Science.gov

Sample records for electromechanical systems mems

  1. Micro electromechanical systems (MEMS) for mechanical engineers

    SciTech Connect

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  2. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOEpatents

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  3. Development of micro-electromechanical system (MEMS) cochlear biomodel

    NASA Astrophysics Data System (ADS)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-05-01

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  4. Development of micro-electromechanical system (MEMS) cochlear biomodel

    SciTech Connect

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-05-15

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  5. Controlling Micro ElectroMechanical Systems (MEMS) in Space

    NASA Astrophysics Data System (ADS)

    Farrar, D.; Schneider, W.; Osiander, R.; Champion, J. L.; Darrin, A. G.; Douglas, D.; Swanson, T. D.

    2003-01-01

    Small spacecraft, including micro and nanosats, as they are envisioned for future missions, will require an alternative means to achieve thermal control due to their small power and mass budgets. One of the proposed alternatives is Variable Emittance (Vari-E) Coatings for spacecraft radiators. Space Technology-5 (ST-5) is a technology demonstration mission through NASA Goddard Space Flight Center (GSFC) that will utilize Vari-E Coatings. This mission involves a constellation of three (3) satellites in a highly elliptical orbit with a perigee altitude of ~200 km and an apogee of ~38,000 km. Such an environment will expose the spacecraft to a wide swing in the thermal and radiation environment of the earth's atmosphere. There are three (3) different technologies associated with this mission. The three technologies are electrophoretic, electrochromic, and Micro ElectroMechanical Systems (MEMS). The ultimate goal is to make use of Vari-E coatings, in order to achieve various levels of thermal control. The focus of this paper is to highlight the Vari-E Coating MEMS instrument, with an emphasis on the Electronic Control Unit responsible for operating the MEMS device. The Test & Evaluation approach, along with the results, is specific for application on ST-5, yet the information provides a guideline for future experiments and/or thermal applications on the exterior structure of a spacecraft.

  6. Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications

    PubMed Central

    Ashraf, Muhammad Waseem; Tayyaba, Shahzadi; Afzulpurkar, Nitin

    2011-01-01

    Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications. PMID:21747700

  7. Radio Frequency (RF) Micro-Electromechanical Systems (MEMS) Switches for Space Communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Ponchak, George E.; Scardelletti, Maximillian C.; Varaljay, Nicholas C.

    2000-01-01

    Micro-electromechanical systems (MEMS) is an emerging technology for radio frequency (RF) systems because it has the potential to dramatically decrease loss and improve efficiency. In this paper, we address the design and fabrication of novel MEMS switches being developed at NASA Glenn Research Center. Two types of switches are being developed: a microstrip series single pole single throw (SPST) switch and a coplanar waveguide (CPW) series SPST and single pole double throw (SPDT) switches. These are being fabricated as an integral part of 50 Ohm microstrip and CPW RF integrated circuits using microfabrication techniques. The construction of the switch relies on a cantilever beam that is partially supported by a dielectric post. The cantilever beam is electro-magnetically actuated. To decrease stiction, a Si3N4 thin film is deposited over the contact area. Thus, when the switch is closed, the ON-state insertion loss is governed by the parallel plate capacitance formed by the two contacts. The isolation in the OFF-state is governed by the parasitic capacitance when the cantilever is in the up position. RF MEMS switches have been demonstrated with 80% lower insertion loss than conventional solid state devices (GaAs Metal Semiconductor Field Effect Transistors (MESFETs) and Silicon PIN diodes) based switches. For example, a conventional GaAs five-bit phase shifter which is required for beam steering in a phased array antenna has approximately 7 dB of insertion loss at 26.5 GHz where as a comparable MEMS based phase shifter is expected to have only 2 dB of insertion loss. This translates into 56% lower power dissipation and therefore decreases the thermal load on the spacecraft and also reduces the power amplifier requirements. These benefits will enable NASA to build the next generation of deep space science crafts and micro/nano satellites.

  8. Novel Micro ElectroMechanical Systems (MEMS) Packaging for the Skin of the Satellite

    NASA Technical Reports Server (NTRS)

    Darrin, M. Ann; Osiander, Robert; Lehtonen, John; Farrar, Dawnielle; Douglas, Donya; Swanson, Ted

    2004-01-01

    This paper includes a discussion of the novel packaging techniques that are needed to place MEMS based thermal control devices on the skin of various satellites, eliminating the concern associated with potential particulates &om integration and test or the launch environment. Protection of this MEMS based thermal device is achieved using a novel polymer that is both IR transmissive and electrically conductive. This polymer was originally developed and qualified for space flight application by NASA at the Langley Research Center. The polymer material, commercially known as CPI, is coated with a thin layer of ITO and sandwiched between two window-like frames. The packaging of the MEMS based radiator assembly offers the benefits of micro-scale devices in a chip on board fashion, with the level of protection generally found in packaged parts.

  9. Of magnetic imaging system experiments and micro electro-mechanical systems "of mise and MEMS"

    NASA Astrophysics Data System (ADS)

    Patterson, William C.

    Magnetic fields can occur over an extremely broad range of amplitudes, and spatial and temporal scales. Practical scientific and engineering systems have fields ranging in strength from pico-tesla to hundreds of tesla. Furthermore, spatial variations can range in scale from nanometers to tens of meters, and temporal variations can range from picoseconds to hours. Due to these large variations, many different devices and methods have been previously designed for measuring and mapping magnetic fields. The primary application area for the systems developed here is magnetic microsystems. Such systems make use of one or more microscale electromagnets, soft magnets, and/or permanent magnets for sensors, actuators, inductors, electronics, biomedical devices, etc. A single magnet dimension may range from one mum to hundreds of mum, and the overall area of interest may span over distances of millimeters to centimeters. To map the stray fields from such structures, a field measurement tool must be capable of measuring fields ranging from mT to T, while mapping over distances of millimeters with a spatial resolution of approximately one mum. This current study is focused only on static fields, but time-varying fields are of great interest and could be addressed in further research. This research focuses on the development of two tools that meet the requirements of microscale magnetic measurements. The first tool is based on an optical method and excels at extremely rapid measurements of large spatial regions. The second tool is a raster based system that focuses on high magnetic and spatial accuracy. The optical system quantitatively maps the stray magnetic fields of microscale magnetic structures with field resolution down to 50 muT and spatial resolution down to 4 mum. The system uses a magneto-optical indicator film (MOIF) in conjunction with an upright reflective polarizing light microscope to generate optical images of the magnetic field perpendicular to the image plane

  10. Flexoelectric MEMS: towards an electromechanical strain diode.

    PubMed

    Bhaskar, U K; Banerjee, N; Abdollahi, A; Solanas, E; Rijnders, G; Catalan, G

    2016-01-21

    Piezoelectricity and flexoelectricity are two independent but not incompatible forms of electromechanical response exhibited by nanoscale ferroelectrics. Here, we show that flexoelectricity can either enhance or suppress the piezoelectric response of the cantilever depending on the ferroelectric polarity and lead to a diode-like asymmetric (two-state) electromechanical response. PMID:26676467

  11. Flexoelectric MEMS: towards an electromechanical strain diode

    NASA Astrophysics Data System (ADS)

    Bhaskar, U. K.; Banerjee, N.; Abdollahi, A.; Solanas, E.; Rijnders, G.; Catalan, G.

    2016-01-01

    Piezoelectricity and flexoelectricity are two independent but not incompatible forms of electromechanical response exhibited by nanoscale ferroelectrics. Here, we show that flexoelectricity can either enhance or suppress the piezoelectric response of the cantilever depending on the ferroelectric polarity and lead to a diode-like asymmetric (two-state) electromechanical response.Piezoelectricity and flexoelectricity are two independent but not incompatible forms of electromechanical response exhibited by nanoscale ferroelectrics. Here, we show that flexoelectricity can either enhance or suppress the piezoelectric response of the cantilever depending on the ferroelectric polarity and lead to a diode-like asymmetric (two-state) electromechanical response. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06514c

  12. Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)

    PubMed Central

    Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.

    2013-01-01

    The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue. PMID:25332510

  13. Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)

    NASA Astrophysics Data System (ADS)

    Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.

    2013-06-01

    The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.

  14. The Influence of Pd-Doped Au Wire Bonding on HAZ Microstructure and Looping Profile in Micro-Electromechanical Systems (MEMS) Packaging

    NASA Astrophysics Data System (ADS)

    Ismail, Roslina; Omar, Ghazali; Jalar, Azman; Majlis, Burhanuddin Yeop

    2015-07-01

    Wire bonding processes has been widely adopted in micro-electromechanical systems (MEMS) packaging especially in biomedical devices for the integration of components. In the first process sequence in wire bonding, the zone along the wire near the melted tips is called the heat-affected zone (HAZ). The HAZ plays an important factor that influenced the looping profiles of wire bonding process. This paper investigates the effect of dopants on microstructures in the HAZ. One precent palladium (Pd) was added to the as-drawn 4N gold wire and annealed at 600°C. The addition of Pd was able to moderate the grain growth in the HAZ by retarding the heat propagation to the wire. In the formation of the looping profile, the first bending point of the looping is highly associated with the length of the HAZ. The alloyed gold wire (2N gold) has a sharp angle at a distance of about 30 m from the neck of the wire with a measured bending radius of about 40 mm and bending angle of about 40° clockwise from vertical axis, while the 4N gold wire bends at a longer distance. It also shows that the HAZ for 4N gold is longer than 2N gold wire.

  15. Quantum electromechanical systems

    NASA Astrophysics Data System (ADS)

    Milburn, Gerard J.; Polkinghorne, Rodney

    2001-11-01

    We discuss the conditions under which electromechanical systems, fabricated on a sub micron scale, require a quantum description. We illustrate the discussion with the example of a mechanical electroscope for which the resonant frequency of a cantilever changes in response to a local charge. We show how such devices may be used as a quantum noise limited apparatus for detection of a single charge or spin with applications to quantum computing.

  16. Bilayer Graphene Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Champagne, Alexandre; Storms, Matthew; Yigen, Serap; Reulet, Bertrand

    Bilayer graphene is an outstanding electromechanical system, and its electronic and mechanical properties, as well as their coupling, are widely tunable. To the best of our knowledge, simultaneous charge transport and mechanical spectroscopy (via RF mixing) has not been realized in bilayer graphene. We present data showing clear electromechanical resonances in three suspended bilayer devices whose length range from 1 to 2 microns. We first describe the low-temperature current annealing of the devices which is crucial to achieve the transconductance, I -VG , necessary to implement a RF mixing detection method. We describe our RF mixing circuit and data. We measure clear mechanical resonances ranging in frequency from 50 to 140 MHz. We show that we can smoothly tune the resonance frequencies of our bilayer resonators with mechanical strain applied via a backgate voltage. We measure quality factors up to 4000. We briefly discuss the effects of the RF driving power on the dispersion of the mechanical resonance. We aim to use these high quality mechanical resonance as a mechanical sensor of the bilayer quantum Hall phase transitions. We show initial data of a bilayer mechanical resonance as a function of magnetic field and quantum Hall phase transitions.

  17. Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis

    PubMed Central

    Pandya, Hardik J.; Park, Kihan; Desai, Jaydev P.

    2015-01-01

    The use of flexible micro-electro-mechanical systems (MEMS) based device provides a unique opportunity in bio-medical robotics such as characterization of normal and malignant tissues. This paper reports on design and development of a flexible MEMS-based sensor array integrating mechanical and electrical sensors on the same platform to enable the study of the change in electro-mechanical properties of the benign and cancerous breast tissues. In this work, we present the analysis for the electrical characterization of the tissue specimens and also demonstrate the feasibility of using the sensor for mechanical characterization of the tissue specimens. Eight strain gauges acting as mechanical sensors were fabricated using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conducting polymer on poly(dimethylsiloxane) (PDMS) as the substrate material. Eight electrical sensors were fabricated using SU-8 pillars on gold (Au) pads which were patterned on the strain gauges separated by a thin insulator (SiO2 1.0μm). These pillars were coated with gold to make it conducting. The electromechanical sensors are integrated on the same substrate. The sensor array covers 180μm × 180μm area and the size of the complete device is 20mm in diameter. The diameter of each breast tissue core used in the present study was 1mm and the thickness was 8μm. The region of interest was 200μm × 200μm. Microindentation technique was used to characterize the mechanical properties of the breast tissues. The sensor is integrated with conducting SU-8 pillars to study the electrical property of the tissue. Through electro-mechanical characterization studies using this MEMS-based sensor, we were able to measure the accuracy of the fabricated device and ascertain the difference between benign and cancer breast tissue specimens. PMID:26526747

  18. Genetic Algorithm for the Design of Electro-Mechanical Sigma Delta Modulator MEMS Sensors

    PubMed Central

    Wilcock, Reuben; Kraft, Michael

    2011-01-01

    This paper describes a novel design methodology using non-linear models for complex closed loop electro-mechanical sigma-delta modulators (EMΣΔM) that is based on genetic algorithms and statistical variation analysis. The proposed methodology is capable of quickly and efficiently designing high performance, high order, closed loop, near-optimal systems that are robust to sensor fabrication tolerances and electronic component variation. The use of full non-linear system models allows significant higher order non-ideal effects to be taken into account, improving accuracy and confidence in the results. To demonstrate the effectiveness of the approach, two design examples are presented including a 5th order low-pass EMΣΔM for a MEMS accelerometer, and a 6th order band-pass EMΣΔM for the sense mode of a MEMS gyroscope. Each example was designed using the system in less than one day, with very little manual intervention. The strength of the approach is verified by SNR performances of 109.2 dB and 92.4 dB for the low-pass and band-pass system respectively, coupled with excellent immunities to fabrication tolerances and parameter mismatch. PMID:22163691

  19. Advanced composite microtubes for micro-electromechanical systems

    NASA Astrophysics Data System (ADS)

    Upadhya, Kamleshwar; Hoffman, Wesley P.

    1994-05-01

    Microtubes fabricated by a magnetron sputtering system, plasma-enhanced chemical vapor deposition, and conventional chemical vapor deposition will become the nucleus of a technology that will revolutionize the miniaturization of electronic components and systems such as heat exchangers, heat pumps, or nanosatellites. Microtubes will play a crucial role in successful developments of smart structures incorporating hundreds of embedded sensors, actuators, detectors, and switching devices. This article briefly describes the fabrication and application of these microtubes in micro-electromechanical systems (MEMS).

  20. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  1. MEMS in Space Systems

    NASA Technical Reports Server (NTRS)

    Lyke, J. C.; Michalicek, M. A.; Singaraju, B. K.

    1995-01-01

    Micro-electro-mechanical systems (MEMS) provide an emerging technology that has the potential for revolutionizing the way space systems are designed, assembled, and tested. The high launch costs of current space systems are a major determining factor in the amount of functionality that can be integrated in a typical space system. MEMS devices have the ability to increase the functionality of selected satellite subsystems while simultaneously decreasing spacecraft weight. The Air Force Phillips Laboratory (PL) is supporting the development of a variety of MEMS related technologies as one of several methods to reduce the weight of space systems and increase their performance. MEMS research is a natural extension of PL research objectives in micro-electronics and advanced packaging. Examples of applications that are under research include on-chip micro-coolers, micro-gyroscopes, vibration sensors, and three-dimensional packaging technologies to integrate electronics with MEMS devices. The first on-orbit space flight demonstration of these and other technologies is scheduled for next year.

  2. Automated multiscale measurement system for MEMS characterisation

    NASA Astrophysics Data System (ADS)

    Lyda, W.; Burla, A.; Haist, T.; Zimmermann, J.; Osten, W.; Sawodny, O.

    2010-05-01

    In former publications we presented an automated multiscale measurement system (AMMS) based on an adaptable active exploration strategy. The system is armed with several sensors linked by indicator algorithms to identify unresolved defects and to trigger finer resolved measurements. The advantage of this strategy in comparison to single sensor approaches is its high flexibility which is used to balance the conflict between measurement range, resolution and duration. For an initial proof of principle we used the system for inspection of microlens arrays. An even higher challenge for inspection systems are modern micro electro-mechanical systems (MEMS). MEMS consist of critical functional components which range from several millimeters down to micrometers and typically have tolerances in sub-micron scale. This contribution is focused on the inspection of MEMS using the example of micro calibration devices. This new class of objects has completely different surface characteristics and features hence it is necessary to adapted the components of the AMMS. Typical defects found on calibration devices are for example broken actuator combs and springs, surface cracks or missing features. These defects have less influence on the optical properties of the surface and the MEMS surface generates more complex intensity distributions in comparison microlense arrays. At the same time, the surface features of the MEMS have a higher variety and less periodicity which reduce the performance of currently used algorithms. To meet these requirements, we present new indicator algorithms for the automated analysis of confocal as well as conventional imaging data and show initial multiscale inspection results.

  3. Revolution of Sensors in Micro-Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    2012-08-01

    Microsensors realized by micro-electromechanical systems (MEMS) technology play a key role as the input devices of systems. In this report, the following sensors are reviewed: piezoresistive and capacitive pressure sensors, surface acoustic wave (SAW) wireless pressure sensors, tactile sensor networks for robots, accelerometers, angular velocity sensors (gyroscopes), range image sensors using optical scanners, infrared imagers, chemical sensing systems as Fourier transform infrared (FTIR) spectroscopy and gas chromatography, flow sensors for fluids, and medical sensors such as ultrafine optical-fiber blood pressure sensors and implantable pressure sensors.

  4. Six-Message Electromechanical Display System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2007-01-01

    A proposed electromechanical display system would be capable of presenting as many as six distinct messages. In the proposed system, each display element would include a cylinder having a regular hexagonal cross section.

  5. Design and fabrication of a flexible MEMS-based electro-mechanical sensor array for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Pandya, Hardik J.; Park, Kihan; Desai, Jaydev P.

    2015-07-01

    The use of flexible micro-electro-mechanical systems (MEMS)-based devices provides a unique opportunity in bio-medical robotics such as the characterization of normal and malignant tissues. This paper reports on the design and development of a flexible MEMS-based sensor array integrating mechanical and electrical sensors on the same platform to enable the study of the change in electro-mechanical properties of benign and cancerous breast tissues. In this work, we present the analysis of the electrical characterization of the tissue specimens and also demonstrate the feasibility of using the sensor for the mechanical characterization of tissue specimens. Eight strain gauges acting as mechanical sensors were fabricated using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conducting polymer on poly(dimethylsiloxane) (PDMS) as the substrate material. Eight electrical sensors were fabricated using SU-8 pillars on gold (Au) pads which were patterned on the strain gauges separated by a thin insulator (SiO2 1.0 μm). These pillars were coated with gold to make them conducting. The electro-mechanical sensors are integrated on the same substrate. The sensor array covers a 180 μm  ×  180 μm area and the size of the complete device is 20 mm in diameter. The diameter of each breast tissue core used in the present study was 1 mm and the thickness was 8 μm. The region of interest was 200 μm  ×  200 μm. A microindentation technique was used to characterize the mechanical properties of the breast tissues. The sensor is integrated with conducting SU-8 pillars to study the electrical property of the tissue. Through electro-mechanical characterization studies using this MEMS-based sensor, we were able to measure the accuracy of the fabricated device and ascertain the difference between benign and cancers breast tissue specimens.

  6. MEMS: Enabled Drug Delivery Systems.

    PubMed

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. PMID:25703045

  7. Ovenized microelectromechanical system (MEMS) resonator

    SciTech Connect

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  8. Quartz-superconductor quantum electromechanical system

    NASA Astrophysics Data System (ADS)

    Woolley, M. J.; Emzir, M. F.; Milburn, G. J.; Jerger, M.; Goryachev, M.; Tobar, M. E.; Fedorov, A.

    2016-06-01

    We propose and analyze a quantum electromechanical system composed of a monolithic quartz bulk acoustic wave oscillator coupled to a superconducting transmon qubit via an intermediate L C electrical circuit. Monolithic quartz oscillators offer unprecedentedly high effective masses and quality factors for the investigation of mechanical oscillators in the quantum regime. Ground-state cooling of such mechanical modes via resonant piezoelectric coupling to an L C circuit, which is itself sideband cooled via coupling to a transmon qubit, is shown to be feasible. The fluorescence spectrum of the qubit, containing motional sideband contributions due to the couplings to the oscillator modes, is obtained and the imprint of the electromechanical steady state on the spectrum is determined. This allows the qubit to function both as a cooling resource for, and transducer of, the mechanical oscillator. The results described are relevant to any hybrid quantum system composed of a qubit coupled to two (coupled or uncoupled) thermal oscillator modes.

  9. Mechanical properties of polymer/carbon nanotube composite micro-electromechanical systems bridges

    NASA Astrophysics Data System (ADS)

    Sousa, P. M.; Chu, V.; Conde, J. P.

    2013-04-01

    Microelectromechanical systems with all-polymer structural layers are expected to allow novel MEMS applications due to their mechanical, optical, electronic, and chemical properties, which are tunable and distinct from the standard inorganic layers currently used. The mechanical properties of micro-electromechanical bridge resonators (pMEMS) based on a polymer/carbon-nanotubes (CNT) composite structural material are presented. The structural material of the electrostatically actuated pMEMS microresonators are multilayers of a conductive polymer based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to which carboxylated multi-wall CNTs monolayers are electrostatically attached after surface functionalization. The effects of measurement pressure, temperature, and applied load on the resonance frequency and on the quality factor, Q, of the pMEMS are studied. The long term reliability of the pMEMS resonators is also investigated, and the resonators were subjected to above 1011 actuation cycles without significant performance deterioration. The mechanical properties of the pMEMS are systematically compared to those of a doped hydrogenated amorphous silicon (n+-a-Si:H) MEMS. While the CNT multilayers increase the rigidity (and hence the resonance frequency) as well as the electrical conductivity of the structural layer, they decrease the energy dissipation (and hence increase Q). Changes in CNT-polymer matrix adhesion result in reversible changes of the resonator properties during operation, requiring monitoring and control.

  10. MEMS device for spacecraft thermal control applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theordore D. (Inventor)

    2003-01-01

    A micro-electromechanical device that comprises miniaturized mechanical louvers, referred to as Micro Electro-Mechanical Systems (MEMS) louvers are employed to achieve a thermal control function for spacecraft and instruments. The MEMS louvers are another form of a variable emittance control coating and employ micro-electromechanical technology. In a function similar to traditional, macroscopic thermal louvers, the MEMS louvers of the present invention change the emissivity of a surface. With the MEMS louvers, as with the traditional macroscopic louvers, a mechanical vane or window is opened and closed to allow an alterable radiative view to space.

  11. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  12. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  13. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  14. Superconducting circuitry for quantum electromechanical systems

    NASA Astrophysics Data System (ADS)

    LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.

    2015-05-01

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.

  15. Designing Piezoelectric Films for Micro Electromechanical Systems

    SciTech Connect

    Trolier-McKinstry, Susan; Griggio, Flavio; Yaeger, Charles; Jousse, Pierre; Zhao, Dalong; Bharadwaja, Srowthi; Jackson, Thomas N; Jesse, Stephen; Kalinin, Sergei V; Wasa, Kiyotaka

    2011-01-01

    Piezoelectric thin films are of increasing interest in low-voltage micro electromechanical systems for sensing, actuation, and energy harvesting. They also serve as model systems to study fundamental behavior in piezoelectrics. Next-generation technologies such as ultrasound pill cameras, flexible ultrasound arrays, and energy harvesting systems for unattended wireless sensors will all benefit from improvements in the piezoelectric properties of the films. This paper describes tailoring the composition, microstructure, orientation of thin films, and substrate choice to optimize the response. It is shown that increases in the grain size of lead-based perovskite films from 75 to 300 nm results in 40 and 20% increases in the permittivity and piezoelectric coefficients, respectively. This is accompanied by an increase in the nonlinearity in the response. Band excitation piezoresponse force microscopy was used to interrogate the nonlinearity locally. It was found that chemical solution-derived PbZr(0.52)Ti(0.48)O(3) thin films show clusters of larger nonlinear response embedded in a more weakly nonlinear matrix. The scale of the clusters significantly exceeds that of the grain size, suggesting that collective motion of many domain walls contributes to the observed Rayleigh behavior in these films. Finally, it is shown that it is possible to increase the energy-harvesting figure of merit through appropriate materials choice, strong imprint, and composite connectivity patterns.

  16. Electromechanically cooled germanium radiation detector system

    NASA Astrophysics Data System (ADS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  17. Micro-electromechanical Systems for Probing Novel Strain Physics and Innovative Strain Devices in 2D Materials

    NASA Astrophysics Data System (ADS)

    Christopher, Jason; Vutukuru, Mounika; Bishop, David; Swan, Anna; Goldberg, Bennett

    Straining 2D materials can dramatically change electrical, thermal and optical properties and can even cause unconventional behavior such as generating pseudo-magnetic fields. However attempts at probing these effects have been hindered by the difficulty involved with precisely straining these materials. Here we present micro-electromechanical systems (MEMS) as an ideal platform for straining 2D materials because they are readily compatible with existing electronics and their size makes them compatible with 2D materials. Additionally the MEMS platform does more than facilitate experimentation; by freeing us to think of strain as dynamical it makes a whole new class of devices practical for next generation technology. To demonstrate the power of this platform we have for the first time measured the strain response of the Raman and photoluminescence spectra of suspended MoS2, and measured the friction force between MoS2 and the MEMS structure. This talk will touch on the basics of designing MEMS structures for straining 2D materials, how to transfer 2D materials onto MEMS without break either, proof of concept experimental results, and next steps in developing the MEMS platform. This work is supported by NSF DMR Grant 1411008, and author J. Christopher thanks the NDSEG program for its support.

  18. A Variational Approach to the Analysis of Dissipative Electromechanical Systems

    PubMed Central

    Allison, Andrew; Pearce, Charles E. M.; Abbott, Derek

    2014-01-01

    We develop a method for systematically constructing Lagrangian functions for dissipative mechanical, electrical, and electromechanical systems. We derive the equations of motion for some typical electromechanical systems using deterministic principles that are strictly variational. We do not use any ad hoc features that are added on after the analysis has been completed, such as the Rayleigh dissipation function. We generalise the concept of potential, and define generalised potentials for dissipative lumped system elements. Our innovation offers a unified approach to the analysis of electromechanical systems where there are energy and power terms in both the mechanical and electrical parts of the system. Using our novel technique, we can take advantage of the analytic approach from mechanics, and we can apply these powerful analytical methods to electrical and to electromechanical systems. We can analyse systems that include non-conservative forces. Our methodology is deterministic, and does does require any special intuition, and is thus suitable for automation via a computer-based algebra package. PMID:24586221

  19. A variational approach to the analysis of dissipative electromechanical systems.

    PubMed

    Allison, Andrew; Pearce, Charles E M; Abbott, Derek

    2014-01-01

    We develop a method for systematically constructing Lagrangian functions for dissipative mechanical, electrical, and electromechanical systems. We derive the equations of motion for some typical electromechanical systems using deterministic principles that are strictly variational. We do not use any ad hoc features that are added on after the analysis has been completed, such as the Rayleigh dissipation function. We generalise the concept of potential, and define generalised potentials for dissipative lumped system elements. Our innovation offers a unified approach to the analysis of electromechanical systems where there are energy and power terms in both the mechanical and electrical parts of the system. Using our novel technique, we can take advantage of the analytic approach from mechanics, and we can apply these powerful analytical methods to electrical and to electromechanical systems. We can analyse systems that include non-conservative forces. Our methodology is deterministic, and does does require any special intuition, and is thus suitable for automation via a computer-based algebra package. PMID:24586221

  20. Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G.

    1991-01-01

    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated.

  1. Control of microwave signals using bichromatic electromechanically induced transparency in multimode circuit electromechanical systems

    NASA Astrophysics Data System (ADS)

    Cheng, Jiang; Yuanshun, Cui; Xintian, Bian; Xiaowei, Li; Guibin, Chen

    2016-05-01

    We theoretically investigate the tunable delay and advancement of microwave signals based on bichromatic electromechanically induced transparency in a three-mode circuit electromechanical system, where two nanomechanical resonators with closely spaced frequencies are independently coupled to a common microwave cavity. In the presence of a strong microwave pump field, we obtain two transparency windows accompanied by steep phase dispersion in the transmitted microwave probe field. The width of the transparency window and the group delay of the probe field can be controlled effectively by the power of the pump field. It is shown that the maximum group delay of 0.12 ms and the advancement of 0.27 ms can be obtained in the current experiments. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304110 and 11174101), the Jiangsu Natural Science Foundation, China (Grant Nos. BK20130413 and BK2011411), and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant Nos. 13KJB140002 and 15KJB460004).

  2. Micro-electro-mechanical system (MEMS) component research and development for army missile applications

    NASA Astrophysics Data System (ADS)

    Hudson, Tracy D.; McMillen, Deanna K.; Ashley, Paul R.; Ruffin, Paul B.; Baeder, Janet

    1999-07-01

    The US Army Aviation and Missile Command Missile Research, Development and Engineering Center has identified MEMS as an emerging technology with high potential for fulfilling the mission of future missiles. The technology holds the promise of reducing the size, weight, cost, and power requirements for performing existing functions in Army missile systems, as well las providing opportunities for new computing, sensing, and actuation functions that cannot be achieved with conventional electromechanical technology. MEMS will enable the Army's next generation of smaller and lighter missiles. The military market drives the thrust for development of miniature sensor with applications such as: competent and smart munitions, aircraft and missile autopilots, tactical missile guidance, fire control system, platform stabilization, smart structures with embedded inertial sensors, missile system health monitoring, missile and ground-based radar, radio frequency seekers, aerodynamic flow control, IR imagers, and multiple intelligent small projectiles. Current efforts at AMCOM include the development of MEMS-based inertial components to include accelerometers with wide dynamic range, tactical grade gyros with high rate range, and miniature three-axis inertial measurement unit with common interface electronics. Performance requirements of such components will be presented in terms of current and future Army missile systems. Additional MEMS based efforts under investigation at AMCOM include missile storage health monitoring, RF MEMS components, encoders for actuators, and aerodynamic flow control will also be discussed.

  3. A hybrid MEMS-based microfluidic system for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ortiz, Pedro; Keegan, Neil; Spoors, Julia; Hedley, John; Harris, Alun; Burdess, Jim; Burnett, Richard; Velten, Thomas; Biehl, Margit; Knoll, Thorsten; Haberer, Werner; Solomon, Matthew; Campitelli, Andrew; McNeil, Calum

    2008-12-01

    A microfluidic system for cancer diagnosis based around a core MEMS biosensor technology is presented in this paper. The principle of the MEMS biosensor is introduced and the functionalisation strategy for cancer marker recognition is described. In addition, the successful packaging and integration of functional MEMS biosensor devices are reported herein. This ongoing work represents one of the first hybrid systems to integrate a PCB packaged silicon MEMS device into a disposable microfluidic cartridge.

  4. Microelectromechanical Systems (MEMS) Actuators for Antenna Reconfigurability

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    A novel microelectromechanical systems (MEMS) actuator for patch antenna reconfiguration, is presented for the first time. A key feature is the capability of multi-band operation without greatly increasing the antenna element dimensions. Experimental results demonstrate that the center frequency can be reconfigured from few hundred MHz to few GHz away from the nominal operating frequency.

  5. Design and Simulation of MEMS Enabled Systems

    NASA Astrophysics Data System (ADS)

    da Silva, Mark

    2001-03-01

    Over the past two decades considerable progress in microsystems (MEMS) fabrication technologies has been made resulting in a variety of commercially successful devices. Most of these devices have required application specific fabrication steps, which must be developed, and the lack of proper design tools often resulted in repeated prototyping that was expensive and time consuming. Further development of MEMS enabled commercial products and reduction of the time to market requires implementation of a concurrent design methodology through better design tools and standardization of the fabrication processes. The cross-disciplinary nature of MEMS-Enabled Systems necessitates designers with different backgrounds to work together in understanding the effects of one sub-system on another and this requires a top-down approach to integrated system design. Design tools that can facilitate this communication and reduce the need for excessive prototype fabrication and test iterations and significantly reduce cost and time-to-market are vitally important. The main focus of this article is to describe the top-down design methodology and and ongoing research on tools that facilitate concurrent design of MEMS enabled systems.

  6. Introduction to applications and industries for Microelectromechanical Systems (MEMS).

    SciTech Connect

    Walraven, Jeremy Allen

    2003-07-01

    Microelectromechanical Systems (MEMS) have gained acceptance as viable products for many commercial and government applications. MEMS are currently being used as displays for digital projection systems, sensors for airbag deployment systems, inkjet print head systems, and optical routers. This paper will discuss current and future MEMS applications. What are MEMS? MEMS are typically defined as microscopic devices designed, processed, and used to interact or produce changes within a local environment. A mechanical, electrical, or chemical stimulus can be used to create a mechanical, electrical, or chemical response in a local environment. These smaller, more sophisticated devices that think, act, sense, and communicate are replacing their bulk counterparts in many traditional applications.

  7. A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance

    NASA Technical Reports Server (NTRS)

    Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2004-01-01

    A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.

  8. A Bio-Inspired Electromechanical System: Artificial Hair Cell

    NASA Astrophysics Data System (ADS)

    Ahn, Kang-Hun

    Inspired by recent biophysical study on the auditory sensory organs, we study electromechanical system which functions similar to the hair cell of the ear. One of the important mechanisms of hair cells, adaptation, is mimicked by an electromechanical feedback loop. The proposed artificial hair cell functions similar to a living sensory organ in the sense that it senses input force signal in spite of the relatively strong noise. Numerical simulation of the proposed system shows otoacoustic sound emission, which was observed in the experiments on the hair cells of the bullfrog. This spontaneous motion is noise-induced periodic motion which is controlled by the time scale of adaptation process and the mechanical damping.

  9. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  10. Step-control of electromechanical systems

    DOEpatents

    Lewis, Robert N.

