NASA Astrophysics Data System (ADS)
Liang, J.; Ni, B.; Cully, C. M.; Donovan, E. F.; Thorne, R. M.; Angelopoulos, V.
2012-03-01
In this study we perform a statistical survey of the extremely-low-frequency wave activities associated with fast earthward flows in the mid-tail central plasma sheet (CPS) based upon THEMIS measurements. We reveal clear trends of increasing wave intensity with flow enhancement over a broad frequency range, from below fLH (lower-hybrid resonant frequency) to above fce (electron gyrofrequency). We mainly investigate two electromagnetic wave modes, the lower-hybrid waves at frequencies below fLH, and the whistler-mode waves in the frequency range fLH < f < fce. The waves at f < fLH dramatically intensify during fast flow intervals, and tend to contain strong electromagnetic components in the high-plasma-beta CPS region, consistent with the theoretical expectation of the lower-hybrid drift instability in the center region of the tail current sheet. ULF waves with very large perpendicular wavenumber might be Doppler-shifted by the flows and also partly contribute to the observed waves in the lower-hybrid frequency range. The fast flow activity substantially increases the occurrence rate and peak magnitude of the electromagnetic waves in the frequency range fLH < f < fce, though they still tend to be short-lived and sporadic in occurrence. We also find that the electron pitch-angle distribution in the mid-tail CPS undergoes a variation from negative anisotropy (perpendicular temperature smaller than parallel temperature) during weak flow intervals, to more or less positive anisotropy (perpendicular temperature larger than parallel temperature) during fast flow intervals. The flow-related electromagnetic whistler-mode wave tends to occur in conjunction with positive electron anisotropy.
Electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995
Acoustic and electromagnetic waves
NASA Astrophysics Data System (ADS)
Jones, Douglas Samuel
Theoretical models of EM and acoustic wave propagation are presented in an introductory text intended for intermediate-level science and engineering students. Chapters are devoted to the mathematical representation of acoustic and EM fields, the special theory of relativity, radiation, resonators, waveguide theory, refraction, surface waves, scattering by smooth objects, diffraction by edges, and transient waves. The mathematical tools required for the analysis (Bessel, Legendre, Mathieu, parabolic-cylinder, and spheroidal functions; tensor calculus; and the asymptotic evaluation of integrals) are covered in appendices.
Proposed electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
Electromagnetic wave scattering by Schwarzschild black holes.
Crispino, Luís C B; Dolan, Sam R; Oliveira, Ednilton S
2009-06-12
We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time. PMID:19658920
Electromagnetic wave energy conversion research
NASA Technical Reports Server (NTRS)
Bailey, R. L.; Callahan, P. S.
1975-01-01
Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.
Sati, Priti; Tripathi, V. K.
2012-12-15
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Detection of electromagnetic waves using MEMS antennas
Lavrik, Nickolay V; Tobin,; Bowland, Landon T
2011-01-01
We describe the design, fabrication and characterization of simple micromechanical structures that are capable of sensing static electric time varying electromagnetic fields. Time varying electric field sensing is usually achieved using an electromagnetic antenna and a receiver. However, these antenna-based approaches do not exhibit high sensitivity over a broad frequency (or wavelength) range. An important aspect of the present work is that, in contrast to traditional antennas, the dimensions of these micromechanical oscillators can be much smaller than the wavelength of the electromagnetic wave. We characterized the fabricated micromechanical oscillators by measuring their responses to time varying electric and electromagnetic fields.
Relativistic particle motion in nonuniform electromagnetic waves
NASA Technical Reports Server (NTRS)
Schmidt, G.; Wilcox, T.
1973-01-01
It is shown that a charged particle moving in a strong nonuniform electromagnetic wave suffers a net acceleration in the direction of the negative intensity gradient of the wave. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities can result.
Relativistic particle motion in nonuniform electromagnetic waves
NASA Technical Reports Server (NTRS)
Schmidt, G.; Wilcox, T.
1973-01-01
A charged particle moving in a strong nonuniform electromagnetic wave which suffers a net acceleration in the direction of the negative intensity gradient of the wave was investigated. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities result.
Electromagnetic wave propagation characteristics in unimolecular reactions
NASA Astrophysics Data System (ADS)
Liu, Xingpeng; Huang, Kama
2016-01-01
Microwave-assisted chemical reactions have attracted interests because of their benefits for enhancement of reaction rates. However, the problems, such as hot spots and thermal runaway, limit the application of microwaves in the chemical industry. To study the characteristics of electromagnetic wave propagation in a chemical reaction is critical to solve the problems. The research on the characteristics of electromagnetic wave propagation in the unimolecular reaction that is a simple model reaction, can be generalized to the research in a chemical reaction. The approximate expressions of the attenuation and dispersion characteristics of electromagnetic wave propagation in the unimolecular reaction are derived by the nonlinear propagation theory. Specially, when the reaction rate is zero, the derived approximate expressions can be reduced to the formulas in low-loss dispersive media. Moreover, a 1D mold is used to validate the feasibility of the approximate expressions. The influences of the reaction rate and initial reactant concentration on the characteristics are obtained.
Multiple-scattering theory for electromagnetic waves
Wang, X. ); Zhang, X. ); Yu, Q.; Harmon, B.N. )
1993-02-15
In this paper, a multiple-scattering formalism for electromagnetic waves is presented. Its application to the three-dimensional periodic dielectric structures is given in a form similar to the usual Korringa-Kohn-Rostoker form of scalar waves. Using this approach, the band-structure results of touching spheres of diamond structure in a dielectric medium with dielectric constant 12.96 are calculated. The application to disordered systems under the coherent-potential approximation is discussed.
Colliding electromagnetic shock waves in general relativity
Halilsoy, M.
1988-04-15
We derive a new, exact solution for the Einstein-Maxwell equations that describes the collision (interaction) of two arbitrarily polarized electromagnetic shock waves. In the limit that the polarization angle vanishes, our solution reduces to the Bell-Szekeres solution.
Emergent cosmological constant from colliding electromagnetic waves
Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr
2014-11-01
In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.
Wave-particle interactions in the Venus wake and tail
NASA Technical Reports Server (NTRS)
Intriligator, D. S.; Scarf, F. L.
1984-01-01
The first descriptions of combined tail measurements from the Pioneer Venus plasma analyzer, magnetometer, and plasma wave detector are presented. The analysis concentrates on those orbits which are representative of the first tail passage. Summary plasma analyzer parameters are used to show that waves occurring at the boundary of the magnetotail can be identified as Doppler-shifted ion acoustic oscillations. High-density plasma distributions in the magnetotail region usually appear to be non-Maxwellian at the highest time resolution. These distorted distribution functions are generally accompanied by enhanced plasma wave signals and magnetic field reversals indicative of electric currents. A different time for the spacecraft entrance into the magnetotail from that previously defined is identified. It is shown that the wave activity in the Venus tail appears similar to the broadband noise identified in the earth's tail, except that at Venus the levels are usually higher.
Obliquely Propagating Electromagnetic Waves in Magnetized Kappa Plasmas
NASA Astrophysics Data System (ADS)
Gaelzer, R.
2015-12-01
The effects of velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subjectof intense research by the space plasma community. Such functions, known as kappa or superthermal distributions, have beenfound to provide a better fitting to the VDF measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. An anisotropic kappa VDF contains a large amount of free energy that can excite waves in the solar wind. Conversely, the wave-particle interaction is important to determine the shape of theobserved particle distributions.In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities, such as the firehose, can operate simultaneously both in the parallel and oblique directions.In a recent work [1], we have obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, we generalize the formalism introduced by [1] for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles.We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions,such as the bi-kappa or product-bi-kappa. [1] R. Gaelzer and L. F. Ziebell, Journal of Geophysical Research 119, 9334
Principles of electromagnetic waves in metasurfaces
NASA Astrophysics Data System (ADS)
Luo, XianGang
2015-09-01
Metasurfaces are artificially structured thin films with unusual properties on demand. Different from metamaterials, the metasurfaces change the electromagnetic waves mainly by exploiting the boundary conditions, rather than the constitutive parameters in three dimensional (3D) spaces. Despite the intrinsic similarities in the operational principles of metasurfaces, there is not a universal theory available for the understanding and design of these devices. In this article, we propose the concept of metasurface waves (M-waves) and provide a general theory to describe the principles of such waves. Most importantly, it is shown that the M-waves share some fundamental properties such as extremely short wavelength, abrupt phase change and strong chromatic dispersion, which making them different from traditional bulk waves. We show that these properties can enable many important applications such as subwavelength imaging and lithography, planar optical devices, broadband anti-reflection, absorption and polarization conversion. Our results demonstrated unambiguously that traditional laws of diffraction, refraction, reflection and absorption can be overcome by using the novel properties of M-waves. The theory provided here may pave the way for the design of new electromagnetic devices and further improvement of metasurfaces.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern
Propagation characteristics of electromagnetic waves in concrete
NASA Astrophysics Data System (ADS)
Halabe, Udaya B.; Maser, Kenneth; Kausel, Eduardo
1989-03-01
This research develops models which can predict the velocity and attenuation of electromagnetic waves in concrete as a function of frequency, temperature, moisture content, chloride content and concrete mix constituents. These models were proposed to predict the electromagnetic properties of concrete by aggregating the electromagnetic properties of its constituents. Water and the dissolved salt are the constituents having the most prominent effect on the dielectric behavior of concrete. A comparative study of three existing three-phase mixture models was carried out. Numerical results were generated using the most representative Discrete model. These results have shown that the real part of complex concrete permittivity (and therefore the velocity of electromagnetic waves) is independent of salinity or frequency in the 0.6 to 3.0 GHz frequency range. On the other hand, these results show that the attenuation coefficient and dielectric conductivity vary almost linearly with frequency in this same frequency range. The real part of concrete permittivity and the attenuation coefficient also show a linear dependence with respect to the degree of saturation of water in the concrete mixture. This suggests that future research should focus on approximating the complex models presented in this research by simple equations.
Electromagnetic waves in a strong Schwarzschild plasma
Daniel, J.; Tajima, T.
1996-11-01
The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.
Obliquely propagating electromagnetic waves in magnetized kappa plasmas
NASA Astrophysics Data System (ADS)
Gaelzer, R.; Ziebell, L. F.
2016-02-01
Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities can operate simultaneously both in the parallel and oblique directions. In a recent work, Gaelzer and Ziebell [J. Geophys. Res. 119, 9334 (2014)] obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, the formalism is generalized for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles. An isotropic distribution is considered, but the methods used here can be easily applied to more general anisotropic distributions such as the bi-kappa or product-bi-kappa.
Electromagnetic waves in a polydisperse dusty plasma
Prudskikh, V. V.; Shchekinov, Yu. A.
2013-10-15
The properties of low-frequency electromagnetic waves in a polydisperse dusty plasma are studied. The dispersion relation for the waves propagating at an arbitrary angle to the external magnetic field is derived, with the coefficients explicitly determined by the dust-size distribution function. The dependence of wave dispersion on properties of the dust-size distribution function is analysed. It is shown that the cutoff for an oblique propagation in plasma with a wide scatter of dust sizes takes place at a much lower frequency than in a plasma with monosized dust particles. It is found that dispersion properties of a transversal magnetosonic wave mode around dust–cyclotron frequencies considerably differ from those in a plasma with monosized dust. In a plasma with low mass fraction of dust particles, the dispersion is smooth without the cutoff and the resonance intrinsic for a plasma with monosized dust. Increase of the dust fraction results in splitting of the dispersion curve on to two branches. Further increase of the dust fraction leads to emergence of the third branch located between the cutoffs and restricted from the lower and higher frequencies by two resonances. The dependence of the frequencies of cutoffs and resonances on the width of the dust-size distribution, its slope and the dust mass fraction are analysed. It is shown that the transparency frequency windows in a plasma with polydisperse dust are wider for transversal elecromagnetic waves, but narrower for longitudinal or oblique waves.
Kinetic theory of electromagnetic ion waves in relativistic plasmas
Marklund, Mattias; Shukla, Padma K.
2006-09-15
A kinetic theory for electromagnetic ion waves in a cold relativistic plasma is derived. The kinetic equation for the broadband electromagnetic ion waves is coupled to the slow density response via an acoustic equation driven by a ponderomotive force-like term linear in the electromagnetic field amplitude. The modulational instability growth rate is derived for an arbitrary spectrum of waves. The monochromatic and random phase cases are studied.
Electromagnetic wave interactions with a metamaterial cloak.
Chen, Hongsheng; Wu, Bae-Ian; Zhang, Baile; Kong, Jin Au
2007-08-10
We establish analytically the interactions of electromagnetic wave with a general class of spherical cloaks based on a full wave Mie scattering model. We show that for an ideal cloak the total scattering cross section is absolutely zero, but for a cloak with a specific type of loss, only the backscattering is exactly zero, which indicates the cloak can still be rendered invisible with a monostatic (transmitter and receiver in the same location) detection. Furthermore, we show that for a cloak with imperfect parameters the bistatic (transmitter and receiver in different locations) scattering performance is more sensitive to eta(t)=square root micro(t)/epsilon(t) than n(t)=square root micro(t)epsilon(t). PMID:17930824
Observations of ELF electromagnetic waves associated with equatorial spread F
NASA Technical Reports Server (NTRS)
Kelley, M. C.; Holtet, J. A.; Tsurutani, B. T.
1979-01-01
Extreme low frequency electromagnetic waves have been observed below the F peak in the equatorial ionosphere by instruments onboard OGO-6. Electrostatic wave observations indicate that the steep gradient was unstable to the process which causes equatorial spread F above the region where the electromagnetic waves were observed. The data are very similar to observations near the polar cusp and give further evidence that ELF waves are excluded from regions of rapid and irregular density increases. Low level electromagnetic waves with similar properties were occasionally observed on the nightside by the OVI-17 electric field sensor and may be plasmaspheric hiss which has propagated to low altitude.
Anatomic variability in the deposition of radio frequency electromagnetic energy in mammals as been well documented. ecent study [D'Andrea et al. 1985] reported specific absorption rat (SAR) hotspots in the brain, rectum, and tail of rat carcasses exposed to 360- and to 2,450-MHz...
Calculation of Electromagnetic Quasistatic Plasma Waves*
NASA Astrophysics Data System (ADS)
Cooley, J.; Antonsen, T. M., Jr.; Mori, W.
2001-10-01
Plasma based particle acceleration requires the generation of plasma wave wakes which maintain their coherence over long distances. For example in Laser Wake Field Acceleration (LWFA) schemes the laser pulse must propagate tens of centimeters, which coresponds to many Rayleigh lengths, and in Plasma Wake Field Acceleration (PWFA) the particle beam must be propagated many meters. These wakes, and their effect on the driver (Laser or particle beam) can be simulated efficiently in the quasistatic approximation [1]. In this approximation the driver does not evolve during the time a plasma electron spends in the driver. We discuss here various numerical algorithms for determining the full electromagnetic wake in this case. The problem is complicated in that the particle trajectories and wake fields must be determined iteratively when the wake becomes electromagnetic. The effect of different choices for the gauge will be presented. [1] "Kinetic Modeling of Intense, Short Laser Pulses Propagating in Tenuous Plasma", P. Mora and T. M. Antonsen Jr., Phys Plasma 4, 217 (1997) *Work supported by NSF and DOE
High latitude electromagnetic plasma wave emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
High-energy tail distributions and resonant wave particle interaction
NASA Technical Reports Server (NTRS)
Leubner, M. P.
1983-01-01
High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.
Plasma wave aided two photon decay of an electromagnetic wave in a plasma
Kumar, K. K. Magesh; Singh, Rohtash; Krishan, Vinod
2014-11-15
The presence of a Langmuir wave in an unmagnetized plasma is shown to allow parametric decay of an electromagnetic wave into two electromagnetic waves, which is otherwise not allowed due to wave number mismatch. The decay occurs at plasma densities below one ninth the critical density and the decay waves propagate at finite angles to the pump laser. Above the threshold, the growth rate scales linearly with the amplitude of the Langmuir wave and the amplitude of the pump electromagnetic wave. The frequency ω of the lower frequency decay wave increases with the angle its propagation vector makes with that of the pump. The growth rate, however, decreases with ω.
Electromagnetic wave probing of Earth's environment
NASA Technical Reports Server (NTRS)
Kong, Jin AU
1988-01-01
Polarimetric radar backscattering from anisotropic Earth terrain such as snow-covered ice fields and vegetation fields with row structures provides a challenging modeling problem from the electromagnetic wave point of view. Earth terrain covers are modeled as random media characterized by different dielectric constants and correlation functions. A three-layer model will be used to simulate a vegetation field or a snow-covered ice field with the top layer being snow or leaves, the middle layer being ice of trunks, and the bottom layer being sea water or ground. The volume scattering effects of snow-covered sea ice are studied with a three-layer random medium model for microwave remote sensing. The strong fluctuation theory and the bilocal approximation are applied to calculate the effective permittivities for snow and sea ice. The wave scattering theory in conjunction with the distorted Born approximation is then used to compute bistatic coefficients and backscattering cross sections. Theoretical results are illustrated by matching experimental data for dry snow-covered thick first-year sea ice at Point Barrow. The results derived can also be applied to the passive remote sensing by calculating the emissivity from the bistatic scattering coefficients.
Electromagnetic waves in dusty magnetoplasmas using two-potential theory
Zubia, K.; Jamil, M.; Salimullah, M.
2009-09-15
The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Nonlinear Landau damping of transverse electromagnetic waves in dusty plasmas
Tsintsadze, N. L.; Chaudhary, Rozina; Shah, H. A.; Murtaza, G.
2009-04-15
High-frequency transverse electromagnetic waves in a collisionless isotropic dusty plasma damp via nonlinear Landau damping. Taking into account the latter we have obtained a generalized set of Zakharov equations with local and nonlocal terms. Then from this coupled set of Zakharov equations a kinetic nonlinear Schroedinger equation with local and nonlocal nonlinearities is derived for special cases. It is shown that the modulation of the amplitude of the electromagnetic waves leads to the modulation instability through the nonlinear Landau damping term. The maximum growth rate is obtained for the special case when the group velocity of electromagnetic waves is close to the dust acoustic velocity.
Electromagnetic waves in optical fibres in a magnetic field
NASA Astrophysics Data System (ADS)
Gorelik, V. S.; Burdanova, M. G.
2016-03-01
A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion-polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field.
Propagation of electromagnetic wave in coaxial conical transverse electromagnetic wave cell
NASA Astrophysics Data System (ADS)
Liu, Xingxun; Zhang, Tao; Qi, Wangquan
2015-11-01
In order to solve the problem of broadband field probes calibration with only selected discrete frequencies above 1 GHz, a sweep-frequency calibration technology based on a coaxial conical(co-conical) cell is researched. Existing research is only qualitative because of the complexity of theoretical calculations. For designing a high performance cell, a mathematic model of high-order modes transmission is built according to the geometrical construction of co-conical. The associated Legendre control functions of high-order modes are calculated by using recursion methodology and the numerical calculation roots are presented with different half angles of inner and outer conductor. Relationship between roots and high-order modes transmission is analyzed, when the half angles of inner conductor and outer conductor are θ 1=1.5136° and θ 2=8° respectively, the co-conical cell has better performance for fewer transmitting high-order modes. The propagation process of the first three transmitting modes wave is simulated in CST-MWS software from the same structured co-conical. The simulation plots show that transmission of high-order modes appears with electromagnetic wave reflection, then different high-order mode transmission has different cut-off region and each cut-off region is determined by its cut-off wavelength. This paper presents numerical calculation data and theoretical analysis to design key structural parameters for the co-conical transverse electromagnetic wave cell(co-conical TEM cell).
Traveling waves and their tails in locally resonant granular systems
Xu, H.; Kevrekidis, P. G.; Stefanov, A.
2015-04-22
In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less
Traveling waves and their tails in locally resonant granular systems
Xu, H.; Kevrekidis, P. G.; Stefanov, A.
2015-04-22
In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely the avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Lee, Wonjae Krasheninnikov, Sergei I.; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Numerical modeling of electromagnetic waves scattering from 2D coastal breaking sea waves
NASA Astrophysics Data System (ADS)
Khairi, Refzul; Coatanhay, Arnaud; Khenchaf, Ali; Scolan, Yves Marie
2013-11-01
The aim of this work is to model the interaction of L-band electromagnetic waves with coastal breaking sea waves. The breaking sea waves' profiles are generated using the desingularized technique and the electromagnetic waves scattering is computed using the high-order method of moments (HO-MoM) combined with non uniform rational basis spline (NURBS) geometry. Our study mainly focuses upon the electromagnetic waves behavior in the crest and the cavity of breaking sea waves. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.
Scattering of electromagnetic wave by dielectric cylinder in eikonal approximation
NASA Astrophysics Data System (ADS)
Syshchenko, V. V.
2016-07-01
The scattering of the plane electromagnetic wave on a spatially extended, fiber lake target is considered. The formula for the scattering cross section is obtained using the approximation analogous to eikonal one in quantum mechanics.
MHD-waves in the geomagnetic tail: A review
NASA Astrophysics Data System (ADS)
Leonovich, Anatoliy; Mazur, Vitaliy; Kozlov, Daniil
2015-03-01
This article presents the review of experimental and theoretical studies on ultra-lowfrequency MHD oscillations of the geomagnetic tail. We consider the Kelvin-Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the "magic frequencies"range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and "flapping" oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.
Surface electromagnetic wave equations in a warm magnetized quantum plasma
Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.
2014-07-15
Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.
Propagation of electromagnetic waves across a diffuse plasma boundary
Zito, R.R.
1983-01-01
Electromagnetic waves may undergo partial reflection from a plasma whose interface with free space is diffuse. Waves reflected from different differential slabs of plasma may interfere constructively or destructively resulting in a total reflected intensity which is either relatively large or a complete null, respectively. The latter effect is called antireflection.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves. PMID:17799185
Electromagnetic inertio-gravity waves in the Earth's ionosphere
NASA Astrophysics Data System (ADS)
Kaladze, T. D.; Tsamalashvili, L. V.; Kahlon, L. Z.
2011-05-01
Propagation of electromagnetic inertio-gravity (IG) waves in the partially ionized ionospheric E- and F-layers is considered in the shallow water approximation. Accounting of the field-aligned current is the main novelty of the investigation. Existence of two new eigen-frequencies for fast and slow electromagnetic waves is revealed in the ionospheric E-layer. It is shown that in F-layer slowly damping new type of inertial-fast magnetosonic waves can propagate. Slowly damping low-frequency oscillations connected with the field-aligned conductivity are found. Broad spectrum of oscillations is investigated.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Microstructural diagnosis using electromagnetic wave scattering methodologies
NASA Astrophysics Data System (ADS)
Chou, Kevin Jenn Chien
Scattered electromagnetic waves were used in the present work to characterize the microstructural effects on the performance of metallic materials. A Nisb3Al alloy with a dendritic microstructure has exhibited better creep resistance compared to similar alloys having equiaxed microstructure of grains. X-ray diffraction was applied along the dendritic arms to investigate their orientations. Both the interlocking boundaries and crystallographic texture of the dendritic arms resulted in the superior creep behavior. Non-invasive laser scattering was also used to optically probe smooth fatigue specimens to detect and monitor the development of fatigue damage. Inconel 718 specimens with a cylindrical geometry were tested under low cycle fatigue conditions with constant strain amplitudes ranging from 0.3% to 1%. A detection scheme to minimize computational time and memory was used to achieve in-situ data analysis. Both laser scanning and surface replication procedures were periodically performed throughout the life of the specimens. The scattered light signals were compared with microcrack length and density data from surface replicate SEM images. Three characteristic stages of the scattering signal were observed. The scanning laser light scattering (SLLS) technique was sufficiently robust, and well suited for the non-planar geometry in the leading edge. The SLLS signals correlated well with microstructural features over a large surface area. A physical model of microcrack size distribution within a surface grain was developed. The results of the model suggest that a SLLS signal saturation which coincides with the onset of microcrack density saturation corresponds to a transition from predominately single grain microcracks to microcracks that transverse multiple grains. The saturation of SLLS signal versus mean surface crack length also provided the following findings. Low cycle fatigue cracks were contained and saturated in those surface grains with the highest Schmid
Electromagnetic envelope solitary waves with transverse perturbation in a plasma
Borhanian, J.
2013-04-15
The system of fluid-Maxwell equations governing the two-dimensional dynamics of electromagnetic waves in a plasma is analyzed by means of multiple scale perturbation method. It is shown that the evolution of the amplitude of wave field is governed by a two-dimensional nonlinear Schroedinger equation. The stability of bright envelope solitons is studied using the variational method. It is found that the development of transverse periodic perturbations on bright solitons is faster for a plasma with near critical density. Dynamics of electromagnetic bright solitons is investigated in the long-wave approximation. Our model predicts the appearance of collapse of electromagnetic waves in plasmas and describes the collapse dynamics at initial stages.
Joint evaluation of fracture azimuth by electromagnetic wave and elastic wave
NASA Astrophysics Data System (ADS)
Feng, Xuan; Liu, Cai; Wang, Qiao; Wang, Kai; Lu, Qi; Xue, Jian; Liang, Wenjing; Yu, Yue; Ren, Qianci
2013-12-01
With the multi-wave, multi-component seismic wave exploration, one can apply the anisotropy of fracture media to analyze the attributes of the fracture media, including the fracture azimuth. In the meantime, the techniques of full-polarimetric electromagnetic wave, including full-polarimetric borehole radar, can also be used to analyze the attributes of the fracture. However, the analysis precision of both the multi-component elastic wave exploration and full-polarimetric electromagnetic wave exploration is prone to the influence of noise and other factors. So far, some researchers have conducted studies on the joint inversion of electromagnetic waves and seismic waves. This paper develops evaluation techniques of fracture azimuth by electromagnetic wave, elastic wave, and joint analysis of coincident elastic reflection and electromagnetic data. Firstly, based on the shear wave splitting of elastic waves, this paper develops a statistical analysis technique which applies Pearson correlation coefficient to count and analyze the azimuth angle of fracture. Secondly, based on the information of electromagnetic polarization rotated by fracture, this paper develops a statistical analysis method of full-polarimetric electromagnetic waves which applies the maximum amplitude ratio between the co-polarization and cross-polarization to analyze the azimuth angle of fracture. Furthermore, based on the analysis result of the elastic wave and full-polarimetric electromagnetic wave, this paper develops a joint analysis technique which adopts the standard deviation. At last, authors in this study conduct joint detection experiments on the coincident fracture medium by using the ultrasonic and full-polarimetric ground penetrating radar. The experimental result indicates that both single geophysical methods are capable of analyzing the fracture azimuth angle, but the joint analysis is more accurate.
Relativistic electromagnetic waves in an electron-ion plasma
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
NASA Astrophysics Data System (ADS)
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak
2015-09-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Reflection of electromagnetic waves from mixtures of plane gravitational and scalar waves
Gurtug, O.; Halilsoy, M.; Unver, O.
2006-08-15
We consider colliding wave packets consisting of hybrid mixtures of electromagnetic, gravitational, and scalar waves. Irrespective of the scalar field, the electromagnetic wave still reflects from the gravitational wave. Some reflection processes are given for different choice of packets in which the Coulomb-like component {psi}{sub 2} vanishes. Exact solution for multiple reflection of an electromagnetic wave from successive impulsive gravitational waves is obtained in a closed form. It is shown that a successive sign flip in the Maxwell spinor arises as a result of encountering with an impulsive train (i.e. the Dirac's comb curvature) of gravitational waves. Such an observable effect may be helpful in the detection of gravitational wave bursts.
Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities
Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.
2001-06-11
Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also {open_quotes}scar{close_quotes} the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum.
Modelling of electromagnetic wave interactions with the human body
NASA Astrophysics Data System (ADS)
Wong, Man-Faï; Wiart, Joe
2005-07-01
Electromagnetic modelling plays a more and more important role in the study of complex systems involving Maxwell phenomena, such as the interactions of radiowaves with the human body. Simulation then becomes a credible means in decision making, related to the engineering of complex electromagnetic systems. To increase confidence in the models with respect to reality, validation and uncertainty estimation methods are needed. The different dimensions of model validation are illustrated through dosimetry, i.e., quantification of human exposure to electromagnetic waves. To cite this article: M.-F. Wong, J. Wiart, C. R. Physique 6 (2005).
Aharonov-Bohm phase for an electromagnetic wave background
NASA Astrophysics Data System (ADS)
Bright, Max; Singleton, Douglas; Yoshida, Atsushi
2015-09-01
The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in time-dependent potentials. In particular, we focus on the case of a charged particle moving in the time-varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential (i.e. oint A_μ dx ^μ ) and the field (i.e. 1/2int F_{μ ν } dσ ^{μ ν }) forms of the Aharonov-Bohm phase. We give conditions in terms of the parameters of the system (frequency of the electromagnetic wave, the size of the space-time loop, amplitude of the electromagnetic wave) under which the time-varying Aharonov-Bohm effect could be observed.
Electromagnetic Wave Propagation over Oil-Covered Sea Surface
NASA Astrophysics Data System (ADS)
Yang, Chao; Jin, Wei; Guo, Li-Xin
2012-07-01
An exhaustive analysis of electromagnetic wave propagation over an oil-covered sea surface in an evaporation duct environment is studied in comparison with those of the oil-free sea surface. Instead of using the traditional rms height formula, which only considers the oil-free sea surface, we reduce the rms height of a one-dimensional oil-covered sea surface based on the Pierson-Moskowitz sea spectrum. Then, the electromagnetic wave propagation over the oil-covered sea surface in an evaporation duct environment with different wind speeds and frequencies is discussed by the parabolic equation for a fully oil-covered sea surface. In addition, the influence of the fractional filling factor on the electromagnetic wave propagation over non-fully oil-covered sea surface is also investigated. The results show that the oil film can reduce the sea surface roughness and strengthen the trapping effect in an evaporation duct environment.
A metasurface carpet cloak for electromagnetic, acoustic and water waves.
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-01
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429
A metasurface carpet cloak for electromagnetic, acoustic and water waves
NASA Astrophysics Data System (ADS)
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-01
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.
A metasurface carpet cloak for electromagnetic, acoustic and water waves
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-01
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429
Cell therapy for spinal cord injury informed by electromagnetic waves.
Finnegan, Jack; Ye, Hui
2016-10-01
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments. PMID:27599240
Identifying electromagnetic transients related to gravitational-wave emission
NASA Astrophysics Data System (ADS)
Padilla, Cinthia; LIGO Scientific Collaboration; Virgo Collaboration
2011-04-01
Over the past several years the LIGO, Virgo and GEO600 gravitational-wave detectors have operated together as a worldwide network. The combined data from these detectors allows sky localization of astrophysical gravitational-wave sources. By running searches for transient gravitational waves shortly after the data is taken, sky locations can be communicated to electromagnetic observers early enough to allow measurement of any electromagnetic emission in the aftermath of a strong gravitational-wave signal. By measuring both the gravitational and the electromagnetic radiation we can learn a significant amount about their source. Over the past year, electromagnetic images of sky locations corresponding to low-threshold gravitational-wave triggers have been acquired. These are now being analyzed for optical transients. Challenges include unrelated disturbances such as asteroids, satellites, clouds and other objects in space. In this poster we describe the procedure for identifying EM transients with a developed pipeline designed to compare images and sky catalogs to distinguish stars in nearby galaxies and reject background events.
NASA Astrophysics Data System (ADS)
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.
Masood, Waqas; Eliasson, Bengt; Shukla, Padma K
2010-06-01
A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars. PMID:20866534
D'Andrea, J.A.; Emmerson, R.Y.; DeWitt, J.R.; Gandhi, O.P.
1987-01-01
Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study reported specific absorption rate (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2450 MHz than temperatures resulting from exposure to 700 MHz. This effect was found for whole-body-averaged SARs as low as 6 W/kg at 360 MHz and 10 W/kg at 2450 MHz. In contrast, brain temperatures in the anesthetized rats were not different from those measured in the rest of the body following microwave exposure.
D'Andrea, J.A.; Emmerson, R.Y.; DeWitt, J.R.; Gandhi, O.P.
1987-01-01
Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study reported specific absorption rat (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2,450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2,450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2,450 MHz than temperatures resulting from exposure to 700 MHz. The effect was found for whole-body-averages SARs as low as 6 W/kg at 360 MHz and 10 W/g at 2,450 MHz.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Molding acoustic, electromagnetic and water waves with a single cloak.
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-01-01
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-01-01
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934
Geometric phase in a flat space for electromagnetic scalar waves.
Luis, Alfredo
2006-08-15
We show the existence of a fundamental geometric phase for classical electromagnetic fields arising after cyclic paths in a plane instead of a sphere. This phase is dispersive, is not related to polarization, distinguishes geometrical from wave optics, and can be easily measured in an interferometric arrangement. PMID:16880859
Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-01-01
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783
Scattering of electromagnetic waves from a turbulent plasma slab.
NASA Technical Reports Server (NTRS)
Liu, C. H.
1972-01-01
Scattering of electromagnetic waves from a turbulent plasma slab is studied. Part of the effects of the multiple scattering is taken into account. The reflection coefficient is found to be increased and its variation with respect to the slab thickness is smoothed out by the random scattering.
Method for forming electromagnetic-wave-screening composite
NASA Astrophysics Data System (ADS)
1984-12-01
A number of ways to give plastic parts the ability to screen out high frequency electromagnetic waves are outlined. Another method which consists of a one stage injection molding process for forming a thermoplastic sandwich whose plastic core, containing metal flakes, is coated with a surface layer of ABS is introduced. The method employs the Battenfeld two component injection molding machine.
Multiple scattering of electromagnetic waves by rain
NASA Technical Reports Server (NTRS)
Tsolakis, A.; Stutzman, W. L.
1982-01-01
As the operating frequencies of communications systems move higher into the millimeter wave region, the effects of multiple scattering in precipitation media become more significant. In this paper, general formulations are presented for single, first-order multiple, and complete multiple scattering. Included specifically are distributions of particle size, shape, and orientation angle, as well as variation in the medium density along the direction of wave propagation. Calculations are performed for rain. It is shown that the effects of higher-order scattering are not noticeable in either attenuation or channel isolation on a dual-polarized system until frequencies of about 30 GHz are reached. The complete multiple-scattering formulation presented gives accurate results at high millimeter wave frequencies as well as including realistic medium parameter distributions. Furthermore, it is numerically efficient.
