Science.gov

Sample records for electromagnetic two-stream interaction

  1. Influence of electromagnetic oscillating two-stream instability on the evolution of laser-driven plasma beat-wave

    SciTech Connect

    Gupta, D. N.; Singh, K. P.; Suk, H.

    2007-01-15

    The electrostatic oscillating two-stream instability of laser-driven plasma beat-wave was studied recently by Gupta et al. [Phys. Plasmas 11, 5250 (2004)], who applied their theory to limit the amplitude level of a plasma wave in the beat-wave accelerator. As a self-generated magnetic field is observed in laser-produced plasma, hence, the electromagnetic oscillating two-stream instability may be another possible mechanism for the saturation of laser-driven plasma beat-wave. The efficiency of this scheme is higher than the former.

  2. Oscillating two stream instability of electromagnetic pump in the ion cyclotron range of frequency in a plasma

    SciTech Connect

    Ahmad, Nafis; Tripathi, V. K.; Rafat, M.; Husain, Mudassir M.

    2009-06-15

    An analytical formalism of oscillating two stream instability of a large amplitude electromagnetic wave in the ion cyclotron range of frequency in a plasma is developed. The instability produces electrostatic ion cyclotron sidebands and a driven low frequency mode. The nonlinear coupling arises primarily due to the motion of ions and is strong when the pump frequency is close to ion cyclotron frequency and the oscillatory ion velocity is a significant fraction of acoustic speed. For propagation perpendicular to the ambient magnetic field, the X-mode pump wave produces flute type perturbation with maximum growth rate at some specific wavelengths, which are three to four times larger than the ion Larmor radius. For propagation at oblique angles to ambient magnetic field, the ion cyclotron O-mode, the growth rate increases with the wave number of the low frequency mode.

  3. Shock formation processes due to interactions of two plasmas in a magnetic field and modified two-stream instabilities

    SciTech Connect

    Toida, Mieko; Uragami, Tatsunori

    2013-11-15

    The study of interactions of exploding and surrounding plasmas in an external magnetic field [K. Yamauchi and Y. Ohsawa, Phys. Plasmas 14, 053110 (2007)] is verified with two-dimensional (2D) electromagnetic particle simulations, for a case in which the initial velocity of the exploding plasma is perpendicular to the external magnetic field. The 2D simulations show essentially the same shock-formation processes as those in the previous one-dimensional simulation, including penetration of exploding ions into surrounding plasma, formation of a strong magnetic-field pulse due to deceleration of the exploding ions, ion reflection by the pulse, and subsequent splitting of the pulse into two magnetosonic pulses which then develop into forward and reverse shock waves. Furthermore, the 2D structure of electromagnetic fields in the region, where the exploding and surrounding ions overlap, is investigated with particular attention to the linear and nonlinear evolution of modified two-stream instabilities in the magnetic field that is being gradually compressed. The effects of these instabilities on ion reflection and on 2D magnetic fluctuations in the two generated pulses are also discussed.

  4. Different roles of electron beam in two stream instability in an elliptical waveguide for generation and amplification of THz electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Safari, S.; Jazi, B.; Jahanbakht, S.

    2016-08-01

    In this work, two stream instability in a metallic waveguide with elliptical cross-section and with a hollow annular dielectric layer is studied for generation and amplification of THz electromagnetic waves. Dispersion relation of waves and their dependents to geometric dimensions and characteristics of the electron beam are analyzed. In continuation, the diagrams of growth rate for some operating frequencies are presented, so that effective factors on the growth rates, such as geometrical dimensions, dielectric constant of dielectric layer, accelerating voltage, and applied current intensity are analyzed. It is shown that while an electron beam is responsible for instability, another electron beam plays a stabilizing role.

  5. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  6. Causal electromagnetic interaction equations

    SciTech Connect

    Zinoviev, Yury M.

    2011-02-15

    For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.

  7. Constraint propagation through electromagnetic interaction topologies

    NASA Astrophysics Data System (ADS)

    Lovetri, Joe; Graham, Darin P. W.

    1990-08-01

    The effects of electromagnetic interactions in electrical systems are of concern because of the increasing susceptibility of system components. Heuristic methods are used by engineers to solve electromagnetic interaction problems. An approximate symbolic knowledge representation of a single emitter/path/susceptor problem has been described. In this paper the approximate single emitter/path/susceptor attributes are distributed throughout the electromagnetic topology of a complex system. A constraint based approach for the modelling of the electromagnetic interactions in the system is then described. The approach taken here subdivides the modelling task into: (1) the definition of the related physical topology; (2) constraining topological nodes with specific electromagnetic attributes; and (3) the propagation of the electromagnetic constraints to determine the probability of failure. The scheme has been implemented in Quintus Prolog on a Sun Sparcstation. The electromagnet topology is represented in Prolog using an object-oriented knowledge representation methodology. A small database containing some attributes of electromagnetic components found on the Canadian NSA helicopter was developed. A coarse topological decomposition of the helicopter was made and the attributes for the various components were entered. This tool was very useful in providing understanding of all the complex interaction paths existing in complex systems.

  8. Computes Generalized Electromagnetic Interactions Between Structures

    Energy Science and Technology Software Center (ESTSC)

    1999-02-20

    Object oriented software for computing generalized electromagnetic interactions between structures in the frequency domains. The software is based on integral equations. There is also a static integral equation capability.

  9. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  10. Nonlinear electromagnetic interactions in energetic materials

    DOE PAGESBeta

    Wood, Mitchell Anthony; Dalvit, Diego Alejandro; Moore, David Steven

    2016-01-12

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for the nonionizing identification of explosives. We use molecular-dynamics simulations to compute such two-dimensional THz spectra for planar slabs made of pentaerythritol tetranitrate and ammonium nitrate. Finally, we discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for standoff explosive detection.

  11. Cartan's Supersymmetry and Weak and Electromagnetic Interactions

    NASA Astrophysics Data System (ADS)

    Furui, Sadataka

    2015-10-01

    We apply the Cartan's supersymmetric model to the weak interaction of hadrons. The electromagnetic currents are transformed by G 12, G 123, G 13, G 132 and the factor is inserted between or when the photon is replaced by , and between or when the photon is replaced by Z. Electromagnetic currents in the Higgs boson H 0 decay into 2 and decay into and in which leptons are replaced by quarks are also studied. A possibility that the boson near the theshold GeV) is the Higgs boson partner h 0 is discussed. We adopt Dirac lepton neutrinos and Majorana quark neutrinos, and construct a model that satisfy the Z 3 symmetry of the lepton sector and the quark sector, by adding two right-handed neutrinos whose left-handed partner cannot be detected by our electro-magnetic detectors.

  12. Electromagnetic interaction in the theory of straight strings

    SciTech Connect

    Nikitin, I.N.; Pron`ko, G.P.

    1995-06-01

    A scheme is proposed for including electromagnetic interaction into the theories of stretched relativistic objects. In the theory of the straight string, the operator of electromagnetic interaction is constructed, and form factors of electromagnetic transitions are calculated. 6 refs., 1 fig.

  13. Controls-structures-electromagnetics interaction program

    NASA Technical Reports Server (NTRS)

    Grantham, William L.; Bailey, Marion C.; Belvin, Wendell K.; Williams, Jeffrey P.

    1987-01-01

    A technology development program is described involving Controls Structures Electromagnetics Interaction (CSEI) for large space structures. The CSEI program was developed as part of the continuing effort following the successful kinematic deployment and RF tests of the 15 meter Hoop/Column antenna. One lesson learned was the importance of making reflector surface adjustment after fabrication and deployment. Given are program objectives, ground based test configuration, Intelsat adaptive feed, reflector shape prediction model, control experiment concepts, master schedule, and Control Of Flexible Structures-II (COFS-II) baseline configuration.

  14. Aspects of Interacting Electromagnetic and Torsion Fields

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Helaÿel-Neto, José A.

    2011-01-01

    The interaction energy is studied for the coupling of axial torsion fields with photons in the presence of an external electromagnetic field. To this end, we compute the static quantum potential. Our discussion is carried out using the gauge-invariant but path-dependent variables formalism, which is alternative to the Wilson loop approach. Our results show that the static potential is a Yukawa correction to the usual static Coulomb potential. Interestingly, when this calculation is done by considering a mass term for the gauge field, the Coulombic piece disappears leading to a screening phase.

  15. The modified two stream instability at nonmagnetic planets

    SciTech Connect

    Bingham, R.; Kellett, B. J.; Shapiro, V. D.; Uecer, D.; Quest, K. B.

    2010-12-14

    We describe the role the modified two stream instability plays in the interaction of the solar wind with non-magnetized planets. The instability leads to the production of energetic electrons that can be responsible for the observed x-ray emission.

  16. Electromagnetic wave interactions with a metamaterial cloak.

    PubMed

    Chen, Hongsheng; Wu, Bae-Ian; Zhang, Baile; Kong, Jin Au

    2007-08-10

    We establish analytically the interactions of electromagnetic wave with a general class of spherical cloaks based on a full wave Mie scattering model. We show that for an ideal cloak the total scattering cross section is absolutely zero, but for a cloak with a specific type of loss, only the backscattering is exactly zero, which indicates the cloak can still be rendered invisible with a monostatic (transmitter and receiver in the same location) detection. Furthermore, we show that for a cloak with imperfect parameters the bistatic (transmitter and receiver in different locations) scattering performance is more sensitive to eta(t)=square root micro(t)/epsilon(t) than n(t)=square root micro(t)epsilon(t). PMID:17930824

  17. Electromagnetic response of interacting Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Jacobs, V. P. J.; Betzios, Panagiotis; Gürsoy, Umut; Stoof, H. T. C.

    2016-05-01

    We study the electromagnetic properties of Weyl semimetals with strong interactions. Aiming for a large-N expansion, we induce strong interactions by coupling a Weyl fermion with a tunable coupling constant gf to a quantum critical system with a large number of order O (N ) fermionic and bosonic degrees of freedom. The critical fluctuations are described by a conformal field theory containing also fermionic composite operators with scaling dimension Δ . Employing the methods of the holographic correspondence, we then derive the effective theory of the Weyl fermions in the presence of external electric and magnetic fields in the large-N limit. In particular, we determine their frequency and momentum-dependent anomalous magnetic moment. We also determine the conductivity of the Weyl semimetal including the vertex corrections consistent with the Ward identity. Finally, we connect our construction to the case of Coulomb interactions in Weyl semimetals by tuning the parameters Δ →5 /2 and gf2→e /√{ℏ c ɛ0 } .

  18. Generation of low-frequency electrostatic and electromagnetic waves as nonlinear consequences of beam-plasma interactions

    SciTech Connect

    Umeda, Takayuki

    2008-06-15

    Nonlinear evolution of the electron two-stream instability in a current-carrying plasma is examined by using a two-dimensional electromagnetic particle-in-cell simulation. Formation of electron phase-space holes is observed as an early nonlinear consequence of electron-beam-plasma interactions. Lower-hybrid waves, electrostatic, and electromagnetic whistler mode waves are also excited by different mechanisms during the ensuing nonlinear wave-particle interactions. It is shown by the present computer simulation with a large simulation domain and a long simulation time that these low-frequency waves can disturb the electrostatic equilibrium of electron phase-space holes, suggesting that the lifetime of electron phase-space holes sometimes becomes shorter in a current-carrying plasma.

  19. EIGER: Electromagnetic Interactions GEneRalized

    SciTech Connect

    Champagne, N J; Sharpe, R M; Rockway, J W

    2001-06-13

    The EIGER (Electromagnetic Interactions Generalized) modeling suite is a joint development activity by the Lawrence Livermore National Lab, Sandia National Labs, the University of Houston, and the Navy (Space and Naval Warfare Systems Center-San Diego). The effort endeavors to bring the next generation of hybrid, higher-order, full-wave analysis methods into a single integrated framework. The tools are based upon frequency-domain solutions of Maxwell's equations to model scattering and radiation from complex 2D and 3D structures. The framework employs boundary element solutions of integral equation formulations and finite element solutions of the Helmholtz wave equation. A goal is to use higher-order representations to model both the geometry (using higher-order geometric elements) and numerical methods (using higher-order vector basis functions). In addition, a variety of advanced Green's functions and symmetry operators can be applied to efficiently treat geometries containing such features as layered material regions and periodic structures. Each of these methods can be brought to bear simultaneously, on different portions of a complex structure. HPC implementation issues were addressed during the design of the software architecture, so that the same package runs on platforms ranging from serial desktop workstations through advanced HPC architectures. Our current efforts on higher-order modeling and improved solver libraries will be highlighted.

  20. Space-time structure of weak and electromagnetic interactions

    SciTech Connect

    Hestenes, D.

    1982-02-01

    The generator of electromagnetic gauge transformations in the Dirac equation has a unique geometric interpretation and a unique extension to the generators of the gauge group SU(2) x U(1) for the Weinberg--Salam theory of weak and electromagnetic interactions. It follows that internal symmetries of the weak interactions can be interpreted as space-time symmetries of spinor fields in the Dirac algebra. The possibilities for interpreting strong interaction symmetries in a similar way are highly restricted.

  1. Oscillating two-stream instability in a magnetized electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Tinakiche, Nouara; Annou, R.

    2015-04-01

    Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed using the Arecibo and HAARP parameters.

  2. Oscillating two-stream instability in a magnetized electron-positron-ion plasma

    SciTech Connect

    Tinakiche, Nouara; Annou, R.

    2015-04-15

    Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed using the Arecibo and HAARP parameters.

  3. Modelling of electromagnetic wave interactions with the human body

    NASA Astrophysics Data System (ADS)

    Wong, Man-Faï; Wiart, Joe

    2005-07-01

    Electromagnetic modelling plays a more and more important role in the study of complex systems involving Maxwell phenomena, such as the interactions of radiowaves with the human body. Simulation then becomes a credible means in decision making, related to the engineering of complex electromagnetic systems. To increase confidence in the models with respect to reality, validation and uncertainty estimation methods are needed. The different dimensions of model validation are illustrated through dosimetry, i.e., quantification of human exposure to electromagnetic waves. To cite this article: M.-F. Wong, J. Wiart, C. R. Physique 6 (2005).

  4. Weibel and Two-Stream Instabilities for Intense Charged Particle Beam Propagation through Neutralizing Background Plasma

    SciTech Connect

    Ronald C. Davidson; Igor Kaganovich; Edward A. Startsev

    2004-04-09

    Properties of the multi-species electromagnetic Weibel and electrostatic two-stream instabilities are investigated for an intense ion beam propagating through background plasma. Assuming that the background plasma electrons provide complete charge and current neutralization, detailed linear stability properties are calculated within the framework of a macroscopic cold-fluid model for a wide range of system parameters.

  5. Computes Generalized Electromagnetic Interactions Between Structures

    SciTech Connect

    Johnson, William A.; Wilton, Donald R.

    2006-05-18

    Eiger is primarily in integral equation code for both frequency-domain electromagnetics and electrostatics. There is also some finiate element capability. In the frequency-domain version there are different Green's functions in the code, 2D, 3D free space, symmetry-plane Green's functions, periodic Green's functions, and layered media Green's functions. There are thin slot models for coupling into cavities. There is a thin wire algorithm as well as junction basis functions for attachment of a wire to a conducting surface. The code is written in Fortran 90 using object oriented design. The code has the capability to run both in parallel and serial modes. The code is a suite consisting of pre-processor (Jungfrau), the physics code (EIGER), and post processor (Moench).

  6. Computes Generalized Electromagnetic Interactions Between Structures

    Energy Science and Technology Software Center (ESTSC)

    2006-05-18

    Eiger is primarily in integral equation code for both frequency-domain electromagnetics and electrostatics. There is also some finiate element capability. In the frequency-domain version there are different Green's functions in the code, 2D, 3D free space, symmetry-plane Green's functions, periodic Green's functions, and layered media Green's functions. There are thin slot models for coupling into cavities. There is a thin wire algorithm as well as junction basis functions for attachment of a wire to amore » conducting surface. The code is written in Fortran 90 using object oriented design. The code has the capability to run both in parallel and serial modes. The code is a suite consisting of pre-processor (Jungfrau), the physics code (EIGER), and post processor (Moench).« less

  7. Interaction of electromagnetic signals with particulate clouds

    NASA Astrophysics Data System (ADS)

    Pauda, Jose Mario

    1990-05-01

    A particulate cloud affects the ability of an electronic detector to receive an electromagnetic signal in two ways: by scattering light from the sun into the detector, thereby masking the signal, and by attenuating the signal itself. These effects are well studied in the Mie theory, which is summarized. The effect of the particle distribution in the cloud and the shape of the cloud on scattering and absorption problems is then analyzed. The results of this analysis and of the Mie theory are incorporated into a computer program which is included in the appendix. The graphs generated with the program can be used (in conjunction with information about the sunlight intensity and the detector's discriminating ability) to determine the effect of scattered light on the detection of the signal. We conclude the attenuation of the signal plays a relatively minor role in the ability of a detector to receive a signal affected by a cloud of particles.

  8. Some Topics in Weak and Electromagnetic Interactions

    NASA Astrophysics Data System (ADS)

    Bjorken, James D.

    1982-01-01

    The following sections are included: * INTRODUCTION * LECTURE I QUANTUM-ELECTRODYNAMICS TESTS; TESTS OF Jμ Jμ STRUCTURE IN WEAK INTERACTIONS; HIGHER-ORDER WEAK INTERACTIONS * LECTURE II PHENOMENOLOGY OF DEEP-INELASTIC PROCESSES; NO FINAL-STATE HADRONS OBSERVED * LECTURE III LIGHT-CONE COMMUTATORS; MODELS OF THE STRUCTURE FUNCTIONS * LECTURE IV HADRON FINAL STATES IN DEEP-INELASTIC PROCESSES; GENERAL CONSIDERATIONS * LECTURE V INCLUSIVE PROCESSES AT VERY HIGH TRANSVERSE MOMENTUM * REFERENCES

  9. Polarization phenomena in electromagnetic interactions at intermediate energies

    SciTech Connect

    Burkert, V.

    1990-01-01

    Recent results of polarization measurements in electromagnetic interactions at intermediate energies are discussed. Prospects of polarization experiments at the new CW electron accelerators, as well as on upgraded older machines are outlined. It is concluded that polarization experiments will play a very important role in the study of the structure of the nucleon and of light nuclei. 72 refs.

  10. Interaction of extremely low-frequency electromagnetic fields with humans

    SciTech Connect

    Tenforde, T.S.

    1990-04-01

    Public concern has grown in recent years concerning the possible health effects of extremely low-frequency (ELF) electromagnetic fields to which we are exposed in all aspects of everyday life. By definition ELF refers to the range of electromagnetic field frequencies below 300 Hz, which includes the power transmission and distribution frequencies used throughout the world. In materials with the electrical and magnetic properties of living tissues, these fields have a long wavelength (5000 m) and skin depth (150 m). As a consequence, in their interactions with humans and other living organisms ELF fields behave as though they are composed of independent electric and magnetic fields components. This paper discusses ELF fields and their interactions with humans and other living organisms as well as their biological effects.

  11. Two-stream instability with time-dependent drift velocity

    SciTech Connect

    Qin, Hong; Davidson, Ronald C.

    2014-06-15

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  12. Two-stream instability with time-dependent drift velocity

    DOE PAGESBeta

    Qin, Hong; Davidson, Ronald C.

    2014-06-26

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  13. Two-stream instability model with electrons trapped in quadrupoles

    NASA Astrophysics Data System (ADS)

    Channell, P. J.

    2009-08-01

    We formulate the theory of the two-stream instability (e-cloud instability) with electrons trapped in quadrupole magnets. We show that a linear instability theory can be sensibly formulated and analyzed. The growth rates are considerably smaller than the linear growth rates for the two-stream instability in drift spaces and are close to those actually observed.

  14. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Frankel, M. S.; Peterson, A. M.

    1977-01-01

    This paper considers the interaction of electromagnetic and acoustic waves where a Radio Acoustic Sounding System (RASS) is operated in a stochastic environment characterized by turbulence, winds and mean-temperature gradients. It has been shown that for a RASS operating at acoustic frequencies below a few kilohertz propagating under typical atmospheric conditions, turbulence has little effect on the strength of the received radio signal scattered from the pulse at heights up to a few kilometers. This result implies that the received RF signal level (power) is primarily a function of sound intensity which decreases as x exp minus 2 where x is the altitude.

  15. Coupling interaction of electromagnetic wave in a groove doublet configuration.

    PubMed

    Ding, Lan; Liu, Jinsong; Wang, Dong; Wang, Kejia

    2010-09-27

    Based on the waveguide mode (WGM) method, coupling interaction of electromagnetic wave in a groove doublet configuration is studied. The formulation obtained by WGM method for a single groove [Prog. Electromagn. Res. 18, 1-17 (1998)] is extended to two grooves. By exploring the total scattered field of the configuration, coupling interaction ratios are defined to describe the interaction between grooves quantitatively. Since each groove in this groove doublet configuration is regarded as the basic unit, the effects of coupling interaction on the scattered fields of each groove can be investigated respectively. Numerical results show that an oscillatory behavior of coupling interaction is damped with increasing groove spacing. The incident and scattering angle dependence of coupling interaction is symmetrical when the two grooves are the same. For the case of two subwavelength grooves, the coupling interaction is not sensitive to the incident angle and scattering angle. Although the case of two grooves is discussed for simplicity, the formulation developed in this article can be generalized to arbitrary number of grooves. Moreover, our study offers a simple alternative to investigate and design metallic gratings, compact directional antennas, couplers, and other devices especially in low frequency regime such as THz and microwave domain. PMID:20941004

  16. Electrostatic two-stream instability in Fermi-Dirac plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.; Mohammadnejad, M.; Esfandyari-Kalejahi, A.