    1979-01-01

    The response of an automatic control system to a general input signal is improved by applying a test input signal, observing the response to the test input signal and determining correctional constants necessary to provide a modified input signal to be added to the input to the system. A method is disclosed for determining correctional constants. The modified input signal, when applied in conjunction with an operating signal, provides a total system output exhibiting an improved response. This method is applicable to open-loop or closed-loop control systems. The method is also applicable to unstable systems, thus allowing controlled shut-down before dangerous or destructive response is achieved and to systems whose characteristics vary with time, thus resulting in improved adaptive systems.

  11. MEMS programs at DARPA

    NASA Astrophysics Data System (ADS)

    Tang, William C.

    2001-10-01

    Microelectromechanical Systems (MEMS) is one of the three core enabling technologies within the Microsystems Technology Office (MTO) of the Defense Advanced Research Projects Agency (DARPA). Together with Photonics and Electronics, MEMS forms the foundation for a broad variety of advanced research projects sponsored by MTO as well as other offices within DARPA. MEMS technology merges the functions of compute, communicate and power together with sense, actuate and control to change completely the way people and machines interact with the physical world. Using an ever-expanding set of fabrication processes and materials, MEMS will provide the advantages of small size, low-power, low-mass, low-cost and high-functionality to integrated electromechanical systems both on the micro as well as on the macro scales. Further, demands for increased performance; reliability, robustness, lifetime, maintainability and capability of military equipment of all kinds can be met by the integration of MEMS into macro devices and systems. In the post-cold-war era, U.S. forces must be able to conduct prompt, sustained, and synchronized operations with our allies in specific situations and with the freedom to operate in all four domains of military engagementsea, land, air, and space. MEMS technology has now been demonstrated in all four domains. The long-term goal of the DARPA MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies to bring co-located perception and control to systems, processes and the environment.

  12. Quartz-superconductor quantum electromechanical system

    NASA Astrophysics Data System (ADS)

    Woolley, Matt; Emzir, Muhammad; Milburn, Gerard; Jerger, Markus; Goryachev, Maxim; Tobar, Mike; Fedorov, Arkady

    Quartz bulk acoustic wave oscillators support mechanical modes with very high resonance frequencies and extremely high quality factors. As such, they provide an appealing platform for quantum optics experiments with phonons, gravitational wave detection, and tests of quantum mechanics. We propose to cool and measure the motion of a quartz oscillator using a transmon, with the coupling mediated by a tuneable superconducting LC circuit. The mechanical motion (~250MHz) is resonantly coupled to the LC circuit (~250MHz) by a piezoelectric interaction, the LC circuit is coupled to the transmon (~8GHz) via sideband transitions, and there is a smaller direct coupling between the quartz oscillator and the transmon. By driving the transmon on its red sideband, the mechanical and electrical oscillators may be cooled close to their quantum ground state. By observing the fluorescence of the qubit, the occupations of the oscillators may be determined via the motional sidebands they induce. A minimal model of this system consists of a qubit coupled to two oscillators, which are themselves mutually coupled. The steady-state of the system and the qubit fluorescence spectrum are evaluated analytically using a perturbative projection operator technique, and verified numerically.

  13. MEMS sensors and wireless telemetry for distributed systems

    NASA Astrophysics Data System (ADS)

    Britton, Charles L.; Warmack, R. J.; Smith, S. F.; Oden, Patrick I.; Brown, G. M.; Bryan, W. L.; Clonts, Lloyd G.; Duncan, Michael G.; Emery, Mike S.; Ericson, M. N.; Hu, Z.; Jones, Robert L.; Moore, Michael R.; Moore, J. A.; Rochelle, Jim M.; Threatt, Timothy D.; Thundat, Thomas G.; Turner, G. W.; Wintenberg, Alan L.

    1998-07-01

    Selectively coated cantilevers are being developed at ORNL for chemical and biological sensing. The sensitivity can exceed that of other electro-mechanical devices as parts- per-trillion detection can be demonstrated for certain species. We are now proceeding to develop systems that employ electrically readable microcantilevers in a standard MEMS process and standard CMOS processes. One of our primary areas of interest is chemical sensing for environmental applications. Towards this end, we are presently developing electronic readout of a mercury-sensitive coated cantilever. In order to field arrays of distributed sensors, a wireless network for data reporting is needed. For this, we are developing on-chip spread-spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. We have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Most of the RF circuity we have designed and fabricated in 0.5 micrometers CMOS has been tested and verified operational to above 1 GHz. Our initial intended operation is for use in the 915 MHz Industrial, Scientific, and Medical band. This paper presents measured data on the microcantilever-based mercury detector. We will also present design data and measurements of the RF telemetry chip.

  14. MEMS sensors and wireless telemetry for distributed systems

    SciTech Connect

    Britton, C.L. Jr.; Warmack, R.J.; Smith, S.F.

    1998-02-01

    Selectively coated cantilevers are being developed at ORNL for chemical and biological sensing. The sensitivity can exceed that of other electro-mechanical devices as parts-per-trillion detection can be demonstrated for certain species. The authors are now proceeding to develop systems that employ electrically readable microcantilevers in a standard MEMS process and standard CMOS processes. One of their primary areas of interest is chemical sensing for environmental applications. Towards this end, they are presently developing electronic readout of a mercury-sensitive coated cantilever. In order to field arrays of distributed sensors, a wireless network for data reporting is needed. For this, the authors are developing on-chip spread-spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. They have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Most of the RF circuitry they have designed and fabricated in 0.5 {micro}m CMOS has been tested and verified operational to above 1 GHz. The initial intended operation is for use in the 915 MHz Industrial, Scientific, and Medical (ISM) band. This paper presents measured data on the microcantilever-based mercury detector. They also present design data and measurements of the RF telemetry chip.

  15. 78 FR 22293 - Certain Microelectromechanical Systems (“MEMS Devices”) and Products Containing Same; Institution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... COMMISSION Certain Microelectromechanical Systems (``MEMS Devices'') and Products Containing Same... United States after importation of certain microelectromechanical systems (``MEMS Devices'') and products... after importation of certain microelectromechanical systems (``MEMS Devices'') and products...

  16. 78 FR 16531 - Certain Microelectromechanical Systems (“MEMS Devices”) and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... COMMISSION Certain Microelectromechanical Systems (``MEMS Devices'') and Products Containing Same; Notice of... Commission has received a complaint entitled Certain Microelectromechanical Systems (``MEMS Devices'') and... microelectromechanical systems (``MEMS devices'') and products containing same. The complaint names as respondents...

  17. Electromechanical system frequency response equilization using three different methods

    NASA Astrophysics Data System (ADS)

    Prezelj, Jurij; Čudina, Mirko

    2007-01-01

    The frequency response of different electromechanical systems like sensors and actuators is in many cases the most important parameter for their evaluation. In some cases, when a short time delay does not play an important role and the flatness of frequency response is more important, an approximate of inverse system for frequency response compensation can be used. We equalized the frequency response of a non-minimum phase linear time-invariant electromechanical system using a digital finite impulse response (FIR) filter. Three different deconvolution methods for determination of the approximate of inverse filter impulse response were used and the results of the compensation using three different inverse filters are compared. The first method is based on the solution of the system of linear equations, while the second method is based on a simple direct inverse Fourier transformation. The third method uses an active noise control algorithm based on a least mean square adaptive algorithm. The results of all three methods can be applied in a FIR filter realized on DSP boards to perform real time compensation. The theoretical simulations are compared with experiments. Compensation of arbitrary systems is an interesting subject and it can be applied in numerous different fields from sensors and actuators to measurement and acoustics.

  18. Troubleshooting of an Electromechanical System (Westinghouse PLC Controlling a Pneumatic Robot). High-Technology Training Module.

    ERIC Educational Resources Information Center

    Tucker, James D.

    This training module on the troubleshooting of an electromechanical system, The Westinghouse Programmable Logic Controller (PLC) controlling a pneumatic robot, is used for a troubleshooting unit in an electromechanical systems/robotics and automation systems course. In this unit, students locate and repair a defect in a PLC-operated machine. The…

  19. A dynamic system matching technique for improving the accuracy of MEMS gyroscopes

    SciTech Connect

    Stubberud, Peter A.; Stubberud, Stephen C.; Stubberud, Allen R.

    2014-12-10

    A classical MEMS gyro transforms angular rates into electrical values through Euler's equations of angular rotation. Production models of a MEMS gyroscope will have manufacturing errors in the coefficients of the differential equations. The output signal of a production gyroscope will be corrupted by noise, with a major component of the noise due to the manufacturing errors. As is the case of the components in an analog electronic circuit, one way of controlling the variability of a subsystem is to impose extremely tight control on the manufacturing process so that the coefficient values are within some specified bounds. This can be expensive and may even be impossible as is the case in certain applications of micro-electromechanical (MEMS) sensors. In a recent paper [2], the authors introduced a method for combining the measurements from several nominally equal MEMS gyroscopes using a technique based on a concept from electronic circuit design called dynamic element matching [1]. Because the method in this paper deals with systems rather than elements, it is called a dynamic system matching technique (DSMT). The DSMT generates a single output by randomly switching the outputs of several, nominally identical, MEMS gyros in and out of the switch output. This has the effect of 'spreading the spectrum' of the noise caused by the coefficient errors generated in the manufacture of the individual gyros. A filter can then be used to eliminate that part of the spread spectrum that is outside the pass band of the gyro. A heuristic analysis in that paper argues that the DSMT can be used to control the effects of the random coefficient variations. In a follow-on paper [4], a simulation of a DSMT indicated that the heuristics were consistent. In this paper, analytic expressions of the DSMT noise are developed which confirm that the earlier conclusions are valid. These expressions include the various DSMT design parameters and, therefore, can be used as design tools for DSMT

  20. A dynamic system matching technique for improving the accuracy of MEMS gyroscopes

    NASA Astrophysics Data System (ADS)

    Stubberud, Peter A.; Stubberud, Stephen C.; Stubberud, Allen R.

    2014-12-01

    A classical MEMS gyro transforms angular rates into electrical values through Euler's equations of angular rotation. Production models of a MEMS gyroscope will have manufacturing errors in the coefficients of the differential equations. The output signal of a production gyroscope will be corrupted by noise, with a major component of the noise due to the manufacturing errors. As is the case of the components in an analog electronic circuit, one way of controlling the variability of a subsystem is to impose extremely tight control on the manufacturing process so that the coefficient values are within some specified bounds. This can be expensive and may even be impossible as is the case in certain applications of micro-electromechanical (MEMS) sensors. In a recent paper [2], the authors introduced a method for combining the measurements from several nominally equal MEMS gyroscopes using a technique based on a concept from electronic circuit design called dynamic element matching [1]. Because the method in this paper deals with systems rather than elements, it is called a dynamic system matching technique (DSMT). The DSMT generates a single output by randomly switching the outputs of several, nominally identical, MEMS gyros in and out of the switch output. This has the effect of 'spreading the spectrum' of the noise caused by the coefficient errors generated in the manufacture of the individual gyros. A filter can then be used to eliminate that part of the spread spectrum that is outside the pass band of the gyro. A heuristic analysis in that paper argues that the DSMT can be used to control the effects of the random coefficient variations. In a follow-on paper [4], a simulation of a DSMT indicated that the heuristics were consistent. In this paper, analytic expressions of the DSMT noise are developed which confirm that the earlier conclusions are valid. These expressions include the various DSMT design parameters and, therefore, can be used as design tools for DSMT

  1. Electro-Mechanical Systems for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg

    2011-01-01

    Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller

  2. Evaluation of the electromechanical properties of the cardiovascular system

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.

    1974-01-01

    Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.

  3. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  4. Mass sensing based on a circuit cavity electromechanical system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    We present a scheme for mass sensing based on a circuit cavity electromechanical system where a free-standing, flexible aluminium membrane is capacitively coupled to a superconducting microwave cavity. Integration with the microwave cavity enables capacitive readout of the mechanical resonance directly on the chip. A microwave pump field and a second probe field are simultaneously applied to the cavity. The accreted mass landing on the membrane can be measured conveniently by tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. The mass responsivity for the membrane is 0.72 Hz/ag and we demonstrate that frequency shifts induced by adsorption of one hundred 1587 bp DNA molecules can be well resolved in the probe transmission spectrum.

  5. A MEMS-based, wireless, biometric-like security system

    NASA Astrophysics Data System (ADS)

    Cross, Joshua D.; Schneiter, John L.; Leiby, Grant A.; McCarter, Steven; Smith, Jeremiah; Budka, Thomas P.

    2010-04-01

    We present a system for secure identification applications that is based upon biometric-like MEMS chips. The MEMS chips have unique frequency signatures resulting from fabrication process variations. The MEMS chips possess something analogous to a "voiceprint". The chips are vacuum encapsulated, rugged, and suitable for low-cost, highvolume mass production. Furthermore, the fabrication process is fully integrated with standard CMOS fabrication methods. One is able to operate the MEMS-based identification system similarly to a conventional RFID system: the reader (essentially a custom network analyzer) detects the power reflected across a frequency spectrum from a MEMS chip in its vicinity. We demonstrate prototype "tags" - MEMS chips placed on a credit card-like substrate - to show how the system could be used in standard identification or authentication applications. We have integrated power scavenging to provide DC bias for the MEMS chips through the use of a 915 MHz source in the reader and a RF-DC conversion circuit on the tag. The system enables a high level of protection against typical RFID hacking attacks. There is no need for signal encryption, so back-end infrastructure is minimal. We believe this system would make a viable low-cost, high-security system for a variety of identification and authentication applications.

  6. Experimental Identification of Smartphones Using Fingerprints of Built-In Micro-Electro Mechanical Systems (MEMS)

    PubMed Central

    Baldini, Gianmarco; Steri, Gary; Dimc, Franc; Giuliani, Raimondo; Kamnik, Roman

    2016-01-01

    The correct identification of smartphones has various applications in the field of security or the fight against counterfeiting. As the level of sophistication in counterfeit electronics increases, detection procedures must become more accurate but also not destructive for the smartphone under testing. Some components of the smartphone are more likely to reveal their authenticity even without a physical inspection, since they are characterized by hardware fingerprints detectable by simply examining the data they provide. This is the case of MEMS (Micro Electro-Mechanical Systems) components like accelerometers and gyroscopes, where tiny differences and imprecisions in the manufacturing process determine unique patterns in the data output. In this paper, we present the experimental evaluation of the identification of smartphones through their built-in MEMS components. In our study, three different phones of the same model are subject to repeatable movements (composing a repeatable scenario) using an high precision robotic arm. The measurements from MEMS for each repeatable scenario are collected and analyzed. The identification algorithm is based on the extraction of the statistical features of the collected data for each scenario. The features are used in a support vector machine (SVM) classifier to identify the smartphone. The results of the evaluation are presented for different combinations of features and Inertial Measurement Unit (IMU) outputs, which show that detection accuracy of higher than 90% is achievable. PMID:27271630

  7. Experimental Identification of Smartphones Using Fingerprints of Built-In Micro-Electro Mechanical Systems (MEMS).

    PubMed

    Baldini, Gianmarco; Steri, Gary; Dimc, Franc; Giuliani, Raimondo; Kamnik, Roman

    2016-01-01

    The correct identification of smartphones has various applications in the field of security or the fight against counterfeiting. As the level of sophistication in counterfeit electronics increases, detection procedures must become more accurate but also not destructive for the smartphone under testing. Some components of the smartphone are more likely to reveal their authenticity even without a physical inspection, since they are characterized by hardware fingerprints detectable by simply examining the data they provide. This is the case of MEMS (Micro Electro-Mechanical Systems) components like accelerometers and gyroscopes, where tiny differences and imprecisions in the manufacturing process determine unique patterns in the data output. In this paper, we present the experimental evaluation of the identification of smartphones through their built-in MEMS components. In our study, three different phones of the same model are subject to repeatable movements (composing a repeatable scenario) using an high precision robotic arm. The measurements from MEMS for each repeatable scenario are collected and analyzed. The identification algorithm is based on the extraction of the statistical features of the collected data for each scenario. The features are used in a support vector machine (SVM) classifier to identify the smartphone. The results of the evaluation are presented for different combinations of features and Inertial Measurement Unit (IMU) outputs, which show that detection accuracy of higher than 90% is achievable. PMID:27271630

  8. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  9. Analysis of the Influence of Permanent Magnet Geometry on the Energy Efficiency of Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Leonov, S. V.; Zhiganov, A. N.; Kerbel', B. M.; Fedorov, D. F.; Makaseev, Yu. N.; Kremlev, I. A.

    2016-06-01

    Results of investigations of electromechanical systems with high-coercive permanent magnets from the standpoint of finding an optimal solution to reach the best energy characteristics and to ensure reliability of magnetic system design are presented.

  10. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors

    NASA Astrophysics Data System (ADS)

    Agrawal, Richa; Beidaghi, Majid; Chen, Wei; Wang, Chunlei

    2015-05-01

    The rapid development in miniaturized electronic devices has led to an ever increasing demand for high-performance rechargeable micropower scources. Microsupercapacitors in particular have gained much attention in recent years owing to their ability to provide high pulse power while maintaining long cycle lives. Carbon microelectromechanical systems (C-MEMS) is a powerful approach to fabricate high aspect ratio carbon microelectrode arrays, which has been proved to hold great promise as a platform for energy storage. C-MEMS is a versatile technique to create carbon structures by pyrolyzing a patterned photoresist. Furthermore, different active materials can be loaded onto these microelectrode platforms for further enhancement of the electrochemical performance of the C-MEMS platform. In this article, different techniques and methods in order to enhance C-MEMS based various electrochemical capacitor systems have been discussed, including electrochemical activation of C-MEMS structures for miniaturized supercapacitor applications, integration of carbon nanostructures like carbon nanotubes onto C-MEMS structures and also integration of pseudocapacitive materials such as polypyrrole onto C-MEMS structures.

  11. Polarization Reconfigurable Patch Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2002-01-01

    The paper demonstrates a nearly square patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the polarization. Experimental results demonstrate that at a fixed frequency, the polarization can be reconfigured, from circular to linear.

  12. Review on the Modeling of Electrostatic MEMS

    PubMed Central

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  13. Review on the modeling of electrostatic MEMS.

    PubMed

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  14. Controllable optical response in hybrid opto-electromechanical systems

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Cui, Yuan-Shun; Liu, Hong-Xiang; Li, Xiao-Wei; Chen, Gui-Bin

    2015-05-01

    We theoretically investigate the analog of electromagnetically induced absorption and parametric amplification in a hybrid opto-electromechanical system consisting of an optical cavity and a microwave cavity coupled to a common mechanical resonator. When the two cavity modes are driven by two pump fields, a weak probe beam is applied to the optical cavity to monitor the optical response of the hybrid system, which can be effectively controlled by adjusting the frequency and power of the two pump fields. We find that the analog of electromagnetically induced absorption and parametric amplification can appear in the probe transmission spectrum when one cavity is pumped on its red sideband and another is pumped on its blue sideband. These phenomena can find potential applications in optical switching and signal amplification in the quantum information process. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304110 and 11174101), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130413 and BK2011411), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 13KJB140002).

  15. MEMS and microfluidics for diagnostics devices.

    PubMed

    Rosen, Y; Gurman, P

    2010-06-01

    There are conditions in clinical medicine demanding critical therapeutic decisions. These conditions necessitate accuracy, rapidity, accessibility, cost-effectiveness and mobility. New technologies have been developed in order to address these challenges. Microfluidics and Micro Electro-Mechanical Systems are two of such technologies. Microfluidics, a discipline that involves processing fluids at the microscale in etched microchannels, is being used to build lab- on-a-chip systems to run chemical and biological assays. These systems are being transformed into handheld devices designed to be used at remote settings or at the bedside. MEMS are microscale electromechanical elements integrated in lab chip systems or used as individual components. MEMS based sensors represents a highly developed field with successful commercialized products currently being incorporated into vitro,ex vivo and in vivo devices. In the present paper several examples of microfluidic devices and MEMS sensors are introduced together with some current examples of commercialized products. Future challenges and trends will be discussed. PMID:20199381

  16. Miniaturization of Components and Systems for Space Using Mems -Technology

    NASA Astrophysics Data System (ADS)

    Grönland, T.-A.; Staubo, P.; Seeberg, B.-E.; Rangsten, P.

    2008-08-01

    Development of MEMS-based (Micro Electro Mechanical System) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least a decade. The main driver for developing MEMS-based components for space is the achievable miniaturization. MEMS technology can not only save orders of magnitude in mass and volume of individual components, it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. This paper presents a number of miniaturized components, their development status and their planned maiden spaceflight onboard the PRISMA satellite. One of the two PRISMA satellites will have a cold gas propulsion system onboard including a number of miniaturized MEMS-based components. NanoSpace has developed and manufactured several of the critical components using MEMS technology, i.e. the isolation valve, the pressure relief valve, the thrust chamber/nozzle assemblies, the proportional valves, and the filters. Presens has developed the MEMS-based pressure sensor technology.

  17. Failure analysis issues in microelectromechanical systems (MEMS).

    SciTech Connect

    Walraven, Jeremy Allen

    2005-07-01

    Failure analysis and device characterization of MEMS components are critical steps in understanding the root causes of failure and improving device performance. At the wafer and die level these tasks can be performed with little or no sample preparation. Larger challenges occur after fabrication when the device is packaged, capped, sealed, or otherwise obstructed from view. The challenges and issues of MEMS failure analysis lie in identifying the root cause of failure for these packaged, capped, and sealed devices without perturbing the device or its immediate environment. Novel methods of gaining access to the device or preparing the device for analysis are crucial to accurately determining the root cause of failure. This paper will discuss issues identified in performing root cause failure analysis of packaged MEMS devices, as well as the methods employed to analyze them.

  18. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    PubMed

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-01-01

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084

  19. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    PubMed Central

    Quinchia, Alex G.; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-01-01

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084

  20. An electromechanical actuation system for an expendable launch vehicle

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen

    1992-01-01

    A major effort at the NASA Lewis Research Center in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt ot overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times. At NASA Lewis, we are building on this technology to develop our own in-house system capable of meeting the peak power requirements for an expendable launch vehicle (ELV) such as the Atlas. Our EMA will be capable of delivering 22.4 kW (30 hp) peak power with a nominal of 6.0 kW (8 hp). This system differs from the previous ones in two areas: (1) the use of advanced control methods, and (2) the incorporation of built-in-test. The advanced controls are essential for minimizing the controller size, while the built-in-test is necessary to enhance the system reliability and vehicle health monitoring. The ultimate goal of this program is to demonstrate an EMA which will be capable of self-test and easy integration into other projects. This paper will describe the effort underway at NASA Lewis to develop an EMA for an Atlas class ELV. An explanation will be given for each major technology block, and the status of each major technology block and the status of the overall program will be reported.

  1. MEMS-Based Communications Systems for Space-Based Applications

    NASA Technical Reports Server (NTRS)

    DeLosSantos, Hector J.; Brunner, Robert A.; Lam, Juan F.; Hackett, Le Roy H.; Lohr, Ross F., Jr.; Larson, Lawrence E.; Loo, Robert Y.; Matloubian, Mehran; Tangonan, Gregory L.

    1995-01-01

    As user demand for higher capacity and flexibility in communications satellites increases, new ways to cope with the inherent limitations posed by the prohibitive mass and power consumption, needed to satisfy those requirements, are under investigation. Recent studies suggest that while new satellite architectures are necessary to enable multi-user, multi-data rate, multi-location satellite links, these new architectures will inevitably increase power consumption, and in turn, spacecraft mass, to such an extent that their successful implementation will demand novel lightweight/low power hardware approaches. In this paper, following a brief introduction to the fundamentals of communications satellites, we address the impact of micro-electro-mechanical systems (MEMS) technology, in particular micro-electro-mechanical (MEM) switches to mitigate the above mentioned problems and show that low-loss/wide bandwidth MEM switches will go a long way towards enabling higher capacity and flexibility space-based communications systems.

  2. Failure analysis for micro-electrical-mechanical systems (MEMS)

    SciTech Connect

    Peterson, K.A.; Tangyunyong, P.; Barton, D.L.

    1997-10-01

    Micro-Electrical Mechanical Systems (MEMS) is an emerging technology with demonstrated potential for a wide range of applications including sensors and actuators for medical, industrial, consumer, military, automotive and instrumentation products. Failure analysis (FA) of MEMS is critically needed for the successful design, fabrication, performance analysis and reliability assurance of this new technology. Many devices have been examined using techniques developed for integrated circuit analysis, including optical inspection, scanning laser microscopy (SLM), scanning electron microscopy (SEM), focused ion beam (FIB) techniques, atomic force microscopy (AFM), infrared (IR) microscopy, light emission (LE) microscopy, acoustic microscopy and acoustic emission analysis. For example, the FIB was used to microsection microengines that developed poor performance characteristics. Subsequent SEM analysis clearly demonstrated the absence of wear on gear, hub, and pin joint bearing surfaces, contrary to expectations. Another example involved the use of infrared microscopy for thermal analysis of operating microengines. Hot spots were located, which did not involve the gear or hub, but indicated contact between comb structures which drive microengines. Voltage contrast imaging proved useful on static and operating MEMS in both the SEM and the FIB and identified electrostatic clamping as a potentially significant contributor to failure mechanisms in microengines. This work describes MEMS devices, FA techniques, failure modes, and examples of FA of MEMS.

  3. Coupled MEMS Nuclear Battery and FEEP Thruster System

    NASA Astrophysics Data System (ADS)

    Zillmer, Andrew J.; Santarius, John F.; Blanchard, James P.

    2004-02-01

    This paper describes research on combining a microelectromechanical system (MEMS) nuclear battery with a field-emission electric propulsion (FEEP) thruster, thereby providing potentially attractive solutions to precise satellite stationkeeping and propulsion requirements. The MEMS nuclear battery, under development at the University of Wisconsin, consists of multiple layers of a radioisotope source alternating with pn junction semiconductor energy converters. Many radioisotopes were assessed for this purpose, typically with average beta-particle energies of 50-250 eV, and the beta-emitter Cs-137 tentatively has been identified as most suitable. A slit-style, cesium-propellant FEEP thruster was chosen for the present study because it is a relatively mature technology. For use with a FEEP thruster, many modular MEMS nuclear batteries must be arrayed in series in order to achieve a sufficiently high voltage (~10 kV). Critical issues include achieving an attractively high MEMS nuclear battery efficiency, maximizing the battery's lifetime against radiation damage, producing the relatively high voltage (~10 kV) required for a FEEP thruster, and providing an effective interface between the MEMS nuclear battery modules and the FEEP thruster.

  4. Dynamic simulation of electromechanical systems: from Maxwell's theory to common-rail diesel injection.

    PubMed

    Kurz, S; Becker, U; Maisch, H

    2001-05-01

    This paper describes the state-of-the-art of dynamic simulation of electromechanical systems. Electromechanical systems can be split into electromagnetic and mechanical subsystems, which are described by Maxwell's equations and by Newton's law, respectively. Since such systems contain moving parts, the concepts of Lorentz and Galilean relativity are briefly addressed. The laws of physics are formulated in terms of (partial) differential equations. Numerical methods ultimately aim at linear systems of equations, which can be solved efficiently on digital computers. The various discretization methods for performing this task are discussed. Special emphasis is placed on domain decomposition as a framework for the coupling of different numerical methods such as the finite element method and the boundary element method. The paper concludes with descriptions of some applications of industrial relevance: a high performance injection valve and an electromechanical relay. PMID:11482431

  5. Passive and Active Vibrations Allow Self-Organization in Large-Scale Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Fortuna, Carlo Famoso Luigi; Frasca, Mattia

    2016-06-01

    In this paper, the role of passive and active vibrations for the control of nonlinear large-scale electromechanical systems is investigated. The mathematical model of the system is discussed and detailed experimental results are shown in order to prove that coupling the effects of feedback and vibrations elicited by proper control signals makes possible to regularize imperfect uncertain large-scale systems.

  6. Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.

  7. Energy behavior of an electromechanical system with internal impacts and uncertainties

    NASA Astrophysics Data System (ADS)

    Lima, Roberta; Sampaio, Rubens

    2016-07-01

    This paper analyzes the maximal energy stored in an elastic barrier due to the impacts of a pendulum fitted within a vibro-impact electromechanical system considering the existence of epistemic uncertainties in the system parameters. The vibro-impact electromechanical system is composed of two subsystems. The first subsystem is the electromechanical system composed by a motor, cart and pendulum, and the second is an elastic barrier. The first will be called striker system. The pendulum is fitted within the cart. Its suspension point is fixed in the cart, so that it may exist a relative motion between cart and pendulum. The influence of the DC motor in the dynamic behavior of the pendulum is considered. The coupling between the motor and the cart is made by a scotch yoke mechanism, so that the motor rotational motion is transformed in horizontal cart motion over a rail. The pendulum is modeled as a mathematical pendulum (bar without mass and particle of mass mp at the end). A flexible barrier, placed inside the cart, constrains the pendulum motion. Due to the relative motion between the cart and the pendulum, impacts may occur between these two elements. The objective of the paper is to analyze the energy stored in the barrier due to impacts as a function of some parameters of the electromechanical system from a deterministic and from a stochastic viewpoint. The system is designed as an aid in drilling. The impacts damage or fracture the rock and facilitate the conventional drilling.

  8. Development of Microelectromechanical Systems (MEMS) forceps for intraocular surgery

    PubMed Central

    Bhisitkul, R B; Keller, C G

    2005-01-01

    Aim: To develop silicon microforceps for intraocular surgery using Microelectromechanical Systems (MEMS) technology, the application of microchip fabrication techniques for the production of controllable three dimensional devices on the micrometre scale. Methods: Prototype MEMS forceps were designed and manufactured for intraocular surgery. Scanning electron microscopy was used to evaluate device tip construction. Designs using both thermal expansion actuators and conventional mechanical activation were tested in human cadaver eyes and in vivo rabbit eyes to assess functionality in standard vitreoretinal surgery. Results: MEMS forceps were constructed with various tip designs ranging from 100 μm to 2 mm in length. Scanning electron microscopy confirmed accurate construction of micro features such as forceps teeth as small as tens of micrometres. In surgical testing, the silicon forceps tips were effective in surgical manoeuvres, including grasping retinal membranes and excising tissue. The mechanical actuator design on a 20 gauge handle was more operational in the intraocular environment than the thermal expansion actuator design. While handheld operation was possible, the precision of the forceps was best exploited when mounted on a three axis micromanipulator. Conclusion: MEMS microforceps are feasible for conventional vitreoretinal surgery, and offer advances in terms of small scale, operating precision, and construction tolerance. PMID:16299136

  9. Advanced electro-mechanical micro-shutters for thermal infrared night vision imaging and targeting systems

    NASA Astrophysics Data System (ADS)

    Durfee, David; Johnson, Walter; McLeod, Scott

    2007-04-01

    Un-cooled microbolometer sensors used in modern infrared night vision systems such as driver vehicle enhancement (DVE) or thermal weapons sights (TWS) require a mechanical shutter. Although much consideration is given to the performance requirements of the sensor, supporting electronic components and imaging optics, the shutter technology required to survive in combat is typically the last consideration in the system design. Electro-mechanical shutters used in military IR applications must be reliable in temperature extremes from a low temperature of -40°C to a high temperature of +70°C. They must be extremely light weight while having the ability to withstand the high vibration and shock forces associated with systems mounted in military combat vehicles, weapon telescopic sights, or downed unmanned aerial vehicles (UAV). Electro-mechanical shutters must have minimal power consumption and contain circuitry integrated into the shutter to manage battery power while simultaneously adapting to changes in electrical component operating parameters caused by extreme temperature variations. The technology required to produce a miniature electro-mechanical shutter capable of fitting into a rifle scope with these capabilities requires innovations in mechanical design, material science, and electronics. This paper describes a new, miniature electro-mechanical shutter technology with integrated power management electronics designed for extreme service infra-red night vision systems.

  10. Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors

    PubMed Central

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-01-01

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122

  11. Wearable Wireless Telemetry System for Implantable BioMEMS Sensors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.

    2008-01-01

    Telemetry systems of a type that have been proposed for the monitoring of physiological functions in humans would include the following subsystems: Surgically implanted or ingested units that would comprise combinations of microelectromechanical systems (MEMS)- based sensors [bioMEMS sensors] and passive radio-frequency (RF) readout circuits that would include miniature loop antennas. Compact radio transceiver units integrated into external garments for wirelessly powering and interrogating the implanted or ingested units. The basic principles of operation of these systems are the same as those of the bioMEMS-sensor-unit/external-RFpowering- and-interrogating-unit systems described in "Printed Multi-Turn Loop Antennas for Biotelemetry" (LEW-17879-1) NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48, and in the immediately preceding article, "Hand-Held Units for Short-Range Wireless Biotelemetry" (LEW-17483-1). The differences between what is reported here and what was reported in the cited prior articles lie in proposed design features and a proposed mode of operation. In a specific system of the type now proposed, the sensor unit would comprise mainly a capacitive MEMS pressure sensor located in the annular region of a loop antenna (more specifically, a square spiral inductor/ antenna), all fabricated as an integral unit on a high-resistivity silicon chip. The capacitor electrodes, the spiral inductor/antenna, and the conductor lines interconnecting them would all be made of gold. The dimensions of the sensor unit have been estimated to be about 110.4 mm. The external garment-mounted powering/ interrogating unit would include a multi-turn loop antenna and signal-processing circuits. During operation, this external unit would be positioned in proximity to the implanted or ingested unit to provide for near-field, inductive coupling between the loop antennas, which we have as the primary and secondary windings of an electrical transformer.