Electromagnetic ion cyclotron waves in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu
2015-07-15
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.
Electromagnetic Waves Broadcast by a VCR.
ERIC Educational Resources Information Center
Brown, Michael H.
1996-01-01
Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)
Numerical computation of guided electromagnetic waves
McCartin, B.J.
1996-12-31
A computational procedure is presented for the determination of the propagating modes of cylindrical electromagnetic waveguides. The geometrical cross-section of the waveguide is completely arbitrary and may be filled with any homogeneous isotropic material, either dielectric or magnetic or both. A modal decomposition is employed thus reducing the problem to uncoupled Helmholtz equations for transverse electric (TE) and transverse magnetic (TM) modes. The discretization of these two-dimensional Helmholtz equations is accomplished by application of the Control Region Approximation. This is a generalized finite-difference procedure involving the tessellation of the cross-section by dual Dirichlet and Delaunay regions. The discrete propagation constants and modes are determined by an inverse power iteration. Power flow, wall loss, and dielectric loss are then calculated. Numerical results indicating the efficacy of this approach are represented.
Reflection of electromagnetic waves at a biaxial-isotropic interface
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1983-01-01
The reflection of electromagnetic waves at a plane boundary between isotropic and biaxial media has been investigated using the kDB approach. The general case has been considered in which the principal dielectric axes of the biaxial medium are oriented at an arbitrary angle to the normal of the plane boundary. In general, two characteristic waves propagate in the biaxial medium, leading to coupling of vertical and horizontal polarizations in the reflected waves. Some special cases are illustrated. The results have applications to problems in remote sensing and integrated optics.
Reflection and interference of electromagnetic waves in inhomogeneous media
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Kyle, H. L.
1973-01-01
Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.
Tunable resonant transmission of electromagnetic waves through a magnetized plasma.
Kee, Chul-Sik; Li, Shou-Zhe; Kim, Kihong; Lim, H
2003-03-01
We theoretically investigate the resonant transmission of circularly polarized electromagnetic waves in the electromagnetic stop band of a magnetized plasma slab using the invariant embedding method. The frequency and quality factor of the resonant mode for the right-handed (left-handed) circularly polarized wave created by inserting a dielectric layer into the plasma increase (decrease) as the magnitude of the external magnetic field increases. These phenomena are compared with the characteristics of resonant modes in metallic and dielectric Fabry-Perot resonators to show that they are due to the change of plasma reflectivity. We also discuss the damping effect due to the collisions of the constituent particles of the plasma on the resonant transmission of circularly polarized waves. PMID:12689184
Electron beam injection during active experiments. I - Electromagnetic wave emissions
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Kellogg, P. J.
1990-01-01
The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.
Reflective properties of electromagnet-optical waves in superconducting plasmas
Ohnuma, Toshiro; Ohno, J.
1995-12-31
Superconducting (SC) plasmas were discovered recently, the studies of which are becoming important. As for the SC plasmas, the penetration depth of magnetic fields to the superconductor due to the fundamental Meissner effect is given by {lambda} = c/{omega}{sub ps}, ({omega}{sub ps}: the SC electron plasma frequency). The investigations on the SC plasmas are discussed in this report. Electromagnet-optical field distributions near the SC plasma boundary are numerically investigated, when electromagnet-optical beam waves with finite size are radiated to SC plasma with ambient incident angle. Typical electric field patterns for TE incident wave are shown. The figure indicates the existence of the parallel shift of the reflective position of the beam wave for the case of the perfect reflection. The reflective shift is found to result from field penetrations to the superconductor which depend on the parameter of the SC plasmas.
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Pirozhkov, Alexander S.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Schroeder, Carl B.; Esarey, Eric; Califano, Francesco; Pegoraro, Francesco
2012-11-15
In thermal plasma, the structure of the density singularity formed in a relativistically large amplitude plasma wave close to the wavebreaking limit leads to a refraction coefficient with discontinuous spatial derivatives. This results in a non-exponentially small above-barrier reflection of an electromagnetic wave interacting with the nonlinear plasma wave.
Electromagnetic waves with large relative bandwidth (Invited paper)
NASA Astrophysics Data System (ADS)
Harmuth, H. F.
1985-09-01
The history of the use of sinusoidal functions and the suitability of these functions for the transmission of information are discussed, taking into account also possibilities for a use of nonsinusoidal functions. It is shown that the available technology is capable of radiating and selectively receiving nonsinusoidal waves. As a basis for an evaluation of the application possibilities for nonsinusoidal electromagnetic waves, attention is given to a concept which makes it possible to distinguish quantitatively between theoretical sinusoidal waves, practical (almost) sinusoidal waves, and nonsinusoidal waves. A suitable measure is provided by the concept of the relative bandwidth. It is pointed out that semiconductor technology has made it possible to use radio signals with large relative bandwidth or nonsinusoidal signals, instead of conventional signals with small relative bandwidth or (almost) sinusoidal signals. The practical level of this new development was reached with the ground-probing radar. Many more applications are possible.
Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Hamilton, D. C.
1993-01-01
AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
NASA Astrophysics Data System (ADS)
Erofeev, V. I.
2015-09-01
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
Erofeev, V. I.
2015-09-15
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.
Parametric instability of a relativistically strong electromagnetic wave.
NASA Technical Reports Server (NTRS)
Max, C. E.
1973-01-01
The stability of a circularly polarized electromagnetic wave that is strong enough to make plasma electrons, but not ions, relativistic is studied. Small perturbations are considered which propagate parallel to the large-amplitude driver. A relativistically strong wave can be unstable on time scales as short as twice its own oscillation period, and decays into a forward-going plasma oscillation and either one or two electromagnetic waves. Ion motion introduces an additional instability which can be important at short perturbation wavelengths, where the driver would otherwise be stable. The unstable ion and electron modes both have potential for producing anomalously large acceleration of relativistic particles, as well as significant amounts of backscattered light. These effects may be important in two applications: (1) the use of intense lasers to heat or compress plasma, and (2) the plasma surrounding a pulsar, if the pulsar is losing energy by radiation of electromagnetic waves at its rotation frequency. Instability persists in the nonrelativistic regime, reducing to stimulated Raman scattering as a special case.
Magnesiothermic reduction of rice husk ash for electromagnetic wave adsorption
NASA Astrophysics Data System (ADS)
Liu, Shu-Ting; Yan, Kang-kang; Zhang, Yuan hu; Jin, Shi-di; Ye, Ying; Chen, Xue-Gang
2015-11-01
The increase in electromagnetic pollution due to the extensive exploitation of electromagnetic (EM) waves in modern technology creates correspondingly urgent need for developing effective EM wave absorbers. In this study, we carried out the magnesiothermic reduced the rice husk ash under different temperatures (400-800 °C) and investigated the electromagnetic wave adsorption of the products. The EM absorbing for all samples are mainly depend on the dielectric loss, which is ascribed to the carbon and silicon carbide content. RA samples (raw rice husk ashed in air and was magesiothermic reduced in different temperatures) exhibit poor dielectric properties, whereas RN samples (raw rice husk ashed in nitrogen and was magesiothermic reduced in different temperatures) with higher content of carbon and silicon carbide display considerable higher dielectric loss values and broader bandwidth for RL<-5 dB and -10 dB. For RN samples, the maximum bandwidth for -5 dB and -10 dB decrease with carbon contents, while the optimum thickness decrease with increasing SiC content. The optimum thickness of RN400-800 for EM absorption is 1.5-2.0 mm, with maximum RL of between -28.9 and -68.4 dB, bandwidth of 6.7-13 GHz for RL<-5 dB and 3.2-6.2 GHz for RL<-10 dB. The magnesiothermic reduction will enhance the potential application of rice husk ash in EM wave absorption and the samples benefited from low bulk density and low thickness. With the advantages of light-weight, high EM wave absorption, low cost, RN400-800 could be promising candidates for light-weight EM wave absorption materials over many conventional EM wave absorbers.
The momentum of an electromagnetic wave inside a dielectric
Testa, Massimo
2013-09-15
The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from the conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
Electromagnetic scattering and depolarization across rough surfaces: Full wave analysis
NASA Astrophysics Data System (ADS)
Bahar, Ezekiel; Huang, Guorong; Lee, Bom Son
1995-05-01
Full wave solutions are derived for vertically and horizontally polarized waves diffusely scattered across an interface that is two-dimensionally rough separating two different propagating media. Since the normal to the rough surface is not restricted to the reference plane of incidence, the waves are depolarized upon scattering; and the single scattered radiation fields are expressed as integrals of a surface element transmission scattering matrix that also accounts for coupling between the vertically and horizontally polarized waves. The integrations are over the rough surface area as well as the complete two-dimensional wave spectra of the radiation fields. The full wave solutions satisfy the duality and reciprocity relationships in electromagnetic theory, and the surface element scattering matrix is invariant to coordinate transformations. It is shown that in the high-frequency limit the full wave solutions reduce to the physical optics solutions, while in the low-frequency limit (for small mean square heights and slopes) the full wave solutions reduce to Rice's (1951) small perturbation solutions. Thus, the full wave solution accounts for specular point scattering as well as diffuse, Bragg-type scattering in a unified, self-consistent manner. It is therefore not necessary to use hybrid, perturbation and physical optics approaches (based on two-scale models of composite surfaces with large and small roughness scales) to determine the like- and cross-polarized fields scattered across the rough surface.
Perfect absorbers for electromagnetic wave, based on metamaterials
NASA Astrophysics Data System (ADS)
Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak
2015-10-01
Metamaterials (MMs), which are not existing in nature, but artificially-engineered materials for controlling electromagnetic wave. MMs have attracted more and more research attentions, since they have shown greatly novel properties such as left-handed behavior, negative refractive index, classical analog of electromagnetically-induced transparency, and extraordinary transmission. Among MMs, MM perfect absorbers (MMPAs), which are useful to enhance the efficiency in capturing solar energy and applied to various application areas, have been rapidly developed. In general, the structure of MMPAs is very simple, which consist of three layers: patterned conductor layer, which is used for minimizing the reflection by impedance matching, dielectric layer and continuous conductor layer for blocking the transmission. In addition, the unit-cell size of general MM absorbers is only 1/3-1/5 of the working wavelength of incident electromagnetic wave. Nevertheless, the properties of general MMPAs are in problems of the absorption only at specific frequency, the narrow absorption band, the polarization sensitivity and so on. In this review paper, the introduction of recent researches in the field of MMPAs operating in different frequency ranges is presented. Moreover, the researches on the improved electromagnetic properties are discussed, which comprise multi-band, broadband, tunable, polarization-insensitive, and wide-incident-angle MMPAs. The perspectives and the future works for the further investigations and the various real applications of MMPAs are also presented.
Anisotropic electromagnetic wave propagation modeling using parabolic approximations
NASA Astrophysics Data System (ADS)
Brent, R. I.; Siegmann, W. L.; Jacobson, M. J.; Jacyna, G. M.
1990-12-01
A new method for the investigation of anisotropic electromagnetic wave propagation in the atmosphere is developed using parabolic approximations. Model equations for the electric field components are formulated which include the effects of both the inhomogeneous atmosphere and the static magnetic field of the earth. Application of parabolic-type approximations produces different systems of coupled parabolic equations. Each is valid for different relative magnitudes of components of the electric field. All admissible cases are then synthesized into one system which can be numerically examined, yielding solutions without a priori knowledge of electric field ratios. A specific example is presented and examined to understand static magnetic field effects on electromagnetic wave propagation. The influences of the earth's magnetic field are discussed and displayed in terms of electric components and the Poynting vector. Results demonstrate that the geomagnetic field can significantly influence HF atmospheric propagation.
Modeling electromagnetic ion cyclotron waves in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, Konstantin; Engebretson, Mark; Zhang, Ming; Rassoul, Hamid
The evolution of He+-mode electromagnetic ion cyclotron (EMIC) waves is studied inside the geostationary orbit using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. [2009], however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, non bounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the “bi-ion latitudes” (the latitudes where the given wave frequency is equal to the O+-He+ bi-ion frequency) in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model if the thermal background level is used, but routinely observed in the Earth’s magnetosphere. To overcome this model-observation discrepancy we suggest a nonlinear energy cascade from the lower frequency range of ultra low frequency waves into the frequency range of EMIC wave generation as a possible mechanism supplying the needed level of seed fluctuations that guarantees growth of EMIC waves during one pass through the near equatorial region. The EMIC wave development from a suprathermal background level shows that EMIC waves are quasi-field-aligned near the equator, while they are oblique at high latitudes, and the Poynting flux is predominantly directed away from the near equatorial source region in agreement with observations. (2) An abundance of O+ strongly controls the energy of oblique He+-mode EMIC waves that propagate to the equator after their reflection at “bi-ion latitudes”, and so it controls a fraction of wave energy in the oblique normals. (3) The RC O+ not only causes damping of the He+-mode EMIC waves but also causes wave generation
Model of electromagnetic ion cyclotron waves in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.
2014-09-01
The evolution of He+-mode electromagnetic ion cyclotron (EMIC) waves is studied inside the geostationary orbit using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. (2009), however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, nonbounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the "bi-ion latitudes" (the latitudes where the given wave frequency is equal to the O+-He+ bi-ion frequency) in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model if the thermal background level is used, but routinely observed in the Earth's magnetosphere. To overcome this model-observation discrepancy we suggest a nonlinear energy cascade from the lower frequency range of ultralow frequency waves into the frequency range of EMIC wave generation as a possible mechanism supplying the needed level of seed fluctuations that guarantees growth of EMIC waves during one pass through the near equatorial region. The EMIC wave development from a suprathermal background level shows that EMIC waves are quasi field aligned near the equator, while they are oblique at high latitudes, and the Poynting flux is predominantly directed away from the near equatorial source region in agreement with observations. (2) An abundance of O+ strongly controls the energy of oblique He+-mode EMIC waves that propagate to the equator after their reflection at bi-ion latitudes, and so it controls a fraction of wave energy in the oblique normals. (3) The RC O+ not only causes damping of the He+-mode EMIC waves but also causes wave generation in the region
Gradient instabilities of electromagnetic waves in Hall thruster plasma
Tomilin, Dmitry
2013-04-15
This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.
NASA Astrophysics Data System (ADS)
Murav'eva, O. V.; Len'kov, S. V.; Murashov, S. A.
2016-01-01
A theory of propagation of torsional waves excited by an electromagnetic-acoustic transducer in a pipe is proposed. This theory takes into account the excitation parameters, geometry, viscosity, and the elastic characteristics of an object. The main testing parameters (the frequency and geometry of the transducer) that determine the possibilities of guided-wave testing of pipelines of various dimensions using torsional waves are theoretically substantiated.
Quantum metamaterials: Electromagnetic waves in a Josephson qubit line
NASA Astrophysics Data System (ADS)
Rakhmanov, A. L.; Zagoskin, A. M.; Savel'Ev, Sergey; Nori, Franco
2008-04-01
We consider the propagation of a classical electromagnetic wave through a transmission line, formed by identical superconducting charge qubits inside a superconducting resonator. Since the qubits can be in a coherent superposition of quantum states, we show that such a system demonstrates interesting effects, such as a “breathing” photonic crystal with an oscillating band gap and a “quantum Archimedean screw” that transports, at an arbitrary controlled velocity, Josephson plasma waves through a transmission line. The key ingredient of these effects is that the optical properties of the Josephson transmission line are controlled by the quantum coherent state of the qubits.
Engineering biphoton wave packets with an electromagnetically induced grating
Wen Jianming; Xiao Min; Zhai Yanhua; Du Shengwang
2010-10-15
We propose to shape biphoton wave packets with an electromagnetically induced grating in a four-level double-{Lambda} cold atomic system. We show that the induced hybrid grating plays an essential role in directing the new fields into different angular positions, especially for the zeroth-order diffraction. A number of interesting features appears in the shaped two-photon wave forms. For example, broadening or narrowing the spectrum would be possible in the proposed scheme even without the use of a cavity.
Nonminimally coupled gravitational and electromagnetic fields: pp-wave solutions
Dereli, Tekin; Sert, Oezcan
2011-03-15
We give the Lagrangian formulation of a generic nonminimally extended Einstein-Maxwell theory with an action that is linear in the curvature and quadratic in the electromagnetic field. We derive the coupled field equations by a first-order variational principle using the method of Lagrange multipliers. We look for solutions describing plane-fronted Einstein-Maxwell waves with parallel rays. We give a family of exact pp-wave solutions associated with a partially massless spin-2 photon and a partially massive spin-2 graviton.
Collision of strong gravitational and electromagnetic waves in the expanding universe
NASA Astrophysics Data System (ADS)
Alekseev, G. A.
2016-03-01
An exact analytical model of the process of collision and nonlinear interaction of gravitational and/or electromagnetic soliton waves and strong nonsoliton electromagnetic traveling waves of arbitrary profile propagating in the expanding universe (the symmetric Kasner spacetime) is presented. In contrast to intuitive expectations that rather strong traveling waves can destroy the soliton, it occurs that the soliton survives during its interaction with electromagnetic waves of arbitrary amplitude and profile, but its parameters begin to evolve under the influence of this interaction. If a traveling electromagnetic wave possesses a finite duration, the soliton parameters after interaction take constant values again, but these values in general are different from those before the interaction. Based on exact solutions of the Einstein-Maxwell equations, our model demonstrates a series of nonlinear phenomena, such as (a) creation of gravitational waves in the collision of two electromagnetic waves, (b) creation of electromagnetic soliton waves in the collision of a gravitational soliton with traveling electromagnetic waves, (c) scattering of a part of a soliton wave in the direction of propagation of a traveling electromagnetic wave, and (d) quasiperiodic oscillating character of fields in the wave interaction region and multiple mutual transformations of gravitational and electromagnetic waves in this region. The figures illustrate these features of nonlinear wave interactions in general relativity.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Model of Electromagnetic Ion Cyclotron Waves in the Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H.
2014-12-01
The He-band electromagnetic ion cyclotron (EMIC) waves are studied using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach by Gamayunov et al. [2009], however, we do not use the bounce-averaged kinetic equation for waves but instead use a complete, non bounce-averaged, equation to model EMIC wave power spectral density. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the "bi-ion latitudes" (the latitudes where the given wave frequency is equal to the O+-He+ bi-ion frequency) in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model if the thermal background level is used, but routinely observed in the Earth's magnetosphere. To overcome this model-observation discrepancy we suggest a nonlinear energy cascade from the lower frequency range of ULF waves into the frequency range of EMIC wave generation as a possible mechanism supplying the needed level of seed fluctuations that guarantees growth of EMIC waves during one pass through the near equatorial region. The EMIC wave development from a suprathermal background level shows that EMIC waves are quasi-field-aligned near the equator, while they are oblique at high latitudes, and the Poynting flux is predominantly directed away from the near equatorial source region in agreement with observations. (2) An abundance of O+ strongly controls the energy of oblique He-band EMIC waves that propagate to the equator after their reflection at "bi-ion latitudes", and so it controls a fraction of wave energy in the oblique normals. (3) The RC O+ not only causes damping of the He-band EMIC waves but also causes wave generation in the region of highly oblique wave normal angles, typically for θ > 82o, where a growth rate γ > 10-2 rad/s is frequently observed. The
Early electromagnetic waves from earthquake rupturing: I. theoretical formulations
NASA Astrophysics Data System (ADS)
Gao, Yongxin; Chen, Xiaofei; Hu, Hengshan; Zhang, Jie
2013-03-01
Earthquake taking place in a fluid-saturated porous medium can generate electromagnetic (EM) waves because of the electrokinetic effect. These generated EM waves arrive at a distant observatory much earlier than the seismic waves because their velocities are much faster than those of the seismic waves. They may explain the early EM signals which have been detected before the detection of the seismic waves after the occurrences of earthquakes. In this study, we attempt to analyse such a kind of early EM signals induced by an earthquake because of the electrokinetic effect. The earthquake is assumed to be a fault slip and is modelled by a moment tensor point source. With Pride's equations quantifying the coupling between seismic and EM waves, we first present a real-axis integration (RAI) algorithm to calculate the seismoelectric wavefields in a layered porous formation. Although full waveforms can be calculated by such a RAI technique, individual waves cannot be easily separated from the full waveforms. The need to compute the individual waves is eminent for the purpose of investigating the early EM waves, because these EM waves are usually several orders weaker than and are masked by the EM signals accompanying the seismic waves in the full waveforms. Therefore, we further develop a branch-cut integration (BCI) algorithm, by transforming the original wavenumber integral along the real axis in the complex wavenumber plane for the RAI technique to a sum of integrals along the vertical branch cuts and the residues of the poles. For performing the integrations along the vertical branch cuts, determination of the Riemann sheets are explained and displayed. Finally, the seismoelectric wavefields are represented in forms allowing calculating individual waves.
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
Electromagnetic Ion Cyclotron Waves in the Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H.
2013-12-01
The evolution of He+ mode electromagnetic ion cyclotron (EMIC) waves is studied in the Earth's magnetosphere using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. (2009), however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, non bounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The results based on this new approach demonstrate overall agreement with statistical studies of EMIC waves in the inner magnetosphere. The major findings from our study can be summarized as follows. (1) The RC O+ not only causes damping of the He+ mode EMIC waves but also causes wave generation in the region of highly oblique wave normal angles, typically for θ > 82deg, where a growth rate γ > 0.01 rad/s is frequently observed. The wave instability is driven by the loss-cone feature in the RC O+ distribution function. (2) The O+ density strongly controls the He+ mode EMIC wave energetics. For the plasmaspheric O+ fraction less than 1.5%, the wave damping by RC O+ in the vicinity of the O+-He+ bi-ion frequency becomes strong enough leading to a strongly suppressed EMIC wave activity. This suggests that both the RC and thermal O+ should be carefully specified in the model, and RC O+ should be included not only in the imaginary part of wave dispersion relation but in the real part as well. (3) The thermal background level for the He+ mode EMIC waves is too low to allow waves to grow up to the observable level during one pass between the "bi-ion latitudes" in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model but routinely observed in the Earth's magnetosphere. Our estimates show that a nonlinear energy cascade from lower frequency pulsations (in the Pc 4 to lower Pc 2 frequency range) into the frequency range of Pc
NASA Astrophysics Data System (ADS)
Pandey, R. S.; Kaur, Rajbir
2015-10-01
Electromagnetic electron cyclotron (EMEC) waves with temperature anisotropy in the magnetosphere of Uranus have been studied in present work. EMEC waves are investigated using method of characteristic solution by kinetic approach, in presence of AC field. In 1986, Voyager 2 encounter with Uranus revealed that magnetosphere of Uranus exhibit non-Maxwellian high-energy tail distribution. So, the dispersion relation, real frequency and growth rate are evaluated using Lorentzian Kappa distribution function. Effect of temperature anisotropy, AC frequency and number density of particles is found. The study is also extended to oblique propagation of EMEC waves in presence and absence of AC field. Through comprehensive mathematical analysis it is found that when EMEC wave propagates parallel to intrinsic magnetic field of Uranus, its growth is more enhanced than in case of oblique propagation. Results are also discussed in context to magnetosphere of Earth and also gives theoretical explanation to existence of high energetic particles observed by Voyager 2 in the magnetosphere of Uranus. The results can present a further insight into the nature of electron-cyclotron instability condition for the whistler mode waves in the outer radiation belts of Uranus or other space plasmas.
ERIC Educational Resources Information Center
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating…
In-situ observations of nonlinear wave particle interaction of electromagnetic ion cyclotron waves
NASA Astrophysics Data System (ADS)
Shoji, M.; Miyoshi, Y.; Keika, K.; Katoh, Y.; Angelopoulos, V.; Nakamura, S.; Omura, Y.
2014-12-01
Direct measurement method for the electromagnetic wave and space plasma interaction has been suggested by a computer simulation study [Katoh et al., 2013], so-called Wave Particle Interaction Analysis (WPIA). We perform the WPIA for rising tone electromagnetic ion cyclotron (EMIC) waves (so-called EMIC triggered emissions), of which generation mechanism is essentially the same as the chorus emissions. THEMIS observation data (EFI, FGM, and ESA) are used for the WPIA. In the WPIA, we calculate (1) the inner product of the wave electric field and the velocity of the energetic protons: Wint, (2) the inner product of the wave magnetic field and the velocity of the energetic protons: WBint, and (3) the phase angle ζ between the wave magnetic field and the perpendicular velocity of the energetic protons. The values of (1) and (2) indicate the existence of the resonant currents inducing the nonlinear wave growth and the frequency change, respectively. We find the negative Wint and positive WBint at the nonlinear growing phase of the triggered emission as predicted in the theory [e.g. Omura and Nunn, 2011, Shoji and Omura, 2013]. In histogram of (3), we show the existence of the electromagnetic proton holes in the phase space generating the resonant currents. We also perform a hybrid simulation and evaluate WPIA method for EMIC waves. The simulation results show good agreement with the in-situ THEMIS observations.
Interaction of electromagnetic and acoustic waves in a stochastic atmosphere
NASA Technical Reports Server (NTRS)
Bhatnagar, N.; Peterson, A. M.
1979-01-01
In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.
Scattering of electromagnetic waves from a randomly perturbed quasiperiodic surface
NASA Technical Reports Server (NTRS)
Shin, R. T.; Kong, J. A.
1984-01-01
Electromagnetic-wave scattering by a quasi-periodic surface with random perturbations (as in the remote sensing of plowed fields) is investigated analytically, applying the Kirchhoff approximation and modeling the plowed fields by means of Gaussian random variation, sinusoidal variation, and Gaussian random variation about the spatial frequency. Coherent and incoherent bistatic scattering coefficients are derived in closed form by evaluating the physical-optics integral and shown to be proportional, in the geometric-optics limit, to the occurrence probability of slopes which reflect the incident wave specularly in the direction of the scattered wave. Backscattering cross sections are plotted as functions of incidence angle for a number of cases, demonstrating the strong effect of row direction.
Propagation of electromagnetic waves in P T -symmetric hyperbolic structures
NASA Astrophysics Data System (ADS)
Shramkova, O. V.; Tsironis, G. P.
2016-07-01
We investigate theoretically and numerically the propagation of electromagnetic waves in P T -symmetric periodic stacks composed of hyperbolic metamaterial layers separated by dielectric media with balanced loss and gain. We derive the characteristic frequencies governing the dispersion properties of the eigenwaves of P T -symmetric semiconductor-dielectric stacks. By tuning the loss/gain level and thicknesses of the layers, we study the evolution of the dispersion dependencies. We show that the effective-medium approach does not adequately describe the propagating waves in the P T -symmetric hypercrystals, even for wavelengths that are about 100 times larger than the period of the stack. We demonstrate the existence of anisotropic transmission resonances and above-unity reflection in P T -symmetric hyperbolic systems. The P T -symmetry-breaking transition of the scattering matrix is strongly influenced by the constitutive and geometrical parameters of the layers and the angles of wave incidence.
Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Berchem, J.; Gendrin, R.
1985-01-01
The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)
2002-01-01
A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.
On propagation of electromagnetic and gravitational waves in the expanding Universe
NASA Astrophysics Data System (ADS)
Gladyshev, V. O.
2016-07-01
The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object.
Cosmological model with gravitational, electromagnetic, and scalar waves
Charach, C.; Malin, S.
1980-06-15
Following Gowdy, Berger, and Misner we construct a new exact solution of the Einstein--Maxwell--massless-scalar-field equations which corresponds to an inhomogeneous closed universe filled with scalar, gravitational, and electromagnetic waves. It is obtained as a result of homogeneity breaking in the corresponding Bianchi type-I universe. The combined effect of the scalar and vector fields on the dynamics of the evolution process and the interactions between the fields involved are systematically investigated. The structure of the initial singularity is studied in detail in both the homogeneous and inhomogeneous cases. The final stage of evolution is studied and interpreted in terms of the quanta of scalar, gravitational, and electromagnetic fields. Possible extensions of the present model to the conformally coupled scalar field and the Abelian solutions of the Yang-Mills field equations are pointed out.
Electromagnetic Counterparts of Gravitational Wave Sources: Mergers of Compact Objects
NASA Astrophysics Data System (ADS)
Kamble, Atish; Kaplan, David L. A.
2013-01-01
Mergers of compact objects are considered prime sources of gravitational waves (GW) and will soon be targets of GW observatories such as the Advanced-LIGO and VIRGO. Finding electromagnetic counterparts of these GW sources will be important to understand their nature. We discuss possible electromagnetic signatures of the mergers. We show that the BH-BH mergers could have luminosities which exceed Eddington luminosity from unity to several orders of magnitude depending on the masses of the merging BHs. As a result these mergers could be explosive, release up to 1051 erg of energy and shine as radio transients. At any given time we expect about a few such transients in the sky at GHz frequencies, which could be detected to be about 300 Mpc. It has also been argued that these radio transients would look alike radio supernovae with comparable detection rates. Multi-band follow-up could, however, distinguish between the mergers and supernovae.
Role of surface electromagnetic waves in metamaterial absorbers.
Chen, Wen-Chen; Cardin, Andrew; Koirala, Machhindra; Liu, Xianliang; Tyler, Talmage; West, Kevin G; Bingham, Christopher M; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan M; Padilla, Willie J
2016-03-21
Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave. PMID:27136864
Propagation of electromagnetic waves in a weakly ionized dusty plasma
NASA Astrophysics Data System (ADS)
Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Wu, Jian; Li, Hui; Pu, Shaozhi
2015-11-01
Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments.
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
ERIC Educational Resources Information Center
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Dispersion relations for electromagnetic wave propagation in chiral plasmas
Gao, M. X.; Guo, B. Peng, L.; Cai, X.
2014-11-15
The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.
Electromagnetic wave method for mapping subterranean earth formations
Shuck, Lowell Z.; Fasching, George E.; Balanis, Constantine A.
1977-01-01
The present invention is directed to a method for remotely mapping subterranean coal beds prior to and during in situ gasification operations. This method is achieved by emplacing highly directional electromagnetic wave transmitters and receivers in bore holes penetrating the coal beds and then mapping the anomalies surrounding each bore hole by selectively rotating and vertically displacing the directional transmitter in a transmitting mode within the bore hole, and thereafter, initiating the gasification of the coal at bore holes separate from those containing the transmitters and receivers and then utilizing the latter for monitoring the burn front as it progresses toward the transmitters and receivers.
Electromagnetic form factors of the Δ with D-waves
Ramalho, Gilberto T.F.; Pena, Maria Teresa; Gross, Franz L.
2010-06-01
The electromagnetic form factors of the Δ baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the Δ wave function. We predict all the four Δ multipole form factors: the electric charge G_{E0}, the magnetic dipole G_{M1}, the electric quadrupole G_{E2} and the magnetic octupole G_{M3}. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.
Interaction of electromagnetic and acoustic waves in a stochastic atmosphere
NASA Technical Reports Server (NTRS)
Bhatnagar, N.; Frankel, M. S.; Peterson, A. M.
1977-01-01
This paper considers the interaction of electromagnetic and acoustic waves where a Radio Acoustic Sounding System (RASS) is operated in a stochastic environment characterized by turbulence, winds and mean-temperature gradients. It has been shown that for a RASS operating at acoustic frequencies below a few kilohertz propagating under typical atmospheric conditions, turbulence has little effect on the strength of the received radio signal scattered from the pulse at heights up to a few kilometers. This result implies that the received RF signal level (power) is primarily a function of sound intensity which decreases as x exp minus 2 where x is the altitude.
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices. PMID:27607498
Electromagnetic plasma wave emissions from the auroral field lines
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1978-01-01
The most important types of auroral radio emissions are reviewed. Particular attention is given to the following four types of electromagnetic emissions: auroral hiss, saucers, ELF noise bands, and auroral kilometric radiation. It is shown that the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances in the range of 2.5-5 earth radii, probably in direct association with auroral-particle acceleration by parallel electric fields. The auroral hiss appears to be generated by amplified Cerenkov radiation. Several mechanisms are proposed for the auroral kilometric radiation, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.
Modeling of electromagnetic E-layer waves before earthquakes
NASA Astrophysics Data System (ADS)
Meister, Claudia-Veronika; Hoffmann, Dieter H. H.
2013-04-01
A dielectric model for electromagnetic (EM) waves in the Earth's E-layer is developed. It is assumed that these waves are driven by acoustic-type waves, which are caused by earthquake precursors. The dynamics of the plasma system and the EM waves is described using the multi-component magnetohydrodynamic (MHD) theory. The acoustic waves are introduced as neutral gas wind. The momentum transfer between the charged particles in the MHD system is mainly caused via the collisions with the neutral gas. From the MHD system, relations for the velocity fluctuations of the particles are found, which consist of products of the electric field fluctuations times coefficients α which only depend on the plasma background parameters. A quick FORTRAN program is developed, to calculate these coefficients (solution of 9x9-matrix equations). Models of the altitudinal scales of the background plasma parameters and the fluctuations of the plasma parameters and the EM field are introduced. Besides, in case of the electric wave field, a method is obtained to calculate the altitudinal scale ? of the amplitude (based on the Poisson equation and knowing the coefficients α). Finally, a general dispersion relation is found, where α, ? and the altitudinal profile of ? appear as parameters (which were found in the numerical model before). Thus, the dispersion relations of EM waves caused by acoustic-type ones during times of seismic activity may be studied numerically. Besides, an expression for the related temperature fluctuations is derived, which depends on the dispersion of the excited EM waves, α, ? and the background plasma parameters. So, heating processes in the atmosphere may be investigated.
NASA Technical Reports Server (NTRS)
Oya, H.
1971-01-01
The dispersion curves have been computed for a wide range of wavelengths from electromagnetic waves to electrostatic waves in a magnetoactive warm plasma with a Maxwellian velocity distribution function. The computation was carried out mainly for the perpendicular propagation mode. The upper hybrid resonance is the connection point of the electrostatic waves and the electromagnetic waves. The electrostatic waves not associated with the upper hybrid resonance are subjected to electron cyclotron damping when the wavelength becomes long. Oblique propagation is allowed for the electrostatic waves in a frequency range from the plasma frequency to the upper hybrid resonance frequency in the long-wavelength region where Landau damping can be neglected and where the electrostatic mode smoothly connects to the electromagnetic X-mode. In a slightly inhomogeneous plasma, the Bernstein-mode electrostatic wave can escape by being converted into the O-mode electromagnetic wave; two reflections take place during this escape process.
