Bose, T.; Bourotte, J.; Brett, A. M.; Brown, R. M.; Britton, D.; Budd, H.; Buehler, M.; Burchesky, K.; Busson, P.; Camanzi, B.; Camporesi, T.; Cankoçak, K.; Carrell, K.; Carrera, E.; Cartiglia, N.; Cavallari, F.; Cerci, S.; Cerutti, M.; Chang, P.; Chang, Y. H.; Charlot, C.; Chen, E. A.; Chen, W. T.; Chen, Z.; Chendvankar, S.; Chipaux, R.; Choudhary, B. C.; Choudhury, R. K.; Chung, Y.; Clarida, W.; Cockerill, D. J. A.; Combaret, C.; Conetti, S.; Cossutti, F.; Cox, B.; Cremaldi, L.; Cushman, P.; Cussans, D. G.; Dafinei, I.; Damgov, J.; da Silva di Calafiori, D. R.; Daskalakis, G.; Davatz, G.; David, A.; de Barbaro, P.; Debbins, P.; Deiters, K.; Dejardin, M.; Djordjevic, M.; Deliomeroglu, M.; Della Negra, R.; Della Ricca, G.; Del Re, D.; Demianov, A.; de Min, A.; Denegri, D.; Depasse, P.; de Visser, T.; Descamps, J.; Deshpande, P. V.; Diaz, J.; Diemoz, M.; di Marco, E.; Dimitrov, L.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Dobrzynski, L.; Drndarevic, S.; Duboscq, J. E.; Dugad, S.; Dumanoglu, I.; Duru, F.; Dutta, D.; Dzelalija, M.; Efthymiopoulos, I.; Elias, J.; Elliott-Peisert, A.; El Mamouni, H.; Elvira, D.; Emeliantchik, I.; Eno, S.; Ershov, A.; Erturk, S.; Esen, S.; Eskut, E.; Evangelou, I.; Evans, D. L.; Fabbro, B.; Faure, J. L.; Fay, J.; Fenyvesi, A.; Ferri, F.; Fisher, W.; Flower, P. S.; Franci, D.; Franzoni, G.; Freeman, J.; Freudenreich, K.; Funk, W.; Ganjour, S.; Gargiulo, C.; Gascon, S.; Gataullin, M.; Gaultney, V.; Gamsizkan, H.; Gavrilov, V.; Geerebaert, Y.; Genchev, V.; Gentit, F. X.; Gerbaudo, D.; Gershtein, Y.; Ghezzi, A.; Ghodgaonkar, M. D.; Gilly, J.; Givernaud, A.; Gleyzer, S.; Gninenko, S.; Go, A.; Gobbo, B.; Godinovic, N.; Golubev, N.; Golutvin, I.; Goncharov, P.; Gong, D.; Govoni, P.; Grant, N.; Gras, P.; Grassi, T.; Green, D.; Greenhalgh, R. J. S.; Gribushin, A.; Grinev, B.; Guevara Riveros, L.; Guillaud, J. P.; Gurtu, A.; Murat Güler, A.; Gülmez, E.; Gümüş, K.; Haelen, T.; Hagopian, S.; Hagopian, V.; Haguenauer, M.; Halyo, V.; Hamel de Monchenault, G.; Hansen, M.; Hashemi, M.; Hauptman, J.; Hazen, E.; Heath, H. F.; Heering, A.; Heister, A.; Heltsley, B.; Hill, J. A.; Hintz, W.; Hirosky, R.; Hobson, P. R.; Honma, A.; Hou, G. W. S.; Hsiung, Y.; Hunt, A.; Husejko, M.; Ille, B.; Ilyina, N.; Imlay, R.; Ingram, D.; Ingram, Q.; Isiksal, E.; Jarry, P.; Jarvis, C.; Jeong, C.; Jessop, C.; Johnson, K.; Jones, J.; Jovanovic, D.; Kaadze, K.; Kachanov, V.; Kaftanov, V.; Kailas, S.; Kalagin, V.; Kalinin, A.; Kalmani, S.; Karmgard, D.; Kataria, S. K.; Kaur, M.; Kaya, M.; Kaya, O.; Kayis-Topaksu, A.; Kellogg, R.; Kennedy, B. W.; Khmelnikov, A.; Kim, H.; Kisselevich, I.; Kloukinas, K.; Kodolova, O.; Kohli, J.; Kokkas, P.; Kolberg, T.; Kolossov, V.; Korablev, A.; Korneev, Y.; Kosarev, I.; Kramer, L.; Krasnikov, N.; Krinitsyn, A.; Krokhotin, A.; Krpic, D.; Kryshkin, V.; Kubota, Y.; Kubrik, A.; Kuleshov, S.; Kumar, A.; Kumar, P.; Kunori, S.; Kuo, C. M.; Kurt, P.; Kyberd, P.; Kyriakis, A.; Laasanen, A.; Ladygin, V.; Laird, E.; Landsberg, G.; Laszlo, A.; Lawlor, C.; Lazic, D.; Lebeau, M.; Lecomte, P.; Lecoq, P.; Ledovskoy, A.; Lee, S.-W.; Leshev, G.; Lethuillier, M.; Levchuk, L.; Lin, S. W.; Lin, W.; Linn, S.; Lintern, A. L.; Litvine, V.; Litvintsev, D.; Litov, L.; Lobolo, L.; Locci, E.; Lodge, A. B.; Longo, E.; Loukas, D.; Los, S.; Lubinsky, V.; Luckey, P. D.; Lukanin, V.; Lustermann, W.; Lynch, C.; Ma, Y.; Machado, E.; Mahlke-Krueger, H.; Maity, M.; Majumder, G.; Malberti, M.; Malclès, J.; Maletic, D.; Mandjavidze, I.; Mans, J.; Manthos, N.; Maravin, Y.; Marchica, C.; Marinelli, N.; Markou, A.; Markou, C.; Marlow, D.; Markowitz, P.; Marone, M.; Martinez, G.; Mathez, H.; Matveev, V.; Mavrommatis, C.; Maurelli, G.; Mazumdar, K.; Meridiani, P.; Merlo, J. P.; Mermerkaya, H.; Mescheryakov, G.; Mestvirishvili, A.; Mikhailin, V.; Milenovic, P.; Miller, M.; Milleret, G.; Miné, P.; Moeller, A.; Mohammadi-Najafabadi, M.; Mohanty, A. K.; Moissenz, P.

    2009-04-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/ c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/ c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7±1.6% and the constant term is 7.4±0.8%. The corrected mean response remains constant within 1.3% rms.

  4. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis.

    PubMed

    Liang, S M; Chang, M H; Yang, Z Y

    2014-01-01

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue. PMID:24517818

  5. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis

    SciTech Connect

    Liang, S. M. Yang, Z. Y.; Chang, M. H.

    2014-01-15

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm{sup 2} (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  6. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis

    NASA Astrophysics Data System (ADS)

    Liang, S. M.; Chang, M. H.; Yang, Z. Y.

    2014-01-01

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm2 (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  7. On timing properties of LYSO-based calorimeters

    SciTech Connect

    Anderson, D.; Apresyan, A.; Bornheim, A.; Duarte, J.; Pena, C.; Ronzhin, A.; Spiropulu, M.; Trevor, J.; Xie, S.

    2015-04-23

    We present test beam studies and results on the timing performance and characterization of the time resolution of Lutetium–Yttrium Orthosilicate (LYSO)-based calorimeters. We also demonstrate that a time resolution of 30 ps is achievable for a particular design. Additionally, we discuss precision timing calorimetry as a tool for the mitigation of physics object performance degradation effects due to the large number of simultaneous interactions in the high luminosity environment foreseen at the Large Hadron Collider.

  8. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Eigen, G.; Price, T.; Watson, N. K.; Marshall, J. S.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; van Doren, B.; Wilson, G. W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Bonnevaux, A.; Combaret, C.; Caponetto, L.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Markin, O.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Ilyin, A.; Mironov, D.; Mizuk, R.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cizel, J.-B.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; Mora de Freitas, P.; Musat, G.; Pavy, S.; Rubio-Roy, M.; Ruan, M.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; Raux, L.; Seguin-Moreau, N.; de la Taille, Ch.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-06-01

    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range of 10–80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from GEANT4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.

  9. Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Qu, Bin; Zhu, Chunling; Li, Chunyan; Zhang, Xitian; Chen, Yujin

    2016-02-17

    We developed a strategy for coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. The hollow Fe3O4-Fe nanoparticles with average diameter and shell thickness of 20 and 8 nm, respectively, were uniformly anchored on the graphene sheets without obvious aggregation. The minimal reflection loss RL values of the composite could reach -30 dB at the absorber thickness ranging from 2.0 to 5.0 mm, greatly superior to the solid Fe3O4-Fe/G composite and most magnetic EM wave absorbing materials recently reported. Moreover, the addition amount of the composite into paraffin matrix was only 18 wt %. PMID:26829291

  10. Plasmonic analogue of electromagnetically induced transparency in a T-shaped metallic nanohole array and its sensing performance

    NASA Astrophysics Data System (ADS)

    Wan, Ming Li; Sun, Xiao Jun; Song, Yue Li; Li, Yong; Zhou, Feng Qun

    2014-11-01

    In this paper, a plasmonic analogue of electromagnetically induced transparency (EIT) is demonstrated theoretically in a T-shaped silver nanohole array. A sharply narrow reflectance transparency window is clearly observed within the background spectrum of the broad dipole-like resonance at optical frequencies when structural asymmetry is introduced. Furthermore, the transparency peak exhibits highly sensitive response to the refractive index of surrounding medium and yield a sensitivity of 725 nm/refractive index unit (RIU), which ensures our proposed nanohole array as an excellent plasmonic sensor. In addition, the dependence of figure of merit (FOM) on structural asymmetry is investigated numerically to optimize the sensing performance of the EIT-based sensor.

  11. The calorimeter system of the new muon g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2016-07-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Čerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0-4.5 GeV electrons with a 28-element prototype array.

  12. Calorimeter in the ARIES recovery system

    SciTech Connect

    Wetzel, J.R.; Sampson, T.E.; Cremers, T.L.

    1997-11-01

    The Advanced Recovery and Integrated Extraction System is an automated weapons component recovery system that includes four state-of-the-art nondestructive assay (NDA) instruments to analyze all outputs and the final product. The instruments are integrated with robotics sample handling to provide the analytical data and are controlled by a central computer. The NDA instruments are a plutonium isotopic composition system, neutron coincidence counter, segmented gamma scanner, and a calorimeter. This paper will describe the calorimeter system which uses the new Windows environment software package to communicate between the calorimeter and the control computer. Storage, retrieval, database, and operations with other software packages, such as Excel, are provided to allow the operator to analyze the calorimeter system. The host computer assumes control of all functions of the calorimeter system in the remote operations and retrieves the data upon completion of the calorimeter sample run allowing the robotics system to change samples at the earliest possible time for maximum sample throughput. The calorimeter Windows operating system allows viewing of the calorimeter, room, and bath data during the sample run. 1 ref., 2 figs., 1 tab.

  13. Calibration and Characterization of the Small Sample Calorimeter

    SciTech Connect

    Santi, Peter A.; Perry, Katherine A.

    2012-08-13

    An early component of the Joint Fuel Cycle Study (JFCS) between the United States and the Republic of Korea is a test of gram scale electrochemical recycling of spent fuel which is to be performed at Idaho National Laboratory (INL). Included in this test is the development of Nondestructive Assay (NDA) technologies that would be applicable for International Atomic Energy Agency (IAEA) safeguards of the electrochemical recycling process. Of upmost importance to safeguarding the fuel cycle associated with the electrochemical recycling process is the ability to safeguard the U/TRU ingots that will be produced in the process. For the gram scale test, the ingots that will be produced will have an expected thermal power of approximately 130 mW. To ascertain how well the calorimetric assay NDA technique can perform in assaying these ingots, Los Alamos National Laboratory (LANL) has characterized and calibrated a small solid-state calorimeter called the Small Sample Calorimeter (SSC3) to perform these measurements at LANL. To calibrate and characterize the SSC3, a series of measurements were performed using certified {sup 238}Pu heat standards whose power output is traceable back to the National Institute of Standards and Technology (NIST) electrical standards. The results of these measurements helped establish both the calibration of the calorimeter as well as the expected performance of the calorimeter in terms of its accuracy and precision as a function of thermal power of the item that is being measured. In this report, we will describe the measurements that were performed and provide a discussion of the results of these measurements.

  14. Hadronic Shower Validation Experience for the ATLAS End-Cap Calorimeter

    SciTech Connect

    Kiryunin, A. E.; Salihagic, D.

    2007-03-19

    Validation of GEANT4 hadronic physics models is carried out by comparing experimental data from beam tests of modules of the ATLAS end-cap calorimeters with GEANT4 based simulations. Two physics lists (LHEP and QGSP) for the simulation of hadronic showers are evaluated. Calorimeter performance parameters like the energy resolution and response for charged pions and shapes of showers are studied. Comparison with GEANT3 predictions is done as well.

  15. High-temperature containerless calorimeter

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Lacy, L. L.

    1985-01-01

    A high-temperature (greater than 1500 K) containerless calorimeter is described and its usefulness demonstrated. The calorimeter uses the technique of omnidirectional electron bombardment of pendant drops to achieve an isothermal test environment. The small heat input into the sample (i.e., 15-50 W) can be controlled and measured. The apparatus can be used to determine the total hemispherical emissivity, specific heat, heat of fusion, surface tension, and equilibrium melting temperature of small molten drops in the temperature range of 1500 to 3500 K. The total hemispherical emissivity and specific heat of pure niobium and two alloys of niobium-germanium have been measured in the temperature range of 1700 to 2400 K. As reported in the literature, the total hemispherical emissivity varied as a function of temperature. However, specific heat values for both the pure metal and alloys seem to be independent of temperature. Specific heat for the liquid alloy phase was also measured and compared to the solid phase.

  16. Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Guzik, T. Gregory

    2001-01-01

    During grant NAG5-5064, Louisiana State University (LSU) led the ATIC team in the development, construction, testing, accelerator validation, pre-deployment integration and flight operations of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment. This involved interfacing among the ATIC collaborators (UMD, NRL/MSFC, SU, MSU, WI, SNU) to develop a new balloon payload based upon a fully active calorimeter, a carbon target, a scintillator strip hodoscope and a pixilated silicon solid state detector for a detailed investigation of the very high energy cosmic rays to energies beyond 10(exp 14) eV/nucleus. It is in this very high energy region that theory predicts changes in composition and energy spectra related to the Supernova Remnant Acceleration model for cosmic rays below the "knee" in the all-particle spectrum. This report provides a documentation list, details the anticipated ATIC science return, describes the particle detection principles on which the experiment is based, summarizes the simulation results for the system, describes the validation work at the CERN SPS accelerator and details the balloon flight configuration. The ATIC experiment had a very successful LDB flight from McMurdo, Antarctica in 12/00 - 1/01. The instrument performed well for the entire 15 days. Preliminary data analysis shows acceptable charge resolution and an all-particle power law energy deposition distribution not inconsistent with previous measurements. Detailed analysis is underway and will result in new data on the cosmic ray charge and energy spectra in the GeV - TeV energy range. ATIC is currently being refurbished in anticipation of another LDB flight in the 2002-03 period.

  17. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  18. Construction of a calorimeter prototype with a high sensitivity pulsed signal detection circuit.

    PubMed

    Kubo, H; Kageyama, Y; Lo, K K

    1989-08-01

    A calorimeter based on a Wheatstone bridge detector is considered to be an ideal absolute absorbed dose measuring device. One drawback of the calorimeter is that its output signals are extremely small. The signal size can be increased by increasing the bridge excitation voltage, which, however, may lead to excess self-heating of a temperature-sensing thermistor in the calorimeter detector and may require corrections. The use of pulsed excitation was investigated in this study in place of a conventional DC excitation to induce higher bridge output voltage while keeping the average self-heating of a thermistor to a reasonably low value. Performance evaluations of our prototype pulsed calorimeter are presented. PMID:2772032

  19. Cryogenic Technology Development For The MEG Liquid Xenon Calorimeter

    SciTech Connect

    Haruyama, Tomiyoshi

    2008-02-21

    Cryogenic key technologies have been developed for the muon rare decay experiment (MEG) at the Paul Scherrer Institute, Switzerland. These technologies are the high power pulse tube cryocooler for precise temperature and pressure control of liquid xenon in the calorimeter, a purification system with a cryogenic liquid pump and a cryogenic dewar with 1000 L storage capacity. The paper describes the general concepts and the first test results of each technology. All the results imply a promising performance for the coming MEG experiment.

  20. After-burning of nitropenta products in a calorimeter

    SciTech Connect

    Kuhl, A L; Neuwald, P; Reichenbach, H

    1999-06-18

    Explored here are the ''after-burning'' effects for explosions of Nitropenta (NP) charges in air. Detonation of the charge transforms the solid explosive ( C HNO 5 8412 , also known as PETN) into gaseous products that are rich in carbon and CO, which subsequently act as a fuel. When these hot ({approximately}3500 K) gases mix with air, rapid combustion (after-burning) takes place. The dynamics of this exothermic process was studied in ''pressure calorimeter'' experiments performed at EMI.

  1. CALORIC: A readout chip for high granularity calorimeter

    SciTech Connect

    Royer, L.; Bonnard, J.; Manen, S.; Gay, P.; Soumpholphakdy, X.

    2011-07-01

    A very-front-end electronics has been developed to fulfil requirements for the next generation of electromagnetic calorimeters. The compactness of this kind of detector and its large number of channels (up to several millions) impose a drastic limitation of the power consumption and a high level of integration. The electronic channel proposed is first of all composed of a low-noise Charge Sensitive Amplifier (CSA) able to amplify the charge delivered by a silicon diode up to 10 pC. Next, a two-gain shaping, based on a Gated Integration (G.I.), is implemented to cover the 15 bits dynamic range required: a high gain shaper processes signals from 4 fC (charge corresponding to the MIP) up to 1 pC, and a low gain filter handles charges up to 10 pC. The G.I. performs also the analog memorization of the signal until it is digitalized. Hence, the analog-to-digital conversion is carried out through a low-power 12-bit cyclic ADC. If the signal overloads the high-gain channel dynamic range, a comparator selects the low-gain channel instead. Moreover, an auto-trigger channel has been implemented in order to select and store a valid event over the noise. The timing sequence of the channel is managed by a digital IP. It controls the G.I. switches, generates all needed clocks, drives the ADC and delivers the final result over 12 bits. The whole readout channel is power controlled, which permits to reduce the consumption according to the duty cycle of the beam collider. Simulations have been performed with Spectre simulator on the prototype chip designed with the 0.35 {mu}m CMOS technology from Austriamicrosystems. Results show a non-linearity better than 0.1% for the high-gain channel, and a non-linearity limited to 1% for the low-gain channel. The Equivalent Noise Charge referred to the input of the channel is evaluated to 0.4 fC complying with the MIP/10 limit. With the timing sequence of the International Linear Collider, which presents a duty cycle of 1%, the power

  2. Electromagnetic effects on turbulent transport in high-performance ASDEX Upgrade discharges

    SciTech Connect

    Doerk, H.; Dunne, M.; Ryter, F.; Schneider, P. A.; Wolfrum, E.; Jenko, F.