  12. Microelectromechanical Systems (MEMS) Actuator for Reconfigurable Patch Antenna Demonstrated

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2001-01-01

    A microstrip patch antenna with two contact actuators along the radiating edges for frequency reconfiguration was demonstrated at K-band frequencies. The layout of the antenna is shown in the following figure. This antenna has the following advantages over conventional semiconductor varactor-diode-tuned patch antennas: 1. By eliminating the semiconductor diode and its nonlinear I-V characteristics, the antenna minimizes intermodulation signal distortion. This is particularly important in digital wireless systems, which are sensitive to intersymbol interference caused by intermodulation products. 2. Because the MEMS actuator is an electrostatic device, it does not draw any current during operation and, hence, requires a negligible amount of power for actuation. This is an important advantage for hand-held, battery-operated, portable wireless systems since the battery does not need to be charged frequently. 3. The MEMS actuator does not require any special epitaxial layers as in the case of diodes and, hence, is cost effective.

  13. Opportunities and challenges for MEMS technology in Army missile systems applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    1999-07-01

    The military market drives the thrust for the development of robust, high performance MicroElectroMechanical Systems (MEMS) devices with applications such as: competent and smart munitions, aircraft and missile autopilots, tactical missile guidance, fire control systems, platform stabilization, smart structures with embedded inertial sensors, missile system health monitoring, aerodynamic flow control, and multiple intelligent small projectiles. Army missile applications will be a fertile market for MEMS products, such as MEMS-based inertial sensors. MEMS technology should significantly enhance performance and provide more robust mission capability in applications where arrays of MEMS devices are required. The Army Aviation and Missile Command Missile Research, Development, and Engineering Center is working diligently with other government agencies, academia, and industry to develop high performing MEMS devices to withstand shock, vibration, temperature, humidity, and long-term storage conditions often encountered by Army missile systems. The goals of the ongoing DARPA MEMS technology programs will meet a significant portion of the Army missile systems requirements. In lieu of presenting an all-inclusive review of Army MEMS applications, this paper addresses a number of opportunities and associated challenges for MEMS systems operating in military environments. Near term applications and the less mature, high-risk applications of MEMS devices are addressed.

  14. 41. View of electro/mechanical fiber optic system panel in transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. View of electro/mechanical fiber optic system panel in transmitter building no. 102. Images projected to screen (panel at upper left) are projected to back side of screen located in MWOC to display changing information. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. Characterization of electromechanical actuator implemented to phase-shift system applied to a Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Barcelata-Pinzon, A.; Meneses Fabian, C.; Juarez-Salazar, R.; Durán-Sánchez, M.; Alvarez-Tamayo, R. I.; Robledo-Sánchez, C. I.; Muñoz-Mata, J. L.; Casco-Vázquez, J. F.

    2016-05-01

    Numerical results are presented to show the characterization of an electromechanical actuator capable to achieve equally spaced phase shifts and fraction linear wavelength displacements aided by an interface and a computational system. Measurements were performed by extracting the phase with consecutive interference patterns obtained in a Michelson arrangement setup. This paper is based in the use of inexpensive resources on stability adverse conditions to achieve similar results to those obtained with high-grade systems.

  16. SOI based electromagnetic MEMS scanners and applications in laser systems

    NASA Astrophysics Data System (ADS)

    Brown, G.; Bauer, R.; Lubeigt, W.; Uttamchandani, D.

    2013-03-01

    MEMS scanners are of interest for their potential as low-cost, low operating power devices for use in various photonic systems. The devices reported here are actuated by the electromagnetic force between a static external magnetic field and a current flowing through an SOI MEMS scanner. These scanners have several modes of operation: their mirrors may be rotated and maintained at a static angle (up to +/- 1.4 degrees), scanned rapidly (up to 500 Hz); or may be operated in a resonance mode, at the device's mechanical resonance frequency (~1.2 kHz) for higher rate scanning. The use of these scanners as a Q-switching element within a Nd:YAG laser cavity has been demonstrated. Pulse durations of 400 ns were obtained with a pulse energy of 58 μJ and a pulse peak power of 145 W. The use of an external magnetic field, generated by compact rare-earth magnets, allows a simple and cost-effective commercial fabrication process to be employed (the multi-user SOI process provided by MEMSCAP Inc) and avoids the requirement to deposit magnetic materials on the MEMS structure.

  17. Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Zhao, Shuang-Shuang; Sun, Bao-Ping; Zhang, Wen-Ming

    2014-09-01

    Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.

  18. MEMS Louvers for Thermal Control

    NASA Technical Reports Server (NTRS)

    Champion, J. L.; Osiander, R.; Darrin, M. A. Garrison; Swanson, T. D.

    1998-01-01

    Mechanical louvers have frequently been used for spacecraft and instrument thermal control purposes. These devices typically consist of parallel or radial vanes, which can be opened or closed to vary the effective emissivity of the underlying surface. This project demonstrates the feasibility of using Micro-Electromechanical Systems (MEMS) technology to miniaturize louvers for such purposes. This concept offers the possibility of substituting the smaller, lighter weight, more rugged, and less costly MEMS devices for such mechanical louvers. In effect, a smart skin that self adjusts in response to environmental influences could be developed composed of arrays of thousands of miniaturized louvers. Several orders of magnitude size, weight, and volume decreases are potentially achieved using micro-electromechanical techniques. The use of this technology offers substantial benefits in spacecraft/instrument design, integration and testing, and flight operations. It will be particularly beneficial for the emerging smaller spacecraft and instruments of the future. In addition, this MEMS thermal louver technology can form the basis for related spacecraft instrument applications. The specific goal of this effort was to develop a preliminary MEMS device capable of modulating the effective emissivity of radiators on spacecraft. The concept pursued uses hinged panels, or louvers, in a manner such that heat emitted from the radiators is a function of louver angle. An electrostatic comb drive or other such actuator can control the louver position. The initial design calls for the louvers to be gold coated while the underlying surface is of high emissivity. Since, the base MEMS material, silicon, is transparent in the InfraRed (IR) spectrum, the device has a minimum emissivity when closed and a maximum emissivity when open. An initial set of polysilicon louver devices was designed at the Johns Hopkins Applied Physics Laboratory in conjunction with the Thermal Engineering Branch at

  19. Development of a MEMS acoustic emission sensor system

    NASA Astrophysics Data System (ADS)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first

  20. Designing MEMS for manufacturing

    NASA Astrophysics Data System (ADS)

    Wolter, Alexander; Herrmann, Andreas; Yildiz, Goekhan; Schenk, Harald; Lakner, Hubert

    2004-10-01

    MEMS (micro electro-mechanical systems) are often expected to take a development as microelectronics did in the last 35 years. Several devices are already established in mass markets like acceleration sensors, gyros, pressure sensors, ink jet heads and the DLP micromirror array. On the other hand many companies have stopped their business after the telecom bubble. Others are struggling. Many dreams based on MEMS-devices that were not at all mature and could not be manufactured in high numbers. When a commercial product is the goal, several questions must be answered already in concept phase. The specifications must clearly reflect the requirements of the application. Performance and price must be competitive to any other technology. The relation between fabrication process and design is strong and mutual. The process must create all features of the device and the design must consider the limitations of the process. Only if the design is tolerant against all process variations reproducible performance can be achieved. And only if the design is robust in all process steps the devices can survive. Regarding the time and cost frame it is always preferable to change the layout rather than the process. This article looks at MEMS technology and identifies what has been adopted from CMOS, what is desirable to adopt and what needs new solutions. Examples are given in the fields of design, modeling layout, process, test, and packaging.

  1. Issues on utility management simulation system for miscellaneous airborne electromechanical devices

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Liu, Qiaozhen; Wang, Zhanlin

    2006-11-01

    UMS for miscellaneous airborne electromechanical devices is the part and parcel of VMS. The object of utility management is airborne electromechanical devices which ensure that air engine, avionics and other systems work in order. This paper works over several items about UMS by introducing advanced simulation and its correlative technologies. Firstly, message transmission software of 1553B bus is designed and the bus characteristics are tested. Also, the problem of time synchronization is solved by testing network delay. Secondly, in order to obtain high performance of distributed process ability, heuristic job dispatching algorithm and hydrodynamic load balancing strategy are adopted, which solve the static job dispatch and dynamic job scheduling respectively. The hydrodynamic load balancing strategy is aiming to fulfill the resources usage in the whole system and accomplishes best resources sharing. Thirdly, this paper establishes and realizes the demo environment for visual simulation of the electromechanical subsystems. Adopting tree-mode during the software design makes the system scalable and reconstruction. As multithreading synchronization is resolved, real-time performance of simulation. is ensured during.

  2. Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries

    SciTech Connect

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  3. Promising future energy storage systems: Nanomaterial based systems, Zn-air, and electromechanical batteries

    NASA Astrophysics Data System (ADS)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  4. Polymer waveguide cointegration with microelectromechanical systems (MEMS) for integrated optical metrology

    NASA Astrophysics Data System (ADS)

    Brown, Kolin S.; Taylor, B. J.; Dawson, Jeremy M.; Hornak, Lawrence A.

    1998-03-01

    The merging of Microelectromechanical (MEM) devices and optics to create Microoptoelectromechanical (MOEM) systems provides opportunity to create new devices and to expand the functionality and applications of MEMS technology. Planar optical waveguide co-integration with surface micromachined (SMM) structures and inclusion of diffractive optical systems within 3D MEMS chip stack architectures have the potential to enable integrated optical test, metrology, and state feedback functions for complex MEM systems. This paper presents the results of research developing a fabrication process for co-integrating polymer optical waveguides with prefabricated MEMS devices. Multimode air superstrate rectangular optical waveguides have been fabricated using Ultradel optical polyimides over unreleased MEMS dice fabricated using the MultiUser MEMS Process Service (MUMPS) SMM process. These structures serve as the basic building block for exploration of guided wave integrated optical metrology functions for MEMS. Specially designed `split- comb' linear resonator devices enabling coupling of waveguide output to the resonator stage for position measurement are one class of a set of prototype MEMS function MUMPS testbeds under development for both guidance and evaluation of waveguide and free-space IOM efforts. Recently initiated work analytically and experimentally evaluating through-wafer free-space micro-optical systems for IOM will also be outlined.

  5. Modelling, Simulation, Animation, and Real-Time Control (Mosart) for a Class of Electromechanical Systems: A System-Theoretic Approach

    ERIC Educational Resources Information Center

    Rodriguez, Armando A.; Metzger, Richard P.; Cifdaloz, Oguzhan; Dhirasakdanon, Thanate; Welfert, Bruno

    2004-01-01

    This paper describes an interactive modelling, simulation, animation, and real-time control (MoSART) environment for a class of 'cart-pendulum' electromechanical systems that may be used to enhance learning within differential equations and linear algebra classes. The environment is useful for conveying fundamental mathematical/systems concepts…

  6. A MEMS-based miniature DNA analysis system

    SciTech Connect

    Northrup, M.A.; Gonzalez, C.; Hadley, D.

    1995-04-25

    We detail the design and development of a miniature thermal cycling instrument for performing the polymerase chain reaction (PCR) that uses microfabricated, silicon-based reaction chambers. The MEMS-based, battery-operated instrument shows significant improvements over commercial thermal cycling instrumentation. Several different biological systems have been amplified and verified with the miniature PCR instrument including the Human Immunodeficiency Virus; both cloned and genomic DNA templates of {beta} globin; and the genetic disease, Cystic Fibrosis from human DNA. The miniaturization of a PCR thermal cycler is the initial module of a fully-integrated portable, low-power, rapid, and highly efficient bioanalytical instrument.

  7. MEMS- and NEMS-based smart devices and systems

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2001-11-01

    The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sized now don at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: 1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic an micro molding techniques; 2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; 3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; 4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sensing and control of a variety functions in automobile, aerospace, marine and civil

  8. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  9. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2010-12-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  10. Microelectromechanical Systems (MEMS) Broadband Light Source Developed

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    2003-01-01

    A miniature, low-power broadband light source has been developed for aerospace applications, including calibrating spectrometers and powering miniature optical sensors. The initial motivation for this research was based on flight tests of a Fabry-Perot fiberoptic temperature sensor system used to detect aircraft engine exhaust gas temperature. Although the feasibility of the sensor system was proven, the commercial light source optically powering the device was identified as a critical component requiring improvement. Problems with the light source included a long stabilization time (approximately 1 hr), a large amount of heat generation, and a large input electrical power (6.5 W). Thus, we developed a new light source to enable the use of broadband optical sensors in aerospace applications. Semiconductor chip-based light sources, such as lasers and light-emitting diodes, have a relatively narrow range of emission wavelengths in comparison to incandescent sources. Incandescent light sources emit broadband radiation from visible to infrared wavelengths; the intensity at each wavelength is determined by the filament temperature and the materials chosen for the filament and the lamp window. However, present commercial incandescent light sources are large in size and inefficient, requiring several watts of electrical power to obtain the desired optical power, and they emit a large percentage of the input power as heat that must be dissipated. The miniature light source, developed jointly by the NASA Glenn Research Center, the Jet Propulsion Laboratory, and the Lighting Innovations Institute, requires one-fifth the electrical input power of some commercial light sources, while providing similar output light power that is easily coupled to an optical fiber. Furthermore, it is small, rugged, and lightweight. Microfabrication technology was used to reduce the size, weight, power consumption, and potential cost-parameters critical to future aerospace applications. This chip

  11. Electromechanical control of flat optical devices

    NASA Astrophysics Data System (ADS)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Capasso, Federico; Lopez, Daniel

    In the recent times flat optical elements, like lenses and beam deflectors, have come to the forefront of scientific research. These devices, also referred to as ``metasurfaces'', use metal or dielectric resonators, arbitrarily spaced with subwavelength resolution on a two dimensional plane, to mimic the phase profile of any conventional bulk optical device and beyond. Such metasurface-based planar devices are compact and lightweight compared to their conventional bulky counterparts. However, most of these nanostructured devices have so far been passive. In this work we introduce an important concept of actively controlling these flat optical devices. A prototype: an electromechanically controlled plasmonic flat lens focusing mid infrared signal in reflection will be presented. The lens is fabricated on a 2.8 micron thin membrane following photolithography processes and integrated with a micro electromechanical system (MEMS) device. When electrostatically actuated, the MEMS platform controls the mechanical tilt angle of the lens along two orthogonal axes by about 16 degrees that in turn controls the scanning of the focal spot. Such actively controlled miniaturized optical devices promise to provide faster, more efficient and often enhanced functionalities.

  12. Design of MEMS accelerometer based acceleration measurement system for automobiles

    NASA Astrophysics Data System (ADS)

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  13. Ultra-Precise Assembly of Micro-Electromechanical Systems (MEMS) Components

    SciTech Connect

    Feddema, J.T.; Simon, R.; Polosky, M.; Christenson, T.

    1999-04-01

    This report summarizes a three year effort to develop an automated microassembly workcell for the assembly of LIGA (Lithography Galvonoforming Abforming) parts. Over the last several years, Sandia has developed processes for producing surface machined silicon and LIGA parts for use in weapons surety devices. Some of these parts have outside dimensions as small as 100 micron, and most all have submicron tolerances. Parts this small and precise are extremely difficult to assembly by hand. Therefore, in this project, we investigated the technologies required to develop a robotic workcell to assembly these parts. In particular, we concentrated on micro-grippers, visual servoing, micro-assembly planning, and parallel assembly. Three different micro-grippers were tested: a pneumatic probe, a thermally actuated polysilicon tweezer, and a LIGA fabricated tweezer. Visual servoing was used to accuracy position two parts relative to one another. Fourier optics methods were used to generate synthetic microscope images from CAD drawings. These synthetic images are used off-line to test image processing routines under varying magnifications and depths of field. They also provide reference image features which are used to visually servo the part to the desired position. We also investigated a new aspect of fine motion planning for the micro-domain. As parts approach 1-10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. We developed the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool. Finally, we implemented and tested the ability to assemble an array of LIGA parts attached to two 3 inch diameter wafers. In this way, hundreds of parts can be assembled in parallel rather than assembling each part individually.

  14. An implantable pressure sensing system with electromechanical interrogation scheme.

    PubMed

    Kim, Albert; Powell, C R; Ziaie, Babak

    2014-07-01

    In this paper, we report on the development of an implantable pressure sensing system that is powered by mechanical vibrations in the audible acoustic frequency range. This technique significantly enhances interrogation range, alleviates the misalignment issues commonly encountered with inductive powering, and simplifies the external receiver circuitry. The interrogation scheme consists of two phases: a mechanical vibration phase and an electrical radiation phase. During the first phase, a piezoelectric cantilever acts as an acoustic receiver and charges a capacitor by converting sound vibration harmonics occurring at its resonant frequency into electrical power. In the subsequent electrical phase, when the cantilever is not vibrating, the stored electric charge is discharged across an LC tank whose inductor is pressure sensitive; hence, when the LC tank oscillates at its natural resonant frequency, it radiates a high-frequency signal that is detectable using an external receiver and its frequency corresponds to the measured pressure. The pressure sensitive inductor consists of a planar coil (single loop of wire) with a ferrite core whose distance to the coil varies with applied pressure. A prototype of the implantable pressure sensor is fabricated and tested, both in vitro and in vivo (swine bladder). A pressure sensitivity of 1 kHz/cm H2O is achieved with minimal misalignment sensitivity (26% drop at 90° misalignment between the implanted device and acoustic source; 60% drop at 90° misalignment between the implanted device and RF receiver coil). PMID:24800754

  15. Self-transducing silicon nanowire electromechanical systems at room temperature.

    PubMed

    He, Rongrui; Feng, X L; Roukes, M L; Yang, Peidong

    2008-06-01

    Electronic readout of the motions of genuinely nanoscale mechanical devices at room temperature imposes an important challenge for the integration and application of nanoelectromechanical systems (NEMS). Here, we report the first experiments on piezoresistively transduced very high frequency Si nanowire (SiNW) resonators with on-chip electronic actuation at room temperature. We have demonstrated that, for very thin (~90 nm down to ~30 nm) SiNWs, their time-varying strain can be exploited for self-transducing the devices' resonant motions at frequencies as high as approximately 100 MHz. The strain of wire elongation, which is only second-order in doubly clamped structures, enables efficient displacement transducer because of the enhanced piezoresistance effect in these SiNWs. This intrinsically integrated transducer is uniquely suited for a class of very thin wires and beams where metallization and multilayer complex patterning on devices become impractical. The 30 nm thin SiNW NEMS offer exceptional mass sensitivities in the subzeptogram range. This demonstration makes it promising to advance toward NEMS sensors based on ultrathin and even molecular-scale SiNWs, and their monolithic integration with microelectronics on the same chip. PMID:18481896

  16. High-speed MEMS swept-wavelength light source for FBG sensor system

    NASA Astrophysics Data System (ADS)

    Saitoh, Takanori; Nakamura, Kenichi; Takahashi, Yoshifumi; Miyagi, Koichiro

    2005-05-01

    A high-speed MEMS swept-wavelength light source (SLS) for an FBG sensor system is proposed and demonstrated. It is basically a multi-mode external-cavity laser diode (LD), and consists mainly of an LD head, diffraction grating, and electromagnetically actuated MEMS scanning mirror. It has a linewidth of 0.03 nm, scan range from 1508 to 1582 nm, scan rate of 0.57 ms and output power of 10 mW. The heart of the MEMS SLS is the MEMS scanning mirror (8 x 6 mm) that changes the oscillation wavelength continuously and rapidly. The scanning mirror is actuated by electromagnetic force derived from a permalloy piece glued on the back of the mirror and a C-shape electromagnet. The MEMS SLS allows construction of a low-cost, simple and high-speed FBG interrogator system.

  17. An electro-mechanical periodic system with piezoelectric transducers and coupled circuitry: dynamic analysis and applications

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, J.

    2010-04-01

    In this paper, we integrate piezoelectric transducers and coupled circuitry, which themselves form an electrical periodic system, onto a mechanical structure to form an electro-mechanical periodic system. The overall dynamics of the electro-mechanical system can thus be altered by tuning the electrical parameters. A transfer-matrix-based modeling technique is adopted in the dynamic analysis, where each element is represented by two state vectors at its both ends with a transfer matrix relating them. As the transfer matrix has the advantage on describing harmonic motions within the element, the global analysis can be facilitated given the repetitive nature of periodic systems. Numerical simulations are conducted to demonstrate the characteristics of wave propagation and attenuation in terms of propagation constants. Effects of each tunable parameter are also discussed through detailed parametric analysis. The proposed system can be tailored to various engineering needs. One example is adaptive vibration isolation with tunable effective frequency range. Another example is vibration energy harvesting through the piezoelectric transducers and circuitry.

  18. Summary of Field Measurement on UF6 Cylinders Using Electro-Mechanically Cooled Systems

    SciTech Connect

    McGinnis, Brent R; Smith, Steven E; Solodov, Alexander A; Whitaker, J Michael; Morgan, James B; MayerII, Richard L.; Montgomery, J. Brent

    2009-01-01

    Measurement of the enrichment of solid state UF6 stored within large metal cylinders is a task commonly performed by plant operators and inspectors. The measurement technologies typically used range from low-resolution, high-efficiency sodium iodide detectors to high-resolution, moderate-efficiency high-purity germanium (HPGe) detectors. The technology used and methods deployed are dependent upon the material being measured, environmental conditions, time constraints, and measurement-precision requirements. Operators and inspectors typically use specially designed, HPGe detectors that are cooled with liquid nitrogen in situations where high-resolution measurements are required. However, the requirement for periodically refilling the system with liquid nitrogen makes remote usage cumbersome and slow. The task of cooling the detector reduces the available time for the inspector to perform other safeguards activities while on site. If the inspector has to reduce the count time for each selected cylinder to ensure that all preselected cylinders are measured during the inspection, the resulting measurement uncertainties may be increased, making it more difficult to detect and verify potential discrepancies in the operator's declarations. However, recent advances in electromechanically cooled HPGe detectors may provide the inspector with an improved verification tool by eliminating the need for liquid nitrogen. This report provides a summary of test results for field measurements performed using electromechanically cooled HPGe detectors on depleted, natural, and low-enriched uranium cylinders. The results of the study provide valuable information to inspectors and operators regarding the capabilities and limitations of electromechanically cooled systems based on true field-measurement conditions.

  19. MEMS (Micro-Electro-Mechanical Systems) for Automotive and Consumer Electronics

    NASA Astrophysics Data System (ADS)

    Marek, Jiri; Gómez, Udo-Martin

    MEMS sensors gained over the last two decades an impressive width of applications: (a) ESP: A car is skidding and stabilizes itself without driver intervention (b) Free-fall detection: A laptop falls to the floor and protects the hard drive by parking the read/write drive head automatically before impact. (c) Airbag: An airbag fires before the driver/occupant involved in an impending automotive crash impacts the steering wheel, thereby significantly reducing physical injury risk. MEMS sensors are sensing the environmental conditions and are giving input to electronic control systems. These crucial MEMS sensors are making system reactions to human needs more intelligent, precise, and at much faster reaction rates than humanly possible. Important prerequisites for the success of sensors are their size, functionality, power consumption, and costs. This technical progress in sensor development is realized by micro-machining. The development of these processes was the breakthrough to industrial mass-production for micro-electro-mechanical systems (MEMS). Besides leading-edge micromechanical processes, innovative and robust ASIC designs, thorough simulations of the electrical and mechanical behaviour, a deep understanding of the interactions (mainly over temperature and lifetime) of the package and the mechanical structures are needed. This was achieved over the last 20 years by intense and successful development activities combined with the experience of volume production of billions of sensors. This chapter gives an overview of current MEMS technology, its applications and the market share. The MEMS processes are described, and the challenges of MEMS, compared to standard IC fabrication, are discussed. The evolution of MEMS requirements is presented, and a short survey of MEMS applications is shown. Concepts of newest inertial sensors for ESP-systems are given with an emphasis on the design concepts of the sensing element and the evaluation circuit for achieving

  20. Carbon material based microelectromechanical system (MEMS): Fabrication and devices

    NASA Astrophysics Data System (ADS)

    Xu, Wenjun

    This PhD dissertation presents the exploration and development of two carbon materials, carbon nanotubes (CNTs) and carbon fiber (CF), as either key functional components or unconventional substrates for a variety of MEMS applications. Their performance in three different types of MEMS devices, namely, strain/stress sensors, vibration-powered generators and fiber solar cells, were evaluated and the working mechanisms of these two non-traditional materials in these systems were discussed. The work may potentially enable the development of new types of carbon-MEMS devices. Carbon nanotubes were selected from the carbon family due to several advantageous characteristics that this nanomaterial offers. They carry extremely high mechanical strength (Ey=1TPa), superior electrical properties (current density of 4x109 A/cm2), exceptional piezoresistivity (G=2900), and unique spatial format (high aspect ratio hollow nanocylinder), among other properties. If properly utilized, all these merits can give rise to a variety of new types of carbon nanotube based micro- and nanoelectronics that can greatly fulfill the need for the next generation of faster, smaller and better devices. However, before these functions can be fully realized, one substantial issue to cope with is how to implement CNTs into these systems in an effective and controllable fashion. Challenges associated with CNTs integration include very poor dispersibility in solvents, lack of melting/sublimation point, and unfavorable rheology with regard to mixing and processing highly viscous, CNT-loaded polymer solutions. These issues hinder the practical progress of CNTs both in a lab scale and in the industrial level. To this end, a MEMS-assisted electrophoretic deposition technique was developed, aiming to achieve controlled integration of CNT into both conventional and flexible microsystems at room temperature with a relatively high throughput. MEMS technology has demonstrated strong capability in developing

  1. Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Zhao, Shuang-Shuang; Wang, Zhao-Long; Li, Hai-Bin

    2015-01-01

    The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value. A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results. Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).

  2. Wearable Wireless Telemetry System for Implantable Bio-MEMS Sensors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.

    2006-01-01

    In this paper, a telemetry and contact-less powering system consisting of an implantable bio-MEMS sensor with a miniature printed square spiral chip antenna and an external wearable garment with printed loop antenna is investigated. The wearable garment pick-up antenna and the implantable chip antenna are in close proximity to each other and hence couple inductively through their near-fields and behave as the primary and the secondary circuits of a transformer, respectively. The numerical and experimental results are graphically presented, and include the design parameter values as a function of the geometry, the relative RF magnetic near-field intensity as a function of the distance and angle, and the current density on the strip conductors, for the implantable chip antenna.

  3. Wearable wireless telemetry system for implantable bio-MEMS sensors.

    PubMed

    Simons, Rainee N; Miranda, Félix A; Wilson, Jeffrey D; Simons, Renita E

    2006-01-01

    In this paper, a telemetry and contact-less powering system consisting of an implantable bio-MEMS sensor with a miniature printed square spiral chip antenna and an external wearable garment with printed loop antenna is investigated. The implantable chip antenna and the wearable garment pick-up antenna are in close proximity to each other and hence couple inductively through their near-fields and behave as the primary and the secondary circuits of a transformer, respectively. The numerical and experimental results are graphically presented, and include the design parameter values as a function of the geometry and the relative magnetic near-field intensity as a function of the angle, for the implantable chip antenna. PMID:17946365

  4. An electromechanical material testing system for in situ electron microscopy and applications

    PubMed Central

    Zhu, Yong; Espinosa, Horacio D.

    2005-01-01

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution. This achievement was made possible by the integration of electromechanical and thermomechanical components based on microelectromechanical system technology. The system capabilities are demonstrated by the in situ EM testing of free-standing polysilicon films, metallic nanowires, and carbon nanotubes. In particular, a previously undescribed real-time instrumented in situ transmission EM observation of carbon nanotubes failure under tensile load is presented here. PMID:16195381

  5. Secure optical communication system utilizing deformable MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Ziph-Schatzberg, Leah; Bifano, Thomas; Cornelissen, Steven; Stewart, Jason; Bleier, Zvi

    2009-02-01

    An optical communication system suitable for voice, data retrieval from remote sensors and identification is described. The system design allows operation at ranges of several hundred meters. The heart of the system is a modulated MEMS mirror that is electrostatically actuated and changes between a flat reflective state and a corrugated diffractive state. A process for mass producing these mirrors at low cost was developed and is described. The mirror was incorporated as a facet in a hollow retro-reflector, allowing temporal modulation of an interrogating beam and the return of the modulated beam to the interrogator. This system thus consists of a low power, small and light communication node with large (about 60°) angular extent. The system's range and pointing are determined by the interrogator /detector/demodulator (Transceiver) unit. The transceiver is comprised of an optical channel to establish line of sight communication, an interrogating laser at 1550nm, an avalanche photo diode to detect the return signal and electronics to drive the laser and demodulate the detected signal and convert it to an audio signal. A functional prototype system was built using a modified compact optical sight as the transceiver. Voice communication in free space was demonstrated. The design and test of major components and the complete system are discussed.

  6. Self-oscillations in an electromechanical system with a field emitter

    NASA Astrophysics Data System (ADS)

    Kleshch, V. I.; Obraztsov, A. N.; Obraztsova, E. D.

    2009-11-01

    Electromechanical oscillations have been detected in a system consisting of a vacuum diode with a field cathode made of single-walled carbon nanotubes. As a dc voltage between such a cathode and an anode is applied, stable mechanical oscillations are observed along with oscillations of the self-sustained emission current. An empirical model of this phenomenon is proposed. It is described with a system of one-dimensional equations of mechanical motion and electrical processes in the system. An analysis of these equations is performed and a qualitative consistency of theoretical and experimental results is demonstrated. It is proved that the observed phenomenon is common for all systems with field nanoemitters. The suggested mechanism of the excitation of the self-sustained oscillations can be used to explain the experimentally observed features of such nanoemitters.

  7. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.

    PubMed

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566

  8. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Karapetian, Edgar; Mirman, B; Eliseev, E. A.; Morozovska, A. N.

    2007-01-01

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  9. MEMS based pumped liquid cooling systems for micro/nano spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; Shakkottai, P.; Sur, T. W

    2001-01-01

    The objective is to develop MEMS based pumped liquid cooling system for removing over 20 W/cm squared from high power density microelectronics and science payloads considered for future micro/nano sciencecraft.

  10. Reliability Testing Procedure for MEMS IMUs Applied to Vibrating Environments

    PubMed Central

    De Pasquale, Giorgio; Somà, Aurelio

    2010-01-01

    The diffusion of micro electro-mechanical systems (MEMS) technology applied to navigation systems is rapidly increasing, but currently, there is a lack of knowledge about the reliability of this typology of devices, representing a serious limitation to their use in aerospace vehicles and other fields with medium and high requirements. In this paper, a reliability testing procedure for inertial sensors and inertial measurement units (IMU) based on MEMS for applications in vibrating environments is presented. The sensing performances were evaluated in terms of signal accuracy, systematic errors, and accidental errors; the actual working conditions were simulated by means of an accelerated dynamic excitation. A commercial MEMS-based IMU was analyzed to validate the proposed procedure. The main weaknesses of the system have been localized by providing important information about the relationship between the reliability levels of the system and individual components. PMID:22315550

  11. MEMS Microshutter Array System for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Adachi, Tomoko; Allen, Christine; Babu, Sachi; Bajikar, Sateesh; Beamesderfer, Michael; Bradley, Ruth; Denis, Kevin; Costen, Nick; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jackson, Kamili; Jhabvala, Murzy; Kelly, Dan; King, Todd; Kletetschka, Gunther; Kutyrev, Alexander; Lynch, Barney; Miller, Timothy; Moseley, Harvey; Mikula, Vilem; Mott. Brent; Oh, Lance

    2008-01-01

    A complex MEMS microshutter array system has been developed at NASA Goddard Space Flight Center (GSFC) for use as a multi-object aperture array for a Near-Infrared Spectrometer (NIRSpec). The NIRSpec is one of the four major instruments carried by the James Webb Space Telescope (JWST), the next generation of space telescope after the Hubble Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light with high efficiency and high contrast. It is demonstrated in Figure 1 how a MSA is used as a multiple object selector in deep space. The MSAs empower the NIRSpec instrument simultaneously collect spectra from more than 100 targets therefore increases the instrument efficiency 100 times or more. The MSA assembly is one of three major innovations on JWST and the first major MEMS devices serving observation missions in space. The MSA system developed at NASA GSFC is assembled with four quadrant fully addressable 365x171 shutter arrays that are actuated magnetically, latched and addressed electrostatically. As shown in Figure 2, each MSA is fabricated out of a 4' silicon-on-insulator (SOI) wafer using MEMS bulk-micromachining technology. Individual shutters are close-packed silicon nitride membranes with a pixel size close to 100x200 pm (Figure 3). Shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. In order to prevent light leak, light shields are made on to the surrounding frame of each shutter to cover the gaps between the shutters and the Game (Figure 4). Micro-ribs and sub-micron bumps are tailored on hack walls and light shields, respectively, to prevent sticktion, shown in Figures 4 and 5. JWST instruments are required to operate at cryogenic temperatures as low as 35K, though they are to be subjected to various levels of ground tests at room temperature. The shutters should therefore maintain nearly flat in the entire temperature range

  12. An integrated thermal compensation system for MEMS inertial sensors.

    PubMed

    Chiu, Sheng-Ren; Teng, Li-Tao; Chao, Jen-Wei; Sue, Chung-Yang; Lin, Chih-Hsiou; Chen, Hong-Ren; Su, Yan-Kuin

    2014-01-01

    An active thermal compensation system for a low temperature-bias-drift (TBD) MEMS-based gyroscope is proposed in this study. First, a micro-gyroscope is fabricated by a high-aspect-ratio silicon-on-glass (SOG) process and vacuum packaged by glass frit bonding. Moreover, a drive/readout ASIC, implemented by the 0.25 µm 1P5M standard CMOS process, is designed and integrated with the gyroscope by directly wire bonding. Then, since the temperature effect is one of the critical issues in the high performance gyroscope applications, the temperature-dependent characteristics of the micro-gyroscope are discussed. Furthermore, to compensate the TBD of the micro-gyroscope, a thermal compensation system is proposed and integrated in the aforementioned ASIC to actively tune the parameters in the digital trimming mechanism, which is designed in the readout ASIC. Finally, some experimental results demonstrate that the TBD of the micro-gyroscope can be compensated effectively by the proposed compensation system. PMID:24599191

  13. MEMS CHIP CO2 SENSOR FOR BUILDING SYSTEMS INTEGRATION

    SciTech Connect

    Anton Carl Greenwald

    2005-09-14

    The objective of this research was to develop an affordable, reliable sensor to enable demand controlled ventilation (DCV). A significant portion of total energy consumption in the United States is used for heating or air conditioning (HVAC) buildings. To assure occupant safety and fresh air levels in large buildings, and especially those with sealed windows, HVAC systems are frequently run in excess of true requirements as automated systems cannot now tell the occupancy level of interior spaces. If such a sensor (e.g. thermostat sized device) were available, it would reduce energy use between 10 and 20% in such buildings. A quantitative measure of ''fresh air'' is the concentration of carbon dioxide (CO{sub 2}) present. An inert gas, CO{sub 2} is not easily detected by chemical sensors and is usually measured by infrared spectroscopy. Ion Optics research developed a complete infrared sensor package on a single MEMS chip. It contains the infrared (IR) source, IR detector and IR filter. The device resulting from this DOE sponsored research has sufficient sensitivity, lifetime, and drift rate to meet the specifications of commercial instrument manufacturers who are now testing the device for use in their building systems.