Klein tunneling and supercollimation of pseudospin-1 electromagnetic waves
NASA Astrophysics Data System (ADS)
Fang, A.; Zhang, Z. Q.; Louie, Steven G.; Chan, C. T.
2016-01-01
Pseudospin plays a central role in many novel physical properties of graphene and other artificial systems which have pseudospins of 1 /2 . Here we show that in certain photonic crystals (PCs) exhibiting conical dispersions at k =0 , the eigenmodes near the "Dirac-like point" can be described by an effective spin-orbit Hamiltonian with a higher dimension value S =1 , treating the wave propagation in positive index (upper cone), negative index (lower cone), and zero index (flat band) media within a unified framework. The three-component spinor gives rise to boundary conditions distinct from those of pseudospin 1 /2 , leading to wave transport behaviors as manifested in super Klein tunneling and supercollimation. For example, collimation can be realized more easily with pseudospin 1 than pseudospin 1 /2 . The effective medium description of the PCs allows us to further understand the physics of pseudospin-1 electromagnetic (EM) waves from the perspective of complementary materials. The special wave scattering properties of pseudospin-1 EM waves, in conjunction with the discovery that the effective photonic potential can be varied by a simple change of length scale, offer ways to control photon transport. As a useful platform to study pseudospin-1 physics, dielectric PCs are much easier to fabricate and characterize than ultracold atom systems proposed previously. The system also provides a platform to realize the concept of "complementary medium" using dielectric materials and has the unique advantage of low loss.
Parametric decay of an extraordinary electromagnetic wave in relativistic plasma
Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.
2015-03-15
Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
NASA Astrophysics Data System (ADS)
Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan
2016-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
NASA Astrophysics Data System (ADS)
Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan
2015-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric
A New Acoustic Lens Design for Electromagnetic Shock Wave Lithotripters
NASA Astrophysics Data System (ADS)
Zhong, Pei; Smith, Nathan; Simmons, Neal W.; Sankin, Georgy
2011-09-01
The 3rd-generation electromagnetic (EM) shock wave lithotripters often have narrow focal width and high peak pressure compared to the original Dornier HM-3. In addition, the pressure waveform produced by a typical EM lithotripter has a secondary compressive wave following the tensile component that suppresses lithotripter pulse induced cavitation, which may impact negatively on stone comminution. These characteristic changes in the modern EM lithotripters may contribute in part to their reduced effectiveness observed clinically. To overcome these two drawbacks, we have designed a new acoustic lens for the Siemens Modularis EM lithotripter that produces an idealized pressure waveform similar to that of the HM-3 with broad focal width and low peak pressure. At acoustic pulse energy of 53 mJ, the new lens design enlarges the -6 dB focal width of the Modularis by 47% while significantly reducing the second compressive wave in the lithotripter pulse throughout its focal plane. After 2000 shocks, in vitro comminution produced by the original and new lens designs are 100% and 99% at the lithotripter focus, and 52±16% and 77±8% (p<0.001) at 10 mm off axis, respectively. Corresponding values for stones that are translated to mimic respiratory motion during shock wave lithotripsy are 83±4% and 91±1% (p<0.01), demonstrating the significant performance improvement provided by the new lens design.
Low-Frequency Waves in the Tail Reconnection Region
NASA Astrophysics Data System (ADS)
Shinohara, I.; Fujimoto, M.; Nagai, T.; Zenitani, S.; Kojima, H.
2016-02-01
The wave modes in the ion-electron hybrid scales, such as the lower hybrid drift wave, has been the center of attention because they enable coupling between electron and ion dynamics and thus can be the agent for the anomalous resistivity. This chapter reports the results of a statistical survey on the wave activity in the lower hybrid frequency range. First, it briefly describes what the Geotail's best X-line crossing event tells us. Then, the chapter labels 16 flow reversals as "nonactive" flow reversal events, contrariwise to the 30 "active" X-line events. An important result in the chapter is the dawn-dusk asymmetry in the spatial distribution of the electric wave energy densities that coincides with the spatial structure of the reconnection region.
Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution
NASA Astrophysics Data System (ADS)
Li, Hui; Wu, Jian; Zhou, Zhongxiang; Yuan, Chengxun
2016-07-01
The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.
Electromagnetic waves near the proton cyclotron frequency: Stereo observations
Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.
2014-05-10
Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-01-01
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the “On” state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the “Off” state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms. PMID:27272350
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces
NASA Astrophysics Data System (ADS)
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-06-01
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the “On” state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the “Off” state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms.
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces.
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-01-01
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the "On" state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the "Off" state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms. PMID:27272350
Electromagnetic wave propagation through an overdense magnetized collisional plasma layer
Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P.
2009-08-15
The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.
Skin Depth of Electromagnetic Wave through Fractal Crustal Rocks
NASA Astrophysics Data System (ADS)
Takahara, Kazutaka; Muto, Jun; Nagahama, Hiroyuki
Skin depth of electromagnetic (EM) wave depends on frequency of EM wave ν and electrical properties of rocks and minerals. Previous studies have theoretically assumed that the skin depth Lα(ν) can be expressed as a function of frequency ν by Lα(ν) ∝ ν -φ and φ = 1 at high frequency or φ = 1/2 at low frequency. Based on fractal theory of rocks, we point out that the frequency exponent φ reflects internal fractal structures (i.e., occupancy, distribution and connectivity) of dielectric/conductive matrices of rocks such as pores, cracks, grain boundaries, inclusions and various fluids. Laboratory measurements of dielectric constant and conductivity of granite and previous studies on various rocks as a function of frequency show that φ is an exponent ranging from 1/4 to 1. By extrapolation of the skin depth by laboratory measurements at a given frequency into at other frequencies, the skin depth with variation in φ becomes longer or shorter than that by previous studies. Moreover, at a given frequency, the skin depth decreases with increasing a fractal dimension of fracture systems (decreasing φ). Thus, the skin depth of EM wave through the crust for detecting seismo-EM radiations and through rock salt domes for detecting ultra-high energy neutrinos depends on fractal structures of dielectric/conductive matrices in heterogeneous crust.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.
Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere
NASA Technical Reports Server (NTRS)
Wong, H. K.
1995-01-01
DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.
Electromagnetic Wave Propagation Through the ZR Z-Pinch Accelerator
Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Struve, K.; Corcoran, P. A.; Whitney, B.
2009-01-21
A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.
Electromagnetic wave propagation through the ZR Z-pinch accelerator.
Welch, Dale Robert; Clark, R. E.; Rose, David Vincent; Madrid, Elizabeth Ann; Corcoran, P. A.; Struve, Kenneth William; Stygar, William A.; Miller, C. L.; Whitney, B.
2008-08-01
A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.
Electromagnetic Wave Propagation Through the ZR Z-Pinch Accelerator
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Struve, K.; Corcoran, P. A.; Whitney, B.
2009-01-01
A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.
Identifying Electromagnetic Counterparts to Gravitational Wave Triggers With DECam
NASA Astrophysics Data System (ADS)
Cowperthwaite, Philip
2016-03-01
Identifying the electromagnetic counterpart to a gravitational wave (GW) event is one of the great observational challenges in modern astronomy. We report on our work to overcome this challenge by investigating the theoretical and practical issues associated with optical follow-up of a GW event. This includes a systematic study of the potential contaminant population and their impact on counterpart detectability in simulated observations. Additionally, we utilize data taken with the Dark Energy Camera (DECam) on the Blanco 4-m telescope at CTIO. These data serve as a mock follow-up to a GW event and assist in the characterization of contamination not captured in simulations. P.S.C. is grateful for support provided by the NSF through the Graduate Research Fellowship Program, Grant DGE1144152.
Electromagnetic plasma wave emissions from the auroral field lines
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1977-01-01
The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.
Nanofocusing of mid-infrared electromagnetic waves on graphene monolayer
Qiu, Weibin E-mail: wqiu@semi.ac.cn; Liu, Xianhe; Zhao, Jing; He, Shuhong; Ma, Yuhui; Wang, Jia-Xian; Pan, Jiaoqing
2014-01-27
Nanofocusing of mid-infrared (MIR) electromagnetic waves on graphene monolayer with gradient chemical potential is investigated with numerical simulation. On an isolated freestanding monolayer graphene sheet with spatially varied chemical potential, the focusing spot sizes of frequencies between 44 THz and 56 THz can reach around 1.6 nm and the intensity enhancement factors are between 2178 and 654. For 56 THz infrared, a group velocity as slow as 5×10{sup −5} times of the light speed in vacuum is obtained at the focusing point. When the graphene sheet is placed on top of an aluminum oxide substrate, the focusing spot size of 56 THz infrared reduces to 1.1 nm and the intensity enhancement factor is still as high as 220. This structure offers an approach for focusing light in the MIR regime beyond the diffraction limit without complicated device geometry engineering.
Design of Metamaterials for control of electromagnetic waves
NASA Astrophysics Data System (ADS)
Koschny, Thomas
2014-03-01
Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response
High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves
NASA Astrophysics Data System (ADS)
Erofeev, Vasily I.; Erofeev
2014-04-01
The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP 19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP 20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ >~ c/ωpe ).
Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory.
Lock, James A
2008-12-01
The partial wave scattering and interior amplitudes for the interaction of an electromagnetic plane wave with a modified Luneburg lens are derived in terms of the exterior and interior radial functions of the scalar radiation potentials evaluated at the lens surface. A Debye series decomposition of these amplitudes is also performed and discussed. The effective potential inside the lens for the transverse electric polarization is qualitatively examined, and the approximate lens size parameters of morphology-dependent resonances are determined. Finally, the physical optics model is used to calculate wave scattering in the vicinity of the ray theory orbiting condition in order to demonstrate the smoothing of ray theory discontinuities by the diffraction of scattered waves. PMID:19037389
Electromagnetic internal gravity waves in the Earth's ionospheric E-layer
NASA Astrophysics Data System (ADS)
Kaladze, T. D.; Tsamalashvili, L. V.; Kaladze, D. T.
2011-12-01
In the Earth's ionospheric E-layer existence of the new waves connecting with the electromagnetic nature of internal gravity waves is shown. They represent the mixture of the ordinary internal gravity waves and the new type of dispersive Alfven waves.
Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range
NASA Technical Reports Server (NTRS)
1994-01-01
During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.
Thermoelastic Stress in a Functionally Graded Infinite Plate with Electromagnetic Wave Absorption
NASA Astrophysics Data System (ADS)
Tian, Hong-Yan; Wang, Xing-Zhe; Zhou, You-He
2012-11-01
We present an analysis of thermal and thermoelastic behaviors of a functionally graded infinite plate taking into account electromagnetic wave absorption. To treat with the inhomogeneity of functionally graded wave-absorbing (FGWA) materials, the plate is approximated by subdividing it into thin homogeneous layers to solve the governing equations together with proper boundary and connecting conditions. The results illustrate that the FGWA plate is a broadband type absorber with electromagnetic wave absorption. By choosing proper material gradation character and the thickness of the FGWA plate, it is possible to obtain a good performance of electromagnetic wave absorption and thermoelastic stress characteristics.
Serov, A.V.
1995-12-31
The time variation of the spartial distribution of an electron beam reflected by an inhomogeneous wave or traverse the wave was investigated. The injected beam is perpendicular to the direction of propagation of the wave. The interaction between an electron beam and an electromagnetic wave not only produces electron oscillation but also substantially changes the electron phase and energy distribution. It is shown that under specific conditions one part of particles are reflected by an electromagnetic wave and other part of particles traverse the wave.
Interaction of High Intensity Electromagnetic Waves with Plasmas
G. Shvets
2008-10-03
The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
Effective dielectric tensor for electromagnetic wave propagation in random media
NASA Astrophysics Data System (ADS)
Rechtsman, M. C.; Torquato, S.
2008-04-01
We derive exact strong-contrast expansions for the effective dielectric tensor ɛe of electromagnetic waves propagating in a two-phase composite random medium with isotropic components explicitly in terms of certain integrals over the n-point correlation functions of the medium. Our focus is the long-wavelength regime, i.e., when the wavelength is much larger than the scale of inhomogeneities in the medium. Lower-order truncations of these expansions lead to approximations for the effective dielectric constant that depend upon whether the medium is below or above the percolation threshold. In particular, we apply two- and three-point approximations for ɛe to a variety of different three-dimensional model microstructures, including dispersions of hard spheres, hard oriented spheroids, and fully penetrable spheres as well as Debye random media, the random checkerboard, and power-law-correlated materials. We demonstrate the importance of employing n-point correlation functions of order higher than two for high dielectric-phase-contrast ratio. We show that disorder in the microstructure results in an imaginary component of the effective dielectric tensor that is directly related to the coarseness of the composite, i.e., local-volume-fraction fluctuations for infinitely large windows. The source of this imaginary component is the attenuation of the coherent homogenized wave due to scattering. We also remark on whether there is such attenuation in the case of a two-phase medium with a quasiperiodic structure.
Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.
2000-01-01
Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.
Relativistic effects on cyclotron wave absorption by an energetic electron tail in the PLT tokamak
Mazzucato, E.; Efthimion, P.; Fidone, I.
1984-07-01
Electron cyclotron wave absorption by mildly relativistic electrons in the low density regime of the PLT tokamak is investigated. Appreciable wave damping is found for vertical propagation at frequencies of 50, 60, and 70 GHz when the spatially constant cyclotron frequency is 89 GHz. The perpendicular temperature T/sub perpendicular/(v/sub parallel/) of the fast tail is also measured from emission of radiation in the same direction. The results obtained are in satisfactory agreement with the theory of wave emission and absorption.
Seismo-Electromagnetic Emissions Related to Seismic Waves can Trigger TLEs
Sorokin, Leonid V.
2009-04-27
This paper deals with the rare high intensity electromagnetic pulses associated with earthquakes, whose spectrum signature differs from that of atmospherics produced by lightning discharges. On the basis of actual data records, cases of the generation of anomalous seismo-electromagnetic emissions are described. These natural sub-millisecond electromagnetic pulses were associated with the passage of seismic waves from earthquakes to Moscow, the place where the electromagnetic field observations were made. Space-time coupling has been revealed between exact seismic waves from the earthquakes, lightning triggering and Transient Luminous Events triggering.
NASA Technical Reports Server (NTRS)
Bell, T. F.; Ngo, H. D.
1990-01-01
This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.
NASA Astrophysics Data System (ADS)
Bogdanov, O. V.; Kazinski, P. O.
2015-02-01
The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.
Enhancement of wave growth for warm plasmas with a high-energy tail distribution
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Summers, Danny
1991-01-01
The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.
Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma
NASA Astrophysics Data System (ADS)
Vladimirov, S. V.; Ishihara, O.
2016-07-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.
Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma.
Vladimirov, S V; Ishihara, O
2016-07-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed. PMID:27575225
A review of nondestructive testing approaches using mechanical and electromagnetic waves
NASA Astrophysics Data System (ADS)
Lau, Denvid; Qiu, Qiwen
2016-04-01
Mechanical and electromagnetic waves are commonly used in nondestructive testing (NDT) techniques for evaluating the materials and structures in civil engineering industry, due to their good examination of defects inside the matter. However, the individual use of mechanical wave or electromagnetic wave in NDT methods sometimes does not fulfill the satisfactory detection in practice because of the operational inconvenience and low sensitivity. It has been demonstrated that the combination of using both types of waves can achieve a better performance for NDT application and would be the future direction for defect detection, as the advantages of each physical wave are picked out whereas the weaknesses are mitigated. This paper discusses the fundamental mechanisms and the current applications of using mechanical and electromagnetic waves for defect detection, with the goal of providing the physical knowledge and the perspectives of developing the NDT applications with these two types of waves. Typical mechanical-wave-based NDT methods such as acoustic emission, ultrasonic technique, and impact-echo method are reviewed. In addition, NDT methods using electromagnetic wave, which include optical fiber sensing technique, laser speckle interferometry and laser reflection technique are discussed. Advantages and disadvantages of these methods are outlined. In particular, we focus on a recent NDT method called acoustic-laser technique, which utilizes both the mechanical and electromagnetic waves. The basic principles and some important experimental data recorded by the acoustic-laser technique are described and its future development in the field of defect detection in civil infrastructure is presented.
Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences
Sigalas, M.M.; Economou, E.N. ); Kafesaki, M. Department of Physics, University of Crete, 71409 Crete )
1994-08-01
We study two different scalar wave equations. One of them exhibits the main gross features of the simple scalar and elastic wave propagation in periodic composite media. The other behaves similarly to the electromagnetic waves in preferring the network topology and the higher volume fractions for developing spectral gaps.
Leaky surface electromagnetic waves on a high-index dielectric grating.
Maradudin, A A; Simonsen, I; Zierau, W
2016-05-15
We show theoretically that the periodically corrugated surface of a high-index dielectric medium can support a leaky surface electromagnetic wave. This wave is bound to the surface in the vacuum, but radiates into the dielectric. Despite this radiative damping, the surface wave can have a long lifetime. PMID:27176969
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
NASA Technical Reports Server (NTRS)
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
A wave guide model of lightning currents and their electromagnetic field
NASA Technical Reports Server (NTRS)
Volland, H.
1980-01-01
Lightning channels are considered as resonant wave guides in which only standing resonant wave modes can be excited. Two types of discharging currents develop. Type 1 is an aperiodic wave; type 2 is a damped oscillation. The electromagnetic radiation field of both types of currents is calculated and compared with the observation.
Merging ``real'' neutron stars for gravitational waves and electromagnetic counterparts
NASA Astrophysics Data System (ADS)
Duez, Matthew
2014-03-01
Having more-or-less succeeded in learning to stably evolve Einstein's equations, numerical relativity is taking the leap to including the physics of neutron stars, which will enable us to construct truly realistic pictures of neutron star-neutron star and black hole-neutron star binary mergers. The neutron star profile affects late inspirals and mergers, leaving its imprint on gravitational waveforms and electromagnetic counterpart signals. Furthermore, we expect neutrino radiation, magnetic field, and nuclear recombination effects to drive the post-merger evolution. In this talk, I will describe some recent neutron star merger simulations combining nuclear physics and general relativity. The goal is to connect assumptions about the nuclear equation of state and the premerger binary to resulting binary trajectories, matter outflows, accretion disk dynamics, and neutrino energy output. These can then hopefully be connected to observable signals in the form of gravitational waves, kilonovae, and gamma ray bursts. It is found that an interesting variety of disks, outflows, and neutrino bursts are possible. Connections to observables are being attempted by tracking nuclear reactions in tidal ejecta and estimating energy injection to gamma ray bursts from neutrino annihilation and other sources. Meanwhile, non-vacuum inspiral simulations are finally approaching the length and accuracy needed for interesting comparisons with binary black hole waveforms and post-Newtonian predictions, these being steps toward a reliable characterization of the imprint of the nuclear equation of state on the gravitational waves. The speaker acknowledges support from NASA Grant No. NNX11AC37G and NSF Grant PHY-1068243.
Excitation of surface electromagnetic waves in a graphene-based Bragg grating
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901
Coupling interaction of electromagnetic wave in a groove doublet configuration.
Ding, Lan; Liu, Jinsong; Wang, Dong; Wang, Kejia
2010-09-27
Based on the waveguide mode (WGM) method, coupling interaction of electromagnetic wave in a groove doublet configuration is studied. The formulation obtained by WGM method for a single groove [Prog. Electromagn. Res. 18, 1-17 (1998)] is extended to two grooves. By exploring the total scattered field of the configuration, coupling interaction ratios are defined to describe the interaction between grooves quantitatively. Since each groove in this groove doublet configuration is regarded as the basic unit, the effects of coupling interaction on the scattered fields of each groove can be investigated respectively. Numerical results show that an oscillatory behavior of coupling interaction is damped with increasing groove spacing. The incident and scattering angle dependence of coupling interaction is symmetrical when the two grooves are the same. For the case of two subwavelength grooves, the coupling interaction is not sensitive to the incident angle and scattering angle. Although the case of two grooves is discussed for simplicity, the formulation developed in this article can be generalized to arbitrary number of grooves. Moreover, our study offers a simple alternative to investigate and design metallic gratings, compact directional antennas, couplers, and other devices especially in low frequency regime such as THz and microwave domain. PMID:20941004
Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Gary, S. Peter
1987-01-01
The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.
Phase Spectroscopy Of Surface Electromagnetic Waves Using Fourier Spectrometer
NASA Astrophysics Data System (ADS)
Kuzik, L. A.; Yakovlev, V. A.; Zhizhin, G. N.; Chesters, M. A.; Parker, S. F.
1989-12-01
The surface electromagnetic wave (SEWS spectroscopy has shown high sensitivity to the state of the surface . The measurements of SEW attenuation andphase retardation during SEW propagation on the sample allow to obtain Ihe optical constants of surface layer or oxide on the metal. Up to now phase spectroscopy used laser sources of radiation, thus the interference measurements were done only in the spectral region where laser lines are available. To apply phase spectroscopy or SEW to the surface analysis widely it is necessary to expand the spectral region where they are studing. High sensitivity or modern Fourier transform spectrometers allows to detect SEW excited by broadband source. We have used Fourier transform spectrometers FTS-20V (Digilab) and Michelson-110 (BOMEM) with liquid nitrogen cooled detectors (Hg-Cd-Te). On silver surface SEW were excited using aperture coupling. The experiment is shown on the fig.1 . IR radiation from interferometer was focused on the gap between the sample 3 surface and the screen 1 placed at the distance of the order of 100 μm. In such a way on the gap propagating along a metal SEW and bulk radiation above the metal are excited.
Atmospheric Refractive Electromagnetic Wave Bending and Propagation Delay
NASA Astrophysics Data System (ADS)
Mangum, Jeffrey G.; Wallace, Patrick
2015-01-01
In this tutorial we summarize the physics and mathematics behind refractive electromagnetic wave bending and delay. Refractive bending and delay through the Earth's atmosphere at both radio/millimetric and optical/IR wavelengths are discussed, but with most emphasis on the former, and with Atacama Large Millimeter Array (ALMA) applications in mind. As modern astronomical measurements often require subarcsecond position accuracy, care is required when selecting refractive bending and delay algorithms. For the spherically-uniform model atmospheres generally used for all refractive bending and delay algorithms, positional accuracies lsim1'' are achievable when observing at zenith angles lsim75°. A number of computationally economical approximate methods for atmospheric refractive bending and delay calculation are presented, appropriate for astronomical observations under these conditions. For observations under more realistic atmospheric conditions, for zenith angles lsim75°, or when higher positional accuracy is required, more rigorous refractive bending and delay algorithms must be employed. For accurate calculation of the refractive bending, we recommend the Auer and Standish method, using numerical integration to ray-trace through a two-layer model atmosphere, with an atmospheric model determination of the atmospheric refractivity. For the delay calculation we recommend numerical integration through a model atmosphere.
Electromagnetic waves destabilized by runaway electrons in near-critical electric fields
Komar, A.; Pokol, G. I.; Fueloep, T.
2013-01-15
Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.
Electromagnetic-wave excitation in a large laboratory beam-plasma system
NASA Technical Reports Server (NTRS)
Whelan, D. A.; Stenzel, R. L.
1981-01-01
The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability
The difference of detecting water mist and smoke by electromagnetic wave in simulation experiments
NASA Astrophysics Data System (ADS)
Zhang, Jingdi; Cui, Bing; Xiao, Si
2015-10-01
Although mist is similar to smoke in morphology, their compositions are very different. Therefore there is a significant difference between mist and smoke when detected by electromagnetic wave. This paper puts forward a kind of feasible solution based on Ansoft HFSS software about how to determine the forest fire by distinguishing mist and smoke above the forest. The experiments simulate the difference between mist and smoke model when detected by electromagnetic wave in different wavelengths. We find the mist and smoke model cannot absorb or reflect electromagnetic wave efficiently in Megahertz band. While in Gigahertz band mist model began to absorb and reflect electromagnetic wave above 650 Gigahertz band, but no change in smoke model. And the biggest difference appears in Terahertz band.
Attenuation of an electromagnetic wave by charged dust particles in a sandstorm.
Xie, Li; Li, Xingcai; Zheng, Xiaojing
2010-12-10
We calculate the light scattering properties of the partially charged dust particles with the Mie theory for electromagnetic waves with different frequencies, and the attenuation coefficients of an electromagnetic wave propagating in a sandstorm are also calculated. The results show that the electric charges distributed on the sand surface have a significant effect on the attenuation of the electromagnetic wave, especially for a frequency lower than 40 GHz, and attenuation coefficients increase with the magnitude of charges carried by the dust particles (expressed by the charge-to-mass ratio in this paper). For the higher frequency electromagnetic wave, such as visible light, the effect of charges carried by sand particles on its attenuation is very little, which can be ignored. PMID:21151232
The influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction
NASA Astrophysics Data System (ADS)
Papadopoulos, D.
2012-01-01
The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the quantum electrodynamical (QED) effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.
Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction
Forsberg, M.; Brodin, G.; Papadopoulos, D.
2010-07-15
The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.
NASA Astrophysics Data System (ADS)
Nakanishi, Toshihiro; Kitano, Masao
2015-08-01
We propose a metamaterial to realize true electromagnetically induced transparency (EIT), where the incidence of an auxiliary electromagnetic wave called the control wave induces transparency for a probe wave. The analogy to the original EIT effect in an atomic medium is shown through analytical and numerical calculations derived from a circuit model for the metamaterial. We perform experiments to demonstrate the EIT effect of the metamaterial in the microwave region. The width and position of the transparent region can be controlled by the power and frequency of the control wave. We also observe asymmetric transmission spectra unique to the Fano resonance.
Fourier Transform Spectroscopy Using Surface Electromagnetic Waves With Aperture Excitation
NASA Astrophysics Data System (ADS)
Gushanskaya, N. Y.; Yakovlev, V. A.; Zhizhin, G. N.; Chesters, M. A.; Parker, S. F.
1989-12-01
The surface electromagnetic wave (SEW) spectroscopy 1 with laser sources of the IR radiat on has demonstrated high sensitivity to the state of the surface. The measurements of SEW attenuation on the sample give the information about the sample conductivity, surface roughness and about the presence of oxide or adsorbate on the metal surface, especially If their absorption bands are in the spectral region where laser lines are available. High sensitivity of modern Fourier transform spectrometers allows to detect SEW excited by broadband source. We have used Fourier transform spectrometers FTS-20V (Digilab) and IFS-113 (Bruker) with liquid nitrogen cooled detectors (Hg-CD-Te). On the metal (Ag, Al, Au, Cu, V, Be) surface SEW were excited using aperture coupling. The experiment is schematically shown on the fig.1. IR radiation from interferometer was focused on the gap between the sample 3 surface and the screen 1 placed at the distance of the order of 100 μm. In such a way on the gap propagating along a metal SEW and bulk radiation above the metal are excited. SEW runs from the aperture coupler to the edge of the sample (this distance could be varied from 2 to 30 mm) and decouples into the bulk radiation on the edge. The second screen 2 above the edge cut the bulk radiation from the aperture coupler. If we change the distance between the screens it is possible to obtain SEW absorption coefficient at different frequences from the output intensity variation. Fig.2 shows SEW propagation length spectra for Au and Cu. For these metals and also for Ag 2 propagation length is proportional to the square of the wavelength as it is predicted by Drude model. For Al such dependence is valid in the oxide transperancy region, in the region 800-1000 cm -1 natural oxide film give absorption band shown on Oxide films are well recognizible also on Be and V. Thermal growth or oxide film was studied (rig.4).
NASA Astrophysics Data System (ADS)
Hashimoto, K.; Yamaashi, K.; Kimura, I.
1987-08-01
Three-dimensional ray tracing is performed for electrostatic electron cyclotron harmonic waves and Z mode electromagnetic waves in the earth's magnetosphere using the hot dispersion relation. Propagation characteristics of cyclotron harmonic waves under the electrostatic approximation are considered, and it is noted that waves starting near the equator can propagate over a long distance without damping. Ray tracing without the electrostatic approximation confirms mode conversion from cyclotron harmonic waves to Z mode electromagnetic waves, and the conditions for the conversion are clarified. It is suggested that further conversion to the L-O mode continuum radiation is possible under strict constraints. The present results are not inconsistent with the conversion mechanism for the generation of escaping continuum radiation in the magnetosphere.
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
NASA Astrophysics Data System (ADS)
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-03-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric field induces a magnetic field, and a changing magnetic field induces an electric field." Students' intuition, developed from repeatedly solving simple problems involving Faraday's law in an introductory physics course, can lead them to expect the electric and magnetic waves to be out of phase, in contradiction to physical reality as described by Maxwell's equations. Below, we present the type of common Faraday's law problem that promotes this cognitive pitfall, and we suggest an approach that we believe leads to a deeper, more correct student understanding of electromagnetic waves.
Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro; Dey, Indranuj; Roy Chowdhury, Krishanu
2014-01-15
Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488 nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.
Elastic metamaterials for tuning circular polarization of electromagnetic waves
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
2016-01-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212
Elastic metamaterials for tuning circular polarization of electromagnetic waves.
Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A
2016-01-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212
Elastic metamaterials for tuning circular polarization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
2016-06-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection
NASA Astrophysics Data System (ADS)
Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.
2010-12-01
We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave
TE and TM beam decomposition of time-harmonic electromagnetic waves.
Melamed, Timor
2011-03-01
The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic electromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essential for applying Maxwell's boundary conditions for solving different scattering problems. The propagating field is described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based spatial-directional expansion lattice. These vector wave objects are evaluated either by applying differential operators to scalar beam propagators, or by using plane-wave spectral representations. Explicit asymptotic expressions for scalar, as well as for electromagnetic, Gaussian beam propagators are presented as well. PMID:21383822
Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R
2014-09-01
Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed. PMID:25314546
Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations
NASA Technical Reports Server (NTRS)
Tsurutani, B.
1993-01-01
Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.
ERIC Educational Resources Information Center
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Electromagnetic waves propagation nearby rotating gravitating astrophysical object with atmosphere
NASA Astrophysics Data System (ADS)
Gladyshev, V. O.; Tereshin, A. A.; Fomin, I. V.; Chelnokov, M. B.; Kauts, V. L.; Gladysheva, T. M.; Bazleva, D. D.
The aim of the article to explore the effects of gravitational lensing and attraction of electromagnetic radiation in the description of the propagation of radiation nearby the atmospheres of rotating astrophysical objects.
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
Shukla, Padma Kant; Kourakis, Ioannis; Stenflo, Lennart
2005-10-31
A generalized linear theory for electromagnetic waves in a homogeneous dusty magnetoplasma is presented. The waves described are characterized by a frequency which is much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies), and a long wavelength (in comparison with the ion gyroradius and the electron skin depth). The generalized Hall-magnetohydrodynamic (GH-MHD) equations are derived by assuming massive charged dust macroparticles to be immobile, and Fourier transformed to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.
Self-generation and management of spin-electromagnetic wave solitons and chaos
Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A.
2014-06-09
Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.
Electromagnetic wave propagation in a random distribution of C{sub 60} molecules
Moradi, Afshin
2014-10-15
Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the π and σ electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.
Dispersion characteristics of spin-electromagnetic waves in planar multiferroic structures
Nikitin, Andrey A.; Ustinov, Alexey B.; Vitko, Vitaliy V.; Semenov, Alexander A.; Mironenko, Igor G.; Belyavskiy, Pavel Yu.; Kalinikos, Boris A.; Stashkevich, Andrey A.; Lähderanta, E.
2015-11-14
A method of approximate boundary conditions is used to derive dispersion relations for spin-electromagnetic waves (SEWs) propagating in thin ferrite films and in multiferroic layered structures. A high accuracy of this method is proven. It was shown that the spin-electromagnetic wave propagating in the structure composed of a thin ferrite film, a thin ferroelectric film, and a slot transmission line is formed as a result of hybridization of the surface spin wave in the ferrite film and the electromagnetic wave in the slot-line. The structure demonstrates dual electric and magnetic field tunability of the SEW spectrum. The electric field tunability is provided by the thin ferroelectric film. Its efficiency increases with an increase in the thicknesses of the ferrite and ferroelectric films and with a decrease in the slot-line gap width. The theory is confirmed by experimental data.
NASA Astrophysics Data System (ADS)
Brennan, C.; Trinh, D.; Pham, V.; Condon, M.; Mittra, R.
2015-05-01
This paper proposes extending the forward scattering based Tabulated Interaction Method (TIM) for computing electromagnetic wave propagation over terrain profiles to one incorporating backscattering. The proposed method uses a common set of basis functions in conjunction with a "matching technique" to produce a linear system with much fewer unknowns than that created using pulse basis functions and therefore provides a very efficient and accurate method. The original TIM is shown to be a special case of the proposed method whereby the lower triangular portion of the reduced system is retained and solved. The proposed method is compared with the recently proposed Characteristic Basis Function Method with which it shares several features. The complexity and numerical analysis demonstrates that the proposed method has an extremely low computational complexity and storage.
NASA Technical Reports Server (NTRS)
Sentman, D. D.; Edmiston, J. P.; Frank, L. A.
1981-01-01
An instability analysis is presented for parallel and antiparallel propagating electromagnetic waves generated by reflected and diffuse suprathermal ions upstream of the earth's bow shock. Calculations are performed on the basis of upstream particle observations made by the ISEE 1 Quadrispheric Lepedea instrument and low-energy electron measurements made by the ISEE 1 electron spectrometer for a single period. The electromagnetic dispersion relation is computed and the unstable modes and growth times of the fastest growing waves are determined. It is found that the reflected ions destabilize the plasma most strongly at a wave frequency 0.1 that of the ion gyrofrequency by a resonant ion beam instability for waves propagating upstream and by a nonresonant firehose-like instability for waves propagating downstream. The diffuse ions also destabilize the plasma most strongly at the same frequency by means of resonant instabilities of both right- and left-hand polarized waves propagating away from the bow shock.
Koltsov, A.V.; Serov, A.V.
1995-12-31
The generation of frequency harmonics of a radiation when the electron beam traverse the inhomogeneous electromagnetic wave was investigated. The electromagnetic wave are linearly polarized. The plane beam of particles enters the wave at right angle with respect to the direction of propogation of the wave and the vector E of the wave. The spartial distribution of radiation from the higher harmonics and the power density contours are caculated.
NASA Astrophysics Data System (ADS)
Morozov, G. V.; Maev, R. G.; Drake, G. W. F.