    2015-04-15

    Modern tokamak H-mode discharges routinely operate at high plasma beta. Dedicated experiments performed on multiple machines measure contradicting dependence of the plasma confinement on this important parameter. In view of designing high-performance scenarios for next-generation devices like ITER, a fundamental understanding of the involved physics is crucial. Theoretical results—most of which have been obtained for simplified setups—indicate that increased beta does not only modify the characteristics of microturbulence but also potentially introduces fundamentally new physics. Empowered by highly accurate measurements at ASDEX Upgrade, the GENE turbulence code is used to perform a comprehensive gyrokinetic study of dedicated H-Mode plasmas. We find the stabilization of ion-temperature-gradient driven turbulence to be the most pronounced beta effect in these experimentally relevant cases. The resulting beta-improved core confinement should thus be considered for extrapolations to future machines.

  3. Electromagnetic effects on turbulent transport in high-performance ASDEX Upgrade discharges

    NASA Astrophysics Data System (ADS)

    Doerk, H.; Dunne, M.; Jenko, F.; Ryter, F.; Schneider, P. A.; Wolfrum, E.

    2015-04-01

    Modern tokamak H-mode discharges routinely operate at high plasma beta. Dedicated experiments performed on multiple machines measure contradicting dependence of the plasma confinement on this important parameter. In view of designing high-performance scenarios for next-generation devices like ITER, a fundamental understanding of the involved physics is crucial. Theoretical results—most of which have been obtained for simplified setups—indicate that increased beta does not only modify the characteristics of microturbulence but also potentially introduces fundamentally new physics. Empowered by highly accurate measurements at ASDEX Upgrade, the GENE turbulence code is used to perform a comprehensive gyrokinetic study of dedicated H-Mode plasmas. We find the stabilization of ion-temperature-gradient driven turbulence to be the most pronounced beta effect in these experimentally relevant cases. The resulting beta-improved core confinement should thus be considered for extrapolations to future machines.

  4. Fire tests and analyses of a rail cask-sized calorimeter.

    SciTech Connect

    Figueroa, Victor G.; Lopez, Carlos; Suo-Anttila, Ahti Jorma; Greiner, Miles

    2010-10-01

    Three large open pool fire experiments involving a calorimeter the size of a spent fuel rail cask were conducted at Sandia National Laboratories Lurance Canyon Burn Site. These experiments were performed to study the heat transfer between a very large fire and a large cask-like object. In all of the tests, the calorimeter was located at the center of a 7.93-meter diameter fuel pan, elevated 1 meter above the fuel pool. The relative pool size and positioning of the calorimeter conformed to the required positioning of a package undergoing certification fire testing. Approximately 2000 gallons of JP-8 aviation fuel were used in each test. The first two tests had relatively light winds and lasted 40 minutes, while the third had stronger winds and consumed the fuel in 25 minutes. Wind speed and direction, calorimeter temperature, fire envelop temperature, vertical gas plume speed, and radiant heat flux near the calorimeter were measured at several locations in all tests. Fuel regression rate data was also acquired. The experimental setup and certain fire characteristics that were observed during the test are described in this paper. Results from three-dimensional fire simulations performed with the Cask Analysis Fire Environment (CAFE) fire code are also presented. Comparisons of the thermal response of the calorimeter as measured in each test to the results obtained from the CAFE simulations are presented and discussed.

  5. WE-G-17A-06: A Water Calorimeter for Use in MRI Linacs

    SciTech Connect

    De Prez, L; De Pooter, J; Jansen, B

    2014-06-15

    Purpose: At VSL, Dutch Metrology Institute, a new water calorimeter was developed with the purpose to replace the existing primary standard for absorbed dose to water in the Netherlands. The new water calorimeter is designed to be operable in medium- to high energy photon beams, electrons, protons as well as MRI integrated linear accelerators. VSL has operated a water calorimeter since 2001. This calorimeter formed the basis for the NCS-18 dosimetry protocol, which is commonly applied by medical physicists in the Netherlands and Belgium. Methods: The unit Gray is the unit of interest for measurement of the absorbed dose to water. Water calorimetry involves the measurement of a small temperature rise (0.24 mK/Gy) with an uncertainty of less than 1 μK/Gy at a temperature of 4 °C. Using extensive multi-physics simulations the new calorimeter's thermal performance was simulated before it was constructed at the end of 2013. With the advent of radiotherapy treatment units incorporating MR imaging the performance of the thermistor temperature sensors were characterized in a 1.5 T magnetic field. Results: A change of thermistor resistance was observed of less than 0.004% as a Result of the magneto-resistance effect in a 1.5 T magnetic field. Although a magneto-resistance effect was detectable, the effect on the temperature response in the water calorimeter was found to be negligible. Conclusion: With the realization of the new calorimeter operable in MRI linacs and designed for use in a variety of beam modalities, VSL is ready for accurate dosimetry in new advanced radiotherapy modalities. Due to the small form factor the calorimeter can be used on location in the actual therapy beam inside a 68 cm linac bore. This work was supported by EMRP grant HLT06. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  6. New calorimeters for space experiments: physics requirements and technological challenges

    NASA Astrophysics Data System (ADS)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  7. Calibration and data quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    NASA Astrophysics Data System (ADS)

    Ženiš, T.

    2016-07-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as the results on their performance in terms of calibration factors, linearity and stability is given. The data quality procedures and efficiency of the Tile Calorimeter during the LHC Run-1 data-taking period are presented as well.

  8. Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb-Pb collisions at sqrt[s(NN)] = 2.76 TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Aystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Böttger, S; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa Del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Cotallo, M E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Erasmo, G D; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Del Castillo Sanchez, E; Delagrange, H; Deloff, A; Demanov, V; Dénes, E; Deppman, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Diaz Corchero, M A; Dietel, T; Divià, R; Djuvsland, O; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, O; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jancurová, L; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D J; Kim, D W; Kim, J H; Kim, J S; Kim, M; Kim, S; Kim, S H; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladrón de Guevara, P; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lazzeroni, C; Le Bornec, Y; Lea, R; Lechman, M; Lee, K S; Lee, S C; Lefèvre, F; Lehnert, J; Leistam, L; Lemmon, R C; Lenhardt, M; Lenti, V; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Mal'kevich, D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, A K; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Sgura, I; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, J; Song, M; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Sumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Tagridis, C; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Tosello, F; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; van Leeuwen, M; Vande Vyvre, P; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Ovrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, D; Wang, M; Wang, Y; Wang, Y; Watanabe, K; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhou, D; Zhou, F; Zhou, Y; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M

    2012-12-21

    The first measurement of neutron emission in electromagnetic dissociation of ^{208}Pb nuclei at the LHC is presented. The measurement is performed using the neutron zero degree calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at sqrt[s(NN)]=2.76 TeV with neutron emission are σ(singleEMD)=187.4 ± 0.2(stat)(-11.2)(+13.2) (syst) b and σ(mutualEMD) = 5.7 ± 0.1(stat) ± 0.4(syst) b, respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model. PMID:23368454

  9. Measurement of the electromagnetic dissociation cross section of Pb nuclei at \\sqrt{s_NN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Oppedisano, C.; ALICE Collaboration

    2011-12-01

    Electromagnetic dissociation of heavy nuclei in ultra-peripheral interactions at high energies can be used to monitor the beam luminosity at colliders. In ALICE, neutrons emitted by the excited nuclei close to beam rapidity are detected by the zero-degree calorimeters (ZDCs), providing a precise measurement of the event rate. During the 2010 Pb run, a dedicated data taking was performed triggering on electromagnetic processes with the ZDCs. These data, combined with the results from a Van der Meer scan, allowed us to measure the electromagnetic dissociation cross section of Pb nuclei at \\sqrt{s_NN} = 2.76 TeV. Experimental results on various cross sections are presented together with a comparison to the available predictions.

  10. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions

    NASA Astrophysics Data System (ADS)

    Mahmoudi, S.; Kacem, N.; Bouhaddi, N.

    2014-07-01

    A multiphysics model of a hybrid piezoelectric-electromagnetic vibration energy harvester (VEH), including the main sources of nonlinearities, is developed. The continuum problem is derived on the basis of the extended Hamilton principle, and the modal Galerkin decomposition method is used in order to obtain a reduced-order model consisting of a nonlinear Duffing equation of motion coupled with two transduction equations. The resulting system is solved analytically using the method of multiple time scales and numerically by means of the harmonic balance method coupled with the asymptotic numerical continuation technique. Closed-form expressions for the moving magnet critical amplitude and the critical load resistance are provided in order to allow evaluation of the linear dynamic range of the proposed device. Several numerical simulations have been performed to highlight the performance of the hybrid VEH. In particular, the power density and the frequency bandwidth can be boosted, by up to 60% and 29% respectively, compared to those for a VEH with pure magnetic levitation thanks to the nonlinear elastic guidance. Moreover, the hybrid transduction permits enhancement of the power density by up to 84%.

  11. Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers

    NASA Astrophysics Data System (ADS)

    Phan, C. H.; Mariatti, M.; Koh, Y. H.

    2016-03-01

    An effective electromagnetic-interference (EMI) shielding epoxy composite has been fabricated with a combination of multiwalled carbon nanotubes (MWCNTs) and manganese zinc ferrite (MnZn ferrite) fillers. MWCNTs were functionalized to improve dispersibility while manganese zinc ferrite nanoparticles were synthesized via the citrate gel method. The EMI-shielding performance of the fabricated composites was examined. It was found that the composite with a filler ratio of MWNCTs to MnZn ferrite=3:1 obtained the highest EMI shielding effectiveness (SE), with the shielding mechanism dominated by absorption. In addition, the EMI shielding performance of composites was improved by increases in the filler loading and thickness of composites. Composites with a filler loading of 4.0 vol% and thickness of 2.0 mm achieved an SE of 44 dB at 10 GHz with the assistance of conductive silver backing. This EMI SE is better than that of composites filled with single conductive filler and comparable with that of commercial EMI absorber.

  12. Can a PB / SCIFI Calorimeter Survive the SSC?

    SciTech Connect

    D. W. Hertzog; S. A. Hughes; P. E. Reimer; R. L. Tayloe; K. F. Johnson; S. Majewski; C. Zorn; M. Zorn

    1990-03-01

    A scintillating fiber based electromagnetic calorimeter module built from radiation-hard materials has been tested in a beam capable of delivering both low and high currents of monoenergetic electrons. Energy resolution and light output measurements were made following high-dose exposures. The procedure was repeated until the resolution of the detector decreased from an initial value of 6.9%/sqrt E to 14.0%/sqrt E and the pulse height dropped by a factor of 11. After four weeks, the detector was retested. Partial recovery was observed in the light output which returned to approximately 52% of its original value. The resolution recovered to a value of 8.8%/sqrt E. The tests are described.

  13. Can a Pb/SCIFI calorimeter survive the SSC

    SciTech Connect

    Hertzog, D.W.; Hughes, S.A.; Reimer, P.E.; Tayloe, R.L. ); Johnson, K.F. ); Majewski, S.; Zorn, C.; Zorn, M. )

    1990-01-01

    A scintillating fiber based electromagnetic calorimeter module built from radiation-hard materials has been tested in a beam capable of delivering both low and high currents of monoenergetic electrons. Energy resolution and light output measurements were made following high-dose exposures. The procedure was repeated until the resolution of the detector decreased from an initial value of 6.9%{radical}E to 14.0%{radical}E and the pulse height dropped by a factor of 11. After four weeks, the detector was retested. Partial recovery was observed in the light output which returned to approximately 52% of its original value. The resolution recovered to a value of 8.8%{radical}E. The tests are described. 9 refs., 4 figs.

  14. Modeling and scanning of lightguides for Pb/SCIFI calorimeters

    NASA Astrophysics Data System (ADS)

    Simon, D. A.; Hertzog, D. W.; Jones, T. D.; Rhodes, M. W.; Yairi, M. B.

    1993-10-01

    Calorimeters containing embedded arrays of scintillating fibers often require uniform-acceptance lightguides to gather, mix and transport light from the end face of the module to a photo-sensitive detector. To optimize such devices, we have built a flexible lightguide scanning station which imitates the distribution of light coming from an array of scintillating fibers. This system has been used to map the photocathode response of photomultiplier tubes, the transmission uniformity of lightguides and the performance of detector-lightguide combinations. Additionally, we have developed a ray-trace modeling program which accurately reproduces the experimental results. These tools are described in the context of our own application-specific examples, while their general nature makes them attractive in other situations where lightguides are involved. Finally, the effect of lightguide non-uniformity is evaluated in order to estimate the systematic contribution to the calorimeter energy resolution description.

  15. CMS HF calorimeter PMTs and Xi(c)+ lifetime measurement

    SciTech Connect

    Akgun, Ugur; /Iowa U.

    2003-12-01

    This thesis consists of two parts: In the first part we describe the Photomultiplier Tube (PMT) selection and testing processes for the Hadronic Forward (HF) calorimeter of the CMS, a Large Hadron Collier (LHC) experiment at CERN. We report the evaluation process of the candidate PMTs from three different manufacturers, the complete tests performed on the 2300 Hamamatsu PMTs which will be used in the HF calorimeter, and the details of the PMT Test Station that is in University of Iowa CMS Laboratories. In the second part we report the {Xi}{sub c}{sup +} lifetime measurement from SELEX, the charm hadro-production experiment at Fermilab. Based upon 301 {+-} 31 events from three di.erent decay channels, by using the binned maximum likelihood technique, we observe the lifetime of {Xi}{sub c}{sup +} as 427 {+-} 31 {+-} 13 fs.

  16. Imaging Calorimeter for ACCESS Simulations with GEANT/FLUKA

    NASA Technical Reports Server (NTRS)

    Lee, Jeongin; Watts, John; Howell, Leonard; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Imaging Calorimeter for ACCESS (ICA) is a candidate of the calorimeter for the NASA's ACCESS program. The ICA studies the origin and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays in the energy up to 10(exp 16) eV. For the past year, Monte Carlo simulation study for the ICA has been conducted to predict the detector performance and to design the system for match the scientific objectives. Simulation results show that the detector response resembles a Gaussian distribution and the energy resolution with ICA can be achieved about 40%. In addition, simulations of the detector's response to an assumed bent power law spectra in the region where the knee occurs have been conducted and clearly show that this detector can provide sufficiently accurate estimates of the spectral parameters that are a science goal of ACCESS.

  17. Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy

    PubMed Central

    Boutaleb, Samir; Fillion, Olivier; Bonillas, Antonio; Hautvast, Gilion; Binnekamp, Dirk; Beaulieu, Luc

    2015-01-01

    Purpose Accurate insertion and overall needle positioning are key requirements for effective brachytherapy treatments. This work aims at demonstrating the accuracy performance and the suitability of the Aurora® V1 Planar Field Generator (PFG) electromagnetic tracking system (EMTS) for real-time treatment assistance in interstitial brachytherapy procedures. Material and methods The system's performance was characterized in two distinct studies. First, in an environment free of EM disturbance, the boundaries of the detection volume of the EMTS were characterized and a tracking error analysis was performed. Secondly, a distortion analysis was conducted as a means of assessing the tracking accuracy performance of the system in the presence of potential EM disturbance generated by the proximity of standard brachytherapy components. Results The tracking accuracy experiments showed that positional errors were typically 2 ± 1 mm in a zone restricted to the first 30 cm of the detection volume. However, at the edges of the detection volume, sensor position errors of up to 16 mm were recorded. On the other hand, orientation errors remained low at ± 2° for most of the measurements. The EM distortion analysis showed that the presence of typical brachytherapy components in vicinity of the EMTS had little influence on tracking accuracy. Position errors of less than 1 mm were recorded with all components except with a metallic arm support, which induced a mean absolute error of approximately 1.4 mm when located 10 cm away from the needle sensor. Conclusions The Aurora® V1 PFG EMTS possesses a great potential for real-time treatment assistance in general interstitial brachytherapy. In view of our experimental results, we however recommend that the needle axis remains as parallel as possible to the generator surface during treatment and that the tracking zone be restricted to the first 30 cm from the generator surface. PMID:26622231

  18. Progress on H5Part: A Portable High Performance Parallel DataInterface for Electromagnetics Simulations

    SciTech Connect

    Adelmann, Andreas; Gsell, Achim; Oswald, Benedikt; Schietinger,Thomas; Bethel, Wes; Shalf, John; Siegerist, Cristina; Stockinger, Kurt

    2007-06-22

    Significant problems facing all experimental andcomputationalsciences arise from growing data size and complexity. Commonto allthese problems is the need to perform efficient data I/O ondiversecomputer architectures. In our scientific application, thelargestparallel particle simulations generate vast quantitiesofsix-dimensional data. Such a simulation run produces data foranaggregate data size up to several TB per run. Motived by the needtoaddress data I/O and access challenges, we have implemented H5Part,anopen source data I/O API that simplifies the use of the HierarchicalDataFormat v5 library (HDF5). HDF5 is an industry standard forhighperformance, cross-platform data storage and retrieval that runsonall contemporary architectures from large parallel supercomputerstolaptops. H5Part, which is oriented to the needs of the particlephysicsand cosmology communities, provides support for parallelstorage andretrieval of particles, structured and in the future unstructuredmeshes.In this paper, we describe recent work focusing on I/O supportforparticles and structured meshes and provide data showing performance onmodernsupercomputer architectures like the IBM POWER 5.

  19. Evaluation of the Argonne National Laboratory servo-controlled calorimeter system

    SciTech Connect

    Foster, L.A.