  14. An Integrated Thermal Compensation System for MEMS Inertial Sensors

    PubMed Central

    Chiu, Sheng-Ren; Teng, Li-Tao; Chao, Jen-Wei; Sue, Chung-Yang; Lin, Chih-Hsiou; Chen, Hong-Ren; Su, Yan-Kuin

    2014-01-01

    An active thermal compensation system for a low temperature-bias-drift (TBD) MEMS-based gyroscope is proposed in this study. First, a micro-gyroscope is fabricated by a high-aspect-ratio silicon-on-glass (SOG) process and vacuum packaged by glass frit bonding. Moreover, a drive/readout ASIC, implemented by the 0.25 μm 1P5M standard CMOS process, is designed and integrated with the gyroscope by directly wire bonding. Then, since the temperature effect is one of the critical issues in the high performance gyroscope applications, the temperature-dependent characteristics of the micro-gyroscope are discussed. Furthermore, to compensate the TBD of the micro-gyroscope, a thermal compensation system is proposed and integrated in the aforementioned ASIC to actively tune the parameters in the digital trimming mechanism, which is designed in the readout ASIC. Finally, some experimental results demonstrate that the TBD of the micro-gyroscope can be compensated effectively by the proposed compensation system. PMID:24599191

  15. Optical detection system for MEMS-type pressure sensor

    NASA Astrophysics Data System (ADS)

    Sareło, K.; Górecka-Drzazga, A.; Dziuban, J. A.

    2015-07-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm3) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment.

  16. MEMS compatible illumination and imaging micro-optical systems

    NASA Astrophysics Data System (ADS)

    Bräuer, A.; Dannberg, P.; Duparré, J.; Höfer, B.; Schreiber, P.; Scholles, M.

    2007-01-01

    The development of new MOEMS demands for cooperation between researchers in micromechanics, optoelectronics and microoptics at a very early state. Additionally, microoptical technologies being compatible with structured silicon have to be developed. The microoptical technologies used for two silicon based microsystems are described in the paper. First, a very small scanning laser projector with a volume of less than 2 cm 3, which operates with a directly modulated lasers collimated with a microlens, is shown. The laser radiation illuminates a 2D-MEMS scanning mirror. The optical design is optimized for high resolution (VGA). Thermomechanical stability is realized by design and using a structured ceramics motherboard. Secondly, an ultrathin CMOS-camera having an insect inspired imaging system has been realized. It is the first experimental realization of an artificial compound eye. Micro-optical design principles and technology is used. The overall thickness of the imaging system is only 320 μm, the diagonal field of view is 21°, and the f-number is 2.6. The monolithic device consists of an UV-replicated microlens array upon a thin silica substrate with a pinhole array in a metal layer on the back side. The pitch of the pinholes differs from that of the lens array to provide individual viewing angle for each channel. The imaging chip is directly glued to a CMOS sensor with adapted pitch. The whole camera is less than 1mm thick. New packaging methods for these systems are under development.

  17. Development of a MEMS electrostatic condenser lens array for nc-Si surface electron emitters of the Massive Parallel Electron Beam Direct-Write system

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Ikegami, N.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Yoshida, S.; Totsu, K.; Koshida, N.; Esashi, M.

    2016-03-01

    Developments of a Micro Electro-Mechanical System (MEMS) electrostatic Condenser Lens Array (CLA) for a Massively Parallel Electron Beam Direct Write (MPEBDW) lithography system are described. The CLA converges parallel electron beams for fine patterning. The structure of the CLA was designed on a basis of analysis by a finite element method (FEM) simulation. The lens was fabricated with precise machining and assembled with a nanocrystalline silicon (nc-Si) electron emitter array as an electron source of MPEBDW. The nc-Si electron emitter has the advantage that a vertical-emitted surface electron beam can be obtained without any extractor electrodes. FEM simulation of electron optics characteristics showed that the size of the electron beam emitted from the electron emitter was reduced to 15% by a radial direction, and the divergence angle is reduced to 1/18.

  18. Technical Challenges in Reliable Microelectronics Packaging of Microelectromechanical Systems (MEMS) for Space Applications

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2000-01-01

    MEMS have shown a significant promise in the last decade for a variety of applications such as air-bag, pressure sensors, accelerometer, microgyro, chemical sensors, artificial nose, etc. Standard semiconductor microelectronics packaging needs the integrated circuits (IC) to be protected from the harsh environment, and provide electrical communication with the other parts of the circuit, facilitate thermal dissipation efficiently, and impart mechanical strength to the silicon die. Microelectronics packaging involves wafer dicing, bonding, lead attachment, encapsulation to protect from the environment, electrical integrity, and package leak tests to assure the reliable IC packaging technology. Active elements or microstructures in MEMS devices often interfaces with the hostile environment where packaging leak tests and testing of such devices using chemical and mechanical parameters will be very difficult and expensive. Packaging of MEMS is significantly complex as they serve to protect from the environment and microstructures interact with the same environment to measure or affect the desired physical or chemical parameters. The most of the silicon circuitry is sensitive to temperature, moisture, magnetic field, light, and electromagnetic interference. The package must then protect the on-board silicon circuitry while simultaneously exposing the microsensor to the effect it measures to assure the packaging technology of MEMS. MEMS technology has a major application in developing a microspacecraft for space systems provided reliability of MEMS packaging technology is sufficiently addressed. This MEMS technology would eventually miniaturize many of the components of the spacecraft to reach the NASA's goal by building faster, cheaper, better, smaller spacecraft to explore the space more effectively. This paper discusses the latest developments in the MEMS technology and challenging technical issues in the packaging of hermetically sealed and non-hermetically sealed

  19. Performance of a MEMS-base Adaptive Optics Optical Coherency Tomography System

    SciTech Connect

    Evans, J; Zadwadzki, R J; Jones, S; Olivier, S; Opkpodu, S; Werner, J S

    2008-01-16

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  20. A High-order Eulerian-Lagrangian Finite Element Method for Coupled Electro-mechanical Systems

    NASA Astrophysics Data System (ADS)

    Brandstetter, Gerd

    The main focus of this work is on the development of a high-order Eulerian-Lagrangian finite element method for the simulation of electro-mechanical systems. The coupled problem is solved by a staggered scheme, where the mechanical motion is discretized by standard Lagrangian finite elements, and the electrical field is solved on a fixed Eulerian grid with embedded boundary conditions. Traditional Lagrangian-Lagrangian or arbitrary Lagrangian-Eulerian (ALE) methods encounter deficiencies, for example, when dealing with mesh distortion due to large deformations, or topology changes due to contacting bodies. The presented Eulerian-Lagrangian approach addresses these issues in a natural way. Within this context we develop a high-order immersed boundary discontinuous-Galerkin (IB-DG) method, which is shown to be necessary for (i) the accurate representation of the electrical gradient along nonlinear boundary features such as singular corners, and (ii) to achieve full convergence during the iterative global solution. We develop an implicit scheme based on the mid-point rule, as well as an explicit scheme based on the centered-difference method, with the incorporation of energy conserving, frictionless contact algorithms for an elastic-to-rigid-surface contact. The performance of the proposed method is assessed for several benchmark tests: the electro-static force vector around a singular corner, the quasi-static pull-in of an electro-mechanically actuated switch, the excitation of a carbon nanotube at resonance, and the cyclic impact simulation of a micro-electro-mechanical resonant-switch. We report improved accuracy for the high-order method as compared to low-order methods, and linear convergence in the iterative solution of the staggered scheme. Additionally, we investigate a Newton-Krylov shooting scheme in order to directly find cyclic steady states of electro-mechanical devices excited at resonance-- as opposed to a naive time-stepping from zero initial

  1. An Integrated MEMS Sensor Cluster System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Kahng, Seun; Scott, Michael A.; Beeler, George B.; Bartlett, James E.; Collins, Richard S.

    2000-01-01

    Efforts to reduce viscous drag on airfoils could results in a considerable saving for the operation of flight vehicles including those of space transportation. This reduction of viscous drag effort requires measurement and active control of boundary layer flow property on an airfoil. Measurement of viscous drag of the boundary layer flow over an airfoil with minimal flow disturbance is achievable with newly developed MEMS sensor clusters. These sensor clusters provide information that can be used to actively control actuators to obtain desired flow properties or design a vehicle to satisfy particular boundary layer flow criteria. A series of MEMS sensor clusters has been developed with a data acquisition and control module for local measurements of shear stress, pressure, and temperature on an airfoil. The sensor cluster consists of two shear stress sensors, two pressure sensors, and two temperature sensors on a surface area of 1.24 mm x 1.86 mm. Each sensor is 300 microns square and is placed on a flexible polyimide sheet. The shear stress sensor is a polysilicon hot-film resistor, which is insulated by a vacuum cavity of 200 x 200 x 2 microns. The pressure sensors are silicon piezoresistive type, and the temperature sensors are also hot film polysilicon resistors. The total size of the cluster including sensors and electrical leads is 1 Omm x 1 Omm x 0.1 mm. A typical sensitivity of shear stress sensor is 150 mV/Pascal, the pressure sensors are an absolute type with a measurement range from 9 to 36 psia with 0.8mV/V/psi sensitivity, and the temperature sensors have a measurement resolution of 0.1 degree C. The sensor clusters are interfaced to a data acquisition and control module that consists of two custom ASICs (Application Specific Integrated Circuits) and a micro-controller. The data acquisition and control module transfers data to a host PC that configures and controls a total of three sensor clusters. Functionality of the entire system has been tested in

  2. Electromechanical Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 25 units to consider for use in a tech prep competency profile for the occupation of electromechanical technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and…

  3. Electromechanical cryocooler

    DOEpatents

    Neufeld, Kenneth W.

    1996-01-01

    An electromechanical cryocooler is disclosed for substantially reducing vibrations caused by the cooler. The direction of the force of the vibrations is measured and a counterforce sufficient to substantially reduce this vibration is calculated and generated. The counterforce is 180.degree. out of phase with the direction of the force of the vibrations.

  4. Electromechanical cryocooler

    DOEpatents

    Neufeld, K.W.

    1996-12-10

    An electromechanical cryocooler is disclosed for substantially reducing vibrations caused by the cooler. The direction of the force of the vibrations is measured and a counterforce sufficient to substantially reduce this vibration is calculated and generated. The counterforce is 180{degree} out of phase with the direction of the force of the vibrations. 3 figs.

  5. Giant Magnetoresistive (GMR) Sensor Microelectromechanical System (MEMS) Device

    NASA Technical Reports Server (NTRS)

    Ramesham, R.

    1999-01-01

    The measurement of acceleration has been accomplished using several technologies in high-reliability applications such as guidance control, detonation, and shock/vibration measurement. Electromechanical, piezoelectric, piezoresistive, and capacitive acceleration sensors are available and the literature pertinent to giant magnetoresistive sensors (GMR) for the above applications are scanty.

  6. Three Cavity Tunable MEMS Fabry Perot Interferometer

    PubMed Central

    Parashar, Avinash; Shah, Ankur; Packirisamy, Muthukumaran; Sivakumar, Narayanswamy

    2007-01-01

    In this paper a four-mirror tunable micro electro-mechanical systems (MEMS) Fabry Perot Interferometer (FPI) concept is proposed with the mathematical model. The spectral range of the proposed FPI lies in the infrared spectrum ranging from 2400 to 4018 (nm). FPI can be finely tuned by deflecting the two middle mirrors (or by changing the three cavity lengths). Two different cases were separately considered for the tuning. In case one, tuning was achieved by deflecting mirror 2 only and in case two, both mirrors 2 and 3 were deflected for the tuning of the FPI.

  7. Mem-PHybrid: hybrid features-based prediction system for classifying membrane protein types.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2012-05-01

    Membrane proteins are a major class of proteins and encoded by approximately 20% to 30% of genes in most organisms. In this work, a two-layer novel membrane protein prediction system, called Mem-PHybrid, is proposed. It is able to first identify the protein query as a membrane or nonmembrane protein. In the second level, it further identifies the type of membrane protein. The proposed Mem-PHybrid prediction system is based on hybrid features, whereby a fusion of both the physicochemical and split amino acid composition-based features is performed. This enables the proposed Mem-PHybrid to exploit the discrimination capabilities of both types of feature extraction strategy. In addition, minimum redundancy and maximum relevance has also been applied to reduce the dimensionality of a feature vector. We employ random forest, evidence-theoretic K-nearest neighbor, and support vector machine (SVM) as classifiers and analyze their performance on two datasets. SVM using hybrid features yields the highest accuracy of 89.6% and 97.3% on dataset1 and 91.5% and 95.5% on dataset2 for jackknife and independent dataset tests, respectively. The enhanced prediction performance of Mem-PHybrid is largely attributed to the exploitation of the discrimination power of the hybrid features and of the learning capability of SVM. Mem-PHybrid is accessible at http://www.111.68.99.218/Mem-PHybrid. PMID:22342883

  8. Micro-electro-mechanical systems (MEMS) for enzymatic detection

    NASA Astrophysics Data System (ADS)

    Jeetender, Amritsar; Packirisamy, Muthukumaran; Stiharu, Ion G.; Balagopal, Ganesharam

    2004-08-01

    Early enzymatic identification and confirmation is essential for diagnosis and prevention as in the case of Acute Myocardial Infarction (AMI). Biochemical markers continue to be an important clinical tool for the enzymatic detection. The advent of MEMS devices can enable the use of various microstructures for the detection of enzymes. In this study, the concept of MEMS is applied for the detection of enzyme reaction, in which microcantilevers undergo changes in mechanical behavior that can be optically detected when enzyme molecules adsorb on their surface. This paper presents the static behavior of microcantilevers under Horse Radish Peroxide (HRP) enzyme reaction. The reported experimental results provide valuable information that will be useful in the development of MEMS sensors for enzymatic detection. The surface stress produced due to enzyme reactions results in the bending of cantilevers as similar to the influencing of thermal stress in the cantilevers. This paper also reports the influence of thermal gradient on the microcantilevers.

  9. System and method of active vibration control for an electro-mechanically cooled device

    DOEpatents

    Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.

    2000-01-01

    A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

  10. Electromechanical systems with transient high power response operating from a resonant AC link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).

  11. Softening and Hardening of a Micro-electro-mechanical systems (MEMS) Oscillator in a Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Johnson, Sarah; Edmonds, Terrence

    Micro-electro-mechanical systems or MEMS are used in a variety of today's technology and can be modeled using equations for nonlinear damped harmonic oscillators. Mathematical expressions have been formulated to determine resonance frequency shifts as a result of hardening and softening effects in MEMS devices. In this work we experimentally test the previous theoretical analysis of MEMS resonance frequency shifts in the nonlinear regime. Devices were put under low pressure at room temperature and swept through a range of frequencies with varying AC and DC excitation voltages to detect shifts in the resonant frequency. The MEMS device studied in this work exhibits a dominating spring softening effect due to the device's physical make-up. The softening effect becomes very dominant as the AC excitation is increased and the frequency shift of the resonance peak becomes quite significant at these larger excitations. Hardening effects are heavily dependent on mechanical factors that make up the MEMS devices. But they are not present in these MEMS devices. I will present our results along with the theoretical analysis of the Duffing oscillator model. This work was supported by NSF grant DMR-1461019 (REU) and DMR-1205891 (YL).

  12. Electro-Mechanical Actuators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The electro-mechanical actuator, a new electronics technology, is an electronic system that provides the force needed to move valves that control the flow of propellant to the engine. It is proving to be advantageous for the main propulsion system plarned for a second generation reusable launch vehicle. Hydraulic actuators have been used successfully in rocket propulsion systems. However, they can leak when high pressure is exerted on such a fluid-filled hydraulic system. Also, hydraulic systems require significant maintenance and support equipment. The electro-mechanical actuator is proving to be low maintenance and the system weighs less than a hydraulic system. The electronic controller is a separate unit powering the actuator. Each actuator has its own control box. If a problem is detected, it can be replaced by simply removing one defective unit. The hydraulic systems must sustain significant hydraulic pressures in a rocket engine regardless of demand. The electro-mechanical actuator utilizes power only when needed. A goal of the Second Generation Reusable Launch Vehicle Program is to substantially improve safety and reliability while reducing the high cost of space travel. The electro-mechanical actuator was developed by the Propulsion Projects Office of the Second Generation Reusable Launch Vehicle Program at the Marshall Space Flight Center.

  13. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system.

    PubMed

    Rouxinol, F; Hao, Y; Brito, F; Caldeira, A O; Irish, E K; LaHaye, M D

    2016-09-01

    Experiments to probe the basic quantum properties of motional degrees of freedom of mechanical systems have developed rapidly over the last decade. One promising approach is to use hybrid electromechanical systems incorporating superconducting qubits and microwave circuitry. However, a critical challenge facing the development of these systems is to achieve strong coupling between mechanics and qubits while simultaneously reducing coupling of both the qubit and mechanical mode to the environment. Here we report measurements of a qubit-coupled mechanical resonator system consisting of an ultra-high-frequency nanoresonator and a long coherence-time superconducting transmon qubit, embedded in a superconducting coplanar waveguide cavity. It is demonstrated that the nanoresonator and transmon have commensurate energies and transmon coherence times are one order of magnitude larger than for all previously reported qubit-coupled nanoresonators. Moreover, we show that numerical simulations of this new hybrid quantum system are in good agreement with spectroscopic measurements and suggest that the nanoresonator in our device resides at low thermal occupation number, near its ground state, acting as a dissipative bath seen by the qubit. We also outline how this system could soon be developed as a platform for implementing more advanced experiments with direct relevance to quantum information processing and quantum thermodynamics, including the study of nanoresonator quantum noise properties, reservoir engineering, and nanomechanical quantum state generation and detection. PMID:27483428

  14. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system

    NASA Astrophysics Data System (ADS)

    Rouxinol, F.; Hao, Y.; Brito, F.; Caldeira, A. O.; Irish, E. K.; LaHaye, M. D.

    2016-09-01

    Experiments to probe the basic quantum properties of motional degrees of freedom of mechanical systems have developed rapidly over the last decade. One promising approach is to use hybrid electromechanical systems incorporating superconducting qubits and microwave circuitry. However, a critical challenge facing the development of these systems is to achieve strong coupling between mechanics and qubits while simultaneously reducing coupling of both the qubit and mechanical mode to the environment. Here we report measurements of a qubit-coupled mechanical resonator system consisting of an ultra-high-frequency nanoresonator and a long coherence-time superconducting transmon qubit, embedded in a superconducting coplanar waveguide cavity. It is demonstrated that the nanoresonator and transmon have commensurate energies and transmon coherence times are one order of magnitude larger than for all previously reported qubit-coupled nanoresonators. Moreover, we show that numerical simulations of this new hybrid quantum system are in good agreement with spectroscopic measurements and suggest that the nanoresonator in our device resides at low thermal occupation number, near its ground state, acting as a dissipative bath seen by the qubit. We also outline how this system could soon be developed as a platform for implementing more advanced experiments with direct relevance to quantum information processing and quantum thermodynamics, including the study of nanoresonator quantum noise properties, reservoir engineering, and nanomechanical quantum state generation and detection.

  15. Wireless Remote Weather Monitoring System Based on MEMS Technologies

    PubMed Central

    Ma, Rong-Hua; Wang, Yu-Hsiang; Lee, Chia-Yen

    2011-01-01

    This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS) and wireless sensor network (WSN) technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC). Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance) value of 8.2 × 10−4 (°C−1). The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10−2 (Ω/kPa). The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH) at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10−2, 9.2 × 10−2, 9.7 × 10−2 (Ω/ms−1) with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction. PMID:22163762

  16. Wireless remote weather monitoring system based on MEMS technologies.

    PubMed

    Ma, Rong-Hua; Wang, Yu-Hsiang; Lee, Chia-Yen

    2011-01-01

    This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS) and wireless sensor network (WSN) technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC). Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance) value of 8.2 × 10(-4) (°C(-1)). The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10(-2) (Ω/kPa). The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH) at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10(-2), 9.2 × 10(-2), 9.7 × 10(-2) (Ω/ms(-1)) with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction. PMID:22163762

  17. Electromechanical simulation and test of rotating systems with magnetic bearing or piezoelectric actuator active vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Tang, Punan; Kim, Chaesil; Manchala, Daniel; Barrett, Tim; Kascak, Albert F.; Brown, Gerald; Montague, Gerald; Dirusso, Eliseo; Klusman, Steve

    1994-01-01

    This paper contains a summary of the experience of the authors in the field of electromechanical modeling for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control are discussed.

  18. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  19. Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  20. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  1. BurstMem: A High-Performance Burst Buffer System for Scientific Applications

    SciTech Connect

    Wang, Teng; Oral, H Sarp; Wang, Yandong; Settlemyer, Bradley W; Atchley, Scott; Yu, Weikuan

    2014-01-01

    The growth of computing power on large-scale sys- tems requires commensurate high-bandwidth I/O system. Many parallel file systems are designed to provide fast sustainable I/O in response to applications soaring requirements. To meet this need, a novel system is imperative to temporarily buffer the bursty I/O and gradually flush datasets to long-term parallel file systems. In this paper, we introduce the design of BurstMem, a high- performance burst buffer system. BurstMem provides a storage framework with efficient storage and communication manage- ment strategies. Our experiments demonstrate that BurstMem is able to speed up the I/O performance of scientific applications by up to 8.5 on leadership computer systems.

  2. MEMS and nanotechnology research for the electronics industry

    NASA Astrophysics Data System (ADS)

    Pak, Y. Eugene

    2001-08-01

    The 20th Century has witnessed breathtaking developments in the miniaturization and the large-scale integration of microelectronic devices that have had an enormous impact on human affairs. The same miniaturization paradigm can be applied to mechanical devices using MEMS technology leading to ultra small micromachines that cannot otherwise be fabricated using conventional machining and assembly techniques. The MEMS technology is expected to have a great impact in the 21st century by enabling many complex electromechanical systems to be fabricated and integrated. In this paper, applications of MEMS to many areas relating to information and biotechnology are discussed. These topics are presented in the context of ongoing research at the Samsung Advanced Institute of Technology (SAIT). SAIT is the central research laboratory for the Samsung Corporation whose charter is to develop breakthrough technologies to be the leader in the 21st century.

  3. MEMS inertial sensors for load monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Cooperman, Aubryn M.; Martinez, Marcias J.

    2015-03-01

    Structural load monitoring of wind turbines is becoming increasingly important due increasing turbine size and offshore deployment. Rotor blades are key components that can be monitored by continuously measuring their deflection and thereby determining strain and loads on the blades. In this paper, a method is investigated for monitoring blade deformation that utilizes micro-electromechanical systems (MEMS) comprising triaxial accelerometers, magnetometers and gyroscopes. This approach is demonstrated using a cantilever beam instrumented with 5 MEMS and 4 strain gauges. The measured changes in angles obtained from the MEMS are used to determine a deformation surface which is used as an input to a finite element model in order to estimate the strain throughout the beam. The results are then verified by comparison with strain gauge measurements.

  4. RF Telemetry System for an Implantable Bio-MEMS Sensor

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Hall, David G.; Miranda, Felix A.

    2004-01-01

    In this paper, a novel miniature inductor and a pick-up antenna for contact less powering and RF telemetry from implantable bio-MEMS sensors are presented. The design of the inductor and the pick-up antenna are discussed. In addition, the measured characteristics at the design frequency of 330 MHz have been shown.

  5. Fabrication and Characterization of Carbon MEMS Fractal Electrodes

    NASA Astrophysics Data System (ADS)

    Lala, Varun Deepak

    Micro-Electro-Mechanical Systems (MEMS) is a technology that can be defined as microfabricated mechanical and electro-mechanical elements (i.e., devices and structures). Over the past several decades MEMS researchers and developers have demonstrated an extremely large number of applications such as Microsensors, Microactuators, Accelerometers, Micromirrors etc. Silicon is by-far the most preferred material of choice to build MEMS. However, Silicon does fall short in applications that involve harsh environments and areas such as biological, chemical MEMS sensing etc. This is where Carbon scores over Silicon because of its advantageous properties like better polymerization, wide electrochemical stability window, biocompatibility etc. The present work starts by introducing the basic techniques used to fabricate Carbon-MEMS. Processes are then explained to produce different types C-MEMS electrodes which can be further developed into novel biosensors, microbattery etc. The main aim of this study was to compare the different types of C-MEMS electrodes and conclude which type would be the best to further develop applications from. Application such as a micro-battery requires electrodes to have high surface area as more the surface area, more is the charge stored. For an application such as biosensors, surface area of the electrode affects the sensitivity and accurateness of the sensor. Thus an electrode with high surface area is always desirable. In this work, different C-MEMS electrodes having fractal structures were fabricated and compared for their surface area. The C-MEMS electrodes were characterized using Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Brunauer-Emmett-Teller (BET) technique. It was found that the sample Carbonized RF gel with Long carbon fibers had the largest surface area out of all the different types.

  6. Design of virtual display and testing system for moving mass electromechanical actuator

    NASA Astrophysics Data System (ADS)

    Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng

    2015-12-01

    Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.

  7. Simulation of an Electromechanical Spin Motor System of a Control Moment Gyroscope

    NASA Technical Reports Server (NTRS)

    Inampudi, Ravi; Gordeuk, John

    2016-01-01

    A two-phase brushless DC motor (BDCM) with pulse-width modulated (PWM) voltage drive is simulated to control the flywheel speed of a control moment gyroscope (CMG). An overview of a double-gimballed control moment gyroscope (DGCMG) assembly is presented along with the CMG torque effects on the spacecraft. The operating principles of a two-phase brushless DC motor are presented and the system's electro-mechanical equations of motion are developed for the root-mean-square (RMS) currents and wheel speed. It is shown that the system is an extremely "stiff" set of first-order equations for which an implicit Euler integrator is required for a stable solution. An adaptive proportional voltage controller is presented which adjusts the PWM voltages depending on several control modes for speed, current, and torque. The simulation results illustrate the interaction between the electrical system and the load dynamics and how these influence the overall performance of the system. As will be shown, the CMG spin motor model can directly provide electrical power use and thermal power output to spacecraft subsystems for effective (average) calculations of CMG power consumption.

  8. U.S. Army Corrosion Office's storage and quality requirements for military MEMS program

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III; Skelton, D. R.

    2007-04-01

    As the Army transforms into a more lethal, lighter and agile force, the technologies that support these systems must decrease in size while increasing in intelligence. Micro-electromechanical systems (MEMS) are one such technology that the Army and DOD will rely on heavily to accomplish these objectives. Conditions for utilization of MEMS by the military are unique. Operational and storage environments for the military are significantly different than those found in the commercial sector. Issues unique to the military include; high G-forces during gun launch, extreme temperature and humidity ranges, extended periods of inactivity (20 years plus) and interaction with explosives and propellants. The military operational environments in which MEMS will be stored or required to function are extreme and far surpass any commercial operating conditions. Security and encryption are a must for all MEMS communication, tracking, or data reporting devices employed by the military. Current and future military applications of MEMS devices include safety and arming devices, fuzing devices, various guidance systems, sensors/detectors, inertial measurement units, tracking devices, radio frequency devices, wireless Radio Frequency Identifications (RFIDs) and network systems, GPS's, radar systems, mobile base systems and information technology. MEMS embedded into these weapons systems will provide the military with new levels of speed, awareness, lethality, and information dissemination. The system capabilities enhanced by MEMS will translate directly into tactical and strategic military advantages.

  9. Robust design optimization with an uncertain model of a nonlinear vibro-impact electro-mechanical system

    NASA Astrophysics Data System (ADS)

    Lima, Roberta; Soize, Christian; Sampaio, Rubens

    2015-06-01

    In this paper, the robust design with an uncertain model of a vibro-impact electro-mechanical system is done. The electro-mechanical system is composed of a cart, whose motion is excited by a DC motor (motor with continuous current), and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring component and by a linear damper, so that a relative motion exists between them. A linear flexible barrier, placed outside of the cart, constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts can occur between these two elements. The developed model of the system takes into account the influence of the DC motor in the dynamic behavior of the system. Some system parameters are uncertain, such as the stiffness and the damping coefficients of the flexible barrier. The objective of the paper is to perform an optimization of this electro-mechanical system with respect to design parameters (spring component, and barrier g) in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. This optimization is formulated in the framework of robust design due to the presence of uncertainties in the model. The set of nonlinear equations are presented, and an adapted time domain solver is developed. The stochastic nonlinear constrained design optimization problem is solved for different levels of uncertainties, and also for the deterministic case.

  10. Characteristics and performance of MEMS accelerometers

    SciTech Connect

    Kant, R.A.; Nagel, D.J.

    1996-04-01

    Until recently, accelerometer manufacturing appeared to be a reasonably mature field. But, this situation changed rapidly when researchers began to build miniature accelerometers using micron scale lithographic techniques developed for producing integrated circuits. Several micro- electro-mechanical systems (MEMS) accelerometers are now available commercially. The MEMS devices are attractive because they are relatively inexpensive to produce and they include electronic circuits to perform a variety control and signal processing functions on the same chip. How does the performance of these new devices compare to their older and larger competitors? The physics of the scaling laws suggests that performance should decrease with size. The MEMS technology may be well positioned to take advantage of new, small-scale sensing and actuating methods and, in the process, MEMS fabricated accelerometers may avoid or overcome the engineering limitations of older generation devices by using high precision micro-machining, arrays of sensors, on-chip temperature control circuitry, etc. This study compares the performance and physical characteristics of micro-machined and conventional accelerometers. We review the physical operating principles and describe the basic scaling laws and other factors that ultimately limit accelerometer performance. Then we tabulate and discuss the current performance and characteristics of diverse types of commercial accelerometers. {copyright} {ital 1996 American Institute of Physics.}

  11. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  12. Mechanically tunable strain fields in suspended graphene by micro electromechanical systems

    NASA Astrophysics Data System (ADS)

    Khodkov, Tymofiy; Goldsche, Matthias; Sonntag, Jens; Reichardt, Sven; Verbiest, Gerard; Trellenkamp, Stephan; Stampfer, Christoph

    The discovery of graphene triggered an enormous interest on the class of two-dimensional (2D) materials. 2D materials manifested high sensitivity of their thermal, optical or electric response to applied tensile stress. Therefore, a rigorous and systematic investigation of their mechanical properties is extremely important. On the example of graphene - a top candidate for future flexible electronic devices and sensors - we demonstrate fully controlled and restorable realization of various strain fields in 2D membranes by coupling them to Si-based electrostatic micro-actuators (comb-drives). The comb-drive actuators are capable to provide significant forces and they are made of highly-doped silicon, i.e. they can be operated down to cryogenic temperatures allowing the investigation of quantum effects in electromechanical systems. Using confocal Raman spectroscopy we characterize strain distribution in suspended mono- and bilayer graphene sheets under induced tension (up to 0.5%). A detailed analysis clearly show that graphene samples reproducibly experience strain in different directions only while applying voltages to the micro-actuator. This approach empowers accurate tuning of applied tension in any isolated 2D materials independent on other crucial parameters.

  13. MEMS high-speed angular-position sensing system with rf wireless transmission

    NASA Astrophysics Data System (ADS)

    Sun, Winston; Li, Wen J.

    2001-08-01

    A novel surface-micromachined non-contact high-speed angular-position sensor with total surface area under 4mm2 was developed using the Multi-User MEMS Processes (MUMPs) and integrated with a commercial RF transmitter at 433MHz carrier frequency for wireless signal detection. Currently, a 2.3 MHz internal clock of our data acquisition system and a sensor design with a 13mg seismic mass is sufficient to provide visual observation of a clear sinusoidal response wirelessly generated by the piezoresistive angular-position sensing system within speed range of 180 rpm to around 1000 rpm. Experimental results showed that the oscillation frequency and amplitude are related to the input angular frequency of the rotation disk and the tilt angle of the rotation axis, respectively. These important results could provide groundwork for MEMS researchers to estimate how gravity influences structural properties of MEMS devices under different circumstances.

  14. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    PubMed Central

    Sabato, Alessandro; Feng, Maria Q.

    2014-01-01

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003

  15. Guide to the Marine Education Materials System (MEMS). Educational Series No. 22.

    ERIC Educational Resources Information Center

    Gammisch, Susan C.; Lanier, James A.

    This guidebook has been prepared to orient persons wishing to use the Marine Education Materials System (MEMS), a project supported by the Office of Sea Grant, National Oceanic and Atmospheric Administration (NOAA), Department of Commerce. Entries to the system were compiled by the education staff of the Virginia Institute of Marine Science.…

  16. Miniaturization of components and systems for space using MEMS-technology

    NASA Astrophysics Data System (ADS)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  17. Reliability of MEMS deformable mirror technology used in adaptive optics imaging systems

    NASA Astrophysics Data System (ADS)

    Hartzell, Allyson L.; Cornelissen, Steven A.; Bierden, Paul A.; Lam, Charlie V.; Davis, Daniel F.