    2016-09-01

    In this paper the electrostatic two-stream instability is investigated for a large range of plasma number-density using the quantum hydrodynamic model by incorporating the relativistic degeneracy, electron-exchange, quantum diffraction and strong parallel quantizing magnetic field effects. It is found that the electron diffraction effect significantly alters the instability growth rate in a wide range of plasma number density. Two cases of classical and quantum Landau quantization limits are compared and the parametric instability condition is closely inspected. It is remarked that for a given streaming speed the instability is bounded by an upper plasma number-density limit. It is also shown that for a given stream speed there is a maximal growth rate corresponding to specific plasma number-density and perturbation wavelength. Current study can help in better understanding of electron-beam plasma interactions and energy exchange for a wide area of number densities ranging from solid density, inertial confined plasmas, big planetary cores and compact stars. It may also be useful in understanding of electrostatic beam-plasma interactions and origin of large magnitude sustainable electrical currents in super-intense plasmas with critically high magnetic fields such as, pulsars, white dwarf interiors and neutron star crusts.

  17. Saturation mechanism in a two-stream free-electron laser

    NASA Astrophysics Data System (ADS)

    Mahdizadeh, N.

    2015-12-01

    > The effect of a guide field on the saturation mechanism in a two-stream free-electron laser (FEL) is verified. Two monoenergetic electron beams with a vanishing pitch-angle spread are considered. Nonlinear wave-particle interaction is described by a set of coupled differential equations in a 1-D approximation. Output power is presented as a function of the axial distance. It was found that through using a focusing mechanism, the two-stream FEL reached the saturation regime in a shorter axial distance in comparison with the case of no focusing mechanism.

  18. Two-stream approach to electron transport and thermalization

    SciTech Connect

    Stamnes, K.

    1981-04-01

    An explicit solution to the electron transport and energy degradation problem is presented in the two-stream approximation. The validity of this simple approach is discussed, and it is shown that it can be extended to high electron energies (appropriate for applications to auroras) provided the coupling between the two streams, described by the backscatter ratio, is correctly estimated. A simple formula for the backscatter ratio which can be used at all energies is derived.

  19. Gauge Invariant Formulation of the Interaction of Electromagnetic Radiation and Matter

    ERIC Educational Resources Information Center

    Kobe, Donald H.; Smirl, Arthur L.

    1978-01-01

    Presents a discussion in Perturbation theory in quantum mechanics for the interaction of electromagnetic radiation with matter. Advocates the use of electric dipole interaction whenever it can be used as compared to the vector potential interaction. (GA)

  20. Interaction of High Intensity Electromagnetic Waves with Plasmas

    SciTech Connect

    G. Shvets

    2008-10-03

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  1. Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems

    NASA Technical Reports Server (NTRS)

    Belenov, E.; Isakov, V.; Nazarkin, A.

    1994-01-01

    Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.

  2. The quest for missing baryon states in electromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Burkert, Volker

    2016-03-01

    The excitation spectrum of nucleons reveals properties of the quark and gluon interactions in a confined system. Knowledge of the nucleon excitations is central to our understanding of the basic interactions underlying the spectrum, and is a fundamental goal of experimental nuclear and hadronic physics. Accounting for the complete baryon spectrum has recently been shown as critical for modeling the transition from the quark-gluon plasma phase to the confinement phase of stable nucleons in the early universe. Microscopic approaches such as constituent quark models and more recently Lattice QCD make predictions regarding masses and quantum numbers of the excited states and their internal structure according to radial, spin, and orbital transitions of the quark-gluon system. Pion induced transitions have revealed many nucleon states consistent with these predictions, but most of the predicted states have not been observed, especially those in the higher mass range. The quest for a more complete understanding of the systematic and the internal structure of baryons has led to a worldwide experimental effort to measure electromagnetically induced meson production including many polarization observables. The CLAS detector at Jefferson Lab is playing a key role in measuring many of the key observables with unprecedented precision, and some of these data have been employed in coupled-channel resonance analyses that led to strong evidence for a number of excited states that were previously unobserved or lacked sufficient evidence. In this talk I will discuss the current status of and future directions in the search for new baryon states using electromagnetic probes.

  3. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  4. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  5. Probabilistic model of beam-plasma interaction and electromagnetic radioemission

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, Vladimir; Volokitin, Alexander; Krafft, Catherine; Voshchepynets, Andrii

    2016-07-01

    In this presentation we describe the effects of plasma density fluctuations in the solar wind on the relaxation of the electron beams accelerated in the bow shock front. The density fluctuations are supposed to be responsible for the changes in the local phase velocity of the Langmuir waves generated by the beam instability. Changes in the wave phase velocity during the wave propagation can be described in terms of probability distribution function determined by distribution of the density fluctuations. Using these probability distributions we describe resonant wave particle interactions by a system of equations, similar to well known quasi-linear approximation, where the conventional velocity diffusion coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown that the process of relaxation of electron beam is accompanied by transformation of significant part of the beam kinetic energy to energy of the accelerated particles via generation and absorption of the Langmuir waves. Generated Langmuir waves are transformed into electromagnetic waves in the vicinity of the reflection points when the level of density fluctuations is large enough. We evaluate the level of the radiowaves intensity, and the emissivity diagram of radiowaves emission around plasma frequency and its harmonics.

  6. Mutual interaction between parallel Gaussian electromagnetic beams in plasmas

    SciTech Connect

    Sodha, Mahendra Singh; Agarwal, Sujeet Kumar; Sharma, Ashutosh

    2006-10-15

    In this paper, the interaction between two Gaussian electromagnetic beams in a plasma has been investigated, when the axes of the two beams are initially (z=0) parallel along the z axis in the x-z plane; the beams are initially propagating in the z direction. For the three types of nonlinearities (viz., collisional, ponderomotive, and relativistic) the dielectric function has been expressed as a function of the irradiances of the two beams; this expression for the dielectric function has been substituted in the wave equation and a solution of the resulting nonlinear equation obtained in the paraxial approximation. The paraxial approximation is justified since the phenomena of interest occur when the beams are initially close ({radical}(2)x{sub 0}{<=}r{sub 0}). Further, the absorption of the beam in the plasma has been neglected, which is justified when the electron collision frequency is much less than the frequencies of the beams. Second-order coupled ordinary differential equations have been obtained for the distance between the centers of the beams and the beam widths in the x and y directions as a function of the distance of propagation along the z axis. The equations have been solved numerically for a range of parameters and a discussion of the results is presented.

  7. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  8. State-of-the-art methods for computing the electromagnetic interaction of lightning with aircraft

    NASA Technical Reports Server (NTRS)

    Eriksen, F. J.; Perala, R. A.; Corbin, J. C., Jr.

    1980-01-01

    Nuclear electromagnetic pulse (NEMP) coupling codes and methods are evaluated and summarized. The differences between NEMP and lightning interaction with aircraft are discussed and critical parameters peculiar to lightning are examined.

  9. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  10. The influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    NASA Astrophysics Data System (ADS)

    Papadopoulos, D.

    2012-01-01

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the quantum electrodynamical (QED) effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  11. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  12. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    SciTech Connect

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  13. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Peterson, A. M.

    1979-01-01

    In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.

  14. An electromagnetic finite difference time domain analog treatment of small signal acoustic interactions

    NASA Astrophysics Data System (ADS)

    Kunz, K.; Steich, D.; Lewis, K.; Landrum, C.; Barth, M.

    1994-03-01

    Hyperbolic partial differential equations encompass an extremely important set of physical phenomena including electromagnetics and acoustics. Small amplitude acoustic interactions behave much the same as electromagnetic interactions for longitudinal acoustic waves because of the similar nature of the governing hyperbolic equations. Differences appear when transverse acoustic waves are considered; nonetheless, the strong analogy between the acoustic and electromagnetic phenomena prompted the development of a Finite Difference Time Domain (FDTD) acoustic analog to the existing electromagnetic FDTD technique. The advantages of an acoustic FDTD (AFDTD) code are as follows: (1) boundary condition-free treatment of the acoustic scatterer--only the intrinsic properties of the scatterer's material are needed, no shell treatment or other set of special equations describing the macroscopic behavior of a sheet of material or a junction, etc. are required; this allows completely general geometries and materials in the model. (2) Advanced outer radiation boundary condition analogs--in the electromagnetics arena, highly absorbing outer radiation boundary conditions were developed that can be applied with little modification to the acoustics arena with equal success. (3) A suite of preexisting capabilities related to electromagnetic modeling--this includes automated model generation and interaction visualization as its most important components and is best exemplified by the capabilities of the LLNL generated TSAR electromagnetic FDTD code.

  15. Two-stream instability of electrons in the shock front

    NASA Astrophysics Data System (ADS)

    Gedalin, M.

    During their collisionless motion in the shock front electrons are efficiently accelerated by the de Hoffman-Teller cross shock potential. Inside the shock ramp two electron beams are formed: those which are accelerated from upstream to downstream and those which come from the downstream region to match the upstream distribution. This electron distribution is two-stream unstable. We estimate the typical temporal and spatial scales on which the instability develops. We argue that this instability could result in fast relaxation of the electron beams and formation of the observed flattopped distributions.

  16. Two-stream theory of reflectance of snow

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.

    1979-01-01

    Spectral reflectance of snow under diffuse illumination is studied using the two-stream approximation of the radiative transfer equation. The scattering and absorption parameters of the radiative transfer equation - the single scattering albedo, the optical depth, and the integrated phase function are obtained from the grain size and density of snow. Analytical expressions for the intensity within the snowpack, the reflectance, and the asymptotic flux extinction coefficient, are given. Good agreement is shown between the theory and available experimental data on visible and near-infrared reflectance, and the asymptotic flux extinction coefficient. The theory may also be used to explain the observed effect of aging on the snow reflectance.

  17. Detection of a Misaligned Broken Pipe by Electromagnetic Interaction

    NASA Astrophysics Data System (ADS)

    Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Mangini, Fabio; Ferrara, Vincenzo

    2016-04-01

    The study we are presenting concerns electromagnetic scattering of a plane wave due to the presence of a misaligned broken pipe buried in a half-space occupied by cement and by asphalt/ground, for civil-engineering applications. In order to simulate a realistic scenario, the pipe is supposed cylindrical and made of metallic or poly-vinyl chloride (PVC) material whose electromagnetic properties are known in the literature and dimensions are the most used in civil-engineering applications. We consider the longitudinal axis of the pipe running parallel to the air-cement interface. We suppose, after the break of the pipe, that the longitudinal axes of the two parts move on a plane parallel to the separation interface, in opposite directions. The study focuses on the electromagnetic response of the scattered electric field along a line above the interface of the media considering different distances between the longitudinal axis of the tubes in two cases: PVC and metallic material. To accomplish the study, a commercially available simulator based on the Finite Element Method (FEM) is adopted and a circularly-polarized plane wave impinging normally to the interface is considered. This kind of study could be useful for monitoring the status of buried pipes using ground penetrating radar (GPR) techniques in many applications of Civil Engineering without the need to intervene destructively in the structure. Acknowledgement This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).

  18. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    SciTech Connect

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  19. How Do Pre-Service Teachers Picture Various Electromagnetic Phenomenon? A Qualitative Study of Pre-Service Teachers' Conceptual Understanding of Fundamental Electromagnetic Interaction

    ERIC Educational Resources Information Center

    Beer, Christopher P.

    2010-01-01

    This study analyzes the nature of pre-service teachers' conceptual models of various electromagnetic phenomena, specifically electrical current, electrical resistance, and light/matter interactions. This is achieved through the students answering the three questions on electromagnetism using a free response approach including both verbal and…

  20. Electron beam electromagnetic field interaction in one-dimensional coaxial vircator

    NASA Astrophysics Data System (ADS)

    Shao, H.; Liu, G. Z.; Yang, Z. F.

    2005-10-01

    A one-dimensional model of the interaction between an injected electron beam and an electromagnetic (EM) field inside a coaxial vircator is presented. The effects of the injected electron beam energy spread, anode absorption rate, feedback and injected current premodulation are analyzed. The EM-gains of interaction between the electron beam and TM01, TE11 modes are derived and discussed.

  1. Two-stream theory of spectral reflectance of snow

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.

    1978-01-01

    Spectral reflectance of snow under diffuse illumination is studied using the two-stream approximation of the radiative transfer equation. The scattering and absorption within the snowcover due to the randomly distributed ice grains are characterized by the single scattering albedo and anisotropic phase function. Geometric optics calculations are used to relate the scattering and absorption parameters to grain size and density of snow. Analytical expressions for the intensity within the snowpack and the asymptotic flux extinction coefficient are also obtained. Good agreement is shown between the theory and available experimental data on visible and near-infrared reflectance and asymptotic flux extinction coefficient. The theory also may be used to explain the observed effect of aging on the snow reflectance.

  2. TRANSVERSE ELECTRON-PROTON TWO-STREAM INSTABILITY IN A BUNCHED BEAM

    SciTech Connect

    Wang, T. F.; Channell, Paul J.; Macek, R. J.; Davidson, Ronald C.

    2001-01-01

    For intense proton beams, the focus of recent two-stream instability analyses has been on the transverse instability observed in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. The PSR stores a long proton bunch with a near triangular line density profile for a duration of about one millisecond. The instability is observed as rapidly growing transverse oscillations of the stored beam, usually occuring when the beam intensity reaches 2.5 x 10{sup 13} ppp or higher, causing fast beam loss. Experimental results support the conjecture that the instability in PSR is due to the two-stream interaction between the circulating proton beam and the electrons created in the ring, i.e., the so called e-p instability. However, the understanding of the physics of this instability is usually based on the theory developed for a continuous beam of uniform line density. Although computer simulations have been implemented or are being developed to study the e-p instability in bunched beams, a companion analytical theory still remains to be developed. The present work is an attempt to investigate the transverse e-p instability in a proton bunch using an analytical approach based on the centroid model built on the 'one-pass' interaction between the protons and the electrons. This paper is an analytical investigation of the transverse electron-proton (e-p) two-stream instability in a proton bunch propagating through a stationary electron background. The equations of motion, including the effect of damping, are derived for the centroids of the proton beam and the electron cloud. An approach is developed to solve the coupled linear centroid equations in the time domain describing the e-p instability in proton bunches with nonuniform line densities. Examples are presented for proton line densities corresponding to uniform and parabolic profiles.

  3. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  4. Efficiency of combined cyclotron--[hacek C]erenkov interaction between electrons and electromagnetic fields

    SciTech Connect

    Nusinovich, G.S.; Vlasov, A.N. )

    1993-02-01

    A theory is presented describing the electron cyclotron interaction at frequencies near cutoff, followed by a [hacek C]erenkov interaction region. In such a case, the cyclotron interaction withdraws only the orbital component of electron momentum, while in the [hacek C]erenkov interaction the electrons lose their axial momentum. It is shown that the addition of the [hacek C]erenkov interaction significantly enhances the total electronic efficiency. Since both kinds of operation are relatively insensitive to electron velocity spread, the efficiency of the combined interaction is also rather tolerant to velocity spread. Thus, rather efficient sources of electromagnetic radiation based on poor quality electron beams may be developed.

  5. Computation of three-dimensional flows using two stream functions

    NASA Technical Reports Server (NTRS)

    Greywall, Mahesh S.

    1991-01-01

    An approach to compute 3-D flows using two stream functions is presented. The method generates a boundary fitted grid as part of its solution. Commonly used two steps for computing the flow fields are combined into a single step in the present approach: (1) boundary fitted grid generation; and (2) solution of Navier-Stokes equations on the generated grid. The presented method can be used to directly compute 3-D viscous flows, or the potential flow approximation of this method can be used to generate grids for other algorithms to compute 3-D viscous flows. The independent variables used are chi, a spatial coordinate, and xi and eta, values of stream functions along two sets of suitably chosen intersecting stream surfaces. The dependent variables used are the streamwise velocity, and two functions that describe the stream surfaces. Since for a 3-D flow there is no unique way to define two sets of intersecting stream surfaces to cover the given flow, different types of two sets of intersecting stream surfaces are considered. First, the metric of the (chi, xi, eta) curvilinear coordinate system associated with each type is presented. Next, equations for the steady state transport of mass, momentum, and energy are presented in terms of the metric of the (chi, xi, eta) coordinate system. Also included are the inviscid and the parabolized approximations to the general transport equations.

  6. Electron proton two-stream instability at the PSR.

    SciTech Connect

    Macek, R. J.; Browman, A.; Fitzgerald, D.; McCrady, R.; Merrill, F.; Plum, M.; Spickermann, T.; Wang, T. S.; Griffin, J.; Ng, K. Y.; Wildman, D.; Harkay, K.; Kustom, R.; Rosenberg, R.

    2002-02-19

    A strong, fast, transverse instability has long been observed at the Los Alamos Proton Storage Ring (PSR) where it is a limiting factor on peak intensity. Most of the available evidence, based on measurements of the unstable proton beam motion, is consistent with an electron-proton two-stream instability. The need for higher beam intensity at PSR [1] and for future high-intensity, proton drivers has motivated a multi-lab collaboration (LANL, ANL, FNAL, LBNL, BNL, ORNL, and PPPL) to coordinate research on the causes, dynamics and cures for this instability. Important characteristics of the electron cloud were recently measured with retarding field electron analyzers and various collection electrodes. Suppression of the electron cloud formation by TiN coatings has confirmed the importance of secondary emission processes in its generation. New tests of potential controls included dual harmonic rf, damping by higher order multipoles, damping by X,Y coupling and the use of inductive inserts to compensate longitudinal space charge forces. With these controls and higher rf voltage the PSR has accumulated stable beam intensity up to 9.7 {micro}C/pulse (6 x 10{sup 13} protons), which is a 60% increase over the previous maximum.

  7. A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2016-05-01

    A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.

  8. Defocusing of an ion beam propagating in background plasma due to two-stream instability

    NASA Astrophysics Data System (ADS)

    Tokluoglu, Erinc; Kaganovich, Igor D.

    2015-04-01

    The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics. However, the beam-plasma interaction can result in the development of collective instabilities that may have deleterious effects on ballistic propagation of an ion beam. In the case of fast, light-ion beams, non-linear fields created by instabilities can lead to significant defocusing of the beam. We study an ion beam pulse propagating in a background plasma, which is subjected to two-stream instability between the beam ions and plasma electrons, using PIC code LSP. The defocusing effects of the instability on the beam can be much more pronounced in small radius beams. We show through simulations that a beamlet produced from an ion beam passed through an aperture can be used as a diagnostic tool to identify the presence of the two-stream instability and quantify its defocusing effects. The effect can be observed on the Neutralized Drift Compression Experiment-II facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma.

  9. Defocusing of an ion beam propagating in background plasma due to two-stream instability

    SciTech Connect

    Tokluoglu, Erinc; Kaganovich, Igor D.

    2015-04-15

    The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics. However, the beam-plasma interaction can result in the development of collective instabilities that may have deleterious effects on ballistic propagation of an ion beam. In the case of fast, light-ion beams, non-linear fields created by instabilities can lead to significant defocusing of the beam. We study an ion beam pulse propagating in a background plasma, which is subjected to two-stream instability between the beam ions and plasma electrons, using PIC code LSP. The defocusing effects of the instability on the beam can be much more pronounced in small radius beams. We show through simulations that a beamlet produced from an ion beam passed through an aperture can be used as a diagnostic tool to identify the presence of the two-stream instability and quantify its defocusing effects. The effect can be observed on the Neutralized Drift Compression Experiment-II facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma.

  10. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.

    2016-06-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  11. Effective Electromagnetic Interaction Potential in Flat and Curved Spacetimes

    SciTech Connect

    Caicedo, Jose Alexander; Urrutia, Luis F.

    2010-07-12

    We present a summary of the main steps in the construction of the effective relativistic interaction potential between two charged Dirac particles in the presence of a background weak gravitational field, by extending a procedure previously used for electrodynamics in Minkowski space. We consider the full two-body problem and apply the method to the hydrogen atom.

  12. Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma

    SciTech Connect

    Korzhimanov, A. V.; Eremin, V. I. Kim, A. V.; Tushentsov, M. R.

    2007-10-15

    Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.

  13. The spartial distribution of the particles of the beam interacting with an inhomogeneous electromagnetic wave

    SciTech Connect

    Serov, A.V.

    1995-12-31

    The time variation of the spartial distribution of an electron beam reflected by an inhomogeneous wave or traverse the wave was investigated. The injected beam is perpendicular to the direction of propagation of the wave. The interaction between an electron beam and an electromagnetic wave not only produces electron oscillation but also substantially changes the electron phase and energy distribution. It is shown that under specific conditions one part of particles are reflected by an electromagnetic wave and other part of particles traverse the wave.

  14. Electromagnetic Interactions GenERalized (EIGER): Applications at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Dobbins, Justin A.; Fink, Patrick W.; Scully, Robert C.

    2003-01-01

    This slide presentation reviews the software framework for the analysis and design of complex electromagnetic systems. The system called Electromagnetic Interactions GenERalized (EIGER) is a hybrid finite element solution for wave equations and deru=ives boundary element solutions for integral equation formulations. Written in Fortran 90 Eiger uses object-oriented design methods to abstract key analysis components. EIGER has been applied to higher order modeling for analysis of antennas to assist in the design of the antennas of a mini-AERCam. EIGER might also be used to model the Ion Cyclotron Resonant heating stage for the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR).