    1997-01-01

    The control system of a replacement mode, twin-bridge, water-bath calorimeter originally built by Mound EG&G Applied Technologies was modified by Argonne National Laboratory. The calorimeter was upgraded with a PC-based computer control and data acquisition system. The system was redesigned to operate in a servo-control mode, and a preheater was constructed to allow pre-equilibration of samples. The instrument was sent to the Plutonium Facility at Los Alamos National Laboratory for testing and evaluation of its performance in the field using heat source standards and plutonium process materials. The important parameters for calorimeter operation necessary to satisfy the nuclear materials control and accountability requirements of the Plutonium Facility were evaluated over a period of several months. These parameters include calorimeter stability, measurement precision and accuracy, and average measurement time. The observed measurement precision and accuracy were found to be acceptable for most accountability measurements, although they were slightly larger than the values for calorimeters in routine use at the Plutonium Facility. Average measurement times were significantly shorter than measurement times for identical items in the Plutonium Facility calorimeters. Unexplained shifts in the baseline measurements were observed on numerous occasions. These shifts could lead to substantial measurement errors if they are not very carefully monitored by the operating facility. Detailed results of the experimental evaluation are presented in this report.

  20. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    NASA Astrophysics Data System (ADS)

    Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.; Guimbal, P.

    2016-02-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  1. Barrel Calorimeter for the Hall D Spectrometer

    SciTech Connect

    David Urner

    1998-06-01

    The barrel calorimeter for the hall D spectrometer is discussed for standard pointing geometry and a parallel geometry using Lead Scintillating fibres as active material. A comparison with a CSI spectrometer is shown.

  2. The CMS central hadron calorimeter: Update

    SciTech Connect

    Freeman, J.

    1998-06-01

    The CMS central hadron calorimeter is a brass absorber/ scintillator sampling structure. We describe details of the mechanical and optical structure. We also discuss calibration techniques, and finally the anticipated construction schedule.

  3. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Ohlan, Anil; Pham, Viet Hung; Balasubramaniyan, R.; Varshney, Swati; Jang, Jinhee; Hur, Seung Hyun; Choi, Won Mook; Kumar, Mukesh; Dhawan, S. K.; Kong, Byung-Seon; Chung, Jin Suk

    2013-02-01

    The development of high-performance shielding materials against electromagnetic pollution requires mobile charge carriers and magnetic dipoles. Herein, we meet the challenge by building a three-dimensional (3D) nanostructure consisting of chemically modified graphene/Fe3O4(GF) incorporated polyaniline. Intercalated GF was synthesized by the in situ generation of Fe3O4 nanoparticles in a graphene oxide suspension followed by hydrazine reduction, and further in situ polymerization with aniline to form a polyaniline composite. Spectroscopic analysis demonstrates that the presence of GF hybrid structures facilitates strong polarization due to the formation of a solid-state charge-transfer complex between graphene and polyaniline. This provides proper impedance matching and higher dipole interaction, which leads to the high microwave absorption properties. The higher dielectric loss (ε'' = 30) and magnetic loss (μ'' = 0.2) contribute to the microwave absorption value of 26 dB (>99.7% attenuation), which was found to depend on the concentration of GF in the polyaniline matrix. Moreover, the interactions between Fe3O4, graphene and polyaniline are responsible for superior material characteristics, such as excellent environmental (chemical and thermal) degradation stability and good electric conductivity (as high as 260 S m-1).

  4. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding.

    PubMed

    Yousefi, Nariman; Sun, Xinying; Lin, Xiuyi; Shen, Xi; Jia, Jingjing; Zhang, Biao; Tang, Benzhong; Chan, Mansun; Kim, Jang-Kyo

    2014-08-20

    Nanocomposites that contain reinforcements with preferred orientation have attracted significant attention because of their promising applications in a wide range of multifunctional fields. Many efforts have recently been focused on developing facile methods for preparing aligned graphene sheets in solvents and polymers because of their fascinating properties including liquid crystallinity and highly anisotropic characteristics. Self-aligned in situ reduced graphene oxide (rGO)/polymer nanocomposites are prepared using an all aqueous casting method. A remarkably low percolation threshold of 0.12 vol% is achieved in the rGO/epoxy system owing to the uniformly dispersed, monolayer graphene sheets with extremely high aspect ratios (>30000). The self-alignment into a layered structure at above a critical filler content induces a unique anisotropy in electrical and mechanical properties due to the preferential formation of conductive and reinforcing networks along the alignment direction. Accompanied by the anisotropic electrical conductivities are exceptionally high dielectric constants of over 14000 with 3 wt% of rGO at 1 kHz due to the charge accumulation at the highly-aligned conductive filler/insulating polymer interface according to the Maxwell-Wagner-Sillars polarization principle. The highly dielectric rGO/epoxy nanocomposites with the engineered structure and properties present high performance electromagnetic interference shielding with a remarkable shilding efficiency of 38 dB. PMID:24715671

  5. Temperature effect on microstructure and electromagnetic performance of polycarbosilane and sugar-doped MgB2 wires

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. V.; Horvat, J.; Shcherbakova, O. V.; Novosel, N.; Babić, E.; Dou, S. X.

    2010-06-01

    The effect of processing temperature on structural and superconducting properties of 10 wt.% sugar- and 10 wt.% PCS-doped MgB2 wires is systematically investigated. It is demonstrated that these dopants significantly enhance the electromagnetic performance of Fe-clad MgB2 superconductor and increase its potential for practical application. The enhancement of in-field critical current density (Jc(Ba)) and upper critical field (Bc2) is due to formation of a large amount of lattice defects caused by impurities and C substitution into the MgB2 crystal lattice. High temperature sintering of sugar-doped sample results in as high Bc2 value as 37 T (at 5 K), which correlates with higher level of C substitution into MgB2 crystal lattice in this sample. In contrast, for PCS doped MgB2 wire higher Bc2 value (32 T at 5 K) is observed at lower sintering temperatures. In spite of the fact that the level of C in the crystal lattice and Bc2 value are higher in the sugar doped MgB2 sample, this sample has lower Jc(Ba) when compared to the sample with PCS addition. We speculate that it is due to a higher level of MgO impurities in the sugar doped sample (18.6 wt.% compared to 9.15 wt.% in the PCS doped sample), which results in the dissipation of supercurrent flowing through this sample.

  6. The ATLAS tile calorimeter ROD injector and multiplexer board

    NASA Astrophysics Data System (ADS)

    Valero, A.; Castillo, V.; Ferrer, A.; González, V.; Hernández, Y.; Higón, E.; Sanchís, E.; Solans, C.; Torres, J.; Valls, J. A.

    2011-02-01

    The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.

  7. Advanced Thin Ionization Calorimeter (ATIC) balloon experiment: instrumentation

    NASA Astrophysics Data System (ADS)

    Guzik, T. Gregory; Adams, James H.; Bashindzhagyan, G. L.; Dudnik, Alexey V.; Ellison, Steven B.; Fazely, Ali R.; Garcia, L.; Grigorov, Naum L.; Inderhees, Susan E.; Isbert, Joachim; Jung, H. C.; Khein, L.; Kim, Sun-Kee; Kroeger, Richard A.; Lockwood, R.; McDonald, Frank B.; Panasyuk, Mikhail I.; Park, Choong-Soo; Price, B.; Schmidt, Wolfgang K.; Dion-Schwartz, C.; Senchishin, V. G.; Seo, Eun-Suk; Wefel, John P.; Wang, J. Z.; Zatsepin, Viktor I.; Zinn, S. Y.

    1996-10-01

    A new balloon instrument, the advanced thin ionization calorimeter (ATIC), is currently under development by an international collaboration involving researchers in the U.S., Germany, Korea, Russia and the Ukraine. The instrument will be used, in a series of long duration balloon flights, to investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 1010 to 1014 eV. The ATIC instrument is designed around a new technology, fully active Bismuth Germanate (BGO) ionization calorimeter that is used to measure the energy deposited by the cascades formed by particles interacting in an approximately 1 proton interaction length thick carbon target. The charge module comprises a highly segmented, triply redundant set of detectors (scintillator, silicon matrix and Cherenkov) that together give good incident charge resolution plus rejection of the 'backscattered' particles from the interaction. Trajectory information is obtained both from scintillator layers and from the cascade profile throughout the BGO calorimeter. This instrument is specifically designed to take advantage of the existing NASA long duration balloon flight capability in Antarctica and/or the Northern Hemisphere. The ATIC instrumentation is presented here, while a companion paper at this conference discusses the expected performance.

  8. Design Studies of the Calorimeter Systems for the sPHENIX Experiment at RHIC and Future Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2015-02-01

    The PHENIX Experiment at RHIC is planning a series of major upgrades that will enable a comprehensive measurement of jets in relativistic heavy ion collisions, provide enhanced physics capabilities for studying nucleon-nucleus and polarized proton collisions, and allow a detailed study of electron-nucleus collisions at the Electron Ion Collider at Brookhaven (eRHIC). The first of these upgrades, sPHENIX, will be based on the former BaBar magnet and will include a hadronic calorimeter and new electromagnetic calorimeter that will cover ±1.1 units in pseudorapidity and 2π in azimuth in the central region, resulting in a factor of 6 increase in acceptance over the present PHENIX detector. The electromagnetic calorimeter will be a tungsten scintillating fiber design with a radiation length ~ 7 mm and a Moliere radius ~ 2 cm. It will have a total depth of ~ 18 radiation lengths and an energy resolution ~ 15%/√E. The hadronic calorimeter will consist of steel plates with scintillating tiles in between that are read out with wavelength shifting fibers, It will have a total depth of ~ 5 interaction lengths and an energy resolution 100%/√E. Both calorimeters will use silicon photomultipliers as the readout sensor. Detailed design studies and Monte Carlo simulations for both calorimeters have been carried out and prototype detectors have been constructed and tested in a test beam at Fermilab in February 2014. This contribution describes these design studies for the sPHENIX experiment and its future upgrade plans at RHIC.

  9. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  10. Tritium calorimeter setup and operation

    SciTech Connect

    Rodgers, David E.

    2002-12-17

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (3) Install an improved temperature controller, preferably with a built in chiller, capable of temperature control to {+-}0.001 C.

  11. Low-energy beam test results of a calorimeter prototype for the CREAM experiment

    NASA Astrophysics Data System (ADS)

    Bagliesi, M. G.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Meucci, M.; Millucci, V.; Morsani, F.; Valle, G.; Ahn, H. S.; Ganel, O.; Kim, K. C.; Lee, M. H.; Lutz, L.; Seo, E. S.

    2003-09-01

    CREAM (Cosmic Ray Energetics And Mass) is an experiment under construction for a direct measurement of high energy cosmic rays (1012 to > 5 · 1014 eV) over the elemental range from proton to iron. The first flight of CREAM is intended to demonstrate the new Ultra Long Duration Balloon (ULDB) capability under development by NASA. A prototype of a tungsten-SciFi imaging calorimeter designed for CREAM has been tested at CERN with electron beam energies ranging from 5 to 100 GeV. Although the calorimeter module is optimized for cosmic-ray spectral measurements in the multi-TeV region, the response of its electromagnetic section to low energy electrons has been studied with this dedicated prototype. Results show good agreement with the expected behaviour in terms of linearity and energy resolution.

  12. The Barrel Calorimeter for the GlueX Experiment at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Papandreou, Zisis

    2013-04-01

    The GlueX experiment at Jefferson Lab will search for exotic hybrid mesons as evidence of gluonic excitations, in an effort to understand confinement in QCD. The key features of this compelling physics program will be presented together with an overview of the detector, focusing on the electromagnetic barrel calorimeter (BCAL). The BCAL is a ``spaghetti calorimeter,'' consisting of layers of corrugated lead sheets, interleaved with planes of 1-mm-diameter, double-clad, scintillating fibres, bonded in the lead grooves using optical epoxy. This detector will consist of 48 modules and will be readout using 3,840 large-area Multi-Photon Pixel counter arrays. The experiment is now in the installation phase with data taking expected in 2015.

  13. Calibration of the BaBar CsI(Tl) Calorimeter

    SciTech Connect

    Marks, Jorg; Marks, Joerg; /Heidelberg U.

    2011-11-23

    After nine years of operation, the BABAR experiment at the e{sup +}e{sup -} B factory PEP-II (Standford Linear Accelerator Center) stopped data taking in April 2008. An important part of the experiment is the electromagnetic calorimeter which consists of 6580 CsI crystals doped with thallium and read out by Si-PIN photodiodes. The light yield of the CsI crystals is changing in time due to radiation exposure. In addition to the changing light yield, passive material in front of and between the crystals as well as signal thresholds during the reconstruction influence the reconstructed energies. This requires a time-dependent calibration of the calorimeter. The calibration issues are reviewed and the calibration results obtained from various data samples are presented.

  14. The large volume calorimeter for measuring the pressure cooker'' shipping container

    SciTech Connect

    Kasperski, P.W.; Duff, M.F.; Wetzel, J.R. ); Baker, L.B.; MacMurdo, K.W. )

    1991-01-01

    A precise, low wattage, large volume calorimeter system has been developed at Mound to measure two configurations of the 12081 containment vessel. This system was developed and constructed to perform verification measurements at the Savannah River Site. The calorimeter system has performance design specifications of {plus minus}0.3% error above the 2-watt level, and {plus minus}(0.03% plus 0.006 watts) at power levels below 2 watts (one sigma). Data collected during performance testing shows measurement errors well within this range, even down to 0.1-watt power levels. The development of this calorimeter shows that ultra-precise measurements can be achieved on extremely large volume sample configurations. 1 ref., 5 figs.

  15. Comparative study of WLS fibres for the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Gomes, A.; David, M.; Henriques, A.; Maio, A.

    1998-02-01

    The Wave Length Shifting (WLS) fibres are one of the most important components of the ATLAS barrel hadronic tile calorimeter (Tilecal). The fibres collect the hght produced in the injection molded scintillating tiles and transport it to the photomultipliers. Parameters like attenuation length and light yield are important, as well as flexibility and radiation hardness. Comparative results of WLS fibres produced by Bicron, Kuraray and Pol.Hi.Tech are presented. The performance of the fibres BCF91A from Bicron and S048 from Pol.Hi.Tech was significatively improved, but the most performant are still the double clad Y11 fibres from Kuraray.

  16. Comparative study of WLS fibres for the ATLAS tile calorimeter

    NASA Astrophysics Data System (ADS)

    Gomes, A.; David, M.; Henriques, A.; Maio, A.

    1997-02-01

    The Wave Length Shifting (WLS) fibres are one of the most important components of the ATLAS barrel hadronic tile calorimeter (Tilecal). The fibres collect the light produced in the injection molded scintillating tiles and transport it to the photomultipliers. Parameters like attenuation length and light yield are important, as well as flexibility and radiation hardness. Comparative results of WLS fibres produced by Bicron, Kuraray and Pol.Hi.Tech are presented. The performance of the fibres BCF91A from Bicron and S048 from Pol.Hi.Tech was significatively improved, but the most performant are still the double clad Y11 fibres from Kuraray.

  17. Run 2 upgrades to the CMS Level-1 calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Kreis, B.; Berryhill, J.; Cavanaugh, R.; Mishra, K.; Rivera, R.; Uplegger, L.; Apanasevich, L.; Zhang, J.; Marrouche, J.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.; Foudas, C.; Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J. B.; Strebler, T.; Zabi, A.; Barbieri, R.; Cali, I. A.; Innocenti, G. M.; Lee, Y.-J.; Roland, C.; Wyslouch, B.; Guilbaud, M.; Li, W.; Northup, M.; Tran, B.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.; Cepeda, M.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.

    2016-01-01

    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.

  18. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    SciTech Connect

    Abdullin, S.; Abramov, V.; Acharya, B.; Adam, N.; Adams, M.; Adzic, P.; Akchurin, N.; Akgun, U.; Albayrak, E.; Alemany-Fernandez, R.; Almeida, N.; /Lisbon, LIFEP /Democritos Nucl. Res. Ctr. /Virginia U. /Iowa State U.

    2009-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7 {+-} 1.6% and the constant term is 7.4 {+-} 0.8%. The corrected mean response remains constant within 1.3% rms.

  19. Electromagnetic Shower Reconstruction for theSilicon Detector

    SciTech Connect

    Meyer, N.

    2005-12-08

    This report presents a two-pass reconstruction algorithm for electromagnetic showers, based on studies with simulated photons in the highly segmented Silicon Tungsten calorimeter of the Silicon Detector concept for the International Linear Collider. It is shown that the initial reconstruction and identification of the dense shower cores allows shower separation down to 3 cm distance between two photons on the calorimeter surface. First results are shown for the subsequent collection of unassociated hits around the shower cores necessary to reconstruct complete energy deposits by individual particles.

  20. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    SciTech Connect

    Wuest, C.R.; Fuchs, B.A.

    1993-05-01

    New machining and polishing techniques have been developed for large barium fluoride scintillating crystals that provide crystalline surfaces without sub-surface damage or deformation as verified by Atomic Force Microscopy (AFM) and Rutherford Back-scattering (RBS) analyses. Surface roughness of about 10--20 angstroms and sub-micron mechanical tolerances have been demonstrated on large crystal samples. Mass production techniques have also been developed for machining and polishing up to five 50 cm long crystals at one time. We present this technology along with surface studies of barium fluoride crystals polished with this technique. This technology is applicable for a number of new crystal detectors proposed at Colliders including the Barium Fluoride Electromagnetic Calorimeter at SSC, the Crystal Clear Collaboration`s cerium fluoride calorimeter at LHC, and the KTeV and PHENIX scintillating hodoscopes at Fermilab, and RHIC, respectively. Lawrence Livermore National Laboratory (LLNL) has an active program of study on barium fluoride scintillating crystals for the Barium Fluoride Electromagnetic Calorimeter Collaboration and cerium fluoride and lead fluoride for the Crystal Clear Collaboration. This program has resulted in a number of significant improvements in the mechanical processing, polishing and coating of fluoride crystals. Techniques have been developed using diamond-loaded pitch lapping that can produce 15 angstrom RMS surface finishes over large areas. Also, special polishing fixtures have been designed based on mounting technology developed for the 1.1 m diameter optics used in LLNL`s Nova Laser. These fixtures allow as many as five 25--50 cm long crystals to be polished and lapped at the same time with tolerances satisfying the stringent requirements of crystal calorimeters. We also discuss results on coating barium fluoride with UV reflective layers of magnesium fluoride and aluminum.