    2010-02-01

    Deformable mirror (DM) technology based on microelectromechanical systems (MEMS) technology produced by Boston Micromachines Corporation has been demonstrated to be an enabling component in a variety of adaptive optics applications such as high contrast imaging in astronomy, multi object adaptive optics, free-space laser communication, and microscopy. Many of these applications require DMs with thousands of actuators operating at frame rates up to 10 kHz for many years requiring sufficient device reliability to avoid device failures. In this paper we present improvements in MEMS deformable mirrors for reliability along with test data and device lifetime prediction that show trillions of actuator-cycles can be achieved without failures.

  18. Performance interface document for users of Tracking and Data Relay Satellite System (TDRSS) electromechanically steered antenna systems (EMSAS)

    NASA Technical Reports Server (NTRS)

    Hockensmith, R.; Devine, E.; Digiacomo, M.; Hager, F.; Moss, R.

    1983-01-01

    Satellites that use the NASA Tracking and Data Relay Satellite System (TDRSS) require antennas that are crucial for performing and achieving reliable TDRSS link performance at the desired data rate. Technical guidelines are presented to assist the prospective TDRSS medium-and high-data rate user in selecting and procuring a viable, steerable high-gain antenna system. Topics addressed include the antenna gain/transmitter power/data rate relationship; Earth power flux-density limitations; electromechanical requirements dictated by the small beam widths, desired angular coverage, and minimal torque disturbance to the spacecraft; weight and moment considerations; mechanical, electrical and thermal interfaces; design lifetime failure modes; and handling and storage. Proven designs are cited and space-qualified assemblies and components are identified.

  19. Assessment and Assurance of Microelectronics Packaging Technology of Microelectromechanical Systems (MEMS)

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2000-01-01

    Microelectromechanical systems (MEMS) have shown a significant promise in the last decade for a variety of applications such as air-bag, pressure sensors, accelerometer, microgyro, etc. Standard semiconductor microelectronics packaging needs the integrated circuits to be protected from the harsh environment, and provide electrical communication with the other parts of the circuit, facilitate thermal dissipation efficiently, and impart mechanical strength to the silicon die. Microelectronics packaging involves wafer dicing, bonding, lead attachment, encapsulation to protect from the environment, electrical integrity, and package leak tests to assure the packaging technology. In the case of MEMS the microstructures (active elements) often interfaces with the hostile environment where packaging leak tests and testing of such devices using chemical and mechanical parameters will be very difficult and expensive. Packaging of MEMS is significantly complex as they serve to protect from the environment and microstructures interact with the same environment to measure or affect the desired physical or chemical parameters. The most of the silicon circuitry is sensitive to temperature, moisture, magnetic field, light, and electromagnetic interference. The package must then protect the on-board silicon circuitry while simultaneously exposing the microsensor to the effect it 'measures to assure the MEMS technology by lowering the risk to zero. MEMS technology has a major application in developing a microspacecraft for space systems provided assurance of MEMS technology is sufficiently addressed nondestructively. This technology would eventually miniaturize many of the components of the spacecraft to reach the NASA's safety and mission assurance goal by building faster, cheaper, better, smaller spacecraft to explore the space more effectively by teaming-up with the other NASA centers using the limited resources available. This paper discusses the latest developments in the MEMS

  20. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  1. Robust and versatile software system for optimal design of MEMS structures

    NASA Astrophysics Data System (ADS)

    Kwak, Byung M.; Lee, Sang H.; Huh, Jae S.

    2000-04-01

    A CAD-integrated total design system for MEMS is developed which can perform analysis and design for mechanical performance of a MEMS structure. The software works in a parametric CAD platform and makes users to do from CAD modeling and analysis to design optimization. Basic philosophy is to assure robustness, versatility and user friendliness. To satisfy these requirements; 1) Design variables are selectable directly form CAD model, 2) Commercial codes are utilized as many as available, and 3) Design sensitivity analysis must be simple and robust. Commercial finite element codes and some newly developed modules are integrated in the system for analysis. For design sensitivity analysis, two approaches were implemented: finite difference method and the Taguchi method. The approximate methods adopted seem to be simple and robust, which can be applied to design of complex practical structures. The design sensitivity analysis by finite difference method, with nonlinear programming and trade-off study, gives satisfactory results. The Taguchi method module is integrated for robust optimal design of MEMS structure. Although it is not meant to find the exact optimum point, it is applicable to practical problems where performance characteristics are hard to evaluate, since this does not require any derivative information. Two examples are taken to examine performance of the developed design tool and proposed methodology. It relieves much of the difficulties often met in conventional design works and has shown practicability for structural design of MEMS.

  2. MEMS/NEMS Devices and Applications

    NASA Astrophysics Data System (ADS)

    Young, Darrin J.; Zorman, Christian A.; Mehregany, Mehran

    Microelectromechanical Systems (MEMS) have played key roles in many important areas, for example transportation, communication, automated manufacturing, environmental monitoring, health care, defense systems, and a wide range of consumer products. MEMS are inherently small, thus offering attractive characteristics such as reduced size, weight, and power dissipation and improved speed and precision compared to their macroscopic counterparts. Integrated circuits (IC) fabrication technology has been the primary enabling technology for MEMS besides a few special etching, bonding and assembly techniques. Microfabrication provides a powerful tool for batch processing and miniaturization of electromechanical devices and systems into a dimensional scale, which is not achievable by conventional machining techniques. As IC fabrication technology continues to scale toward deep sub-micron and nano-meter feature sizes, a variety of nanoelectromechanical systems (NEMS) can be envisioned in the foreseeable future. Nano-scale mechanical devices and systems integrated with nanoelectronics will open a vast number of new exploratory research areas in science and engineering. NEMS will most likely serve as an enabling technology merging engineering with the life sciences in ways that are not currently feasible with the micro-scale tools and technologies. MEMS has been applied to a wide range of fields. Over hundreds of micro-devices have been developed for specific applications. It is thus difficult to provide an overview covering every aspect of the topic. In this chapter, key aspects of MEMS technology and application impacts are illustrated through selecting a few demonstrative device examples, which consist of pressure sensors, inertial sensors, optical and wireless communication devices. Microstructure examples with dimensions on the order of sub-micron are presented with fabrication technologies for future NEMS applications. Although MEMS has experienced significant growth over

  3. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon

    2009-01-01

    Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.

  4. Angle extended linear MEMS scanning system for 3D laser vision sensor

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua

    2016-09-01

    Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.

  5. CFD-ACE+: a CAD system for simulation and modeling of MEMS

    NASA Astrophysics Data System (ADS)

    Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha

    1999-03-01

    Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS

  6. Multi-Axis Independent Electromechanical Load Control for Docking System Actuation Development and Verification Using dSPACE

    NASA Technical Reports Server (NTRS)

    Oesch, Christopher; Dick, Brandon; Rupp, Timothy

    2015-01-01

    The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).

  7. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems

    PubMed Central

    Tian, Jing; Yang, Wenshu; Peng, Zhenming; Tang, Tao; Li, Zhijun

    2016-01-01

    In a charge-coupled device (CCD)-based fast steering mirror (FSM) tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs) are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM) to realize the stabilization of the line-of-sight (LOS) of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system. PMID:27023557

  8. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems.

    PubMed

    Tian, Jing; Yang, Wenshu; Peng, Zhenming; Tang, Tao; Li, Zhijun

    2016-01-01

    In a charge-coupled device (CCD)-based fast steering mirror (FSM) tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs) are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM) to realize the stabilization of the line-of-sight (LOS) of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system. PMID:27023557

  9. A MEMS-fluxgate-based sensing system for the detection of Dynabeads

    NASA Astrophysics Data System (ADS)

    Lei, Jian; Lei, Chong; Wang, Tao; Yang, Zhen; Zhou, Yong

    2013-09-01

    In this paper, a microfluxgate sensor was introduced into the application of magnetic bead detection. Micro-electro-mechanical systems (MEMS) technology was used to realize the microfluxgate sensor. Making use of the superparamagnetic property that micron-sized magnetic beads can be magnetized in a magnetic field, a magnetic bead detection system based on this microfluxgate sensor was designed and established. Dynabeads obtained by purchase were diluted to different concentrations to characterize the detection performance of the system. Experimental results show that by applying a dc magnetic field in the range of 0.54 to 1.05 mT, Dynabeads with a concentration as low as 9000 beads ml-1 can be detected by the system. Furthermore, from the results, each sample can be clearly distinguished from the others, which prove that the detection system has the ability to make rough estimates to the concentrations of Dynabeads. The MEMS-fluxgate-based detection system possesses many advantages, such as a low minimum detectable limit, small size, light weight and compatibility with microelectronic technology. Moreover, a MEMS microfluxgate sensor can be made into an array for the synchronous detection of multi-target biomolecules and is very suitable for integration with interface circuits.

  10. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS).

    SciTech Connect

    Cox, James V.; Candelaria, Sam A.; Dugger, Michael Thomas; Duesterhaus, Michelle Ann; Tanner, Danelle Mary; Timpe, Shannon J.; Ohlhausen, James Anthony; Skousen, Troy J.; Jenkins, Mark W.; Jokiel, Bernhard, Jr.; Walraven, Jeremy Allen; Parson, Ted Blair

    2006-06-01

    Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or

  11. The application of multilayer elastic beam in MEMS safe and arming system

    SciTech Connect

    Li, Guozhong Shi, Gengchen; Sui, Li; Yi, Futing; Wang, Bo

    2015-07-15

    In this paper, a new approach for a multilayer elastic beam to provide a driving force and driving distance for a MEMS safe and arming system is presented. In particular this is applied where a monolayer elastic beam cannot provide adequate driving force and driving distance at the same time in limited space. Compared with thicker elastic beams, the bilayer elastic beam can provide twice the driving force of a monolayer beam to guarantee the MEMS safe and arming systems work reliably without decreasing the driving distance. In this paper, the theoretical analysis, numerical simulation and experimental verification of the multilayer elastic beam is presented. The numerical simulation and experimental results show that the bilayer elastic provides 1.8–2 times the driving force of a monolayer, and a method that improves driving force without reducing the driving distance.

  12. MEMS-based beam steering system for individual addressing of trapped ions

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Knoernschild, Caleb; Mount, Emily; Crain, Stephen; Noek, Rachel; Gaultney, Daniel; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2011-05-01

    One of the important components to implement large-scale trapped ion quantum information processing is a scalable technology to manipulate individual ions in a long linear chain of ions. So far, individual addressing has been demonstrated by steering a focused laser beam on individual ions with acousto-optic and electro-optic deflectors, by utilizing the Zeeman shift due to a magnetic field gradient, and by separating a single ion from the rest of the chain for individual exposure to laser light. Micro-mirrors based on microelectromechanical system (MEMS) technology can be used to design an alternative beam steering system which can handle multiple beams with different wavelengths and address locations in multiple dimensions. We will report our progress in integrating a MEMS beam steering system with an Yb ion trap experiment. Our MEMS system is designed to steer an ultraviolet beam with a waist of ~1.5 μm across a 20 μm range. To demonstrate the individual addressing capability, we plan to measure the Ramsey interference of the differential AC Stark shift induced by an individually-focused, far-detuned laser beam.

  13. In situ electron microscopy four-point electromechanical characterization of freestanding metallic and semiconducting nanowires.

    PubMed

    Bernal, Rodrigo A; Filleter, Tobin; Connell, Justin G; Sohn, Kwonnam; Huang, Jiaxing; Lauhon, Lincoln J; Espinosa, Horacio D

    2014-02-26

    Electromechanical coupling is a topic of current interest in nanostructures, such as metallic and semiconducting nanowires, for a variety of electronic and energy applications. As a result, the determination of structure-property relations that dictate the electromechanical coupling requires the development of experimental tools to perform accurate metrology. Here, a novel micro-electro-mechanical system (MEMS) that allows integrated four-point, uniaxial, electromechanical measurements of freestanding nanostructures in-situ electron microscopy, is reported. Coupled mechanical and electrical measurements are carried out for penta-twinned silver nanowires, their resistance is identified as a function of strain, and it is shown that resistance variations are the result of nanowire dimensional changes. Furthermore, in situ SEM piezoresistive measurements on n-type, [111]-oriented silicon nanowires up to unprecedented levels of ∼7% strain are demonstrated. The piezoresistance coefficients are found to be similar to bulk values. For both metallic and semiconducting nanowires, variations of the contact resistance as strain is applied are observed. These variations must be considered in the interpretation of future two-point electromechanical measurements. PMID:24115555

  14. A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Enya, K.; Kataza, H.; Bierden, P.

    2009-03-01

    We present our first results on the development and evaluation of a cryogenic deformable mirror (DM) based on Micro Electro Mechanical Systems (MEMS) technology. A MEMS silicon-based DM chip with 32 channels, in which each channel is 300 μm × 300 μm in size, was mounted on a silicon substrate in order to minimize distortion and prevent it from being permanently damaged by thermal stresses introduced by cooling. The silicon substrate was oxidized to obtain electric insulation and had a metal fan-out pattern on the surface. For cryogenic tests, we constructed a measurement system consisting of a Fizeau interferometer, a cryostat cooled by liquid N2, zooming optics, electric drivers. The surface of the mirror at 95 K deformed in response to the application of a voltage, and no significant difference was found between the deformation at 95 K and that at room temperature. The power dissipation by the cryogenic DM was also measured, and we suggest that this is small enough for it to be used in a space cryogenic telescope. The properties of the DM remained unchanged after five cycles of vacuum pumping, cooling, warming, and venting. We conclude that fabricating cryogenic DMs employing MEMS technology is a promising approach. Therefore, we intend to develop a more sophisticated device for actual use, and to look for potential applications including the Space Infrared Telescope for Cosmology & Astrophysics (SPICA), and other missions.

  15. MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition

    NASA Technical Reports Server (NTRS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  16. Variable Emissivity Through MEMS Technology

    NASA Technical Reports Server (NTRS)

    Darrin, Ann Garrison; Osiander, Robert; Champion, John; Swanson, Ted; Douglas, Donya; Grob, Lisa M.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    This paper discusses a new technology for variable emissivity (vari-e) radiator surfaces, which has significant advantages over traditional radiators and promises an alternative design technique for future spacecraft thermal control systems. All spacecraft rely on radiative surfaces to dissipate waste heat. These radiators have special coatings, typically with a low solar absorptivity and a high infrared-red emissivity, that are intended to optimize performance under the expected heat load and thermal sink environment. The dynamics of the heat loads and thermal environment make it a challenge to properly size the radiator and often require some means of regulating the heat rejection rate of the radiators in order to achieve proper thermal balance. Specialized thermal control coatings, which can passively or actively adjust their emissivity offer an attractive solution to these design challenges. Such systems would allow intelligent control of the rate of heat loss from a radiator in response to heat load and thermal environmental variations. Intelligent thermal control through variable emissivity systems is well suited for nano and pico spacecraft applications where large thermal fluctuations are expected due to the small thermal mass and limited electric resources. Presently there are three different types of vari-e technologies under development: Micro ElectroMechanical Systems (MEMS) louvers, Electrochromic devices, and Electrophoretic devices. This paper will describe several prototypes of micromachined (MEMS) louvers and experimental results for the emissivity variations measured on theses prototypes. It will further discuss possible actuation mechanisms and space reliability aspects for different designs. Finally, for comparison parametric evaluations of the thermal performances of the new vari-e technology and standard thermal control systems are presented in this paper.

  17. Electromechanical oscillations in bilayer graphene.

    PubMed

    Benameur, Muhammed M; Gargiulo, Fernando; Manzeli, Sajedeh; Autès, Gabriel; Tosun, Mahmut; Yazyev, Oleg V; Kis, Andras

    2015-01-01

    Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron-phonon interaction and bandgap engineering. In this work, we realize electromechanical devices using single and bilayer graphene and probe the interplay between their mechanical and electrical properties. We show that the deflection of monolayer graphene nanoribbons results in a linear increase in their electrical resistance. Surprisingly, we observe oscillations in the electromechanical response of bilayer graphene. The proposed theoretical model suggests that these oscillations arise from quantum mechanical interference in the transition region induced by sliding of individual graphene layers with respect to each other. Our work shows that bilayer graphene conceals unexpectedly rich and novel physics with promising potential in applications based on nanoelectromechanical systems. PMID:26481767

  18. Electromechanical oscillations in bilayer graphene

    PubMed Central

    Benameur, Muhammed M.; Gargiulo, Fernando; Manzeli, Sajedeh; Autès, Gabriel; Tosun, Mahmut; Yazyev, Oleg V.; Kis, Andras

    2015-01-01

    Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron–phonon interaction and bandgap engineering. In this work, we realize electromechanical devices using single and bilayer graphene and probe the interplay between their mechanical and electrical properties. We show that the deflection of monolayer graphene nanoribbons results in a linear increase in their electrical resistance. Surprisingly, we observe oscillations in the electromechanical response of bilayer graphene. The proposed theoretical model suggests that these oscillations arise from quantum mechanical interference in the transition region induced by sliding of individual graphene layers with respect to each other. Our work shows that bilayer graphene conceals unexpectedly rich and novel physics with promising potential in applications based on nanoelectromechanical systems. PMID:26481767

  19. Electromechanical oscillations in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Benameur, Muhammed M.; Gargiulo, Fernando; Manzeli, Sajedeh; Autès, Gabriel; Tosun, Mahmut; Yazyev, Oleg V.; Kis, Andras

    2015-10-01

    Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron-phonon interaction and bandgap engineering. In this work, we realize electromechanical devices using single and bilayer graphene and probe the interplay between their mechanical and electrical properties. We show that the deflection of monolayer graphene nanoribbons results in a linear increase in their electrical resistance. Surprisingly, we observe oscillations in the electromechanical response of bilayer graphene. The proposed theoretical model suggests that these oscillations arise from quantum mechanical interference in the transition region induced by sliding of individual graphene layers with respect to each other. Our work shows that bilayer graphene conceals unexpectedly rich and novel physics with promising potential in applications based on nanoelectromechanical systems.

  20. An electromechanical displacement transducer

    NASA Astrophysics Data System (ADS)

    Villiers, Marius; Mahboob, Imran; Nishiguchi, Katsuhiko; Hatanaka, Daiki; Fujiwara, Akira; Yamaguchi, Hiroshi

    2016-08-01

    Two modes of an electromechanical resonator are coupled through the strain inside the structure with a cooperativity as high as 107, a state-of-the-art value for purely mechanical systems, which enables the observation of normal-mode splitting. This coupling is exploited to transduce the resonator’s fundamental mode into the bandwidth of the second flexural mode, which is 1.4 MHz higher in frequency. Thus, an all-mechanical heterodyne detection scheme is implemented that can be developed into a high-precision displacement sensor.

  1. Electromechanical Componentry. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Lindemann, Don

    This training module on electromechanical components contains 10 units for a two-year vocational program packaging system equipment control course at Wisconsin Indianhead Technical College. This module describes the functions of electromechanical devices essential for understanding input/output devices for Programmable Logic Control (PLC)…

  2. Advanced MEMS-based infrared imager

    NASA Astrophysics Data System (ADS)

    Chen, Ming

    2003-04-01

    Infrared radiation imager is of important for a wide range of applications. IR infrared imagers have not been widely available due to cost and complexity issues. A major cost of IR imager is associated with the requirements of cooling and pixel-level integration with electronic amplifier and read-out circuitry that are often incompatible with the detector materials. Recent research activities have lead to a new class of IR imager based on thermally isolated MEMS (micro-electromechanical systems) arrays whose bending can be directly detected by optical means. This approach eliminates the need for cooling and complex electronic multiplexers, holding the potential to drastically reduce IR imager cost. However, MEMS based IR imaging devices demonstrated to date are less sensitive than the commercially available ones. We have established a comprehensive finite element model (FEM) using Ansys tool. An accurate computer model for the proposed MEME IR detector is critical for the device development and fabrication. The model greatly enhanced our capability to cost effectively optimize the design from concept to fabrication layout. Our model predicts the deformation of this pixel structure under a surface stress for both thermal and photo-induced effects under various conditions. This simulation model provided a design base for new generation of optical MEMS IR sensors that has higher sensitivity and the potential of incorporating passive thermal amplification. Our simple MEMS design incorporates optical read-out, which eliminates the drawback of electronic means that inevitably introduce additional signal loss due to thermal contact made to the detector element. When packaged under vacuum environment, significant sensitivity improvement is anticipated. The deflection of a cantilever as a function of a rise in its temperature is determined by the classical thermomechanical governing equation for a bimaterial cantilever beam. Our finite element model is established using

  3. Commercial-Off-The-Shelf Microelectromechanical Systems (MEMS) Flow-Measurement Probes Fabricated And Assembled

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2002-01-01

    As an alternative to conventional tubing instrumentation for measuring airflow, designers and technicians at the NASA Glenn Research Center have been fabricating packaging components and assembling a set of unique probes using commercial-off-the-shelf microelectromechanical systems (MEMS) integrated circuits (computer chips). Using MEMS as an alternative has some compelling advantages over standard measurement devices. Sensor technologies have matured through high-production usage in industries such as automotive and aircraft manufacturers. Currently, MEMS are the choice in applications such as tire pressure monitors, altimeters, pneumatic controls, cable leak detectors, and consumer appliances. Conventional instrumentation uses tubing buried in the model aerodynamic surfaces or wind tunnel walls. The measurements are made when pressure is introduced at the tube opening. The pressure then must travel the tubing for lengths ranging from 20 to hundreds of feet before reaching an electronic signal conditioner. This condition causes a considerable amount of damping and requires measurements to be made only after the test rig has reached steady-state operation. The electronic MEMS pressure sensor is able to take readings continuously under dynamic states in nearly real time. The use of stainless steel tubing for pressure measurements requires many tubes to be cleaned, cut to length, carefully installed, and delicately deburred and spliced for use. A cluster of a few hundred 1/16-in.- (0.0625-in.-) diameter tubes (not uncommon in research testing facilities) can be several inches in diameter and may weigh enough to require two men to handle. Replacing hard tubing with electronic chips can eliminate much of the bulk. Each sensor would fit on the tip of the 1/16-in. tubing with room to spare. The P592 piezoresistive silicon pressure sensor (Lucas NovaSensor, Fremont, CA) was chosen for this project because of its cost, availability, and tolerance to extreme ambient

  4. Low-cost compact MEMS scanning ladar system for robotic applications

    NASA Astrophysics Data System (ADS)

    Moss, Robert; Yuan, Ping; Bai, Xiaogang; Quesada, Emilio; Sudharsanan, Rengarajan; Stann, Barry L.; Dammann, John F.; Giza, Mark M.; Lawler, William B.

    2012-06-01

    Future robots and autonomous vehicles require compact low-cost Laser Detection and Ranging (LADAR) systems for autonomous navigation. Army Research Laboratory (ARL) had recently demonstrated a brass-board short-range eye-safe MEMS scanning LADAR system for robotic applications. Boeing Spectrolab is doing a tech-transfer (CRADA) of this system and has built a compact MEMS scanning LADAR system with additional improvements in receiver sensitivity, laser system, and data processing system. Improved system sensitivity, low-cost, miniaturization, and low power consumption are the main goals for the commercialization of this LADAR system. The receiver sensitivity has been improved by 2x using large-area InGaAs PIN detectors with low-noise amplifiers. The FPGA code has been updated to extend the range to 50 meters and detect up to 3 targets per pixel. Range accuracy has been improved through the implementation of an optical T-Zero input line. A compact commercially available erbium fiber laser operating at 1550 nm wavelength is used as a transmitter, thus reducing the size of the LADAR system considerably from the ARL brassboard system. The computer interface has been consolidated to allow image data and configuration data (configuration settings and system status) to pass through a single Ethernet port. In this presentation we will discuss the system architecture and future improvements to receiver sensitivity using avalanche photodiodes.

  5. Simulation of MEMS for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Mott, Brent; Kuhn, Jonathan; Broduer, Steve (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) is developing optical micro-electromechanical system (MEMS) components for potential application in Next Generation Space Telescope (NGST) science instruments. In this work, we present an overview of the electro-mechanical simulation of three MEMS components for NGST, which include a reflective micro-mirror array and transmissive microshutter array for aperture control for a near infrared (NIR) multi-object spectrometer and a large aperture MEMS Fabry-Perot tunable filter for a NIR wide field camera. In all cases the device must operate at cryogenic temperatures with low power consumption and low, complementary metal oxide semiconductor (CMOS) compatible, voltages. The goal of our simulation efforts is to adequately predict both the performance and the reliability of the devices during ground handling, launch, and operation to prevent failures late in the development process and during flight. This goal requires detailed modeling and validation of complex electro-thermal-mechanical interactions and very large non-linear deformations, often involving surface contact. Various parameters such as spatial dimensions and device response are often difficult to measure reliably at these small scales. In addition, these devices are fabricated from a wide variety of materials including surface micro-machined aluminum, reactive ion etched (RIE) silicon nitride, and deep reactive ion etched (DRIE) bulk single crystal silicon. The above broad set of conditions combine to be a formidable challenge for space flight qualification analysis. These simulations represent NASA/GSFC's first attempts at implementing a comprehensive strategy to address complex MEMS structures.

  6. System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.

    PubMed

    Lee, Sung Pil

    2015-10-01

    Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display. PMID:26726359

  7. Infrastructure, Technology and Applications of Micro-Electro-Mechanical Systems (MEMS)

    SciTech Connect

    Allen, J.J.; Jakubczak, J.F.; Krygowski, T.W.; Miller, S.L.; Montague, S.; Rodgers, M.S.; Sniegowski, J.J.

    1999-07-09

    A review is made of the infrastructure, technology and capabilities of Sandia National Laboratories for the development of micromechanical systems. By incorporating advanced fabrication processes, such as chemical mechanical polishing, and several mechanical polysilicon levels, the range of micromechanical systems that can be fabricated in these technologies is virtually limitless. Representative applications include a micro-engine driven mirror, and a micromachined lock. Using a novel integrated MEMS/CMOS technology, a six degree-of-freedom accelerometer/gyroscope system has been designed by researchers at U.C. Berkeley and fabricated on the same silicon chip as the CMOS control circuits to produce an integrated micro-navigational unit.

  8. Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjun; Liu, Wen; Yang, Xuefeng; Xing, Shengwei

    2015-02-01

    In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total distance travelled.

  9. MEMS in Singapore

    NASA Astrophysics Data System (ADS)

    Tay, Francis E.

    2001-03-01

    Microelectromechanical Systems (MEMS) can be termed as a crossroad technology. Cross road in the sense that it is an amalgamation of various disciplines to produce a solution. Cross road also, in the sense that it is disruptive to the way that solutions used to be provided. At the crossroad, a decision needs to be made either to do things the old way or to embrace the new technology. In this paper, a review is made to the research and development of MEMS technology with potentially widespread applications in Singapore. In most cases, these are preparations to a possible acceleration of MEMS related industry in this part of the world. However, the author also noted that the transfer of MEMS technology from the laboratory to the industry is not a trivial matter. A major decision has to be made due to the high capital outlay and the high operational costs involved. Further, many production related issues such as yield and packaging have to be considered. A large number of MEMS commercial outfits such as Bosch are serving internal customers. As a small country with limited resources, Singapore places great emphasis on building up MEMS research and development activities to support future high value-added design and fabrication. In this paper, some of the MEMS activities in the national universities and institutes in Singapore are introduced, and some recent progress and development of MEMS technology in Singapore are presented.

  10. New emerging MEMS applications

    NASA Astrophysics Data System (ADS)

    Mounier, Eric; Eloy, Jean-Christophe

    2007-02-01

    This paper presents the trends for the years to come for the different MEMS markets. Consumer applications have really started to push the MEMS business in 2005. Many different devices are involved, like pressure sensors (altimeters), microphones, accelerometers, gyroscopes . . . One of the most significant consequences is that all the Top 50 semiconductor companies are now looking at these MEMS applications as possible growth areas. Another result of the growth of the MEMS market is the strong growth of the foundries and contract manufacturers. We have seen growth of more than 35% in 2005 compared to 2004 and we expect similar growth in the next 3 years. We will review the next MEMS applications which have currently a high growth: Si microphones, microdisplays (for RPTV, portable projectors or automotive HUDs), gyroscopes and micro-fuel cells. In the longer term, micro-source of energy could also become an important MEMS market. In term of milestones, the following points can be highlighted: -In 2005 market, the MEMS market is 5.1 B worldwide and very fragmented in terms of companies and products. -In 2010, it will be a 9.7 B market worldwide. MEMS foundries and contract manufacturers will account for at least 8 % of the world market with several being public companies. More than 50% of today's systems companies who have integrated fabs will be using external manufacturers. Several large integrated companies will have created independent MEMS spin-offs and IC manufacturers will be deeply involved in MEMS manufacturing. -In 2015, it will be an 18 B$ market worldwide with no longer systems manufacturers with internal fabs. And we forecast that 50% of the total market will be in the hands of semiconductor manufacturers.

  11. Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques

    PubMed Central

    Jivani, Rishad R.; Lakhtaria, Gaurang J.; Patadiya, Dhaval D.; Patel, Laxman D.; Jivani, Nurrudin P.; Jhala, Bhagyesh P.

    2013-01-01

    Advancement in microelectromechanical system has facilitated the microfabrication of polymeric substrates and the development of the novel class of controlled drug delivery devices. These vehicles have specifically tailored three dimensional physical and chemical features which together, provide the capacity to target cell, stimulate unidirectional controlled release of therapeutics and augment permeation across the barriers. Apart from drug delivery devices microfabrication technology’s offer exciting prospects to generate biomimetic gastrointestinal tract models. BioMEMS are capable of analysing biochemical liquid sample like solution of metabolites, macromolecules, proteins, nucleic acid, cells and viruses. This review summarized multidisciplinary application of biomedical microelectromechanical systems in drug delivery and its potential in analytical procedures. PMID:26903763

  12. Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques.

    PubMed

    Jivani, Rishad R; Lakhtaria, Gaurang J; Patadiya, Dhaval D; Patel, Laxman D; Jivani, Nurrudin P; Jhala, Bhagyesh P

    2016-01-01

    Advancement in microelectromechanical system has facilitated the microfabrication of polymeric substrates and the development of the novel class of controlled drug delivery devices. These vehicles have specifically tailored three dimensional physical and chemical features which together, provide the capacity to target cell, stimulate unidirectional controlled release of therapeutics and augment permeation across the barriers. Apart from drug delivery devices microfabrication technology's offer exciting prospects to generate biomimetic gastrointestinal tract models. BioMEMS are capable of analysing biochemical liquid sample like solution of metabolites, macromolecules, proteins, nucleic acid, cells and viruses. This review summarized multidisciplinary application of biomedical microelectromechanical systems in drug delivery and its potential in analytical procedures. PMID:26903763

  13. EDITORIAL: International MEMS Conference 2006

    NASA Astrophysics Data System (ADS)

    Tay, Francis E. H.; Jianmin, Miao; Iliescu, Ciprian

    2006-04-01

    The International MEMS conference (iMEMS2006) organized by the Institute of Bioengineering and Nanotechnology and Nanyang Technological University aims to provide a platform for academicians, professionals and industrialists in various related fields from all over the world to share and learn from each other. Of great interest is the incorporation of the theme of life sciences application using MEMS. It is the desire of this conference to initiate collaboration and form network of cooperation. This has continued to be the objective of iMEMS since its inception in 1997. The technological advance of MEMS over the past few decades has been truly exciting in terms of development and applications. In order to participate in this rapid development, a conference involving delegates from within the MEMS community and outside the community is very meaningful and timely. With the receipt of over 200 articles, delegates related to MEMS field from all over the world will share their perspectives on topics such as MEMS/MST Design, MEMS Teaching and Education, MEMS/MST Packaging, MEMS/MST Fabrication, Microsystems Applications, System Integration, Wearable Devices, MEMSWear and BioMEMS. Invited speakers and delegates from outside the field have also been involved to provide challenges, especially in the life sciences field, for the MEMS community to potentially address. The proceedings of the conference will be published as an issue in the online Journal of Physics: Conference Series and this can reach a wider audience and will facilitate the reference and citation of the work presented in the conference. We wish to express our deep gratitude to the International Scientific Committee members and the organizing committee members for contributing to the success of this conference. We would like to thank all the delegates, speakers and sponsors from all over the world for presenting and sharing their perspectives on topics related to MEMS and the challenges that MEMS can

  14. Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application.

    PubMed

    Yang, Tingting; Wang, Wen; Zhang, Hongze; Li, Xinming; Shi, Jidong; He, Yijia; Zheng, Quan-shui; Li, Zhihong; Zhu, Hongwei

    2015-11-24

    Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF) indicates a good trade-off between sensitivity and stretchability compared with those in previous studies. In this work, the function of woven fabrics for highly sensitive strain sensing is investigated, although network configuration is always a strategy to retain resistance stability. The experimental and simulation results indicate that the ultrahigh mechanosensitivity with gauge factors of 500 under 2% strain is attributed to the macro-woven-fabric geometrical conformation of graphene, which induces a large interfacial resistance between the interlaced ribbons and the formation of microscale-controllable, locally oriented zigzag cracks near the crossover location, both of which have a synergistic effect on improving sensitivity. Meanwhile, the stretchability of the GWF could be tailored to as high as over 40% strain by adjusting graphene growth parameters and adopting oblique angle direction stretching simultaneously. We also demonstrate that sensors based on GWFs are applicable to human motion detection, sound signal acquisition, and spatially resolved monitoring of external stress distribution. PMID:26468735

  15. Electromechanical assembly department manufacturing improvements

    SciTech Connect

    Voss, S.W.

    1991-12-01

    Techniques for streamlining the processing and flow of products is an electromechanical assembly department were evaluated. Areas looked at included a paperless system for lot identification records, automated tool and fixture storage, evaluation of product transfer methods, and queue time reduction.

  16. MEMS- and NEMS-based complex adaptive smart devices and systems

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2001-10-01

    The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with feature sizes now down at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: 1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic and micro molding techniques; 2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; 3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; 4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nanotubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems.