2001-09-01
Reflection and transmission of a plane electromagnetic wave propagating in a layered dielectric structure with an arbitrary number of layers of various thicknesses are investigated. For the general case of oblique incidence of the wave on this structure, the reflection and transmission coefficients are calculated for both TE and TM waves using a multiple reflection method. An algorithm to apply the obtained formulas for numerical and analytical calculations is suggested.
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
Large-amplitude circularly polarized electromagnetic waves in magnetized plasma
Vasko, I. Y. Artemyev, A. V.; Zelenyi, L. M.
2014-05-15
We consider large-amplitude circularly polarized (LACP) waves propagating in a magnetized plasma. It is well-known that the dispersion relation for such waves coincides with the dispersion relation given by the linear theory. We develop the model of LACP wave containing a finite population of Cerenkov resonant particles. We find that the current of resonant particles modifies the linear dispersion relation. Dispersion curves of low-frequency (i.e., whistler and magnetosonic) waves are shifted toward larger values of the wave vector, i.e., waves with arbitrarily large wavelengths do not exist in this case. Dispersion curves of high-frequency waves are modified so that the wave phase velocity becomes smaller than the speed of light.
Coupling of electromagnetic waves and space charge waves in type O traveling wave tubes
NASA Technical Reports Server (NTRS)
Ricci, P.
1978-01-01
H. Derfler observed that a parameter defined by Pierce's perturbation method does not have the same physical significance as an analogous parameter described by a differently derived equation of W. Kleen. A modification of Pierce's method is proposed, which yields an equation of Derfler's type, and also allows quicker and easier calculation of a given traveling wave tube's parameters.
NASA Technical Reports Server (NTRS)
Temerin, M.; Mcfadden, J.; Boehm, M.; Carlson, C. W.; Lotko, W.
1986-01-01
Recent observations have suggested that flickering aurora is produced by a modulation of the field-aligned component of the electron flux within an auroral arc. It is proposed that a portion of the field-aligned electrons are of ionospheric origin and that these electrons are accelerated and their flux modulated by electromagnetic ion cyclotron waves that occur below the main acceleration region on auroral arc field lines. A model of the electromagnetic ion cyclotron wave shows that the parallel phase velocity of the wave increase as the wave propagates toward the ionosphere. A test particle calculation shows that ionospheric electrons trapped or reflected by the wave are accelerated to energies of several keV and that their flux is modulated at the wave frequency. The relative amplitudes of the model wave electric fields are consistent with the observations of small-scale low-frequency ionospheric and magnetospheric electric fields near auroral arcs of approximately 10 mV/m and 100 mV/m, respectively. The large-amplitude ion cyclotron waves also produce a ponderomotive force and a self-consistent ambipolar electric field. Energy considerations show that the downward energy flux in the electromagnetic ion cyclotron wave can be several percent of the total downward auroral electron energy flux.
Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A
2016-09-01
Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings. PMID:27607951
NASA Technical Reports Server (NTRS)
Borovsky, Joseph E.
1986-01-01
Numerical simulations of the damping of magnetosonic waves via magnetic pumping in the presence of electromagnetic fluctuations that can pitch-angle scatter the plasma particles are presented. From the first simulation it is found that the magnetosonic-wave energy is transferred to high-energy particles. In the second type of simulation, magnetosonic waves produce a hot surface layer on the plasma that is ablated by the wave energy. Solution of a Fokker-Planck equation for the magnetic-pumping process is found to adequately represent magnetic pumping by small-amplitude magnetosonic waves.
Microscopic models for electromagnetic wave propagation in highly dispersive media
NASA Astrophysics Data System (ADS)
Defacio, Brian
1990-06-01
The purpose of this project was to advance the understanding of the propagation of ultrafast picosecond electromagnetic pulses in biological solutions and ultimately, in human tissue. Present day standards of the allowed electromagnetic doses do not include dispersion, modulation or envelope effects, memory or nonlinearity. It is well-known experimentally that biological solutions are highly dispersive. It is plausible, but not established, that modulation, memory, and nonlinearity may be important in biological solutions. Hence, this project represents a first step toward better standards.
Electromagnetic waves from neutron stars and black holes driven by polar gravitational perturbations
NASA Astrophysics Data System (ADS)
Sotani, Hajime; Kokkotas, Kostas D.; Laguna, Pablo; Sopuerta, Carlos F.
2014-03-01
Neutron stars and black holes are the most compact astrophysical objects we can think of and as a consequence they are the main sources of gravitational waves. There are many astrophysically relevant scenarios in which these objects are immersed in or endowed with strong magnetic fields, in such a way that gravitational perturbations can couple to electromagnetic ones and can potentially trigger synergistic electromagnetic signatures. In a recent paper we derived the main equations for gravito-electromagnetic perturbations and studied in detail the case of polar electromagnetic perturbations driven by axial gravitational perturbations. In this paper we deal with the case of axial electromagnetic perturbations driven by polar black-hole or neutron stars oscillations, in which the energy emitted in case is considerably larger than in the previous case. In the case of neutron stars the phenomenon lasts considerably longer since the fluid acts as an energy reservoir that shakes the magnetic field for a timescale of the order of secs.
Heating of ions by high frequency electromagnetic waves in magnetized plasmas
Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.
2013-07-15
The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be
Electromagnetic modified Bessel-Gauss beams and waves.
Seshadri, S R
2008-01-01
The transverse magnetic (TM) modified Bessel-Gauss beams and their full-wave generalizations are treated. Attention is paid to the spreading properties on propagation of the null in the radiation intensity pattern for the azimuthal mode numbers m=0 and 1. The rate of spreading of the null in the propagation direction is significantly less for the TM modified Bessel-Gauss waves than those for the corresponding TM Bessel-Gauss waves. The total power transported by the waves is determined and compared with that of the corresponding paraxial beam to estimate the quality of the paraxial beam approximation of the wave. The dependence of the quality of the paraxial beam approximation on the azimuthal mode number, the beam shape parameter, and the ratio of the beam waist to the wavelength has a regular pattern for the TM Bessel-Gauss wave and not for the TM modified Bessel-Gauss wave. PMID:18157205
NASA Technical Reports Server (NTRS)
Dum, C. T.
1990-01-01
Particle simulation experiments were used to study the basic physical ingredients needed for building a global model of foreshock wave phenomena. In particular, the generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that, with appropriately designed simulations experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock.
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey
2012-01-01
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.
s-wave scattering for deep potentials with attractive tails falling off faster than -1/r2
NASA Astrophysics Data System (ADS)
Müller, Tim-Oliver; Kaiser, Alexander; Friedrich, Harald
2011-09-01
For potentials with attractive tails, as occur in typical atomic interactions, we present a simple formula for the s-wave phase shift δ0. It exposes a universal dependence of δ0(E) on the potential tail and the influence of effects specific to a given potential, which enter via the scattering length a, or equivalently, the noninteger part Δth of the threshold quantum number nth. The formula accurately reproduces δ0(E) from threshold up to the semiclassical regime, far beyond the validity of the effective-range expansion. We derive the tail functions occurring in the formula for δ0(E) and demonstrate the validity of the formula for attractive potential tails proportional to 1/r6 or to 1/r4, and also for a mixed potential tail consisting of a 1/r4 term together with a non-negligible 1/r6 contribution.
NASA Astrophysics Data System (ADS)
Vafin, S.; Schlickeiser, R.; Yoon, P. H.
2016-05-01
The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .
Polnarev, A. G.; Baskaran, D.
2008-06-15
In the current work we investigate the propagation of electromagnetic waves in the field of gravitational waves. Starting with the simple case of an electromagnetic wave traveling in the field of a plane monochromatic gravitational wave, we introduce the concept of the surfing effect and analyze its physical consequences. We then generalize these results to an arbitrary gravitational wave field. We show that, due to the transverse nature of gravitational waves, the surfing effect leads to significant observable consequences only if the velocity of gravitational waves deviates from the speed of light. This fact can help to place an upper limit on the deviation of gravitational wave velocity from the speed of light. The microarcsecond resolution promised by the upcoming precision interferometry experiments allow one to place stringent upper limits on {epsilon}=(v{sub gw}-c)/c as a function of the energy density parameter for gravitational waves {omega}{sub gw}. For {omega}{sub gw}{approx_equal}10{sup -10} this limit amounts to {epsilon} < or approx. 2{center_dot}10{sup -2}.
Generation of electromagnetic waves in the very low frequency band by velocity gradient
Ganguli, G. Tejero, E.; Crabtree, C.; Amatucci, W.; Rudakov, L.
2014-01-15
It is shown that a magnetized plasma layer with a velocity gradient in the flow perpendicular to the ambient magnetic field is unstable to waves in the Very Low Frequency band that spans the ion and electron gyrofrequencies. The waves are formally electromagnetic. However, depending on wave vector k{sup ¯}=kc/ω{sub pe} (normalized by the electron skin depth) and the obliqueness, k{sub ⊥}/k{sub ||}, where k{sub ⊥,||} are wave vectors perpendicular and parallel to the magnetic field, the waves are closer to electrostatic in nature when k{sup ¯}≫1 and k{sub ⊥}≫k{sub ||} and electromagnetic otherwise. Inhomogeneous transverse flows are generated in plasma that contains a static electric field perpendicular to the magnetic field, a configuration that may naturally arise in the boundary layer between plasmas of different characteristics.
Ohmic Losses During Scattering of a Plane Electromagnetic Wave by a Metal Corrugated Surface
NASA Astrophysics Data System (ADS)
Koposova, E. V.
2015-10-01
We estimate the ohmic losses in the case of scattering of a plane electromagnetic wave by a metal corrugated surface. Comparative analysis of the losses is performed for different regimes of wave incidence and scattering (self-collimation and different incidence angles), and their dependence on the amplitude and shape of the corrugation profile is studied. The study is based on numerical solving of the integral equation which describes the diffraction of a plane electromagnetic wave by a corrugated interface between two dielectrics. Metal is regarded as a dielectric with purely imaginary dielectric permittivity of a great value which is determined by metal conductivity. The waves with E polarization (i.e., the waves with the electric-field vector directed along the grooves), which are used in echelette gyrotron cavities, are studied in detail.
Parametric study of electromagnetic waves propagating in absorbing curved S ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1989-01-01
A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.
A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave
NASA Astrophysics Data System (ADS)
Mahajan, Swadesh M.; Asenjo, Felipe A.
2016-05-01
A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.
Steady-state solutions for relativistically strong electromagnetic waves in plasmas.
NASA Technical Reports Server (NTRS)
Max, C. E.
1973-01-01
New steady-state solutions are derived which describe electromagnetic waves strong enough to make plasma ions and electrons relativistic. A two-fluid model is used throughout. The following solutions are studied: (1) linearly polarized waves with phase velocity much greater than c; (2) arbitrarily polarized waves with phase velocity near c, in a cold uniform plasma; (3) circularly polarized waves in a uniform plasma characterized by a scalar pressure tensor. All of these waves are capable of propagating in normally overdense plasmas, due to nonlinearities introduced by relativistic effects. The propagation of relativistically strong waves in a density gradient is examined, for the example of a circularly polarized wave strong enough to make electrons but not ions relativistic. It is shown that such a wave propagates at constant energy flux despite the nonlinearity of the system.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.
Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L
2015-01-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment. PMID:26647962
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.
2015-01-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10−6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment. PMID:26647962
Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L
2010-12-01
We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. PMID:21198098
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
NASA Astrophysics Data System (ADS)
Wang, Zhi-Bin; Li, Bo-Wen; Nie, Qiu-Yue; Wang, Xiao-Gang; Kong, Fan-Rong
2016-05-01
Propagation characteristics of electromagnetic (EM) waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.
2015-12-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10-6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment.
Characterization of soil behavior using electromagnetic wave-based technique
NASA Astrophysics Data System (ADS)
Dong, Xiaobo
samples so that the beta value, i.e., the ratio between the conductivities of the sediment and the fluid, is smaller than 1. The beta value is greater than 1 in the Group B samples owing to an overcompensation of surface conduction. Sedimentation behavior of two kaolinite samples with distinct fabric associations is characterized using mechanical and electromagnetic wave-based techniques. The two different fabric formations, the edge-to-face (EF) flocculated structure (i.e., sample A) and the dispersed and deflocculated structure (i.e., sample B), were regulated by changing the pH of the pore fluid and are produced. The anisotropy of shear wave velocity and DC conductivity was not observed in the sediment of sample A because of EF isotropic fabric associations but it was detected in sample B as a result of face-to-face (FF) aggregation. An open card-house structure of the sample A sediment results in a higher relaxation strength of the bulk water, Deltakappaw owing to a higher water content; the smaller Deltakappaw measured in the sample B sediment indicates denser packing. In both samples, sediment consolidation gives rise to a decrease in the bulk-water relaxation strength but an increase in the bound-water relaxation strength owing to increasing particle content. In response to sediment consolidation, the sediment conductivity of sample A continuously decreases because of the reduced contribution from the fluid conductivity. In sample B, the surface conduction via the overlapped double layer overcompensates such a decreased contribution so that the sediment conductivity increases with increasing particle content. The slim-form open-ended coaxial probe is also used to conduct a local dielectric measurement. The measured results, i.e. dielectric relaxation strength of bulk water, Deltakappaw, and the DC conductivity of the saturated sample, sigmamix, are jointly used to characterize the spatial variability of different specimens including glass beads, sand and mica
A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves
NASA Astrophysics Data System (ADS)
Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.
2016-07-01
While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.
Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma
Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.
2011-11-15
The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.
Electromagnetic waves near the proton cyclotron frequency in the solar wind
NASA Astrophysics Data System (ADS)
Jian, Lan; Alexander, Robert; Wicks, Robert; Stevens, Michael; Figueroa-Vinas, Adolfo; Russell, Christopher
2015-04-01
Strong narrow-band electromagnetic waves around the proton cyclotron frequency have been found sporadically in the solar wind throughout the inner heliosphere. They are nearly-circularly polarized and propagate close to the magnetic field. Electromagnetic waves near the proton cyclotron frequency can be ion cyclotron waves or magnetosonic waves. They can play an important role in modulating the solar wind ion distribution, and contribute to the heating and acceleration of solar wind. Since the waves are left-hand or right-hand polarized in the spacecraft frame with similar characteristics, they are probably due to Doppler shift of a same type of waves, or there could be a mixture of waves with intrinsically different polarizations. Through the assistance of audification, we have studied the long-lasting low frequency wave events in 2005 using high-cadence magnetic field data from the Wind mission. The Solar Wind Experiment team of the Wind mission has provided the temperature anisotropies for core protons, beam protons, and alpha particles, as well as the beam drift for selected cases. We conduct wave dispersion analysis using these ion moments to examine if these waves can be explained by ion cyclotron anisotropy instability or ion beam instability related to the solar wind inhomogeneities.
Propagation of ultra-intense electromagnetic waves through electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Rozina, Ch.; Tsintsadze, N. L.; Jamil, M.
2016-07-01
A kinetic approach is used to study the propagation of ultrarelativistic (amplitude) electromagnetic waves through electron-positron-ion plasma. For our purposes, we formulate a new plasma particle distribution function in the presence of ultrarelativistically intense circularly polarized electromagnetic (EM) waves. An effective dispersion relation of constant amplitude ultrarelativistic EM wave is derived, skin depth is calculated in particular, frequency regimes and has shown numerically that the penetration depth increases with the amplitude of ultra-intense electromagnetic waves, λ s k ˜ a /1 2 , i.e., plasma will be heated more in the region of skin depth. Next, we have found that the nonlinear interaction of ultrarelativistically intense EM waves of time and space varying amplitude leads to construct kinetic nonlinear Schrödinger equation (KNSE), containing both local and non-local nonlinear terms, where nonlocal nonlinear term appears due to density perturbations of plasma species. Taking the effects of the latter into consideration, nonlinear Landau damping is discussed for KNSE, damping rate is computed, and numerically ultrarelativistic EM waves are shown to decay exponentially. The present results should be helpful to understand the specific properties of the ultrarelativistic EM waves in astrophysical plasmas, e.g., pulsars, black holes, and neutron stars.
Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials.
Jiang, Wei Xiang; Cui, Tie Jun; Zhou, Xiao Yang; Yang, Xin Mi; Cheng, Qiang
2008-12-01
We propose an optical transformation to bend electromagnetic waves by designing proper inhomogeneous and anisotropic materials, which are hereinafter referred to as metamaterials (MTMs). When the waveguide bends are filled with MTMs, the incident waves will pass through the bends without any reflections (for full-parameter MTMs) or with very small reflections (for simplified-parameter MTMs). When MTMs are placed in air, the incident waves will be bent to any designed directions. We also discuss the wave bending using layered homogeneous uniaxial MTMs, which can be easily realized using artificial structures. PMID:19256968
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2006-01-01
The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.
NASA Astrophysics Data System (ADS)
Huba, J. D.; Rowland, H. L.
1993-03-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
NASA Technical Reports Server (NTRS)
Huba, J. D.; Rowland, H. L.
1993-01-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
NASA Technical Reports Server (NTRS)
Fejer, J. A.
1974-01-01
Threshold and growth rate for stimulated Brillouin scattering are calculated for a uniform magnetoplasma. These are then compared with the threshold and growth rate of a new thermal instability in which the nonlinear Lorentz force felt by the electrons at the beat frequency of the two electromagnetic waves is replaced by a pressure force due to differential heating in the interference pattern of the pump wave and the generated electromagnetic wave. This thermal instability, which is still essentially stimulated Brillouin scattering, has a threshold which is especially low when the propagation vector of the beat wave is almost normal to the magnetic field. The threshold is then considerably lower than the threshold for normal stimulated Brillouin scattering and therefore this new instability is probably responsible for the generation of large scale field aligned irregularities and ionospheric spread F.
An invisible medium for circularly polarized electromagnetic waves.
Tamayama, Y; Nakanishi, T; Sugiyama, K; Kitano, M
2008-12-01
We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect. PMID:19065225
The oblique behavior of low-frequency electromagnetic waves excited by newborn cometary ions
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1989-01-01
The free energy in oxygen or hydrogen ions freshly created in the solar wind stimulates low-frequency electromagnetic waves whose growth does not always maximize at parallel propagation. Exploration of the wave vector plane discloses the frequent occurrence of islets of oblique growth unconnected to the unstable parallel modes. Contour plots of the growth rate, real frequency, polarization, and magnetic compression characterize the oblique wave behavior for large values of the initial pitch angle of the cometary particles. Although wave-particle (Landau and cyclotron) resonances feed most of the surveyed oblique instabilities, some are seemingly fluidlike. The results, obtained from the numerical solution of the kinetic dispersion and wave equations, imply that newborn ions can easily excite significant oblique hydromagnetic wave activity. Cometary environments provide the adopted plasma model, but the study is helpful in the interpretation of other low-frequency wave observations in space.
A novel protocol to measure the attenuation of electromagnetic waves through smoke
NASA Astrophysics Data System (ADS)
Yan-wu, Li; Hong-yong, Yuan; Yang, Lu; Xiaoxiang, Zhang; Ru-feng, Xu; Ming, Fu
2016-06-01
The electromagnetic properties of smoke from a structure fire are important in terms of their relation to the stability of wireless communication systems used in fire rescue. As it is hard to make a measurable electromagnetic environment for particles in the air, compressed and bulk samples are used instead to measure sand storms and smoke plumes. In this paper, an experiment system was designed to measure smoke particles in the air, in consideration of both smoke control and electromagnetic measurement. Several measures had been taken to create a fulfilled smoke environment. The simulated and measured transmission parameters of the electromagnetic testing area were approximate and the electromagnetic wave frequencies were set from 350 to 400 MHz. Repeated experiments have been conducted to test the stability of the results and they showed that there was no obvious attenuation until the smoke concentration was more than 10 dB m‑1. It was found that the frequency around 355 and 360 MHz had a larger attenuation coefficient. The relationship between the attenuation coefficient and the smoke concentration was concluded to be linear. The results may help us understand the attenuation of electromagnetic waves within a smoke column.
Preparation and characterization of TiO2 coated Fe nanofibers for electromagnetic wave absorber.
Jang, Dae-Hwan; Song, Hanbok; Lee, Young-In; Lee, Kun-Jae; Kim, Ki Hyeon; Oh, Sung-Tag; Lee, Sang-Kwan; Choa, Yong-Ho
2011-01-01
Recently, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) have become serious problems due to the growth of electronic device and next generation telecommunication. It is necessary to develop new electromagnetic wave absorbing material to overcome the limitation of electromagnetic wave shielding materials. The EMI attenuation is normally related to magnetic loss and dielectric loss. Therefore, magnetic material coating dielectric materials are required in this reason. In this study, TiO2 coated Fe nanofibers were prepared to improve their properties for electromagnetic wave absorption. Poly(vinylpyrrolidone) (PVP) and Iron (III) nitrate nonahydrate (Fe(NO3)3 x 9H2O) were used as starting materials for the synthesis of Fe oxide nanofibers. Fe oxide nanofibers were prepared by electrospinning in an electric field and heat treatment. TiO2 layer was coated on the surface of Fe oxide nanofibers using sol-gel process. After the reduction of TiO2 coated Fe oxide nanofibers, Fe nanofibers with a TiO2 coating layer of about 10 nm were successfully obtained. The morphology and structure of fibers were characterized by SEM, TEM, and XRD. In addition, the absorption properties of TiO2 coated Fe nanofibers were measured by network analyzer. PMID:21446541
Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas
Liu Jian; Qin Hong
2012-10-15
Geometric phases of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase are investigated. The influence of the geometric phase to plasma diagnostics using the Faraday rotation is discussed as an application of the theory.
Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma
Jian Liu and Hong Qin
2011-11-07
The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.
NASA Astrophysics Data System (ADS)
Koyama, T.; Matsumoto, H.; Ota, Y.; Machida, M.
2013-08-01
Electromagnetic (EM) wave emission from the intrinsic Josephson junction stacks (IJJ’s) covered with a thin dielectric medium is numerically investigated, using the multi-scale simulation method developed in our previous paper. It is shown that the power of emitted EM waves is considerably increased in the IJJ’s with a dielectric cover. The emission from the n = 2 resonance mode is greatly enhanced. The enhancement is caused by the excitation of a solitonic mode.
On electromagnetic waves with a negative group velocity
NASA Astrophysics Data System (ADS)
Makarov, V. P.; Rukhadze, A. A.; Samokhin, A. A.
2010-12-01
Recent publications devoted to the electrodynamics of media in which waves with a negative group velocity can exist are discussed. The properties of such waves have been studied from the beginning of the past century, and the most important results in this field were obtained by Soviet physicists in the 1940s-1950s. However, in most recent publications, this circumstance has not been taken into account.
On electromagnetic waves with a negative group velocity
Makarov, V. P.; Rukhadze, A. A.; Samokhin, A. A.
2010-12-15
Recent publications devoted to the electrodynamics of media in which waves with a negative group velocity can exist are discussed. The properties of such waves have been studied from the beginning of the past century, and the most important results in this field were obtained by Soviet physicists in the 1940s-1950s. However, in most recent publications, this circumstance has not been taken into account.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2006-01-01
The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.
NASA Technical Reports Server (NTRS)
Askins, H. W., Jr.; Miller, D. B.
1975-01-01
This study is concerned with the problem of electromagnetic wave propagation in a magneto-plasma filled coaxial structure. The problem is formulated using the classical boundary value problem approach. A numerical investigation shows the existence of propagating slow modes, backward modes, a quasi-TEM mode, and waveguide-type modes in a magneto-plasma filled coaxial structure. Dispersion curves for these different modes are presented. Measurements have been made of electromagnetic propagation in a coaxial electrode structure filled with longitudinally magnetized plasma. The annular plasma region had a 9.55 cm outer diameter, a 3.82 cm inner diameter and was approximately 60 cm long. A magnetic field of 300 gauss was employed. Electromagnetic wave frequencies were in the range .5 to 2.4 GHz. The plasma was generated by a continuous glow discharge. The resulting dispersion curves closely follow the predicted curves for the quasi-TEM mode.
Zhu, Bo O.; Chen, Ke; Jia, Nan; Sun, Liang; Zhao, Junming; Jiang, Tian; Feng, Yijun
2014-01-01
Transmission and reflection are two fundamental properties of the electromagnetic wave propagation through obstacles. Full control of both the magnitude and phase of the transmission and reflection independently are important issue for free manipulation of electromagnetic wave propagation. Here we employed the equivalent principle, one fundamental theorem of electromagnetics, to analyze the required surface electric and magnetic impedances of a passive metasurface to produce either arbitrary transmission magnitude and phase or arbitrary reflection magnitude and phase. Based on the analysis, a tunable metasurface is proposed. It is shown that the transmission phase can be tuned by 360° with the unity transmissivity or the transmissivity can be tuned from 0 to 1 while the transmission phase is kept around 0°. The reflection magnitude and phase can also been tuned similarly with the proposed metasurface. The proposed design may have many potential applications, such as the dynamic EM beam forming and scanning.
Spin-down of Pulsars, and Their Electromagnetic and Gravitational Wave Radiations
NASA Astrophysics Data System (ADS)
Yue-zhu, Zhang; Yan-yan, Fu; Yi-huan, Wei; Cheng-min, Zhang; Shao-hua, Yu; Yuan-yue, Pan; Yuan-qi, Guo; De-hua, Wang
2016-04-01
Pulsars posses extremely strong magnetic fields, and their magnetic axis does not coincide with their rotation axis, this causes the pulsars to emit electromagnetic radiations. Pulsars rely on their rotational energy to compensate for the energy loss caused by the electromagnetic radiation, which leads to the gradually decelerated spin of pulsars. According to the theoretical deduction, we have calculated the initial period of the Crab Nebula pulsar, and derived the period evolution of the pulsar at any time in the future under the effect of the electromagnetic radiation. Considered the possible existence of quadrupole moment in the mass distribution of a pulsar, the gravitational wave radiation will also make the pulsar spin down, hence the variation of spin period of the Crab pulsar under the effect of gravitational wave radiation is further analyzed. Finally, combining the two kinds of radiation mechanisms, the evolution of spin period of the Crab pulsar under the joint action of these two kinds of radiation mechanisms is analyzed.
Hanbury Brown-Twiss effect with electromagnetic waves.
Hassinen, T; Tervo, J; Setälä, T; Friberg, A T
2011-08-01
The classic Hanbury Brown-Twiss experiment is analyzed in the space-frequency domain by taking into account the vectorial nature of the radiation. We show that as in scalar theory, the degree of electromagnetic coherence fully characterizes the fluctuations of the photoelectron currents when a random vector field with Gaussian statistics is incident onto the detectors. Interpretation of this result in terms of the modulations of optical intensity and polarization state in two-beam interference is discussed. We demonstrate that the degree of cross-polarization may generally diverge. We also evaluate the effects of the state of polarization on the correlations of intensity fluctuations in various circumstances. PMID:21934881
Modal Ring Method for the Scattering of Electromagnetic Waves
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.
Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Analysis and interpretation
NASA Technical Reports Server (NTRS)
Neubauer, Fritz M.; Glassmeier, Karl-Heinz; Coates, A. J.; Johnstone, A. D.
1993-01-01
The propagation and polarization characteristic of low-frequency electromagnetic wave fields near comet P/Grigg-Skjellerup (P/GS) are analyzed using magnetic field and plasma observations obtained by the Giotto magnetometer experiment and the Johnstone plasma analyzer during the encounter at the comet on July 10, 1992. The results have been physically interpreted.
NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a
numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...
Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course
ERIC Educational Resources Information Center
Burko, Lior M.
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…
ERIC Educational Resources Information Center
Ambrose, Bradley S.; Heron, Paula R. L.; Vokos, Stamatis; McDermott, Lillian C.
1999-01-01
Some serious difficulties that students have in understanding physical optics may be due in part to a lack of understanding of light as an electromagnetic wave. Describes the development and use of tutorials designed to address students' conceptual difficulties. (Contains over 15 references.) (Author/WRM)
NASA Astrophysics Data System (ADS)
Shi, Yang; Kun-De, Yang; Yi-Xin, Yang; Yuan-Liang, Ma
2015-04-01
The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consistent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean. Project supported by the National Natural Science Foundation of China (Grant No. 11174235) and the Fundamental Research Funds for the Central Universities (Grant No. 3102014JC02010301).
NASA Astrophysics Data System (ADS)
Shi, Yang; Yang, Kun-De; Yang, Yi-Xin; Ma, Yuan-Liang
2015-05-01
In this paper, the influence of obstacle on electromagnetic wave propagation in an evaporation duct is investigated, both from numerical simulation and experimental observation. A comparison of electromagnetic wave propagation in evaporation duct with and without obstacle for a typical case is presented. The presence of obstacle causes a significant increase in path loss. The obstacle has significant impact on electromagnetic wave propagation when the frequency is higher than 5 GHz and when the evaporation duct height is higher than 10 m. The influence of an island on electromagnetic wave propagation was observed in the experiment held in the South China Sea, October 2012. The experiment result shows that the island causes about 30-40 dB increase in path loss. The discrepancy between model and measurement is analyzed and the errors of transmitting antenna height and relative humidity are the possible causes of the discrepancy. Project supported by the National Natural Science Foundation of China (Grant No. 11174235) and the Fundamental Research Funds for the Central Universities of China (Grant No. 3102014JC02010301).
The report describes in a historical context the experiments that have been performed to examine the biological responses caused by exposure to low frequency electromagnetic radiation directly or as modulation of RF carrier waves. A detailed review is provided of the independentl...
Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution
Younsi, Smain; Tribeche, Mouloud
2008-07-15
Large amplitude as well as weakly nonlinear dust acoustic waves in a mixed nonthermal high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from Boltzmann distribution on the large amplitude dust acoustic soliton are then considered. The dust charge variation leads to an additional enlargement of the dust acoustic soliton, which is more pronounced as the electrons evolve far away from Maxwell-Boltzmann distribution. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. The results complement and provide new insights into our previously published results on this problem [K. Aoutou, M. Tribeche, and T. H. Zerguini, Phys. Plasmas 15, 013702 (2008)].
Rahmani, Z. Jazi, B.; Heidari-Semiromi, E.
2014-09-15
The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.
Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Kalinikos, Boris A.; Lähderanta, E.
2014-03-03
Spin-electromagnetic waves propagating in thin-film multilayered multiferroic structures containing a slot transmission line have been investigated both experimentally and theoretically. The thin-film structure was composed of a ferrite film, a ferroelectric film, and a slot-line. It was shown that the spectrum of the spin-electromagnetic wave was formed as a result of hybridization of the spin wave in the ferrite film with the electromagnetic wave in the slot-line and was electrically and magnetically tunable. For the experimental investigations, a microwave phase shifter based on the multiferroic structure has been fabricated. Performance characteristics are presented.
Electromagnetic wave emitting products and "Kikoh" potentiate human leukocyte functions.
Niwa, Y; Iizawa, O; Ishimoto, K; Jiang, X; Kanoh, T
1993-09-01
Tourmaline (electric stone, a type of granite stone), common granite stone, ceramic disks, hot spring water and human palmar energy (called "Kikoh" in Japan and China), all which emit electromagnetic radiation in the far infrared region (wavelength 4-14 microns). These materials were thus examined for effects on human leukocyte activity and on lipid peroxidation of unsaturated fatty acids. It was revealed that these materials significantly increased intracellular calcium ion concentration, phagocytosis, and generation of reactive oxygen species in neutrophils, and the blastogenetic response of lymphocytes to mitogens. Chemotactic activity by neutrophils was also enhanced by exposure to tourmaline and the palm of "Kikohshi" i.e., a person who heals professionally by the laying on of hands. Despite the increase in reactive oxygen species generated by neutrophils, lipid peroxidation from unsaturated fatty acid was markedly inhibited by these four materials. The results suggest that materials emitting electromagnetic radiation in the far infrared range, which are widely used in Japan for cosmetic, therapeutic, and preservative purposes, appear capable of potentiating leukocyte functions without promoting oxidative injury. PMID:8406976
Frequency Management for Electromagnetic Continuous Wave Conductivity Meters
Mazurek, Przemyslaw; Putynkowski, Grzegorz
2016-01-01
Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter’s working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real–time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications. PMID:27070608
Mid-Latitude Plasma Density Irregularities and Electromagnetic Wave Scattering
NASA Astrophysics Data System (ADS)
Sotnikov, V.; Kim, T.; Mishin, E.; Rose, D.; Paraschiv, I.
2015-11-01
Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At midlatitudes, such space weather events are caused mainly by subauroral electric field structures (SAID/SAPS) SAID/SAPS -related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ Defense Meteorological Satellite Program (DMSP) satellite low-resolution data during UHF/GPS L-band subauroral scintillation events. These types of density irregularities play important roles in refraction and scattering of high frequency electromagnetic signals propagating in the Earth's ionosphere, inside the plasma sheath of reentry and hypersonic vehicles, and in many other applications.
Frequency Management for Electromagnetic Continuous Wave Conductivity Meters.
Mazurek, Przemyslaw; Putynkowski, Grzegorz
2016-01-01
Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter's working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real-time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications. PMID:27070608
Electromagnetic and hydromagnetic waves in a cold magnetoplasma
NASA Technical Reports Server (NTRS)
Booker, H. G.
1975-01-01
The basis of the theory of waves in a cold homogeneous magnetoplasma is reviewed. The radio approximation (associated with Appleton) applies when the wave-frequency is large compared with the geometric mean of the electronic and ionic gyrofrequencies. The hydromagnetic approximation (associated with Alfven) corresponds to infinite conductivity along the lines of flux of the imposed magnetic field and applies when the wave-frequency is small compared with the plasma-frequency. The rich variety of dispersion phenomena existing in a magnetoplasma is illustrated by polar diagrams showing both the variation of group-velocity with beam-direction and the direction in which the antenna must be pointed to aim a beam in a particular direction.
Resonant interactions between cometary ions and low frequency electromagnetic waves
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Tsurutani, Bruce T.
1987-01-01
The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.
Stability of strong electromagnetic waves in overdense plasmas
NASA Astrophysics Data System (ADS)
Romeiras, F. J.