  15. [Theoretical studies in weak, electromagnetic and strong interactions. Attachments

    SciTech Connect

    Nandi, S.

    1999-09-01

    The project covered a wide area of current research in theoretical high-energy physics. This included Standard Model (SM) as well as physics beyond the Standard Model. Specific topics included supersymmetry (SUSY), perturbative quantum chromodynamics (QCD), a new weak interaction for the third family (called topflavor), neutrino masses and mixings, topcolor model, Pade approximation, and its application to perturbative QCD and other physical processes.

  16. Spin-electromagnetic hydrodynamics and magnetization induced by spin-magnetic interaction

    NASA Astrophysics Data System (ADS)

    Koide, T.

    2013-03-01

    The hydrodynamic model including the spin degree of freedom and the electromagnetic field is discussed. In this derivation, we apply electromagnetism for a macroscopic medium proposed by Minkowski. For the equation of motion of spin, we assume that the hydrodynamic representation of the Pauli equation is reproduced when the many-body effect is neglected. Then the spin-magnetic interaction in the Pauli equation is converted to a part of the magnetization. The fluid and spin stress tensors induced by the many-body effect are obtained by employing the algebraic positivity of the entropy production in the framework of the linear irreversible thermodynamics, including the mixing effect of the irreversible currents. We further construct the constitutive equation of the polarization and the magnetization. Our polarization equation is more reasonable compared to another result obtained using electromagnetism for a macroscopic medium proposed by de Groot-Mazur.

  17. Textbook treatments of quantum electromagnetic interaction: pedagogical and conceptual problems

    NASA Astrophysics Data System (ADS)

    Fraile-Peláez, F. Javier

    2001-07-01

    In this paper we review and discuss the approaches used, almost universally, in textbooks dealing with quantum mechanics, and particularly those focused on optoelectronics devices, to explain the atom-field interactions. For this purpose, a true understanding and careful use of the first-order perturbation theory are necessary. By providing two alternative full derivations of the absorption/emission processes when the radiation is in a coherent multimode state, we highlight a number of conceptual and didactical failures in the usual textbook presentations, and propose more suitable and convincing strategies to improve them.

  18. Some preliminary views of plasma interaction: electromagnetic-launch systems

    SciTech Connect

    Buckingham, A.C.; Hawke, R.S.

    1982-07-14

    This discussion outlines a few areas of fundamental research which appear vital for progress in developing advanced propulsion concepts using dc railgun thrusters. We have placed emphasis on the following: (1) dense plasma and high current density influences on changes in microstructure and properties of conventional rail conductors such as Cu, Al, and W alloys or composites; (2) the influences described in (1) on more advanced high temperature, microstrain resistant, materials such as amorphous tungsten; (3) location, description and temporal evolution of current, magnetic field, and losses during intense plasma-current field interactions with conductors; and (4) composite materials and sequentially sectioned structures for more efficient EM dc launcher configuration.

  19. The phenomenology of intense electromagnetic wave interactions with systems

    SciTech Connect

    Cabayan, H.S.

    1986-03-12

    Recent advances in laboratory high power microwave (HPM) source capabilities have raised concerns regarding the survivability of US systems if HPM weapon systems using such sources are deployed in the battlefield. In this paper an overview of recent US achievements in HPM sources is given. Upper bounds to future HPM threats on targets from first principles are derived. Again using a simplified first principles approach, the phenomenology of HPM interaction with targets is examined and scaling laws for the target response with frequency, pulse width, and fluence are derived.

  20. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue

    PubMed Central

    Kjeldsen, Henrik D.; Kaiser, Marcus; Whittington, Miles A.

    2015-01-01

    Background Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. New method Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. Results The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. Comparison with existing methods The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Conclusions Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the

  1. Two-stream-like Instability in Dilute Hot Relativistic Beams and Astrophysical Relativistic Shocks

    NASA Astrophysics Data System (ADS)

    Nakar, Ehud; Bret, Antoine; Milosavljević, Miloš

    2011-09-01

    Relativistic collisionless shocks are believed to be efficient particle accelerators. Nonlinear outcome of the interaction of accelerated particles that run ahead of the shock, the so-called precursor, with the unperturbed plasma of the shock upstream, is thought to facilitate additional acceleration of these particles and to possibly modify the hydrodynamic structure of the shock. We explore here the linear growth of kinetic modes appearing in the precursor-upstream interaction in relativistic shocks propagating in non- and weakly magnetized plasmas: electrostatic two-stream parallel mode and electrostatic oblique modes. The physics of the parallel and oblique modes is similar, and thus, we refer to the entire spectrum of electrostatic modes as "two-stream-like." These modes are of particular interest because they are the fastest growing modes known in this type of system. Using a simplified distribution function for a dilute ultrarelativistic beam that is relativistically hot in its own rest frame, yet has momenta that are narrowly collimated in the frame of the cold upstream plasma into which it propagates, we identify the fastest growing mode in the full k-space and calculate its growth rate. We consider all types of plasma (pairs and ions-electrons) and beam (charged and charge-neutral). We find that unstable electrostatic modes are present in any type of plasma and for any shock parameters. We further find that two modes, one parallel (k bottom = 0) and the other one oblique (k_\\bot \\sim k_\\Vert), are competing for dominance and that either one may dominate the growth rate in different regions of the phase space. The dominant mode is determined mostly by the perpendicular spread of the accelerated particle momenta in the upstream frame, which reflects the shock Lorentz factor. The parallel mode becomes more dominant in shocks with lower Lorentz factors (i.e., with larger momentum spreads). We briefly discuss possible implications of our results for

  2. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    SciTech Connect

    Wong, Alfred Y.

    1999-09-20

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.

  3. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  4. Breatherlike electromagnetic wave propagation in an antiferromagnetic medium with Dzyaloshinsky-Moriya interaction

    SciTech Connect

    Kavitha, L.; Saravanan, M.; Srividya, B.; Gopi, D.

    2011-12-15

    We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schroedinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.

  5. Velocity evolution of electro-magnetically driven shock wave for beam-dissociated hydrogen interaction experiment

    NASA Astrophysics Data System (ADS)

    Kondo, Kotaro; Oguri, Yoshiyuki

    2016-03-01

    We present the velocity measurements in electro-magnetic shock tube for beam interaction experiment by three methods; laser refraction, photodiode for self-emission, and high speed framing camera. The laser refraction showed that the average shock velocity was 6.7 km/s when the initial pressure was 1000 Pa and the initial charging voltage was 16 kV. The self-emissions from piston discharge plasma were measured by photodiodes and by high speed framing camera. The measurements showed that the duration between shock and piston was up to 8 microseconds with a 400-mm propagation in the shock tube, which is enough time as dissociation target for beam interaction experiment.The complementary velocity measurement is significant for understanding the electro-magnetically driven shock physics.

  6. University Physics Students' Use of Models in Explanations of Phenomena Involving Interaction between Metals and Electromagnetic Radiation.

    ERIC Educational Resources Information Center

    Redfors, Andreas; Ryder, Jim

    2001-01-01

    Examines third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. Concludes that few students use a single model consistently. (Contains 27 references.) (DDR)

  7. In-situ observations of nonlinear wave particle interaction of electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Miyoshi, Y.; Keika, K.; Katoh, Y.; Angelopoulos, V.; Nakamura, S.; Omura, Y.

    2014-12-01

    Direct measurement method for the electromagnetic wave and space plasma interaction has been suggested by a computer simulation study [Katoh et al., 2013], so-called Wave Particle Interaction Analysis (WPIA). We perform the WPIA for rising tone electromagnetic ion cyclotron (EMIC) waves (so-called EMIC triggered emissions), of which generation mechanism is essentially the same as the chorus emissions. THEMIS observation data (EFI, FGM, and ESA) are used for the WPIA. In the WPIA, we calculate (1) the inner product of the wave electric field and the velocity of the energetic protons: Wint, (2) the inner product of the wave magnetic field and the velocity of the energetic protons: WBint, and (3) the phase angle ζ between the wave magnetic field and the perpendicular velocity of the energetic protons. The values of (1) and (2) indicate the existence of the resonant currents inducing the nonlinear wave growth and the frequency change, respectively. We find the negative Wint and positive WBint at the nonlinear growing phase of the triggered emission as predicted in the theory [e.g. Omura and Nunn, 2011, Shoji and Omura, 2013]. In histogram of (3), we show the existence of the electromagnetic proton holes in the phase space generating the resonant currents. We also perform a hybrid simulation and evaluate WPIA method for EMIC waves. The simulation results show good agreement with the in-situ THEMIS observations.

  8. A multiple-scattering approach to transient electromagnetic interaction with plasmas

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.; Gray, K. G.

    1978-01-01

    A multiple-scattering method is described which is applicable to the transient plasma problem concerning the interaction between transient electromagnetic waves and plasmas. The method starts with the time-dependent wave fields scattered by a linear electric dipole when illuminated by a transient plane wave. It avoids the use of Fourier transform methods and provides additional physical insight into the origin of the frequency-dispersive properties of material media. The results are applicable only to cold plasmas since spatial dispersion is neglected, implying that effects due to thermal velocities of electrons - such as incoherent scatter - are not covered by the theory. The advantages of the method for initiation of the student into transient electromagnetics in dispersive media are identified as conceptual simplicity and computational simplicity. The entire analysis is in the time domain.

  9. Resonances and circuit theory for the interaction of metallic disks and annuli with an electromagnetic field.

    PubMed

    Chui, S T; Du, J J; Yau, S T

    2014-11-01

    To understand the nature of the electromagnetic resonances of finite metallic surfaces, we formulate a rigorous and rapidly convergent circuit theory for the interaction of a metallic disk and a metallic annulus with an electromagnetic field. Expressions for the current induced and the resonance condition are derived. A new understanding of the nature of the resonances is obtained. For half of the resonances we find a divergent electric field at the edge of the disk, even though it is smooth in shape. For the disk, we compare with previous results using vector spheroidal wave functions and found good agreement for the resonance condition. Our approach can be generalized to other finite surfaces. PMID:25493895

  10. Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H

    SciTech Connect

    Schaeffer, Bernard

    2012-06-20

    Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearby proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.

  11. Two-stream Instabilities within the Front of Supercritical Quasi-perpendicular Shocks: a Synthetic Analysis

    NASA Astrophysics Data System (ADS)

    Muschietti, L.; Lembege, B.

    2015-12-01

    toward upstream for the oblique whistlers, as expected. We present a synthetic view of wave emissions of two-stream origin and connect our results with the low-frequency whistlers of Hellinger and Mangeney [JGR 102, 1997], the MTSI-1 and 2 of Matsukyio and Scholer [JGR 111, 2006], and the Bernstein waves of Muschietti and Lembege [JGR 118, 2013].

  12. Spectra and electromagnetic transitions of 72–84Kr in the interacting boson model-1

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Bo; Li, Xiao-Wei; Lü, Li-Jun; Dong, Hong-Fei; Wang, Yin; Zhang, Jin-Fu

    2016-07-01

    Within the framework of the interacting boson model-1, the energy levels and electromagnetic transitions in 72–84Kr isotopes are calculated. The structures of the eigenstate and Hamiltonian matrix for some low-lying states are also calculated. The calculated results are compared with available experimental data, and the results are generally in good agreement. The present study shows that the 72,74,76,80,82,84Kr isotopes are in the transition from U(5) → SU(3), and 78Kr is in the transition from U(5) → O(6). Supported by NSFC(11465001,11165001) and Natural Science Foundation of Inner Mongolia of China (2013MS0117)

  13. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    SciTech Connect

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  14. Interaction of extremely-low-frequency electromagnetic fields with living systems

    SciTech Connect

    Tenforde, T.S.

    1991-11-01

    The sources and physical properties of extremely-low-frequency (ELF) electromagnetic fields are described in this paper. Biological effects and mechanisms through which ELF fields interact with humans and other organisms are discussed, including several aspects of this subject that are presently under active laboratory investigation. Studies on the potential health effects of ELF fields present in the home and workplace are also summarized, including a critical evaluation of evidence for a possible linkage between exposure to ELF fields and cancer risk. 53 refs.

  15. Electromagnetic field interactions with the human body: Observed effects and theories

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1981-01-01

    The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.

  16. Variational study of λ and N atomic configurations interacting with an electromagnetic field of two modes

    NASA Astrophysics Data System (ADS)

    Cordero, S.; Castaños, O.; López-Peña, R.; Nahmad-Achar, E.

    2016-07-01

    A study of the λ and N atomic configurations under dipolar interaction with two modes of electromagnetic radiation is presented. The corresponding quantum phase diagrams are obtained by means of a variational procedure. Both configurations exhibit normal and collective (super-radiant) regimes. While the latter in the λ configuration divides itself into two subregions, corresponding to each of the modes, that in the N configuration may be divided into two or three subregions depending on whether the field modes divide the atomic system into two separate subsystems or not. Our variational procedure compares well with the exact quantum solution. The properties of the relevant field and matter observables are obtained.

  17. Computational modeling of a single microdischarge and its interactions with high frequency electromagnetic waves

    NASA Astrophysics Data System (ADS)

    PanneerChelvam, Premkumar; Raja, Laxminarayan L.; Upadhyay, Rochan R.

    2016-09-01

    We discuss the computational modeling of a single microplasma and its interaction with high frequency electromagnetic waves in a microwave regime. The work is motivated by a strong recent interest in the area of reconfigurable plasma-based metamaterials (MM) and photonic crystals (PC) where the interaction of electromagnetic waves with plasma elements (e.g. microdischarges) forms the basis for the MM/PC operation. In this work the microplasma is assumed to be driven by a 1 GHz microwave source in a parallel plate electrode configuration. Its structure and properties are described using a fluid plasma model. The interaction of the microplasma with a 100 GHz transverse magnetic (TM) and transverse electric (TE) polarized microwave propagating in a rectangular waveguide is studied. Two operational regimes of the plasma discharge are considered. One in which the peak electron density is less than the critical density (under-dense) for the interacting wave and the other in which it is higher (over-dense). The under-dense plasma with positive less than unity dielectric constant has sufficient dielectric contrast from the surrounding medium that a slight perturbation of the incident wave and bending of wave path lines through the discharge is realized. The over-dense plasma interacts strongly with the TM polarized wave because of epsilon-zero resonance at the critical density locations and the wave path lines are observed to reverse their direction near the regions of critical plasma density. The transverse electric (TE) polarized wave does not exhibit epsilon-zero resonance and the interactions are weaker than the TM wave.

  18. Electromagnetic semitransparent δ-function plate: Casimir interaction energy between parallel infinitesimally thin plates

    NASA Astrophysics Data System (ADS)

    Parashar, Prachi; Milton, Kimball A.; Shajesh, K. V.; Schaden, M.

    2012-10-01

    We derive boundary conditions for electromagnetic fields on a δ-function plate. The optical properties of such a plate are shown to necessarily be anisotropic in that they only depend on the transverse properties of the plate. We unambiguously obtain the boundary conditions for a perfectly conducting δ-function plate in the limit of infinite dielectric response. We show that a material does not “optically vanish” in the thin-plate limit. The thin-plate limit of a plasma slab of thickness d with plasma frequency ωp2=ζp/d reduces to a δ-function plate for frequencies (ω=iζ) satisfying ζd≪ζpd≪1. We show that the Casimir interaction energy between two parallel perfectly conducting δ-function plates is the same as that for parallel perfectly conducting slabs. Similarly, we show that the interaction energy between an atom and a perfect electrically conducting δ-function plate is the usual Casimir-Polder energy, which is verified by considering the thin-plate limit of dielectric slabs. The “thick” and “thin” boundary conditions considered by Bordag are found to be identical in the sense that they lead to the same electromagnetic fields.

  19. Interactive computer aided design of electric machines and electromagnetic apparatus (invited)

    NASA Astrophysics Data System (ADS)

    Freeman, E. M.

    1982-11-01

    The design of electromagnetic devices in industry is still largely done using traditional techniques. Early computing facilities were costly to use and limited to alphanumeric applications. The application of numerical methods, mainly finite elements, to the solution of electromagnetic field problems, proved to be difficult to implement initially due to input/output problems. These difficulties were completely obviated by the advent of inexpensive microcomputers and low cost interactive graphics. However, it is still uncommon to find these new methods being employed as part of the normal electrical design process. Meanwhile, in parallel, there has been a massive growth of computer-aided methods applied to all aspects of mechanical engineering design and drafting, CADCAM. The trend is towards small, powerful, expandable, dedicated computer systems equipped with high resolution interactive graphics, which can be connected via a fast datalink. These are commonly available, complete with software, as turnkey systems. The advantages of CADCAM are manifold: Lower costs, higher productivity, higher quality products, with shorter lead times. The introduction of CADCAM will result in organisational as well as technical changes. The major change will be in the way people think.

  20. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    PubMed

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs. PMID:24785022

  1. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed. PMID:17931024

  2. Nonlinear Interactions between Electromagnetic Waves and Electron Plasma Oscillations in Quantum Plasmas

    SciTech Connect

    Shukla, P. K.; Eliasson, B.

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schroedinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  3. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  4. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  5. Optical Activity of Chiral Nanomaterials: Effects of Short Range and Long Range Electromagnetic Interactions

    NASA Astrophysics Data System (ADS)

    Fan, Zhiyuan

    In this dissertation, chiral nanomaterials with new plasmonic properties have been investigated. Electromagnetic interactions between well-defined building blocks in nanomaterials are modeled using classical and quantum mechanical theories. We predict several new mechanisms of plasmonic circular dichroism (CD) signals in chiral nanomaterials. The predicted CD mechanisms include plasmon-plasmon interactions of nanoparticle assemblies, plasmon-exciton interactions of molecule-nanoparticle conjugates, multipole plasmon mixing in chiral metal nanocrystals and electrodynamic effect of long range plasmon-exciton interactions. It is efficient and accurate to simulate light-matter interactions with analytic solutions. However, only a limited number of geometries can be solved analytically. Many numerical tools based on finite element methods, discrete dipole approximation or finite-difference time-domain methods are available currently. These methods are capable of simulating nanostructures with arbitrary shapes. Numerical simulations using such software have shown agreements with analytical results of our models. Hence, this study may offer a new approach to design of complex nanostructures for sensing of chiral molecules. This dissertation also reviews several experimental papers that have demonstrated successful fabrications of chiral nanostructures and nano-assemblies with new plasmonic CD signals. Our theories strongly motivated the field and have been used in many experimental studies for interpretation and understanding of observations.

  6. Introduction to gauge theories of the strong, weak, and electromagnetic interactions

    SciTech Connect

    Quigg, C.

    1980-07-01

    The plan of these notes is as follows. Chapter 1 is devoted to a brief evocative review of current beliefs and prejudices that form the context for the discussion to follow. The idea of Gauge Invariance is introduced in Chapter 2, and the connection between conservation laws and symmetries of the Lagrangian is recalled. Non-Abelian gauge field theories are constructed in Chapter 3, by analogy with the familiar case of electromagnetism. The Yang-Mills theory based upon isospin symmetry is constructed explicitly, and the generalization is made to other gauge groups. Chapter 4 is concerned with spontaneous symmetry breaking and the phenomena that occur in the presence or absence of local gauge symmetries. The existence of massless scalar fields (Goldstone particles) and their metamorphosis by means of the Higgs mechanism are illustrated by simple examples. The Weinberg-Salam model is presented in Chapter 5, and a brief resume of applications to experiment is given. Quantum Chromodynamics, the gauge theory of colored quarks and gluons, is developed in Chapter 6. Asymptotic freedom is derived schematically, and a few simple applications of perturbative QCD ae exhibited. Details of the conjectured confinement mechanism are omitted. The strategy of grand unified theories of the strong, weak, and electromagnetic interactions is laid out in Chapter 7. Some properties and consequences of the minimal unifying group SU(5) are presented, and the gauge hierarchy problem is introduced in passing. The final chapter contains an essay on the current outlook: aspirations, unanswered questions, and bold scenarios.

  7. Transient interaction model of electromagnetic field generated by lightning current pulses and human body

    NASA Astrophysics Data System (ADS)

    Iváncsy, T.; Kiss, I.; Szücs, L.; Tamus, Z. Á.

    2015-10-01

    The lightning current generates time-varying magnetic field near the down- conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated.

  8. Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field

    SciTech Connect

    Stefanescu, Eliade Scheid, Werner; Sandulescu, Aurel

    2008-05-15

    For a system of charged Fermions interacting with an electromagnetic field, we derive a non-Markovian master equation in the second-order approximation of the weak dissipative coupling. A complex dissipative environment including Fermions, Bosons and the free electromagnetic field is taken into account. Besides the well-known Markovian term of Lindblad's form, that describes the decay of the system by correlated transitions of the system and environment particles, this equation includes new Markovian and non-Markovian terms proceeding from the fluctuations of the self-consistent field of the environment. These terms describe fluctuations of the energy levels, transitions among these levels stimulated by the fluctuations of the self-consistent field of the environment, and the influence of the time-evolution of the environment on the system dynamics. We derive a complementary master equation describing the environment dynamics correlated with the dynamics of the system. As an application, we obtain non-Markovian Maxwell-Bloch equations and calculate the absorption spectrum of a field propagation mode transversing an array of two-level quantum dots.