  17. System Model for MEMS based Laser Ultrasonic Receiver

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    2002-01-01

    A need has been identified for more advanced nondestructive Evaluation technologies for assuring the integrity of airframe structures, wiring, etc. Laser ultrasonic inspection instruments have been shown to detect flaws in structures. However, these instruments are generally too bulky to be used in the confined spaces that are typical of aerospace vehicles. Microsystems technology is one key to reducing the size of current instruments and enabling increased inspection coverage in areas that were previously inaccessible due to instrument size and weight. This paper investigates the system modeling of a Micro OptoElectroMechanical System (MOEMS) based laser ultrasonic receiver. The system model is constructed in software using MATLAB s dynamical simulator, Simulink. The optical components are modeled using geometrical matrix methods and include some image processing. The system model includes a test bench which simulates input stimuli and models the behavior of the material under test.

  18. Gain-Scheduled Complementary Filter Design for a MEMS Based Attitude and Heading Reference System

    PubMed Central

    Yoo, Tae Suk; Hong, Sung Kyung; Yoon, Hyok Min; Park, Sungsu

    2011-01-01

    This paper describes a robust and simple algorithm for an attitude and heading reference system (AHRS) based on low-cost MEMS inertial and magnetic sensors. The proposed approach relies on a gain-scheduled complementary filter, augmented by an acceleration-based switching architecture to yield robust performance, even when the vehicle is subject to strong accelerations. Experimental results are provided for a road captive test during which the vehicle dynamics are in high-acceleration mode and the performance of the proposed filter is evaluated against the output from a conventional linear complementary filter. PMID:22163824

  19. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    NASA Astrophysics Data System (ADS)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  20. Development of strapdown inertial navigation system with MEMS sensors, barometric altimeter and ultrasonic range meter

    NASA Astrophysics Data System (ADS)

    Kholopov, I. S.

    2015-10-01

    The results of strapdown inertial navigation system (SINS) tests with 9 degrees of freedom MEMS sensor MPU-9150 (triaxial accelerometer, gyroscope and magnetometer), pressure sensor LPS331 and ultrasonic range meter HC-SR04, implemented on the FPGA Altera Cyclone-II evaluation board DE1 is considered. SINS measures the spatial coordinates and altitude relative to the starting point, the orientation angles and distances to obstacles along the way. It is shown that the relative error of the spatial coordinates estimation does not exceed 1.1% in interval of some minutes.

  1. Efficient reduced order modeling for system simulation of micro-electro-mechanical systems (MEMS) from FEM models

    NASA Astrophysics Data System (ADS)

    Affour, Bachar; Nachtergaele, Philippe; Spirkovitch, Stevan; Ostergaard, Dale; Gyimesi, Miklos P.

    2000-04-01

    System designers need access to high-fidelity behavioral models in order to simulate system of MEMS, electronics and packaging. Therefore, the need exists to create behavioral models that provide accurate harmonic and time-domain solutions in a fast and efficient manner. In the MEMSCAP MEMS design suite, the EDD family of tools enables the generation of non-linear dynamic behavioral models from models with a hierarchically lower level of abstraction or measured data. In this paper, we report on a new module of EDD, the ANSYS ModelBuilder, which is embedded in the ANSYS Multi-physics tool set. The module reduces the dimensionality of FEM models built in ANSYS and writes them in popular modeling languages such as HDL-A, SPICE, VHDL-AMS and Verilog-A. We illustrate the capabilities of our new tool by utilizing it to develop two system level examples and compare the results to the full 3D descriptions.

  2. MEMS deformable mirror embedded wavefront sensing and control system

    NASA Astrophysics Data System (ADS)

    Owens, Donald; Schoen, Michael; Bush, Keith

    2006-01-01

    Electrostatic Membrane Deformable Mirror (MDM) technology developed using silicon bulk micro-machining techniques offers the potential of providing low-cost, compact wavefront control systems for diverse optical system applications. Electrostatic mirror construction using bulk micro-machining allows for custom designs to satisfy wavefront control requirements for most optical systems. An electrostatic MDM consists of a thin membrane, generally with a thin metal or multi-layer high-reflectivity coating, suspended over an actuator pad array that is connected to a high-voltage driver. Voltages applied to the array elements deflect the membrane to provide an optical surface capable of correcting for measured optical aberrations in a given system. Electrostatic membrane DM designs are derived from well-known principles of membrane mechanics and electrostatics, the desired optical wavefront control requirements, and the current limitations of mirror fabrication and actuator drive electronics. MDM performance is strongly dependent on mirror diameter and air damping in meeting desired spatial and temporal frequency requirements. In this paper, we present wavefront control results from an embedded wavefront control system developed around a commercially available high-speed camera and an AgilOptics Unifi MDM driver using USB 2.0 communications and the Linux development environment. This new product, ClariFast TM, combines our previous Clarifi TM product offering into a faster more streamlined version dedicated strictly to Hartmann Wavefront sensing.

  3. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect

    2010-10-01

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  4. Motion estimation by integrated low cost system (vision and MEMS) for positioning of a scooter "Vespa"

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Milan, N.; Pirotti, F.; Vettore, A.

    2011-12-01

    In the automotive sector, especially in these last decade, a growing number of investigations have taken into account electronic systems to check and correct the behavior of drivers, increasing road safety. The possibility to identify with high accuracy the vehicle position in a mapping reference frame for driving directions and best-route analysis is also another topic which attracts lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate time by time the position, orientation and velocity of the system. To this aim low cost GPS and MEMS (sensors can be used. In comparison to a four wheel vehicle, the dynamics of a two wheel vehicle (e.g. a scooter) feature a higher level of complexity. Indeed more degrees of freedom must be taken into account to describe the motion of the latter. For example a scooter can twist sideways, thus generating a roll angle. A slight pitch angle has to be considered as well, since wheel suspensions have a higher degree of motion with respect to four wheel vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a motorcycle ("Vespa" scooter), which can be used as alternative to the "classical" approach based on the integration of GPS and INS sensors. Position and orientation of the scooter are derived from MEMS data and images acquired by on-board digital camera. A Bayesian filter provides the means for integrating the data from MEMS-based orientation sensor and the GPS receiver.

  5. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  6. Sustained high-frequency energy harvesting through a strongly nonlinear electromechanical system under single and repeated impulsive excitations

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Joo, Han Kyul; McFarland, D. Michael; Sapsis, Themistoklis P.; Bergman, Lawrence; Quinn, D. Dane; Vakakis, Alexander

    2014-07-01

    This work investigates a vibration-based energy harvesting system composed of two oscillators coupled with essential (nonlinearizable) stiffness nonlinearity and subject to impulsive loading of the mechanical component. The oscillators in the system consist of one grounded, weakly damped linear oscillator mass (primary system), which is coupled to a second light-weight, weakly damped oscillating mass attachment (the harvesting element) through a piezoelastic cable. Due to geometric/kinematic mechanical effects the piezoelastic cable generates a nonlinearizable cubic stiffness nonlinearity, whereas electromechanical coupling simply sees a resistive load. Under single and repeated impulsive inputs the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing high-frequency 'bursts' or instabilities in the response of the harvesting element. In turn, these high-frequency dynamic instabilities result in strong and sustained energy transfers from the directly excited primary system to the lightweight harvester, which, through the piezoelastic element, are harvested by the electrical component of the system or, in the present case, dissipated across a resistive element in the circuit. The primary goal of this work is to demonstrate the efficacy of employing this type of high-frequency dynamic instability to achieve enhanced nonlinear vibration energy harvesting under impulsive excitations.

  7. CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System

    NASA Astrophysics Data System (ADS)

    Lazarus, Nathan S.

    Integrating chemical sensors with testing electronics is a powerful technique with the potential to lower power and cost and allow for lower system limits of detection. This thesis explores the possibility of creating an integrated sensor system intended to be embedded within respirator cartridges to notify the user that hazardous chemicals will soon leak into the face mask. For a chemical sensor designer, this application is particularly challenging due to the need for a very sensitive and cheap sensor that will be exposed to widely varying environmental conditions during use. An octanethiol-coated gold nanoparticle chemiresistor to detect industrial solvents is developed, focusing on characterizing the environmental stability and limits of detection of the sensor. Since the chemiresistor was found to be highly sensitive to water vapor, a series of highly sensitive humidity sensor topologies were developed, with sensitivities several times previous integrated capacitive humidity sensors achieved. Circuit techniques were then explored to reduce the humidity sensor limits of detection, including the analysis of noise, charge injection, jitter and clock feedthrough in a charge-based capacitance measurement (CBCM) circuit and the design of a low noise Colpitts LC oscillator. The characterization of high resistance gold nanoclusters for capacitive chemical sensing was also performed. In the final section, a preconcentrator, a heater element intended to release a brief concentrated pulse of analate, was developed and tested for the purposes of lowering the system limit of detection.

  8. Nanotechnology: MEMS and NEMS and their applications to smart systems and devices

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2003-10-01

    The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sizes now down at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: (1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic and micro molding techniques; (2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; (3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; (4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sending and control of a variety functions in automobile, aerospace, marine and

  9. RF MEMS and Their Applications in NASA's Space Communication Systems

    NASA Technical Reports Server (NTRS)

    Williams, W. Daniel; Ponchak, George E.; Simons, Rainee N.; Zaman, Afroz; Kory, Carol; Wintucky, Edwin; Wilson, Jeffrey D.; Scardelletti, Maximilian; Lee, Richard; Nguyen, Hung

    2001-01-01

    Radio frequency (RF) and microwave communication systems rely on frequency, amplitude, and phase control circuits to efficiently use the available spectrum. Phase control circuits are required for electronically scanning phase array antennas that enable radiation pattern shaping, scanning, and hopping. Two types of phase shifters, which are the phase control circuits, are most often used. The first is comprised of two circuits with different phase characteristics such as two transmission lines of different lengths or a high pass and low pass filter and a switch that directs the RF power through one of the two circuits. Alternatively, a variable capacitor, or varactor, is used to change the effective electrical path length of a transmission line, which changes the phase characteristics. Filter banks are required for the diplexer at the front end of wide band communication satellites. These filters greatly increase the size and mass of the RF/microwave systems, but smaller diplexers may be made with a low loss varactor or a group of capacitors, a switch and an inductor.

  10. Rapid Cellular Identification by Dynamic Electromechanical Response

    SciTech Connect

    Nikiforov, Maxim; Jesse, Stephen; Kalinin, Sergei V; Reukov, Vladimir V; Vertegel, Alexey; Thompson, Gary L

    2009-01-01

    Coupling between electrical and mechanical phenomena is ubiquitous in living systems. Here, we demonstrate rapid identification of cellular organisms using difference in electromechanical activity in a broad frequency range. Principal component analysis of the dynamic electromechanical response spectra bundled with neural network based recognition provides a robust identification algorithm based on their electromechanical signature, and allows unambiguous differentiation of model Micrococcus Lysodeikticus and Pseudomonas Fluorescens system. This methodology provides a universal pathway for biological identification obviating the need for well-defined analytical models of Scanning Probe Microscopy response.

  11. Microelectromechanical Systems

    NASA Technical Reports Server (NTRS)

    Gabriel, Kaigham J.

    1995-01-01

    Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.

  12. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  13. MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Hartzell, A. L.; Stewart, J. B.; Bifano, T. G.; Bierden, P. A.

    2010-07-01

    We report on the development of high actuator count, micro-electromechanical (MEMS) deformable mirrors designed for high order wavefront correction in ground and space-based astronomical adaptive optics instruments. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors have an active aperture of up to 25.2mm consisting of a thin silicon membrane mirror supported by an array of 140 to 4092 electrostatic actuators which exhibit no hysteresis and have sub-nanometer repeatability making them well suited for open-loop control applications such as Multi-Object Adaptive Optics (MOAO). The continuous membrane deformable mirrors, coated with a highly reflective metal film, are capable of up to 6μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. Presented in this paper are device characteristics and performance test results, as well as reliability test data and device lifetime predictions that show that trillions of actuator cycles can be achieved without failures.

  14. Electromechanical design and construction of a rotating radio-frequency coil system for applications in magnetic resonance.

    PubMed

    Trakic, Adnan; Weber, Ewald; Li, Bing Keong; Wang, Hua; Liu, Feng; Engstrom, Craig; Crozier, Stuart

    2012-04-01

    While recent studies have shown that rotating a single radio-frequency (RF) coil during the acquisition of magnetic resonance (MR) images provides a number of hardware advantages (i.e., requires only one RF channel, avoids coil-coil coupling and facilitates large-scale multinuclear imaging), they did not describe in detail how to build a rotating RF coil system. This paper presents detailed engineering information on the electromechanical design and construction of a MR-compatible RRFC system for human head imaging at 2 T. A custom-made (bladeless) pneumatic Tesla turbine was used to rotate the RF coil at a constant velocity, while an infrared optical encoder measured the selected frequency of rotation. Once the rotating structure was mechanically balanced and the compressed air supply suitably regulated, the maximum frequency of rotation measured ~14.5 Hz with a 2.4% frequency variation over time. MR images of a water phantom and human head were obtained using the rotating RF head coil system. PMID:22231668

  15. Mechanical and Electromechanical Properties of Semiconducting and Metallic Nanowires

    NASA Astrophysics Data System (ADS)

    Bernal Montoya, Rodrigo A.

    Nanowires are envisioned as the building blocks of future electronics, sensing and actuation devices, nanostructured materials, among many applications. This technological potential arises because the properties of nanowires tend to be superior to those of bulk structures. However, unambiguous characterization of these properties has not been yet achieved, due to the challenging nature of nanoscale experimentation. In this thesis, we aimed at advancing the unambiguous characterization of mechanical and electromechanical properties of nanowires, by employing and improving MEMS-based (Microelectromechanical Systems) characterization technologies, which allow in-situ electron microscopy testing. Furthermore, we coupled the experimental results with atomistic simulations in order to attain fundamental understanding, and allow the determination of structure-property relations. This synergy between experiments and simulations also provides guidelines for improvements in both the experimental and computational techniques. In the context of semiconducting specimens, we characterized the elastic modulus of GaN nanowires. We find that below 20 nm in diameter, the nanowires display enhanced elastic moduli. Above this size, nanowires show bulk behavior. The measured trends are consistent both in experiments and simulations. The modulus enhancement is caused by local contraction of the atomic bonds near the surface of the nanowires, which leads to a locally higher modulus at the surface. For metallic specimens, we characterized the mechanical behavior of fivefold-twinned silver nanowires below 120 nm in diameter. To better match the loading condition between experiments and simulations, we implement a MEMS device for displacement-controlled testing, and subsequently employ it to characterize the cyclic plastic behavior of the nanowires. Experimentally, Bauschinger effect and partial recovery of the plastic deformation are observed. In-situ TEM experiments and atomistic

  16. Benefits of Combined GPS/GLONASS with Low-Cost MEMS IMUs for Vehicular Urban Navigation

    PubMed Central

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time. PMID:22666079

  17. The MEMS Loop Heat Pipe Based on Coherent Porous Silicon - The Modified System Test Structure

    NASA Astrophysics Data System (ADS)

    Cytrynowicz, Debra; Medis, Praveen; Parimi, Srinivas; Shuja, Ahmed; Thurman Henderson, H.; Gerner, Frank M.

    2004-02-01

    The previous papers presented at STAIF 2002 and STAIF 2003 discussed the design, fabrication and characterization of the evaporator section and the initial test cell of a planar MEMS loop heat pipe based upon coherent porous silicon or ``CPS'' technology. The potentially revolutionary advantage of CPS technology is that it is planar and allows for pores or capillaries of absolutely uniform diameter. Coherent porous silicon can be mass-produced by various MEMS fabrication techniques. The preliminary experiments made with the original test structure exhibited the desired temperature and pressure differences, but these differences were extremely small and oscillatory. This paper describes modifications made to the initial test cell design, which were intended to improve its evacuated, closed loop performance. Included among these changes were the redesign of the compensation chamber and condenser, an increase in the porosity of the coherent porous silicon wick, the fabrication of silicon top ``hot'' plates with an increased depth of the vapor reservoir and the integration of metal resistive heater elements onto the backside of the top plates to simulate the input heat. Some changes were made in the test sequence to produce more discernable differences in temperatures and pressures. The most recent results of the tests made with the modified system will be presented.

  18. Microwave and Millimeter-Wave Micro-Electro-Mechanical (MEMS) Systems

    NASA Astrophysics Data System (ADS)

    Rebeiz, Gabriel M.

    2002-03-01

    The talk will describe the recent advances in RF MEMS from the physics and microwave perspective. RF MEMS are very small micromechanical devices (micron or nm size) which are used as high-Q resonators, very low-loss switches, and high-Q variable capacitors at RF to mm-wave frequencies. RF MEMS is well understood from a circuit perspective, and many state-of-the-art circuits employing a large number of MEMS switches and varactors have now been demonstrated. However, there are several areas related to the dynamic mechanical analysis of MEMS devices, contact physics, and reliability which are not well understood. The talk will summarize the recent challenges in RF MEMS, especially when they are taken to the nm scale.

  19. System-on-chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring.

    PubMed

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-01-01

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline. PMID:23202013

  20. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    PubMed Central

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-01-01

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline. PMID:23202013

  1. Nanotechnology and MEMS-based systems for civil infrastructure safety and security: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Robinson, Nidia; Saafi, Mohamed

    2006-03-01

    Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures

  2. Environmental Monitoring System for Home-Delivery Service of Packages by Using MEMS Sensors

    NASA Astrophysics Data System (ADS)

    Fujita, Takayuki; Masaki, Kentaro; Maenaka, Kazusuke

    Nowadays, home-delivery services of packages are imperative in everyday life. These service industries are trying to provide cheaper, faster and safer service. However, package condition and handling during transportation are not disclosed to a customer. In this study, we realized a prototype system by MEMS technology for measuring the environmental conditions around a package for home-delivery service. The system includes barometric pressure, temperature, relative humidity and three dimensional acceleration (shock) sensing devices, as well as an interface circuitry. The system is a size of 115 × 54 × 10 mm3 and a weight of 50 g. We measured the package conditions during the transportation by three Japanese domestic home-delivery services, and using data mining, we were able to obtain a representation of the package's circumstances.

  3. MEMS-based flow cytometry: microfluidics-based cell identification system by fluorescent imaging.

    PubMed

    Wu, W K; Liang, C K; Huang, J Z

    2004-01-01

    This study utilizes MEMS technology to realize a novel low-cost microfluidics-based biochip system for flow-type cell handling. Powered by vacuum pump, the microfluidic driving system enables cells to move in order one by one in the biochip by an effect of sheath flow prefocus. Then, cells are guided to a fluorescent inspection region where two detection tasks such as cell image identification and cell counting are conducted. Currently, the glass-based biochip has been manufactured and all the related devices have been well set up in our laboratory. With this proposed prototype system, typical results about cell separation of yeast cell and PC-3 cell are available and their separated images are also presented, respectively. PMID:17270801

  4. FPGA platform for MEMS Disc Resonance Gyroscope (DRG) control

    NASA Astrophysics Data System (ADS)

    Keymeulen, Didier; Peay, Chris; Foor, David; Trung, Tran; Bakhshi, Alireza; Withington, Phil; Yee, Karl; Terrile, Rich

    2008-04-01

    Inertial navigation systems based upon optical gyroscopes tend to be expensive, large, power consumptive, and are not long lived. Micro-Electromechanical Systems (MEMS) based gyros do not have these shortcomings; however, until recently, the performance of MEMS based gyros had been below navigation grade. Boeing and JPL have been cooperating since 1997 to develop high performance MEMS gyroscopes for miniature, low power space Inertial Reference Unit applications. The efforts resulted in demonstration of a Post Resonator Gyroscope (PRG). This experience led to the more compact Disc Resonator Gyroscope (DRG) for further reduced size and power with potentially increased performance. Currently, the mass, volume and power of the DRG are dominated by the size of the electronics. This paper will detail the FPGA based digital electronics architecture and its implementation for the DRG which will allow reduction of size and power and will increase performance through a reduction in electronics noise. Using the digital control based on FPGA, we can program and modify in real-time the control loop to adapt to the specificity of each particular gyro and the change of the mechanical characteristic of the gyro during its life time.

  5. MEMS electrostatic vibration energy harvester without switches and inductive elements

    NASA Astrophysics Data System (ADS)

    Dorzhiev, V.; Karami, A.; Basset, P.; Dragunov, V.; Galayko, D.

    2014-11-01

    The paper is devoted to a novel study of monophase MEMS electrostatic Vibration Energy Harvester (e-VEH) with conditioning circuit based on Bennet's doubler. Unlike the majority of conditioning circuits that charge a power supply, the circuit based on Bennet's doubler is characterized by the absence of switches requiring additional control electronics, and is free from hardly compatible with batch fabrication process inductive elements. Our experiment with a 0.042 cm3 batch fabricated MEMS e-VEH shows that a pre-charged capacitor as a power supply causes a voltage increase, followed by a saturation which was not reported before. This saturation is due to the nonlinear dynamics of the system and the electromechanical damping that is typical for MEMS. It has been found that because of that coupled behavior there exists an optimal power supply voltage at which output power is maximum. At 187 Hz / 4 g external vibrations the system is shown to charge a 12 V supply with a output power of 1.8 μW.

  6. Improving Planetary Rover Attitude Estimation via MEMS Sensor Characterization

    PubMed Central

    Hidalgo, Javier; Poulakis, Pantelis; Köhler, Johan; Del-Cerro, Jaime; Barrientos, Antonio

    2012-01-01

    Micro Electro-Mechanical Systems (MEMS) are currently being considered in the space sector due to its suitable level of performance for spacecrafts in terms of mechanical robustness with low power consumption, small mass and size, and significant advantage in system design and accommodation. However, there is still a lack of understanding regarding the performance and testing of these new sensors, especially in planetary robotics. This paper presents what is missing in the field: a complete methodology regarding the characterization and modeling of MEMS sensors with direct application. A reproducible and complete approach including all the intermediate steps, tools and laboratory equipment is described. The process of sensor error characterization and modeling through to the final integration in the sensor fusion scheme is explained with detail. Although the concept of fusion is relatively easy to comprehend, carefully characterizing and filtering sensor information is not an easy task and is essential for good performance. The strength of the approach has been verified with representative tests of novel high-grade MEMS inertia sensors and exemplary planetary rover platforms with promising results. PMID:22438761

  7. Improving planetary rover attitude estimation via MEMS sensor characterization.

    PubMed

    Hidalgo, Javier; Poulakis, Pantelis; Köhler, Johan; Del-Cerro, Jaime; Barrientos, Antonio

    2012-01-01

    Micro Electro-Mechanical Systems (MEMS) are currently being considered in the space sector due to its suitable level of performance for spacecrafts in terms of mechanical robustness with low power consumption, small mass and size, and significant advantage in system design and accommodation. However, there is still a lack of understanding regarding the performance and testing of these new sensors, especially in planetary robotics. This paper presents what is missing in the field: a complete methodology regarding the characterization and modeling of MEMS sensors with direct application. A reproducible and complete approach including all the intermediate steps, tools and laboratory equipment is described. The process of sensor error characterization and modeling through to the final integration in the sensor fusion scheme is explained with detail. Although the concept of fusion is relatively easy to comprehend, carefully characterizing and filtering sensor information is not an easy task and is essential for good performance. The strength of the approach has been verified with representative tests of novel high-grade MEMS inertia sensors and exemplary planetary rover platforms with promising results. PMID:22438761

  8. MEMS Rate Sensors for Space

    NASA Technical Reports Server (NTRS)

    Gambino, Joel P.

    1999-01-01

    Micromachined Electro Mechanical System Rate sensors offer many advantages that make them attractive for space use. They are smaller, consume less power, and cost less than the systems currently available. MEMS Rate Sensors however, have not been optimized for use on spacecraft. This paper describes an approach to developing MEMS Rate Sensors systems for space use.

  9. Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation

    PubMed Central

    Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang

    2014-01-01

    This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition. PMID:25268911

  10. Design of small MEMS microphone array systems for direction finding of outdoors moving vehicles.

    PubMed

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-01-01

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise. PMID:24603636

  11. Low-Loss, High-Isolation Microwave Microelectromechanical Systems (MEMS) Switches Being Developed

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    2002-01-01

    Switches, electrical components that either permit or prevent the flow of electricity, are the most important and widely used electrical devices in integrated circuits. In microwave systems, switches are required for switching between the transmitter and receiver; in communication systems, they are needed for phase shifters in phased-array antennas, for radar and communication systems, and for the new class of digital or software definable radios. Ideally, switches would be lossless devices that did not depend on the electrical signal's frequency or power, and they would not consume electrical power to change from OFF to ON or to maintain one of these two states. Reality is quite different, especially at microwave frequencies. Typical switches in microwave integrated circuits are pin diodes or gallium arsenide (GaAs) field-effect transistors that are nonlinear, with characteristics that depend on the power of the signal. In addition, they are frequency-dependent, lossy, and require electrical power to maintain a certain state. A new type of component has been developed that overcomes most of these technical difficulties. Microelectromechanical (MEMS) switches rely on mechanical movement as a response to an applied electrical force to either transmit or reflect electrical signal power. The NASA Glenn Research Center has been actively developing MEMS for microwave applications for over the last 5 years. Complete fabrication procedures have been developed so that the moving parts of the switch can be released with near 100-percent yield. Moreover, the switches fabricated at Glenn have demonstrated state-of-the-art performance. A typical MEMS switch is shown. The switch extends over the signal and ground lines of a finite ground coplanar waveguide, a commonly used microwave transmission line. In the state shown, the switch is in the UP state and all the microwave power traveling along the transmission line proceeds unimpeded. When a potential difference is applied

  12. MEMS-based phased arrays for army applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Holt, James C.; Mullins, James H.; Hudson, Tracy; Rock, Janice

    2007-04-01

    The Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) initiated a research and development project several years ago to develop Micro Electro-Mechanical Systems (MEMS)-based phased arrays to provide rapid beam steering for sensors, optical and Radio Frequency (RF) missile seekers, and RF communication links. In particular, the joint AMRDEC/Army Research Laboratory (ARL) project, which leverages low-cost phased array components developed under the Defense Advanced Research Projects Agency (DARPA) Low Cost Cruise Missile Defense (LCCMD) project, is developing RF switches, phase shifters, and passive phased sub-arrays to provide a fast scanning capability for pointing, acquisition, tracking, and data communication; and rugged, optical MEMS-based phased arrays to be employed in small volume, low-cost Laser Detection and Ranging (LADAR) seekers. The current status of the project is disclosed in this paper. Critical technical challenges, which include design and fabrication of the RF switches and phase shifters, design and fabrication of micro lens arrays, control of beam steering, scanning angular resolution and array losses, are discussed. Our approach to overcoming the technical barriers and achieving required performance is also discussed. Finally, the validity of a MEMS technology approach against competing low cost technologies is presented.

  13. Controlling Variable Emittance (MEMS) Coatings for Space Applications

    NASA Technical Reports Server (NTRS)

    Farrar, D.; Schneider, W.; Osiander, R.; Champion, J. L.; Darrin, A. G.; Douglas, Donya; Swanson, Ted D.

    2003-01-01

    Small spacecraft, including micro and nanosats, as they are envisioned for future missions, will require an alternative means to achieve thermal control due to their small power and mass budgets. One of the proposed alternatives is Variable Emittance (Vari-E) Coatings for spacecraft radiators. Space Technology-5 (ST-5) is a technology demonstration mission through NASA Goddard Space Flight Center (GSFC) that will utilize Vari-E Coatings. This mission involves a constellation of three (3) satellites in a highly elliptical orbit with a perigee altitude of approximately 200 kilometers and an apogee of approximately 38,000 kilometers. Such an environment will expose the spacecraft to a wide swing in the thermal and radiation environment of the earth's atmosphere. There are three (3) different technologies associated with this mission. The three technologies are electrophoretic, electrochromic, and Micro ElectroMechanical Systems (MEMS). The ultimate goal is to make use of Van-E coatings, in order to achieve various levels of thermal control. The focus of this paper is to highlight the Vari-E Coating MEMS instrument, with an emphasis on the Electronic Control Unit responsible for operating the MEMS device. The Test & Evaluation approach, along with the results, is specific for application on ST-5, yet the information provides a guideline for future experiments and/or thermal applications on the exterior structure of a spacecraft.

  14. On electrostatically actuated NEMS/MEMS circular plates

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Alvarado, Iris

    2011-04-01

    This paper deals with electrostatically actuated micro and nano-electromechanical (MEMS/NEMS) circular plates. The system under investigation consists of two bodies, a deformable and conductive circular plate placed above a fixed, rigid and conductive ground plate. The deformable circular plate is electrostatically actuated by applying an AC voltage between the two plates. Nonlinear parametric resonance and pull-in occur at certain frequencies and relatively large AC voltage, respectively. Such phenomena are useful for applications such as sensors, actuators, switches, micro-pumps, micro-tweezers, chemical and mass sensing, and micro-mirrors. A mathematical model of clamped circular MEMS/NEMS electrostatically actuated plates has been developed. Since the model is in the micro- and nano-scale, surface forces, van der Waals and/or Casimir, acting on the plate are included. A perturbation method, the Method of Multiple Scales (MMS), is used for investigating the case of weakly nonlinear MEMS/NEMS circular plates. Two time scales, fast and slow, are considered in this work. The amplitude-frequency and phase-frequency response of the plate in the case of primary resonance are obtained and discussed.

  15. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  16. Deformation analysis of MEMS structures by modified digital moiré methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Lou, Xinhao; Gao, Jianxin

    2010-11-01

    Quantitative deformation analysis of micro-fabricated electromechanical systems is of importance for the design and functional control of microsystems. In this paper, two modified digital moiré processing methods, Gaussian blurring algorithm combined with digital phase shifting and geometrical phase analysis (GPA) technique based on digital moiré method, are developed to quantitatively analyse the deformation behaviour of micro-electro-mechanical system (MEMS) structures. Measuring principles and experimental procedures of the two methods are described in detail. A digital moiré fringe pattern is generated by superimposing a specimen grating etched directly on a microstructure surface with a digital reference grating (DRG). Most of the grating noise is removed from the digital moiré fringes, which enables the phase distribution of the moiré fringes to be obtained directly. Strain measurement result of a MEMS structure demonstrates the feasibility of the two methods.

  17. A Step Made Toward Designing Microelectromechanical System (MEMS) Structures With High Reliability

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2003-01-01

    The mechanical design of microelectromechanical systems-particularly for micropower generation applications-requires the ability to predict the strength capacity of load-carrying components over the service life of the device. These microdevices, which typically are made of brittle materials such as polysilicon, show wide scatter (stochastic behavior) in strength as well as a different average strength for different sized structures (size effect). These behaviors necessitate either costly and time-consuming trial-and-error designs or, more efficiently, the development of a probabilistic design methodology for MEMS. Over the years, the NASA Glenn Research Center s Life Prediction Branch has developed the CARES/Life probabilistic design methodology to predict the reliability of advanced ceramic components. In this study, done in collaboration with Johns Hopkins University, the ability of the CARES/Life code to predict the reliability of polysilicon microsized structures with stress concentrations is successfully demonstrated.

  18. Fabrication and integration of permanent magnet materials into MEMS transducers

    NASA Astrophysics Data System (ADS)

    Wang, Naigang

    Microscale permanent magnets (PM) are a key building block for magnetically based microelectromechanical systems (MEMS), such as sensors, actuators, and energy converters. However, the inability to concurrently achieve good magnetic properties and an integrated magnet fabrication process hinders the development of magnetic MEMS. To address this need, this dissertation develops methods for wafer-level microfabrication of thick (10--500+ microm), high-performance, permanent magnets using low-temperature (<180 °C) process steps. These methods and materials are then used to demonstrate fully batch-fabricated magnetic MEMS transducers. Two methods to fabricate micromagnets are developed: electroplating of Co-rich Co-Pt magnets into photoresist-defined molds and micro-packing of rare-earth magnetic powders to form wax-bonded magnets embedded in silicon. Patterned micromagnets with excellent magnetic properties and process-flow compatibility are demonstrated. Electroplated Co-Pt micromagnets with thickness up to 10 microm exhibit out-of-plane anisotropy with coercivities and energy products of 330 kA/m and 69 kJ/m3, respectively. Wax-bonded Nd-Fe-B micromagnets (500 x 500 x 320 microm3) exhibit a coercivity of 737 kA/m and a maximum energy product of 17 kJ/m3 with isotopic behavior. The wax-bonded powder magnets are then integrated into MEMS fabrication processes to batch-fabricate various electrodynamic transducer prototypes. A cantilever-type microtransducer achieves a 2.7 microm vertical deflection at a driving current of 5.5 mArms at 100 Hz. A piston-type transducer with elastomeric membrane obtains a 2.2 microm vertical displacement at a driving current of 670 mArms at 200 Hz. These devices demonstrate the integrability of wax-bonded Nd-Fe-B powder magnets into microscale electromechanical transducers. Electromechanical lumped element models are then developed for the piston-type electrodynamic actuators. The models enable prediction of the device performance as an

  19. Reliability of materials in MEMS : residual stress and adhesion in a micro power generation system.

    SciTech Connect

    Moody, Neville Reid; Kennedy, Marian S.; Bahr, David F.