1982-04-01
The paper considers the stability against small perturbations of a class of exact wave solutions of the equations that describe an unmagnetized relativistic cold electron plasma. The main feature of these nonlinear waves is a transverse circularly polarized electric field with periodic amplitude modulation in the longitudinal direction. Floquet's theory of linear differential equations with periodic coefficients is used to solve the perturbation equations and obtain the instability growth rates. Both an approximate solution for small modulation depth and a numerical treatment for arbitrary depth are presented. It is shown that the well-known small-wavenumber instability of the purely transverse circularly polarized waves of constant amplitude is reduced as the modulation depth increases from zero to its maximum allowed value.
NASA Astrophysics Data System (ADS)
Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G.; Tedeschi, N.
2013-10-01
An analytical solution is developed to the two-dimensional scattering problem of a plane-wave propagating in air, impinging on the interface with a dissipative soil, and interacting with a finite set of subsurface metallic targets. The Cylindrical Wave Approach is applied, the electromagnetic field scattered by the targets is expanded into cylindrical waves and use is made of the plane-wave spectrum to take into account the interaction of such waves with the planar interface between air and soil. The theoretical solution is implemented in a Fortran code. The numerical evaluation of the spectral integral relevant to reflected and transmitted cylindrical wave functions in the presence of lossy media is performed by means of Gaussian adaptive quadrature formulas. The method may return the field values in each point of the space, both in the near and far zones; moreover it may be applied for any polarization, and for arbitrary values of the cylinder sizes and positions.
Electromagnetic wave propagation in rain and polarization effects
OKAMURA, Sogo; OGUCHI, Tomohiro
2010-01-01
This paper summarizes our study on microwave and millimeter-wave propagation in rain with special emphasis on the effects of polarization. Starting from a recount of our past findings, we will discuss developments with these and how they are connected with subsequent research. PMID:20551593
Materials testing by electromagnetic square-wave oscillations
NASA Astrophysics Data System (ADS)
Lambeck, M.
1981-09-01
Two new methods for eddy-current inspection are presented. The information on the specimen is obtained by the easy measurement of self-excited square-wave oscillations. In thickness measurements the range from μm to mm is covered. Applications include the sorting of welding electrodes, the test of heat treatments and tube wall thicknesses.
Impurity transport due to electromagnetic drift wave turbulence
NASA Astrophysics Data System (ADS)
Moradi, S.; Pusztai, I.; Mollén, A.; Fülöp, T.
2012-03-01
Finite β effects on impurity transport are studied through local linear gyrokinetic simulations with GYRO [J. Candy and E. Belli, General Atomics Report No. GA-A26818, 2011]; in particular, we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBMs). We find that electromagnetic effects even at low β can have significant impact on the impurity transport. The KBM instability threshold depends on the plasma parameters, particularly strongly on plasma shape. We have shown that magnetic geometry significantly influences the results, and the commonly used s-α model overestimates the KBM growth rates and ITG stabilization at high β. In the β range, where the KBM is the dominant instability the impurity peaking factor is strongly reduced, with very little dependence on β and the impurity charge.
Impurity transport due to electromagnetic drift wave turbulence
NASA Astrophysics Data System (ADS)
Moradi, Sara; Pusztai, Istvan; Mollén, Albert; Fülöp, Tünde
2012-10-01
In the view of an increasing interest in high β operation scenarios, such as hybrid scenarios for ITER the question of finite β effects on the impurity transport is a critical issue due to possible fuel dilution and radiative cooling in the core. Here, electromagnetic effects at finite β on impurity transport are studied through local linear gyro-kinetic simulations with gyro [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]; in particular we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBM) and micro-tearing modes (MTM) in spherical (NSTX) and standard tokamaks (AUG and JET).
Theory of a ring laser. [electromagnetic field and wave equations
NASA Technical Reports Server (NTRS)
Menegozzi, L. N.; Lamb, W. E., Jr.
1973-01-01
Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.
Finite element modeling of electromagnetic fields and waves using NASTRAN
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.; Schroeder, Erwin
1989-01-01
The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.
Some consequences of intense electromagnetic wave injection into space plasmas
NASA Technical Reports Server (NTRS)
Burke, William J.; Rothwell, Paul L.; Rothwell, Paul L.; Rothwell, Paul L.
1986-01-01
The future possibility of actively testing the current understanding of how energetic particles may be accelerated in space or dumped from the radiation belts using intense electromagnetic energy from ground based antennas is discussed. The ground source of radiation is merely a convenience. A space station source for radiation that does not have to pass through the atmosphere and lower ionosphere, is an attractive alternative. The text is divided into two main sections addressing the possibilities of: (1) accelerating electrons to fill selected flux tubes above the Kennel-Petscheck limit for stably trapped fluxes, and (2) using an Alfven maser to cause rapid depletion of energetic protons or electrons from the radiation belts.
Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma
Shukla, P. K.; Eliasson, B.; Stenflo, L.
2012-07-15
We present an investigation of the nonlinear propagation of high-frequency coherent electromagnetic waves in a uniform quantum magnetoplasma. Specifically, we consider nonlinear couplings of right-hand circularly polarized electromagnetic-electron-cyclotron (CPEM-EC) waves with dispersive shear Alfven (DSA) and dispersive compressional Alfven (DCA) perturbations in plasmas composed of degenerate electron fluids and non-degenerate ion fluids. Such interactions lead to amplitude modulation of the CPEM-EC wave packets, the dynamics of which is governed by a three-dimensional nonlinear Schroedinger equation (NLSE) with the frequency shift arising from the relativistic electron mass increase in the CPEM-EC fields and density perturbations associated with the DSA and DCA perturbations. Accounting for the electromagnetic and quantum forces, we derive the evolution equation for the DSA and DCA waves in the presence of the magnetic field-aligned ponderomotive force of the CPEM-EC waves. The NLSE and the driven DSA and DCA equations are then used to investigate the modulational instability. The relevance of our investigation to laser-plasma interaction experiments and the cores of white dwarf stars is pointed out.
Abe, H.; Okuda, H.
1993-08-01
In this Letter, we first present a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. The model was then used for studying linear and nonlinear wave propagation in the dielectric medium such as an optical fiber. It is shown that the model may be useful for studying nonlinear wave propagation and harmonics generation in the nonlinear dielectric media.
Nonlinear propagation of electromagnetic waves in a plasma containing random irregularities.
NASA Technical Reports Server (NTRS)
Liu, C. H.
1973-01-01
The problem of propagation of finite-amplitude electromagnetic waves in a plasma containing random irregularities is studied. Using a recently developed perturbation technique, a general equation for finite amplitude coherent waves is derived. Included in this equation are both the effects of quasi-harmonic nonlinear heating of electrons and random scattering by irregularities. The equation is solved in general by the equivalent linearization procedure. The amplitude of the coherent wave is found to be attenuated by collision and scattering. Both attenuation are affected by the nonlinear heating of the electrons. Curves showing the results for a specific example will be presented.
NASA Astrophysics Data System (ADS)
Abubakirov, É. B.; Denisenko, A. N.; Konyushkov, A. P.; Soluyanov, E. I.; Yastrebov, V. V.
2014-10-01
We study operation of a relativistic backward-wave oscillator driven by an external electromagnetic signal. Such operation regimes as hard excitation of self-oscillations and amplification of the external signal are implemented experimentally. The conditions for possible synchronization of the relativistic backward-wave oscillator by an external signal is discussed. The possibility of accelerating the onset of oscillations by the action of an external signal is confirmed experimentally. The conditions of realization of the amplification regime and the main effects, which limit the amplification coefficient, are determined. The obtained results can be used to optimize the parameters of generators and amplifiers based on relativistic backward-wave oscillators.
Scattering of electromagnetic waves from a magnetized plasma column at oblique incidence
Ghaffari-Oskooei, Sara S.; Aghamir, Farzin M.
2015-07-14
Scattering of electromagnetic waves from a magnetized plasma column is investigated using Maxwell's equations and applying boundary conditions. Backscattering cross section is evaluated by analytic solution of electric fields inside and outside of plasma column. Plots of backscattering cross section versus frequency, for the range up to J band, reveal two main peaks and two sidebands. Effects of plasma density and radius, as main parameters determining the characteristics of plasma column, on backscattering are discussed. Furthermore, the effect of electromagnetic wave incidence angle on backscattering of plasma column is included in the analysis. The influence of wave incidence angle and frequency, as well as, plasma density and radius on scattering pattern, which is an indicator of the distribution of scattered power in different azimuthal angles, is discussed.
Self-precession and frequency shift for electromagnetic waves in homogeneous plasmas
NASA Technical Reports Server (NTRS)
Arons, J.; Max, C. E.
1974-01-01
The nonlinear propagation of an arbitrarily polarized electromagnetic wave in a uniform plasma is studied. It is shown that nonlinear effects cause precession of the polarization ellipse as the wave propagates. The ellipticity remains constant, but the orientation of the principal axes is rotated relative to its initial value. A relativistic Vlasov model is used to study nonlinear frequency shifts as well as self-precession, in a plasma of arbitrary temperature. Even when the electron temperature is much greater than the product of the electron mass times the square of the velocity of light, the qualitative nature of these two processes remains unchanged, although their dependence on the plasma density is altered in significant ways. Implications of these effects for plasma instabilities driven by strong electromagnetic waves are briefly discussed.
Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua
2016-04-18
We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts. PMID:27137236
Lytle, R. Jeffrey; Lager, Darrel L.; Laine, Edwin F.; Davis, Donald T.
1979-01-01
Underground anomalies or discontinuities, such as holes, tunnels, and caverns, are located by lowering an electromagnetic signal transmitting antenna down one borehole and a receiving antenna down another, the ground to be surveyed for anomalies being situated between the boreholes. Electronic transmitting and receiving equipment associated with the antennas is activated and the antennas are lowered in unison at the same rate down their respective boreholes a plurality of times, each time with the receiving antenna at a different level with respect to the transmitting antenna. The transmitted electromagnetic waves diffract at each edge of an anomaly. This causes minimal signal reception at the receiving antenna. Triangulation of the straight lines between the antennas for the depths at which the signal minimums are detected precisely locates the anomaly. Alternatively, phase shifts of the transmitted waves may be detected to locate an anomaly, the phase shift being distinctive for the waves directed at the anomaly.
NASA Astrophysics Data System (ADS)
Bhanu, R.; Tsurutani, B. T.; Reddy, V.; Lakhina, G. S.; Falkowski, B. J.; Echer, E.; Glassmeier, K. H.
2014-12-01
A rare and unique observation of electromagnetic ion cyclotron waves has been studied for the Cassini and WIND satellites during the Cassini Earth flyby on 18th August, 1999, across the Earth's magnetosheath. Magnetic field data from Cassini and WIND for the time interval 0152-0226 UT are analyzed to characterize the wave modes when the satellites were present in the subsolar and dusk side magnetosheath, respectively. A new technique/program called Rosetta Automatic Wave Analysis (RAWA) has been developed based on the method initiated by Tsurutani et. al., 2013 to study the wave cycles. Various wave mode characteristics like frequency, ellipticity, propagation angle, and wave polarization are determined and are characterized statistically. Cassini and WIND wave cycle analysis suggest that almost all the waves (> 80%) were left hand circularly polarized waves with frequencies lying at or below the proton cyclotron frequency. This indicates abundance of ion (proton) cyclotron mode propagation in the Earth's magnetosheath for the aforementioned interval. No obvious mirror mode indications were found as there were no linearly polarized waves detected. The waves which were either right hand polarized or had frequencies greater than the proton cyclotron frequency were consistent with their being left hand waves with frequencies less than proton cyclotron frequency in the plasma frame. We thus conclude that the waves detected at both Cassini and WIND are electromagnetic left hand polarized proton cyclotron waves. There is no evidence of mode conversion to (plasma frame) right hand waves, even though the wave amplitudes are exceptionally large (10 nT). Majority of the waves were found to propagate parallel (<30o) to the ambient magnetic field and were circularly polarized. However it is also found that for waves propagating at oblique angles to B0, the polarization is still circular. This is not understood at this time. Proton cyclotron waves detected at Cassini and WIND
NASA Astrophysics Data System (ADS)
Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei
2016-01-01
Adopting a model with two half-spaces that consist of solid and porous materials, we numerically investigate the seismoelectric conversion at the solid-porous interface. First, the wave fields in a low-porosity two-layer model are compared with those in a homogeneous full-space model. The consistency of seismic waves is a validation of our program. We are interested in the quasi-coseismic electromagnetic (EM) signals recorded in the solid area near the interface because they seemingly accompany seismic waves. Then, further numerical simulations on an ordinary two-layer model are conducted. On the basis of time slice snapshots and theoretical analysis, we determine that quasi-coseismic EM signals are essentially non-coseismic EM fields, which include radiation and evanescent EM waves. Evanescent EM waves are induced by the seismic waves that arrive at the interface with the incident angle greater than the critical angle. These waves decay faster than radiation EM waves when moving away from the interface. In the porous layer, evanescent EM waves can hardly be recognized unless they are separated from coseismic EM signals. This finding can be the reason why evanescent EM waves have not been identified in previous seismoelectric studies. Awareness of the fact that seismoelectric conversion at an interface can generate evanescent and EM waves is likely to result in a comprehensive understanding and improved interpretation of the seismoelectric coupling phenomenon.
Electromagnetic Pulse Generation by the Shock Wave of Explosion in the Ionosphere
NASA Astrophysics Data System (ADS)
Sorokin, V.; Sergeev, I.; Yaschenko, A.
High-amplitude electric field pulses have been recorded during experiments with explosive injection in the ionosphere. Considerable electric field disturbances were observed in cases where the measurements were carried out near the same line of force of the geomagnetic field. Formation of the explosion shock wave electromagnetic field in the ionosphere is theoretically investigated. A shock wave arises in explosion - type active experiments and disasters of space engines at the ionospheric altitudes. A semi - empirical model of shock wave in the rarefied gas is constructed. This model enable to determine the spatial - temporal distribution of gas temperature, velocity, density and pressure between shock wave front and explosion product surface depend on the Mach number and the explosion altitude. In analyzing the electrodynamic processes accompanying the explosive injection it was assumed that their source is the electric current generated in a propagating shock wave. Electric current occurs by the ionosphere plasma perturbation in external magnetic field behind of the shock wave front. This current is a source of electromagnetic pulse in the ionospheric plasma with Pedersen and Hall conductivities. It is shown that the electromagnetic perturbation propagates along to the magnetic-field direction and has the form of an oscillating wave packet. The frequency of the wave packet decreases depends on time. Its characteristic group velocity, wave length, and frequency decrease depends on angle between the propagation direction and the external magnetic field. The characteristic frequency of oscillations varies from 0.1 - 10 Hz. The phase velocity decreases in the interval from 10 to 100 km/sec depends on distance from the source. As the angle increases, the oscillations disappear and the field propagates as a single-polarity pulse. Theoretical results have been compared with experimental data obtained by observations of electromagnetic phenomena during explosive
Rao, N.N.
1998-01-01
A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known H{acute e}non{endash}Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. {copyright} {ital 1998 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Vainchtein, D. L.; Mozer, F. S.; Krasnoselskikh, V.
2015-08-01
In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode waves or electromagnetic ion cyclotron waves in the Earth's radiation belts. We consider the non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic invariant corresponding to trapped electron oscillations in the effective wave potential. This destruction results in a diffusive escape of electrons from the trapped regime of motion and thus can lead to a significant reduction of the efficiency of electron acceleration. We demonstrate that when energetic electrons are trapped by intense parallel or very oblique whistler-mode waves, non-resonant magnetic field fluctuations in the whistler-mode frequency range with moderate amplitudes around 3 -15 pT (much less intense than the primary waves) can totally disrupt the trapped motion. However, the trapping of relativistic electrons by electromagnetic ion cyclotron waves is noticeably more stable. We also discuss how the proposed approach can be used to estimate the effects of wave amplitude modulations on the motion of trapped particles.
Electromagnetic Effects on Wave Propagation in an Isotropic Micropolar Plate
NASA Astrophysics Data System (ADS)
Shaw, S.; Mukhopadhyay, B.
2015-11-01
The generalized theory of thermoelasticity is applied to study the propagation of plane harmonic waves in an infinitely long, isotropic, micropolar plate in the presence of a uniform magnetic field. The present analysis also includes the thermal relaxation time, electric displacement current, and the coupling of heat transfer and microrotation of the material. To determine the effect of the presence of thermal as well as magnetic fields on the phase velocity, two potential functions are used, and more general dispersive relations are obtained for symmetric and antisymmetric modes. The results for the cases of coupled thermoelasticity, magnetoelasticity, micropolar thermoelasticity, and classical micropolar elasticity as special cases are derived. The changes in the phase velocity and attenuation coefficient with the wave number are shown graphically.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
NASA Astrophysics Data System (ADS)
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-20
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.
NASA Technical Reports Server (NTRS)
Adrian, M. L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.
Stimulated Raman up-conversion of electromagnetic waves by a gyrating electron beam
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Patel, V. L.
1983-01-01
A gyrating electron beam supports negative energy modes near the harmonics of electron-cyclotron frequency. An electromagnetic wave passing through such a beam parametrically up-converts into high-frequency electromagnetic modes separated from the pump frequency by the electron-cyclotron harmonics. The growth rate for this process varies directly as the oscillatory velocity of beam electrons caused by the pump and as square root of the beam density. It has a maximum at values of scattering angle close to 180 deg and is also implicitly dependent on the beam veocity and the cyclotron frequency of electrons. The effect of a cold electron component is to reduce the growth rate.
Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma
Korzhimanov, A. V.; Eremin, V. I. Kim, A. V.; Tushentsov, M. R.
2007-10-15
Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.
Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations
NASA Astrophysics Data System (ADS)
Ra'di, Y.; Simovski, C. R.; Tretyakov, S. A.
2015-03-01
With recent advances in nanophotonics and nanofabrication, considerable progress has been achieved in realizations of thin composite layers designed for full absorption of incident electromagnetic radiation, from microwaves to the visible. If the layer is structured at a subwavelength scale, thin perfect absorbers are usually called "metamaterial absorbers," because these composite structures are designed to emulate some material responses not reachable with any natural material. On the other hand, many thin absorbing composite layers were designed and used already in the time of the introduction of radar technology, predominantly as a means to reduce radar visibility of targets. In view of a wide variety of classical and new topologies of optically thin metamaterial absorbers and plurality of applications, there is a need for a general, conceptual overview of the fundamental mechanisms of full absorption of light or microwave radiation in thin layers. Here, we present such an overview in the form of a general theory of thin perfectly absorbing layers. Possible topologies of perfect metamaterial absorbers are classified based on their fundamental operational principles. For each of the identified classes, we provide design equations and give examples of particular realizations. The concluding section provides a summary and gives an outlook on future developments in this field.
Propagation of electromagnetic waves in a turbulent medium
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Hartke, G. J.
1986-01-01
Theoretical modeling of the wealth of experimental data on propagation of electromagnetic radiation through turbulent media has centered on the use of the Heisenberg-Kolmogorov (HK) model, which is, however, valid only for medium to small sized eddies. Ad hoc modifications of the HK model to encompass the large-scale region of the eddy spectrum have been widely used, but a sound physical basis has been lacking. A model for large-scale turbulence that was recently proposed is applied to the above problem. The spectral density of the temperature field is derived and used to calculate the structure function of the index of refraction N. The result is compared with available data, yielding a reasonably good fit. The variance of N is also in accord with the data. The model is also applied to propagation effects. The phase structure function, covariance of the log amplitude, and variance of the log intensity are calculated. The calculated phase structure function is in excellent agreement with available data.
Low-frequency electromagnetic waves driven by gyrotropic gyrating ion beams
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Patel, V. L.
1986-01-01
The origin of left- and right-hand-polarized low-frequency waves in space plasmas is analyzed. It has been shown that a gyrotropic gyrating ion beam, a ring in velocity space, can excite electromagnetic modes in the plasma near the beam gyrofrequency. It excites left-hand-polarized shear Alfven waves and their harmonics via the coupling of Alfven modes with the beam modes. It can also excite right-hand-polarized fast-mode magnetosonic waves and their harmonics as well. The excitation is possible for beam ions heavier than the plasma ions. The growth rate varies as one-third power of the beam density and decreases with the angle of wave propagation with respect to the ambient magnetic field. The nonlocality has a stabilizing effect on the instability. The predicted values of the wave frequencies compare reasonably well with those observed in satellite data.
NASA Astrophysics Data System (ADS)
Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny
2008-03-01
For several years guided waves have been used for pipe wall defect detection. Guided waves have become popular for monitoring large structures because of the capability of these waves to propagate long distances along pipes, plates, interfaces and structural boundaries before loosing their strengths. The current technological challenges are to detect small defects in the pipe wall and estimate their dimensions using appropriate guided wave modes and to generate those modes relatively easily for field applications. Electro-Magnetic Acoustic Transducers (EMAT) can generate guided waves in pipes in the field environment. This paper shows how small defects in the pipe wall can be detected and their dimensions can be estimated by appropriate signal processing technique applied to the signals generated and received by the EMAT.
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed. PMID:17931024
Shukla, P. K.; Eliasson, B.
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schroedinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives
NASA Astrophysics Data System (ADS)
Zeng, Qi-Jun; Cheng, Ze
2010-06-01
In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helicities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.
NASA Astrophysics Data System (ADS)
Miller, Andrew L.; Wickramasinghe, Thulsi
2016-05-01
We focus on understanding the beaming of gravitational radiation from gamma ray bursts (GRBs) by approximating GRBs as linearly accelerated point masses. For accelerated point masses, it is known that gravitational radiation is beamed isotropicly at high speeds, and beamed along the polar axis at low speeds. Aside from this knowledge, there has been very little work done on beaming of gravitational radiation from GRBs, and the impact beaming could have on gravitational wave (GW) detection. We determine the following: (1) the observation angle at which the most power is emitted as a function of speed, (2) the maximum ratio of power radiated away as a function of speed, and (3) the angular distribution of power ratios at relativistic and non-relativistic speeds. Additionally the dependence of the beaming of GW radiation on speed is essentially the opposite of the beaming of electromagnetic (EM) radiation from GRBs. So we investigate why this is the case by calculating the angular EM radiation distribution from a linear electric quadrupole, and compare this distribution to the angular gravitational radiation distribution from a GRB.
Interlaced linear array sampling technique for electromagnetic wave imaging
Sheen, David M; McMakin, Douglas L
2009-06-16
An arrangement of receivers and transmitters used in wideband holographic imaging using a reduced number of physical antenna elements compared to established techniques and systems. At least one of the receivers is configured to receive the reflected signal from three or more of transmitters, and at least one transmitter is configured to transmit a signal to an object, the reflection of which will be received by at least three receivers. The improved arrays are easily incorporated into existing microwave and millimeter wave holographic imaging equipment utilizing the existing mechanical features of this equipment, as well as the existing wideband holographic imaging algorithms and electronics for constructing images.
Computation of transient electromagnetic waves in inhomogeneous media
NASA Astrophysics Data System (ADS)
Moghaddam, M.; Chew, W. C.; Anderson, B.; Yannakakis, E.; Liu, Q. H.
1991-02-01
A brief summary of the methods of solving transient EM wave problems in inhomogeneous media is given. The two distinct general techniques, the inverse Fourier transformation of time-harmonic solutions and the direct time-domain formulation, are illustrated by way of two examples. In the first, an efficient numerical mode-matching method to obtain the response of an EM source in a two-dimensional cylindrical inhomogeneity is described. In the second method, a finite-difference scheme is used to find the transient response of a point source in a two-dimensional inhomogeneity. Two different methods are proposed to treat the source-region singularity.
NASA Astrophysics Data System (ADS)
Zheleznyakov, V. V.; Bespalov, P. A.
2016-04-01
In part I of this work [1], we study the dispersion characteristics of low-frequency waves in a relativistic electron-positron plasma. In part II, we examine the electromagnetic wave instability in this plasma caused by an admixture of nonrelativistic protons with energy comparable with the energy of relativistic low-mass particles. The instability occurs in the frequency band between the fundamental harmonic of proton gyrofrequency and the fundamental harmonic of relativistic electron gyrofrequency. The results can be used for the interpretation of known observations of the pulsar emissions obtained with a high time and frequency resolution. The considered instability can probably be the initial stage of the microwave radio emission nanoshots typical of the pulsar in the Crab Nebula.
NASA Astrophysics Data System (ADS)
Zheleznyakov, V. V.; Bespalov, P. A.
2016-05-01
In part I of this work [1], we study the dispersion characteristics of low-frequency waves in a relativistic electron-positron plasma. In part II, we examine the electromagnetic wave instability in this plasma caused by an admixture of nonrelativistic protons with energy comparable with the energy of relativistic low-mass particles. The instability occurs in the frequency band between the fundamental harmonic of proton gyrofrequency and the fundamental harmonic of relativistic electron gyrofrequency. The results can be used for the interpretation of known observations of the pulsar emissions obtained with a high time and frequency resolution. The considered instability can probably be the initial stage of the microwave radio emission nanoshots typical of the pulsar in the Crab Nebula.
2D modeling of electromagnetic waves in cold plasmas
Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.
2014-02-12
The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Study of Rotating-Wave Electromagnetic Modes for Applications in Space Exploration
NASA Astrophysics Data System (ADS)
Velazco, J. E.
2016-08-01
Rotating waves are circularly polarized electromagnetic wave fields that behave like traveling waves but have discrete resonant frequencies of standing waves. In JPL's Communications Ground Systems Section (333), we are making use of this peculiar type of electromagnetic modes to develop a new generation of devices and instruments for direct applications in space exploration. In this article, we present a straightforward analysis about the phase velocity of these wave modes. A derivation is presented for the azimuthal phase velocity of transverse magnetic rotating modes inside cylindrical cavity resonators. Computer simulations and experimental measurements are also presented that corroborate the theory developed. It is shown that the phase velocity of rotating waves inside cavity resonators increases with radial position within the cavity and decreases when employing higher-order operating modes. The exotic features of rotating modes, once better understood, have the potential to enable the implementation of a plethora of new devices that range from amplifiers and frequency multipliers to electron accelerators and ion thrusters.
Emission of terahertz electromagnetic waves by vortex flow in high- Tc superconductors
NASA Astrophysics Data System (ADS)
Tachiki, Masashi; Iizuka, Mikio; Minami, Kazuo; Tejima, Shogo; Nakamura, Hisashi
2006-05-01
Continuous terahertz electromagnetic waves have new applications in scientific and industrial fields such as medicine and information technology. Cuprate high-temperature superconductors have a layer structure, and form a naturally multi-connected Josephson junction system called intrinsic Josephson junction (IJJ). In IJJ, there appears a new excitation called the Josephson plasma. Its frequency is in the region of terahertz inside the superconducting energy gap. The excited plasma wave is converted into an electromagnetic wave at sample surfaces. Therefore the IJJ has a great potential to generate terahertz continuous wave. Here we report the results of simulations to find the optimum condition for obtaining the strongest emission power of the terahertz waves. The simulations were carried out using our theory. Since the simulation uses very large-sized coupled nonlinear equations therefore difficult to compute, we used the fastest supercomputer named as Earth Simulator. We found that the quite intense continuous terahertz coherent wave is emitted from a small sample with high-energy efficiency.
NASA Astrophysics Data System (ADS)
Remya, B.; Tsurutani, B. T.; Reddy, R. V.; Lakhina, G. S.; Hajra, R.
2015-09-01
Electromagnetic ion (proton) cyclotron (EMIC) waves and whistler mode chorus are simultaneously detected in the Earth's dayside subsolar outer magnetosphere. The observations were made near the magnetic equator 3.1°-1.5° magnetic latitude at 1300 magnetic local time from L = 9.9 to 7.0. It is hypothesized that the solar wind external pressure caused preexisting energetic 10-100 keV protons and electrons to be energized in the T⊥ component by betatron acceleration and the resultant temperature anisotropy (T⊥>T∥) formed led to the simultaneous generation of both EMIC (ion) and chorus (electron) waves. The EMIC waves had maximum wave amplitudes of ˜6 nT in a ˜60 nT ambient field B0. The observed EMIC wave amplitudes were about ˜10 times higher than the usually observed chorus amplitudes (˜0.1-0.5 nT). The EMIC waves are found to be coherent to quasi-coherent in nature. Calculations of relativistic ˜1-2 MeV electron pitch angle transport are made using the measured wave amplitudes and wave packet lengths. Wave coherency was assumed. Calculations show that in a ˜25-50 ms interaction with an EMIC wave packet, relativistic electron can be transported ˜27° in pitch. Assuming dipole magnetic field lines for a L = 9 case, the cyclotron resonant interaction is terminated ˜±20° away from the magnetic equator due to lack of resonance at higher latitudes. It is concluded that relativistic electron anomalous cyclotron resonant interactions with coherent EMIC waves near the equatorial plane is an excellent loss mechanism for these particles. It is also shown that E > 1 MeV electrons cyclotron resonating with coherent chorus is an unlikely mechanism for relativistic microbursts. Temporal structures of ˜30 keV precipitating protons will be ˜2-3 s which will be measurable at the top of the ionosphere.
NASA Astrophysics Data System (ADS)
Zhang, Xingyu; Hosseini, Amir; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K.; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L.; Lee, Charles Y.; Chen, Ray T.
2015-03-01
The detection and measurement of electromagnetic fields have attracted significant amounts of attention in recent years. Traditional electronic electromagnetic field sensors use large active conductive probes which perturb the field to be measured and also make the devices bulky. In order to address these problems, integrated photonic electromagnetic field sensors have been developed, in which an optical signal is modulated by an RF signal collected by a miniaturized antenna. In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300μm, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the
NASA Technical Reports Server (NTRS)
Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1993-01-01
Large-amplitude electromagnetic plasma waves are one of the dominant features of the solar wind-comet interaction. Wave characteristics strongly depend on parameters such as the solar wind flow and Alfven velocities and the angle between flow and interplanetary magnetic field as well as the production rate. With respect to the latter the flyby of the spacecraft Giotto at comet P/Griff-Skjellerup provides a unique possibility to study such waves in further detail. Pickup ion-related wave signatures have been observed up to a distance of 600,000 km from the nucleus. Peak spectral power in the spacecraft frame of reference occurs at frequencies mainly somewhat below the water group ion gyrofrequency. From this the waves are determined to be mainly left-hand polarized waves, causing one-sided pitch angle diffusion outbound. The wave activity strongly increases close to the comet; upstream it exhibits a quadratic dependence on the water group pickup ion free energy. Furthermore, a phenomenological study of the wave characteristics provides a unique description of the fine-structure of the interaction region. Indications of steepened magnetosonic waves have been found in the outbound magnetosheath region.
Propagation of Rossby-Khantadze Electromagnetic Planetary Waves in the Ionospheric E-Layer
NASA Astrophysics Data System (ADS)
Futatani, S.; Kaladze, T.; Horton, W.; Benkadda, S.
2013-10-01
Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized E-layer of the ionosphere are investigated with numerical simulations. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with speeds of order 10-20 m/s for the slow wave and of order 500-1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary vortex structures emitted from general initial conditions. These structures are the neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes be such that the nonlinear convection around the core of the disturbance is faster that the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states are indicative of an initial strong disturbance such that arising from a solar storm, a tectonic plate movements or volcanic eruptions. Supported by NSF Grant 0964692 to the University of Texas at Austin; PIIM/CNRS at Aix-Marseille University, and by IMeRA Grant for Advanced Research.
Nonlinear propagation of Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer
NASA Astrophysics Data System (ADS)
Futatani, S.; Horton, W.; Kaladze, T. D.
2013-10-01
Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized ionospheric E-layer is investigated with numerical simulations. Large scale, finite amplitude vortex structures are launched as initial conditions at low, mid, and high latitudes. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with local speeds of the order of 10-20 m/s for the slow wave and of the order of 500-1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary structures emitted from the initial conditions. These structures are neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes are such that the nonlinear convection around the core of the disturbance is faster than the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states is indicative of an initial strong disturbance such as that from a solar storm or a tectonic plate movement. We show that for generic, large amplitude initial disturbances both slow and fast vortex structures propagate out of the initial structure.
Nonlinear propagation of Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer
Futatani, S.; Horton, W.; Kaladze, T. D.
2013-10-15
Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized ionospheric E-layer is investigated with numerical simulations. Large scale, finite amplitude vortex structures are launched as initial conditions at low, mid, and high latitudes. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with local speeds of the order of 10–20 m/s for the slow wave and of the order of 500–1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary structures emitted from the initial conditions. These structures are neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes are such that the nonlinear convection around the core of the disturbance is faster than the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states is indicative of an initial strong disturbance such as that from a solar storm or a tectonic plate movement. We show that for generic, large amplitude initial disturbances both slow and fast vortex structures propagate out of the initial structure.
NASA Astrophysics Data System (ADS)
PanneerChelvam, Premkumar; Raja, Laxminarayan L.; Upadhyay, Rochan R.
2016-09-01
We discuss the computational modeling of a single microplasma and its interaction with high frequency electromagnetic waves in a microwave regime. The work is motivated by a strong recent interest in the area of reconfigurable plasma-based metamaterials (MM) and photonic crystals (PC) where the interaction of electromagnetic waves with plasma elements (e.g. microdischarges) forms the basis for the MM/PC operation. In this work the microplasma is assumed to be driven by a 1 GHz microwave source in a parallel plate electrode configuration. Its structure and properties are described using a fluid plasma model. The interaction of the microplasma with a 100 GHz transverse magnetic (TM) and transverse electric (TE) polarized microwave propagating in a rectangular waveguide is studied. Two operational regimes of the plasma discharge are considered. One in which the peak electron density is less than the critical density (under-dense) for the interacting wave and the other in which it is higher (over-dense). The under-dense plasma with positive less than unity dielectric constant has sufficient dielectric contrast from the surrounding medium that a slight perturbation of the incident wave and bending of wave path lines through the discharge is realized. The over-dense plasma interacts strongly with the TM polarized wave because of epsilon-zero resonance at the critical density locations and the wave path lines are observed to reverse their direction near the regions of critical plasma density. The transverse electric (TE) polarized wave does not exhibit epsilon-zero resonance and the interactions are weaker than the TM wave.