  9. New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions

    SciTech Connect

    Miyake, Yohei; Usui, Hideyuki

    2009-06-15

    A novel particle simulation code, the electromagnetic spacecraft environment simulator (EMSES), has been developed for the self-consistent analysis of spacecraft-plasma interactions on the full electromagnetic (EM) basis. EMSES includes several boundary treatments carefully coded for both longitudinal and transverse electric fields to satisfy perfect conductive surface conditions. For the longitudinal component, the following are considered: (1) the surface charge accumulation caused by impinging or emitted particles and (2) the surface charge redistribution, such that the surface becomes an equipotential. For item (1), a special treatment has been adopted for the current density calculated around the spacecraft surface, so that the charge accumulation occurs exactly on the surface. As a result, (1) is realized automatically in the updates of the charge density and the electric field through the current density. Item (2) is achieved by applying the capacity matrix method. Meanwhile, the transverse electric field is simply set to zero for components defined inside and tangential to the spacecraft surfaces. This paper also presents the validation of EMSES by performing test simulations for spacecraft charging and peculiar EM wave modes in a plasma sheath.

  10. Electromagnetic near-field interactions of a dipolar emitter with metal and metamaterial nanoslabs

    SciTech Connect

    Hakkarainen, Timo; Setaelae, Tero; Friberg, Ari T.

    2011-09-15

    We investigate the emission properties of a polarizable point dipole placed within a subwavelength distance from a silver or a slightly absorbing, negative-index metamaterial nanoslab. Using electromagnetic theory we show that in the immediate vicinity of the slab the dipole-slab interaction prevents the dipole from radiating. For the metamaterial slab close to the perfect-lens arrangement, the interaction is relatively weak and of short range. In particular, a region exists in the near zone of the metamaterial slab where the dipole emission is not disturbed by the interaction, and a bright intensity distribution of subwavelength width is created on the opposite side of the slab. This suggests that a low-loss metamaterial slab can act as a near-field imaging device which does not disturb the object. For the silver slab the interaction is stronger and it reaches over the near-field zone, adversely influencing the imaging capabilities in terms of brightness and resolution. The results are important for the development of metal and metamaterial superlenses.

  11. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    PubMed Central

    Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio

    2016-01-01

    Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545

  12. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection.

    PubMed

    Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio

    2016-01-01

    Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545

  13. Research on Key Factors and Their Interaction Effects of Electromagnetic Force of High-Speed Solenoid Valve

    PubMed Central

    Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217

  14. Interaction of terahertz electromagnetic waves with periodic gratings of graphene micro- and nanoribbons

    NASA Astrophysics Data System (ADS)

    Golovanov, O. A.; Makeeva, G. S.; Rinkevich, A. B.

    2016-02-01

    An original mathematical model of the interaction of terahertz (THz) electromagnetic waves with periodic gratings of graphene micro- and nanoribbons is based on the solution to the boundary-value problem of diffraction for the Maxwell equations with electrodynamic boundary conditions and material equations. The electrodynamic calculations of the transmission coefficients of the TEM wave versus frequency are performed for the 2D grating of graphene micro- and nanoribbons at several chemical potentials, grating periods, and geometrical sizes of ribbons. The results of the calculations show that the transmission spectrum exhibits a minimum in the THz range if the electric field of the wave is perpendicular to the graphene ribbons. The minimum is due to the plasmon resonance of the fundamental mode in graphene, and the absorption peaks at higher frequencies in the upper part of the THz range are related to the highorder plasmon modes.

  15. The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions

    NASA Technical Reports Server (NTRS)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A self consistent and fully kinetic simulation of the interaction of lightning radiated electromagnetic (EM) pulses with the nighttime lower ionosphere indicates that optical emissions observable with conventional instruments would be excited. For example, emissions of the 1st and 2nd positive bands of N2 occur at rates reaching 7 x 10(exp 7) and 10(exp 7) cu cm/s respectively at 92 km altitude for a lightning discharge with an electric field E(sub 100) = 20 V/m (normalized to a 100 km distance). The maximum height integrated intensities of these emissions are 4 x 10(exp 7) and 6 x 10(exp 6) R respectively, lasting for approx. 50 micrometers.

  16. Full-wave analysis of electromagnetic wave propagation over terrain using the Improved Tabulated Interaction Method

    NASA Astrophysics Data System (ADS)

    Brennan, C.; Trinh, D.; Pham, V.; Condon, M.; Mittra, R.

    2015-05-01

    This paper proposes extending the forward scattering based Tabulated Interaction Method (TIM) for computing electromagnetic wave propagation over terrain profiles to one incorporating backscattering. The proposed method uses a common set of basis functions in conjunction with a "matching technique" to produce a linear system with much fewer unknowns than that created using pulse basis functions and therefore provides a very efficient and accurate method. The original TIM is shown to be a special case of the proposed method whereby the lower triangular portion of the reduced system is retained and solved. The proposed method is compared with the recently proposed Characteristic Basis Function Method with which it shares several features. The complexity and numerical analysis demonstrates that the proposed method has an extremely low computational complexity and storage.

  17. High performance interactive graphics for shower reconstruction in HPC, the DELPHI barrel electromagnetic calorimeter

    SciTech Connect

    Stanescu, C. )

    1990-08-01

    Complex software for shower reconstruction in DELPHI barrel electromagnetic calorimeter which deals, for each event, with great amounts of information, due to the high spatial resolution of this detector, needs powerful verification tools. An interactive graphics program, running on high performance graphics display system Whizzard 7555 from Megatek, was developed to display the logical steps in showers and their axes reconstruction. The program allows both operations on the image in real-time (rotation, translation and zoom) and the use of non-geometrical criteria to modify it (as the use of energy) thresholds for the representation of the elements that compound the showers (or of the associated lego plots). For this purpose graphics objects associated to user parameters were defined. Instancing and modelling features of the native graphics library were extensively used.

  18. Investigations of the structure and electromagnetic interactions of few-body systems

    SciTech Connect

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.

    1992-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics.

  19. Weighing classes and streams: toward better methods for two-stream convolutional networks

    NASA Astrophysics Data System (ADS)

    Kim, Hoseong; Uh, Youngjung; Ko, Seunghyeon; Byun, Hyeran

    2016-05-01

    The emergence of two-stream convolutional networks has boosted the performance of action recognition by concurrently extracting appearance and motion features from videos. However, most existing approaches simply combine the features by averaging the prediction scores from each recognition stream without realizing that some classes favor greater weight for appearance than motion. We propose a fusion method of two-stream convolutional networks for action recognition by introducing objective functions of weights with two assumptions: (1) the scores from streams do not weigh the same and (2) the weights vary across different classes. We evaluate our method by extensive experiments on UCF101, HMDB51, and Hollywood2 datasets in the context of action recognition. The results show that the proposed approach outperforms the standard two-stream convolutional networks by a large margin (5.7%, 4.8%, and 3.6%) on UCF101, HMDB51, and Hollywood2 datasets, respectively.

  20. Tissue interactions with nonionizing electromagnetic fields. Final report, March 1979-February 1986

    SciTech Connect

    Adey, W.R.; Bawin, S.M.; Byus, C.V.; Cain, C.D.; Lin-Liu, S.; Luben, R.A.; Lyle, D.B.; Sagan, P.M.; Sheppard, A.R.; Stell, M.A.

    1986-08-01

    This report provides an overview of this research program focused on basic research in nervous system responses to electric fields at 60 Hz. The emphasis in this project was to determine the fundamental mechanisms underlying some phenomena of electric field interactions in neural systems. The five studies of the initial program were tests of behavioral responses in the rat based upon the hypothesis that electric field detection might follow psychophysical rules known from prior research with light, sound and other stimuli; tests of electrophysiological responses to ''normal'' forms of stimulation in rat brain tissue exposed in vitro to electric fields, based on the hypothesis that the excitability of brain tissue might be affected by fields in the extracellular environment; tests of electrophysiological responses of spontaneously active pacemaker neurons of the Aplysia abdominal ganglion, based on the hypothesis that electric field interactions at the cell membrane might affect the balance among the several membrane-related processes that govern pacemaker activity; studies of mechanisms of low frequency electromagnetic field interactions with bone cells in the context of field therapy of ununited fractures; and manipulation of cell surface receptor proteins in studies of their mobility during EM field exposure.

  1. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey

    NASA Astrophysics Data System (ADS)

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.

  2. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey.

    PubMed

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey. PMID:27036795

  3. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model.

    PubMed

    Cosic, Irena; Cosic, Drasko; Lazar, Katarina

    2016-01-01

    The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health. PMID:27367714

  4. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model

    PubMed Central

    Cosic, Irena; Cosic, Drasko; Lazar, Katarina

    2016-01-01

    The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health. PMID:27367714

  5. Resonant Interaction, Approximate Symmetry, and Electromagnetic Interaction (EMI) in Low Energy Nuclear Reactions (LENR)

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2007-03-01

    Only recently (talk by P.A. Mosier-Boss et al, in this session) has it become possible to trigger high energy particle emission and Excess Heat, on demand, in LENR involving PdD. Also, most nuclear physicists are bothered by the fact that the dominant reaction appears to be related to the least common deuteron(d) fusion reaction,d+d ->α+γ. A clear consensus about the underlying effect has also been illusive. One reason for this involves confusion about the approximate (SU2) symmetry: The fact that all d-d fusion reactions conserve isospin has been widely assumed to mean the dynamics is driven by the strong force interaction (SFI), NOT EMI. Thus, most nuclear physicists assume: 1. EMI is static; 2. Dominant reactions have smallest changes in incident kinetic energy (T); and (because of 2), d+d ->α+γ is suppressed. But this assumes a stronger form of SU2 symmetry than is present; d+d ->α+γ reactions are suppressed not because of large changes in T but because the interaction potential involves EMI, is dynamic (not static), the SFI is static, and because the two incident deuterons must have approximate Bose Exchange symmetry and vanishing spin. A generalization of this idea involves a resonant form of reaction, similar to the de-excitation of an atom. These and related (broken gauge) symmetry EMI effects on LENR are discussed.

  6. Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Li; Wang, Rongyao; Ji, Yinglu; Zhai, Dawei; Wu, Xiaochun; Liu, Yu; Chen, Keqiu; Xu, Hongxing

    2013-04-01

    We fabricate the linear chains of twisted gold nanorods by a facile chiral molecular templating method. In such a chiral plasmonic system, particle-particle separation distances are in the order of the light wavelength and are much larger than the sizes of individual particles. As a result, the inter-particle interactions in this chiral system are mediated mainly by a relatively weak far-field plasmonic coupling, rather than a strong near-field coupling. However, such a chiral system of twisted gold nanorods show a huge surface plasmon based circular dichroism response, with the highest anisotropy factor around 0.027. This is in contrast to the previous studies in which near-field plasmonic coupling is an indispensable prerequisite to obtain strong optical activity from a chiral plasmonic nanostructure. Our study demonstrates here an alternative strategy for achieving huge chiroptical response of a chiral plasmonic nanostructure based on far-field, radiative electromagnetic interactions of metallic nanoparticles. Theoretical simulations show a satisfactory agreement with the experimental results. This study may provide more flexible ways to design chiral plasmon nanostructures with strong CD responses for various applications.We fabricate the linear chains of twisted gold nanorods by a facile chiral molecular templating method. In such a chiral plasmonic system, particle-particle separation distances are in the order of the light wavelength and are much larger than the sizes of individual particles. As a result, the inter-particle interactions in this chiral system are mediated mainly by a relatively weak far-field plasmonic coupling, rather than a strong near-field coupling. However, such a chiral system of twisted gold nanorods show a huge surface plasmon based circular dichroism response, with the highest anisotropy factor around 0.027. This is in contrast to the previous studies in which near-field plasmonic coupling is an indispensable prerequisite to obtain

  7. On the breaking of a plasma wave in a thermal plasma. II. Electromagnetic wave interaction with the breaking plasma wave

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Pirozhkov, Alexander S.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Schroeder, Carl B.; Esarey, Eric; Califano, Francesco; Pegoraro, Francesco

    2012-11-15

    In thermal plasma, the structure of the density singularity formed in a relativistically large amplitude plasma wave close to the wavebreaking limit leads to a refraction coefficient with discontinuous spatial derivatives. This results in a non-exponentially small above-barrier reflection of an electromagnetic wave interacting with the nonlinear plasma wave.

  8. PREFACE: International Seminar on Strong and Electromagnetic Interactions in High Energy Collisions 2012

    NASA Astrophysics Data System (ADS)

    Giardina, Giorgio; Sandorfi, Andrew; Pedroni, Paolo

    2013-03-01

    The International Seminar 'Strong and Electromagnetic Interaction in High Energy Collisions' was held in the Conference Hall 'Ettore Majorana' of the Department of Physics in Messina, Italy on October 12, 2012. The Seminar was organized by the University of Messina and 'Fondazione Bonino-Pulejo', with the aim of presenting and discussing the results of the current experiments and also new plans involving research at INFN-LNF (Italy), JLAB (USA), LHC-CERN, ELSA (Bonn), MAMI (Mainz). The main purpose of this Seminar was to deal with aspects of electromagnetic and strong forces by meson photoproduction and the electron-positron collider, and to search for dark energy. The recent results on hadron contributions to the muon anomalous magnetic moment and kaon interferometry at the DAFNE facility were also discussed. Editors: Giorgio Giardina (University of Messina), Andrew M Sandorfi (Thomas Jefferson National Accelerator Facility, Newport News, USA), Paolo Pedroni (INFN 'Sezione di Pavia') Organizing Committee: Chairman: G Giardina (Messina - Italy) Co-Chairman: A M Sandorfi (Newport News, USA) Co-Chairman: P Pedroni (Pavia - Italy) Scientific Secretary: G Mandaglio (University of Messina - Italy) Organizing Institutions: University of Messina Fondazione Bonino-Pulejo (Messina) Topics: Meson photoproduction and baryon resonances Muon anomaly (g-2) Recent results in experiments at the Large Hadron Collider Kaon interferometry Local Organizing Committee: F Curciarello, V De Leo, G Fazio, G Giardina, G Mandaglio, M Romaniuk Sponsored by: University of Messina, Fondazione Bonino-Pulejo (Messina), INFN Sezione di Catania Web-Site: http://newcleo.unime.it/IntSem2012

  9. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions

    SciTech Connect

    Su, Zhenpeng Zhu, Hui; Zheng, Huinan; Xiao, Fuliang; Zhang, Min; Liu, Y. C.-M.; Shen, Chao; Wang, Yuming; Wang, Shui

    2014-05-15

    Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves.

  10. Fast two-stream method for computing diurnal-mean actinic flux in vertically inhomogeneous atmospheres

    NASA Technical Reports Server (NTRS)

    Filyushkin, V. V.; Madronich, S.; Brasseur, G. P.; Petropavlovskikh, I. V.

    1994-01-01

    Based on a derivation of the two-stream daytime-mean equations of radiative flux transfer, a method for computing the daytime-mean actinic fluxes in the absorbing and scattering vertically inhomogeneous atmosphere is suggested. The method applies direct daytime integration of the particular solutions of the two-stream approximations or the source functions. It is valid for any duration of period of averaging. The merit of the method is that the multiple scattering computation is carried out only once for the whole averaging period. It can be implemented with a number of widely used two-stream approximations. The method agrees with the results obtained with 200-point multiple scattering calculations. The method was also tested in runs with a 1-km cloud layer with optical depth of 10, as well as with aerosol background. Comparison of the results obtained for a cloud subdivided into 20 layers with those obtained for a one-layer cloud with the same optical parameters showed that direct integration of particular solutions possesses an 'analytical' accuracy. In the case of the source function interpolation, the actinic fluxes calculated above the one-layer and 20-layer clouds agreed within 1%-1.5%, while below the cloud they may differ up to 5% (in the worst case). The ways of enhancing the accuracy (in a 'two-stream sense') and computational efficiency of the method are discussed.

  11. Interaction of electromagnetic radiation in the 20–200 GHz frequency range with arrays of carbon nanotubes with ferromagnetic nanoparticles

    PubMed Central

    Atdayev, Agylych; Danilyuk, Alexander L

    2015-01-01

    Summary The interaction of electromagnetic radiation with a magnetic nanocomposite based on carbon nanotubes (CNT) is considered within the model of distributed random nanoparticles with a core–shell morphology. The approach is based on a system composed of a CNT conducting resistive matrix, ferromagnetic inductive nanoparticles and the capacitive interface between the CNT matrix and the nanoparticles, which form resonance resistive–inductive–capacitive circuits. It is shown that the influence of the resonant circuits leads to the emergence of specific resonances, namely peaks and valleys in the frequency dependence of the permeability of the nanocomposite, and in the frequency dependence of the reflection and transmission of electromagnetic radiation. PMID:25977874

  12. Electromagnetic plasma particle simulations on Solar Probe Plus spacecraft interaction with near-Sun plasma environment

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki

    It is necessary to predict the nature of spacecraft-plasma interactions in extreme plasma conditions such as in the near-Sun environment. The spacecraft environment immersed in the solar corona is characterized by the small Debye length due to dense (7000 mathrm{/cc}) plasmas and a large photo-/secondary electron emission current emitted from the spacecraft surfaces, which lead to distinctive nature of spacecraft-plasma interactions [1,2,3]. In the present study, electromagnetic field perturbation around the Solar Probe Plus (SPP) spacecraft is examined by using our original EM-PIC (electromagnetic particle-in-cell) plasma simulation code called EMSES. In the simulations, we consider the SPP spacecraft at perihelion (0.04 mathrm{AU} from the Sun) and important physical effects such as spacecraft charging, photoelectron and secondary electron emission, solar wind plasma flow including the effect of spacecraft orbital velocity, and the presence of a background magnetic field. Our preliminary results show that both photoelectrons and secondary electrons from the spacecraft are magnetized in a spatial scale of several meters, and make drift motion due the presence of the background convection electric field. This effect leads to non-axisymmetric distributions of the electron density and the resultant electric potential near the spacecraft. Our simulations predict that a strong (˜ 100 mathrm{mV/m}) spurious electric field can be observed by the probe measurement on the spacecraft due to such a non-axisymmetric effect. We also confirm that the large photo-/secondary electron current alters magnetic field intensity around the spacecraft, but the field variation is much smaller than the background magnetic field magnitude (a few mathrm{nT} compared to a few mathrm{mu T}). [1] Ergun et al., textit{Phys. Plasmas}, textbf{17}, 072903, 2010. [2] Guillemant et al., textit{Ann. Geophys.}, textbf{30}, 1075-1092, 2012. [3] Guillemant et al., textit{IEEE Trans. Plasma Sci

  13. Classical limit of the interaction of a quantum system with the electromagnetic field

    SciTech Connect

    Braun, Lars; Strunz, Walter T.; Briggs, John S.

    2004-09-01

    The interaction of nonrelativistic matter with the quantized electromagnetic field is investigated in the classical limit of large photon numbers. Quantization of both matter, say an atom, and the field results in a time-independent Schroedinger equation (TISE). However, for very strong fields (quantum mechanically, large photon numbers) this is impractical to solve. The standard approach then is simply to replace the quantized field by a classical field to give a time-dependent Schroedinger equation (TDSE) for the atom alone. Here we show how this TDSE can be derived from the TISE for atom plus field, illustrating at each stage the approximations that are necessary to treat the field classically. An important difficulty at the semiclassical stage is a breakdown of the approximation at classical turning points. We show how the use of coherent field states can circumvent this problem. In the limit that the field can be treated classically, time emerges from the Maxwell equations and a TDSE for the atom alone results.

  14. Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver.

    PubMed

    Uysal, Ismail E; Arda Ülkü, H; Bağci, Hakan

    2016-09-01

    Transient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium's permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver. PMID:27607496

  15. Electron two-stream instability and its application in solar and heliophysics

    NASA Astrophysics Data System (ADS)

    Che, Haihong

    2016-06-01

    It is well known that electron beams accelerated in solar flares can drive two-stream instability and produce radio bursts in the solar corona as well as in the interplanetary medium. Recent observations show that the solar wind likely originates from nanoflare-like events near the surface of the Sun where locally heated plasma escapes along open field lines into space. Recent numerical simulations and theoretical studies show that electron two-stream instability (ETSI) driven by nanoflare-accelerated electron beams can produce the observed nanoflare-type radio bursts, the non-Maxwellian electron velocity distribution function of the solar wind, and the kinetic scale turbulence in solar wind. This brief review focus on the basic theoretical framework and recent progress in the nonlinear evolution of ETSI driven by electron beams, including the formation of electron holes, Langmuir wave generation in warm plasma, and the nonlinear modulation instability and Langmuir collapse. Potential applications in heliophysics and astrophysics are discussed.

  16. Instability saturation by the oscillating two-stream instability in a weakly relativistic plasma

    SciTech Connect

    Pal, Barnali; Poria, Swarup; Sahu, Biswajit

    2015-04-15

    The two-stream instability has wide range of astrophysical applications starting from gamma-ray bursts and pulsar glitches to cosmology. We consider one dimensional weakly relativistic Zakharov equations and describe nonlinear saturation of the oscillating two-stream instability using a three dimensional dynamical system resulting form a truncation of the nonlinear Schrodinger equation to three modes. The equilibrium points of the model are determined and their stability natures are discussed. Using the tools of nonlinear dynamics such as the bifurcation diagram, Poincaré maps, and Lyapunav exponents, existence of periodic, quasi-periodic, and chaotic solutions are established in the dynamical system. Interestingly, we observe the multistable behavior in this plasma model. The system has multiple attractors depending on the initial conditions. We also notice that the relativistic parameter plays the role of control parameter in the model. The theoretical results presented in this paper may be helpful for better understanding of space and astrophysical plasmas.