  1. Upgrade fo the CMS Hadron Outer Calorimeter with SIPMs

    SciTech Connect

    Anderson, Jacob; Freeman, James; Los, Sergey; Whitmore, Juliana; /Fermilab

    2011-09-14

    The CMS Hadron Outer Calorimeter (HO) is undergoing an upgrade to replace the existing photodetectors (HPDs) with SIPMs. The chosen device is the Hamamatsu 3 x 3mm 50 {mu}m pitch MPPC. The system has been developed to be a 'drop-in' replacement of the HPDs. A complete control system of bias voltage generation, leakage current monitoring, temperature monitoring, and temperature control using solid state Peltier coolers has been developed and tested. 108 channels of the system have been installed into CMS and operated for more than 2 years. The complete system of about 2200 channels is in production and will be installed in the next LHC long shutdown scheduled for 2013. The CMS central calorimeter consists of a detector inside the solenoidal magnet, HB, and a component outside the magnet, the Outer Hadron Calorimeter, HO [1]. The HO is installed inside the magnet flux return yoke and provides for typically 3{lambda} of additional absorber to the calorimetric measurement. The outer calorimeter is composed of one or more layers of scintillator with wavelength shifting fiber readout into photodetectors. Figure 1 (a) shows the schematic layout of the calorimeters in CMS and shows the location of the HO scintillator layers. The front end electronics are placed inside the CMS detector, close to the scintillators. Figure 1(b) shows a photograph of the scintillators. Note the four wavelength shifting fibers per tile. The tile size creates a projective tower with the HB. Currently the photodetector used is the HPD but for performance and operational reasons it is desired to upgrade these with SIPMs. The CMS HCAL group has developed a drop-in replacement for the HPD using SIPMs. SIPMs are very suitable for this application because of several factors: The radiation levels are modest with a lifetime expected fluence of less than 5*10{sup 11} neutrons (E > 100 KeV) per cm{sup 2}. The energy flux into HO is small, the rate of larger energy depositions is low, and the required

  2. Master plate production for the tile calorimeter extended barrel modules.

    SciTech Connect

    Guarino, V.J.; Hill, N.; Petereit, E.; Price, L.E.; Proudfoot, J.; Wood, K.

    1999-03-10

    Approximately 41,000 master plates (Fig. 1) are required for the Extended Barrel Hadronic Calorimeter for the ATLAS experiment at the LHC. Early in the R&D program associated with the detector, it was recognized that the fabrication of these steel laminations was a significant issue, both in terms of the cost to produce these high precision formed plates, as well as the length of time required to produce all plates for the calorimeter. Two approaches were given serious consideration: laser cutting and die stamping. The Argonne group was a strong supporter of the latter approach and in late 1995 initiated an R&D program to demonstrate the feasibility and cost effectiveness of die stamping these plates by constructing a die and stamping approximately 2000 plates for use in construction of three full size prototype modules. This was extremely successful and die stamping was selected by the group for production of these plates. When the prototype die was constructed it was matched to the calorimeter envelope at that time. This subsequently changed. However with some minor adjustments in the design envelope and a small compromise in terms of instrumented volume, it became possible to use this same die for the production of all master plates for the Tile Calorimeter. Following an extensive series of discussions and an evaluation of the performance of the stamping presses available to our collaborators in Europe, it was decided to ship the US die to CERN for use in stamping master plates for the barrel section of the calorimeter. This was done under the supervision of CERN and JINR, Dubna, and carried out at the TATRA truck plant at Koprivinice, Czech Republic. It was a great success. Approximately 41,000 plates were stamped and fully met specification. Moreover, the production time was significantly reduced by avoiding the need of constructing and then qualifying a second die for use in Europe. This also precluded small geometrical differences between the barrel and

  3. SUITABILITY OF A NEW CALORIMETER FOR EXOTIC MESON SEARCHES

    SciTech Connect

    Bookwalter, C.; Ostrovidov, A.; Eugenio, P.

    2007-01-01

    Exotic mesons, particles that have quantum numbers that are inaccessible to conventional quark-model mesons, are predicted by quantum chromodynamics (QCD), but past experiments seeking to identify exotic candidates have produced controversial results. The HyCLAS experiment (E04005) at Thomas Jefferson National Accelerator Facility (TJNAF) proposes the use of the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) in Hall B to study the photoproduction of exotic mesons. However, the base detector package at CLAS is not ideal for observing and measuring neutral particles, particularly at forward angles. The Deeply Virtual Compton Scattering (DVCS) experiment at TJNAF has commissioned a new calorimeter for detecting small-angle photons, but studies must be performed to determine its suitability for a meson spectroscopy experiment. The ηπ system has been under especial scrutiny in the community as a source for potential exotics, so the new calorimeter’s ability at reconstructing these resonances must be evaluated. To achieve this, the invariant mass of showers in the calorimeter are reconstructed. Also, two electroproduction reaction channels analogous to photoproduction channels of interest to HyCLAS are examined in DVCS data. It is found that, while not ideal, the new calorimeter will allow access to additional reaction channels, and its inclusion in HyCLAS is warranted. Results in basic shower reconstruction show that the calorimeter has good effi ciency in resolving π° decays, but its η reconstruction is not as strong. When examining ep → epπ°η, preliminary reconstruction of the ηπ° system shows faint signals in the a0(980) region. In the ep → e n π+ η channel, preliminary reconstruction of the ηπ+ system gave good signals in the a0(980) and a2(1320) regions, but statistics were poor. While more analyses are necessary to improve statistics and remove background, these preliminary results support the claim

  4. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  5. Structure design and enviromental test of BGO calorimeter for satellite DAMPE

    NASA Astrophysics Data System (ADS)

    Hu, Yiming; Feng, Changqing; Zhang, Yunlong; Chen, Dengyi; Chang, Jin

    2016-07-01

    The Dark Matter Particle Explorer, DAMPE, is a new designed satellite developed for the new Innovation 2020 program of Chinese Academy of Sciences. As the most important payload of China's first scientific satellite for detecting dark matter, the primary purposes of BGO calorimeter is to measure the energy of incident high energy electrons and gamma rays (5GeV-10TeV) and to identify hadron and electronics. BGO calorimeter also provides an important background discriminator by measuring the energy deposition due to the particle shower that produced by the e^{±}, γ and imaging their shower development profile. Structure design of BGO calorimeter is described in this paper. The new designed BGO calorimeter consists of 308 BGO crystals coupled with photomultiplier tubes on its two ends. The envelop size of the BGO calorimeter is 907.5mm×907.5mm×494.5mm,and the weight of which is 1051.4Kg. The most important purpose of mechanical design is how to package so heavy crystals into a detector as required arrangement and to make sure reliability and safety. This paper describes the results of vibration tests using the Flight Module of the BGO Calorimeter for the DAMPE satellite. During the vibration tests, no degradation of the mechanical assembly was observed. After random or sinusoidal vibrations, there was no significant changes of the frequency signatures observed during the modal surveys. The comparison of results of cosmic ray tests before and after the vibration shows no change in the performance of the BGO calorimeter.

  6. Description of an ionization calorimeter complemented with proportional counters

    NASA Technical Reports Server (NTRS)

    Babayan, K. P.; Boyadzhyan, N. G.; Vasiltsov, V. V.; Grigorov, N. L.; Sobinyakov, V. A.; Shestoperov, V. Y.

    1975-01-01

    An ionization calorimeter is described with a system of proportional counters which are used to determine the charge of the particles incident to the calorimeter and to estimate the number of the secondary charged particles.

  7. Validation and uncertainty quantification of Fuego simulations of calorimeter heating in a wind-driven hydrocarbon pool fire.

    SciTech Connect

    Domino, Stefan Paul; Figueroa, Victor G.; Romero, Vicente Jose; Glaze, David Jason; Sherman, Martin P.; Luketa-Hanlin, Anay Josephine

    2009-12-01

    The objective of this work is to perform an uncertainty quantification (UQ) and model validation analysis of simulations of tests in the cross-wind test facility (XTF) at Sandia National Laboratories. In these tests, a calorimeter was subjected to a fire and the thermal response was measured via thermocouples. The UQ and validation analysis pertains to the experimental and predicted thermal response of the calorimeter. The calculations were performed using Sierra/Fuego/Syrinx/Calore, an Advanced Simulation and Computing (ASC) code capable of predicting object thermal response to a fire environment. Based on the validation results at eight diversely representative TC locations on the calorimeter the predicted calorimeter temperatures effectively bound the experimental temperatures. This post-validates Sandia's first integrated use of fire modeling with thermal response modeling and associated uncertainty estimates in an abnormal-thermal QMU analysis.

  8. Evaluation of candidate photomultiplier tubes for the upgrade of the CDF end plug calorimeter

    SciTech Connect

    Koska, W.; Delchamps, S.W.; Freeman, J.; Kinney, W.; Lewis, D.; Limon, P.; Strait, J.; Fiori, I.; Gallinaro, M.; Shen, Q.

    1994-01-01

    The Collider Detector at Fermilab is upgrading its end plug calorimeter from a gas detector system to one using scintillating tiles and wavelength shifting fibers. This tile-fiber calorimeter will be read out through 1,824 photomultiplier tubes. The performance requirements of the calorimeter require that the PMTs have good response to light in the 500 nm region, provide adequate amplification for signals from minimum ionizing particles yet provide linear response for peak anode currents up to 25 mA at a gain of 50,000, and fit into the restricted space at the rear of the plugs. This paper will describe the evaluation process used to determine the adequacy of the commercially available PMTs which appeared to meet these performance requirements.

  9. The Imaging Calorimeter for ACCESS (ICA)

    NASA Astrophysics Data System (ADS)

    Parnell, Thomas

    A mission concept study to define the "Advanced Cosmic-ray Composition Experiment for Space Station (ACCESS)" is being sponsored by the National Aeronautics and Space Administration (NASA). The ACCESS instrument complement contains an ionization calorimeter to measure the spectrum of protons, helium, and heavier nuclei up to ~1015 eV to search for the limit of S/N shock wave acceleration. Several calorimeters are under study, including the "baseline" totally active bismuth germanate instrument and sampling calorimeters utilizing various detectors. The ICA comprises a carbon target and a high atomic number absorber sampled approximately each radiation length (rl) by thin scintillating fiber (SCIFI) detectors. The main features of the ICA instrument concept are described in this paper.

  10. Vacuum-jacketed hydrofluoric acid solution calorimeter

    USGS Publications Warehouse

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  11. Temperature Effects in the ATIC BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, J.; Adams, J. H.; Ahn, H.; Bashindzhagyan, G.; Batkov, K.; Chang, J.; Christl, M. J.; Fazely, A.; Ganel, O.; Gunasigha, R.

    2006-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals (18 radiation lengths deep) to determine the particle energy. Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal. ATIC had successful flights in 2000/2001 and 2002/2003 from McMurdo, Antarctica. The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded. In order to determine the temperature sensitivity of the ATIC calorimeter it was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine, TX. The temperature dependence is derived from the pulse height response to cosmic ray muons at various temperatures.

  12. The ATLAS liquid argon calorimeter: One year of LHC operation and future upgrade plans for HL-LHC

    SciTech Connect

    Krieger, P. W.

    2011-07-01

    An overview of the ATLAS liquid-argon calorimeter system is provided, along with a discussion of its operation and performance during the first year of LHC running. Upgrade planning related to the proposed high-luminosity upgrade of the LHC is also discussed, with an emphasis on the forward part of the calorimeter where the effects of the higher luminosity are a particular challenge. (authors)

  13. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  14. Electromagnetic fasteners

    SciTech Connect

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  15. A novel on-chip three-dimensional micromachined calorimeter with fully enclosed and suspended thin-film chamber for thermal characterization of liquid samples

    PubMed Central

    Davaji, Benyamin; Jeong Bak, Hye; Chang, Woo-Jin; Hoon Lee, Chung

    2014-01-01

    A microfabricated calorimeter (μ-calorimeter) with an enclosed reaction chamber is presented. The 3D micromachined reaction chamber is capable of analyzing liquid samples with volume of 200 nl. The thin film low-stress silicon nitride membrane is used to reduce thermal mass of the calorimeter and increase the sensitivity of system. The μ-calorimeter has been designed to perform DC and AC calorimetry, thermal wave analysis, and differential scanning calorimetry. The μ-calorimeter fabricated with an integrated heater and a temperature sensor on opposite sides of the reaction chamber allows to perform thermal diffusivity and specific heat measurements on liquid samples with same device. Measurement results for diffusivity and heat capacitance using time delay method and thermal wave analysis are presented. PMID:24926386

  16. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  17. Development of Readout Interconnections for the Si-W Calorimeter of SiD

    SciTech Connect

    Woods, M.; Fields, R.G.; Holbrook, B.; Lander, R.L.; Moskaleva, A.; Neher, C.; Pasner, J.; Tripathi, M.; Brau, J.E.; Frey, R.E.; Strom, D.; Breidenbach, M.; Freytag, D.; Haller, G.; Herbst, R.; Nelson, T.; Schier, S.; Schumm, B.; /UC, Santa Cruz

    2012-09-14

    The SiD collaboration is developing a Si-W sampling electromagnetic calorimeter, with anticipated application for the International Linear Collider. Assembling the modules for such a detector will involve special bonding technologies for the interconnections, especially for attaching a silicon detector wafer to a flex cable readout bus. We review the interconnect technologies involved, including oxidation removal processes, pad surface preparation, solder ball selection and placement, and bond quality assurance. Our results show that solder ball bonding is a promising technique for the Si-W ECAL, and unresolved issues are being addressed.

  18. Mechanical and thermal design of the CEBAF Hall a beam calorimeter

    SciTech Connect

    M. Bevins; A. Day; P. Degtiarenko; L.A. Dillon-Townes; A. Freyberger; R. Gilman; A. Saha; S. Slachtouski

    2005-05-16

    A calorimeter is being fabricated to provide 0.5% - 1.0% absolute measurement of the beam current in the Hall A end station of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB). Modern powder metallurgy processes have produced high density, high thermal conductivity tungsten-copper composite materials that minimize electromagnetic and hadronic energy loss while maintaining a rapid thermal response time. Heat leaks are minimized by mounting the mass in vacuum on glass ceramic mounts. A conduction cooling scheme utilizes an advanced carbon fiber compliant thermal interface material. Transient finite difference and finite element models were developed to estimate heat leaks and thermal response times.

  19. Electromagnetic Fields

    MedlinePlus

    ... cancer. Some people worry that wireless and cellular phones cause cancer. They give off radio-frequency energy (RF), a form of electromagnetic radiation. Scientists need to do more research on this ...

  20. Measurement and simulation of neutron detection efficiency in lead-scintillating fiber calorimeters

    NASA Astrophysics Data System (ADS)

    Anelli, M.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; De Zorzi, G.; Di Domenico, A.; Di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A.; Sciascia, B.; Sirghi, F.

    2009-12-01

    The overall detection efficiency to neutrons of a small prototype of the KLOE lead-scintillating fiber calorimeter has been measured at the neutron beam facility of The Svedberg Laboratory, TSL, Uppsala, in the kinetic energy range [5-175] MeV. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 30% to 50%. This value largely exceeds the estimated 8-15% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. First data-MC comparisons are encouraging and allow to disentangle a neutron halo component in the beam.

  1. The large volume radiometric calorimeter system: A transportable device to measure scrap category plutonium

    SciTech Connect

    Duff, M.F.; Wetzel, J.R.; Breakall, K.L.; Lemming, J.F.

    1987-01-01

    An innovative design concept has been used to design a large volume calorimeter system. The new design permits two measuring cells to fit in a compact, nonevaporative environmental bath. The system is mounted on a cart for transportability. Samples in the power range of 0.50 to 12.0 W can be measured. The calorimeters will receive samples as large as 22.0 cm in diameter by 43.2 cm high, and smaller samples can be measured without lengthening measurement time or increasing measurement error by using specially designed sleeve adapters. This paper describes the design considerations, construction, theory, applications, and performance of the large volume calorimeter system. 2 refs., 5 figs., 1 tab.

  2. Grout Analysis for EC and CC Calorimeters

    SciTech Connect

    Engstrom, L.L.; /Fermilab

    1987-01-06

    The EC and CC calorimeters roll on Two parallel hardened steel ways which reside on the top of the D0 platform's center beam. The ways will be grouted to the center beam once their correct elevation has been established. The purpose of this report is to evaluate and compare three different epoxy grouts and their properties for this application.

  3. SLD liquid argon calorimeter prototype test results

    SciTech Connect

    Dubois, R.; Eigen, G.; Au, Y.; Sleeman, J.; Breidenbach, M.; Brau, J.; Ludgate, G.A.; Oram, C.J.; Cook, V.; Johnson, J.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses.

  4. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    NASA Astrophysics Data System (ADS)

    Wuest, C. R.; Fuchs, B. A.; Holdener, F. R.; Heck, J. L., Jr.

    1994-04-01

    New machining and polishing techniques have been developed for large scintillating crystal arrays such as the Barium Fluoride Electromagnetic Calorimeter for the GEM Detector at SSCL, the Crystal Clear Collaboration's cerium fluoride or lead tungstenate calorimeter at the proposed LHC and CERN, the PHENIX Detector at RHIC (barium fluoride), and the cesium iodide Calorimeter for the BaBar Detector at PEP-2 B Factory at SLAC. The machining and polishing methods to be presented in this paper provide crystalline surfaces without sub-surface damage or deformation as verified by Rutherford Back-scattering (RBS) analysis. Surface roughness of about 10-20 A and sub-micron mechanical tolerances have been demonstrated on large barium fluoride crystal samples. Mass production techniques have also been developed for machining the proper angled surfaces and polishing up to five 50 cm long crystals at one time. These techniques utilize kinematic mount technology developed at LLNL to allow precision machining and polishing of complex surfaces. They will present this technology along with detailed surface studies of barium fluoride and cerium fluoride crystals polished with this technique.

  5. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes. Revision 1

    SciTech Connect

    Wuest, C.R.; Fuchs, B.A.; Holdener, F.R.; Heck, J.L. Jr.

    1994-04-01

    New machining and polishing techniques have been developed for large scintillating crystal arrays such as the Barium Fluoride Electromagnetic Calorimeter for the GEM Detector at SSCL, the Crystal Clear Collaboration`s cerium fluoride or lead tungstenate calorimeter at the proposed LHC and CERN, the PHENIX Detector at RHIC (barium fluoride), and the cesium iodide Calorimeter for the BaBar Detector at PEP-2 B Factory at SLAC. The machining and polishing methods to be presented in this paper provide crystalline surfaces without sub-surface damage or deformation as verified by Rutherford Back-scattering (RBS) analysis. Surface roughness of about 10--20 angstroms and sub-micron mechanical tolerances have been demonstrated on large barium fluoride crystal samples. Mass production techniques have also been developed for machining the proper angled surfaces and polishing up to five 50 cm long crystals at one time. These techniques utilize kinematic mount technology developed at LLNL to allow precision machining and polishing of complex surfaces. They will present this technology along with detailed surface studies of barium fluoride and cerium fluoride crystals polished with this technique.