    2007-09-01

    The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems (MEMS). The reliability of these systems is often tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film from the substrate, researchers can predicts film lifetimes. Recent work has resulted in several different testing techniques to measure this energy including spontaneous buckling, indentation induced delamination and four point bending. This report focuses on developing quantifiable adhesion measurements for multiple thin film systems used in MEMS and other thin film systems of interest to Sandia programs. First, methods of accurately assessing interfacial toughness using stressed overlayer methods are demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies between different tests are identical if the energy put into the system is kept near the needed strain energy to cause delamination. When the energy in the system is greater than needed to cause delamination, calculated adhesion energies can increase by a factor of three due to plastic deformation. Dependence of calculated adhesion energies on applied energy in the system was also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO{sub 2} were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO{sub 2} system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then the adhesion energy began to decrease. While the trends in toughness are similar, the magnitude of the toughness values measured between the test methods is not the same, demonstrating the difficulty in extracting mode I toughness

  20. EMMA: Electromechanical Modeling in ALEGRA

    SciTech Connect

    1996-12-31

    To ensure high levels of deterrent capability in the 21st century, new stockpile stewardship principles are being embraced at Sandia National Laboratories. The Department of Energy Accelerated Strategic Computing Initiative (ASCI) program is providing the computational capacity and capability as well as funding the system and simulation software infrastructure necessary to provide accurate, precise and predictive modeling of important components and devices. An important class of components require modeling of piezoelectric and ferroceramic materials. The capability to run highly resolved simulations of these types of components on the ASCI parallel computers is being developed at Sandia in the ElectroMechanical Modeling in Alegra (EMMA) code. This a simulation capability being developed at Sandia National Laboratories for high-fidelity modeling of electromechanical devices. these devices can produce electrical current arising from material changes due to shock impact or explosive detonation.

  1. Wave-front coded optical readout for the MEMS-based uncooled infrared imaging system

    NASA Astrophysics Data System (ADS)

    Li, Tian; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Jia, Wei; Hui, Mei; Yu, Xiaomei; Gong, Cheng; Liu, Weiyu

    2012-11-01

    In the space limited infrared imaging system based MEMS, the adjustment of optical readout part is inconvenient. This paper proposed a method of wave-front coding to extend the depth of focus/field of the optical readout system, to solve the problem above, and to reduce the demanding for precision in processing and assemblage of the optical readout system itself as well. The wave-front coded imaging system consists of optical coding and digital decoding. By adding a CPM (Cubic Phase Mask) on the pupil plane, it becomes non-sensitive to defocussing within an extended range. The system has similar PSFs and almost equally blurred intermediate images can be obtained. Sharp images are supposed to be acquired based on image restoration algorithms, with the same PSF as a decoding core. We studied the conventional optical imaging system, which had the same optical performance with the wave-front coding one for comparing. Analogue imaging experiments were carried out. And one PSF was used as a simple direct inverse filter, for imaging restoration. Relatively sharp restored images were obtained. Comparatively, the analogue defocussing images of the conventional system were badly destroyed. Using the decrease of the MTF as a standard, we found the depth of focus/field of the wave-front coding system had been extended significantly.

  2. Sandia MEMS

    Energy Science and Technology Software Center (ESTSC)

    2002-06-13

    SUMMiT V (Sandia Ultra planar Multi level MEMS Technology) is a 5 level surface micromachine fabrication technology, which customers intornal and external to Sandia can access to fabricate prototype MEMS devices. This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standardmore » Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exist some files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Nole that the customer must purchase his/her own copy of Aut0CAD to use with these files.« less

  3. Optimal microelectromechanical systems (MEMS) device for achieving high pyroelectric response of AlN

    NASA Astrophysics Data System (ADS)

    Kebede, Bemnnet; Coutu, Ronald A.; Starman, LaVern

    2014-03-01

    This paper discusses research being conducted on aluminum nitride (AlN) as a pyroelectric material for use in detecting applications. AlN is being investigated because of its high pyroelectric coefficient, thermal stability, and high Curie temperature. In order to determine suitability of the pyroelectric properties of AlN for use as a detector, testing of several devices was conducted. These devices were fabricated using microelectromechanical systems (MEMS) fabrication processes; the devices were also designed to allow for voltage and current measurements. The deposited AlN films used were 150 nm - 300 nm in thickness. Thin-films were used to rapidly increase the temperature response after the thermal stimulus was applied to the pyroelectric material. This is important because the pyroelectric effect is directly proportional to the rate of temperature change. The design used was a face-electrode bridge that provides thermal isolation which minimizes heat loss to the substrate, thereby increasing operation frequency of the pyroelectric device. A thermal stimulus was applied to the pyroelectric material and the response was measured across the electrodes. A thermal imaging camera was used to monitor the changes in temperature. Throughout the testing process, the annealing temperatures, type of layers, and thicknesses were also varied. These changes resulted in improved MEMS designs, which were fabricated to obtain an optimal design configuration for achieving a high pyroelectric response. A pyroelectric voltage response of 38.9 mVp-p was measured without filtering, 12.45 mVp-p was measured in the infrared (IR) region using a Si filter, and 6.38 mVp-p was measured in the short wavelength IR region using a long pass filter. The results showed that AlN's pyroelectric properties can be used in detecting applications.

  4. Fabrication of Diffractive Optical Elements for an Integrated Compact Optical-MEMS Laser Scanner

    SciTech Connect

    WENDT,JOEL R.; KRYGOWSKI,T.W.; VAWTER,GREGORY A.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; WARREN,MIAL E.; REYES,DAVID NMN

    2000-07-13

    The authors describe the microfabrication of a multi-level diffractive optical element (DOE) onto a micro-electromechanical system (MEMS) as a key element in an integrated compact optical-MEMS laser scanner. The DOE is a four-level off-axis microlens fabricated onto a movable polysilicon shuttle. The microlens is patterned by electron beam lithography and etched by reactive ion beam etching. The DOE was fabricated on two generations of MEMS components. The first generation design uses a shuttle suspended on springs and displaced by a linear rack. The second generation design uses a shuttle guided by roller bearings and driven by a single reciprocating gear. Both the linear rack and the reciprocating gear are driven by a microengine assembly. The compact design is based on mounting the MEMS module and a vertical cavity surface emitting laser (VCSEL) onto a fused silica substrate that contains the rest of the optical system. The estimated scan range of the system is {+-}4{degree} with a spot size of 0.5 mm.

  5. Micro space power system using MEMS fuel cell for nano-satellites

    NASA Astrophysics Data System (ADS)

    Lee, Jongkwang; Kim, Taegyu

    2014-08-01

    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  6. High temperature measurement set-up for the electro-mechanical characterization of robust thin film systems

    NASA Astrophysics Data System (ADS)

    Fricke, S.; Friedberger, A.; Seidel, H.; Schmid, U.

    2014-01-01

    Due to economic and environmental requirements there is a strong need both to increase the efficiency and to monitor the actual status of gas turbines, rocket engines and deep drilling systems. For these applications, micromachined pressure sensors based on a robust substrate material (e.g. sapphire) as well as strain gauges made of platinum for long-term stable operation are regarded as most promising to withstand harsh environments such as high temperature levels, aggressive media and/or high pressure loads. For pre-evaluation purposes, a novel, custom-built measurement set-up is presented allowing the determination of electro-mechanical thin film properties up to 850 °C. Key components of the measurement set-up are the one-sided clamped beam made of Al2O3 ceramics which is deflected by a quartz rod and a high precision encoder-controlled dc motor to drive the quartz rod. The specific arrangement of the infrared halogen heaters in combination with the gold coated quartz half shells ensures a high degree of temperature homogeneity along the beam axis. When exposed to tensile as well as compressive load conditions, the corresponding gauge factor values of 1 µm thick platinum thin films show a good comparison at room temperature and in the temperature range from 600 up to 850 °C where the effects originating from grain boundaries or from the film surfaces are negligible. Between 150 and 600 °C, however, a strong deviation in the gauge factor determination depending on the mechanical load condition is observed, which is attributed to the gliding of adjacent grains.

  7. Failure analysis of radio frequency (rf) micro-electro-mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Walraven, Jeremy A.; Cole, Edward I., Jr.; Sloan, Lynn R.; Hietala, Susan L.; Tigges, Chris P.; Dyck, Christopher W.

    2001-10-01

    MEMS are rapidly emerging as critical components in the telecommunications industry. This enabling technology is currently being implemented in a variety of product and engineering applications. MEMS are currently being used as optical switches to reroute light, tunable filters, and mechanical resonators. Radio frequency (RF) MEMS must be compatible with current Gallium Arsenide (GaAs) microwave integrated circuit (MMIC) processing technologies for maximum integration levels. The RF MEMS switch discussed in this paper was fabricated using various layers of polyimide, silicon oxynitride (SiON), gold, and aluminum monolithically fabricated on a GaAs substrate. Fig. 1 shows a metal contacting series switch. This switch consists of gold signal lines (transmission lines), and contact metallization. SiON was deposited to form the fixed-fixed beam, and aluminum was deposited to form the top actuation electrode. To ensure product performance and reliability, RF MEMS switches are tested at both the wafer and package levels. Various processing irregularities may pass the visual inspection but fail electrical testing. This paper will focus on the failure mechanisms found in the first generation of RF MEMS developed at Sandia National Laboratories. Various tools and techniques such as scanning electron microscopy (SEM), resistive contrast imaging (RCI), focused ion beam (FIB), and thermally-induced voltage alteration (TIVA) have been employed to diagnose the failure mechanisms. The analysis performed using these tools and techniques led to corrective actions implemented in the next generation of RF MEMS metal contacting series switches.

  8. Ultrasonic Multiple-Access Ranging System Using Spread Spectrum and MEMS Technology for Indoor Localization

    PubMed Central

    Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah

    2014-01-01

    Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084

  9. Triz in Mems

    NASA Astrophysics Data System (ADS)

    Apte, Prakash R.

    1999-11-01

    TRIZ is a Russian abbreviation. Genrich Altshuller developed it fifty years ago in the former Soviet Union. He examined thousands of inventions made in different technological systems and formulated a 'Theory of Inventive problem solving' (TRIZ). Altshuller's research of over fifty years on Creativity and Inventive Problem Solving has led to many different classifications, methods and tools of invention. Some of these are, Contradictions table, Level of inventions, Patterns in evolution of technological systems, ARIZ-Algorithm for Inventive Problem Solving, Diagnostic problem solving and Anticipatory Failure Determination. MEMS research consists of conceptual design, process technology and including of various Mechanical, ELectrical, Thermal, Magnetic, Acoustic and other effects. MEMS system s are now rapidly growing in complexity. Each system will thus follow one or more 'patterns of evolution' as given by Altshuller. This paper attempts to indicate how various TRIZ tools can be used in MEMS research activities.

  10. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    SciTech Connect

    Acheli, A. Serhane, R.

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  11. Surface micromachined MEMS tunable VCSEL at 1550 nm with > 70 nm single mode tuning

    NASA Astrophysics Data System (ADS)

    Gierl, Christian; Gründl, Tobias; Debernardi, Pierluigi; Zogal, Karolina; Davani, Hooman A.; Grasse, Christian; Böhm, Gerhard; Meissner, Peter; Küppers, Franko; Amann, Markus-Christian

    2012-03-01

    We present surface micro-machined tunable vertical-cavity surface-emitting lasers (VCSELs) operating around 1550nm with tuning ranges up to 100nm and side mode suppression ratios beyond 40 dB. The output power reaches 3.5mW at 1555 nm. The electro-thermal and the electro-statical actuation of a micro electro-mechanical system (MEMS) movable distributed Bragg reflector (DBR) membrane increases/decreases the cavity length which shifts the resonant wavelength of the cavity to higher/lower values. The wavelength is modulated with 200 Hz/120 kHz. Both tuning mechanisms can be used simultaneously within the same device. The newly developed surface micro-machining technology uses competitive dielectric materials for the MEMS, deposited with low temperature plasma enhanced chemical vapor deposition (PECVD), which is cost effective and capable for on wafer mass production.

  12. MEMS Reliability Assurance Activities at JPL

    NASA Technical Reports Server (NTRS)

    Kayali, S.; Lawton, R.; Stark, B.

    2000-01-01

    An overview of Microelectromechanical Systems (MEMS) reliability assurance and qualification activities at JPL is presented along with the a discussion of characterization of MEMS structures implemented on single crystal silicon, polycrystalline silicon, CMOS, and LIGA processes. Additionally, common failure modes and mechanisms affecting MEMS structures, including radiation effects, are discussed. Common reliability and qualification practices contained in the MEMS Reliability Assurance Guideline are also presented.

  13. MEMS Reliability Assurance Guidelines for Space Applications

    NASA Technical Reports Server (NTRS)

    Stark, Brian (Editor)

    1999-01-01

    This guide is a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability. Material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS are addressed in detail. Design and qualification methodologies provide the reader with the means to develop suitable qualification plans for the insertion of MEMS into the space environment.

  14. Electromechanical systems with transient high power response operating from a resonant ac link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.

  15. Concepts using optical MEMS array for ladar scene projection

    NASA Astrophysics Data System (ADS)

    Smith, J. Lynn

    2003-09-01

    Scene projection for HITL testing of LADAR seekers is unique because the 3rd dimension is time delay. Advancement in AFRL for electronic delay and pulse shaping circuits, VCSEL emitters, fiber optic and associated scene generation is underway, and technology hand-off to test facilities is expected eventually. However, size and cost currently projected behooves cost mitigation through further innovation in system design, incorporating new developments, cooperation, and leveraging of dual-purpose technology. Therefore a concept is offered which greatly reduces the number (thus cost) of pulse shaping circuits and enables the projector to be installed on the mobile arm of a flight motion simulator table without fiber optic cables. The concept calls for an optical MEMS (micro-electromechanical system) steerable micro-mirror array. IFOV"s are a cluster of four micro-mirrors, each of which steers through a unique angle to a selected light source with the appropriate delay and waveform basis. An array of such sources promotes angle-to-delay mapping. Separate pulse waveform basis circuits for each scene IFOV are not required because a single set of basis functions is broadcast to all MEMS elements simultaneously. Waveform delivery to spatial filtering and collimation optics is addressed by angular selection at the MEMS array. Emphasis is on technology in existence or under development by the government, its contractors and the telecommunications industry. Values for components are first assumed as those that are easily available. Concept adequacy and upgrades are then discussed. In conclusion an opto-mechanical scan option ranks as the best light source for near-term MEMS-based projector testing of both flash and scan LADAR seekers.

  16. Enhancing the force capability of permanent magnet latching actuators for electromechanical valve actuation systems

    NASA Astrophysics Data System (ADS)

    Rens, J.; Clark, R. E.; Jewell, G. W.; Howe, D.

    2005-05-01

    This article introduces a topology of parallel-polarized permanent magnet latching actuator for use in electromagnetic valve actuation systems for internal combustion engines. The actuator has a number of advantages over reluctance actuators, commonly employed in such systems, in terms of reduced starting currents and fail-safe capability. The influence of a number of design features on actuator performance, such as tooth tapering, additional magnets to improve the main magnet flux path and prevent the onset of saturation, and mechanical clearances required to protect the permanent magnet from shock loads are investigated. The design study findings are verified by measurements on a prototype actuator.

  17. Electromechanical Dynamics Simulations of Superconducting LSM Rocket Launcher System in Attractive-Mode

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi

    1996-01-01

    Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.

  18. Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging

    NASA Astrophysics Data System (ADS)

    Jayaraman, V.; John, D. D.; Burgner, C.; Robertson, M. E.; Potsaid, B.; Jiang, J. Y.; Tsai, T. H.; Choi, W.; Lu, C. D.; Heim, P. J. S.; Fujimoto, J. G.; Cable, A. E.

    2014-03-01

    Since the first demonstration of swept source optical coherence tomography (SS-OCT) imaging using widely tunable micro-electromechanical systems vertical cavity surface-emitting lasers (MEMS-VCSELs) in 2011, VCSEL-based SSOCT has advanced in both device and system performance. These advances include extension of MEMS-VCSEL center wavelength to both 1060nm and 1300nm, improved tuning range and tuning speed, new SS-OCT imaging modes, and demonstration of the first electrically pumped devices. Optically pumped devices have demonstrated continuous singlemode tuning range of 150nm at 1300nm and 122nm at 1060nm, representing a fractional tuning range of 11.5%, which is nearly a factor of 3 greater than the best reported MEMS-VCSEL tuning ranges prior to 2011. These tuning ranges have also been achieved with wavelength modulation rates of >500kHz, enabling >1 MHz axial scan rates. In addition, recent electrically pumped devices have exhibited 48.5nm continuous tuning range around 1060nm with 890kHz axial scan rate, representing a factor of two increase in tuning over previously reported electrically pumped MEMS-VCSELs in this wavelength range. New imaging modes enabled by optically pumped devices at 1060nm and 1300nm include full eye length imaging, pulsatile Doppler blood flow imaging, high-speed endoscopic imaging, and hand-held wide-field retinal imaging.

  19. MEMS Using SOI Substrate

    NASA Technical Reports Server (NTRS)

    Tang, Tony K.

    1999-01-01

    At NASA, the focus for smaller, less costly missions has given impetus for the development of microspacecraft. MicroElectroMechanical System (MEMS) technology advances in the area of sensor, propulsion systems, and instruments, make the notion of a specialized microspacecraft feasible in the immediate future. Similar to the micro-electronics revolution,the emerging MEMS technology offers the integration of recent advances in micromachining and nanofabrication techniques with microelectronics in a mass-producible format,is viewed as the next step in device and instrument miniaturization. MEMS technology offers the potential of enabling or enhancing NASA missions in a variety of ways. This new technology allows the miniaturization of components and systems, where the primary benefit is a reduction in size, mass and power. MEMS technology also provides new capabilities and enhanced performance, where the most significant impact is in performance, regardless of system size. Finally,with the availability of mass-produced, miniature MEMS instrumentation comes the opportunity to rethink our fundamental measurement paradigms. It is now possible to expand our horizons from a single instrument perspective to one involving multi-node distributed systems. In the distributed systems and missions, a new system in which the functionality is enabled through a multiplicity of elements. Further in the future, the integration of electronics, photonics, and micromechanical functionalities into "instruments-on-a-chip" will provide the ultimate size, cost, function, and performance advantage. In this presentation, I will discuss recent development, requirement, and applications of various MEMS technologies and devices for space applications.

  20. Performance of MEMS-based gas distribution and control systems for semiconductor processing

    NASA Astrophysics Data System (ADS)

    Henning, Albert K.; Fitch, John; Harris, James M.; Arkilic, Errol B.; Cozad, Brad A.; Dehan, Ben

    1998-09-01

    The advent of microelectromechanical systems has enabled dramatic changes in diverse technological areas. In terms of control and distribution of liquids and gases (microfluidics), MEMS-based devices offer opportunities to achieve increased performance, and higher levels of functional integration, at lower cost, with decreased size and increased reliability. This work focuses on recent research and development of high-purity gags distribution and control systems for semiconductor processing. These systems include the following components, based upon both normally-open and normally-closed microvalves: pressure- based mass flow controllers; vacuum leak-rate shut-off valves; and pressure regulators. Advanced packaging techniques enable these components to be integrated into gas sticks and panels which have small size, corrosion-resistant wetted materials, small dead volumes, and minimal particle generation. Principles of operation of components and panels, and performance data at both the component and system level, will be presented. The potential for 10X size reduction (linear dimension), 2X product yield improvement (through increased reliability, improved flow accuracy and repeatability, and contamination reduction), and 5X reduction in process gas consumption, will also be addressed. Particular emphasis on characterization and verification of flow measurements in mass flow controllers (versus NIST standards), and the flow models used in designing and characterizing these systems, will be made.

  1. Dynamics of self-organization of ramified patterns in an electromechanical system

    NASA Astrophysics Data System (ADS)

    Jun, Joseph

    We study the dynamcal self-organization of conducting particles into ramified tree networks when subjected to strong electric fields. We find that for a general class of initial configurations of particles that the trees grow in three stages: (I) strand formation, (II) boundary connection, and (III) geometric expansion. We show that graph theoretical measures like the average adjacency of particles clearly delineate the three growth stages. Additionally, we find that each particle becomes one of three species of particles, depending on the number of connections each particle makes with neighboring; this process occurs on a relatively short time scale. We find that the numbers of each kind of species is statistically robust across different experiments that have similar numbers of particles. We numerically explore the electrodynamic properties of the system, including the overall resistance; we find that this quantity scales non-linearly with the number of particles in the network. We qualitatively investigate the effects of the initial configuration of particles, and we find that the initial conditions strongly influence the final form of the networks, e.g. their topological structure. To understand how the geometrical arrangement of particles influences the steady-state topology of the system, we generate artificial trees using experimental data to seed our algorithms. By applying graph theory to the system, we attempt to predict the topological structure of the experimental trees. To accomplish this, we use three algorithms: (1) random, (2) minimal spanning, and (3) propagating front. We compare the results of the different algorithms and find that the minimal spanning tree algorithm reproduces the best match to the statistics of the experimental trees. In the experiments described above, we explore the dynamics of how tree structures self-organize in the system. We are also interested, more generally, in how the detailed structure of ramified patterns affects

  2. A MEMS based Field Emission Electrical Propulsion System with Integrated Charge Neutralizer for Nano and Pico Spacecrafts

    NASA Astrophysics Data System (ADS)

    Flaron, R. A. W.; Hales, J. H.

    2004-10-01

    As spacecrafts becomes increasingly smaller miniaturization of propulsion systems is necessary. Here we present a novel concept for a Field Emission Electrical Propulsion (FEEP) system fabricated on a silicon wafer substrate using Micro Electro Mechanical System (MEMS) technologies. The use of silicon wafers and MEMS technologies allows for the fabrication of devices with feature sizes in the micrometer range. The device consists of a liquid metal source, a capillary and an acceleration grid. The electrical field causes the liquid metal to form a Taylor cone at the end of the capillary. When the electrical field is sufficiently strong, field evaporation occurs and metal ions are emitted from the apex of the cone and accelerated towards the grid. As positive ions are emitted the space craft builds up negative charge. In order to cancel out the negative charge we have incorporated an electron emitter in the design.

  3. Micro-Electromechanical Instrument and Systems Development at the Charles Stark Draper Laboratory

    NASA Technical Reports Server (NTRS)

    Connelly, J. H.; Gilmore, J. P.; Weinberg, M. S.

    1995-01-01

    Several generations of micromechanical gyros and accelerometers have been developed at Draper. Current design effort centers on tuning-fork gyro design and pendulous accelerometer configurations. Over 200 gyros of different generations have been packaged and tested. These units have successfully performed across a temperature range of -40 to 85 degrees C, and have survived 30,000-g shock tests along all axes. Draper is currently under contract to develop an integrated micro-mechanical inertial sensor assembly (MMISA) and global positioning system (GPS) receiver configuration. The ultimate projections for size, weight, and power for an MMISA, after electronic design of the application specific integrated circuit (ASIC ) is completed, are 2 x 2 x 0.5 cm, 5 gm, and less than 1 W, respectively. This paper describes the fabrication process, the current gyro and accelerometer designs, and system configurations.

  4. Robust RLS Methods for On-line Estimation of Power System Electromechanical Modes

    SciTech Connect

    Zhou, Ning; Pierre, John W.; Trudnowski, Daniel; Guttromson, Ross T.

    2007-08-01

    This paper proposes a Robust Recursive Least Square (RRLS) algorithm for on-line identification of power system modes based on measurement data. The measurement data can either be ambient or ringdown. Also, the mode estimation is provided in real-time. The validity of the proposed RRLS algorithm is demon-strated with both simulation data from a 17-machine model and field measurement data from a Wide Area Measurement System (WAMS). Comparison with the conventional Recursive Least Square (RLS) and Least Means Square (LMS) algorithms shows that the proposed RRLS algorithm can identify the modes from the combined ringdown and ambient signals with outliers and missing data in real time without noticeable performance degra-dation. An adaptive detrend algorithm is also proposed to remove the signal trend based on the RRLS algorithm. It is shown that the algorithm can keep up with the measurement data flow and work on-line to provide real time mode estimation.

  5. Scalable neutral atom quantum computing with MEMS micromirrors

    NASA Astrophysics Data System (ADS)

    Knoernschild, Caleb; Lu, Felix; Ryu, Hoon; Feng, Michael; Kim, Jungsang

    2010-03-01

    In order to realize a useful atom-based quantum computer, a means to efficiently distribute critical laser resources to multiple trap locations is essential. Optical micro-electromechanical systems (MEMS) can provide the scalability, flexibility, and stability needed to help bridge the gap between fundamental demonstrations of quantum gates to large scale quantum computing of multiple qubits. Using controllable, broadband micromirrors, an arbitrary atom in a 1, 2, or 3 dimensional optical lattice can be addressed with a single laser source. It is straightforward to scale this base system to address n arbitrary set of atoms simultaneously using n laser sources. We explore on-demand addressability of individual atoms trapped in a 1D lattice, as well as investigate the effect the micromirrors have on the laser beam quality and phase stability.

  6. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  7. A novel evaluating method for the MEMS-based uncooled IR system

    NASA Astrophysics Data System (ADS)

    Fan, Bingqing; Zhao, Yuejin; Dong, Liquan

    2009-11-01

    An experiment using 4f system model is designed to test the consistency of the units on the FPA , which is made based on MEMS technology. An optical stop as a filter is set at the back focal plane of the first lens. We get each image where the light source locates when it is rotated round FPA. The size of the stop and the rotating angle can be deduced according to the parameters of two lens. Meanwhile reflectance spectrum of each unit on the FPA can be drawn with the gray level of the image presented by CCD. Contourgraph is used to test the displacement deflection value caused by thermal deformation of FPA. According to the displacement deflection value and the unit size of FPA, we get the average deflection angle of FPA's units when temperature changes per centigrade degree. We can define a gray level difference of two adjacent images at the same position as M. When we let the value of M larger than a number N, we can say that the system has met the requirement of temperature sensitivity-T. With the help of M, light rotating angle and FPA's deflection angle, we can get the temperature sensitivity of the IR system. The actual value of temperature sensitivity approximates the NETD of the system. The calculating process proves that it can estimate the NETD, if we don't want to get the accurate value of NETD. The expression of T is much easier and more feasible than that of NETD.

  8. KAPAO: a MEMS-based natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Contreras, Daniel S.; Gilbreth, Blaine N.; Littleton, Erik; McGonigle, Lorcan P.; Morrison, William A.; Rudy, Alex R.; Wong, Jonathan R.; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2013-03-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions, both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges), has enabled us to engage physics, astronomy, and engineering undergraduates in all phases of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  9. Method and system for automated on-chip material and structural certification of MEMS devices

    DOEpatents

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.

    2003-05-20

    A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.

  10. Atomistic and model description of nanotube electromechanical devices

    NASA Astrophysics Data System (ADS)

    Rotkin, Slava V.

    2003-03-01

    Nanotubes (NTs), which are natural objects on the size scale compatible with nanodevices and bio-molecules, exhibit several unique properties by themselves and in specific environments such as electronic, bio-chemical or electromechanical nanodevices. A compact continuum model has been developed [1] for the multi-scale calculation of NT behavior in various devices, ranging from Nano-Electromechanical Systems (NEMS)[2] to Light-Controlled Molecular Switches [3]. The continuum model parameterization is based on Molecular Dynamics and microscopic modeling. For example, elements of quantum mechanical consideration were introduced through the calculation of the nanotube polarizability, atomistic capacitance [4], and van der Waals interaction [5]. Quantum-chemistry approach was used for computation of an equilibrium structure of chemically modified NTs. An analytical expression will be discussed for quantum capacitance of metallic NTs with arbitrary lateral deformation. Compact model and a quantum mechanical simulation will be compared for the NT charge density calculation. A scattering probability for a potential of charged impurity and ballistic conductance of NT channel have been computed for a light controlled electronic NT switch. Analytical expression for the pull-in voltage for NT NEMS will be presented with quantum corrections and van der Waals interactions taken into account. This calculation will demonstrate that a principal physical limit exists for fabricating NEMS [6]. 1. N.R.Aluru, et.al., in Handbook of Nanoscience, Engineering and Technology, Eds: W.Goddard, et.al.; CRC Press, 2002 2. M.Dequesnes, S.V.Rotkin, N.R.Aluru, Nanotechnology 13, 2002 3. S.V.Rotkin, I.Zharov, Int.J.of Nanoscience 1(3/4) 2002 4. K.A.Bulashevich, S.V.Rotkin, JETPL 75(4) 2002 5. S.V.Rotkin, K.Hess, J.of Comp.Electronics 1(3) 2002 6. S.V.Rotkin, in Microfabr. Syst. and MEMS, Eds: P. J. Hesketh, et.al. ECS Inc., Pennington, NJ, USA 2002

  11. Probing contact-mode characteristics of silicon nanowire electromechanical systems with embedded piezoresistive transducers

    NASA Astrophysics Data System (ADS)

    Yang, Rui; He, Tina; Tupta, Mary Anne; Marcoux, Carine; Andreucci, Philippe; Duraffourg, Laurent; X-L Feng, Philip

    2015-09-01

    This article reports on a new method of monitoring nanoscale contacts in switches based on nanoelectromechanical systems, where the contact-mode switching characteristics can be recorded with the sensitive embedded piezoresistive (PZR) strain transducers. The devices are manufactured using state-of-the-art wafer-scale silicon-on-insulator technology featuring suspended silicon cantilevers and beams as switching elements and sub-100 nm thin silicon nanowires (SiNWs) as PZR transducers. Several different device configurations are studied, including mechanically ‘cross’-shaped (‘+’), coupled cantilever-SiNW structures, with and without local drain electrodes, and doubly clamped SiNW beams. Through detailed measurement and analysis, we demonstrate that the PZR transducers can enable detection of both mechanical and tunneling switching with multiple repeatable cycles. With the strong PZR effects in thin SiNWs, this type of device could be valuable especially for monitoring cold switching events, and when conventional direct readout of the switching events from the local gate or drain electrodes would not be efficient or sensitive, as nanoscale contacts may not be highly conductive, or may be degrading over time.

  12. Development of an Emergency Locking Unit for a Belt-In-Seat (BIS) System Using a MEMS Acceleration Sensor

    PubMed Central

    Baek, Chang Hyun; Lee, Jeong Wan; Kim, Seock Hyun; Paek, Insu

    2010-01-01

    This paper proposes an emergency locking unit (ELU) for a seat belt retractor which is mounted on the back frame of a vehicle seat. The proposed unit uses a recliner sensor based on a MEMS acceleration sensor and solenoid mechanism. The seat has an upper frame supported to tilt on a lower frame. The retractor in belt in seat (BIS) system is supported by the upper frame. The proposed recliner sensor based on a MEMS acceleration sensor comprises orientation means for maintaining a predetermined orientation of emergency relative to the lower frame independently of the force of gravity when the upper frame tilts on the lower frame. Experimental results show that the developed recliner sensor unit operates effectively with respect to rollover angles. Thus, the developed unit will have a considerable potential to offer a new design concept in BIS system. PMID:22319324

  13. Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Staninec, Michal; Darling, Cynthia; Kang, Hobin; Chan, Kenneth

    2012-01-01

    New methods are needed for the nondestructive measurement of tooth demineralization and remineralization to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm, it is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results using a new cross-polarization OCT system introduced by Santec. This system utilizes a swept laser source and a MEMS scanner for rapid acquisition of cross polarization images. Preliminary studies show that this system is useful for measurement of the severity of demineralization on tooth surfaces and for showing the spread of occlusal lesions under the dentinal-enamel junction.

  14. Design of a MEMS-based retina scanning system for biometric authentication

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Schelinski, Uwe; Grüger, Heinrich

    2014-05-01

    There is an increasing need for reliable authentication for a number of applications such as e commerce. Common authentication methods based on ownership (ID card) or knowledge factors (password, PIN) are often prone to manipulations and may therefore be not safe enough. Various inherence factor based methods like fingerprint, retinal pattern or voice identifications are considered more secure. Retina scanning in particular offers both low false rejection rate (FRR) and low false acceptance rate (FAR) with about one in a million. Images of the retina with its characteristic pattern of blood vessels can be made with either a fundus camera or laser scanning methods. The present work describes the optical design of a new compact retina laser scanner which is based on MEMS (Micro Electric Mechanical System) technology. The use of a dual axis micro scanning mirror for laser beam deflection enables a more compact and robust design compared to classical systems. The scanner exhibits a full field of view of 10° which corresponds to an area of 4 mm2 on the retinal surface surrounding the optical disc. The system works in the near infrared and is designed for use under ambient light conditions, which implies a pupil diameter of 1.5 mm. Furthermore it features a long eye relief of 30 mm so that it can be conveniently used by persons wearing glasses. The optical design requirements and the optical performance are discussed in terms of spot diagrams and ray fan plots.

  15. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  16. High performance MEMS accelerometers for concrete SHM applications and comparison with COTS accelerometers

    NASA Astrophysics Data System (ADS)

    Kavitha, S.; Joseph Daniel, R.; Sumangala, K.

    2016-01-01

    Accelerometers used for civil and huge mechanical structural health monitoring intend to measure the shift in the natural frequency of the monitored structures (<100 Hz) and such sensors should have large sensitivity and extremely low noise floor. Sensitivity of accelerometers is inversely proportional to the frequency squared. Commercial MEMS (Micro Electro-Mechanical System) accelerometers that are generally designed for large bandwidth (e.g 25 kHz in ADXL150) have poor sensor level sensitivity and therefore uses complex signal conditioning electronics to achieve large sensitivity and low noise floor which in turn results in higher cost. In this work, an attempt has been made to design MEMS capacitive and piezoresistive accelerometers for smaller bandwidth using IntelliSuite and CoventorWare MEMS tools respectively. The various performance metrics have been obtained using simulation experiments and the results show that these sensors have excellent voltage sensitivity, noise performance and high resolution at sensor level and are even superior to commercial MEMS accelerometers.

  17. Review of polymer MEMS micromachining

    NASA Astrophysics Data System (ADS)

    Kim, Brian J.; Meng, Ellis

    2016-01-01

    The development of polymer micromachining technologies that complement traditional silicon approaches has enabled the broadening of microelectromechanical systems (MEMS) applications. Polymeric materials feature a diverse set of properties not present in traditional microfabrication materials. The investigation and development of these materials have opened the door to alternative and potentially more cost effective manufacturing options to produce highly flexible structures and substrates with tailorable bulk and surface properties. As a broad review of the progress of polymers within MEMS, major and recent developments in polymer micromachining are presented here, including deposition, removal, and release techniques for three widely used MEMS polymer materials, namely SU-8, polyimide, and Parylene C. The application of these techniques to create devices having flexible substrates and novel polymer structural elements for biomedical MEMS (bioMEMS) is also reviewed.