  17. Instability of wave modes in a two-stream free-electron laser with a helical wiggler and an axial magnetic field

    SciTech Connect

    Mohsenpour, Taghi; Mehrabi, Narges

    2013-08-15

    The dispersion relation of a two-stream free-electron laser (TSFEL) with a one-dimensional helical wiggler and an axial magnetic field is studied. Also, all relativistic effects on the space-charge wave and radiation are considered. This dispersion relation is solved numerically to find the unstable interaction among the all wave modes. Numerical calculations show that the growth rate is considerably enhanced in comparison with single-stream FEL. The effect of the velocity difference of the two electron beams on the two-stream instability and the FEL resonance is investigated. The maximum growth rate of FEL resonance is investigated numerically as a function of the axial magnetic field.

  18. Effect of parametric resonance on the formation of waves with a broad multiharmonic spectrum during the development of two-stream instability

    SciTech Connect

    Kulish, V. V.; Lysenko, A. V.; Rombovsky, M. Yu.

    2010-07-15

    A cubically nonlinear multiharmonic theory of two-stream instability in a two-velocity relativistic electron beam is constructed with allowance for parametric resonance between harmonics of longitudinal waves of different types, as well as between wave harmonics of the same type. The effect of these two kinds of parametric resonance interaction on the development of two-stream instability is investigated. It is shown that parametric resonance between different types of longitudinal waves excited in a two-velocity beam can substantially affect the development of physical processes in the system under study. It is proposed to use parametric resonance between longitudinal waves of different types to form waves with a prescribed broad multiharmonic spectrum.

  19. Creation of high-energy electron tails by means of the modified two-stream instability

    NASA Technical Reports Server (NTRS)

    Tanaka, M.; Papadopoulos, K.

    1983-01-01

    Particle simulations of the modified two-stream instability demonstrate strong electron acceleration rather than bulk heating when the relative drift speed is below a critical speed Vc. A very interesting nonlinear mode transition and autoresonance acceleration process is observed which accelerates the electrons much above the phase speed of the linearly unstable modes. Simple criteria are presented that predict the value of Vc and the number density of the accelerated electrons.

  20. Classical and fluctuation-induced electromagnetic interactions in micron-scale systems: designer bonding, antibonding, and Casimir forces

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alejandro W.; Hui, Pui-Chuen; Woolf, David P.; Johnson, Steven G.; Lončar, Marko; Capasso, Federico

    2015-01-01

    Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted stiction between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.

  1. Spatially growing disturbances in a high velocity ratio two-stream, coplanar jet

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1987-01-01

    The influence of cold and heated secondary flow on the instability of a two-stream, coplanar jet having a 0.7 Mach number heated primary jet for a nominal fan to primary velocity ratio of 0.68 was investigated by means of inviscid linearized stability theory. The instability properties of spatially growing axisymmetric and first order azimuthal disturbances were studied. The instability characteristics of the two-stream jet with a velocity ratio of 0.68 are very different from those of a single stream jet, and a two-stream, coplanar jet having a 0.9 Mach number heated primary jet and a cold secondary jet for a fan to primary velocity ratio of 0.30. For X/D = 1 and in comparison to the case where the velocity ratio was 0.3, the presence of the fan stream with a velocity ratio of 0.68 enhanced the instability of the jet and increased the unstable frequency range. However, the axisymmetric mode (m = 0) and the first order azimuthal mode (m = 1) have similar spatial growth rates where the velocity ratio is 0.68 while for a velocity ratio of 0.3 the growth rate of the first order azimuthal mode (m = 1) is greater. Comparing the cold and hot secondary flow results showed that for a velocity ratio of 0.68 the growth rate is greater for cold.

  2. On retrieval of lidar extinction profiles using Two-Stream and Raman techniques

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Ritter, C.

    2010-03-01

    The Two-Stream technique employs simultaneous measurements performed by two elastic backscatter lidars pointing at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a number of Alfred-Wegener-Institute (AWI) campaigns dedicated to Arctic research, the AWI's Polar 2 aircraft with the integrated onboard nadir-pointing Airborne Mobile Aerosol Lidar (AMALi) was utilised. The aircraft flew over a vicinity of Ny Ålesund on Svalbard, where the zenith-pointing Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave the unique opportunity to retrieve the extinction profiles with a rarely used Two-Stream technique against a well established Raman technique. Both methods were applied to data obtained for clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign, and slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful comparison of both evaluation tools in different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has the potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the space borne CALIPSO lidar overpasses during the ASTAR 2007.

  3. Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks.

    PubMed

    Qiu, Cheng-Wei; Novitsky, Andrey; Ma, Hua; Qu, Shaobo

    2009-07-01

    An analytical method of electromagnetic wave interactions with a general radially anisotropic cloak is established. It is able to deal with arbitrary parameters [ epsilon r (r) , mu r (r) , epsilon t (r) , and mu t (r) ] of a radially anisotropic inhomogeneous shell. The general cloaking condition is proposed from the wave relations, in contrast to the method of transformation optics. Spherical metamaterial cloaks with improved invisibility performance are achieved with optimal nonlinearity in transformation and core-shell ratio. PMID:19658829

  4. Acoustic and electromagnetic wave interaction in the detection and identification of buried objects

    NASA Astrophysics Data System (ADS)

    Lawrence, Daniel Edward

    2002-09-01

    In order to facilitate the development of a hybrid acoustic and electromagnetic (EM) system for buried object detection, a number of analytical solutions and a novel numerical technique are developed to analyze the complex interaction between acoustic and EM scattering. The essence of the interaction lies in the fact that identifiable acoustic properties of an object, such as acoustic resonances, can be observed in the scattered EM Doppler spectrum. Using a perturbation approach, analytical solutions are derived for the EM scattering from infinitely long circular cylinders, both metallic and dielectric, under acoustic vibration in a homogeneous background medium. Results indicate that both the shape variation and dielectric constant contribute to the scattered EM Doppler spectrum. To model the effect of a cylinder beneath an acoustically excited half-space, a new analytical solution is presented for EM scattering from a cylinder beneath a slightly rough surface. The solution is achieved by using plane-wave expansion of the fields and an iterative technique to account for the multiple interactions between the cylinder and rough surface. Following a similar procedure, a novel solution for elastic-wave scattering from a solid cylinder embedded in a solid half-space is developed and used to calculate the surface displacement. Simulations indicate that only a finite range of spatial surface frequencies, corresponding to surface roughness on the order of the EM wavelength; affect the EM scattering from buried objects and suggest that object detection can be improved if the acoustic excitation induces surface roughness outside this range. To extend the study to non-canonical scenarios, a novel numerical approach is introduced in which time-varying impedance boundary conditions (IBCs) are used in conjunction with the method of moments (MoM) to model the EM scattering from vibrating metallic objects of arbitrary shape. It is shown that the standard IBC provides a first

  5. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Lembège, Bertrand; Markidis, Stefano; Horányi, Mihály

    2014-05-01

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centred just below the lunar surface under various solar wind and plasma conditions and focus on the kinetic effects. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. Driven by strong pressure anisotropies, the mini-magnetosphere is also unstable over time, leading to only temporal shielding of the surface underneath. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2011050747 (Curie supercomputer). This research was supported by the Swedish National Space Board, Grant No. 136/11. JD has received support through the HPC-Europa2 visitor programme (project HPC08SSG85) and

  6. Electromagnetic field interactions with micro channels, particles and cells: Application to advanced cytometry

    NASA Astrophysics Data System (ADS)

    Venkatapathi, Murugesan

    This thesis involves a study of the interaction of laser beams with micro channels and micro particles/cells using the electromagnetic field approach. This problem is relevant to the next generation cytometry, in particular to model based design of flow cytometers. The field approach is applied to study light scatter from particles/cells and also internal and scattered fields of cylindrical micro channels that are important for optical interrogation of particles and cells flowing through. Though current flow cytometers use qualitative fluorescence measurements for biological analysis, other viable optical interrogation techniques like light scatter, quantitative fluorescence and Coherent anti-stokes Raman scatter (CARS) are being studied for application to flow cytometry. The light scatter from particles and cells in a flow cytometer has been studied with the objective of extracting useful information about the particles using scatter measurements. First, the correlation between the size of particles and the current forward scatter measurements was both analytically modeled and experimentally determined. These results indicated that integrated scatter measurements currently used in flow cytometry (forward and side scatter) cannot be used to unambiguously estimate size, shape or refractive index of particles for classification. It is shown that multi-angle scatter measurements can be used to classify micro spheres of different sizes/refractive indices and different bacteria species, provided the scatter measurements are designed based on numerical scatter models. The numerical scatter models were then also used to do a preliminary study of correlation of scatter with internal structure of simple cells like stem cells. A few multivariate statistical methods have been applied for the classification of such particles in flow cytometry using scatter and multi-spectral fluorescence measurements. Typically the micro channels used in flow cytometry have square or circular

  7. The finite-difference time-domain (FD-TD) method for electromagnetic scattering and interaction problems

    NASA Technical Reports Server (NTRS)

    Taflove, A.; Umashankar, K. R.

    1987-01-01

    The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.

  8. Analytical Models of Exoplanetary Atmospheres. II. Radiative Transfer via the Two-stream Approximation

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  9. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  10. Mixed Pierce-two-stream instability development in an extraction system of a negative ion source

    NASA Astrophysics Data System (ADS)

    Barminova, H. Y.; Chikhachev, A. S.

    2016-02-01

    Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.

  11. An axially propagating two-stream instability in the Hall thruster plasma

    SciTech Connect

    Tsikata, S.; Cavalier, J.; Héron, A.; Honoré, C.; Grésillon, D.; Lemoine, N.; Coulette, D.

    2014-07-15

    Collective Thomson scattering experiments reveal the presence of high-frequency, axial electron density fluctuations at millimetric wavelengths in the Hall thruster plasma. The properties of these fluctuations are investigated experimentally and via linear kinetic theory. The relative drift of electrons and ions in the axial direction is found to be insufficient to cause excitation of the observed mode. Instead, the mode is determined to be a two-stream instability arising due to the velocity difference between singly and doubly charged ion populations in the plume.

  12. Theory of the modified two-stream instability in a magnetoplasmadynamic thruster

    SciTech Connect

    Hastings, D.E.; Niewood, E. )

    1991-04-01

    It is shown that for plasma parameters characteristic of those found in magnetoplasmadynamic (MPD) thrusters the modified two-stream instability may exist in the plasma. The critical parameter for triggering this instability is the ratio of the crossfield current to the ion saturation current. Once triggered, this instability greatly increases the plasma resistivity to the flow of the current and heats both ions and electrons. The anomalous momentum-exchange frequency and heating rates are calculated for characteristic MPD thruster parameters. 17 refs.

  13. Mixed Pierce-two-stream instability development in an extraction system of a negative ion source.

    PubMed

    Barminova, H Y; Chikhachev, A S

    2016-02-01

    Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions. PMID:26931917

  14. TRANSVERSE ELECTRON-PROTON TWO-STREAM INSTABILITY IN A BUNCHED BEAM

    SciTech Connect

    T.F. WANG; P.J. CHANNELL; R.J. MACEK; R.C. DAVIDSON

    2001-06-01

    This paper is an analytical investigation of the trans-verse electron-proton (e-p) two-stream instability in a pro-ton bunch propagating through a stationary electron back-ground. The equations of motion, including the effect of damping, are derived for the centroids of the proton beam and the electron cloud. An approach is developed to solve the coupled linear centroid equations in the time domain describing the e-p instability in proton bunches with non-uniform line densities. Examples are presented for proton line densities corresponding to uniform and parabolic profiles.

  15. Smart interactive electronic system for monitoring the electromagnetic activities of biological systems

    NASA Astrophysics Data System (ADS)

    Popa, Sorin G.; Shahinpoor, Mohsen

    2001-08-01

    A novel electronic device capable of sensing and monitoring the myoelectric, polarization wave and electromagnetic activities of the biological systems and in particular the human body is presented. It is known that all the physical and chemical processes within biological systems are associated with polarization, depolarization waves from the brain, neural signals and myoelectric processes that manifest themselves in ionic and dipole motion. The technology developed in our laboratory is based on certain charge motion sensitive electronics. The electronic system developed is capable of sensing the electromagnetic activities of biological systems. The information obtained is then processed by specialized software in order to interpret it from physical and chemical point of view.

  16. Characteristics of electromagnetic interference generated during discharge of Mylar samples. [spacecraft-environment interaction simulation

    NASA Technical Reports Server (NTRS)

    Leung, P. L.

    1984-01-01

    This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.

  17. Investigation of Possible Electromagnetic Disturbances caused by Spacecraft-Plasma Interactions at 4 Radii

    NASA Technical Reports Server (NTRS)

    Okada, M.; Tsurutani, B. T.; Goldstein, G. E.; Matsumoto, H.; Brinca, A. L.; Kellogg, P. J.

    1995-01-01

    The proposed Small Solar Probe mission features a close approach to the sun with a perihelion of 4 radii. Carbon molecules emitted from the spacecraft's heat shield will become ionized by electron impact and photoionization. The newly created ions and electrons may generate electromagnetic and electrostatic plasma waves which are possible sources of interference with in-situ plasma measurements.

  18. Interaction of High Frequency Electromagnetic Waves with Vortex Density Structures: Comparison of Analytical and LSP Simulation Results

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-10-01

    Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of flute type vortex density structures and interaction of high frequency electromagnetic waves used for surveillance and communication with such structures. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics (HEDP), and in many other applications. We will present PIC simulation results of EM scattering on vortex type density structures using the LSP code and compare them with analytical results. Two cases will be analyzed. In the first case electromagnetic wave scattering will take place in the ionospheric plasma. In the second case laser probing in a high-beta Z-pinch plasma will be presented. This work was supported by the Air Force Research laboratory, the Air Force Office of Scientific Research, the Naval Research Laboratory and NNSA/DOE Grant No. DE-FC52-06NA27616 at the University of Nevada at Reno.

  19. An experimental study of the interaction between a pulsed electron beam and a large-amplitude electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S.

    2015-01-01

    We experimentally investigate the interaction between an electron beam with a periodically varying diameter and a large-amplitude electromagnetic wave. The effect of different factors on the pulsed beam formation and current density in bunches is established. Compared with the electron beam deceleration circuits (low-voltage vircator systems), the generators based on pulsed turbulent beams have a broader band due to the formation of a large number of space charge bunches and an integral power efficiency that is higher by a factor of 2-2.5.

  20. High-energy particle acceleration by explosive electromagnetic interaction in an accretion disk

    NASA Technical Reports Server (NTRS)

    Haswell, C. A.; Tajima, T.; Sakai, J.-I.

    1992-01-01

    By examining electromagnetic field evolution occurring in an accretion disk around a compact object, we arrive at an explosive mechanism of particle acceleration. Flux-freezing in the differentially rotating disk causes the seed and/or generated magnetic field to wrap up tightly, becoming highly sheared and locally predominantly azimuthal in orientation. We show how asymptotically nonlinear solutions for the electromagnetic fields may arise in isolated plasma blobs as a result of the driving of the fluid equations by the accretion flow. These fields are capable of rapidly accelerating charged particles from the disk. Acceleration through the present mechanism from AGN can give rise to energies beyond 10 exp 20 eV. Such a mechanism may present an explanation for the extragalactic origin of the most energetic observed cosmic rays.

  1. EVIDENCE FOR THE OSCILLATING TWO STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN A SOLAR TYPE III RADIO BURST

    SciTech Connect

    Thejappa, G.; Bergamo, M.; Papadopoulos, K.; MacDowall, R. J. E-mail: mbergamo@umd.edu E-mail: Robert.MacDowall@nasa.gov

    2012-03-15

    We present observational evidence for the oscillating two stream instability (OTSI) and spatial collapse of Langmuir waves in the source region of a solar type III radio burst. High time resolution observations from the STEREO A spacecraft show that Langmuir waves excited by the electron beam occur as isolated field structures with short durations {approx}3.2 ms and with high intensities exceeding the strong turbulence thresholds. These short duration events are identified as the envelope solitons which have collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets contain an intense peak and two sidebands, corresponding to beam-resonant Langmuir waves, and down-shifted and up-shifted daughter Langmuir waves, respectively, and low-frequency enhancements below a few hundred Hz. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI. The observed high intensities, short scale lengths, sideband spectral structures, and low-frequency enhancements strongly suggest that the OTSI and spatial collapse of Langmuir waves probably control the nonlinear beam-plasma interactions in type III radio bursts.

  2. Lie integrable cases of the simplified multistrain/two-stream model for tuberculosis and dengue fever

    NASA Astrophysics Data System (ADS)

    Nucci, M. C.; Leach, P. G. L.

    2007-09-01

    We apply the techniques of Lie's symmetry analysis to a caricature of the simplified multistrain model of Castillo-Chavez and Feng [C. Castillo-Chavez, Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol. 35 (1997) 629-656] for the transmission of tuberculosis and the coupled two-stream vector-based model of Feng and Velasco-Hernandez [Z. Feng, J.X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol. 35 (1997) 523-544] to identify the combinations of parameters which lead to the existence of nontrivial symmetries. In particular we identify those combinations which lead to the possibility of the linearization of the system and provide the corresponding solutions. Many instances of additional symmetry are analyzed.

  3. Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming

    USGS Publications Warehouse

    Wangsness, David J.; Peterson, David A.

    1980-01-01

    Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)

  4. Nonlinear damping of a finite amplitude whistler wave due to modified two stream instability

    SciTech Connect

    Saito, Shinji; Nariyuki, Yasuhiro; Umeda, Takayuki

    2015-07-15

    A two-dimensional, fully kinetic, particle-in-cell simulation is used to investigate the nonlinear development of a parallel propagating finite amplitude whistler wave (parent wave) with a wavelength longer than an ion inertial length. The cross field current of the parent wave generates short-scale whistler waves propagating highly oblique directions to the ambient magnetic field through the modified two-stream instability (MTSI) which scatters electrons and ions parallel and perpendicular to the magnetic field, respectively. The parent wave is largely damped during a time comparable to the wave period. The MTSI-driven damping process is proposed as a cause of nonlinear dissipation of kinetic turbulence in the solar wind.

  5. Energetic Geodesic Acoustic Modes Associated with Two-Stream-like Instabilities in Tokamak Plasmas.

    PubMed

    Qu, Z S; Hole, M J; Fitzgerald, M

    2016-03-01

    An unstable branch of the energetic geodesic acoustic mode (EGAM) is found using fluid theory with fast ions characterized by their narrow width in energy distribution and collective transit along field lines. This mode, with a frequency much lower than the thermal GAM frequency ω_{GAM}, is now confirmed as a new type of unstable EGAM: a reactive instability similar to the two-stream instability. The mode can have a very small fast ion density threshold when the fast ion transit frequency is smaller than ω_{GAM}, consistent with the onset of the mode right after the turn-on of the beam in DIII-D experiments. The transition of this reactive EGAM to the velocity gradient driven EGAM is also discussed. PMID:26991183

  6. Two-stream Maxwellian kinetic theory of cloud droplet growth by condensation

    NASA Technical Reports Server (NTRS)

    Robinson, N. F.; Scott, W. T.

    1981-01-01

    A new growth rate formula (NGRF) is developed for the rate of growth of cloud droplets by condensation. The theory used is a modification of the Lees-Shankar theory in which the two-stream Maxwellian distribution function of Lees is used in Maxwell's method of moments to determine the transport of water vapor to and heat away from the droplet. Boundary conditions at the droplet are the usual conditions set in terms of accommodation coefficients, and the solution passes smoothly into diffusion flow in the far region. Comparisons are given between NGRF and the conventional formula showing close agreement (approximately 0.1%) for large radii with significant difference (approximately 5%) for small radii (not greater than 1 micron). Growth times for haze droplets in a Laktionov chamber are computed.

  7. Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan

    2014-06-01

    The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.

  8. Low-Energy Parameters of the Nucleon-Nucleon Scattering and Deuteron Properties, Electromagnetic Interactions with Bound Systems

    NASA Astrophysics Data System (ADS)

    Shebeko, A.; Dubovik, E.

    2013-08-01

    One more application of the method of unitary clothing transformations (UCT's) in the theory of nucleon-nucleon ( N - N) interaction has been presented. We have extended our previous analysis (Dubovik and Shebeko in Few-Body Syst 48:109-142, 2010) of the N - N scattering below the pion production threshold to treat the neutron-proton ( n - p) scattering at low energies and the deuteron static properties. Our calculations of deuteron magnetic and quadrupole moments have been carried out in the framework of a gauge independent description of electromagnetic (EM) interactions with nuclei (bound systems) using the clothed particle representation of the Hamiltonian, the boost and EM current density operators for the n-p system.

  9. TOPICAL REVIEW: Modelling the interaction of electromagnetic fields (10 MHz 10 GHz) with the human body: methods and applications

    NASA Astrophysics Data System (ADS)

    Hand, J. W.

    2008-08-01

    Numerical modelling of the interaction between electromagnetic fields (EMFs) and the dielectrically inhomogeneous human body provides a unique way of assessing the resulting spatial distributions of internal electric fields, currents and rate of energy deposition. Knowledge of these parameters is of importance in understanding such interactions and is a prerequisite when assessing EMF exposure or when assessing or optimizing therapeutic or diagnostic medical applications that employ EMFs. In this review, computational methods that provide this information through full time-dependent solutions of Maxwell's equations are summarized briefly. This is followed by an overview of safety- and medical-related applications where modelling has contributed significantly to development and understanding of the techniques involved. In particular, applications in the areas of mobile communications, magnetic resonance imaging, hyperthermal therapy and microwave radiometry are highlighted. Finally, examples of modelling the potentially new medical applications of recent technologies such as ultra-wideband microwaves are discussed.