  6. Sensing disks for slug-type calorimeters have higher temperature stability

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Graphite sensing disk for slug-type radiation calorimeters exhibits better performance at high temperatures than copper and nickel disks. The graphite is heat-soaked to stabilize its emittance and the thermocouple is protected from the graphite so repeated temperature cycling does not change its sensitivity.

  7. Simulation of Energy Response of the ATIC Calorimeter

    NASA Technical Reports Server (NTRS)

    Batkov, K. E.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Granger, D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. For reconstruction of primary spectra from spectra of energy deposits measured in the experiment, correlations between kinetic energy of a primary particle E(sub kin) and energy deposit in the calorimeter E(sub d) should be known. For this purpose, simulations of energy response of the calorimeter on energy spectra of different nuclei were done. The simulations were performed by GEANT-3.21 code with QGSM generator for nucleus - nucleus interactions. The incident flux was taken as isotropic in the ATIC aperture. Primary spectra power-law by momentum were used as inputs according to standard models of cosmic ray acceleration. These spectra become power-law by kinetic energy at E(sub kin) higher than approx.20Mc(sup 2), where M is primary nucleus mass. It should be noted that energy deposit spectra measured by ATIC illustrate similar behavior. Distributions of ratio E(sub kin)/E(sub d) are presented for different energy deposits and for a set of primaries. For power-law regions of energy spectra at E(sub d)> or equal to 20Mc(sup 2) the obtained mean value of E(sub kin)/E(sub d) increases from approx.2.4 for protons to approx.3.1 for iron, while rms/ decreases from 50% for protons to about 15% for iron. These values were obtained for the spectral index gamma=1.6

  8. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  9. CMOS solid-state photomultipliers for high energy resolution calorimeters

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Stapels, Christopher J.; Chen, Xiao Jie; Whitney, Chad; Chapman, Eric C.; Alberghini, Guy; Rines, Rich; Augustine, Frank; Miskimen, Rory; Lydon, Don; Christian, James

    2011-09-01

    High-energy, gamma-ray calorimetry typically employs large scintillation crystals coupled to photomultiplier tubes. These calorimeters are segmented to the limits associated with the costs of the crystals, photomultiplier tubes, and support electronics. A cost-effective means for construction of a calorimeter system is to use solid-state photomultipliers (SSPM) with front-end electronics, which is at least half the cost, but the SSPM must provide the necessary energy resolution defined by the physics goals. One experiment with plans to exploit this advantage is an upgrade to the PRIMEX experiment at Jefferson Laboratories. We have developed a large-area SSPM (1 cm × 1 cm) for readout of large scintillation crystals. As PbWO4 has excellent properties (small Molière radius and radiation hard) for high-energy gamma-rays (>1 GeV) but low light yields (~150 photons/MeV at 0 °C), evaluation of the SSPM and support readout electronics with LaBr3 provides a measure of the device performance. Using the known detection efficiency and dark current of the SSPM, an excess noise factor associated with after pulsing and cross talk is determined. The contribution to the energy resolution from the detector module is calculated as <1% for gamma rays greater than ~2.5 GeV (0.7% at 4.5 GeV).

  10. Cosmic Ray Study with the Nose Cone Calorimeter

    NASA Astrophysics Data System (ADS)

    Langin, Thomas

    2008-10-01

    The Nose Cone Calorimeter (NCC) is a proposed upgrade detector for the PHENIX experiment at Brookhaven National Lab. The NCC will be useful for a variety of measurements in polarized p+p, d+A, and A+A collisions at the Relativistic Heavy Ion Collider (RHIC). The NCC is a tungsten-silicon sampling calorimeter, made up of 3 mm tungsten plates sandwiched by 1.5x1.5 cm^2 silicon pads. The NCC would add a new capability to measure the χC meson and electrons from W-boson decays in PHENIX, as well as adding acceptance for the 0̂ and γ-jet and many other measurements. Since it uses tungsten plates which have a very small Moliere radius of 0.9 cm, the NCC is capable of distinguishing photons down to very small separations, which is essential for the high densities in the heavy ion collisions and for decay photons from very high energy 0̂'s. The performance of the most recent NCC prototype was tested using cosmic rays, which deposit close to the lowest energies the NCC needs to measure. We find that the dynamic range of the NCC is within design specifications. Additionally, different methods to reconstruct the energy from the measured signal pulses were studied which will help in optimizing the pulse shaping for the next prototype.

  11. Shashlik calorimeter Beam-test results

    NASA Astrophysics Data System (ADS)

    Badier, J.; Busson, Ph.; Charlot, C.; Dobrzynski, L.; Tanaka, R.; Bordalo, P.; Ramos, S.; Bityukov, S.; Obraztsov, V.; Ostankov, A.; Zaitchenko, A.; Gninenko, S.; Guschin, E.; Issakov, V.; Mussienko, Y.; Semenjuk, I.

    1994-08-01

    Results from an extensive study of nonprojective Shashlik calorimeter prototypes are reported. Nine (47 × 47 mm 2) towers were exposed to a high energy electron beam at CERN SPS and read out by silicon photodiodes followed by low noise preamplifiers. The main results are the measurements of the energy and shower position resolution and the angular resolution of the electron shower direction. The shower direction measurement is encouraging being in agreement at the tower center with a resolution of σθ(mrad) = 70/√ E (10 mrad for 50 GeV electrons). The uniformity of the calorimeter response is found to be better than ± 1%. The mean light yield measured in Shashlik towers equipped with Kuraray Y7 WLS fibres and aluminized at the front end of the tower is of the order of 13 photons/MeV.

  12. Effect of dead material in a calorimeter

    SciTech Connect

    Green, D.

    1995-10-01

    The existence of dead material in any practical calorimeter system is simply a fact of life. The task for the designer, then, is to understand the impact on the Physics in question, and strive to minimize it. The aim of this note is to use the ``Hanging File`` test data, which has fined grained individual readout of about 100 depth segments, to explore impact of dead material on the mean and r.m.s. of the hadronic distribution. The amount and location of the dead material is varied. It important to remember that the Hanging File data was calibrated, EM to HCAL compartment, so as to minimize the electron to pion energy dependence. In practical terms e/pie was made = 1.0 at an incident energy of about 100 GeV. Note that the PB(EM) + FE(HCAL) calorimeter was not a compensating device.

  13. Advanced Thin Ionization Calorimeter (ATIC) Update

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Ganel, O.; Kim, K. C.; Seo, E. S.; Sina, R.; Wang, J. Z.; Wu, J.; Case, G.; Ellison, S. B.; Gould, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range of approximately 10 GeV - 100 TeV. ATIC is comprised of an eight-layer, 18 radiation length deep Bismuth Germanate (BGO) calorimeter, downstream of a 0.75 nuclear interaction length graphite target and an approximately 1 sq m finely segmented silicon charge detector. Interleaved with the graphite layers are three scintillator strip hodoscopes for pre-triggering and tracking. ATIC flew for the first time on a Long Duration Balloon (LDB) launched from McMurdo, Antarctica in January 2001. During its 16-day flight ATIC collected more than 30 million science events, along with housekeeping, calibration, and rate data. This presentation will describe the ATIC data processing, including calibration and efficiency corrections, and show results from analysis of this dataset. The next launch is planned for December 2002.

  14. A FOrward CALorimeter Upgrade For PHENIX

    SciTech Connect

    Hollis, Richard S.

    2011-06-01

    Over the past few years, the PHENIX detector has undergone several upgrades in the forward region (1<|{eta}|<4), initially covered only by the muon arms. The focus of these upgrades is toward a better understanding of the Color-Glass Condensate and the interplay between the different components of the proton's spin valence/sea quark and gluon contributions. This paper highlights the newly proposed forward calorimeter detector, FOCAL. FOCAL is a tungsten-silicon sampling calorimeter with high position and energy resolution, covering a pseudorapidity of 1.6<{eta}<2.5. This future detector aims to constrain the current view of gluon saturation at small x in the Color-Glass Condensate framework, through isolation of direct photons at high-p{sub T} over a broad range of pseudorapidity.

  15. The dry heat exchanger calorimeter system

    SciTech Connect

    Renz, D.P.; Wetzel, J.R.; James, S.J.; Kasperski, P.W.; Duff, M.F.

    1991-01-01

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab.

  16. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  17. A no-load RF calorimeter

    NASA Technical Reports Server (NTRS)

    Chernoff, R. C.

    1975-01-01

    The described device can be used to measure the output of any dc powered RF source. No dummy load is required for the measurements. The device is, therefore, called the 'no-load calorimeter' (NLC). The NLC measures the power actually fed to the antenna or another useful load. It is believed that the NLC can compete successfully with directional coupler type systems in measuring the output of high-power RF sources.

  18. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  19. Electromagnetic energy sink

    NASA Astrophysics Data System (ADS)

    Valagiannopoulos, C. A.; Vehmas, J.; Simovski, C. R.; Tretyakov, S. A.; Maslovski, S. I.

    2015-12-01

    The ideal black body fully absorbs all incident rays, that is, all propagating waves created by arbitrary sources. A known idealized realization of the black body is the perfectly matched layer (PML), widely used in numerical electromagnetics. However, ideal black bodies and PMLs do not interact with evanescent fields that exists near any finite-size source, and the energy stored in these fields cannot be harvested. Here, we introduce the concept of the ideal conjugate matched layer (CML), which fully absorbs the energy of both propagating and evanescent fields of sources acting as an ideal sink for electromagnetic energy. Conjugate matched absorbers have exciting application potentials, as resonant attractors of electromagnetic energy into the absorber volume. We derive the conditions on the constitutive parameters of media which can serve as CML materials, numerically study the performance of planar and cylindrical CML and discuss possible realizations of such materials as metal-dielectric composites.

  20. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995

  1. EMACK electromagnetic launcher commissioning

    NASA Astrophysics Data System (ADS)

    Deis, D. W.; Scherbarth, D. W.; Ferrentino, G. L.

    1984-03-01

    The Laboratory Demonstration Electromagnetic Launcher Program (EMACK) was initiated in April 1979, with the objective to design, construct, and demonstrate a complete electromagnetic launcher (EML) system capable of accelerating projectiles of substantial mass to velocities significantly greater than those achievable with conventional chemical systems. The last hardware was installed in late 1981. During February 1982, a series of five test shots was made to evaluate the system's performance. Particular attention is given to the parameters of the final, as-built hardware, and the results of the commissioning tests. The results of these tests have demonstrated the viability of the components required for large scale electromagnetic launchers. It has been shown that large projectiles with velocities significantly greater than those achievable by chemical systems can be accelerated intact.

  2. An improved single crystal adsorption calorimeter

    NASA Astrophysics Data System (ADS)

    Stuck, A.; Wartnaby, C. E.; Yeo, Y. Y.; Stuckless, J. T.; Al-Sarraf, N.; King, D. A.

    1996-04-01

    Significant improvements to the single crystal adsorption calorimeter (SCAC) of Borroni-Bird and King are described. The calorimeter comprises a pulsed molecular beam source, an ultrathin single crystal and an infrared detector. It is calibrated using a chopped laser beam, and the amount of gas adsorbed or reacted per pulse is measured using the King and Wells reflection detector technique. Refinements in the molecular beam system, the optical calibration system, flux calibration system and sticking probability measurement technique have been made. The calorimeter response is accurately linear over a useful energy range; the detection limit is estimated as 10 kJ mol -1; and the accuracy in heats of adsorption for heats above ˜ 80 kJ mol -1 is estimated as ˜ 6%. Comparisons of calorimetric heats with isosteric heats and with desorption energies obtained for reversible systems, such as CO on Ni and Pt single crystal surfaces, generally yield good agreement and give support to the estimate for the absolute accuracy of the instrument.

  3. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  4. The magnetized steel and scintillator calorimeters of the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Minos Collaboration; Michael, D. G.; Adamson, P.; Alexopoulos, T.; Allison, W. W. M.; Alner, G. J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Arroyo, C.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barker, M. A.; Barnes, P. D.; Barr, G.; Barrett, W. L.; Beall, E.; Bechtol, K.; Becker, B. R.; Belias, A.; Bergfeld, T.; Bernstein, R. H.; Bhattacharya, D.; Bishai, M.; Blake, A.; Bocean, V.; Bock, B.; Bock, G. J.; Boehm, J.; Boehnlein, D. J.; Bogert, D.; Border, P. M.; Bower, C.; Boyd, S.; Buckley-Geer, E.; Byon-Wagner, A.; Cabrera, A.; Chapman, J. D.; Chase, T. R.; Chernichenko, S. K.; Childress, S.; Choudhary, B. C.; Cobb, J. H.; Coleman, S. J.; Cossairt, J. D.; Courant, H.; Crane, D. A.; Culling, A. J.; Damiani, D.; Dawson, J. W.; de Jong, J. K.; Demuth, D. M.; de Santo, A.; Dierckxsens, M.; Diwan, M. V.; Dorman, M.; Drake, G.; Ducar, R.; Durkin, T.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Fackler, O. D.; Falk Harris, E.; Feldman, G. J.; Felt, N.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Gebhard, M.; Godley, A.; Gogos, J.; Goodman, M. C.; Gornushkin, Yu.; Gouffon, P.; Grashorn, E. W.; Grossman, N.; Grudzinski, J. J.; Grzelak, K.; Guarino, V.; Habig, A.; Halsall, R.; Hanson, J.; Harris, D.; Harris, P. G.; Hartnell, J.; Hartouni, E. P.; Hatcher, R.; Heller, K.; Hill, N.; Ho, Y.; Howcroft, C.; Hylen, J.; Ignatenko, M.; Indurthy, D.; Irwin, G. M.; James, C.; Jenner, L.; Jensen, D.; Joffe-Minor, T.; Kafka, T.; Kang, H. J.; Kasahara, S. M. S.; Kilmer, J.; Kim, H.; Kim, M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Koskinen, D. J.; Kostin, M.; Kotelnikov, S. K.; Krakauer, D. A.; Kumaratunga, S.; Ladran, A. S.; Lang, K.; Laughton, C.; Lebedev, A.; Lee, R.; Lee, W. Y.; Libkind, M. A.; Liu, J.; Litchfield, P. J.; Litchfield, R. P.; Longley, N. P.; Lucas, P.; Luebke, W.; Madani, S.; Maher, E.; Makeev, V.; Mann, W. A.; Marchionni, A.; Marino, A. D.; Marshak, M. L.; Marshall, J. S.; McDonald, J.; McGowan, A. M.; Meier, J. R.; Merzon, G. I.; Messier, M. D.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Miyagawa, P. S.; Moore, C. D.; Morfín, J.; Morse, R.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M. J.; Musser, J.; Naples, D.; Nelson, C.; Nelson, J. K.; Newman, H. B.; Nezrick, F.; Nichol, R. J.; Nicholls, T. C.; Ochoa-Ricoux, J. P.; Oliver, J.; Oliver, W. P.; Onuchin, V. A.; Osiecki, T.; Ospanov, R.; Paley, J.; Paolone, V.; Para, A.; Patzak, T.; Pavlović, Ž.; Pearce, G. F.; Pearson, N.; Peck, C. W.; Perry, C.; Peterson, E. A.; Petyt, D. A.; Ping, H.; Piteira, R.; Pla-Dalmau, A.; Plunkett, R. K.; Price, L. E.; Proga, M.; Pushka, D. R.; Rahman, D.; Rameika, R. A.; Raufer, T. M.; Read, A. L.; Rebel, B.; Reyna, D. E.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Ryabov, V. A.; Saakyan, R.; Sanchez, M. C.; Saoulidou, N.; Schneps, J.; Schoessow, P. V.; Schreiner, P.; Schwienhorst, R.; Semenov, V. K.; Seun, S.-M.; Shanahan, P.; Shield, P. D.; Shivane, R.; Smart, W.; Smirnitsky, V.; Smith, C.; Smith, P. N.; Sousa, A.; Speakman, B.; Stamoulis, P.; Stefanik, A.; Sullivan, P.; Swan, J. M.; Symes, P. A.; Tagg, N.; Talaga, R. L.; Terekhov, A.; Tetteh-Lartey, E.; Thomas, J.; Thompson, J.; Thomson, M. A.; Thron, J. L.; Trendler, R.; Trevor, J.; Trostin, I.; Tsarev, V. A.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vakili, M.; Vaziri, K.; Velissaris, C.; Verebryusov, V.; Viren, B.; Wai, L.; Ward, C. P.; Ward, D. R.; Watabe, M.; Weber, A.; Webb, R. C.; Wehmann, A.; West, N.; White, C.; White, R. F.; Wojcicki, S. G.; Wright, D. M.; Wu, Q. K.; Yan, W. G.; Yang, T.; Yumiceva, F. X.; Yun, J. C.; Zheng, H.; Zois, M.; Zwaska, R.; MINOS Collaboration

    2008-11-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  5. The magnetized steel and scintillator calorimeters of the MINOS experiment

    SciTech Connect

    Michael, : D.G.

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the 'atmospheric neutrino' sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  6. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  7. In-situ probe of the response of the Tile Calorimeter to isolated hadrons

    NASA Astrophysics Data System (ADS)

    Jennens, D.

    2014-06-01

    The Tile calorimeter is the hadronic central barrel of the calorimeter system of the ATLAS experiment for the LHC at CERN. It is based on a sampling technique where scintillating tiles are embedded in iron absorber plates. The tiles are grouped together in cells which are disposed in three different layers. The cells from the two innermost layers cover a Δη × Δϕ range of 0.1 × 0.1, while the outermost layer covers 0.2 × 0.1. An in-situ method to probe the calorimeter response to single charged hadrons can be established by using the ratio of energy measured in the calorimeter cells over the momentum measured by the inner tracking system. This measurement can be used to place constraints on the systematic uncertainty for the jet and tau energy scales. Results from pp collision data from 2010 and 2011 will be shown and discussed as a function of different layer and barrel section. Finally, comparison to MC simulation will prove the good performance of the detector.

  8. Power loss measurement of implantable wireless power transfer components using a Peltier device balance calorimeter

    NASA Astrophysics Data System (ADS)

    Leung, Ho Yan; Budgett, David M.; Taberner, Andrew; Hu, Patrick

    2014-09-01

    Determining heat losses in power transfer components operating at high frequencies for implantable inductive power transfer systems is important for assessing whether the heat dissipated by the component is acceptable for implantation and medical use. However, this is a challenge at high frequencies and voltages due to limitations in electronic instrumentation. Calorimetric methods of power measurement are immune to the effects of high frequencies and voltages; hence, the measurement is independent of the electrical characteristics of the system. Calorimeters have been widely used to measure the losses of high power electrical components (>50 W), however it is more difficult to perform on low power components. This paper presents a novel power measurement method for components dissipating anywhere between 0.2 W and 1 W of power based on a heat balance calorimeter that uses a Peltier device as a balance sensor. The proposed balance calorimeter has a single test accuracy of ±0.042 W. The experimental results revealed that there was up to 35% difference between the power measurements obtained with electrical methods and the proposed calorimeter.