Shiozawa, Toshiyuki
2010-12-15
For the purpose of providing for a theoretical background for the study of electromagnetic fields generated by precursory effects of earthquakes, the problem of transmission and total reflection at the earth-atmosphere interface is investigated in detail for a subhertz plane electromagnetic wave incident from the earth's crust. The term ''subhertz'' means 'below 1 Hz'. First, for the special case of normal incidence, the overall power transmission coefficient at the earth-atmosphere interface is found to take a maximum value at a definite frequency f{sub 0} which is inversely proportional to the square of the depth of a virtual hypocenter. A typical value of f{sub 0} falls around 0.01 Hz. For oblique incidence as well, this feature of the overall power transmission coefficient is retained except in the vicinity of the critical angle of incidence for the H-wave. At the critical angle of incidence, the power flow carried by a surface wave along the interface becomes anomalously large for the H-wave. However, over a wide range of angles of incidence greater than the critical angle, the power flow carried by the E-wave exceeds that carried by the H-wave by orders of magnitude. Finally, the energy conservation relations for the incident, reflected, and transmitted waves at the earth-atmosphere interface are discussed. For an incident wave coming from the earth's crust, the interactive power between the incident and reflected waves plays a crucial role for the conservation of energy at the interface.
Shukla, P.K.; Kourakis, I.; Stenflo, L.
2005-02-01
A linear theory for intermediate-frequency [much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies)], long wavelength (in comparison with the ion gyroradius and the electron skin depth) electromagnetic waves in a multicomponent, homogeneous electron-ion-dust magnetoplasma is presented. For this purpose, the generalized Hall-magnetohydrodynamic (GH-MHD) equations are derived for the case with immobile charged dust macroparticles. The GH-MHD equations in a quasineutral plasma consist of the ion continuity equation, the generalized ion momentum equation, and Faraday's law with the Hall term. The GH-MHD equations are Fourier transformed and combined to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.
Effect of Electromagnetic Wave on Bone Healing in Fixed and Unfixed Conditions.
Onger, Mehmet Emin; Göçer, Hasan; Çirakli, Alper; Büyükceran, Ismail; Kiliç, Mesut; Kaplan, Süleyman
2016-09-01
Mobile phones have come into daily life and are now one of the most frequently used devices for communication. The aim of this study was to evaluate possible effect of electromagnetic wave (EMW) with and without fixation material on bone healing.Forty male rats were exposed to fracture on tibia bone and were randomly divided into 4 groups as E(+)K(+), E(+)K(-), E(-)K(+), and E(-)K(-) where E(+) means EMW exposure and K(+) means Kirschner wire fixation. At the end of study tibia samples were taken from all the groups for the quantitative evaluation of regeneration.Significant difference was found between Group E(+)K(+) and E(-)K(+) in terms of both new bone and capillary volume.Electromagnetic wave may be harmful for bone healing with fixation whereas it has no same effect on bone regeneration without fixation. PMID:27526232
Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass
Dorofeev, O.F.; Lobanov, A.E.
2005-06-01
Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.
Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles
NASA Astrophysics Data System (ADS)
Zhou, You-He; Shu He, Qin; Zheng, Xiao Jing
2005-06-01
A theoretical approach for predicting the attenuation of microwave propagation in sandstorms is presented, with electric charges generated on the sand grains taken into account. It is found that the effect of electric charges distributed partially on the sand surface is notable. The calculated attenuation is in good agreement with that measured in certain conditions. The distribution of electric charges on the surface of sand grains, which is not easy to measure, can be approximately determined by measuring the attenuation value of electromagnetic waves. Some effects of sand radius, dielectric permittivity, frequency of electromagnetic wave, and visibility of sandstorms on the attenuation are also discussed quantitatively. Finally, a new electric parameter is introduced to describe the roles of scattering, absorption and effect of charges in attenuation.
NASA Astrophysics Data System (ADS)
Chen, Qiang; Chen, Bin
2012-10-01
In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.
Kavitha, L.; Saravanan, M.; Srividya, B.; Gopi, D.
2011-12-15
We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schroedinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.
The emission mechanism of THz electromagnetic waves from Bi2212 mesa device
NASA Astrophysics Data System (ADS)
Watanabe, Chiharu; Minami, Hidetoshi; Kitamura, Takeo; Kashiwagi, Takanari; Klemm, Richard; Kadowaki, Kazuo
From the detailed study of the severe temperature inhomogeneity of the Bi2212 IJJ mesa structure often forming ``hot-spot'' at relatively higher bias current region, while the electromagnetic waves are emitted, multi terminal potential measurement of the mesa device has revealed that the equipotential part of the mesa can only give universal ac-Josephson relationship between the potential difference and the frequency measured by the FT-IR spectrometer, and it is violated as the potential is measured in the region where the hot-spot is formed. This means that the deviation of the emission frequency from the ac-Josephson effect comes from a gradient of the electrical potential distribution. This strongly suggests that the electromagnetic waves at THz frequency may be generated in the superconducting part of the mesa, where the static electric potential is uniform, satisfying the ac-Josephson relation universally no matter how much temperature gradient is.
Electromagnetic Wave Absorption On Powder Sheets: Effect Of Thickness And Particle Size
NASA Astrophysics Data System (ADS)
Hong, S. H.; Cho, E. K.; Cho, H. J.; Lee, J. J.; Sohn, K. Y.; Nam, J. M.; Moon, B. G.; Song, Y. S.; Park, W. W.
2008-04-01
Complex permeability and power absorption of electromagnetic wave absorber have been studied by varying the particle size of soft-magnetic powder and thickness of consolidated powder sheet. Relative permeability increased proportional to the particle size in <100 MHz range. But, as the frequency increased, the relative permeability of the sheet made of smaller particles decreased slower than that of larger particles. This is due to the increasing contribution of eddy current loss with increasing frequency.
Four-wave mixing in a three-level bichromatic electromagnetically induced transparency system
Yang, G. Q.; Xu, P.; Wang, J.; Zhan, M. S.; Zhu Yifu
2010-10-15
We investigate the four-wave mixing (FWM) phenomenon in a three-level bichromatic electromagnetically induced transparency system. Theoretical results predict that the FWM will exhibit a multipeak structure under bichromatic coupling fields. The stronger the coupling fields are, the more FWM the peaks should exhibit. Results of an experiment carried out with cold {sup 87}Rb atoms in a magneto-optical trap agree with the theoretical prediction.
Dmitrenko, A.G.; Mukomolov, A.I.
1995-12-01
A numerical method of solving the problem of the diffraction of electromagnetic waves by a three-dimensional magnetodielectric body of arbitrary shape in the resonance frequency region is proposed. The method is applied in the form of a FORTRAN software package for calculating the components of the diffraction field of bodies with different electrodynamic and geometrical parameters. The directivity parameters of some bodies of complex shape are given.
NASA Astrophysics Data System (ADS)
Kondrashov, A. V.; Ustinov, A. B.; Lähderanta, E.; Pakhomov, O. V.; Nikitin, A. A.; Kalinikos, B. A.
2015-12-01
Properties of spin-electromagnetic wave chaos developed in active ring oscillators have been investigated. A multiferroic structure composed of yttrium iron garnet film and barium strontium titanate (BST) slab served as a nonlinear dispersive medium of the oscillator. Dual control of the fractal dimension of the chaotic signal attractor was realized by variation of the ring gain and dielectric permittivity of the BST slab.
Consequences of vacuum polarization on electromagnetic waves in a Lorentz-symmetry breaking scenario
NASA Astrophysics Data System (ADS)
Agostini, B.; Barone, F. A.; Barone, F. E.; Gaete, Patricio; Helayël-Neto, J. A.
2012-02-01
The propagation of electromagnetic waves in a Lorentz-symmetry violating scenario is investigated in connection with non-linear (photon self-interacting) terms induced by quantum effects. It turns out that the photon field acquires an interesting polarization state and, from our calculations of phase and group velocities, we contemplate different scenarios with physically realizable magnetic fields and identify situations where non-linearity effects dominate over Lorentz-symmetry breaking ones and vice versa.
Electromagnetic wave propagation with negative phase velocity in regular black holes
Sharif, M. Manzoor, R.
2012-12-15
We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.
Aiello, Matias; Bengochea, Gabriel R; Ferraro, Rafael E-mail: gabriel@iafe.uba.ar
2008-06-15
Born-Infeld electromagnetic waves interacting with a static magnetic background in an expanding universe are studied. The non-linear character of Born-Infeld electrodynamics modifies the relation between the energy flux and the distance to the source, which gains a new dependence on the redshift that is governed by the background field. We compute the luminosity distance as a function of the redshift and compare with Maxwellian curves for supernovae type Ia.
Low-Intensity Electromagnetic Millimeter Waves for Pain Therapy
Usichenko, Taras I.; Edinger, Hardy; Gizhko, Vasyl V.; Lehmann, Christian; Wendt, Michael; Feyerherd, Frank
2006-01-01
Millimeter wave therapy (MWT), a non-invasive complementary therapeutic technique is claimed to possess analgesic properties. We reviewed the clinical studies describing the pain-relief effect of MWT. Medline-based search according to review criteria and evaluation of methodological quality of the retrieved studies was performed. Of 13 studies, 9 of them were randomized controlled trials (RCTs), only three studies yielded more than 3 points on the Oxford scale of methodological quality of RCTs. MWT was reported to be effective in the treatment of headache, arthritic, neuropathic and acute postoperative pain. The rapid onset of pain relief during MWT lasting hours to days after, remote to the site of exposure (acupuncture points), was the most characteristic feature in MWT application for pain relief. The most commonly used parameters of MWT were the MW frequencies between 30 and 70 GHz and power density up to 10 mW cm−2. The promising results from pilot case series studies and small-size RCTs for analgesic/hypoalgesic effects of MWT should be verified in large-scale RCTs on the effectiveness of this treatment method. PMID:16786049
Theory of electromagnetic cyclotron wave growth in a time-varying magnetoplasma
NASA Technical Reports Server (NTRS)
Gail, William B.
1990-01-01
The effect of a time-dependent perturbation in the magnetoplasma on the wave and particle populations is investigated using the Kennel-Petchek (1966) approach. Perturbations in the cold plasma density, energetic particle distribution, and resonance condition are calculated on the basis of the ideal MHD assumption given an arbitrary compressional magnetic field perturbation. An equation is derived describing the time-dependent growth rate for parallel propagating electromagnetic cyclotron waves in a time-varying magnetoplasma with perturbations superimposed on an equilibrium configuration.
Shi, P; Chen, C Q; Zou, W N
2015-01-01
Coupled shear (SH) elastic and electromagnetic (EM) waves propagating oblique to a one dimensional periodic piezoelectric and piezomagnetic composite are investigated using the transfer matrix method. Closed-form expression of the dispersion relations is derived. We find that the band structures of the periodic composite show simultaneously the features of phononic and photonic crystals. Strong interaction between the elastic and EM waves near the center of the Brillouin zone (i.e., phonon-polariton) is revealed. It is shown the elastic branch of the band structures is more sensitive to the piezoelectric effect while the phonon-polariton is more sensitive to the piezomagnetic effect of the composite. PMID:25200701
Relativistic Two-Boson System in Presence of Electromagnetic Plane Wave
NASA Astrophysics Data System (ADS)
Droz-Vincent, Ph.
2016-09-01
The relativistic two-body problem is considered for spinless particles subject to an external electromagnetic field. When this field is made of the monochromatic superposition of two counter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem involving five degrees of freedom.
Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596
Papadopoulos, D.; Shanny, R.; Short, R.D.
1993-08-31
The general theory describing reflection of electromagnetic waves from irregular reflectors was formulated by using path integral techniques (Dashen, 1979; Flatte, 1979). The general formulae reproduce the well known reflection coefficients for wave scattering from random rough surfaces derived by using Kirchhoff's theory or perturbation theory (Ogilvie, 1991). The theory was used to determine the degradation of an OTH radar signal scattered from irregular Artificial Ionospheric Mirrors (AIM). The cases of density irregularities induced by fluctuations in the ambient neutral density and by fluctuations in the heater power were separately examined. Scaling laws and bounds for minimal signal loss were derived.
NASA Technical Reports Server (NTRS)
Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.
1984-01-01
An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.
NASA Astrophysics Data System (ADS)
Xiao, Mufei
2000-03-01
We have found the rigorous solution of transient propagation of electronmagnetic waves through a medium. The rogorousness enables the solution to exhibit its apparent consistency with the Einstein causality. Thus, we confirm that faster-than-light or superluminal propagation of electromagnetic waves is not possible. Evanescent transmission gives rise to the diffraction in time, which is the actual reason for deformation of group propagation. Based on the principle of diffraction in time, superluminal group propagation can be understood. The findings are also instructive for understanding the time problem for particle tunneling.
Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.
Kourakis, I; Shukla, P K
2005-07-01
We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained. PMID:16090126
Finite element approach analysis for characteristics of electromagnetic acoustic Lamb wave
NASA Astrophysics Data System (ADS)
Chen, Xiaoming; Li, Songsong
2016-04-01
The electromagnetic acoustic Lamb wave, with the advantages of quickly detecting the defect and sensitivity to the defects, is widely used in non-destructive testing of thin sheet. In this paper, the directivity of sound field, Phase velocity, group velocity and particle displacement amplitude of Lamb wave are study based on finite element analysis method. The results show that, for 1mm aluminum, when the excitation frequency 0.64MHz, the displacement amplitude of A0 mode is minimum, and the displacement amplitude S0 mode is largest. Appropriate to increase the displacement amplitude of a mode, while reducing displacement amplitude of another mode, to achieve the excitation of a single mode Lamb wave. It is helpful to the Optimization of transducer parameters, the choice of Lamb wave modes and providing optimal excitation frequency.
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1989-01-01
The effect of multiple (singly ionized) coexisting newborn ion species on the stability of low-frequency electromagnetic waves was investigated using a plasma model in which solar wind magnetoplasma is made up of isotropic Maxwellian electron and proton populations with a common number density of 4.95/cu cm and temperatures equal to 17.2 eV and 6.9 eV, respectively. It is shown that the effect of multiple ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. If the ion masses are disparate, each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species. If the masses of newborn ions are similar, they can strongly catalyze wave growth of fluidlike nonresonant modes, but bring about weak growth enhancements in cyclotron resonant instabilities.
NASA Astrophysics Data System (ADS)
Nakayama, J.; Sakata, M.; Ogura, H.
1981-09-01
The scattering of an electromagnetic wave from an infinite random surface is studied by the probabilistic method developed in a previous paper. For a vertical polarized plane wave incident on a slightly random and perfectly conductive surface a new stochastic wave solution involving multiple scattering is obtained. The stochastic solution is free from the divergence difficulty as in the small perturbation method but gives an anomaly such that for a grazing angle of incidence the coherent scattering almost disappears and instead the incoherent scattering becomes dominant. In terms of the stochastic solution, a number of statistical properties of the scattering are calculated concretely for a perfectly conductive surface, such as the complex amplitude of the coherent scattering, the variance of the electric field, the optical theorem describing the power relation between the coherent and the incoherent scattering, the angular distribution of the incoherent scattering, the scattering cross section per unit area, and the surface wave flow, which are all illustrated in the figures.
Heating of solar chromosphere by electromagnetic wave absorption in a plasma slab model
Tsiklauri, D.; Pechhacker, R.
2011-04-15
The heating of solar chromospheric internetwork regions by means of the absorption of electromagnetic (EM) waves that originate from the photospheric blackbody radiation is studied in the framework of a plasma slab model. The absorption is provided by the electron-neutral collisions in which electrons oscillate in the EM wave field and electron-neutral collisions damp the EM wave. Given the uncertain nature of the collision cross-section due to the plasma microturbulence, it is shown that for plausible physical parameters, the heating flux produced by the absorption of EM waves in the chromosphere is between 20% and 45% of the chromospheric radiative loss flux requirement. It is also established that there is an optimal value for the collision cross-section, 5x10{sup -18} m{sup 2}, which produces the maximal heating flux of 1990 W m{sup -2}.
A carbonyl iron/carbon fiber material for electromagnetic wave absorption.
Youh, Meng-Jey; Wu, Hung-Chih; Lin, Wang-Hua; Chiu, Sheng-Cheng; Huang, Chien-Fa; Yu, Hsin-Chih; Hsu, Jen-Sung; Li, Yuan-Yao
2011-03-01
A carbonyl iron/carbon fiber material consisting of carbon fibers grown on micrometer-sized carbonyl iron sphere, was synthesized by chemical vapor deposition using a mixture of C2H2 and H2. The hollow-core carbon fibers (outer diameter: 140 nm and inner diameter: 40 nm) were composed of well-ordered graphene layers which were almost parallel to the long axis of the fibers. A composite (2 mm thick) consisting of the carbonyl iron/carbon fibers and epoxy resin demonstrated excellent electromagnetic (EM) wave absorption. Minimum reflection losses of -36 dB (99.95% of EM wave absorption) at 7.6 GHz and -32 dB (99.92% of EM wave absorption) at 34.1 GHz were achieved. The well-dispersed and network-like carbon fibers in the resin matrix affected the dielectric loss of the EM wave while the carbonyl iron affected the magnetic loss. PMID:21449387
Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung
2013-11-01
Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary. PMID:24245312
Vacuum pair-production in a classical electric field and an electromagnetic wave
Kleinert, Hagen; Xue, She-Sheng
2013-06-15
Using semiclassical WKB-methods, we calculate the rate of electron–positron pair-production from the vacuum in the presence of two external fields, a strong (space- or time-dependent) classical field and a monochromatic electromagnetic wave. We discuss the possible medium effects on the rate in the presence of thermal electrons, bosons, and neutral plasma of electrons and protons at a given temperature and chemical potential. Using our rate formula, we calculate the rate enhancement due to a laser beam, and discuss the possibility that a significant enhancement may appear in a plasma of electrons and protons with self-focusing properties. -- Highlights: •The electron–positron pair-production rate in an electric field and an electromagnetic wave. •The pair-production rate enhanced by the amplitude of the electromagnetic wave. •Its application for the superposition of the static electric field and laser beams. •Medium effects on the pair-production rate. •The enhancement of the pair-production rate by the self-focusing property of laser beams.
Damez, Jean-Louis; Clerjon, Sylvie
2013-12-01
The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. Besides laboratory researches, food scientists often try to adapt their tools to industrial conditions and easy handling devices useable on-line and in slaughterhouses already exist. This paper overviews the recently developed approaches and latest research efforts related to assessing the quality of different meat products by electromagnetic waves and examines the potential for their deployment. The main meat quality traits that can be assessed using electromagnetic waves are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of techniques, from low frequency, high frequency impedance measurement, microwaves, NMR, IR and UV light, to X-ray interaction, involves a wide range of physical interactions between the electromagnetic wave and the sample. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. PMID:23688798
Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming
2013-01-15
A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2013-12-01
The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations-the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave-are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime.
MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties.
Lü, Yinyun; Wang, Yiting; Li, Hongli; Lin, Yuan; Jiang, Zhiyuan; Xie, Zhaoxiong; Kuang, Qin; Zheng, Lansun
2015-06-24
Composites incorporating ferromagnetic metal nanopartices into a highly porous carbon matrix are promising as electromagnetic wave absorption materials. Such special composite nanomaterials are potentially prepared by the thermal decomposition of metal-organic framework (MOF) materials under controlled atmospheres. In this study, using Co-based MOFs (Co-MOF, ZIF-67) as an example, the feasibility of this synthetic strategy was demonstrated by the successful fabrication of porous Co/C composite nanomaterials. The atmosphere and temperature for the thermal decomposition of MOF precursors were crucial factors for the formation of the ferromagnetic metal nanopartices and carbon matrix in the porous Co/C composites. Among the three Co/C composites obtained at different temperatures, Co/C-500 obtained at 500 °C exhibited the best performance for electromagnetic wave absorption. In particular, the maximum reflection loss (RL) of Co/C-500 reached -35.3 dB, and the effective absorption bandwidth (RL ≤ -10 dB) was 5.80 GHz (8.40 GHz-14.20 GHz) corresponding to an absorber thickness of 2.5 mm. Such excellent electromagnetic wave absorption properties are ascribed to the synergetic effects between the highly porous structure and multiple components, which significantly improved impedance matching. PMID:26039802
THE ROLE OF SUPERLUMINAL ELECTROMAGNETIC WAVES IN PULSAR WIND TERMINATION SHOCKS
Amano, Takanobu; Kirk, John G.
2013-06-10
The dynamics of a standing shock front in a Poynting-flux-dominated relativistic flow is investigated by using a one-dimensional, relativistic, two-fluid simulation. An upstream flow containing a circularly polarized, sinusoidal magnetic shear wave is considered, mimicking a wave driven by an obliquely rotating pulsar. It is demonstrated that this wave is converted into large-amplitude electromagnetic waves with superluminal phase speeds by interacting with the shock when the shock-frame frequency of the wave exceeds the proper plasma frequency. The superluminal waves propagate in the upstream, modify the shock structure substantially, and form a well-developed precursor region ahead of a subshock. Dissipation of Poynting flux occurs in the precursor as well as in the downstream region through a parametric instability driven by the superluminal waves. The Poynting flux remaining in the downstream region is carried entirely by the superluminal waves. The downstream plasma is therefore an essentially unmagnetized, relativistically hot plasma with a non-relativistic flow speed, as suggested by observations of pulsar wind nebulae.
NASA Astrophysics Data System (ADS)
Fromme, P.
2015-03-01
Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.
NASA Astrophysics Data System (ADS)
Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.
2013-09-01
We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.
NASA Astrophysics Data System (ADS)
Nusca, Michael Joseph, Jr.
The effects of various gasdynamic phenomena on the attenuation of an electromagnetic wave propagating through the nonequilibrium chemically reacting air flow field generated by an aerodynamic body travelling at high velocity is investigated. The nonequilibrium flow field is assumed to consist of seven species including nitric oxide ions and free electrons. The ionization of oxygen and nitrogen atoms is ignored. The aerodynamic body considered is a blunt wedge. The nonequilibrium chemically reacting flow field around this body is numerically simulated using a computer code based on computational fluid dynamics. The computer code solves the Navier-Stokes equations including mass diffusion and heat transfer, using a time-marching, explicit Runge-Kutta scheme. A nonequilibrium air kinetics model consisting of seven species and twenty-eight reactions as well as an equilibrium air model consisting of the same seven species are used. The body surface boundaries are considered as adiabatic or isothermal walls, as well as fully-catalytic and non-catalytic surfaces. Both laminar and turbulent flows are considered; wall generated flow turbulence is simulated using an algebraic mixing length model. An electromagnetic wave is considered as originating from an antenna within the body and is effected by the free electrons in the chemically reacting flow. Analysis of the electromagnetics is performed separately from the fluid dynamic analysis using a series solution of Maxwell's equations valid for the propagation of a long-wavelength plane electromagnetic wave through a thin (i.e., in comparison to wavelength) inhomogeneous plasma layer. The plasma layer is the chemically reacting shock layer around the body. The Navier-Stokes equations are uncoupled from Maxwell's equations. The results of this computational study demonstrate for the first time and in a systematic fashion, the importance of several parameters including equilibrium chemistry, nonequilibrium chemical kinetics, the
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Stavroula Foteinopoulou
2003-12-12
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates with the observed
Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma
NASA Astrophysics Data System (ADS)
Wei, Xiaolong; Xu, Haojun; Li, Jianhai; Lin, Min; Su; Chen
2015-05-01
An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density ( N e ) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N e achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N e of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10-50 Pa, power in 300-700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4-5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.
Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco
2012-01-01
We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit. PMID:23082282
NASA Astrophysics Data System (ADS)
Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob
2016-06-01
In this paper we present a Krylov subspace model-order reduction technique for time- and frequency-domain electromagnetic wave fields in linear dispersive media. Starting point is a self-consistent first-order form of Maxwell's equations and the constitutive relation. This form is discretized on a standard staggered Yee grid, while the extension to infinity is modeled via a recently developed global complex scaling method. By applying this scaling method, the time- or frequency-domain electromagnetic wave field can be computed via a so-called stability-corrected wave function. Since this function cannot be computed directly due to the large order of the discretized Maxwell system matrix, Krylov subspace reduced-order models are constructed that approximate this wave function. We show that the system matrix exhibits a particular physics-based symmetry relation that allows us to efficiently construct the time- and frequency-domain reduced-order models via a Lanczos-type reduction algorithm. The frequency-domain models allow for frequency sweeps meaning that a single model provides field approximations for all frequencies of interest and dominant field modes can easily be determined as well. Numerical experiments for two- and three-dimensional configurations illustrate the performance of the proposed reduction method.
Three-dimensional Fréchet sensitivity kernels for electromagnetic wave propagation
Strickland, C. E.; Johnson, T. C.; Odom, R. I.
2015-08-28
Electromagnetic imaging methods are useful tools for monitoring subsurface changes in pore-fluid content and the associated changes in electrical permittivity and conductivity. The most common method for georadar tomography uses a high frequency ray-theoretic approximation that is valid when material variations are sufficiently small relative to the wavelength of the propagating wave. Georadar methods, however, often utilize electromagnetic waves that propagate within heterogeneous media at frequencies where ray theory may not be applicable. In this paper we describe the 3-D Fréchet sensitivity kernels for EM wave propagation. Various data functional types are formulated that consider all three components of the electric wavefield and incorporate near-, intermediate-, and far-field contributions. We show that EM waves exhibit substantial variations for different relative source-receiver component orientations. The 3-D sensitivities also illustrate out-of-plane effects that are not captured in 2-D sensitivity kernels and can influence results obtained using 2-D inversion methods to image structures that are in reality 3-D.
NASA Astrophysics Data System (ADS)
Meister, C.-V.; Mayer, B.; Hoffmann, D. H. H.
2012-04-01
The many-fluid magnetohydrodynamic theory is applied to describe the modification of the electromagnetic field of the ionospheric E-layer by acoustic-type waves. These waves originate from lower altitudes and may be caused by earthquake preparation processes. In comparison to former works, the different stratification of the positively and negatively charged ionospheric particles and of the neutral constituents is taken into account. There also the influence of the mean electric field on the different hight scales of the plasma parameters is discussed. Besides, the hight scales of the electric and magnetic wave fields are modeled. It is shown that at E-layer altitudes the acoustic waves may be converted into Alfvén waves. The dependence of these waves on the height scales of the plasma parameters of the particles and on the momentum transport between the charged and neutral particles is analysed. First estimates of the temperature variations within the E-layer because of the assumed acoustic-type waves of seismic origin are made.
Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)
NASA Astrophysics Data System (ADS)
Fromme, Paul
2016-02-01
Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.
NASA Astrophysics Data System (ADS)
Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.
2012-12-01
High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
NASA Astrophysics Data System (ADS)
Jia, Jieshu; Yuan, Chengxun; Liu, Sha; Yue, Feng; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui
2016-04-01
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.
Multiple scattering of electromagnetic waves by an aggregate of uniaxial anisotropic spheres.
Li, Zheng-Jun; Wu, Zhen-Sen; Shi, Yan'e; Bai, Lu; Li, Hai-Ying
2012-01-01
An exact analytical solution is obtained for the scattering of electromagnetic waves from a plane wave with arbitrary directions of propagation and polarization by an aggregate of interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes. The expansion coefficients of a plane wave with arbitrary directions of propagation and polarization, for both TM and TE modes, are derived in terms of spherical vector wave functions. The effects of the incident angle α and the polarization angle β on the radar cross sections (RCSs) of several types of collective uniaxial anisotropic spheres are numerically analyzed in detail. The characteristics of the forward and backward RCSs in relation to the incident wavelength are also numerically studied. Selected results on the forward and backward RCSs of several types of square arrays of SiO₂ spheres illuminated by a plane wave with different incident angles are described. The accuracy of the expansion coefficients of the incident fields is verified by comparing them with the results obtained from references when the plane wave is degenerated to a z-propagating and x- or y-polarized plane wave. The validity of the theory is also confirmed by comparing the numerical results with those provided by a CST simulation. PMID:22218348
Electromagnetic scattering by underground targets using the cylindrical-wave approach
NASA Astrophysics Data System (ADS)
Frezza, Fabrizio; Pajewski, Lara; Ponti, Cristina; Schettini, Giuseppe
2010-05-01
The electromagnetic detection of buried cylindrical targets, as structures encountered in the inspection of archaeological sites, or pipes, conduits, and tunnels, has been recently addressed in several works. The development of techniques for investigating cylindrical inhomogeneities embedded in a dielectric medium, is a challenging topic also in several other applications, including non-destructive evaluation and testing in civil engineering, and medical imaging. Ground-penetrating radars (GPRs) are extremely useful in probing subsurface targets through electromagnetic waves. These tools solve an inverse problem, to estimate the electromagnetic properties of a target from field measurements. Different algorithms are employed to post-process the collected experimental data: most of them need a fast and accurate forward solver, to perform repeated evaluations of the scattered field due to known targets, and to be used in combination with some optimization techniques. In this paper, we present an efficient spectral-domain method that we developed for the solution of the two-dimensional electromagnetic plane-wave forward scattering by a finite set of perfectly-conducting or dielectric cylinders, buried in a dielectric half-space or in a finite-thickness slab. The technique is called Cylindrical-Wave Approach (CWA), because the field scattered by the targets is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum to take into account the interaction of such waves with the planar interfaces. Suitable reflected and transmitted cylindrical functions are defined; adaptive integration procedures of Gaussian type, together with acceleration algorithms, are employed for the numerical solution of the relevant spectral integrals. All the multiple-reflection phenomena are taken into account. The method may deal with both TM and TE polarization fields; it can be applied for arbitrary values of permittivity, radius, and depth, of the
Electromagnetic Ion Cyclotron Waves near the Plasmapause: A CLUSTER Case Study
NASA Astrophysics Data System (ADS)
Fraser, B. J.; Liu, Y.; Menk, F. W.
2011-12-01
Electromagnetic ion cyclotron (EMIC) waves in the Pc1 ultra-low frequency wave band (0.2-5Hz) observed in the plasmasphere and magnetosphere are generated by micro-scale instabilities associated with keV energetic protons of ring current origin. This case study presents a typical EMIC wave event with frequency 1.8-3.5 Hz observed by the four Cluster spacecraft when passing through perigee (L ~ 4:2) and moving northward on 2 November 2001 around 08 MLT. The event occurred around the magnetic equatorial plane within magnetic latitude range ±18 degrees with a short duration of 50 minutes. The associated cold electron density data show the wave power was confined within the narrow shell of the plasmapause where the electron density gradient decreased from 30-80 cm-3 to 20 cm-3. The radial scale size of the wave region is estimated at ~ 0:77 Re. The wave polarization was dominantly left-handed around the equatorial region and inner side of source region, but appeared right-handed close to the outer edge of the plasmapause and at higher latitudes. The Poynting flux and minimum variance analysis indicate that the wave energy was mainly transported towards high latitudes though oblique propagation was seen around the equatorial region. Enhanced H+, He+ and O+ particle energy fluxes were seen during the wave event over energy range ~25eV-40keV. Unfortunately the lower energy cold plasma composition data were not available. These observations suggest the waves originated around the equatorial region in the high density outer plasmasphere-plasmapause which overlaps the ring current; ideal conditions for wave generation by the ion cyclotron instability.
Generation of ELF and ULF electromagnetic waves by modulated heating of the ionospheric F2 region
NASA Astrophysics Data System (ADS)
Eliasson, B.; Chang, C.-L.; Papadopoulos, K.
2012-10-01
We present a theoretical and numerical study of the generation of extremely low frequency (ELF) and ultra-low frequency (ULF) waves by the modulation of the electron pressure at the F2-region with an intense high-frequency electromagnetic wave. The study is based on a cold plasma Hall-MHD model, including electron-neutral and ion-neutral collisions, which governs the dynamics of magnetostatic waves and their propagation through the ionospheric layers. Magnetosonic waves generated in the F2 region are propagating isotropically and are channeled in the ionospheric waveguide, while shear Alfvén waves are propagating along the magnetic field. To penetrate the ionosphere from the F2 peak at 300 km to the ground, the magnetostatic waves first propagate as magnetosonic or shear Alfvén waves that encounter a diffusive layer from about 150 km to 120 km where the Pedersen conductivity dominates, and then as helicon (whistler-like) mode waves from about 120 km to 80 km where the ions are collisionally glued to the neutrals and the Hall conductivity dominates. By performing numerical simulations and studying the dispersive properties of the wave modes, we investigate the dynamics and penetration of ELF/ULF waves through the ionospheric layers to the ground and along the geomagnetic field lines to the magnetosphere. Realistic profiles of the ionospheric profiles of conductivity and density are used, together with different configurations of the geomagnetic field, relevant for both the high, mid and equatorial latitudes. Some of the results are compared with recent HAARP experiments.
Statistical study of seismo-electromagnetic perturbations observed by the DEMETER wave instruments
NASA Astrophysics Data System (ADS)
Pisa, David; Santolik, Ondrej; Parrot, Michel
We present a statistical study of electromagnetic perturbations in the upper ionosphere observed by the DEMETER satellite (launched in 2004, altitude of orbit about 660 km, still operating). Data intervals measured within 330 km from large (M¿=5.0) surface (depth¡40 km) earthquakes are analyzed. Time intervals spanning from 5 days before to 3 days after the main shock are checked for the presence of seismo-electromagnetic effects, while the other data from the same geographical location are used in order to estimate the common, seismically unperturbed, background. Previous results in the VLF range (20 Hz -18 kHz) have shown that there is a statistically significant decrease of wave intensity shortly (less than 4 hours) before the time of the main shock. In this study all the available DEMETER data are used and all the frequency range from ULF to HF (DC -3.175 MHz) is covered. Various types of electromagnetic waves that could be responsible for this effect are discussed, as well as its dependence on the focal mechanism of an imminent earthquake.
NASA Astrophysics Data System (ADS)
Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi; Qi, Song
2016-08-01
Magnetorheological (MR) materials are a class of materials whose mechanical and electrical properties can be reversible controlled by the magnetic field. In this study, we pioneered research on the effect of a uniform magnetic field with different strengths and directions on the microwave-absorbing properties of magnetorheological elastomers (MREs), in which the ferromagnetic particles are flower-like carbonyl iron powders (CIPs) prepared by an in situ reduction method. The electromagnetic (EM) absorbing properties of the composites have been analyzed by vector network analysis with the coaxial reflection/transmission technique. Under the magnetic field, the columnar or chainlike structures were formed, which allows EM waves to penetrate. Meanwhile, stronger Debye dipolar relaxation and attenuation constant have been obtained when changing the direction of the applied magnetic field. Compared with untreated MREs, not only have the minimum reflection loss (RL) and the effective absorption bandwidth (below ‑20 dB) greatly increased, the frequencies of the absorbing peaks shift about 15%. This suggests that MREs are a magnetic-field-sensitive electromagnetic wave-absorbing material and have great potential in applications such as in anti-radar camouflage, due to the fact that radar can continuously conduct detection at many electromagnetic frequencies, while the MR materials can adjust the microwave-absorption peak according to the radar frequency.
Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium
Bliokh, K. Yu.; Frolov, D. Yu.; Kravtsov, Yu. A.
2007-05-15
A theory of electromagnetic wave propagation in a weakly anisotropic smoothly inhomogeneous medium is developed, based on the quantum-mechanical diagonalization procedure applied to Maxwell equations. The equations of motion for the translational (ray) and intrinsic (polarization) degrees of freedom are derived ab initio. The ray equations take into account the optical Magnus effect (spin Hall effect of photons) as well as trajectory variations owing to the medium anisotropy. Polarization evolution is described by the precession equation for the Stokes vector. In the generic case, the evolution of wave turns out to be non-Abelian: it is accompanied by mutual conversion of the normal modes and periodic oscillations of the ray trajectories analogous to electron zitterbewegung. The general theory is applied to examples of wave evolution in media with circular and linear birefringence.
Electromagnetic wave propagation in spatially homogeneous yet smoothly time-varying dielectric media
NASA Astrophysics Data System (ADS)
Hayrapetyan, Armen G.; Götte, Jörg B.; Grigoryan, Karen K.; Fritzsche, Stephan; Petrosyan, Rubik G.
2016-07-01
We explore the propagation and transformation of electromagnetic waves through spatially homogeneous yet smoothly time-dependent media within the framework of classical electrodynamics. By modelling the smooth transition, occurring during a finite period τ, as a phenomenologically realistic and sigmoidal change of the dielectric permittivity, an analytically exact solution to Maxwell's equations is derived for the electric displacement in terms of hypergeometric functions. Using this solution, we show the possibility of amplification and attenuation of waves and associate this with the decrease and increase of the time-dependent permittivity. We demonstrate, moreover, that such an energy exchange between waves and non-stationary media leads to the transformation (or conversion) of frequencies. Our results may pave the way towards controllable light-matter interaction in time-varying structures.
NASA Astrophysics Data System (ADS)
Borzdov, G. N.
2016-06-01
The fundamental solution of the Dirac equation for an electron in an electromagnetic field with harmonic dependence on space-time coordinates is obtained. The field is composed of three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency. Each standing wave consists of two eigenwaves with different complex amplitudes and opposite directions of propagation. The fundamental solution is obtained in the form of the projection operator defining the subspace of solutions to the Dirac equation. It is illustrated by the analysis of the ground state and the spin precession of the Dirac electron in the field of two counterpropagating plane waves with left and right circular polarizations. Interrelations between the fundamental solution and approximate partial solutions is discussed and a criterion for evaluating the accuracy of approximate solutions is suggested.
Oslake, J.M.; Verboncoeur, J.P.; Birdsall, C.K.
1996-12-31
Slow-wave structures support microwave amplification via electromagnetic coupling with an injected electron beam. Critical in the design of such devices is the dependence of the dispersion relation on the geometry of the guiding structure. The dispersion relation provides phase and group velocities, and the fields provide the impedance as seen by the beam. To this end, a computer model is developed which first numerically solves a wave equation in finite difference form subject to boundary conditions periodic in z and conducting elsewhere. For decades, the desired dispersion and impedance have been obtained experimentally from cold tests (no beam) on slow-wave structures by varying structure dimensions. However, the numerical approach condenses this process to a few minutes of simulation.
Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H.; Niknam, A. R.
2013-08-15
The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.
NASA Astrophysics Data System (ADS)
Main, Daniel; Caplinger, James; Kim, Tony; Sotnikov, Vladimir
2014-10-01
The propagation of electromagnetic (EM) waves can be influenced by the presence of plasma turbulence. It is known that vortex density structures can develop on nonlinear stage of an interchange instability in Earth's ionosphere and can affect radio communication channels. These density structures play an important role in the refraction and scattering of EM waves in Earth's ionosphere and also in laser diagnostic scattering experiments. We will use a numerical solution of nonlinear equations which govern the development of interchange instability to define a spatial dependence of density irregularities which can be used to analyze scattering of high frequency EM waves. This solution contains both large scale vortex density structures coexisting with short scale density perturbations. Next we will initialize a PIC simulation with the density distribution from the fluid simulation to calculate the scattering cross-section and compare the results with an analytic solution obtained using numerically calculated density spectra.
NASA Astrophysics Data System (ADS)
Cho, Min-A.; LIGO Scientific Collaboration; Virgo Collaboration
2016-03-01
Some of the most violent events in the universe are bright in both their gravitational wave (GW) emission and electromagnetic (EM). This means that prospects for multi-messenger astronomy increase as more and more detectors join the search for gravitational waves. Here I present the protocol created by members of Advanced LIGO/Virgo's EM Follow-up Program which ultimately results in alerting its astronomy partners or not. I discuss the series of checks and questions performed by humans (follow-up advocates and control room personnel) and automated online software (Approval Processor). This talk will follow the fate of the gravitational wave candidate event after it first enters Advanced LIGO/Virgo's online candidate event database. We gratefully acknowledge the support of the U.S. National Science Foundation through Grant PHY-1404121.
NASA Astrophysics Data System (ADS)
Golovanov, O. A.; Makeeva, G. S.; Rinkevich, A. B.
2016-02-01
An original mathematical model of the interaction of terahertz (THz) electromagnetic waves with periodic gratings of graphene micro- and nanoribbons is based on the solution to the boundary-value problem of diffraction for the Maxwell equations with electrodynamic boundary conditions and material equations. The electrodynamic calculations of the transmission coefficients of the TEM wave versus frequency are performed for the 2D grating of graphene micro- and nanoribbons at several chemical potentials, grating periods, and geometrical sizes of ribbons. The results of the calculations show that the transmission spectrum exhibits a minimum in the THz range if the electric field of the wave is perpendicular to the graphene ribbons. The minimum is due to the plasmon resonance of the fundamental mode in graphene, and the absorption peaks at higher frequencies in the upper part of the THz range are related to the highorder plasmon modes.
NASA Astrophysics Data System (ADS)
Huang, Yao-Xiong
1994-09-01
The problem of reflection and transmission of an electromagnetic wave by a dielectric medium moving uniformly in an arbitrary direction is analyzed in detail. The expressions for wave four vectors, the modified law of reflection and Snell's law, the reflected and transmitted wave field vectors, and the reflection and transmission coefficients are presented as the general solution for the problem. These expressions cover all the cases of arbitrary velocities of the moving medium and reduce to the results given previously by other authors for the particular cases of nu = nu(sub x), nu = n(sub y), nu = nu(sub z), and v = nu(sub x)(hat-x) + nu(sub y)(hat-y).
Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves
NASA Astrophysics Data System (ADS)
Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu
2014-03-01
Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.
Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer
NASA Technical Reports Server (NTRS)
Erlandson, Robert E.
1994-01-01
The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.
Bragg scattering of electromagnetic waves by microwave-produced plasma layers
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Zhang, Y. S.
1990-01-01
A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Wendel, D. E.
2012-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions - typically detected in the layers immediately outside of the current layer proper - form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed near the local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X-IO-nulls and magnetic spine connected null pairs, as well as their correlation - if any - to the amount of magnetic energy converted by the process of magnetic reconnection.
Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1993-01-01
The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.
Numerical study for electromagnetic wave emission in thin samples of intrinsic Josephson junctions
NASA Astrophysics Data System (ADS)
Koyama, T.; Matsumoto, H.; Ohta, Y.; Machida, M.
2011-11-01
Emission of THz electromagnetic waves from thin samples of intrinsic Josephson junctions (IJJ’s) is numerically studied, using the xz-model. We show that the spatial symmetry of the electromagnetic excitations corresponding to the π-cavity mode is different from that of the 2 π-cavity mode in the IJJ’s where the junction parameters such as the Josephson critical current are weakly inhomogeneous. In such IJJ’s the emission in the [0 0 1] direction, which is forbidden in the dipole emission, appears at the π-cavity mode resonance, whereas it is not observed in the 2 π-cavity mode resonance. It is also shown that the strong emission occurs when the transition between branches in the I- V characteristics takes place.
What's Next for VST: Electromagnetic Follow-Up of Gravitational Waves Events
NASA Astrophysics Data System (ADS)
Grado, A.; Cappellaro, E.; Piranomonte, S.; Brocato, E.; Branchesi, M.; Covino, S.; Campana, S.; Getman, F.; Greco, G.; Nicastro, L.; Pian, E.; Palazzi, E.; Stella, L.; Stratta, G.
A big step forward in the long-standing quest for gravitational waves (GWs) will be made next year when the LIGO and VIRGO collaborations will start regular operations of their sensitive, upgraded interferometers. It is crucial that the electromagnetic counterparts of GW events are securely identified, a difficult task because of the large size of error box expected to be returned by the interferometers (dozens to hundreds of square degrees). Our group is tackling the challenge by organizing a follow-up campaign covering the widest possible range of the electromagnetic spectrum. The optical counterpart will be covered by the VST thanks to its characteristics. The sensitivity and optical quality of the telescope will allow us to probe faint transients (e.g. kilonovae and short GRBs) that are among the most promising GW source candidates.
Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.
Shukla, P K; Eliasson, B; Stenflo, L
2012-07-01
We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent. PMID:23005546
Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Horne, Richard B.
1994-01-01
Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.
Theory and observations of electromagnetic ion cyclotron waves in Saturn's inner magnetosphere
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1993-01-01
High-resolution Voyager 1 magnetic field observations of Saturn's inner magnetosphere are examined for the presence of ULF waves. Quasi-circular left-hand polarized transverse oscillations are found in the near-equatorial region of 5-7 Rs with a wave period about 10 s and peak amplitude of about 2 nT. The wave is identified as the electromagnetic oxygen cyclotron mode occurring at a frequency just below the O(+) ion cyclotron frequency. A theoretical model of wave excitation based on gyroresonant coupling through a temperature anisotropy of O(+) pickup ions is developed which accounts for the principal features of the wave spectrum. It is hypothesized that wave-particle interactions provide a level of scattering commensurate with the weak pitch angle diffusion regime but nonetheless one that regulates and maintains a constant thermal anisotropy of ions along the magnetic field. Arguments are also presented that O(+) was the dominant thermal ion of the Dione-Tethys plasma torus at the time of the Pioneer 11 encounter the year previous to the Voyager 1 measurements.
NASA Technical Reports Server (NTRS)
Erlandson, R. E.; Aggson, T. L.; Hogey, W. R.; Slavin, J. A.
1993-01-01
Observational results from an investigation of LF (0.5-4.0 Hz) electromagnetic ion cyclotron waves and subauroral electron temperature enhancements recorded from the DE-2 satellite are presented. Four different wave events were analyzed, all recorded at magnetic latitudes from 57-60 deg, magnetic local times from 8-14 hr, and altitudes from 600-900 km. The peak wave amplitudes during the events ranged from 8-70 nT and 5-30 mV/m in the magnetic and electric field, respectively. Te enhancements at the time of the waves were observed in three of four events. A linear relationship between the wave magnetic field spectral density and Te enhancements was found for these events. The Te enhancements were also correlated with an enhanced flux of low energy electrons. During one event (82104) an enhanced flux of electrons were observed at energies up to 50 eV and at nearly all pitch angles, although the flux was largest in the precipitating and upflowing directions. It is suggested that the waves are responsible for heating the low energy electrons which precipitate to the ionosphere and produce the observed Te enhancements. The upflowing electron population appears to be heated at ionospheric altitudes, below the DE-2 satellite.
Theory and observations of electromagnetic ion cyclotron waves in Saturn's inner magnetosphere
NASA Astrophysics Data System (ADS)
Barbosa, D. D.
1993-06-01
High-resolution Voyager 1 magnetic field observations of Saturn's inner magnetosphere are examined for the presence of ULF waves. Quasi-circular left-hand polarized transverse oscillations are found in the near-equatorial region of 5-7 Rs with a wave period about 10 s and peak amplitude of about 2 nT. The wave is identified as the electromagnetic oxygen cyclotron mode occurring at a frequency just below the O(+) ion cyclotron frequency. A theoretical model of wave excitation based on gyroresonant coupling through a temperature anisotropy of O(+) pickup ions is developed which accounts for the principal features of the wave spectrum. It is hypothesized that wave-particle interactions provide a level of scattering commensurate with the weak pitch angle diffusion regime but nonetheless one that regulates and maintains a constant thermal anisotropy of ions along the magnetic field. Arguments are also presented that O(+) was the dominant thermal ion of the Dione-Tethys plasma torus at the time of the Pioneer 11 encounter the year previous to the Voyager 1 measurements.
NASA Astrophysics Data System (ADS)
Ma, Qingzeng; Jiao, Jingpin; Hu, Ping; Zhong, Xi; Wu, Bin; He, Cunfu
2014-03-01
The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SH0-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern of PPM EMATs, and can be used for their parameter optimization.
Effects of chorus, hiss and electromagnetic ion cyclotron waves on radiation belt dynamics (Invited)
NASA Astrophysics Data System (ADS)
Horne, R. B.
2013-12-01
Wave-particle interactions are known to play an important role in the acceleration and loss of radiation belt electrons, and in the heating and loss of ring current ions. The effectiveness of each wave type on radiation belt dynamics depends on the solar wind interaction with the magnetosphere and the properties of the waves which vary considerably with magnetic local time, radial distance and latitude. Furthermore the interaction of the waves with the particles is usually nonlinear. These factors present a major challenge to test and verify the theories. Here we discuss the role of several types of waves, including whistler mode chorus, plasmaspheric hiss, magnetosonic and electromagnetic ion cyclotron waves, in relation to radiation belt and ring current dynamics. We present simulations of the radiation belts using the BAS radiation belt model which includes the effects of chorus, hiss and EMIC waves along with radial diffusion. We show that chorus waves are required to form the peaks in the electron phase space density during storms, and that this occurs inside geostationary orbit. We compare simulations against observations in medium Earth orbit and the new results from Van Allen probes mission that shows conclusive evidence for a local electron acceleration process near L=4.5. We show the relative importance of plasmaspheric hiss and chorus and the location of the plasmapause for radiation belt dynamics near L=4.5 and demonstrate the losses due to EMIC waves that should occur at high energies. Finally we show how improving our basic physical understanding through missions such as Van Allen probes go to improve space weather forecasting in projects such as SPACECAST and have a direct benefit to society.
Maximizing the probability of detecting an electromagnetic counterpart of gravitational-wave events
NASA Astrophysics Data System (ADS)
Coughlin, Michael; Stubbs, Christopher
2016-07-01
Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. These are among the most promising sources for joint detection of electromagnetic (EM) and gravitational-wave (GW) emission. To maximize the science performed with these objects, it is essential to undertake a followup observing strategy that maximizes the likelihood of detecting the EM counterpart. We present a follow-up strategy that maximizes the counterpart detection probability, given a fixed investment of telescope time. We show how the prior assumption on the luminosity function of the electro-magnetic counterpart impacts the optimized followup strategy. Our results suggest that if the goal is to detect an EM counterpart from among a succession of GW triggers, the optimal strategy is to perform long integrations in the highest likelihood regions. For certain assumptions about source luminosity and mass distributions, we find that an optimal time investment that is proportional to the 2/3 power of the surface density of the GW location probability on the sky. In the future, this analysis framework will benefit significantly from the 3-dimensional localization probability.
Saturation-dependent Coupled Seismic and Electromagnetic Wave Propagation in Porous Media
NASA Astrophysics Data System (ADS)
Smeulders, D.; Grobbe, N.; Heller, K.; Schakel, M.
2014-12-01
The seismoelectric effect where acoustic/seismic waves are converted into electromagnetic waves and vice versa, is of importance for hydrocarbon exploration as it is complementary to the conventional seismic surveys. Also for the detection of orebodies (for example massive sulfides), seismoelectric techniques are promising. For hydrological purposes, seismoelectric techniques can provide us with information as well, mapping for example water tables and water-retentive layers. Also for mapping of water-bearing strata beneath glaciers or monitoring of ice fracturing, seismoelectric methods are argued to be very powerful as they can distinguish between conductive and non-conductive layers that have similar acoustic impedances and thus cannot be mapped in conventional seismic surveys. We designed and developed an experimental setup in which acoustic to electromagnetic (EM) wave conversions at interfaces can be measured. Theoretical results are obtained with an electrokinetic full-waveform theoretical model, where use was made of the Sommerfeld approach. Using bimodal samples, different fluid-solid interface effects and saturating fluids were investigated. The contrast between water and water-saturated porous glass samples is larger than the contrast between water and oil-saturated porous glass samples. The contrast between water and water-saturated Fontainebleau sandstone is larger than the contrast between oil and water-saturated Fontainebleau sandstone. These data are shown to be in good agreement with theoretical predictions on the basis of the Biot-Pride theory.
Salimullah, M.; Rahman, M. M.; Zeba, I.; Shah, H. A.; Murtaza, G.; Shukla, P. K.
2006-12-15
The electromagnetic waves below the ion-cyclotron frequency have been examined in a collisionless and homogeneous dusty plasma in the presence of a dust beam parallel to the direction of the external magnetic field. The low-frequency mixed electromagnetic dust-lower-hybrid and purely transverse magnetosonic waves become unstable for the sheared flow of dust grains and grow in amplitude when the drift velocity of the dust grains exceeds the parallel phase velocity of the waves. The growth rate depends dominantly upon the thermal velocity and density of the electrons.
Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.
Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying
2016-02-01
Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption. PMID:27433608
Analysis of the electromagnetic wave resistivity tool in deviated well drilling
NASA Astrophysics Data System (ADS)
Zhang, Yumei; Xu, Lijun; Cao, Zhang
2014-04-01
Electromagnetic wave resistivity (EWR) tools are used to provide real-time measurements of resistivity in the formation around the tool in Logging While Drilling (LWD). In this paper, the acquired resistivity information in the formation is analyzed to extract more information, including dipping angle and azimuth direction of the drill. A finite element (FM) model of EWR tool working in layered earth formations is established. Numerical analysis and FM simulations are employed to analyze the amplitude ratio and phase difference between the voltages measured at the two receivers of the EWR tool in deviated well drilling.
Survey of low-frequency electromagnetic waves stimulated by two coexisting newborn ion species
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1988-01-01
Parallel electromagnetic instabilities generated by coexisting newborn hydrogen and oxygen ions are studied for different orientations of the interplanetary magnetic field with respect to the solar wind velocity. The wave growth dependence on the densities and temperatures of the newborn species is investigated. The results indicate that in most domains of the Brillouin plane each ion beam can excite resonant instabilities without undue influence from the other newborn ion species. Although comparable resonant instabilities are more efficiently generated by the lighter newborn ions in ion-rich environments, the growth stimulated by the heavier species can withstand large beam density decreases.
Scattering of electromagnetic waves from a periodic surface with random roughness
NASA Technical Reports Server (NTRS)
Yueh, H. A.; Shin, R. T.; Kong, J. A.
1988-01-01
Equations for the scattering of electromagnetic waves from a randomly perturbed periodic surface have been formulated using the extended boundary condition method and solved using the small perturbation method. Surface currents and scattered fields are solved for up to the second order. The results indicate that as the correlation length of the random roughness increases, the bistatic scattering patterns of the scattered fields show several beams associated with each Bragg diffraction direction of the periodic surface. The beam shape becomes broader with smaller correlation length. Results obtained using the Kirchhoff approximation are found to agree well with the present results for the hh and vv polarized backscattering coefficients for small angles of incidence.
Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Lin, Shi-Rong; Zhang, Ruo-Yang; Ma, Yi-Rong; Jia, Wei; Zhao, Qing
2016-07-01
This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.
Li, Zheng-Wei; Xi, Xiao-Li; Zhang, Jin-Sheng; Liu, Jiang-fan
2015-12-14
The unconditional stable finite-difference time-domain (FDTD) method based on field expansion with weighted Laguerre polynomials (WLPs) is applied to model electromagnetic wave propagation in gyrotropic materials. The conventional Yee cell is modified to have the tightly coupled current density components located at the same spatial position. The perfectly matched layer (PML) is formulated in a stretched-coordinate (SC) system with the complex-frequency-shifted (CFS) factor to achieve good absorption performance. Numerical examples are shown to validate the accuracy and efficiency of the proposed method. PMID:26698978
Millimeter-wave imaging with slab focusing lens made of electromagnetic-induction materials.
Yang, Kui; Wang, Jinbang; Zhao, Lu; Liu, Zhiguo; Zhang, Tao
2016-01-11
A slab focusing lens in this work has been designed, which consists of electromagnetic-induction materials (cage-shaped granules of conductor materials) and polymethyl methacrylate (PMMA) materials. A compound lens with a thickness of 32 mm is composed of two slab focusing lenses, and has a refractive index of 1.41 at 35 GHz. Millimeter-wave (MMW) images of metallic objects have been obtained with the compound lens. The image quality has been compared by means of the compound lens and the polyethylene lens. The experimental results show good feasibility of the compound lens in MMW imaging. PMID:26832287
Controlling electromagnetic wave through dual heights micro-lens array of a CMOS image sensor
NASA Astrophysics Data System (ADS)
Lin, Kuo-Feng; Hsiao, Yu-Kun; Hsieh, Chin-Chuan; Hsin, Shui-Chuan; Hsieh, Wen-Feng
2016-05-01
We demonstrate control of electromagnetic (EM) wave through dual heights micro-lens (DHML) array in 1.1 μm pixel size complementary metal oxide semiconductor image sensor. The sensitivity and signal-to-noise ratio (SNR) are significantly improved (>10%) using the DHML structure. This DHML structure acts as an array of fundamental waveguides to enhance the optical throughput and to suppress the spatial crosstalk that is confirmed by evaluating the pixel performance in terms of the confinement factor of fundamental mode in this DHML structure.
Graphene as a high impedance surface for ultra-wideband electromagnetic waves
Aldrigo, Martino; Costanzo, Alessandra; Dragoman, Mircea; Dragoman, Daniela
2013-11-14
The metals are regularly used as reflectors of electromagnetic fields emitted by antennas ranging from microwaves up to THz. To enhance the reflection and thus the gain of the antenna, metallic high impedance surfaces (HIS) are used. HIS is a planar array of continuous metallic periodic cell surfaces able to suppress surface waves, which cause multipath interference and backward radiation in a narrow bandwidth near the cell resonance. Also, the image currents are reduced, and therefore the antenna can be placed near the HIS. We demonstrate that graphene is acting as a HIS surface in a very large bandwidth, from microwave to THz, suppressing the radiation leakages better than a metal.
NASA Astrophysics Data System (ADS)
Liu, T.-C.
1983-01-01
In this paper, by using the method of the relativistic theory, the expressions of the reflection and transmission coefficients of electromagnetic waves for a lossy plasma moving parallel to the interface are derived. It is shown that the reflected and transmitted fields are dependent on the velocity of the moving plasma if the collision is taken into account. If the collision is negligible, the result is identical with that derived by Yeh (1965). In the case of normal incidence, contrary to oblique incidence, the reflected and transmitted fields are independent of the velocity of the moving plasma.
Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency
Tian, Yuan; Han, YiPing; Ling, YingJie; Ai, Xia
2014-02-15
In this paper, we investigate the absorption spectra of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency. Profiles are introduced to describe the non-uniformity of collision frequency. It is interesting to find that when the plasma is collision frequency inhomogeneous, the absorption spectrum would decreases faster than that in uniform plasma. And the rate of decreasing would be different when the profile changes. Two parameters are set up to predict how the profiles affect the absorption spectra. Furthermore, the effects of electron density are also considered.
Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu
2016-04-01
Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric. PMID:27140772
NASA Astrophysics Data System (ADS)
Vardevanyan, P. O.; Antonyan, A. P.; Shahinyan, M. A.; Mikaelyan, M. S.
2016-07-01
The effect of electromagnetic waves of the millimeter region on the conformation and fluorescence characteristics of human serum albumin was studied. It is shown that the irradiation of the albumin solution leads to an increase of the fluorescence intensity depending on the duration of irradiation. At an irradiation frequency of 48 GHz the fluorescence intensity of albumin hardly changes at all, while at 41.8 and 51.8 GHz it increases. It is also shown that when the irradiation frequency is 51.8 GHz, the intensity of the albumin solution fluorescence increases with increase of the irradiation time.
Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal
Chow, E.; Hietala, .; Joannopoulos, J.D.; Lin, S.; Villeneuve, P.R.
1998-10-15
The routing and interconnection of optical signals through narrow channels and around sharp corners is important for large-scale all-optical circuit applications. A recent computational result suggests that photonic crystals may offer a novel way of achieving this goal by providing a mechanism for guiding light that is fundamentally different from traditional index guiding. Waveguiding in a photonic crystal, and near 100% transmission of electromagnetic waves around sharp 90o corners were observed experimentally. Bend- ing radii were made smaller than one wavelength.
Scattering of a plane electromagnetic wave by a generalized Luneburg sphere-Part 1: Ray scattering
NASA Astrophysics Data System (ADS)
Lock, James A.; Laven, Philip; Adam, John A.
2015-09-01
We calculated scattering of an electromagnetic plane wave by both a radially-inhomogeneous particle and bubble, the square of whose refractive index profile is parabolic as a function of radius. Depending on the value of the two adjustable parameters of the parabola, the particle or bubble can have either a refractive index discontinuity at its surface, or the refractive index can smoothly merge into that of the exterior medium. Scattering was analyzed in ray theory, and various novel features of the scattering, including the details of the curved ray paths, transmission rainbows, and near-critical-angle scattering were apparent and were contrasted with their behavior for scattering by a homogeneous sphere.
NASA Astrophysics Data System (ADS)
Bell, T. F.; Inan, U. S.; Platino, M.; Pickett, J.; Kossey, P. A.; Kennedy, E. J.
2003-12-01
We report new observations from the CLUSTER spacecraft of strong excitation of lower hybrid waves by electromagnetic whistler mode waves at altitudes of roughly 20,000 km outside the plasmasphere. Previous observations of this phenomenon have been limited to altitudes less than 7000 km. The excitation mechanism appears to be linear mode coupling in the presence of small scale plasma density irregularities. The wavelengths of the excited lower hybrid waves, as deduced from their doppler shifts, appear to lie in the 15 - 1500 m range. These observations provide strong evidence that electromagnetic whistler mode waves are continuously transformed into lower hybrid waves as the whistler mode waves propagate at high altitudes beyond L = 4. This finding may explain the lack of lightning generated whistlers observed in this same region of space.
Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by
Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by
NASA Astrophysics Data System (ADS)
Li, Jin; Zhang, Lu; Wen, Hao
2016-03-01
For the relic gravitational waves in high frequency band, we survey the electromagnetic resonance effect generated from the high frequency gravitational waves, which can be described in the transverse perturbative photon fluxes. Under the fixed tensor-scalar ratio r = 0.2, spectral index n t = 0 and running index α t = 0.01, we discuss several properties and quantity changes of the transverse perturbative photon fluxes, which can be improved significantly through setting the longitudinal magnetic component of background EM field in the standard gaussian form, and wave impedance analysis on the transverse direction. Through the theoretical calculation, the transverse perturbative photon fluxes can reach up to 103 s -1 with some optimal parameters such as waist of EM field W 0 = 0.05m, initial stochastic phase of gravitational waves δ = (0.21 + n) π( n = 0,1,2...). Furthermore the interference of the background transverse photon fluxes can be removed completely through establishing a suitable wave impedance function.
Oslake, J.M.; Verboncoeur, J.P.; Birdsall, C.K.
1996-12-31
Slow-wave structures support microwave amplification via electromagnetic coupling with an injected electron beam. Critical in the design of such devices is the dependence of the dispersion relation on the geometry of the guiding structure. The dispersion relation provides phase and group velocities, and the fields provide the impedance as seen by the beam. To this end, a computer model is developed which first numerically solves a wave equation in finite difference from subject to boundary conditions periodic in z and conducting elsewhere. Here the direction of wave propagation is along the z-axis. The solution produces a sequence of eigenfrequencies and eigenfields beginning with cut-off. Fourier decomposition of each eigenfield along selected mesh lines coincident with the location of the electron beam is then performed to establish a correspondence between eigenfrequency and wave number. From this data the dispersion relation for the slow-wave structure can then be formed. An example showing the first two TM passbands and E{sub z} fields for a slotted waveguide in xz coordinates is demonstrated. The authors plan to incorporate plasma loading with space-time dependent dielectric constant.
Liang, S M; Chang, M H; Yang, Z Y
2014-01-01
This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue. PMID:24517818
Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Arballo, John K.; Mok, John; Smith, Edward J.; Mason, Glenn M.; Tan, Lun C.
1994-01-01
Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.
Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis
Liang, S. M. Yang, Z. Y.; Chang, M. H.
2014-01-15
This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm{sup 2} (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.
Electromagnetic ion cyclotron waves in the inner magnetosphere with a losscone proton distribution
NASA Astrophysics Data System (ADS)
Singh, Satyavir; Omura, Yoshiharu
2016-07-01
Electromagnetic ion cyclotron (EMIC) waves are studied in the inner magnetospheric plasma. The plasma is assumed to have five components, i.e., electrons, cold and hot protons, singly charged helium and oxygen ions. The hot protons are assumed to have an anisotropic losscone distribution particle distribution. The numerical results are obtained using KUPDAP (Kyoto University Plasma Dispersion Analysis Package), a full dispersion solver developed at Kyoto University. The hot plasma dispersion relation and polarizations of EMIC waves in oblique propagation are very complex. Although we find that nonlinear wave growth process is dominant near the equatorial region generating EMIC rising tone emissions, the propagation characteristics of the emissions such as linear growth/damping rates, variation of polarizations, and Poynting vectors in the presence of energetic protons have not been studied quantitatively.The growth/damping of oxygen, helium, and proton bands and higher harmonics of the EMIC waves are studied. The findings from our model are applied to EMIC wave observations in the inner magnetosphere by the Cluster spacecraft.
Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis
NASA Astrophysics Data System (ADS)
Liang, S. M.; Chang, M. H.; Yang, Z. Y.
2014-01-01
This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm2 (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2004-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.
2015-12-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work
The influence of dust particles on electromagnetic ion cyclotron waves in a bi-Lorentzian plasma
Venugopal, C.; Varughese, J.K.; Antony, S.; Anilkumar, C.P.; Renuka, G.
1997-10-01
The influence of dust particles on electromagnetic ion cyclotron (EMIC) waves, propagating parallel to the magnetic field, in a plasma where the hot ions are modelled by a bi-Lorentzian or Kappa distribution has been studied. The electrons and dust particles have been treated as cold. Expressions for the dispersion relations and growth/damping rates in both high- and low-{beta} plasmas have been derived. For the low-{beta} case temperature anisotropy is the source of instability in an electron{endash}ion plasma. This instability is strongly influenced by the temperature anisotropy of the hot ions and the charge and density of the dust particles; the instability increases with these parameters. However, in high-{beta} plasmas, the instability is driven by the dust. The growth rate increases with the charge on the dust; but with increasing dust densities the EMIC wave propagates almost freely. {copyright} {ital 1997 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Caplinger, J.; Sotnikov, V. I.; Wallerstein, A. J.
2014-12-01
A three dimensional numerical ray-tracing algorithm based on a Hamilton-Jacobi geometric optics approximation is used to analyze propagation of high frequency (HF) electromagnetic waves through a plasma with randomly distributed vortex structures having a spatial dependence in the plane perpendicular to earth's magnetic field. This spatial dependence in density is elongated and uniform along the magnetic field lines. Similar vortex structures may appear in the equatorial spread F region and in the Auroral zone of the ionosphere. The diffusion coefficient associated with wave vector deflection from a propagation path can be approximated by measuring the average deflection angle of the beam of rays. Then, the beam broadening can be described statistically using the Fokker-Planck equation. Visualizations of the ray propagation through generated density structures along with estimated and analytically calculated diffusion coefficients will be presented.
NASA Technical Reports Server (NTRS)
Zhu, P. Y.; Fung, A. K.
1986-01-01
The effective medium approximation (EMA) formalism developed for scalar wave calculations in solid state physics is generalized to electromagnetic wave scattering in a dense random medium. Results are applied to compute the effective propagation constant in a dense medium involving discrete spherical scatterers. When compared with a common quasicrystalline approximation (QCA), it is found that EMA accounts for backward scattering and the effect of correlation among three scatterers which are not available in QCA. It is also found that there is not much difference in the calculated normalized phase velocity between the use of these two approximations. However, there is a significant difference in the computed effective loss tangent in a nonabsorptive random medium. The computed effective loss tangent using EMA and measurements from a snow medium are compared, showing good agreement.
High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection
Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew
2016-01-01
Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792
NASA Technical Reports Server (NTRS)
Brinca, A. L.; Tsurutani, B. T.
1987-01-01
The characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies are examined using a model of solar wind permeated by dilute drifting ring distributions of electrons and oxygen ions with finite thermal spreads. The model has parameters compatible with the ICE observations at the Giacobini-Zinner comet. It is shown that cometary newborn ions with large perpendicular energies can excite a wave mode with rest frame frequencies in the order of the heavy ion cyclotron frequency, Omega(i), and unusual propagation characteristics at small obliquity angles. For parallel propagation, the mode is left-hand circularly polarized, might be unstable in a frequency range containing Omega(i), and moves in the direction of the newborn ion drift along the static magnetic field.
High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection.
Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew
2016-01-01
Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH₀) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792
Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves
NASA Technical Reports Server (NTRS)
Gabriel, G. J.
1977-01-01
Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.
NASA Astrophysics Data System (ADS)
1981-10-01
The topics discussed are related to bioelectromagnetics, scattering and diffraction problems, reflector antennas, waves in inhomogeneous media, antenna field investigations, antenna feeds, waves in random media, linear antennas, open waveguide structures, inverse scattering, planar antennas, and electromagnetic analysis. Arbitrarily shaped diffraction objects are considered along with periodic structures, diffracting objects of distinct shape, edge discontinuities, rough surfaces, and a number of antenna problems. Attention is given to hybrid ray-mode fields in inhomogeneous waveguides, a technique for increasing the resolution of finite difference solutions of the Maxwell equation, microwave measurements of the complex dielectric permittivity of biological liquids, experimental methods for obtaining the singularity expansion description of a scattering object, a new approach for synthesizing dual reflector antennas, and directional scattering by blazed dielectric gratings.