  10. Investigation of the electromagnetic structure of η and η' mesons by two-photon interactions

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, M.; Avery, R. E.; Barbaro-Galtieri, A.; Barker, A. R.; Barnett, B. A.; Bauer, D. A.; Bay, A.; Bobbink, G. J.; Buchanan, C. D.; Buijs, A.; Caldwell, D. O.; Chao, H.-Y.; Chun, S.-B.; Clark, A. R.; Cowan, G. D.; Crane, D. A.; Dahl, O. I.; Daoudi, M.; Derby, K. A.; Eastman, J. J.; Eberhard, P. H.; Edberg, T. K.; Eisner, A. M.; Erné, F. C.; Fairfield, K. H.; Hauptman, J. M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H. S.; Kenney, R. W.; Khacheryan, S.; Kofler, R. R.; Langeveld, W. G.; Layter, J. G.; Lin, W. T.; Linde, F. L.; Loken, S. C.; Lu, A.; Lynch, G. R.; Madaras, R. J.; Magnuson, B. D.; Masek, G. E.; Mathis, L. G.; Matthews, J. A.; Maxfield, S. J.; Miller, E. S.; Moses, W.; Nygren, D. R.; Oddone, P. J.; Paar, H. P.; Park, S. K.; Pellett, D. E.; Pripstein, M.; Ronan, M. T.; Ross, R. R.; Rouse, F. R.; Schwitkis, K. A.; Sens, J. C.; Shapiro, G.; Shen, B. C.; Smith, J. R.; Steinman, J. S.; Stephens, R. W.; Stevenson, M. L.; Stork, D. H.; Strauss, M. G.; Sullivan, M. K.; Takahashi, T.; Toutounchi, S.; van Tyen, R.; Vernon, W.; Wagner, W.; Wang, E. M.; Wang, Y.-X.; Wenzel, W. A.; Wolf, Z. R.; Yamamoto, H.; Yellin, S. J.; Zeitlin, C.; TPC/Two-Gamma Collaboration

    1990-01-01

    The TPC/Two-Gamma facility at the SLAC e+e- storage ring PEP was used to study the reactions γγ*-->η and γγ*-->η'. The ηγ*γ and η'γ*γ transition form factors were measured as functions of Q2, the negative of the invariant mass squared of the tagged photon, in the range 0.1electromagnetic structure of the η and η' mesons are consistent with both vector-meson dominance and QCD. They also provide new measurements of the pseudoscalar mixing angle and decay constants.

  11. A study of the electromagnetic interaction between planetary bodies and the solar wind

    NASA Technical Reports Server (NTRS)

    Schwartz, K.

    1971-01-01

    Theoretical and computational techniques were developed for calculating the time dependent electromagnetic response of a radially inhomogeneous moon. The techniques were used to analyze the experimental data from the LSM (lunar surface magnetometer) thus providing an in-depth diagnostic of the Lunar interior. The theory was also incorporated into an existing computer code designed to calculate the thermal evolution of planetary bodies. The program will provide a tool for examining the effect of heating from the TE mode (poloidal magnetic field) as well as the TM mode (toroidal magnetic field).

  12. Energy and momentum flow in electromagnetic fields and plasma. [solar wind-magnetospheric interaction

    NASA Technical Reports Server (NTRS)

    Parish, J. L.; Raitt, W. J.

    1983-01-01

    The energy momentum tensor for a perfect fluid in a magnetic field is used to predict the momentum density, energy density, momentum flow, and energy flow of the fluid and the electromagnetic field. It is shown that taking the momentum flow from the energy momentum tensor, rather than starting with differential magnetohydrodynamic equations, can produce more accurate results on the basis of magnetic field data. It is suggested that the use of the energy momentum tensor has the potential for application to analysis of data from the more dynamic regions of the solar system, such as the plasma boundaries of Venus, the Jovian ionosphere, and the terrestrial magnetopause.

  13. Dynamics of three qubits interacting with electromagnetic field in a lossless cavity

    NASA Astrophysics Data System (ADS)

    Averchenko, Ekaterina; Bashkirov, Eugene K.

    2016-04-01

    We investigated the entanglement dynamics in a quantum system consisting of three two-level atoms resonantly coupled to a single mode electromagnetic field. We considered the dynamics of the system under consideration for Fock and thermal initial cavity states. An explicit analytical solution of the system has been obtained and the entanglement has been studied with the help of the two-qubit negativity. It was also shown that for both initial cavity states the sudden death of two-qubit entanglement takes place.

  14. Investigation of the electromagnetic structure of. eta. and. eta. prime mesons by two-photon interactions

    SciTech Connect

    Aihara, H.; Alston-Garnjost, M.; Avery, R.E.; Barbaro-Galtieri, A.; Barker, A.R.; Barnett, B.A.; Bauer, D.A.; Bay, A.; Bobbink, G.J.; Buchanan, C.D.; Buijs, A.; Caldwell, D.O.; Chao, H.; Chun, S.; Clark, A.R.; Cowan, G.D.; Crane, D.A.; Dahl, O.I.; Daoudi, M.; Derby, K.A.; Eastman, J.J.; Eberhard, P.H.; Edberg, T.K.; Eisner, A.M.; Erne, F.C.; Fairfield, K.H.; Hauptman, J.M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H.S.; Kenney, R.W.; Khacheryan, S.; Kofler, R.R.; Langeveld, W.G.J.; Layter, J.G.; Lin, W.T.; Linde, F.L.; Loken, S.C.; Lu, A.; Lynch, G.R.; Madaras, R.J.; Magnuson, B.D.; Masek, G.E.; Mathis, L.G.; Matthews, J.A.J.; Maxfield, S.J.; Miller, E.S.; Moses, W.; Nygren, D.R.; Oddone, P.J.; Paar, H.P.; Park, S.K.; Pellett, D.E.; Pripstein, M.; Ronan, M.T.; Ross, R.R.; Rouse, F.R.; Schwitkis, K.A.; Sens, J.C.; Shapiro, G.; Shen, B.C.; Smith, J.R.; Steinman, J.S.; Stephens, R.W.; Stevenson, M.L.; Stork, D.H.; Strauss, M.G.; Sullivan, M.K.; Takahashi, T.; Toutounchi, S.; van Tyen, R.; TPC /Two-Gamma Collaboration

    1990-01-08

    The TPC/Two-Gamma facility at the SLAC {ital e}{sup +}{ital e}{sup {minus}} storage ring PEP was used to study the reactions {gamma}{gamma}{sup *}{r arrow}{eta} and {gamma}{gamma}{sup *}{r arrow}{eta}{prime}. The {eta}{gamma}{sup *}{gamma} and {eta}{prime}{gamma}{sup *}{gamma} transition form factors were measured as functions of {ital Q}{sup 2}, the negative of the invariant mass squared of the tagged photon, in the range 0.1{lt}{ital Q}{sup 2}{lt}7 GeV{sup 2}. These determinations of the electromagnetic structure of the {eta} and {eta}{prime} mesons are consistent with both vector-meson dominance and QCD. They also provide new measurements of the pseudoscalar mixing angle and decay constants.

  15. Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma

    SciTech Connect

    Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H.; Niknam, A. R.

    2013-08-15

    The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.

  16. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M.; Barnes, P.R.; Meliopoulos, A.P.S.

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  17. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M. , Dallas, TX ); Barnes, P.R. ); Meliopoulos, A.P.S. . Dept. of Electrical Engineering)

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  18. A fast calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations

    NASA Astrophysics Data System (ADS)

    Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.

    2016-05-01

    Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.

  19. Chaotic /strange/ and periodic behavior in instability saturation by the oscillating two-stream instability

    NASA Technical Reports Server (NTRS)

    Russell, D. A.; Ott, E.

    1981-01-01

    The nonlinear Schroedinger equation with linear growth and damping is truncated to three waves. The resulting system of nonlinear ordinary differential equations describes the excitation of linearly damped waves by the oscillating two-stream instability driven by a linearly unstable pump wave. This system represents a simple model for the nonlinear saturation of a linearly unstable wave. The model is examined analytically and numerically as a function of the dimensionless parameters of the system. It is found that the model can exhibit a wealth of characteristic dynamical behavior including stationary equilibria, Hopf bifurcations to periodic orbits, period doubling bifurcations, chaotic solutions characteristic of a strange attractor, tangent bifurcations from chaotic to periodic solutions, transient chaos, and hysteresis. Many of these features are shown to be explainable on the basis of one-dimensional maps. In the case of chaotic solutions, evidence for the presence of a strange attractor is provided by demonstrating Cantor set-like structure (i.e., scale invariance) in the surface of section.

  20. Two-dimensional electron-electron two-stream instability of an inertial electrostatic confinement device

    SciTech Connect

    Marocchino, A.; Lapenta, G.; Evstatiev, E. G.; Nebel, R. A.; Park, J.

    2006-10-15

    Theoretical works by Barnes and Nebel [D. C. Barnes and R. A. Nebel, Phys. Plasmas 5, 2498 (1998); R. A. Nebel and D. C. Barnes, Fusion Technol. 38, 28 (1998)] have suggested that a tiny oscillating ion cloud (referred to as the periodically oscillating plasma sphere or POPS) may undergo a self-similar collapse in a harmonic oscillator potential formed by a uniform electron background. A major uncertainty in this oscillating plasma scheme is the stability of the virtual cathode that forms the harmonic oscillator potential. The electron-electron two-stream stability of the virtual cathode has previously been studied with a fluid model, a slab kinetic model, a spherically symmetric kinetic model, and experimentally [R. A. Nebel and J. M. Finn, Phys. Plasmas 8, 1505 (2001); R. A. Nebel et al., Phys. Plasmas 12, 040501 (2005)]. Here the mode is studied with a two-dimensional particle-in-cell code. Results indicate stability limits near those of the previously spherically symmetric case.

  1. First Simulations of a Collisional Two-Stream Instability in the Chromosphere

    NASA Astrophysics Data System (ADS)

    Oppenheim, Meers; Dimant, Yakov; Madsen, Chad Allen; Fontenla, Juan

    2014-06-01

    Observations and modeling shows that immediately above the temperature minimum in the solar atmosphere, a steep rise from below 4,000 K to over 6,000K occurs. Recent papers show that a collisional two-stream plasma instability called the Farley-Buneman Instability can develop at the altitudes where this increase occurs. This instability may play an important role in transferring energy from turbulent neutral flows originating in the photosphere to the mid-chromosphere in the form of heat. Plasma turbulence resulting from this instability could account for some or most of this intense chromospheric heating. This paper presents a set of simulations showing the development and evolution of the Farley-Buneman Instability (FBI) applicable to the chromosphere. It compares these results with the better-understood ionospheric FBI. It examines the linear behavior and the dependence of growth rates for a range of altitudes and driving flows. It also presents the first study of FBI driven plasma nonlinearities and turbulence in the chromosphere. This research should help us evaluate the FBI as a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.

  2. Clothing Procedure in Relativistic Quantum Field Theory and its applications to Description of Electromagnetic Interactions with Nuclei (Bound Systems)

    NASA Astrophysics Data System (ADS)

    Shebeko, A. V.; Shirokov, M. I.

    2000-04-01

    A growing interest in the method of unitary transformations (UT's) in the quantum theory of particles and nuclei has been seen during the last years. We express the total Hamiltonian H of interacting fields through new operators for particle creation and destruction and show that this can be understood as a UT of H. The respective particles may be called “cothed”. They are identified with the physical particles. The Hamiltonian in the new form turns out to be dependent on the renormalized particle masses and not the “bare” ones. Forms of the same kind are derived for all the Poincaré group generators. By using this new form of the Hamiltonian we suggest an approach to the bound state problem in relativistic quantum field theories (RQFT's). We also discuss applications of the developed formalism for constructing effective electromagnetic (EM) currents in the theory of photonuclear reactions.

  3. Instabilities and generation of a quasistationary magnetic field by the interaction of relativistically intense electromagnetic wave with a plasma

    SciTech Connect

    Gillani, S. S. A.; Shah, H. A.; Tsintsadze, N. L.; Razzaq, M.

    2010-08-15

    It is shown that the interaction of the superstrong laser radiation with an isotropic plasma leads to the generation of low frequency electromagnetic (EM) waves and in particular a quasistationary magnetic field. When the relativistic circularly polarized transverse EM wave propagates along z-axis, it creates a ponderomotive force, which affects the motion of particles along the direction of its propagation. On the other hand, motion of the particles across the direction of propagation is defined by the ponderomotive potential. The dispersion relation for the transverse EM wave using a special distribution function, which has an anisotropic form, is derived. The dispersion relation is subsequently investigated for a number of special cases. In general, it is shown that the growth rate of the EM wave strongly depends upon its intensity.

  4. First results for electromagnetic three-nucleon form factors from high-precision two-nucleon interactions

    SciTech Connect

    Sergio Alexandre Pinto; Stadler, Alfred; Gross, Franz L.

    2010-01-01

    The electromagnetic form factors of the three-nucleon bound states were calculated in Complete Impulse Approximation in the framework of the Covariant Spectator Theory for the new high-precision two-nucleon interaction models WJC-1 and WJC-2. The calculations use an approximation for the three-nucleon vertex functions with two nucleons off mass shell. The form factors with WJC-2 are close to the ones obtained with the older model W16 and to nonrelativistic potential calculations with lowest-order relativistic corrections, while the form factors with the most precise two-nucleon model WJC-1 exhibit larger differences. These results can be understood when the effect of the different types of pion-nucleon coupling used in the various models is examined.

  5. The electromagnetic interaction of a planet with a rotation-powered pulsar wind: an explanation to fast radio bursts

    NASA Astrophysics Data System (ADS)

    Mottez, F.; Zarka, P.

    2015-12-01

    The pulsars PSR B1257+12 and PSR B1620-26 are known to host planets, and other pulsars are suspected to host asteroids or comets. We investigate the electromagnetic interaction of a relativistic and magnetized pulsar wind with a planet or a smaller body in orbit. Many models predict that, albeit highly relativistic, pulsar winds are slower than Alfven waves. In that case, a pair of stationary Alfven waves, called Alfven wings (AW), is expected to form on the sides of the body. They form a magnetic wake into the plasma flow, and they carry a strong electric current. The theory of Alfven wings was initially developed in the context of the electrodynamic interaction between spacecraft and the Earth's magnetosphere, and then of the Io-Jupiter interaction. We have extended it to relativistic winds, and we have studied the possible consequences on radio emissions from pulsar companions. We predict the existence of very collimated radio beams that are seen by an observer as very rare and brief signals. But they are intense enough to be observed from sources at cosmological distances. Thus they could be an explanation to fast radio bursts (FRB). We discuss the properties (polarisation, recurrence) that could make the difference between this model of FRB and others.

  6. Electromagnetic emissions and fine structures observed near main ionospheric trough during geomagnetic storms and their interactions

    NASA Astrophysics Data System (ADS)

    Przepiórka, Dorota; Marek, Michał; Matyjasiak, Barbara; Rothkaehl, Hanna

    2016-04-01

    Geomagnetic conditions triggered by the solar activity affect the ionosphere, its fine and global structures. Very intense magnetic storms substantially change the plasma density, concentration and circulation. Especially sensitive region is located near auroral oval, where most energy is deposited during geomagnetic storms. In this region and just below it, where the main ionospheric trough is located, we observe enhanced electromagnetic emissions in different frequency ranges. In particular the AKR-like (Auroral Kilometric Radiation) emissions are seen at frequencies of the order of hundreds of kHz in the ionosphere, just below the auroral oval. Analyzing spectrograms from DEMETER mission and comparing them with electron density measurements from DEMETER, we found that AKR-like emissions are seen near poleward wall of the main ionospheric trough, during geomagnetic storms. Main ionospheric trough is known as a turbulent region which properties change as the geomagnetic storm evolves. This work is an attempt to determine how the presence of the different emissions affect main ionospheric trough parameters such as location, width and depth. Data used in this study come from DEMETER and RELEC missions. This work was partly supported by NCN grant Rezonans 2012/07/B/ST9/04414.

  7. A specific property of electromagnetic waves interacting with dust-laden plasma

    SciTech Connect

    Tsintsadze, N. L.; Ehsan, Z.; Shah, H. A.; Murtaza, G.

    2006-07-15

    The propagation pattern of electromagnetic waves (EMWs) in dusty plasmas is quite different from that in electron-ion plasmas. For instance, here the ponderomotive force acts on dust grains as a negative pressure, and a nonlinear Schroedinger equation with an additional nonlinear term is obtained. Based on this equation, the modulation instability is examined and it is shown that the growth rate becomes maximum when that additional term compensates the diffraction term. The main part of this work is devoted to the localization of the grains by the EMW. Considering both subsonic and supersonic regimes, it has been shown that under certain conditions the grains are localized and the ions circumnavigate the grains, whereas the electrons escape from the region of localization. Further, the localization of grains by the EMW is found to be shape-dependent of the pulse. Comparing pancake and light bullet shaped pulses in the supersonic regime, and it is shown that only the light bullet shape leads to the compression of grains. Finally, investigating nonstationary solution, it is shown that for some parameters, the nonlinear wave breaking and the formation of a shock wave can take place.

  8. Nanoparticle Interactions with Low-Frequency Electromagnetic Fields for Ablation Therapy

    NASA Astrophysics Data System (ADS)

    Jensen, Scott; Doyle, Timothy

    2009-10-01

    The in vivo ablation of malignant tumors can be significantly enhanced with nanoparticles (NPs) that absorb energy from electromagnetic (EM) waves and subsequently heat targeted regions in the body. Low-frequency EM fields can penetrate much deeper than near-infrared and visible light. Ohmic heating has primarily been the sole mechanism considered for the coupling of the EM fields to the NPs, but few quantitative analyses have been published to predict NP heating rates. To address this issue, this study identified and modeled four excitation mechanisms for the remote heating of NPs by low-frequency EM waves. These mechanisms included (1) ohmic heating of conductive NPs, (2) translational vibrations of charged NPs, (3) rotational vibrations of piezoelectric NPs, and (4) acoustic wave generation by piezoelectric NPs. Preliminary results showed that for a constant NP volume, the heating rate is independent of NP size for ohmic heating. Additionally, ohmic heating produced the lowest heating rates of the four mechanisms. These results point to possible new NP technologies to optimize heating rates and tumor ablation in patients.

  9. Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment

    SciTech Connect

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2012-08-01

    This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of H{sub {alpha}} and the H{sub {beta}} lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

  10. PM2D code simulation of electronic dynamics and electro-magnetic fields generation by ultra-short laser pulses interaction with matter

    SciTech Connect

    Litvinenko, I. A.; Lykov, V. A.

    1997-04-15

    The results of numerical simulation of fast electrons motion and generated electro-magnetic fields at the picosecond pulse laser interaction with flat target are presented. The calculations were performed with PM2D code, where relativistic equation of electron motion joint with Maxwell equations is solved by particle method in cells. The efficiency of fast electrons energy conversion to the transverse electromagnetic wave of picosecond duration can reach the value 10{sup -4} for the intensity of ultrashort laser pulse at the target 10{sup 16}-10{sup 17} W/cm{sup 2}.

  11. A Data Analysis Center for Electromagnetic and Hadronic Interaction. Products of the DAC members

    SciTech Connect

    Briscoe, William John; Strakovsky, Igor I.; Workman, Ronald L.

    2015-08-31

    The Data Analysis Center (DAC) of the Center for Nuclear Studies (CNS) at the George Washington University (GW) has made significant progress in its program to enhance and expand the partial-wave (and multipole) analyses of fundamental two- and three-body reactions (such as pion-nucleon, photon-nucleon, and nucleon-nucleon scattering) by maintaining and augmenting the analysis codes and databases associated with these reactions. These efforts provide guidance to experimental groups at the international level, forming an important link between theory and experiment. A renaissance in light hadron spectroscopy is underway as a continuous stream of polarization data issues from existing precision electromagnetic facilities and the coming Jefferson Lab 12 GeV Upgrade. Our principal goals have been focused on supporting the national N* resonance physics program. We have also continued to study topics more generally related to the problems associated with partial-wave analysis. On the Experimental side of the CNS DAC. Its primary goal is the enhancement of the body of data necessary for our analyses of fundamental γ - N reactions. We perform experiments that study the dynamics responsible for the internal structure of the nucleon and its excitations. Our principal focus is on the N* programs at JLab and MAMI. At JLab we study spin-polarization observables using polarized photons, protons and neutrons and yielding charged final states. Similarly at MAMI we study neutral meson photoproduction off polarized protons and neutrons. We use the Crystal Ball and TAPS spectrometers (CBT) to detect photons and neutrons to measure the photoproduction of π0, η, 2π0, π0η, and K0 off the neutron. The CBT program complements our program at JLab, which studies reactions resulting in charged final states. We are also involved in a renewed effort to make neutral pion photoproduction measurements close to threshold at Mainz. In addition to the programs underway, we are contributing to

  12. Astrophysical evidence shows no direct interaction between gravitation and electromagnetism in empty vacuum space

    NASA Astrophysics Data System (ADS)

    Dowdye, Edward H., Jr.