  9. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  10. Summary talk on fiber tower calorimeter for the scintillation calorimeter subgroups

    SciTech Connect

    White, A.P.; Walker, J.K.; Johnson, C.; Wahl, H.; Gabriel, T.

    1989-01-01

    We present here a new calorimeter design based on small scintillator tiles, lead absorber and wavelength shifting fiber readout. We have addressed all the major issues in SSC calorimetry and have developed a design with many advantageous features. It has been well demonstrated that the best resolution is obtained for a 'compensated' calorimeter. It is also well known how such compensation may be achieved by a suitable choice of active and passive materials and their relative thickness. One such choice is that of lead and scintillator for which the best thickness ratio is 4:1. This selection has been used in the development of the so-called spaghetti calorimeter (SPACAL) discussed at this workshop. The relative merits of this and many other designs have been the subject of much discussion at SSC workshops from which a number of critical issues have emerged for each design. In the present paper, we have addressed the issues raised in the SPACAL design and proposed an alternative, improved design. The SPACAL represents a significant step forward in calorimeter design, but there are always areas which can be improved in any design when it is subjected to detailed study. Specifically we have considered the areas of energy resolution, channeling, projective towers/calibration, longitudinal segmentation, and radiation sensitivity. We will now discuss each of these areas in turn. 5 refs., 9 figs.

  11. Relative Gain Monitoring of the GlueX Calorimeters

    SciTech Connect

    Anassontzis, Efstratios G.; Kourkoumelis, C.; Vasileiadis, G.; Voulgaris, G.; Kappos, E.; Beattie, T.; Krueger, S.; Lolos, G. J.; Papandreou, Z.; Semenov, A. Yu.; Frye, John M.; Leckey, John P.; Shepherd, Matt; Bogart, T.; Smith, Elton S.

    2014-02-01

    The relative gain of the photodetectors for the GlueX Barrel and Forward calorimeters will be monitored using modular LED driver systems. The BCAL system consists of a global controller that feeds power, bias voltage and trigger signals to 96 local controllers situated at the ends of the 48 BCAL modules, which drive 40 LEDs associated with the 40 light guides at the end of each module. The FCAL system consists also of a global controller, a local controller for each acrylic quadrant covering the face of the FCAL, and ten 4-LED pulser boards per local controller connected in a star configuration along the edges of the acrylic panes. The respective systems are currently being installed on the detectors and their tested performance is presented herein.

  12. Shashlik calorimeter response to high energy electrons

    NASA Astrophysics Data System (ADS)

    Dobrzynski, L.

    1994-04-01

    We report the results coming from an extensive study of a Shashlik calorimeter prototype for CMS. Nine (47 × 47 mm 2) towers were exposed to a high energy electron beam at CERN SPS and read out by silicon photodiodes followed by low noise preamplifiers. The main results are the measurements of: -|the energy resolution: {σ}/{E}(%)= {(8.4±0.1)}/{E}⊕ {(0.37±0.03)}/{E}⊕(0.8±0.2) ; -|the shower resolution: σ x,y(mm)= {9.1±0.3 stat±0.7 syst}/{E}⊕ {27±1.4 stat±2.1 syst}/{E}. -|We also give the angular resolution of the direction of an electron shower. It is estimated by using one point from a preshower detector located at 3 X0 and the second point on a barycenter in the calorimeter mosaic. The result is encouraging being in agreement with a resolution of σ θ( mrad) = {70}/{√E}, which gives for an electron of 50 GeV an angular resolution of 10 mrad. -|The uniformity of the calorimeter response is found to be better than ± 1%. -|The mean light yield measured in Shashlik towers equipped with Y7 WLS fibres from Kuraray and aluminized at the front side of the tower is of the order of 12300 γ/ GeV assuming a quantum efficiency of 62.5% for the Si photodiode.

  13. Calorimeter measurements of low wattage items

    SciTech Connect

    Cremers, T.L.; Camp, K.L.; Hildner, S.S.; Sedlacek, W.A.

    1993-08-01

    The transition of DOE facilities from production to decontamination and decommissioning has led to more measurements of waste, scrap, and other less attractive materials. The difficulty that these materials pose for segmented gamma scanning and neutron counting has increased the use of calorimetric assay for very low wattage items (< 250 millwatts). We have measured well characterized {sup 238}Pu oxide ranging in wattage from 25 to 500 milliwatts in the calorimeters at the Los Alamos Plutonium Facility and report the error and the precision of the measurements.

  14. Ac loss calorimeter for three-phase cable

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E.; DeBlanc, B.G.

    1996-10-01

    A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.

  15. Performance of τq-lepton reconstruction and identification in CMS

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2012-01-01

    The performance of tau-lepton reconstruction and identification algorithms is studied using a data sample of proton-proton collisions at sqrt(s)=7 TeV, corresponding to an integrated luminosity of 36 inverse picobarns collected with the CMS detector at the LHC. The tau leptons that decay into one or three charged hadrons, zero or more short-lived neutral hadrons, and a neutrino are identified using final-state particles reconstructed in the CMS tracker and electromagnetic calorimeter. The reconstruction efficiency of the algorithms is measured using tau leptons produced in Z-boson decays. The tau-lepton misidentification rates for jets and electrons are determined.

  16. Closed Gap Slug Calorimeter for Plasma Stream Characterization

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Gorbunov, Sergey; Terrazas-Salinas, Imelda; Jones, Steven M.

    2012-01-01

    Slug calorimeters are used in sheer and stagnation mode to characterize heat flux levels for high enthalpy streams. The traditional design features a gap between slug and holder, which can be of concern in these convective heat flux environments. The challenge is to develop a calorimeter that closes the gap to gas flow, but largely maintains thermal insulation of the slug. The work presented herein introduces two new slug calorimeter designs featuring a closed gap. This is done using either aerogel as a filler or press fitting the slug with a disk. The designs were verified and compared to the baseline calorimeter design under radiative heat flux. Building on this, the calorimeters were exposed to convective heat flux in the arc-jet facilities. Results from the new designs and conclusions on the impact of the gap in convective heat flux will be shown.

  17. Electromagnetic microactuators

    NASA Astrophysics Data System (ADS)

    Büttgenbach, S.; Al-Halhouli, A. T.; Feldmann, M.; Seidemann, V.; Waldschik, A.

    2013-05-01

    High precision microactuators have become key elements for many applications of MEMS, for example for positioning and handling systems as well as for microfluidic devices. Electromagnetic microactuators exhibit considerable benefits such as high forces, large deflections, low input impedances and thus, the involvement of only low voltages. Most of the magnetic microactuators developed so far are based on the variable reluctance principle and use soft magnetic materials. Since the driving force of such actuators is proportional to their volume, they require structures with rather great heights and aspect ratios. Therefore, the development of new photo resists, which allow UV exposure of thick layers of resist, has been essential for the advancement of variable reluctance microactuators. On the other hand, hard magnetic materials have the potential for larger forces and larger deflections. Accordingly, polymer magnets, in which micro particles of hard magnetic material are suspended in a polymer matrix, have been used to fabricate permanent magnet microactuators. In this paper we give an overview of sophisticated electromagnetic microactuators which have been developed in our laboratory in the framework of the Collaborative Research Center "Design and Manufacturing of Active Microsystems". In particular, concept, fabrication and test of variable reluctance micro stepper motors, of permanent magnet synchronous micromotors and of microactuators based on the Lorentz force principle will be described. Special emphasis will be given to applications in lab-on-chip systems.

  18. Design of Refractory Metal Life Test Heat Pipe and Calorimeter

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.

    2010-01-01

    Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy

  19. Spectroscopic investigations of highly charged ions using x-ray calorimeter spectrometers

    NASA Astrophysics Data System (ADS)

    Thorn, Daniel Bristol

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogenlike uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogenlike iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogenlike through carbonlike praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in heliumlike xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  20. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    SciTech Connect

    Thorn, Daniel Bristol

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  1. Beam test results for a tungsten-cerium fluoride sampling calorimeter with wavelength-shifting fiber readout

    NASA Astrophysics Data System (ADS)

    Becker, R.; Candelise, V.; Cavallari, F.; Dafinei, I.; Della Ricca, G.; Diemoz, M.; del Re, D.; D'Imperio, G.; Dissertori, G.; Donegà, M.; Dröge, M.; Gelli, S.; Haller, C.; Jorda Lope, C.; Lustermann, W.; Martelli, A.; Meridiani, P.; Micheli, F.; Nessi-Tedaldi, F.; Nuccetelli, M.; Organtini, G.; Quittnat, M.; Pandolfi, F.; Paramatti, R.; Pastrone, N.; Pellegrino, F.; Peruzzi, M.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Schönenberger, M.; Soffi, L.; Tabarelli de Fatis, T.; Vazzoler, F.

    2015-07-01

    A sampling calorimeter using cerium fluoride scintillating crystals as active material, interleaved with heavy absorber plates, and read out by wavelength-shifting (WLS) fibers is being studied as a calorimeter option for detectors at the upgraded High-Luminosity LHC (HL-LHC) collider at CERN. A prototype has been exposed to electron beams of different energies at the INFN Frascati (Italy) Beam Test Facility. This paper presents results from the studies performed on the prototype, such as signal amplitudes, light yield and energy resolution.

  2. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter

    SciTech Connect

    Kharchev, Nikolay K.; Batanov, German M.; Kolik, Leonid V.; Malakhov, Dmitrii V.; Petrov, Aleksandr Ye.; Sarksyan, Karen A.; Skvortsova, Nina N.; Stepakhin, Vladimir D.; Belousov, Vladimir I.; Malygin, Sergei A.; Tai, Yevgenii M.

    2013-01-15

    Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.

  3. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter.

    PubMed

    Kharchev, Nikolay K; Batanov, German M; Kolik, Leonid V; Malakhov, Dmitrii V; Petrov, Aleksandr Ye; Sarksyan, Karen A; Skvortsova, Nina N; Stepakhin, Vladimir D; Belousov, Vladimir I; Malygin, Sergei A; Tai, Yevgenii M

    2013-01-01

    Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency. PMID:23387650

  4. Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite.

    PubMed

    Hsiao, Sheng-Tsung; Ma, Chen-Chi M; Tien, Hsi-Wen; Liao, Wei-Hao; Wang, Yu-Sheng; Li, Shin-Ming; Yang, Chih-Yu; Lin, Sheng-Chi; Yang, Ruey-Bin

    2015-02-01

    Flexible and lightweight graphene nanosheet (GN)/waterborne polyurethane (WPU) composites which exhibit high electrical conductivity and electromagnetic shielding performance were prepared. Covalently modifying GNs with aminoethyl methacrylate (AEMA; AEMA-GNs) through free radical polymerization effectively inhibited the restacking and aggregation of the GNs because of the -NH3(+) functional groups grafted on the AEMA-GNs. Moreover, the AEMA-GNs exhibited high compatibility with a WPU matrix with grafted sulfonated functional groups because of the electrostatic attraction, which caused the AEMA-GNs to homogeneously disperse in the WPU matrix. This homogeneous distribution enabled the GNs to form electrically conductive networks. Furthermore, AEMA-GNs with different amounts of AEMA segments were introduced into the WPU matrix, and the effects of the surface chemistry of the GNs on the electrical conductivity and EMI shielding performance of composites were investigated. AEMA-GN/WPU composites with a GN loading of 5 vol % exhibited remarkable electrical conductivity (approximately 43.64 S/m) and EMI shielding effectiveness (38 dB) over the frequency of 8.2 to 12.4 GHz. PMID:25569714

  5. Prenatal exposure to 900 MHz, cell-phone electromagnetic fields had no effect on operant-behavior performances of adult rats.

    PubMed

    Bornhausen, M; Scheingraber, H

    2000-12-01

    To clarify potential health risks of radio-frequency electromagnetic fields (EMFs) used in cellular telephone technology to the developing brain, Wistar rats were continuously exposed during pregnancy to a low-level (0.1 mW/cm(2)) 900 MHz, 217 Hz pulse modulated EMF that approximated the highest legal exposure of normal populations to the radiation of base antennas of the GSM digital cell-phone technology. Whole body average specific absorption rate (SAR) values for the freely roaming, pregnant animals were measured in models; they ranged between 17.5 and 75 mW/kg. The offspring of exposed and of sham-exposed dams were coded and tested later as adults in a battery of ten simultaneously operated test chambers (Skinner boxes) during night time. Eight groups of ten coded animals in each group were tested for learning deficits in a sequence of nine, computer-controlled, 15 h sessions of the food-reinforced contingency Differential Reinforcement of Rate with increasing performance requirements. Two different sets of events were recorded: The food-reinforced lever-pressing activity of the animals and the inter-response intervals (IRIs) between consecutive lever presses. IRI-occurence patterns discriminated consistently between "learners" and "non-learners". Analyses of performance scores and of IRI-patterns both showed that exposure in-utero to the GSM field did not induce any measurable cognitive deficits. PMID:11102946

  6. Parametric study of the energy deposition inside the calorimeter measuring the nuclear heating in Material Testing Reactors

    NASA Astrophysics Data System (ADS)

    Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.

    2015-11-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material and two calorimetric cells. Then these measurements are used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present simulations with MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) to evaluate the nuclear heating inside the calorimeter during irradiation campaigns of the CARMEN-1P mock-up inside OSIRIS reactor periphery (MTR based on Saclay, France). The whole complete geometry of the sensor has been considered. The calculation method corresponds to a calculation in two steps. Consequently, we used as an input source in the model, the neutron and photon spectra calculated in various experimental locations tested during the irradiation campaign (H9, H10, H11, D9). After a description of the differential calorimeter sensor, the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements is introduced by two quantities: KERMA and energy deposition rate per mass unit. The Charged Particle Equilibrium (CPE) inside the calorimeter elements is studied. The contribution of prompt gamma and neutron is determined. A comparison between this total nuclear heating calculation and the experimental results in a graphite sample will be made. Then parametric studies performed on the influence of the various calorimeter components on the nuclear heating are presented and discussed. The studies of the influence of the nature of materials, the sensor jacket, the source type and the comparison of the results obtained for the two calorimetric cells leads to some proposals for the sensor improvement.

  7. Method and system for improved resolution of a compensated calorimeter detector

    DOEpatents

    Dawson, John W.

    1991-01-01

    An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.

  8. Light yield of Kuraray SCSF-78MJ scintillating fibers for the Gluex barrel calorimeter

    SciTech Connect

    Beattie, T D; Fischer, A P; Krueger, S T; Lolos, G J; Papandreou, Z; Plummer, E L; Semenov, A Yu; Semenova, I A; Sichello, L M; Teigro, L A; Smith, E S

    2014-09-01

    Over three quarters of a million 1-mm-diameter 4-m-long Kuraray double-clad SCSF-78MJ (blue-green) scintillating fibers have been used in the construction of the GlueX electromagnetic barrel calorimeter for the Hall D experimental program at Jefferson Lab. The quality of a random sample of 4,750 of these fibers was evaluated by exciting the fibers at their mid point using a 90Sr source in order to determine the light yield using a calibrated vacuum photomultiplier as the photosensor. A novel methodology was developed to extract the number of photoelectrons detected for measurements where individual photoelectron peaks are not discernible. The average number of photoelectrons from this sample of fibers was 9.17±0.6 at a source distance of 200 cm from the PMT.

  9. Light yield of Kuraray SCSF-78MJ scintillating fibers for the Gluex barrel calorimeter

    NASA Astrophysics Data System (ADS)

    Beattie, T. D.; Fischer, A. P.; Krueger, S. T.; Lolos, G. J.; Papandreou, Z.; Plummer, E. L.; Semenov, A. Yu.; Semenova, I. A.; Sichello, L. M.; Teigrob, L. A.; Smith, E. S.

    2014-12-01

    Over three quarters of a million 1-mm-diameter 4-m-long Kuraray double-clad SCSF-78MJ (blue-green) scintillating fibers have been used in the construction of the GlueX electromagnetic barrel calorimeter for the Hall D experimental program at Jefferson Lab. The quality of a random sample of 4750 of these fibers was evaluated by exciting the fibers at their mid point using a 90Sr source in order to determine the light yield using a calibrated vacuum photomultiplier as the photosensor. A novel methodology was developed to extract the number of photoelectrons detected for measurements where individual photoelectron peaks are not discernible. The average number of photoelectrons from this sample of fibers was 9.17±0.6 at a source distance of 200 cm from the PMT.

  10. Proton Irradiation Response of CsI(Tl) Crystals for the GLAST Calorimeter

    SciTech Connect

    Bergenius, S.; Carius, S.; Carlson, P.; Grove, J.E.; Johansson, G.; Klamra, W.; Nilsson, L.; Pearce, M.; Metzler, S.D.

    2012-04-10

    The electromagnetic calorimeter of the Gamma-Ray Large Area Space Telescope (GLAST) consists of 16 towers of CsI(Tl) crystals. Each tower contains 8 layers of crystals (each 326.0 x 26.7 x 19.9 mm{sup 3}) arranged in a hodoscopic fashion. The crystals are read out at both ends with photodiodes. Crystals produced by Amcrys-H (Ukraine) are used. A full size crystal was irradiated with a 180 MeV proton beam and the radiation induced attenuation was measured. The induced radioactivity of the crystal was also studied. In this paper we will discuss the damage due to proton irradiation and compare this with the expected in-orbit background flux.

  11. Energy correction for the BGO calorimeter of DAMPE using an electron beam

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Ying; Zhang, Zhi-Yong; Wei, Yi-Feng; Wang, Chi; Zhang, Yun-Long; Wen, Si-Cheng; Wang, Xiao-Lian; Xu, Zi-Zong; Huang, Guang-Shun

    2016-08-01

    The DArk Matter Particle Explorer is an orbital indirect dark matter search experiment which measures the spectra of photons, electrons and positrons originating from deep space. The electromagnetic calorimeter (ECAL), made of bismuth germinate (BGO), is one of the key sub-detectors of DAMPE, and is designed for energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, methods for energy correction are discussed, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The correction results of Geant4 simulation and beam test data (at CERN) are presented. Supported by the Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (XDA04040202-4) and 100 Talents Program of CAS

  12. Forward hadron calorimeter of European hybrid spectrometer monitoring system

    SciTech Connect

    Boratave, M.; Datsko, N.A.; David, J.; Ivanyushenkov, Y.M.; Kistenoev, E.P.; Vlasov, E.V.