NASA Technical Reports Server (NTRS)
Hizanidis, Kyriakos
1989-01-01
The relativistic motion of electrons in an intense electromagnetic wave packet propagating obliquely to a uniform magnetic field is analytically studied on the basis of the Fokker-Planck-Kolmogorov (FPK) approach. The wavepacket consists of circularly polarized electron-cyclotron waves. The dynamical system in question is shown to be reducible to one with three degrees of freedom. Within the framework of the Hamiltonian analysis the nonlinear diffusion tensor is derived, and it is shown that this tensor can be separated into zeroth-, first-, and second-order parts with respect to the relative bandwidth. The zeroth-order part describes diffusive acceleration along lines of constant unperturbed Hamiltonian. The second-order part, which corresponds to the longest time scale, describes diffusion across those lines. A possible transport theory is outlined on the basis of this separation of the time scales.
Study of influence of millimeter range electromagnetic waves on water-saline solutions of albumin
NASA Astrophysics Data System (ADS)
Shahinyan, Mariam A.; Antonyan, Ara P.; Mikaelyan, Marieta S.; Vardevanyan, Poghos O.
2015-01-01
In this work, the effect of electromagnetic waves of millimeter diapason (EMW MM) on both melting parameters of serum albumin from human blood and its solution density has been studied. It was shown that the irradiation of albumin solution results in protein denaturation at higher temperatures than in the case of nonirradiated samples, which indicates the increase of albumin packing degree. It was also shown that the enhancement of albumin solution density takes place which indicates the protein packing degree change as well. The obtained data show that the effect of EMW MM does not depend on frequency of these waves, because alterations are revealed at all studied frequencies — 41.8, 48 and 51.8GHz.
Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves
NASA Astrophysics Data System (ADS)
Urzhumov, Yaroslav; Landy, Nathan; Smith, David R.
2012-03-01
We propose a generalization of the two-dimensional eikonal-limit cloak derived from a conformal transformation to three dimensions. The proposed cloak is a spherical shell composed of only isotropic media; it operates in the transmission mode and requires no mirror or ground plane. Unlike the well-known omnidirectional spherical cloaks, it may reduce visibility of an arbitrary object only for a very limited range of observation angles. In the short-wavelength limit, this cloaking structure restores not only the trajectories of incident rays, but also their phase, which is a necessary ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse vector-wave (electromagnetic) versions are presented.
NASA Astrophysics Data System (ADS)
Zheng, H. B.; Yao, X.; Zhang, Z. Y.; Che, J. L.; Zhang, Y. Q.; Zhang, Y. P.; Xiao, M.
2014-04-01
We report the first experimental observations of the blockaded six- and eight-wave mixing processes in a collective multi-level Rydberg atomic ensemble tailored by multi-channel scissors and created by three coexisting electromagnetically induced transparency (EIT) windows. The interplay between the dressed-state effect and the Rydberg blockade caused by strong van der Waals interactions is investigated when several parameters in the excitation lasers are changed. Blockaded multi-wave mixing (MWM) signals are obtained when the coupling frequency detuning is changed, which is improved to give multiple channels when the probe detuning is scanned. Such MWM signals tailored by EIT scissors produce a much narrower linewidth and therefore are suitable for application in long-distance quantum communication. The advantages of having multi-channel blockaded MWM signals also makes potential applications in demonstrating multi-channel entanglement possible and improves the performance of quantum computation with Rydberg atoms.
Guided Wave Inspection of Supported Pipe Locations Using Electromagnetic Acoustic Transducers
NASA Astrophysics Data System (ADS)
Andruschak, Nicholas
The goal of the work in this thesis is to develop a rapid and reliable NDT system to detect hidden corrosion at pipe-support interfaces using Electromagnetic Acoustic Transducers (EMATs). Since there are often many support interfaces over a piping run, information is needed on the support interface conditions to optimize subsequent detailed inspections. In this work it is important to be able to isolate the effects produced from the support interface and the incident guided wave. To do this an optimum EMAT operating point is first selected, then the support interfaces and wall loss type defects are independently analyzed through experimentally validated finite element models. It is found that operating the SH1 plate wave mode near the `knee' of its dispersion curve gives a high sensitivity to wall loss type defects while experiencing a minimal effect from the support contact region.
Absorption of THz electromagnetic wave in two mono-layers of graphene
NASA Astrophysics Data System (ADS)
Reynolds, Cole B.; Shoufie Ukhtary, M.; Saito, Riichiro
2016-05-01
Nearly 100% absorption of an electromagnetic (EM) wave in terahertz (THz) frequency is proposed for a system consisting of two mono-layers of graphene. Here, we demonstrate that the system can almost perfectly absorb an EM wave with frequency of 2 THz, even though we have a low electron mobility of roughly 1000 cm2 Vs‑1. The absorption probability is calculated by using the transfer matrix method. We show that the two mono-layers of the graphene system is needed to obtain nearly 100% absorption when the graphene has a relatively low Fermi energy. The absorption dependence on the distance between the graphene layers is also discussed.
NASA Astrophysics Data System (ADS)
Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T.
2014-09-01
The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics (HEDP) and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present PIC simulation results on EM scattering on vortex type density structures using the LSP code and compare them with analytical results. Acknowledgement: This work was supported by the Air Force Research laboratory, the Air Force Office of Scientific Research, the Naval Research Laboratory and NNSA/DOE grant no. DE-FC52-06NA27616 at the University of Nevada at Reno.
NASA Astrophysics Data System (ADS)
Bell, T. F.; Inan, U. S.; Platino, M.; Pickett, J. S.; Kossey, P. A.; Kennedy, E. J.
2004-03-01
We report new observations from the CLUSTER spacecraft of strong excitation of lower hybrid (LH) waves by electromagnetic (EM) whistler mode waves at altitudes >=20,000 km outside the plasmasphere. Previous observations of this phenomenon occurred at altitudes <=7000 km. The excitation mechanism appears to be linear mode coupling in the presence of small scale plasma density irregularities. These observations provide strong evidence that EM whistler mode waves are continuously transformed into LH waves as the whistler mode waves propagate at high altitudes beyond L ~ 4. This may explain the lack of lightning generated whistlers observed in this same region of space.
NASA Astrophysics Data System (ADS)
Guo, Zhifang; Wu, Mingyu; Du, Aimin
2016-04-01
We employ two-dimensional global hybrid simulations to study the generation, propagation, and polarization of electromagnetic ion cyclotron (EMIC) waves in the near-Earth magnetotail (around x = - 10 R E ) during dipolarization. In our simulation, EMIC waves with left-hand polarized signals originate in the low-latitude magnetotail as a result of the ion temperature anisotropy which is due to ion heating by Alfvén waves. Subsequently, EMIC waves can propagate along the ambient magnetic field toward high-latitudes. Our work provides one possible mechanism for the generation of EMIC waves observed in the near-Earth magnetotail.
NASA Astrophysics Data System (ADS)
Li, Xiangming; Gao, Mingjun
2016-04-01
A Si3N4 ceramic with gradient distribution of pyrolytic carbon (Gradient-PyC-Si3N4) was fabricated by a combined technique of precursor infiltration pyrolysis and directional oxidation. An electromagnetic wave could enter Gradient-PyC-Si3N4 with little reflection because of a weak impedance mismatch at its surface, and the electromagnetic wave entering Gradient-PyC-Si3N4 could propagate forward along the PyC changing belt and simultaneously be absorbed by PyC with little reflection. The electromagnetic reflectivity of the Gradient-PyC-Si3N4 with an absence of PyC could reach a low level of -12.1 dB, which means that about 94% of the incident energy is absorbed and so makes the Gradient-PyC-Si3N4 a promising electromagnetic absorbing material for covert action.
NASA Astrophysics Data System (ADS)
Li, Xiangming; Gao, Mingjun
2016-07-01
A Si3N4 ceramic with gradient distribution of pyrolytic carbon (Gradient-PyC-Si3N4) was fabricated by a combined technique of precursor infiltration pyrolysis and directional oxidation. An electromagnetic wave could enter Gradient-PyC-Si3N4 with little reflection because of a weak impedance mismatch at its surface, and the electromagnetic wave entering Gradient-PyC-Si3N4 could propagate forward along the PyC changing belt and simultaneously be absorbed by PyC with little reflection. The electromagnetic reflectivity of the Gradient-PyC-Si3N4 with an absence of PyC could reach a low level of -12.1 dB, which means that about 94% of the incident energy is absorbed and so makes the Gradient-PyC-Si3N4 a promising electromagnetic absorbing material for covert action.
NASA Technical Reports Server (NTRS)
Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.
1994-01-01
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.
Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma
Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li
2015-05-28
An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.
NASA Astrophysics Data System (ADS)
Woodbury, D.; Kubota, S.; Johnson, I.
2014-10-01
Computer simulations of electromagnetic wave propagation in magnetized plasmas are an important tool for both plasma heating and diagnostics. For active millimeter-wave and microwave diagnostics, accurately modeling the evolution of the beam parameters for launched, reflected or scattered waves in a toroidal plasma requires that calculations be done using the full 3-D geometry. Previously, we reported on the application of GPGPU (General-Purpose computing on Graphics Processing Units) to a 3-D vacuum Maxwell code using the FDTD (Finite-Difference Time-Domain) method. Tests were done for Gaussian beam propagation with a hard source antenna, utilizing the parallel processing capabilities of the NVIDIA K20M. In the current study, we have modified the 3-D code to include a soft source antenna and an induced current density based on the cold plasma approximation. Results from Gaussian beam propagation in an inhomogeneous anisotropic plasma, along with comparisons to ray- and beam-tracing calculations will be presented. Additional enhancements, such as advanced coding techniques for improved speedup, will also be investigated. Supported by U.S. DoE Grant DE-FG02-99-ER54527 and in part by the U.S. DoE, Office of Science, WDTS under the Science Undergraduate Laboratory Internship program.
NASA Astrophysics Data System (ADS)
Yamazaki, K.
2014-12-01
This work aims to increase the efficiency of earthquake early warning (EEW) systems. Conventional EEW systems detect occurrence of earthquakes by means of detecting seismic P-waves; thus, they cannot make alert before P-waves reach the ground surface in principle. If we desires to break this limitation, we must observe other physical quantities including the electromagnetic (EM) and gravitational fields, variations of which propagate faster than elastic waves. The present study focuses on changes in the magnetic field generated by co-seismic stress changes in the Earth's crust. When magnetic minerals in the Earth's crust are subjected to mechanical forces, increments or decrements of magnetization appear. This is called the piezomagnetic effect. Significant changes in values of the geomagnetic field has frequently observed between before and after major earthquakes or volcanic ground deformation, which is considered to be generated by the piezomagnetic effect. The problem is, however, whether or not co-seismic changes in the stress field generates earlier signals, that is, changes in the magnetic field at observation sites which occur before arrival of seismic waves. To answer the question, a set of equations governing elastodynamics, electromagnetics, and the piezomagnetic effect, are solved for a whole space stuffed with a uniform physical properties. An impulsive double couple is assumed to represent the earthquake source mechanism. A set of solutions is derived in time-domain, and its features are investigated for several sets of parameters including electrical conductivity and seismic velocities. We can confirm that there are certain amount of changes in the EM field, even before arrival of seismic waves. EM signals before arrival of seismic waves (i.e. earlier EM signals) are relatively large in the case that the Earth's crust is conductive (> 0.01 S/m). However, the appearance of relatively large EM signal is not simultaneous to the rupture; instead, it is
Size-Controllable Synthesis of Fe3O4 Nanospheres for Electromagnetic Wave Absorber
NASA Astrophysics Data System (ADS)
Wang, Yanping; Sun, Danping; Liu, Gongzong; Wang, Yujiao; Jiang, Wei
2015-07-01
We present a hydrothermal method to control the size of Fe3O4 nanospheres by adjusting the concentration of FeCl3·6H2O in ethylene glycol/diethylene glycol binary solvent mixtures. The electromagnetic wave absorption properties of Fe3O4 nanospheres of different diameters have been investigated using a vector network analyzer. The reflection loss of Fe3O4 nanospheres/paraffin wax composite can reach as high as -30.00 dB at 17.50 GHz and -37.95 dB at 7.67 GHz for Fe3O4 nanospheres with diameter of about 120 nm and 170 nm, respectively. The absorption bandwidth with reflection loss below -10 dB is up to 7.01 GHz when the Fe3O4 diameter is about 220 nm. In contrast, the bandwidth decreased to 4.28 GHz when the size shrank to 70 nm. Therefore, our method can be utilized to precisely control the size of Fe3O4 nanospheres in order to manipulate their electromagnetic wave absorption properties.
NASA Astrophysics Data System (ADS)
Egami, Yoshihiro; Yamamoto, Takashi; Suzuki, Kunio; Higuchi, Eiji; Inoue, Hiroshi
2012-08-01
Microwave absorbability of electromagnetic waves in the frequency range of 1-15 GHz, which is often used in recent wireless applications, for stacks of various numbers of conductive nonwoven fabric sheets with different resistivity was evaluated to clarify their possibility as the broadband microwave absorber in the frequency range of 1-15 GHz. The conductive nonwoven fabric sheets coated with polypyrrole nanoparticles, which had resistivities from 4.6 ×103 to 1.2×102 Ω cm, were prepared by immersing nonwoven fabric sheets in solutions containing various concentrations of an oxidizing agent and a dopant and then exposing the sheets to pyrrole vapor. The real part (ɛ') and the imaginary part (ɛ'') of complex permittivity for each conductive nonwoven fabric sheet increased with decreasing frequency, indicating the dispersion of permittivity. In addition, the reflection loss decreased when ammonium persulfate concentration increased and/or the stack size increased. However, the stack of two conductive nonwoven fabric sheets (thickness: 6.6 mm) with a resistivity of less than 120 Ω cm had average reflection losses of less than -10 dB in the frequency range of 1-15 GHz. From this way, it can be considered that the stacked conductive nonwoven fabric sheets prepared in this study can be a new material that effectively absorbs electromagnetic waves in the wide frequency range.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Kazinski, P.O.
2013-12-15
The late time asymptotics of the physical solutions to the Lorentz–Dirac equation in the electromagnetic external fields of simple configurations–the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave–are found. The solutions to the Landau–Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime. -- Highlights: •Late time asymptotics of the solutions to the Lorentz–Dirac equation are studied. •General properties of the total radiation power of electrons are established. •The total radiation power equals a half the rest energy divided by the proper-time. •Spectral densities of radiation formed on the late time asymptotics are derived. •Possible experimental verification of the results is proposed.
Tian, Yuan; Han, Yiping; Ai, Xia; Liu, Xiuxiang
2014-12-15
In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.
Javan, N. Sepehri Homami, S. H. H.
2015-02-15
Self-guided nonlinear propagation of intense circularly-polarized electromagnetic waves in a hot electron-positron-ion magnetoplasma is studied. Using a relativistic fluid model, a nonlinear equation is derived, which describes the interaction of the electromagnetic wave with the plasma in the quasi-neutral approximation. Transverse Eigen modes, the nonlinear dispersion relation and the group velocity are obtained. Results show that the transverse profile in the case of magnetized plasma with cylindrical symmetry has a radially damping oscillatory form. Effect of applying external magnetic fields, existence of the electron-positron pairs, changing the amplitude of the electromagnetic wave, and its polarization on the nonlinear dispersion relation and Eigen modes are studied.
Su, Zhenpeng Zhu, Hui; Zheng, Huinan; Xiao, Fuliang; Zhang, Min; Liu, Y. C.-M.; Shen, Chao; Wang, Yuming; Wang, Shui
2014-05-15
Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves.
Application of crosshole electromagnetic wave measurements to mapping of a steam flood
Witterholt, E.J.; Kretzschmar, J.L.; Jay, K.L.
1982-01-01
An emerging geophysical measurement technology has been applied to the assessment of a pilot steam flood in the McMurray tar sands. The technology, sometimes referred to as geo-tomography, uses wave energy propagated between observation wells as a basis for mapping formation properties in vertical planes bounded by the wells. At the site described, electromagnetic wave frequencies in the range between one and 30 MHz were used. Oil and water have different effects on the propagation characteristics of such waves. Thus, variations in propagation of the waves can be associated with variations in fluid content of various regions of the reservoir. Five pairs of observation wells, in a diamond pattern, were used to produce an almost 3-dimensional picture of the steam flood. Results obtained with this technique are compared to formation and temperature logs from the same site to support the conclusion that tomographic reconstruction techniques are capable of providing a view of the subsurface for evaluating the effectiveness of recovery processes unequaled by any other technique.
NASA Astrophysics Data System (ADS)
Pandey, R. S.; Kaur, Rajbir
2015-08-01
The dispersion relation for obliquely propagating relativistic electromagnetic electron cyclotron (EMEC) waves in collision-less magnetoplasma is obtained. Investigations for EMEC waves in magnetosphere of Jupiter, Saturn and Uranus have been done, in presence of perpendicular AC electric field for Kappa distribution function. The relativistic temporal growth rate is calculated using method of characteristic solution. Using the data provided by spacecrafts like Cassini, Voyager 1 and 2, while exploring the magnetosphere of Jupiter, Saturn and Uranus, is used to plot graphs showing growth rate being effected by various parameters. Comprehensive parametric analysis have been done at different radial distances of the planets. It is concluded that beside huge difference in magnetospheric configuration, temperature anisotropy remains the main source of energy in case of Jupiter and Uranus. While studying EMEC waves in magnetosphere of Saturn, it is inferred that growth rate attains maximum magnitude when angle of propagation increases. Also, the results and its interpretations explain how the growth of EMEC wave modifies in different magnetospheric conditions.
Self-focusing of electromagnetic surface waves on a nonlinear impedance surface
Luo, Zhangjie; Chen, Xing; Long, Jiang; Quarfoth, Ryan; Sievenpiper, Daniel
2015-05-25
The self-focusing effect of optical beams has been a popular topic of study for quite a while, but such a nonlinear phenomenon at microwave frequencies has never been realized, partially due to the underdevelopment of nonlinear material. In this research, self-focused electromagnetic (EM) surface waves are demonstrated on a circuit-based, power-dependent impedance surface. The formation of a self-focused beam is investigated using a series of discrete-time simulations, and the result is further validated in measurement. It is experimentally observed that, in contrast to the normal scattering of low-power surface waves, high-power waves propagate through the surface while maintaining narrow beam width, and even converge extremely tightly to create a hot spot with higher power. The result is essentially a nonlinear effect of the surface that compensates for the natural tendency of surface waves to diffract. This intriguing experiment can be extended to various potential EM applications such as power-dependent beam steering antennas and nonlinear microwave propagation or dissipation.
Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium
NASA Astrophysics Data System (ADS)
Wang, Ken Kang-Hsin; Ye, Zhen
2003-10-01
In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan et al. [J. Opt. Soc. Am. B 10, 391 (1993)]. A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of, and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with traveling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases where the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems [Asatryan et al., Phys. Rev. E 67, 036605 (2003)].
Early electromagnetic waves from earthquake rupturing: II. validation and numerical experiments
NASA Astrophysics Data System (ADS)
Gao, Yongxin; Chen, Xiaofei; Hu, Hengshan; Zhang, Jie
2013-03-01
We validate the branch-cut integration (BCI) technique presented in the companion paper. The numerical result shows that the early electromagnetic (EM) signal calculated by the BCI method is in good agreement with that in the full waveform calculated by the real-axis integration method. We further find that to calculate the early EM signal only the integrals along the vertical branch cuts that are around the k0 and kem branch points are needed, whereas neither the integrals along the vertical branch cuts around the Pf(P), S and Ps branch points nor the residues of the poles are necessary. We conduct numerical experiments to analyse the early EM signal generated by an earthquake in a porous half-space, including its component analysis, sensitivities to the conductivity, viscosity and recording depth, and radiation pattern. The component analysis shows that the total early EM (emTotal) signal is not a single wave but a combination of three kinds of EM waves, namely, the direct emd wave radiated from the source, the reflected emr waves converted from the emd wave, the direct P and S waves at the free surface and the critically refracted EM0 waves which are also converted from the emd wave, the direct P and S waves at the free surface. Three pulses, namely, the emd-, P- and S-converted pulses are identified in the emTotal signal according to their different arrival times. The emd-converted pulse arrives immediately after the occurrence of the earthquake and it is a combination of the emd wave, the emr and EM0 waves converted from the emd wave at the free surface. The P-converted (S-converted, respectively) pulse owns an arrival time approximately equal to that spent by the P wave (S wave, respectively) travelling from the hypocentre to the epicentre, and it is a combination of the emr and EM0 waves converted from the P wave (S wave, respectively) at the free surface. The P-converted pulse is usually weaker than the S- and emd-converted pulses in the electrogram and is
Strong Pitch-Angle Diffusion of the Ring Current Ions Induced by Electromagnetic ion Cyclotron Waves
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Khazanov, G. V.
2005-12-01
Deep and intense circulation of the magnetospheric plasma during geomagnetic storm is building up an energy content of the terrestrial ring current (RC) to an unusually high level, and the RC intensity strongly influence the storm-time space weather. The recovery of Dst index takes place hours or days after Dst minimum, and is caused by the decay of magnetopause and magnetotail current systems, and removal of the RC ions due to charge exchange, convection through the dayside magnetopause, Coulomb scattering, RC interaction with electromagnetic ion cyclotron (EMIC) waves, and scattering by field-line curvature. During the early recovery phase, the RC loss rate is about one hour or less, and it is more rapid than charge exchange can support. Ion scattering into the loss cone by EMIC waves is believed to be responsible for such fast RC decay during this storm stage. However, most RC-EMIC wave interaction models do not predict the strong pitch-angle diffusion that is theoretically discussed and observed in the Earth magnetosphere (particularly by SEPS detectors on board of the POLAR satellite). In present work, we employ our self-consistent RC-EMIC wave model in order to study systematically the occurrence of the RC strong pitch-angle diffusion caused by interaction with waves during the May 1998 storm. Most of cases of the strong diffusion and of the intense EMIC waves are located in the afternoon-premidnight MLT sector at 3 < L < 6, and exhibit significant linear correlation. During the early recovery phase (at about 08 UT on May 4), the entire RC energy range (less than 450 keV) is subject to strong pitch-angle diffusion. Although the flux transitions between trapped zone and loss cone are steeper for higher energy RC protons than for main body of the distribution function, the pitch-angle distributions are highly isotropic for all energies both inside and outside of the loss cone.
NASA Astrophysics Data System (ADS)
Bao, J.; Lin, Z.; Kuley, A.; Wang, Z. X.
2016-06-01
Effects of toroidicity on linear mode conversion and absorption of lower hybrid (LH) waves in fusion plasmas have been studied using electromagnetic particle simulation. The simulation confirms that the toroidicity induces an upshift of parallel refractive index when LH waves propagate from the tokamak edge toward the core, which affects the radial position for the mode conversion between slow and fast LH waves. Furthermore, moving LH antenna launch position from low field side toward high field side leads to a larger upshift of the parallel refractive index, which helps the slow LH wave penetration into the tokamak core. The broadening of the poloidal spectrum of the wave-packet due to wave diffraction is also verified in the simulation. Both the upshift and broadening effects of the parallel spectrum of the wave-packet modify the parallel phase velocity and thus the linear absorption of LH waves by electron Landau resonance.
NASA Astrophysics Data System (ADS)
Sakhbieva, A. R.; Nefed‧ev, L. A.; Garnaeva, G. I.
2015-11-01
It was shown that non-resonant electromagnetic standing wave pulses between exciting laser pulses during formation of a stimulated echo hologram transformed the wave front of the stimulated echo-hologram response.
Outbursts from a Black Hole via Alfvén Wave to Electromagnetic Wave Mode Conversion
NASA Astrophysics Data System (ADS)
Daniel, James; Tajima, Toshiki
1998-05-01
A new mechanism for outbursts from a black hole is proposed. A recent work on general relativistic plasma equilibria around a black hole has shown the possibility of equilibrium presence of matter and magnetic fields in the neighborhood of the event horizon, even where the corpuscular equilibrium is not allowed (r < 3Rs, where Rs is the Schwarzschild radius). A large-amplitude Alfvén pulse in the black hole electron-positron atmosphere that propagates away from the hole into lower magnetic field regions can experience resonance and mode-convert itself into a large-amplitude electromagnetic (EM) pulse. It is shown theoretically and computationally that through this process a large amount of mass can be picked up by the solitary EM pulse capable of traveling in a vacuum, with which particles are accelerated to relativistic energies. Photon spectra are obtained not inconsistent with observation, which follow a multiple power law with log-log slopes of approximately -1, before a ``knee'' in the spectrum at energies slightly greater than 1 MeV. It is suggested that this may be a possible mechanism for the outbursts of the black hole binary GRO J1655-40.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.
2003-01-01
Complete description of a self-consistent model for magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves, and back on waves, are considered self-consistently by solving both equations on a global magnetospheric scale under non steady-state conditions. In the paper by Khazanov et al. [2002] this self-consistent model has only been shortly outlined, and discussions of many the model related details have been omitted. For example, in present study for the first time a new algorithm for numerical finding of the resonant numbers for quasilinear wave-particle interaction is described, or it is demonstrated that in order to describe quasilinear interaction in a multi-ion thermal plasma correctly, both e and He(+) modes of electromagnetic ion cyclotron waves should be employed. The developed model is used to simulate the entire May 2-7, 1998 storm period. Trapped number fluxes of the ring current protons are calculated and presented along with their comparison with the data measured by the 3D hot plasma instrument Polar/HYDRA. Examining of the wave (MLT, L shell) distributions produced during the storm progress reveals an essential intensification of the wave emissions in about two days after main phase of storm. This result is well consistent with the earlier ground-based observations. Also the theoretical shapes and the occurrence rates for power spectral densities of electromagnetic ion cyclotron waves are studied. It is found that in about 2 days after the storm main phase on May 4, mainly non Gaussian shapes of power spectral densities are produced.
Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.
2012-05-15
The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initial particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.
Gupta, D. N.; Singh, K. P.; Suk, H.
2007-01-15
The electrostatic oscillating two-stream instability of laser-driven plasma beat-wave was studied recently by Gupta et al. [Phys. Plasmas 11, 5250 (2004)], who applied their theory to limit the amplitude level of a plasma wave in the beat-wave accelerator. As a self-generated magnetic field is observed in laser-produced plasma, hence, the electromagnetic oscillating two-stream instability may be another possible mechanism for the saturation of laser-driven plasma beat-wave. The efficiency of this scheme is higher than the former.
NASA Technical Reports Server (NTRS)
Temerin, M.; Roth, I.
1992-01-01
A new model is presented for the production of He-3 and heavy ion enrichments in He-3-rich flares using a direct single-stage mechanism. In analogy with the production of electromagnetic hydrogen cyclotron waves in earth's aurora by electron beams, it is suggested that such waves should exist in the electron acceleration region of impulsive solar flares. Both analytic and test-particle models of the effect of such waves in a nonuniform magnetic field show that these waves can selectively accelerate He-3 and heavy ions to MeV energies in a single-stage process, in contrast to other models which require a two-stage mechanism.
NASA Astrophysics Data System (ADS)
Izhovkina, N. I.
2015-05-01
The formation of vortex structures in an inhomogeneous gyrotropic atmosphere was stochastically determined. Atmospheric gyrotropy is induced by the Coriolis force acting as the Earth rotates and the motion of charged particles in the geomagnetic field. Vortices of a plasma nature are observed in the atmosphere. The electric field of such plasma vortices originates within the fields of pressure gradients of a mosaic cell topology upon the ionization of particles. It is shown that waves in a neutral atmosphere, electric fields, and electromagnetic waves affect the stability of vortex structures. Wave signals from anthropogenic sources and smog may stimulate local precipitation upon the passage of a cloud front and weaken or strengthen vortex structures. The plasma vortex may capture charged particles of different masses. The charge separation in plasma vortex structures is driven by the polarization drift at the decay of electric fields. The self-focusing of plasma vortices upon the condensation of moisture in the atmospheric cloud cover leads to an increase in the energy of vortices.
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Zaslavsky, V. Yu.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.
2015-11-01
A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by "fresh" electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.
Role of electromagnetically induced transparency in resonant four-wave-mixing schemes
NASA Astrophysics Data System (ADS)
Petch, J. C.; Keitel, C. H.; Knight, P. L.; Marangos, J. P.
1996-01-01
The effect of electromagnetically induced transparency in resonant four-wave-mixing schemes is investigated in an analysis that goes beyond perturbation theory in the coherent driving field. In addition we examine the case where the two-photon pump field is sufficiently strong to necessitate a nonperturbative treatment. This allows us to examine the cases where either one or both of the driving fields are strong. Phase matching is included in a plane-wave propagation treatment that matches the situation most likely to be encountered in actual experiments. The calculations are in part intended to model real experimental situations and thus incorporate driving and pump-field linewidths via the phase-diffusion model and Doppler broadening. With a strong pump-field laser, large enhancements in the efficiency of light generation occur at frequencies corresponding to the Autler-Townes satellites induced by the strong driving field. In this situation gain and high four-wave-mixing efficiency are simultaneously present, resulting in the production of a large intensity of coherent radiation.
Ginzburg, N. S. Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.
2015-11-15
A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.
Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei
2013-08-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model. PMID:23927200
Fovargue, Daniel E.; Mitran, Sorin; Smith, Nathan B.; Sankin, Georgy N.; Simmons, Walter N.; Zhong, Pei
2013-01-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model. PMID:23927200
A specific property of electromagnetic waves interacting with dust-laden plasma
Tsintsadze, N. L.; Ehsan, Z.; Shah, H. A.; Murtaza, G.
2006-07-15
The propagation pattern of electromagnetic waves (EMWs) in dusty plasmas is quite different from that in electron-ion plasmas. For instance, here the ponderomotive force acts on dust grains as a negative pressure, and a nonlinear Schroedinger equation with an additional nonlinear term is obtained. Based on this equation, the modulation instability is examined and it is shown that the growth rate becomes maximum when that additional term compensates the diffraction term. The main part of this work is devoted to the localization of the grains by the EMW. Considering both subsonic and supersonic regimes, it has been shown that under certain conditions the grains are localized and the ions circumnavigate the grains, whereas the electrons escape from the region of localization. Further, the localization of grains by the EMW is found to be shape-dependent of the pulse. Comparing pancake and light bullet shaped pulses in the supersonic regime, and it is shown that only the light bullet shape leads to the compression of grains. Finally, investigating nonstationary solution, it is shown that for some parameters, the nonlinear wave breaking and the formation of a shock wave can take place.
Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere
NASA Technical Reports Server (NTRS)
Horne, Richard B.; Thorne, Richard M.
1994-01-01
The path-integrated linear growth of electromagnetic ion cyclotron waves in the outer (L is greater than or equal to 7) magnetosphere is investigated using a realistic thermal plasma distribution with an additional anisotropic energetic ring current H(+) to provide free energy for instability. The results provide a realistic simulation of the recent Active Magneto- spheric Particle Tracer Explorers (AMPTE) observations. For conditions typical of the dayside magnetosphere, high plasma beta effects reduce the group velocity and significantly increase the spatial growth rates for left-handed polarized instabilities just below the helium gyrofrequency Omega(sub He(+)), and on the guided mode above Omega(sub He(+)) but below the cross over frequency omega(sub cr). Relatively high densities, typical of the afternoon local time sector, favor these low group velocity effects for predominantly field-aligned waves. Lower densities, typical of those found in the early morning local time sector, increase the group velocity but allow strong convective instabilities at high normalized frequencies well above Omega(sub He(+)). These waves are reflected in the magnetosphere and can exist for several equatorial transits without significant damping. They are left-handed polarized only on the first equatorial crossing and become linearly polarized for the remainder of the ray path. Consequently, these waves should be observed with basically linear polarization at all frequencies and all latitudes in the early morning local time sector. Wave growth below Omega(sub He(+)) is severely limited owing to the narrow bandwidth for instability and the small resonant path lengths. In the afternoon sector, where plasma densities can exceed 10(exp 7)/cu m, intense convective amplification is possible both above and below Omega(sub He(+)). Waves below Omega(sub He(+)) are not subject to reflection when the O(+) concentration is small and therefore should be observed with left-handed polarization
Effects of dissipation on propagation of surface electromagnetic and acoustic waves
NASA Astrophysics Data System (ADS)
Nagaraj, Nagaraj
With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. With this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. The first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an effort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. A dielectric-metal-dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. An equation for propagation length is derived in a wide range of frequencies. I also show how the frequency of coupled surface plasmons can be modulated by changing the thickness of the metal film. I propose a Kronig-Penny model for the plasmonic crystal, which in the long wavelength limit, may serve as a homogeneous dielectric substrate with high anisotropy which do not exist for natural optical crystals. In the second part (chapters 4 & 5) of the dissertation, I discuss an interesting effect of extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two metal plates. Starting from the elastic properties of the metal plates, I derive a dispersion equation that gives
Umeda, Takayuki
2008-06-15
Nonlinear evolution of the electron two-stream instability in a current-carrying plasma is examined by using a two-dimensional electromagnetic particle-in-cell simulation. Formation of electron phase-space holes is observed as an early nonlinear consequence of electron-beam-plasma interactions. Lower-hybrid waves, electrostatic, and electromagnetic whistler mode waves are also excited by different mechanisms during the ensuing nonlinear wave-particle interactions. It is shown by the present computer simulation with a large simulation domain and a long simulation time that these low-frequency waves can disturb the electrostatic equilibrium of electron phase-space holes, suggesting that the lifetime of electron phase-space holes sometimes becomes shorter in a current-carrying plasma.
NASA Technical Reports Server (NTRS)
Mitchell, T. P.
1973-01-01
The motion of a charged particle in electromagnetic fields of various geometric configurations and arising from a variety of sources is of intrinsic interest in electromagnetic theory. The particular configuration consisting of a plane wave propagating in the presence of a static uniform magnetic field whose direction is parallel to the wave normal is examined. The analysis presented here is treated within the context of classical electromagnetic theory. A numerical solution - at least to the approximate Lorentz-Dirac equation - is obtained.
Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging
NASA Astrophysics Data System (ADS)
Haynes, Mark Spencer
Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self
Efthimion, Philip C.; Helfritch, Dennis J.
1989-11-28
An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.