    2009-08-01

    Findings show that important fundamental principles of mathematical Physics are consistently misapplied to concepts of gravitational lensing or just simply ignored. The thin plasma atmosphere of the sun represents an indirect interaction involving an interfering plasma medium between the gravitational field of the sun and the rays of light from the stars. There is convincing observational evidence that a direct interaction between light and gravitation in empty vacuum space is yet to be observed. Historically, the observed evidence of light bending occurred predominantly near the plasma rim of the sun, not in the vacuum space far above the rim. An intense search of the star filled sky will reveal a clear lack of lensing exists among the countless numbers of stars, where the lens and the source are by good chance co-linearly aligned with the earth based observer. With this condition at hand and assuming the validity of the light bending rule of General Relativity, the sky should be filled with images of Einstein rings. Moreover, the events taking place at the center of our galaxy under intense observations by the astrophysicists since 1992, presents convincing evidence that a direct interaction between light and gravitation simply does not take place. This highly studied region, known as Sagittarius A*, is thought to contain a super massive black hole, a most likely candidate for gravitational lensing. The evidence is clearly revealed in the time resolved images of the rapidly moving stellar objects orbiting about Sagittarius A*.

  13. Hydrologic and geochemical controls on pesticide and nutrient transport to two streams on the Delmarva Peninsula

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.; Brayton, Michael J.

    2004-01-01

    Pesticides and nutrients move from application areas through ground water and surface runoff to streams on the Delmarva Peninsula. The relative importance of different transport media to the movement of these compounds in different watersheds is related to locally variable hydrologic and geochemical conditions among areas of regionally similar land use, geology, and soils. Consideration of such local variability is important to land-management efforts or future environmental investigations on the Peninsula. Chemical analyses of samples collected over a multiyear period from two streams on the Delmarva Peninsula were analyzed along with similar available analyses of ground water to document the occurrence of pesticides and nutrients, and illustrate important processes controlling their movement through watersheds to streams. The upper Pocomoke River and Chesterville Branch drain predominantly agricultural watersheds typical of the Delmarva Peninsula. Chesterville Branch drains a watershed of moderate relief, good drainage, and a permeable surficial aquifer that ranges in thickness from about 15 to 25 meters. The upper Pocomoke River Watershed, however, is extremely flat with poorly drained soils and abundant artificial drainage. Influences on the chemistry of water in each stream were determined from seasonal patterns in the concentrations of selected constituents from 1996 through 2001, and relations with streamflow. Nutrients and pesticides are detectable throughout the year in the upper Pocomoke River and Chesterville Branch. Water in both streams is typically dilute, slightly acidic, and well oxygenated, and nitrate and phosphorus concentrations generally exceed estimated natural levels. Pesticide concentrations are generally low, although concentrations of selected metabolites commonly exceed 1 microgram per liter, particularly in Chesterville Branch. Nitrate and metabolites of pesticide compounds are apparently transported to Chesterville Branch preferentially

  14. Two-Stream Model: Toward Data Production for Sharing Field Science Data

    NASA Astrophysics Data System (ADS)

    Baker, K. S.; Palmer, C. L.; Thomer, A. K.; Wickett, K.; DiLauro, T.; Asangba, A. E.; Fouke, B. W.; Choudhury, G. S.

    2013-12-01

    Scientific data play a central role in the production of knowledge reported in scientific publications. Today, data sharing policies together with technological capacity are fueling visions of data as open and accessible where data appear to stand-alone as products of the research process. Yet, guidelines and outputs are constantly being produced that impact subsequent work with the data, particularly in field-oriented, data-rich earth science research. We propose a model that focuses on two distinct yet intertwined data streams: internal-use data and public-reuse data. Internal-use data often involves a complex mix of processing, analysis and integration strategies creating data in forms leading to the publication of papers. Public-reuse data is prepared with a more standardized set of procedures creating data packages in the form of well-described, parameter-based datasets for release to a data repository and for reuse by others. While scientific researchers are familiar with collecting and analyzing data for publication in the scientific literature, the second data stream helps to identify tasks relating to the preparation of data for future, unanticipated reuse. The second stream represents an expansion in conceptualization of data management for the majority of natural scientists from a publication metaphor to recognition of a release metaphor (Parsons and Fox 2012). A combined dual-function model brings attention to some of the less recognized barriers that impede preparation of data for reuse. Digital data analysis spawns a multitude of files often assessed while ';in use' so for reuse of data, scientists must first identify what data files to share. They must also create robust data processes that frequently involve establishing new distributions of labor. The two-stream approach creates a visual representation for data generators who now must think about what data are most likely to have value not only for their work but also for the work of others

  15. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Bulanov, Stepan S.

    2011-11-15

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.

  16. Topics in phenomenology of unified gauge theories of weak, electromagnetic, and strong interactions

    SciTech Connect

    Kang, Y.S.

    1982-11-01

    Three phenomenological analyses on the current unification theories of elementary particle interactions are presented. In Chapter I, the neutral current phenomenology of a class of supersymmetric SU(2) x U(1) x U tilde(1) models is analyzed. A model with the simplest fermion and Higgs structure allowing a realistic mass spectrum is considered first. Its neutral current sector is parametrized in terms of two mixing angles and the strength of the new U tilde(1) interactions. Expressions for low-energy model-independent parameters are derived and compared with those of the standard model. Bounds on the neutral gauge boson masses are obtained from the data for various neutrino interactions, eD scattering, and the asymmetry in e/sup +/e/sup -/ ..-->.. ..mu../sup +/..mu../sup -/. In Chapter II, the evolution of fermion mass in grand unified theories is reexamined. In particular, the question of gauge invariance of mass ratios in left-right asymmetric theories is considered. A simple expression is derived for the evolution of the Higgs-fermion-fermion coupling which essentially governs the scale dependence of fermion mass. At the one loop level the expression is gauge invariant and involves only the representation content of left- and right-handed fermions but not that of Higgs. The corresponding expression for supersymmetric theories is also given. In Chapter III, the production and the subsequent decays of a heavy lepton pair L/sup + -/ near the Z peak in e/sup +/e/sup -/ annihilation are considered as a test of the standard model. The longitudinal polarization is derived from the spin-dependent production cross-section, and the decays L ..-->.. ..pi.. nu and L ..-->.. l nu nu are used as helicity analyzers.

  17. Understanding the electromagnetic interaction of metal organic framework reactants in aqueous solution at microwave frequencies.

    PubMed

    Laybourn, Andrea; Katrib, Juliano; Palade, Paula A; Easun, Timothy L; Champness, Neil R; Schröder, Martin; Kingman, Samuel W

    2016-02-21

    Preparation of metal organic frameworks (MOFs) via microwave heating is becoming increasingly popular due to reduced reaction times and enhanced control of MOF particle size. However, there is little understanding about the detailed interaction of the electric field portion of the wave with reactants during the synthesis of MOFs. In order to overcome this lack of fundamental understanding, information about the dielectric properties of the reactants is required. In this work the dielectric constants (ε') and loss factors (ε'') of benzene-1,4-dicarboxylic acid (H2BDC; also known as terephthalic acid) and a number of M(III) (M = metal) salts dissolved in deionized water were measured as a function of frequency, temperature and concentration and with varying anions and cations. Dielectric data confirm the aqueous M(III) salts to be strong microwave absorbers, particularly at 915 MHz. M(III) salts with mono-anionic ligands (for example chlorides and nitrates) exhibit higher losses than di-anionic salts (sulfates) demonstrating that the former are heated more effectively in an applied microwave field. Of the M(III) salts containing either singly- or doubly-charged anions, those containing Fe(III) have the highest loss indicating that they will heat more efficiently than other M(III) salts such as Cr(III) and Al(III). Interestingly, H2BDC exhibits little interaction with the electric field at microwave frequencies. PMID:26822947

  18. Sudden perturbation approximations for interaction of atoms with intense ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Lugovskoy, Andrey; Bray, Igor

    2015-12-01

    The response of an atom to the action of a pulse shorter than the Kepler period of the optically-active electron is often treated analytically using the sudden-perturbation approximation (SPA). It relies on the truncation of the evolution operator expansion in a series over the dimensionless parameter ɛ sys τ L, where ɛ sys is the system-dependent characteristic energy and τ L is the pulse duration. We examine the SPA with the use of a basis-based solution of the time-dependent Schrödinger equation (TDSE) for the case of a hydrogen atom interacting with two different types of ultrashort pulses, a half-cycle pulse and a few-cycle pulse. The length-gauge form of the electron-field interaction potential is used. The SPA transition probabilities are shown to deviate slightly but systematically from the correct values for the positive-energy states in the region where the sudden-perturbation condition is violated. It is shown that the SPA expectation value of the electron displacement as a function of time differ qualitatively from what follows from the ab initio TDSE solution. Nevertheless, the SPA is shown to be a good approximation for the description of the expectation value of the electron momentum.

  19. Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems

    NASA Astrophysics Data System (ADS)

    Tenforde, T. S.

    1992-06-01

    There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.

  20. Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems

    SciTech Connect

    Tenforde, T.S.

    1992-06-01

    There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.

  1. Mechanisms of interaction and biological effects of extremely-low-frequency electromagnetic fields

    SciTech Connect

    Tenforde, T.S.

    1994-07-01

    Evidence is mounting, that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers. The implications of these findings for promotion of tumor growth by ELF fields are also reviewed.

  2. Interaction with the lower ionosphere of electromagnetic pulses from lightning - Heating, attachment, and ionization

    NASA Technical Reports Server (NTRS)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A Boltzmann formulation of the electron distribution function and Maxwell's equations for the EM fields are used to simulate the interaction of lightning radiated EM pulses with the lower ionosphere. Ionization and dissociative attachment induced by the heated electrons cause significant changes in the local electron density, N(e). Due to 'slow' field changes of typical lightning EM pulses over time scales of tens of microsec, the distribution function follows the quasi-equilibrium solution of the Boltzmann equation in the altitude range of interest (70 to 100 km). The EM pulse is simulated as a planar 100 microsec long single period oscillation of a 10 kHz wave injected at 70 km. Under nighttime conditions, individual pulses of intensity 10-20 V/m (normalized to 100 km horizontal distance) produce changes in N(e) of 1-30 percent while a sequence of pulses leads to strong modification of N(e) at altitudes less than 95 km. The N(e) changes produce a 'sharpening' of the lower ionospheric boundary by causing a reduction in electron density at 75-85 km (due to attachment) and a substantial increase at 85-95 km (due to ionization) (e.g., the scale height decreases by a factor of about 2 at about 85 km for a single 20 V/m EM pulse). No substantial N(e) changes occur during daytime.

  3. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, 1 July 1992--30 June 1993

    SciTech Connect

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.; Bennhold, C.; Ito, Hiroshi; Pratt, R.K.; Najmeddine, M.; Rakei, A.

    1993-07-01

    The emphasis of the nuclear theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered, including coherent photoproduction of {pi} mesons. When the excitation energy of the target nucleus is low, the aim is to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions are the issue, numerically accurate calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. A central goal is to carry through state-of-the-art few-body calculations that will serve as a means of determining at what point standard nuclear physics requires introduction of relativity and/or quark degrees of freedom in order to understand the phenomena in question.

  4. 3D Electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.

    2013-12-01

    Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons

  5. The use of two-stream approximations for the parameterization of solar radiative energy fluxes through vegetation

    SciTech Connect

    Joseph, J.H.; Iaquinta, J.; Pinty, B.

    1996-10-01

    Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical models of the earth-atmosphere system. For a plane-parallel and turbid vegetation medium, the existence of rotational invariance allows the application of a conventional two-stream approximation to the phase function, based on an expansion in Legendre Polynomials. Three conditions have to be fulfilled to make this reduction possible in the case of vegetation. The scattering function of single leaves must be bi-Lambertian, the azimuthal distribution of leaf normals must be uniform, and the azimuthally averaged Leaf Area Normal Distribution (LAND) must be either uniform or planophile. The first and second assumptions have been shown to be acceptable by other researchers and, in fact, are usually assumed explicitly or implicitly when dealing with radiative transfer through canopies. The third one, on the shape of the azimuthally averaged LAND, although investigated before, is subjected to a detailed sensitivity test in this study, using a set of synthetic LAND`s as well as experimental data for 17 plant canopies. It is shown that the radiative energy flux equations are relatively insensitive to the exact form of the LAND. The experimental Ross functions and hemispheric reflectances lie between those for the synthetic cases of planophile and erectophile LAND`s. However, only the uniform and planophile LANDS lead to canopy hemispheric reflectances, which are markedly different from one another. The analytical two-stream solutions for the either the planophile or the uniform LAND cases may be used to model the radiative fluxes through plant canopies in the solar spectral range. The choice between the two for any particular case must be made on the basis of experimental data. 30 refs., 5 figs.

  6. The Use of Two-Stream Approximations for the Parameterization of Solar Radiative Energy Fluxes through Vegetation.

    NASA Astrophysics Data System (ADS)

    Josepoh, Joachim H.; Laquinta, Jean; Pinty, Bernard

    1996-10-01

    Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical models of the earth-atmosphere system.For a plane-parallel and turbid vegetation medium, the existence of rotational invariance allows the application of a conventional two-stream approximation to the phase function, based on an expansion in Legendre Polynomials. Three conditions have to be fulfilled to nuke this reduction possible in the case of vegetation. The scattering function of single leaves must be bi-Lambertian, the azimuthal distribution of leaf normals must be uniform, and the azimuthally averaged Leaf Area Normal Distribution (LAND) must be either uniform or planophile. The first and second assumptions have been shown to he acceptable by other researchers and. in fact, are usually assumed explicitly or implicitly when dealing with radiative transfer through canopies. The third one, on the shape of the azimuthally averaged LAND, although investigated before, is subjected to a detailed sensitivity test in this study, using a set of synthetic LAND's as well as experimental data for 17 plant canopies.It is shown that the radiative energy flux equations are relatively insensitive to the exact form of the LAND. The experimental Ross functions and hemispheric reflectances lie between those for the synthetic cases of planophile and erectophile LANDS. However, only the uniform and planophile LANDs lead to canopy hemispheric reflectances, which are markedly different from one another.The analytical two-stream solutions for the either the planophile or the uniform LAND cases may be used to model the radiative fluxes through plant canopies in the solar spectral range. The choice between the two for any particular case must he made on the basis of experimental data.

  7. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Final report

    SciTech Connect

    Dragt, A.J.; Gluckstern, R.L.

    1992-11-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.

  8. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    SciTech Connect

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency {omega}{sub c{alpha}}. This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies {omega} {approx} m{omega}{sub c{alpha}}.

  9. Interaction of a two-dimensional electromagnetic breather with an electron inhomogeneity in an array of carbon nanotubes

    SciTech Connect

    Zhukov, Alexander V. Bouffanais, Roland; Fedorov, E. G.; Belonenko, Mikhail B.

    2014-05-28

    Propagation of ultrashort laser pulses through various nano-objects has recently became an attractive topic for both theoretical and experimental studies due to its promising perspectives in a variety of problems of modern nanoelectronics. Here, we study the propagation of extremely short two-dimensional bipolar electromagnetic pulses in a heterogeneous array of semiconductor carbon nanotubes. Heterogeneity is defined as a region of enhanced electron density. The electromagnetic field in an array of nanotubes is described by Maxwell's equations, reduced to a multidimensional wave equation. Our numerical analysis shows the possibility of stable propagation of an electromagnetic pulse in a heterogeneous array of nanotubes. Furthermore, we establish that, depending on its speed of propagation, the pulse can pass through the area of increased electron concentration or be reflected therefrom.

  10. Seismic electromagnetic study in China

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua

    2016-04-01

    Seismo-electromagnetism is becoming a hot interdisciplinary study in both geosciences and electromagnetism. Numerous electromagnetic changes at a broad range of frequencies associated with earthquakes have been reported independently. There are some attempts of applying such electromagnetic data to short-term earthquake prediction. Although due to the complexity of seismogenic process and underground structure, the seismic electromagnetic phenomena cannot be fully understood, the seismic electromagnetic study plays a key role in the mitigation of seismic hazard. China is one of the countries which have the earliest reports on seismo-electromagnetic phenomena. The seismic electromagnetic study in China started in late 1960's. There are almost 50 years continuous observation data up to now, which provides a unique database for seismo-electromagnetic study not only in China, but also in the world. Therefore, seismo-electromagnetic study in China is interested broadly by international communities of geosciences and electromagnetism. I present here a brief review on seismic electromagnetic study in China, especially focusing on geo-electromagnetic observation and empirical prediction based on the observation data. After summarizing various electromagnetic observations such as apparent resistivity, geoelectric potential, geomagnetic field, electromagnetic disturbance, and so on, I show the cases of the empirical prediction based on the observed electromagnetic data associated with some earthquakes in China. Finally, based on the above review, I propose an integrated research scheme of earthquake-related electromagnetic phenomena, which includes the interaction between appropriate observations, robust methodology of data processing, and theoretical model analysis. This study is supported partially by the National Natural Science Foundation of China (41274075) and the National Basic Research Program of China (2014CB845903).

  11. Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies: Interaction Mechanisms Under Varying Solar Wind Conditions.

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Lembège, Bertrand; Markidis, Stefano; Horányi, Mihály

    2015-04-01

    We present three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centered just below the lunar surface under various solar wind and plasma conditions, and focus afterwards on the ion and electron kinetic behavior of the system. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. We identify a population of backstreaming ions, the deflection of magnetized electrons via the ExB-drift motion and the subsequent formation of a halo region of elevated density around the dipole source. Finally, it is shown that the presence and efficiency of the latter mechanisms are heavily impacted by the upstream plasma conditions and, on their turn, influence the overall structure and evolution of the LMA system. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The

  12. Two-stream approximations to radiative transfer in planetary atmospheres - A unified description of existing methods and a new improvement

    NASA Technical Reports Server (NTRS)

    Meador, W. E.; Weaver, W. R.

    1980-01-01

    Existing two-stream approximations to radiative transfer theory for particulate media are shown to be represented by identical forms of coupled differential equations if the intensity is replaced by integrals of the intensity over hemispheres. One set of solutions thus suffices for all methods and provides convenient analytical comparisons. The equations also suggest modifications of the standard techniques so as to duplicate exact solutions for thin atmospheres and thus permit accurate determinations of the effects of typical aerosol layers. Numerical results for the plane albedos of plane-parallel atmospheres are given for conventional and modified Eddington approximations, conventional and modified two-point quadrature schemes, the hemispheric-constant method and the delta-function method, all for comparison with accurate discrete-ordinate solutions. A new two-stream approximation is introduced that reduces to the modified Eddington approximation in the limit of isotropic phase functions and to the exact solution in the limit of extreme anisotropic scattering. Comparisons of plane albedos and transmittances show the new method to be generally superior over a wide range of atmospheric conditions (including cloud and aerosol layers), especially in the case of nonconservative scattering.

  13. Generating Elastic, Biodegradable Polyurethane/Poly(lactide-co-glycolide) Fibrous Sheets with Controlled Antibiotic Release via Two-Stream Electrospinning

    PubMed Central

    Hong, Yi; Fujimoto, Kazuro; Hashizume, Ryotaro; Guan, Jianjun; Stankus, John J.; Tobita, Kimimasa; Wagner, William R.

    2010-01-01

    Damage control laparotomy is commonly applied to prevent compartment syndrome following trauma but is associated with new risks to the tissue, including infection. To address the need for biomaterials to improve abdominal laparotomy management, we fabricated an elastic, fibrous composite sheet with two distinct submicrometer fiber populations: biodegradable poly(ester urethane) urea (PEUU) and poly(lactide-co-glycolide) (PLGA), where the PLGA was loaded with the antibiotic tetracycline hydrochloride (PLGA-tet). A two-stream electrospinning setup was developed to create a uniform blend of PEUU and PLGA-tet fibers. Composite sheets were flexible with breaking strains exceeding 200%, tensile strengths of 5–7 MPa, and high suture retention capacity. The blending of PEUU fibers markedly reduced the shrinkage ratio observed for PLGA-tet sheets in buffer from 50% to 15%, while imparting elastomeric properties to the composites. Antibacterial activity was maintained for composite sheets following incubation in buffer for 7 days at 37 °C. In vivo studies demonstrated prevention of abscess formation in a contaminated rat abdominal wall model with the implanted material. These results demonstrate the benefits derivable from a two-stream electrospinning approach wherein mechanical and controlled-release properties are contributed by independent fiber populations and the applicability of this composite material to abdominal wall closure. PMID:18318501

  14. Two-stream Stability Properties of the Return-Current Layer for Intense Ion Beam Propagation Through Background Plasma

    SciTech Connect

    Edward A. Startsev, Ronald C. Davidson and Mikhail Dorf

    2009-09-10

    When an ion beam with sharp edge propagates through a background plasma, its current is neutralized by the plasma return current everywhere except at the beam edge over a characteristic transverse distance Δχ⊥ ~ δpe, where δpe = c/ωpe is the collisionless skin depth, and ωpe is the electron plasma frequency. Because the background plasma electrons neutralizing the ion beam current inside the beam are streaming relative to the background plasma electrons outside the beam, the background plasma can support a two-stream surface-mode excitation. Such surface modes have been studied previously assuming complete charge and current neutralization, and have been shown to be strongly unstable. In this paper we study the detailed stability properties of this two-stream surface mode for an electron flow velocity profile self-consistently driven by the ion beam. In particular, it is shown that the self-magnetic field generated inside the unneutralized current layer, which has not been taken into account previously, completely eliminates the instability.