    1985-11-01

    The light-monitoring system of the forward neutral-hadron calorimeter of the European hybrid spectrometer is described. A general block diagram of the system, the functional relationships of the modules, and the ideology of the mathematical support are presented. The calorimeter records neutral particles in momentum range of 10-400 MeV/c. The calorimeter consists of 200 identical counters in modules of four each in a 10 X 20 matrix. The counters are made from plastic scintillators interlayed by steel plates. Light is collected by means of a rod reemitter admitted along the counter axis.

  13. Cesium monitoring system for ATLAS Tile Hadron Calorimeter

    NASA Astrophysics Data System (ADS)

    Starchenko, E.; Blanchot, G.; Bosman, M.; Cavalli-Sforza, M.; Karyukhin, A.; Kopikov, S.; Miagkov, A.; Nessi, M.; Shalimov, A.; Shalanda, N.; Soldatov, M.; Solodkov, A.; Soloviev, A.; Tsoupko-Sitnikov, V.; Zaitsev, A.

    2002-11-01

    A system to calibrate and monitor ATLAS Barrel Hadronic Calorimeter (TileCal) is under construction at CERN Laboratory. A movable radioactive source driven by a liquid flow travels through the calorimeter body deposing a known energy to the calorimeter cells. Extensive R&D studies have been carried out and the main system parameters are evaluated. The prototypes are currently used for quality check and inter-calibration of the TileCal modules. A distributed control system, hardware as well as corresponding on-line and off-line software is developed.

  14. New tools for the simulation and design of calorimeters

    SciTech Connect

    Womersley, W.J.

    1989-07-10

    Two new approaches to the simulation and design of large hermetic calorimeters are presented. Firstly, the Shower Library scheme used in the fast generation of showers in the Monte Carlo of the calorimeter for the D-Zero experiment at the Fermilab Tevatron is described. Secondly, a tool for the design future calorimeters is described, which can be integrated with a computer aided design system to give engineering designers an immediate idea of the relative physics capabilities of different geometries. 9 refs., 6 figs., 1 tab.

  15. Tile-in-ONE An integrated framework for the data quality assessment and database management for the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Cunha, R.; Solans, C.; Sivolella, A.; Ferreira, F.; Maidantchik, C.

    2014-06-01

    In order to ensure the proper operation of the ATLAS Tile Calorimeter and assess the quality of data, many tasks are performed by means of several tools which have been developed independently. The features are displayed into standard dashboards, dedicated to each working group, covering different areas, such as Data Quality and Calibration.

  16. On the accuracy of instantaneous gas exchange rates, energy expenditure, and respiratory quotient calculations obtained in indirect whole room calorimeter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper analyzes the accuracy of metabolic rate calculations performed in the whole room indirect calorimeter using the molar balance equations. The equations are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes need to b...

  17. Beta spectrometry with metallic magnetic calorimeters.

    PubMed

    Loidl, M; Rodrigues, M; Le-Bret, C; Mougeot, X

    2014-05-01

    Metallic magnetic calorimeters are a specific type of cryogenic detectors that have been shown to enable precise measurement of the shape of low energy beta spectra. The aim of their use at LNHB is the determination of the shape factors of beta spectra. The beta source is enclosed in the detector absorber, allowing for very high detection efficiency. It has turned out that the type of source is of crucial importance for the correctness of the measured spectrum. Spectra of (63)Ni measured with several sources prepared by drying a NiCl2 solution differ from one another and from theory, whereas spectra measured with electroplated sources are reproducible and agree with theory. With these latter measurements we could confirm the atomic exchange effect down to very low energy (200 eV). PMID:24368065

  18. Calorimeter Simulation with Hadrons in CMS

    SciTech Connect

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-11-01

    CMS is using Geant4 to simulate the detector setup for the forthcoming data from the LHC. Validation of physics processes inside Geant4 is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions using the same framework that is used for the entire CMS detector. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c. The tuned Monte Carlo predictions match many of these measurements within systematic uncertainties.

  19. A particle counting EM calorimeter using MAPS

    NASA Astrophysics Data System (ADS)

    Nooren, G.; Rocco, E.

    2015-02-01

    The availability of full size MAPS sensors makes it possible to construct a calorimeter with pixelsize of a few tens of micrometers. This would be small enough to count individual shower particles and would allow a shower shape analysis on an unprecedented, small scale. Interesting features would be tracking capability for particle flow algorithms and a superior discrimination of single photons from neutral and charged pions at high momenta. A small Molière radius together with high transverse resolution would allow to separate close showers, induced by photons from neutral pion decay. A full scale (4 RM, 28 X0) prototype was constructed to demonstrate this. It features 30 micron pixelsize and a longitudinal sampling at 1 radiation length. We will show results from beam tests of this prototype at electron energies of 2 to 200 GeV.

  20. SCA controller for the ATLAS calorimeter

    SciTech Connect

    Gingrich, D.M.; Hewlett, J.C.; Holm, L.

    1997-12-31

    The front-end readout of the ATLAS liquid argon calorimeter will store data locally in analog pipeline memories at the LHC beam crossing frequency of 40 MHz. Switched capacitor array chips meeting the ATLAS readout requirements will be used. These new chips axe capable of simultaneous read and write operations, and allow random access to storage locations. To utilize these essential design features requires a substantial amount of fast control and address bookkeeping logic. We have designed a controller capable of operating the pipelines as analog random access memories and that satisfies the ATLAS readout requirements. The pipeline controller manages the data of 144 time samples and can operate at a mean trigger rate of about 75 kHz, when reading out five time samples per event. We are currently prototyping an integrated version of the controller implemented in a FPGA from Xilinx.

  1. Electromagnetic Compatibility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  2. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  3. Electromagnetic topology - Characterization of internal electromagnetic coupling

    NASA Astrophysics Data System (ADS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    This paper presents the main principles of a method dealing with the resolution of electromagnetic internal problems: electromagnetic topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of electromagnetic topology. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  4. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Astrophysics Data System (ADS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-08-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  5. Design and Implementation of the New D0 Level-1 Calorimeter Trigger

    SciTech Connect

    Abolins, M.; Adams, M.; Adams, T.; Aguilo, E.; Anderson, J.; Bagby, L.; Ban, J.; Barberis, E.; Beale, S.; Benitez, J.; Biehl, J.; /Columbia U. /DAPNIA, Saclay /Delhi U. /Fermilab /Florida State U. /Indiana U. /Michigan State U. /Northeastern U. /Rice U. /Southern Methodist U. /University Coll., Dublin

    2007-09-01

    Increasing luminosity at the Fermilab Tevatron collider has led the D0 collaboration to make improvements to its detector beyond those already in place for Run IIa, which began in March 2001. One of the cornerstones of this Run IIb upgrade is a completely redesigned level-1 calorimeter trigger system. The new system employs novel architecture and algorithms to retain high efficiency for interesting events while substantially increasing rejection of background. We describe the design and implementation of the new level-1 calorimeter trigger hardware and discuss its performance during Run IIb data taking. In addition to strengthening the physics capabilities of D0, this trigger system will provide valuable insight into the operation of analogous devices to be used at LHC experiments.

  6. A Pb-SciFi imaging calorimeter for high energy cosmic electrons

    NASA Astrophysics Data System (ADS)

    Torii, S.; Tateyama, N.; Tamura, T.; Yoshida, K.; Yamagami, T.; Murakami, H.; Kobayashi, T.; Yuda, T.; Nishimura, J.

    1998-11-01

    The BETS (balloon-borne electron telescope with scintillating fiber) detector has been developed for high-altitude balloon flights to observe high-energy cosmic-electrons. The detector consists of an imaging calorimeter and a trigger system for particle identification and energy measurement. The calorimeter is composed of scintillating fibers and leads of a total thickness of ˜8 r.l. Two sets of an image-intensifier and CCD camera system are adopted for read-out of 10,080 scintillating fibers. The accelerator tests were carried out to study performance of the detector by the CERN-SPS electron and proton beams. It is demonstrated in the flight data that a reliable identification of the electron component has been successfully achieved up to 100 GeV, and the energy spectrum has been measured.

  7. A Pb-SciFi imaging calorimeter for high energy cosmic electrons

    SciTech Connect

    Torii, S.; Tateyama, N.; Tamura, T.; Yoshida, K.; Yamagami, T.; Murakami, H.; Kobayashi, T.; Yuda, T.; Nishimura, J.

    1998-11-09

    The BETS (balloon-borne electron telescope with scintillating fiber) detector has been developed for high-altitude balloon flights to observe high-energy cosmic-electrons. The detector consists of an imaging calorimeter and a trigger system for particle identification and energy measurement. The calorimeter is composed of scintillating fibers and leads of a total thickness of {approx}8 r.l. Two sets of an image-intensifier and CCD camera system are adopted for read-out of 10,080 scintillating fibers. The accelerator tests were carried out to study performance of the detector by the CERN-SPS electron and proton beams. It is demonstrated in the flight data that a reliable identification of the electron component has been successfully achieved up to 100 GeV, and the energy spectrum has been measured.

  8. Measurement of Time Resolution of the Mu2e LYSO Calorimeter Prototype

    SciTech Connect

    Atanov, N.

    2015-09-16

    In this paper we present the time resolution measurements of the LutetiumYttrium Oxyorthosilicate (LYSO) calorimeter prototype for the Mu2e experiment. The measurements have been performed using the e- beam of the Beam Test Facility (BTF) in Frascati, Italy in the energy range from 100 to 400 MeV. The calorimeter prototype consisted of twenty five 30x30x130 mm3, LYSO crystals read out by 10x10 mm2 Hamamatsu Avalanche Photodiodes (APDs). The energy dependence of the measured time resolution can be parametrized as σt(E) = a/pE/GeV⊕b, with the stochastic and constant terms a = (51±1) ps and b = (14 ± 1) ps, respectively. This corresponds to the time resolution of (162 ± 3) ps at 100 MeV.

  9. Measurement of time resolution of the Mu2e LYSO calorimeter prototype

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Yu. I.; Flood, K.; Giovannella, S.; Glagolev, V.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Pezzullo, G.; Saputi, A.; Sarra, I.; Soleti, S. R.; Tassielli, G.; Tereshchenko, V.

    2016-03-01

    In this paper we present the time resolution measurements of the Lutetium-Yttrium Oxyorthosilicate (LYSO) calorimeter prototype for the Mu2e experiment. The measurements have been performed using the e- beam of the Beam Test Facility (BTF) in Frascati, Italy in the energy range from 100 to 400 MeV. The calorimeter prototype consisted of twenty five 30 × 30 × 130mm3, LYSO crystals read out by 10 × 10mm2 Hamamatsu Avalanche Photodiodes (APDs). The energy dependence of the measured time resolution can be parametrized as σt(E) = a /√{ E / GeV } ⊕ b, with the stochastic and constant terms a =(51 ± 1) ps and b =(10 ± 4) ps, respectively. This corresponds to the time resolution of (162 ± 4) ps at 100 MeV.

  10. Use of thin ionization calorimeters for measurements of cosmic ray energy spectra

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Ormes, J. S.; Schmidt, W. K. H.

    1976-01-01

    The reliability of performing measurements of cosmic ray energy spectra with a thin ionization calorimeter was investigated. Monte Carlo simulations were used to determine whether energy response fluctuations would cause measured spectra to be different from the primary spectra. First, Gaussian distributions were assumed for the calorimeter energy resolutions. The second method employed a detailed Monte Carlo simulation of cascades from an isotropic flux of protons. The results show that as long as the energy resolution does not change significantly with energy, the spectral indices can be reliably determined even for sigma sub e/e = 50%. However, if the energy resolution is strongly energy dependent, the measured spectra do not reproduce the true spectra. Energy resolutions greatly improving with energy result in measured spectra that are too steep, while resolutions getting much worse with energy cause the measured spectra to be too flat.

  11. D-0 South End Cap Calorimeter Cold Test Results

    SciTech Connect

    Rucinski, R.; /Fermilab

    1990-11-26

    The South endcap calorimeter vessel was moved into Lab A on Sept. 18, 1990. A cooldown of the pressure vessel with liquid nitrogen was performed on Sept. 26 to check the vessel's integrity. With the pressure vessel cold, the insulating vacuum was monitored for leaks. Through out the testing, the insulating vacuum remained good and the vessel passed the test. The cold test was carried out per the procedures of D-Zero engineering note 3740.220-EN-250. The test was very similar to the cold test performed on the Central Calorimeter in October of 1987. The test of the ECS was performed in the same manner using the same equipment as the ECN cold test. Reference D-Zero engineering notes 3740.210-EN-122, 3740.000-EN-I07, and 3740.210-EN-II0 for information about the CC cold test. Reference EN-260 for the results of the ECN cold test. The insulating vacuum space was pumped on while equipment was being connected to the pressure vessel. Two hours after starting to pump with the blower the vacuum space pressure was at about 40 microns. The pumping continued overnight (another 16 hours). In the morning the pressure was 11.5 microns. A rate of rise test was performed. With the pump valved off, the pressure rose to 14 microns within 5 minutes and then rose to 16 microns in 6 hours (0.33 microns/hour). After all connections were made to the pressure vessel, a vacuum pump with an estimated effective pumping speed of about 70 scfm was valved on. After 18 hours, the pressure vessel was down to 270 microns. An additional day of pumping took the pressure down to only 250 microns. A leak was then found and fixed around the seal of the rupture disc. The pump was put on line again. The pressure vessel with pump on line was 27 microns after 16.5 hours. A rate of rise was then conducted. The pressure was 90 microns after valving out the pump. After 30 minutes the pressure increased to 107 microns. (34 microns/hr).

  12. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect

    Harty, P. D. Ramanathan, G.; Butler, D. J.; Johnston, P. N.; Lye, J. E.; Hall, C. J.; Stevenson, A. W.

    2014-05-15

    .9%. Conclusions: The good agreement of the graphite calorimeter and free-air chamber results indicates that both devices are performing as expected. Further investigations at higher dose rates than 50 Gy/s are planned. At higher dose rates, recombination effects for the free-air chamber are much higher and expected to lead to much larger uncertainties. Since the graphite calorimeter does not have problems associated with dose rate, it is an appropriate primary standard detector for the synchrotron IMBL x rays and is the more accurate dosimeter for the higher dose rates expected in radiotherapy applications.

  13. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band.

    PubMed

    Han, Meikang; Yin, Xiaowei; Wu, Heng; Hou, Zexin; Song, Changqing; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2016-08-17

    Electromagnetic (EM) absorbing and shielding composites with tunable absorbing behaviors based on Ti3C2 MXenes are fabricated via HF etching and annealing treatment. Localized sandwich structure without sacrificing the original layered morphology is realized, which is responsible for the enhancement of EM absorbing capability in the X-band. The composite with 50 wt % annealed MXenes exhibits a minimum reflection loss of -48.4 dB at 11.6 GHz, because of the formation of TiO2 nanocrystals and amorphous carbon. Moreover, superior shielding effectiveness with high absorption effectiveness is achieved. The total and absorbing shielding effectiveness of Ti3C2 MXenes in a wax matrix with a thickness of only 1 mm reach values of 76.1 and 67.3 dB, while those of annealed Ti3C2 MXenes/wax composites are 32 and 24.2 dB, respectively. Considering the promising performance of Ti3C2 MXenes with the modified surface, this work is expected to open the door for the expanded applications of MXenes family in EM absorbing and shielding fields. PMID:27454148

  14. Performance of FeCoB based thin-film microwave noise suppressor applied to the electromagnetic interference design in the GHz frequency range

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Wen, Yumei; Li, Ping; Yang, Jin; Li, Wenli

    2014-05-01

    To develop high performance microwave noise suppressor, the microwave noise suppressors based on a microstrip line using FeCoB based magnetic thin film are presented, whose microwave noise suppression effects have been investigated. It was found that suitable low argon pressure is beneficial to the improvement of microwave noise suppression. In addition, the microwave noise suppression properties of microwave noise suppressor could be tuned by controlling the geometric dimension of FeCoB based magnetic thin film and SiO2 dielectric layer, resulted from the ferromagnetic resonance loss and eddy current loss. The maximum power loss ratio (Ploss/Pin) of thin-film microwave noise suppressor (the length, width, and thickness of FeCoNiB thin film are 25 mm, 10 mm, and 250 nm, respectively) achieves 0.75 at 3.4 GHz. These results show that the presented film noise suppressors have potential for the electromagnetic interference design in the GHz frequency range.

  15. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance.

    PubMed

    Hsiao, Sheng-Tsung; Ma, Chen-Chi M; Liao, Wei-Hao; Wang, Yu-Sheng; Li, Shin-Ming; Huang, Yu-Chin; Yang, Ruey-Bin; Liang, Wen-Fan

    2014-07-01

    In this study, we developed a simple and powerful method to fabricate flexible and lightweight graphene-based composites that provide high electromagnetic interference (EMI) shielding performance. Electrospun waterborne polyurethane (WPU) that featured sulfonate functional groups was used as the polymer matrix, which was light and flexible. First, graphene oxide (GO)/WPU composites were prepared through layer-by-layer (L-b-L) assembly of two oppositely charged suspensions of GO, the cationic surfactant (didodecyldimethylammonium bromide, DDAB)-adsorbed GO and intrinsic negatively charged GO, depositing on the negatively charged WPU fibers. After the L-b-L assembly cycles, the GO bilayers wrapped the WPU fiber matrix completely and revealed fine connections guided by the electrospun WPU fibers. Then, we used hydroiodic acid (HI) to obtain highly reduced GO (r-GO)/WPU composites, which exhibited substantially enhanced electrical conductivity (approximately 16.8 S/m) and, moreover, showed a high EMI-shielding effectiveness (approximately 34 dB) over the frequency range from 8.2 to 12.4 GHz. PMID:24921939

  16. Readout Electronics for BGO Calorimeter of DAMPE: Status during the First Half-year after Launching

    NASA Astrophysics Data System (ADS)

    Ma, Siyuan; Feng, Changqing; Zhang, Deliang; Wang, Qi

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientic satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objective of DAMPE mission is indirect searching for dark matter by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO (Bismuth Germanate Oxide) calorimeter, which is a critical sub-detector of DAMPE payload, was developed for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It is composed of 308 BGO crystal logs, with the size of 2.5cm*2.5cm*60cm for each log to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. Each PMT incorporates a three dynode pick off to achieve a large dynamic range, which results in 616 PMTs and 1848 signal channels. The main function of readout electronics system, which consists of 16 FEE(Front End Electronics) modules, is to precisely measure the charge of PMT signals and providing "hit" signals. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) to generate triggers for the payload. The calibration of the BGO calorimeter is composed of pedestal testing and electronic linear scale, which are executed frequently in the space after launching. The data of the testing is transmitted to ground station in the form of scientific data. The monitor status consists of temperature, current and status words of the FEE, which are measured and recorded every 16 seconds and packed in the engineering data, then transmitted to ground station. The status of the BGO calorimeter can be evaluated by the calibration

  17. Electromagnetic propulsion for spacecraft

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.