  15. Effect of a novel nonlinearity, viz., electron temperature dependence of electron-ion recombination on electromagnetic wave. Plasma interaction: Nonlinear propagation in the E-layer

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Mishra, Rashmi; Srivastava, Sweta

    2016-03-01

    In this paper, we consider the nonlinearity in the propagation of electromagnetic (e.m.) waves in a plasma caused by the electron temperature dependence of the coefficient of recombination of electrons with ions; specifically, the ionospheric E layer has been investigated. The enhancement in electron temperature by an intense electromagnetic wave causes reduction of the electron-ion recombination coefficient and thereby enhancement of electron density, the electron collision frequency also gets enhanced. The equations for number and energy balance of electrons and the wave equation have been used to predict the dependence of electron density/collision frequency and the nonlinear refractive index and absorption coefficient on αE02 (proportional to wave irradiance). The dependence of the propagation parameters on αE02 has been used to investigate the nonlinear electromagnetic wave propagation in the ionosphere. The study concludes that the electron temperature dependence of the recombination coefficient should be considered in all analyses of nonlinear plasma-e.m. wave interaction.

  16. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Ettehadi-Abari, Mehdi; Sedaghat, Mahsa

    2016-03-01

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range I{λ^2} ˜eq 10^{14}{-}10^{16}{{W}}{{{cm}}^{-2}} \\upmu{{{m}}2} . The collisionless effect is found to be significant when the incident laser intensity is less than 10^{16}{{W}}{{{cm}}^{-2}}\\upmu{{{m}}2} . In the current work, the propagation of a high-frequency electromagnetic wave, for underdense collisionless plasma in the presence of an external magnetic field is investigated. When a constant magnetic field parallel to the laser pulse propagation direction is applied, the electrons rotate along the magnetic field lines and generate the electromagnetic part in the wake with a nonzero group velocity. Here, by considering the ponderomotive force in attendance of the external magnetic field and assuming the isothermal collisionless plasma, the nonlinear permittivity of the plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. Here, by considering the effect of the ponderomotive force in isothermal collisionless magnetized plasma, it is shown that by increasing the laser pulse intensity, the electrons density profile leads to steepening and the electron bunches of plasma become narrower. Moreover, it is found that the wavelength of electric and magnetic field oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison to the unmagnetized collisionless plasma.

  17. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime.

    PubMed

    Consoli, F; De Angelis, R; Duvillaret, L; Andreoli, P L; Cipriani, M; Cristofari, G; Di Giorgio, G; Ingenito, F; Verona, C

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  18. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  19. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    PubMed Central

    Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  20. Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region

    SciTech Connect

    Aburjania, G. D.; Chargazia, Kh. Z.

    2011-02-15

    A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth's angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.

  1. An Investigation into the Electromagnetic Interactions between a Superconducting Torus and Solenoid for the Jefferson Lab 12 GeV Upgrade

    SciTech Connect

    Rajput-Ghoshal, Renuka; Ghoshal, Probir K.; Fair, Ruben J.; Hogan, John P.; Kashy, David H.

    2015-06-01

    The Jefferson Lab 12 GeV Upgrade in Hall B will need CLAS12 detector that requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a Toroidal configuration (Torus) and the second is an actively shielded solenoidal magnet (Solenoid). Both the torus and solenoid are located in close proximity to one another and are surrounded by sensitive detectors. This paper investigates the electromagnetic interactions between the two systems during normal operation as well as during various fault scenarios as part of a Risk Assessment and Mitigation (RAM).

  2. EVIDENCE AGAINST THE OSCILLATING TWO-STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN SOLAR TYPE III RADIO BURSTS

    SciTech Connect

    Graham, D. B.; Cairns, Iver H.; Malaspina, D. M.; Ergun, R. E.

    2012-07-01

    Recently Thejappa et al. studied a specific Langmuir wave packet observed by STEREO A and argued based on the electric field from one of the three antennas that this packet satisfied the conditions for the oscillating two-stream instability (OTSI) and was undergoing wave collapse. We analyze the same event using all three electric components and show that, while the wave packet has structure consistent with collapse simulations and theory, the field strength is well below that required for collapse to proceed. Analyzing the three electric field components shows that the power spectrum and dominance of wave power perpendicular to the local magnetic field are inconsistent with OTSI. We show that this packet and other more intense packets are inconsistent with collapse and show no evidence of OTSI, but are likely trapped eigenmodes in density wells. Therefore, OTSI and collapse are unlikely explanations for intense Langmuir events observed in the solar wind.

  3. Utility of surface-floating Vhironomidae pupal exuviae in assessing the impact of PCBs on two stream communities. Technical report

    SciTech Connect

    Wright, C.A.

    1988-01-01

    Surface-floating pupal exuviae of the midge family Chironomidae were collected from two stream systems with a known history of PCB pollution. Sites from Holden, Missouri were separated into PCB absent and PCB present groups and their taxa were analyzed for differences in composition and abundance. The PCB-absent sites had a higher total frequency of specimens and a higher total species richness than PCB present sites. Orthocladiini were present at every site except one in the PCB absent category whereas the PCB present category contained only two with Orthocladiini present. Scatterplots and correlation of taxa frequencies vs. PCB levels revealed specific taxa that may be more tolerant of PCBs than others. These taxa included Larsia sp., Einfeldia sp.gp.A, Dicrotendipes sp. 1, Geoldichironomus holoprasinus, Glyptotendipes sp.gp.A, Paratanytarsus inopertus gp. and Procladius sublettei.

  4. On the design of experiments for the study of extreme field limits in the ultra-relativistic interaction of electromagnetic waves with plasmas

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg

    2011-06-01

    The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

  5. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  6. Surfing effect in the interaction of electromagnetic and gravitational waves: Limits on the speed of gravitational waves

    SciTech Connect

    Polnarev, A. G.; Baskaran, D.

    2008-06-15

    In the current work we investigate the propagation of electromagnetic waves in the field of gravitational waves. Starting with the simple case of an electromagnetic wave traveling in the field of a plane monochromatic gravitational wave, we introduce the concept of the surfing effect and analyze its physical consequences. We then generalize these results to an arbitrary gravitational wave field. We show that, due to the transverse nature of gravitational waves, the surfing effect leads to significant observable consequences only if the velocity of gravitational waves deviates from the speed of light. This fact can help to place an upper limit on the deviation of gravitational wave velocity from the speed of light. The microarcsecond resolution promised by the upcoming precision interferometry experiments allow one to place stringent upper limits on {epsilon}=(v{sub gw}-c)/c as a function of the energy density parameter for gravitational waves {omega}{sub gw}. For {omega}{sub gw}{approx_equal}10{sup -10} this limit amounts to {epsilon} < or approx. 2{center_dot}10{sup -2}.

  7. Self-field effects on instability of wave modes in a two-stream free-electron laser with an axial magnetic field

    SciTech Connect

    Mohsenpour, Taghi Rezaee Rami, Omme Kolsoum

    2014-07-15

    Free electron lasers (FEL) play major roles in the Raman Regime, due to the charge and current densities of the beam self-field. The method of perturbation has been applied to study the influence of self-electric and self-magnetic fields. A dispersion relation for two-stream free electron lasers with a helical wiggler and an axial magnetic field has been found. This dispersion relation is solved numerically to investigate the influence of self-fields on the FEL coupling and the two-stream instability. It was found that self-fields can produce very large effects on the FEL coupling, but they have almost negligible effects on two-stream instability.

  8. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  9. Observations of large-amplitude electromagnetic waves and associated wave-particle interactions at the dipolarization front in the Earth's magnetotail: A case study

    NASA Astrophysics Data System (ADS)

    Huang, S. Y.; Yuan, Z. G.; Ni, B.; Zhou, M.; Fu, H. S.; Fu, S.; Deng, X. H.; Pang, Y.; Li, H. M.; Wang, D. D.; Li, H. M.; Yu, X. D.

    2015-07-01

    Broadband frequency waves around the dipolarization front (DF) are believed to play a crucial role in the particle dynamics. Using the Cluster observations, we report in this study large-amplitude electromagnetic waves with frequencies just above the ion cyclotron frequency at the DF in the near-Earth magnetotail region. The waves have very large amplitudes of magnetic and electric field fluctuations, up to ~2 nT and ~10 mV/m, respectively. The magnetic fluctuations are predominately along the ambient magnetic field (B0), while the electric fluctuations are primarily perpendicular to B0. The observed waves are highly oblique with a propagation angle of ~100° with respect to the ambient magnetic field, and are also linearly polarized. These features are consistent with the properties of the ion Bernstein wave mode in the high plasma β region, and also with the properties of current-driven ion cyclotron waves driven by the electromagnetic current-driven Alfven instability. We also discuss the possibility of wave-particle interactions at the DF.

  10. Electromagnetic instabilities attributed to a cross-field ion drift

    NASA Technical Reports Server (NTRS)

    Chang, C. L.; Wong, H. K.; Wu, C. S.

    1990-01-01

    Instabilities due to a cross-field ion flow are reexamined by including the electromagnetic response of the ions, which has been ignored in existing discussions. It is found that this effect can lead to significant enhancement of the growth rate. Among the new results, a purely growing, electromagnetic unstable mode with a wave vector k parallel to the ambient magnetic field is found. The plasma configuration under consideration is similar to that used in the discussion of the well-known modified-two-stream instability. This instability has a growth rate faster than the ion cyclotron frequency, and is not susceptible to high-plasma-beta stabilization.

  11. Electromagnetic fasteners

    SciTech Connect

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  12. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  13. Effect of a delta tab on fine scale mixing in a turbulent two-stream shear layer

    NASA Technical Reports Server (NTRS)

    Foss, J. K.; Zaman, K. B. M. Q.

    1996-01-01

    The fine scale mixing produced by a delta tab in a shear layer has been studied experimentally. The tab was placed at the trailing edge of a splitter plate which produced a turbulent two-stream mixing layer. The tab apex tilted downstream and into the high speed stream. Hot-wire measurements in the 3-D space behind the tab detailed the three velocity components as well as the small scale population distributions. These small scale eddies, which represent the peak in the dissipation spectrum, were identified and counted using the Peak-Valley-Counting technique. It was found that the small scale populations were greater in the shear region behind the tab, with the greatest increase occurring where the shear layer underwent a sharp turn. This location was near, but not coincident, with the core of the streamwise vortex, and away from the region exhibiting maximum turbulence intensity. Moreover, the tab increased the most probably frequency and strain rate of the small scales. It made the small scales smaller and more energetic.

  14. Survey of Collective Instabilities and Beam-Plasma Interactions in Intense Heavy Ion Beams

    SciTech Connect

    Davidson, Ronald C.; Dorf, Mikhail A.; Kaganovich, Igor D.; Qin, Hong; Startsev, Edward A.; Rose, David V.; Lund, Steven M.; Welch, Dale R.; Sefkow, Adam

    2008-06-19

    This paper presents a survey of the present theoretical understanding based on advanced analytical and numerical studies of collective processes and beam-plasma interactions in intense heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include: discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift compression and transverse compression regions, collective processes associated with the interaction of the intense ion beam with a charge-neutralizing background plasma are described, including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. Operating regimes are identified where the possible deleterious effects of collective processes on beam quality are minimized.

  15. Electromagnetic Fields

    MedlinePlus

    ... cancer. Some people worry that wireless and cellular phones cause cancer. They give off radio-frequency energy (RF), a form of electromagnetic radiation. Scientists need to do more research on this ...

  16. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    NASA Astrophysics Data System (ADS)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  17. Fracture behavior of an inclined crack interacting with a circular inclusion in a high-TC superconductor under an electromagnetic force

    NASA Astrophysics Data System (ADS)

    Xue, Feng; Zhang, Zhaoxia; Gou, Xiaofan

    2015-11-01

    A simple model is proposed to investigate the interaction problem for a circular nonsuperconducting inclusion embedded in a high-TC superconducting matrix which contains an inclined crack, oriented at an arbitrary angle from the direction of the critical currents. The electromagnetic behavior is described by the critical state, the original Bean model. The perturbation brought upon by the circular inclusion and the crack on the critical current density is assumed to be negligible and not considered in this model. The distribution dislocation technology is applied to formulate the current problem. The stress intensity factors (SIFs) are obtained by solving the formulated singular integral equations. The effects of the crack angle, the elastic modulus, the inclusion-crack distance and the inclusion-crack size on the stress intensity factors are discussed in detail.

  18. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, 1 August 1991--31 July 1992

    SciTech Connect

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.

    1992-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics.

  19. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, 1 July 1991--30 June 1994

    SciTech Connect

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.; Bennhold, C.; Ito, Hiroshi; Pratt, R.K.; Najmeddine, M.; Rakei, A.

    1994-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the GW nuclear theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered, including coherent photoproduction of {pi} mesons. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions are the issue, numerically accurate calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art few-body calculations that will serve as a means of determining at what point standard nuclear physics requires introduction of relativity and/or quark degrees of freedom in order to understand the phenomena in question. So far, the problems considered were mostly concerned with low- to medium-energy regimes where little evidence was found that requires going beyond the traditional approach.

  20. Coupling of newborn ions to the solar wind by electromagnetic instabilities and their interaction with the bow shock

    NASA Technical Reports Server (NTRS)

    Winske, D.; Wu, C. S.; Li, Y. Y.; Mou, Z. Z.; Guo, S. Y.

    1985-01-01

    The process by which the solar wind assimilates newly ionized atoms is important for understanding the presence of planetary or interstellar helium in the solar wind, the dynamics of the Active Magnetospheric Particle Tracer Explorers (AMPTE) lithium releases in front of the earth's bow shock, and the formation of cometary tails. In this paper is examined how newborn ions can be coupled to the solar wind in the direction parallel to the magnetic field by means of electromagnetic instabilities driven by the distribution of newborn ions. The linear properties of three instabilities are analyzed and compared with numerical solutions of the linear dispersion equation, while their nonlinear behavior is followed by means of computer simulation to obtain the characteristic time for the pickup process. With a primary emphasis on the AMPTE lithiuim releases, various degrees of realism are introduced into the calculations to model the upstream conditions and the intersection of the lithium with the bow shock. It is shown that a time-dependent shock model is needed to correctly reproduce the amount of lithium which is transmitted through the shock and that the resulting lithium ion distribution is still likely to be subject to the same type of instabilities in the magnetosheath. Applications of these results to comets, in particular the artificial comet expected to be generated by the AMPTE barium release in the magnetosheath, is also briefly discussed.

  1. The interaction of radio frequency electromagnetic fields with atmospheric water droplets and applications to aircraft ice prevention. Thesis

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.

    1982-01-01

    The feasibility of computerized simulation of the physics of advanced microwave anti-icing systems, which preheat impinging supercooled water droplets prior to impact, was investigated. Theoretical and experimental work performed to create a physically realistic simulation is described. The behavior of the absorption cross section for melting ice particles was measured by a resonant cavity technique and found to agree with theoretical predictions. Values of the dielectric parameters of supercooled water were measured by a similar technique at lambda = 2.82 cm down to -17 C. The hydrodynamic behavior of accelerated water droplets was studied photograhically in a wind tunnel. Droplets were found to initially deform as oblate spheroids and to eventually become unstable and break up in Bessel function modes for large values of acceleration or droplet size. This confirms the theory as to the maximum stable droplet size in the atmosphere. A computer code which predicts droplet trajectories in an arbitrary flow field was written and confirmed experimentally. The results were consolidated into a simulation to study the heating by electromagnetic fields of droplets impinging onto an object such as an airfoil. It was determined that there is sufficient time to heat droplets prior to impact for typical parameter values. Design curves for such a system are presented.

  2. Electromagnetic energy sink

    NASA Astrophysics Data System (ADS)

    Valagiannopoulos, C. A.; Vehmas, J.; Simovski, C. R.; Tretyakov, S. A.; Maslovski, S. I.

    2015-12-01

    The ideal black body fully absorbs all incident rays, that is, all propagating waves created by arbitrary sources. A known idealized realization of the black body is the perfectly matched layer (PML), widely used in numerical electromagnetics. However, ideal black bodies and PMLs do not interact with evanescent fields that exists near any finite-size source, and the energy stored in these fields cannot be harvested. Here, we introduce the concept of the ideal conjugate matched layer (CML), which fully absorbs the energy of both propagating and evanescent fields of sources acting as an ideal sink for electromagnetic energy. Conjugate matched absorbers have exciting application potentials, as resonant attractors of electromagnetic energy into the absorber volume. We derive the conditions on the constitutive parameters of media which can serve as CML materials, numerically study the performance of planar and cylindrical CML and discuss possible realizations of such materials as metal-dielectric composites.

  3. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  4. Evaluation of the Two-stream Inversion Package (JRC-TIP) over the Hainich Forest FLUXNET site

    NASA Astrophysics Data System (ADS)

    Pinty, B.; Jung, M.; Kaminski, T.; Lavergne, T.; Mund, M.; Plummer, S.; Thomas, E.; Widlowski, J.-L.

    2012-04-01

    The Joint Research Centre Two-stream Inversion Package (JRC-TIP) makes use of the MODIS and MISR white sky albedo products to deliver consistent sets of information about the terrestrial environments. The baseline version of the JRC-TIP operates at a spatial resolution of 0.01degree and yields estimates of the Probability Distribution Functions (PDFs) of the effective canopy Leaf Area Index (LAI), the canopy background albedo, the vegetation scattering properties, as well as, the absorbed, reflected and transmitted fluxes of the vegetation canopy. In this contribution the evaluation efforts of the JRC-TIP products are extended to the deciduous forest site of Hainich (Germany) where multiannual datasets of in-situ estimates of canopy transmission - derived from LAI-2000 observations - are available. As a Fluxnet site, Hainich offers access to camera acquisitions from fixed locations in and above the canopy that are being used in phenological studies. These images qualitatively confirm the seasonal patterns of the effective LAI, canopy transmission and canopy absorption products (in the visible range of the solar spectrum) derived with the JRC-TIP. Making use of the LAI-2000 observations it is found that 3/4 of the JRC-TIP products lie within a +/- 0.15 interval around the in-situ estimates of canopy transmission and absorption. The largest discrepancies occur at the end of the senescence phase when the scattering properties of the vegetation (evidenced by the pictures) and the effective LAI (also derived from LAI-2000 measurements) are experiencing large simultaneous changes. It was also found that the seasonal pattern of vegetation scattering properties derived from MISR observations in the near-infrared varies together with the Excess Green index computed from the various channels of the camera data acquired at the top of the canopy. The approach adopted in the present study is cost-effective, rather simple but efficient to provide a first evaluation of the JRC

  5. The Electromagnetic Background Environment for the Interaction-point Beam Feedback System at the International Linear Collider

    SciTech Connect

    Christian, G.; Burrows, P.; Clarke, C.; Hartin, A.; Swinson, C.; White, G.R.; Arnold, R.; Hast, C.; Smith, S.; Woods, M.; Kalinin, A.; /Daresbury

    2007-07-10

    The Interaction Point (IP) feedback system is essential for maintaining the luminosity at the International Linear Collider (ILC). It is necessary to demonstrate the performance of the feedback beam position monitor (BPM) in an electron-positron pair background similar to that expected in the ILC interaction region (IR). We have simulated the ILC beam-beam interactions and used a GEANT model of the IR to evaluate the pair and photon flux incident on the BPM, for both the 2 mrad and 20 mrad crossing angle geometries. We present results as a function of the proposed machine parameter schemes, as well as for various system layouts within the IR. We plan to study the degradation of BPM resolution, and the long term survivability, in beam tests at End Station A at SLAC. To simulate the background environment of the ILC a 'spray beam' will be produced, which will scatter from a mechanical mock-up of the forward region of the IR, and irradiate the BPM with realistic flux of secondary pairs. We present the proposed experimental layout and planned beam tests.

  6. Wave-wave interactions in solar type III radio bursts

    SciTech Connect

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  7. Numerical evidence of undriven, fast reconnection in the solar-wind interaction with earth's magnetosphere: formation of electromagnetic coherent structures.

    PubMed

    Faganello, M; Califano, F; Pegoraro, F

    2008-09-01

    We give evidence for the first time of the onset of undriven fast, collisionless magnetic reconnection during the evolution of an initially homogeneous magnetic field advected in a sheared velocity field. We consider the interaction of the solar wind with the magnetospheric plasma at low latitude and show that reconnection takes place in the layer between adjacent vortices generated by the Kelvin-Helmholtz instability. This process generates coherent magnetic structures with a size comparable to the ion inertial scale, much smaller than the system dimensions but much larger than the electron inertial scale. These magnetic structures are further advected in the plasma in a complex pattern but remain stable over a time interval much longer than their formation time. These results can be crucial for the interpretation of satellite data showing coherent magnetic structures in the Earth's magnetosheath or the magnetotail. PMID:18851219

  8. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  9. Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies: Ion and Electron Dynamics Under Varying Solar Wind Conditions.

    NASA Astrophysics Data System (ADS)

    Deca, J.; Divin, A. V.; Lapenta, G.; Lembege, B.; Markidis, S.; Horanyi, M.

    2014-12-01

    We present three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centered just below the lunar surface under various solar wind and plasma conditions, and focus afterwards on the ion and electron kinetic behavior of the system. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. The dominant LMA interaction mechanism is also highly dependent on the solar wind and IMF conditions. Driven by strong pressure anisotropies, the mini-magnetosphere is also unstable over time, leading to only temporal shielding of the surface underneath. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2011050747 (Curie) and 2013091928 (SuperMUC). This research was supported

  10. Earth's Electromagnetic Environment

    NASA Astrophysics Data System (ADS)

    Constable, Catherine

    2016-01-01

    The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10^{-4}-10^4 Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10^4 Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at ˜1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth's internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz-3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3-30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7-2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.