    1993-09-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  18. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  19. The Neutron Zero Degree Calorimeter for the ALICE Experiment

    NASA Astrophysics Data System (ADS)

    Dellacasa, G.; Cortese, P.; Cicaló, C.; de Falco, A.; Masoni, A.; Puddu, G.; Serci, S.; Siddi, E.; Usai, G.; Arnaldi, R.; Chiavassa, E.; de Marco, N.; Ferretti, A.; Gallio, M.; Gemme, R.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Scomparin, E.; Travaglia, G.; Vercellin, E.

    2005-02-01

    The neutron Zero Degree Calorimeter (ZN) for the ALICE experiment will measure the energy of the spectator neutrons in heavy ion collisions. The ZN is a spaghetti calorimeter, that exploits the Cherenkov light produced by the shower particles in silica optical fibers embedded in a W-alloy absorber. The calorimeter was tested at the CERN SPS using pion and positron beams of different momenta ranging from 50 to 150 GeV/c. The main features of the detector are presented: the linearity and energy resolution as a function of energy, the shower's transverse profile, the position resolution. Moreover the response of the calorimeter to a 158A GeV/c Indium beam has been investigated; in particular the energy resolution and the linearity as a function of the number of incident nucleons were measured.

  20. The zero degree calorimeters for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Puddu, G.; Arnaldi, R.; Chiavassa, E.; Cicaló, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; Ferretti, A.; Floris, M.; Gagliardi, M.; Gallio, M.; Gemme, R.; Locci, G.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Serci, S.; Siddi, E.; Stocco, D.; Usai, G.; Vercellin, E.; Yermia, F.

    2007-10-01

    The Zero Degree Calorimeters (ZDC) for the ALICE experiment will measure the energy of the spectator nucleons in heavy ion collisions at the CERN LHC, providing a direct measure of the centrality of the collisions. ZDC are spaghetti calorimeters, which detect the Cherenkov light produced by the shower particles in silica optical fibers embedded in a dense absorber. The main characteristics of the ZP and ZN detectors are described in this article. The calorimeters were tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. Test beam results such as the calorimeter response, the energy resolution, the signal uniformity and the localizing capability are presented.

  1. Neutron emission from electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV measured with the ALICE ZDC

    NASA Astrophysics Data System (ADS)

    Cortese, P.

    2014-04-01

    The ALICE Zero Degree Calorimeter system (ZDC) is composed of two identical sets of calorimeters, placed at opposite sides with respect to the interaction point, 114 meters away from it, complemented by two small forward electromagnetic calorimeters (ZEM). Each set of detectors consists of a neutron (ZN) and a proton (ZP) ZDC. They are placed at zero degrees with respect to the LHC axis and allow to detect particles emitted close to beam direction, in particular neutrons and protons emerging from hadronic heavy-ion collisions (spectator nucleons) and those emitted from electromagnetic processes. For neutrons emitted by these two processes, the ZN calorimeters have nearly 100% acceptance. During the √sNN = 2.76 TeV Pb-Pb data-taking, the ALICE Collaboration studied forward neutron emission with a dedicated trigger, requiring a minimum energy deposition in at least one of the two ZN. By exploiting also the information of the two ZEM calorimeters it has been possible to separate the contributions of electromagnetic and hadronic processes and to study single neutron vs. multiple neutron emission. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV, with neutron emission, are σsingle EMD = 187:4 ± 0.2 (stat.)-11.2+13.2 (syst.) b and σmutual EMD = 5.7 ± 0.1 (stat.) ±0.4 (syst.) b, respectively [1]. This is the first measurement of electromagnetic dissociation of 208Pb nuclei at the LHC energies, allowing a test of electromagnetic dissociation theory in a new energy regime. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.

  2. LLD Determination for PFP Residues Using the ANTECH Calorimeters

    SciTech Connect

    WESTSIK, G.A.

    2003-07-07

    The Plutonium Finishing Plant (PFP) facility performs waste characterization measurements for disposal of transuranic waste (TRU) at the Waste Isolation Pilot Plant (WIPP). The WIPP's performance assessment requires monitoring and tracking of the following ten radionuclides in the waste that is accepted and disposed of at the WIPP facility. Activities and mass values must be reported for: {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 242}Pu, {sup 233}U, {sup 234}U, {sup 238}U, {sup 90}Sr and {sup 137}Cs on a payload container basis. In addition the system must be able to report other nuclides, which contribute to the FGE, decay heat or contribute to more than 95% of the total radiological hazard. PFP reports the activity and mass of these radionuclides when positively identified in any waste container. In situations where one of the 10 WIPP tracked radionuclides is not positively identified on a PFP assay, PFP either reports a ''zero'', indicating the nuclide was not positively identified in the waste assay and is not identified by the acceptable knowledge (AK), or ''Calorimeters''. This revision addresses the LLD for all (AR-1, AR-5, AR-8, P-13, P-14, P-15, and Q-1) of the calorimeters. This revision also makes significant changes in the way in which the LLD is evaluated and reported. The primary change in the evaluation is from using base power measurements to using zero power measurements. This is because over time the base power can fluctuate do to seasonal variations in temperature as well as other effects. Basing the evaluation on the base power causes the LLD to be unacceptably high on some systems. Using the 0 power measurements is more consistent

  3. An automated flow calorimeter for heat capacity and enthalpy measurements at elevated temperatures and pressures

    SciTech Connect

    Yesavage, V.F.

    1990-08-31

    The need for highly accurate thermal property data for a broad range of new application fluids is well documented. To facilitate expansion of the current thermophysical database, an automated flow calorimeter was developed for the measurement of highly accurate isobaric heat capacities and enthalpies of fluids at elevated temperatures and pressures. The experimental technique utilizes traditional electrical power input, adiabatic flow calorimetry with a precision metering pump that eliminates the need for on-line flow rate monitoring. In addition, a complete automation system, greatly simplifies the operation of the apparatus and increases the rapidity of the measurement process. The range over which the instrument was tested, was 300--600 K and 0--12 Mpa, although the calorimeter should perform up to the original design goals of 700 K and 30 MPa. The new flow calorimeter was evaluated by measuring the mean, isobaric, specific heat capacities of liquid water and n-pentane. These experiments yielded an average deviation from the standard literature data of +0.02% and a total variation of 0.05%. Additional data analysis indicated that the overall measurement uncertainty was conservatively estimated as 0.2% with an anticipated precision of 0.1--0.15% at all operating conditions. 44 refs., 27 figs., 2 tabs.

  4. Measurement and simulation of the neutron detection efficiency with a Pb-scintillating fiber calorimeter

    NASA Astrophysics Data System (ADS)

    Anelli, M.; Battistoni, G.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; DeZorzi, G.; Domenico, Adi; Di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Ngugen, F.; Paseri, A.; Prokfiev, A.; Sala, P.; Sciascia, B.; Sirghi, F.

    2009-04-01

    We have measured the overall detection efficiency of a small prototype of the KLOE PB-scintilation fiber calorimeter to neutrons with kinetic energy range [5,175] MeV. The measurement has been done in a dedicated test beam in the neutron beam facility of the Svedberg Laboratory, TSL Uppsala. The measurements of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 28% to 33%. This value largely exceeds the estimated ~8% expected if the response were proporetional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. The simulated response of the detector to neutrons is presented together with the first data to Monte Carlo comparison. The results show an overall neutron efficiency of about 35%. The reasons for such an efficiency enhancement, in comparison with the typical scintillator-based neutron counters, are explained, opening the road to a novel neutron detector.

  5. An automated flow calorimeter for heat capacity and enthalpy measurements at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Yesavage, Victor F.

    1990-08-01

    The need for highly accurate thermal property data for a broad range of new application fluids is well documented. To facilitate expansion of the current thermophysical database, an automated flow calorimeter was developed for the measurement of highly accurate isobaric heat capacities and enthalpies of fluids at elevated temperatures and pressures. The experimental technique utilizes traditional electrical power input, adiabatic flow calorimetry with a precision metering pump that eliminates the need for on-line flow rate monitoring. In addition, a complete automation system greatly simplifies the operation of the apparatus and increases the rapidity of the measurement process. The range over which the instrument was tested was 300 to 600 K and 0 to 12 Mpa, although the calorimeter should perform up to the original design goals of 700 K and 30 MPa. The new flow calorimeter was evaluated by measuring the mean, isobaric, specific heat capacities of liquid water and n-pentane. These experiments yielded an average deviation from the standard literature data of +0.02 percent and a total variation of 0.05 percent. Additional data analysis indicated that the overall measurement uncertainty was conservatively estimated as 0.2 percent with an anticipated precision of 0.1 to 0.15 percent at all operating conditions.

  6. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  7. Triggering on electrons, jets and tau leptons with the CMS upgraded calorimeter trigger for the LHC RUN II

    NASA Astrophysics Data System (ADS)

    Zabi, A.; Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J. B.; Strebler, T.; Marrouche, J.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.

    2016-02-01

    The Compact Muon Solenoid (CMS) experiment has implemented a sophisticated two-level online selection system that achieves a rejection factor of nearly 105. During Run II, the LHC will increase its centre-of-mass energy up to 13 TeV and progressively reach an instantaneous luminosity of 2 × 1034 cm-2 s-1. In order to guarantee a successful and ambitious physics programme under this intense environment, the CMS Trigger and Data acquisition (DAQ) system has been upgraded. A novel concept for the L1 calorimeter trigger is introduced: the Time Multiplexed Trigger (TMT) . In this design, nine main processors receive each all of the calorimeter data from an entire event provided by 18 preprocessors. This design is not different from that of the CMS DAQ and HLT systems. The advantage of the TMT architecture is that a global view and full granularity of the calorimeters can be exploited by sophisticated algorithms. The goal is to maintain the current thresholds for calorimeter objects and improve the performance for their selection. The performance of these algorithms will be demonstrated, both in terms of efficiency and rate reduction. The callenging aspects of the pile-up mitigation and firmware design will be presented.

  8. Broadband electromagnetic cloaking of long cylindrical objects.

    PubMed

    Tretyakov, Sergei; Alitalo, Pekka; Luukkonen, Olli; Simovski, Constantin

    2009-09-01

    Electromagnetic cloaks are devices that make objects undetectable for probing with electromagnetic waves. The known realizations of transformational-optics cloaks require materials with exotic electromagnetic properties and offer only limited performance in narrow frequency bands. Here, we demonstrate a wideband and low-loss cloak whose operation is not based on the use of exotic electromagnetic materials, which are inevitably dispersive and lossy. Instead, we use a simple structure made of metal layers. In this Letter, we present an experimental demonstration of cloaking for microwaves and simulation results for cloaking in the visible range. PMID:19792314

  9. NASA Applications for Computational Electromagnetic Analysis

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Trout, Dawn H.; Krome, Mark E.; Perry, Thomas A.

    2011-01-01

    Computational Electromagnetic Software is used by NASA to analyze the compatibility of systems too large or too complex for testing. Recent advances in software packages and computer capabilities have made it possible to determine the effects of a transmitter inside a launch vehicle fairing, better analyze the environment threats, and perform on-orbit replacements with assured electromagnetic compatibility.

  10. Central Calorimeter Support Cradle Jack Failure Analysis

    SciTech Connect

    Rudland, D.L.; /Fermilab

    1987-04-10

    The Central Calorimeter and its support cradle are to be supported by either hydraulic or mechanical jacks. If hydraulics are used, each support will use two hydraulically coupled jacks with two out of the four supports hydraulically coupled giving the effect of a three point support system. If mechanical jacks are used, all four points are used for support. Figure 2 shows two examples of jack placement on a 3.5 inch support plate. These two support scenarios lead to five jack failure cases to be studied. This report deals with the way in which a 0.25 inch drop (failed jack) at one support affects the stresses in the cradle. The stresses from each failure case were analyzed in two ways. First, stress factors, defined as quotients of stress intensities of the failed case with respect to the static case, were generated and then, hand calculations similar to those in Engineering Note 3740.215-EN-14 were done using the reaction forces from the failed case.

  11. Calibrating the PHENIX Muon Piston Calorimeter for Au+Au collisions at √{SNN} = 200, 62.4, 39, and 7.7 GeV

    NASA Astrophysics Data System (ADS)

    Herrera Acevedo, Carlos; Phenix Collaboration

    2015-10-01

    The PHENIX Muon Piston Calorimeter (MPC), a homogenous electromagnetic calorimeter, covers forward/backward pseudorapidities (3 . 1 < | η | < 3 . 9). MPC calibrations of data collected by PHENIX during the 2010 RHIC run are underway. These will be used for the measurement of transverse energy in the forward/backward direction. For the calibration, an iterative process is used in which photon clusters are paired to produce tower by tower mass plots containing neutral pion peaks. The gains of each tower are adjusted until the peaks in the mass histograms are shifted to the positions predicted by a full detector simulation. For towers in which a neutral pion peak is not immediately evident, other methods can be applied to adjust the gains until a neutral pion peak appears. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  12. Heat-exchanger concepts for neutral-beam calorimeters

    NASA Astrophysics Data System (ADS)

    Thompson, C. C.; Polk, D. H.; McFarlin, D. J.; Stone, R.

    1981-10-01

    Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included: (1) smooth tube/straight flow; (2) smooth tube with swirl flow created by tangential injection of the coolant; and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/sq cm was obtained for the molybdenum tube swirl flow configuration.

  13. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    NASA Technical Reports Server (NTRS)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  14. High frequency alternating current chip nano calorimeter with laser heating

    SciTech Connect

    Shoifet, E.; Schick, C.; Chua, Y. Z.; Huth, H.

    2013-07-15

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm{sup 2}). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10{sup −3} Hz and 10{sup 6} Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  15. Cylindrical boiloff calorimeters for testing of thermal insulation systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Johnson, W. L.; Meneghelli, B. J.; Coffman, B. E.

    2015-12-01

    Cryostats have been developed and standardized for laboratory testing of thermal insulation systems in a cylindrical configuration. Boiloff calorimetry is the measurement principle for determining the effective thermal conductivity (ke) and heat flux (q) of a test specimen at a fixed environmental condition (boundary temperatures, cold vacuum pressure, and residual gas composition). Through its heat of vaporization, liquid nitrogen serves as the energy meter, but the design is adaptable for various cryogens. The main instrument, Cryostat-100, is thermally guarded and directly measures absolute thermal performance. A cold mass assembly and all fluid and instrumentation feedthroughs are suspended from a lid of the vacuum canister; and a custom lifting mechanism allows the assembly and specimen to be manipulated easily. Each of three chambers is filled and vented through a single feedthrough for minimum overall heat leakage. The cold mass design precludes direct, solid-conduction heat transfer (other than through the vessel's outer wall itself) from one liquid volume to another, which is critical for achieving very low heat measurements. The cryostat system design details and test methods are discussed, as well as results for select thermal insulation materials. Additional cylindrical boiloff calorimeters and progress toward a liquid hydrogen apparatus are also discussed.

  16. Development of cryogenic alpha spectrometers using metallic magnetic calorimeters

    NASA Astrophysics Data System (ADS)

    Ranitzsch, P. C.; Kempf, S.; Pabinger, A.; Pies, C.; Porst, J.-P.; Schäfer, S.; Fleischmann, A.; Gastaldo, L.; Enss, C.; Jang, Y. S.; Kim, I. H.; Kim, M. S.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Lee, S. J.; Yoon, W. S.; Yuryev, Y. N.

    2011-10-01

    Cryogenic particle detectors have recently been adopted in radiation detection and measurement because of their high energy resolution. Many of these detectors have demonstrated energy resolutions better than the theoretical limit of semiconductor detectors. We report the development of a micro-fabricated magnetic calorimeter coupled to a large-area particle absorber. It is based on a planar, 1 mm 2 large paramagnetic temperature sensor made of sputtered Au:Er, which covers a superconducting meander-shaped pickup coil coupled to a low-noise dc-SQUID to monitor the magnetization of the sensor. A piece of gold foil of 2.5×2.5×0.07 mm 3 was glued to the Au:Er film to serve as an absorber for incident alpha particles. The detector performance was investigated with an 241Am source. The signal size comparison for alpha and gamma peaks with a large difference in energy demonstrated that the detector had good linear behavior. An energy resolution of 2.83±0.05 keV in FWHM was obtained for 5.5 MeV alpha particles.

  17. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x

  18. Electro-magnetic compatibility

    NASA Astrophysics Data System (ADS)

    Maidment, H.

    1980-05-01

    The historical background to the growth in problems of electromagnetic compatibility (EMC) in UK Military aircraft is reviewed and the present approach for minimizing these problems during development is discussed. The importance of using representative aircraft for final EMC assessments is stressed, and the methods of approach in planning and executing such tests are also outlined. The present equipment qualification procedures are based on assumptions regarding the electromagnetic fields present within the airframe, and the nature of the coupling mechanisms. These cannot be measured with any certainty in representative aircraft. Thus EMC assessments rely on practical tests. Avionics systems critical to flight safety, and systems vital to mission effectiveness require test methods that provide a measure of the safety and performance margins available to account for variations that occur in production and service use. Some proven methods are available, notably for detonator circuits, but in most other areas further work is required. Encouraging process has been made in the use of current probes for the measurement of interfering signals on critical signal lines, in conjunction with complementary test house procedures, as a means for obtaining the safety margins required in flight and engine control systems. Performance margins for mission systems using digital techniques are difficult to determine, and there is a need for improved test techniques. The present EMC qualification tests for equipment in the laboratory do not guarantee freedom from interference when installed, and the results are limited in value for correlating with aircraft tests.

  19. Electromagnetic induction methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electromagnetic induction geophysical methods are finding greater and greater use for agricultural purposes. Electromagnetic induction methods measure the electrical conductivity (or resistivity) for a bulk volume of soil directly beneath the surface. An instrument called a ground conductivity meter...

  20. Research on calorimeter for high-power microwave measurements.

    PubMed

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement. PMID:26724055