  18. Crack growth phenomena in micro-machined single crystal silicon and design implications for micro electro mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Alissa Mirella

    The creation of micron-sized mechanisms using semiconductor processing technology is known collectively as MEMS, or Micro Electro Mechanical Systems. Many MEMS devices, such as accelerometers and switches, have mechanical structures fabricated from single crystal silicon, a brittle material. The reliability and longevity of these devices depends on minimizing the probability of fracture, and therefore requires a thorough understanding of crack growth phenomena in silicon. In this study, a special micro-machined fracture specimen, the compression-loaded double cantilever beam, was developed to study fracture phenomena in single crystal silicon on a size scale relevant to MEMS. The decreasing stress intensity geometry of this sample provided stable, controllable crack propagation in test sections as thin as 100 mum. Several common MEMS fabrication methods (plasma and chemical etch) were used to achieve a range of surface finishes. A 650 A thick titanium crack gage was used to directly measure crack extension as a function of time using the potential drop technique. High speed (100 MHz) data acquisition techniques were employed to capture fracture events on the sub-microsecond time scale. The stability of the sample design and the micron-scale resolution of the crack gage facilitated investigation into the existence of a stress corrosion effect in silicon. No evidence of sub-critical crack growth due to exposure to humid air was found in carefully controlled tests lasting up to 24 hours. Rapid crack propagation velocities (>1 km/s) during quasi-static loading were recorded using high speed data acquisition techniques. Unique evidence was found of reflected stress waves causing multiple, momentary arrests during rapid fracture events. These measurements, along with atomic force microscope scans of the fracture surfaces, offer new insight into the kinetics of the fracture process in silicon. Over 100 micro-machined samples were fractured in this research. Weibull

  19. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  20. Pedestrian mobile mapping system for indoor environments based on MEMS IMU and range camera

    NASA Astrophysics Data System (ADS)

    Haala, N.; Fritsch, D.; Peter, M.; Khosravani, A. M.

    2011-12-01

    This paper describes an approach for the modeling of building interiors based on a mobile device, which integrates modules for pedestrian navigation and low-cost 3D data collection. Personal navigation is realized by a foot mounted low cost MEMS IMU, while 3D data capture for subsequent indoor modeling uses a low cost range camera, which was originally developed for gaming applications. Both steps, navigation and modeling, are supported by additional information as provided from the automatic interpretation of evacuation plans. Such emergency plans are compulsory for public buildings in a number of countries. They consist of an approximate floor plan, the current position and escape routes. Additionally, semantic information like stairs, elevators or the floor number is available. After the user has captured an image of such a floor plan, this information is made explicit again by an automatic raster-to-vector-conversion. The resulting coarse indoor model then provides constraints at stairs or building walls, which restrict the potential movement of the user. This information is then used to support pedestrian navigation by eliminating drift effects of the used low-cost sensor system. The approximate indoor building model additionally provides a priori information during subsequent indoor modeling. Within this process, the low cost range camera Kinect is used for the collection of multiple 3D point clouds, which are aligned by a suitable matching step and then further analyzed to refine the coarse building model.

  1. Analysis of resonant pull-in of micro-electromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Juillard, Jérôme

    2015-08-01

    In this paper, the equations governing the pull-in of electrostatic (micro-electromechanical systems MEMS) oscillators are established and analyzed. This phenomenon defines the maximal oscillation amplitude that can be obtained without incurring instability and, hence, an upper limit to the performance of a given device. The proposed approach makes it possible to accurately predict pull-in behavior from the purely resonant case, in which the electrostatic bias is very small, to the static case. The method is first exposed in the case of a parallel-plate resonator and the influence of the excitation waveform on the resonant pull-in characteristics is assessed. It is then extended to the more complex case of clamped-clamped and cantilever beams. The results are validated by comparison with transient simulations.

  2. Electro-Mechanical Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    This electromechanical technician curriculum covers the following general areas: (1) basic soldering; (2) reading diagrams and following schematics; and (3) repairing circuitry and mechanics common to major appliances, vending machines, amusement equipment, and small office machines. The manual includes the following sections: (1) course…

  3. Electromechanical Technician Skills Questionnaire.

    ERIC Educational Resources Information Center

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This document contains test items to measure the job skills of electromechanical technicians. Questions are organized in four sections that cover the following topics: (1) shop math; (2) electricity and electronics; (3) mechanics and machining; and (4) plumbing, heating, ventilation and air conditioning, and welding skills. Questions call for…

  4. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  5. Electromechanical Energy Conversion.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text on electromechanical energy conversion (motors and generators) was developed under contract with the U.S. Office of Education as Number 12 in a series of materials for use in an electrical engineering sequence. It is intended to be used in conjunction with other materials and with other short texts in the series. (DH)

  6. Electromechanical railgun model

    SciTech Connect

    Hively, L.M. ); Condit, W.C. )

    1991-07-01

    In this paper, the electromechanical aspects of railgun motion are modeled analytically. A Lagrangian formulation is used to obtain the force and circuit equations, which are then solved for energy conservation and resistive flux decay. The resulting integral equation is solved for the barrel length as a measure of the launcher size and cost.

  7. A scoping review of studies comparing the medication event monitoring system (MEMS) with alternative methods for measuring medication adherence.

    PubMed

    El Alili, Mohamed; Vrijens, Bernard; Demonceau, Jenny; Evers, Silvia M; Hiligsmann, Mickael

    2016-07-01

    Different methods are available for measuring medication adherence. In this paper, we conducted a scoping review to identify and summarize evidence of all studies comparing the Medication Event Monitoring System (MEMS) with alternative methods for measuring medication adherence. A literature search was performed using the open database www.iAdherence.org that includes all original studies reporting findings from the MEMS. Papers comparing methods for measuring adherence to solid oral formulations were included. Data was extracted using a standardized extraction table. A total of 117 articles fulfilled the inclusion criteria, including 251 comparisons. Most frequent comparisons were against self-report (n = 119) and pill count (n = 59). Similar outcome measures were used in 210 comparisons (84%), among which 78 used dichotomous variables (adherent or not) and 132 used continuous measures (adherence expressed as percentage). Furthermore, 32% of all comparisons did not estimate adherence over the same coverage period and 44% of all comparisons did not use a statistical method or used a suboptimal one. Only eighty-seven (35%) comparisons had similar coverage periods, similar outcome measures and optimal statistical methods. Compared to MEMS, median adherence was grossly overestimated by 17% using self-report, by 8% using pill count and by 6% using rating. In conclusion, among all comparisons of MEMS versus alternative methods for measuring adherence, only a few used adequate comparisons in terms of outcome measures, coverage periods and statistical method. Researchers should therefore use stronger methodological frameworks when comparing measurement methods and be aware that non-electronic measures could lead to overestimation of medication adherence. PMID:27005306

  8. Development of blood extraction system designed by female mosquito's blood sampling mechanism for bio-MEMS

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kazuyoshi; Nakanishi, Naoyuki; Nakamachi, Eiji

    2005-02-01

    A compact and wearable wristwatch type Bio-MEMS such as a health monitoring system (HMS) to detect blood sugar level for diabetic patient, was newly developed. The HMS consists of (1) a indentation unit with a microneedle to generate the skin penetration force using a shape memory alloy(SMA) actuator, (2) a pumping unit using a bimorph PZT piezoelectric actuator to extract the blood and (3) a gold (Au) electrode as a biosensor immobilized GOx and attached to the gate electrode of MOSFET to detect the amount of Glucose in extracted blood. GOx was immobilized on a self assembled spacer combined with an Au electrode by the cross-link method using BSA as an additional bonding material. The device can extract blood in a few microliter through a painless microneedle with the negative pressure by deflection of the bimorph PZT piezoelectric actuator produced in the blood chamber, by the similar way the female mosquito extracts human blood with muscle motion to flex or relax. The performances of the liquid sampling ability of the pumping unit through a microneedle (3.8mm length, 100μm internal diameter) using the bimorph PZT piezoelectric microactuator were measured. The blood extraction micro device could extract human blood at the speed of 2μl/min, and it is enough volume to measure a glucose level, compared to the amount of commercial based glucose level monitor. The electrode embedded in the blood extraction device chamber could detect electrons generated by the hydrolysis of hydrogen peroxide produced by the reaction between GOx and glucose in a few microliter extracted blood, using the constant electric current measurement system of the MOSFET type hybrid biosensor. The output voltage for the glucose diluted in the chamber was increased lineally with increase of the glucose concentration.

  9. Proposal to Test Bell's Inequality in Electromechanics.

    PubMed

    Hofer, Sebastian G; Lehnert, Konrad W; Hammerer, Klemens

    2016-02-19

    Optomechanical and electromechanical systems offer an effective platform to test quantum theory and its predictions at macroscopic scales. To date, all experiments presuppose the validity of quantum mechanics, but could in principle be described by a hypothetical local statistical theory. Here we suggest a Bell test using the electromechanical Einstein-Podolski-Rosen entangled state recently generated by Palomaki et al., Science 342, 710 (2013), which would rule out any local and realistic explanation of the measured data without assuming the validity of quantum mechanics at macroscopic scales. It additionally provides a device-independent way to verify electromechanical entanglement. The parameter regime required for our scheme has been demonstrated or is within reach of current experiments. PMID:26943516

  10. Proposal to Test Bell's Inequality in Electromechanics

    NASA Astrophysics Data System (ADS)

    Hofer, Sebastian G.; Lehnert, Konrad W.; Hammerer, Klemens

    2016-02-01

    Optomechanical and electromechanical systems offer an effective platform to test quantum theory and its predictions at macroscopic scales. To date, all experiments presuppose the validity of quantum mechanics, but could in principle be described by a hypothetical local statistical theory. Here we suggest a Bell test using the electromechanical Einstein-Podolski-Rosen entangled state recently generated by Palomaki et al., Science 342, 710 (2013), which would rule out any local and realistic explanation of the measured data without assuming the validity of quantum mechanics at macroscopic scales. It additionally provides a device-independent way to verify electromechanical entanglement. The parameter regime required for our scheme has been demonstrated or is within reach of current experiments.

  11. A MEMS torsion magnetic sensor with reflective blazed grating integration

    NASA Astrophysics Data System (ADS)

    Long, Liang; Zhong, Shaolong

    2016-07-01

    A novel magnetic sensor based on a permanent magnet and blazed grating is presented in this paper. The magnetic field is detected by measuring the diffracted wavelength of the blazed grating which is changed by the torsion motion of a torsion sensitive micro-electromechanical system (MEMS) structure with a permanent magnet attached. A V-shape grating structure is obtained by wet etching on a (1 0 0) SOI substrate. When the magnet is magnetized in different directions, the in-plane or out-of-plane magnetic field is detected by a sensor. The MEMS magnetic sensor with a permanent magnet is fabricated after analytical design and bulk micromachining processes. The magnetic-sensing capability of the sensor is tested by fiber-optic detection system. The result shows the sensitivities of the in-plane and out-of-plane magnetic fields are 3.6 pm μT‑1 and 5.7 pm μT‑1, respectively. Due to utilization of the permanent magnet and fiber-optic detection, the sensor shows excellent capability of covering the high-resolution detection of low-frequency signals. In addition, the sensitive direction of the magnetic sensor can be easily switched by varying the magnetized direction of the permanent magnet, which offers a simple way to achieve tri-axis magnetic sensor application.

  12. Fabrication of MEMS-based Micro-fluxgate Sensor with Runway-shaped Co-based Amorphous Alloy Core

    NASA Astrophysics Data System (ADS)

    Wu, Shaobin; Chen, Shi; Ouyang, Jun; Zuo, Chao; Yu, Lei; Yang, Xiaofei

    2011-01-01

    High-precision magnetic micro-sensor is an interdisciplinary subject of magnetic field measurement techniques and micro-electromechanical systems (MEMS) technology. A micro-fluxgate magnetic sensor based MEMS technology was designed and fabricated in this paper. This device is a micro-magnetic sensor with a symmetric construction, closed magnetic circuits and differential form. A 25μm thick Fluxgate core of runway model, made by Co-based amorphous alloy, was etched by laser and pasted on the substrate accurately. Excitation coil and sensing coil of 3D solenoid structure were prepared by RF magnetron sputtering and UV-lithography. The minimum line width of the coil is 50 μm. The experimental result shows that micro-fluxgate devices with the size of 5.7mm×7.1mm×60μm had a stable structure.

  13. Miniaturized GPS/MEMS IMU integrated board

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  14. European MEMS foundries

    NASA Astrophysics Data System (ADS)

    Salomon, Patric R.

    2003-01-01

    According to the latest release of the NEXUS market study, the market for MEMS or Microsystems Technology (MST) is predicted to grow to $68B by the year 2005, with systems containing these components generating even higher revenues and growth. The latest advances in MST/MEMS technology have enabled the design of a new generation of microsystems that are smaller, cheaper, more reliable, and consume less power. These integrated systems bring together numerous analog/mixed signal microelectronics blocks and MEMS functions on a single chip or on two or more chips assembled within an integrated package. In spite of all these advances in technology and manufacturing, a system manufacturer either faces a substantial up-front R&D investment to create his own infrastructure and expertise, or he can use design and foundry services to get the initial product into the marketplace fast and with an affordable investment. Once he has a viable product, he can still think about his own manufacturing efforts and investments to obtain an optimized high volume manufacturing for the specific product. One of the barriers to successful exploitation of MEMS/MST technology has been the lack of access to industrial foundries capable of producing certified microsystems devices in commercial quantities, including packaging and test. This paper discusses Multi-project wafer (MPW) runs, requirements for foundries and gives some examples of foundry business models. Furthermore, this paper will give an overview on MST/MEMS services that are available in Europe, including pure commercial activities, European project activities (e.g. Europractice), and some academic services.

  15. Electromechanics of graphene spirals

    SciTech Connect

    Korhonen, Topi; Koskinen, Pekka

    2014-12-15

    Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force; in its presence, on the contrary, spirals unfold via smooth local peeling, complex geometries, and nearly constant axial force. These electromechanical trends ought to provide useful guidelines not only for additional theoretical investigations but also for forthcoming experiments on graphene spirals.

  16. Elevation scanning laser/multi-sensor hazard detection system controller and mirror/mast speed control components. [roving vehicle electromechanical devices

    NASA Technical Reports Server (NTRS)

    Craig, J.; Yerazunis, S. W.

    1978-01-01

    The electro-mechanical and electronic systems involved with pointing a laser beam from a roving vehicle along a desired vector are described. A rotating 8 sided mirror, driven by a phase-locked dc motor servo system, and monitored by a precision optical shaft encoder is used. This upper assembly is then rotated about an orthogonal axis to allow scanning into all 360 deg around the vehicle. This axis is also driven by a phase locked dc motor servo-system, and monitored with an optical shaft encoder. The electronics are realized in standard TTL integrated circuits with UV-erasable proms used to store desired coordinates of laser fire. Related topics such as the interface to the existing test vehicle are discussed.

  17. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  18. Experimental investigations of creep in gold RF-MEMS microstructures

    NASA Astrophysics Data System (ADS)

    Somà, Aurelio; De Pasquale, Giorgio; Saleem, Muhammad Mubasher

    2015-05-01

    Lifetime prediction and reliability evaluation of micro-electro-mechanical systems (MEMS) are influenced by permanent deformations caused by plastic strain induced by creep. Creep in microstructures becomes critical in those applications where permanent loads persist for long times and thermal heating induces temperature increasing respect to the ambient. Main goal of this paper is to investigate the creep mechanism in RF-MEMS microstructures by means of experiments. This is done firstly through the detection of permanent deformation of specimens and, then, by measuring the variation of electro-mechanical parameters (resonance frequency, pull-in voltage) that provide indirect evaluation of mechanical stiffness alteration from creep. To prevent the errors caused be cumulative heating of samples and dimensional tolerances, three specimens with the same nominal geometry have been tested per each combination of actuation voltage and temperature. Results demonstrated the presence of plastic deformation due to creep, combined with a component of reversible strain linked to the viscoelastic behavior of the material.

  19. Electromechanical assembly department manufacturing improvements. Final report

    SciTech Connect

    Voss, S.W.

    1991-12-01

    Techniques for streamlining the processing and flow of products is an electromechanical assembly department were evaluated. Areas looked at included a paperless system for lot identification records, automated tool and fixture storage, evaluation of product transfer methods, and queue time reduction.

  20. Fabrication processes for MEMS deformable mirrors in the next generation telescope instruments

    NASA Astrophysics Data System (ADS)

    Diouf, Alioune

    This dissertation advances three critical technology areas at the frontier of research for micro electro-mechanical systems (MEMS) deformable minors (DMs) needed for next generation telescopes (NGTs). High actuator-count MEMS deformable minors are needed for future ground-based large astronomical telescopes. Scaling up the current MEMS DMs to unprecedented numbers of independent actuators---up to 10,000 on a single DM---will require new electrical connection architecture for the actuators in order to replace the wire-bonded scheme that has been used to date. A through-wafer via interconnection fabrication process for MEMS DMs is developed to offer a path to transform the frontier of high actuator count MEMS micromirrors. In a class of NGTs instrument known as the Multi-Object Adaptive Optics (MOAO), the correction made by the DM of the wavefront phase error over the entire telescope field view is not accessible to the sensing unit. To achieve compensation, precise, single step "open-loop" commands must be developed for the DM. Due to the nonlinear relationship between applied voltage and actuation displacement at each actuator, and the mechanical coupling among actuators through the mirror membrane, such open-loop control is a formidable task. A combination of mirror surface modeling and sparse actuator empirical calibration is used to demonstrate open-loop control of MEMS deformable minors to the accuracy of closed-loop control over the entire available DM stroke. Shapes at the limit of achievable minor spatial frequencies with up to 2.5microm amplitudes have been achieved within 20nm RMS error accuracy of closed-loop control. The calibration of a single actuator to be used for predicting shapes results in an additional 14nm RMS surface error compared to parallel calibration of all actuators in the deformable minor. The ubiquitous reflective coatings for MEMS deformable minors are gold and aluminum. Emerging adaptive optics application require broadband optical

  1. Design and fabrication of a sensor integrated MEMS/NANO-skin system for human physiological response measurement

    NASA Astrophysics Data System (ADS)

    Leng, Hongjie; Lin, Yingzi

    2010-04-01

    Human state in human-machine systems highly affects the system performance, and should be monitored. Physiological cues are more suitable for monitoring the human state in human-machine system. This study was focused on developing a new sensing system, i.e. NANO-Skin, to non-intrusively measure physiological cues from human-machine contact surfaces for human state recognition. The first part was to analyze the relation between human state and physiological cues. Generally, heart rate, skin conductance, skin temperature, operating force, blood alcohol concentration, sweat rate, and electromyography have close relation with human state, and can be measured from human skin. The second part was to compare common sensors, MEMS sensors, and NANO sensors. It was found that MEMS sensors and NANO sensors can offer unique contributions to the development of NANO-Skin. The third part was to discuss the design and manufacture of NANO-Skin. The NANO-Skin involves five components, the flexible substrate, sensors, special integrated circuit, interconnection between sensors and special integrated circuit, and protection layer. Experiments were performed to verify the measurement accuracy of NANO-Skin. It is feasible to use NANO-Skins to non-intrusively measure physiological cues from human-machine contact surfaces for human state recognition.

  2. High-speed and large-scale electromagnetically actuated MEMS scanning-mirror

    NASA Astrophysics Data System (ADS)

    Mu, Canjun; Zhang, Feiling; Wu, Yaming

    2008-03-01

    Large-scale micro-electromechanical systems (MEMS) scanning mirrors play a primary role in many fields of manipulating light beam scanning, such as rapid optical spectrum analyzers (OSAs) based on dispersive gratings using in near infrared (NIR) region. According to the applications, a high speed electromagnetically actuated MEMS scanning mirror with large mirror area of 9×6mm2 has been developed. The MEMS scanning mirror chip, which is fabricated using bulk silicon micromachining process and electroplating technique, is immersed in a constant 365 mT magnetic field parallel to the coil plane and generates the maximum optical deflection angle of +/-11.15° at the 1.39 kHz resonant frequency. The quality factor, Q, of 77 is achieved in air corresponding to a low power consumption of 102.6 mW. In addition, the surface roughness of less than 20nm for scanning mirror has been measured and the optical reflectivity at the wavelength of 1550nm is high up to 87%. The results show that the device is adequate for mm-sized scanning systems and compatible with smart OSAs applications.

  3. Development of a MEMS-scale photoacoustic chemical sensor for trace vapor detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Pellegrino, Paul M.

    2009-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microsystem design. Micro-electromechanical systems (MEMS)-scale designs offer the possibility to develop photoacoustic sensors in which the signals would remain at sensitivities similar to or greater than those typically found in macro-scale devices. The objective of the present work is to develop a monolithic MEMS-scale photoacoustic trace gas sensor utilizing the Army Research Laboratory's chemical and biological sensing capability. In order to realize the advantage of photoacoustic sensor miniaturization, light sources of comparable size are required. Quantum cascade lasers (QCLs) have been tested in combination with MEMS-scale photoacoustic cells. This sensing platform has provided favorable detection limits for a standard nerve agent simulant. Current research employs this sensor scheme for the detection of 2,4-dinitrotoluene, a degradation product of TNT. Preliminary results describing the sensor capabilities and performance for the detection of this compound will be presented.

  4. Micro-electromechanical spatial light modulators with integrated electronics

    NASA Astrophysics Data System (ADS)

    Cornelissen, Steven; Bifano, Thomas G.; Bierden, Paul A.

    2002-02-01

    This paper describes design and development of a microelectromechanical, micromachined spatial light modulator ((mu) SLM) integrated with complementary metal- oxide semiconductor (CMOS) electronics, for control of optical phase in phase-only optical correlators. The (mu) SLM will consist of a large array of piston-motion MEMS mirror segments (pixels) each of which capable of altering the phase of reflected light by up to one wavelength for infrared (1.5 micrometers ) illumination. Results of a proof-of- concept study are presented along with an electromechanical model and details of the fabrication process for the (mu) SLM.

  5. Remote heart function monitoring: role of the CardioMEMS HF System.

    PubMed

    Vanoli, Emilio; D'Elia, Emilia; La Rovere, Maria T; Gronda, Edoardo

    2016-07-01

    Heart failure is a pandemic condition that is challenging cardiology today. The primary economical and social burden of this syndrome is hospitalization rate whose costs represent the highest ones within the entire healthcare management. Remote monitoring of physiological data, obtained through self-reporting via telephone calls or, automatically, using external devices is a potential novel approach to implement management of patients with heart failure and reduce hospitalization rates. Relatively large but, sometimes, contradicting information exists about the efficacy of remote monitoring via different noninvasive approaches to reduce the economical and social burden of heart failure management. This leaves still partly unaddressed this critical issue and generates the need for new approaches. In this context, the CardioMEMS device that can chronically monitor pulmonary pressures from a small microchip inserted transvenously in the pulmonary artery seems to represent an innovative tool to challenge hospitalization rates. Consecutive analyses from the CHAMPION study had indeed documented the efficacy of the CardioMEMS in the remote monitoring of the pulmonary circulation status of patients with heart failure and in providing adequate information to optimally manage such patients with the final result of a significant hospitalization rate reduction. The striking information here is that this appears to be true in patients with preserved left ventricular ejection fraction also. Overall, the reports from the CHAMPION study encourage the use of CardioMEMS but larger populations are needed to definitively prove its value. PMID:26881785

  6. MEMS mass spectrometers: the next wave of miniaturization

    NASA Astrophysics Data System (ADS)

    Syms, Richard R. A.; Wright, Steven

    2016-02-01

    This paper reviews mass spectrometers based on micro-electro-mechanical systems (MEMS) technology. The MEMS approach to integration is first briefly described, and the difficulties of miniaturizing mass spectrometers are outlined. MEMS components for ionization and mass filtering are then reviewed, together with additional components for ion detection, vacuum pressure measurement and pumping. Mass spectrometer systems containing MEMS sub-components are then described, applications for miniaturized and portable systems are discussed, and challenges and opportunities are presented.

  7. Utilizing micro-electro-mechanical systems (MEMS) micro-shutter designs for adaptive coded aperture imaging (ACAI) technologies

    NASA Astrophysics Data System (ADS)

    Ledet, Mary M.; Starman, LaVern A.; Coutu, Ronald A., Jr.; Rogers, Stanley

    2009-08-01

    Coded aperture imaging (CAI) has been used in both the astronomical and medical communities for years due to its ability to image light at short wavelengths and thus replacing conventional lenses. Where CAI is limited, adaptive coded aperture imaging (ACAI) can recover what is lost. The use of photonic micro-electro-mechanical-systems (MEMS) for creating adaptive coded apertures has been gaining momentum since 2007. Successful implementation of micro-shutter technologies would potentially enable the use of adaptive coded aperture imaging and non-imaging systems in current and future military surveillance and intelligence programs. In this effort, a prototype of MEMS microshutters has been designed and fabricated onto a 3 mm x 3 mm square of silicon substrate using the PolyMUMPSTM process. This prototype is a line-drivable array using thin flaps of polysilicon to cover and uncover an 8 x 8 array of 20 μm apertures. A characterization of the micro-shutters to include mechanical, electrical and optical properties is provided. This prototype, its actuation scheme, and other designs for individual microshutters have been modeled and studied for feasibility purposes. In addition, microshutters fabricated from an Al-Au alloy on a quartz wafer were optically tested and characterized with a 632 nm HeNe laser.

  8. Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network

    NASA Astrophysics Data System (ADS)

    Chong, Shen; Rui, Song; Jie, Li; Xiaoming, Zhang; Jun, Tang; Yunbo, Shi; Jun, Liu; Huiliang, Cao

    2016-05-01

    In order to improve the temperature drift modeling precision of a tuning fork micro-electromechanical system (MEMS) gyroscope, a novel multiple inputs/single output model based on genetic algorithm (GA) and Elman neural network (Elman NN) is proposed. First, the temperature experiment of MEMS gyroscope is carried out and the outputs of MEMS gyroscope and temperature sensors are collected; then the temperature drift model based on temperature, temperature variation rate and the coupling term is proposed, and the Elman NN is employed to guarantee the generalization ability of the model; at last the genetic algorithm is used to tune the parameters of Elman NN in order to improve the modeling precision. The Allan analysis results validate that, compared to traditional single input/single output model, the novel multiple inputs/single output model can guarantee high accurate fitting ability because the proposed model can provide more plentiful controllable information. By the way, the generalization ability of the Elman neural network can be improved significantly due to the parameters are optimized by genetic algorithm.

  9. IR laser welding of thin polymer films as a fabrication method for polymer MEMS

    NASA Astrophysics Data System (ADS)

    Beck, William A.; Huang, Michelle; Ketterl, Joe; Hughes, Thayer

    2003-09-01

    MEMS (Micro Electro-Mechanical Systems) continue to be something of a solution looking for a problem. Even as the glamour has moved on to the smaller realm of nano technologies and devices, progress continues towards making micro-scale devices more useful and manufacturable. One avenue this work is taking is into the realm of polymer MEMS, shifting from the expensive, complicated methods of semiconductor processing to the much simpler methods of plastics processing. Polymeric materials are rugged, lightweight and low cost, and their use in manufacturing has a long history. While many bulk polymer manufacturing processes such as molding, machining and adhesive bonding are adaptable to the micro realm, their use in MEMS devices often requires development of specialized processing methods. Here we report on development of laser welding as a bonding method for thin polymer films, including automation of the welding process, steps towards standardization of that process, preparation of standardized test samples, and development of specialized test methods used to evaluate the strength of polymer welds. Our initial results show a direct correlation between welding parameters and weld strengths.

  10. Intracorporeal Electromechanical Tissue Morcellation

    PubMed Central

    Kho, Kimberly A.; Anderson, Ted L.; Nezhat, Ceana H.

    2015-01-01

    Electromechanical morcellators have come under scrutiny with concerns about complications involving iatrogenic dissemination of both benign and malignant tissues. Although the rapidly rotating blade has resulted in morcellator-related vascular and visceral injuries, equally concerning are the multiple reports in the literature demonstrating seeding of the abdominal cavity with tissue fragmented such as leiomyomas, endometriosis, adenomyosis, splenic and ovarian tissues, and occult cancers of the ovaries and uterus. Alternatives to intra-corporeal electric morcellation for tissue extirpation through the vagina and through minilaparotomy are feasible, safe, and have been shown to have comparable, if not superior, outcomes without an increased need for laparotomy. Intracorporeal morcellation within a containment bag is another option to minimize the risk of iatrogenic tissue seeding. Patient safety is a priority with balanced goals of maximizing benefits and minimizing harm. When intracorporeal electromechanical morcellation is planned, physicians should discuss the risks and consequences with their patients. Although data are being collected to quantify and understand these risks more clearly, a minimally invasive alternative to unenclosed intracorporeal morcellation is favored when available. It is incumbent on surgeons to communicate the risks of practices and devices and to advocate for continued improvement in surgical instrumentation and techniques. PMID:25198260

  11. Electromechanical flight control actuator, volume 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Schematic diagrams are given for both the four-channel electromechanical actuator and the single-channel power electronics breadboard. Detailed design data is also given on the gears used in the differential gearbox and a copy of the operations manual for the system is included. Performance test results are given for the EMA motor and its current source indicator, the drive control electronics, and the overall system. The power converter waveform test results are also summarized.

  12. Applications of ferrofluids in Micro Electro Mechanical Systems (MEMS) and micropumps

    NASA Astrophysics Data System (ADS)

    Jain, V. K.; Pant, R. P.; Vinod Kumar, .

    2008-12-01

    The micro-pump is one of the most promising micro-flow devices. At micro-level electronically controlled pumping of any fluid by a mechanical pump is not so easy and reliable. In the realm of nano-tech materials, ferrofluids have unique properties in both liquids and solids and have potential applications for MEMS/NEMS devices. This paper presents two new types of concepts, a micro-flowmeter based on a micro-turbine made using MEMS technology and the other is a micro-pump based on ferrofluidic actuation. In our first device an optical photovoltaic sensor has also been integrated with this device, and the micro-turbine rotates with a speed of 50000 rpm. We have fabricated a ferrofluid-based glass micro-pump of size 20 × 20 × 10 mm^{3}, in which micro actuation is electrically controlled by NdFeB (N50) permanent magnets (diameter 5 × 3 mm, B_{r} = 1400 mT, coercive field H_c=840 ,kA/m) with a ferrofluid bearing. The device is able to pump the fluid at the rate of 10 μ L/actuation. Figs 3, Refs 19.

  13. Meteoroid Engineering Model (MEM): A Meteoroid Model for the Inner Solar System

    NASA Technical Reports Server (NTRS)

    McNamara, Heather A.; Jones, Jim; Kauffman, Billy; Suggs, Robert; Cooke, William; Smith, Steven

    2004-01-01

    In an attempt to overcome some of the deficiencies of existing meteoroid models, NASA's Space Environments and Effects (SEE) Program sponsored a three year research effort at the University of Western Ontario. The resulting understanding of the sporadic meteoroid environment - particularly the nature and distribution of the sporadic sources - were then incorporated into a new Meteoroid Engineering Model (MEM) by members of the Space Environments Team at NASA s Marshall Space Flight Center. This paper discusses some of the revolutionary aspects of MEM which include a) identification of the sporadic radiants with real sources of meteoroids, such as comets, b) a physics-based approach which yields accurate fluxes and directionality for interplanetary spacecraft anywhere from 0.2 astronomical units (AU) to 2 AU, and c) velocity distributions obtained from theory and validated against observation. Use of the model, which gives penetrating fluxes and average impact speeds on the surfaces of a cube-like structure, is also described along with its current limitations and plans for future improvements.

  14. Meteoroid Engineering Model (MEM)A Meteoroid Model for the Inner Solar System

    NASA Technical Reports Server (NTRS)

    McNamara, H.; Jones, J.; Kaufman, B.; Suggs, R.; Cook, W.; Smith, S.

    2004-01-01

    In an attempt to overcome some of the deficiencies of existing meteoroid models, NASA's Space Environments and Effects Program sponsored a three year research effort at the University of Western Ontario. The resulting understanding of the sporadic meteoroid environment - particularly the nature and distribution of the sporadic sources - was then incorporated into a new meteoroid environment model (MEM) by members of the Space Environments Team at NASA's Marshall Space Flight Center. This paper discusses some of the revolutionary aspects of MEM which include: a) identification of the sporadic radiants with real sources of meteoroids, such as comets, b) a physics-based approach which yields accurate fluxes and directionality for interplanetary spacecraft anywhere from .2 AU to 2 AU, and c) velocity distributions obtained from theory and validated against observation. Use of the model, which gives penetrating fluxes and average impact speeds on the surfaces of a cube-like structure are also described, along with its current limitations and plans for future improvements.

  15. Status of the MEMS industry

    NASA Astrophysics Data System (ADS)

    Eloy, J. C.; Mounier, E.

    2005-01-01

    This paper analyzes the current status of the MEMS industry. After the 2000 and 2001 years with high expectation for MEMS devices for the optical telecommunications, followed by the 2002/2003 downturn leading to the closing of more than 100 MEMS fabs worldwide, this industry has come back to a more normal way of working. There are still 10 to 15 companies worldwide which will certainly end their business within 16 months but the overall activity is more stabilized. MEMS markets will reach 5.4 B$ in 2005, with growth rates which are very different if one compares different market segments. The top 30 MEMS manufacturers have a market share of more than 60% of the total market; the remaining 40% is shared by more than 200 companies. Most of the smallest companies have 2 business models: either small companies developing specific processes, with R&D and small volume production, or systems manufacturers with integrated fabs. These fabs are loaded at less than 40% but considered as an enabler for the system business. Many changes are currently appearing: as contract manufacturers become more credible, system manufacturers are looking to externalise their fabrication processes; fabless companies are also finding companies able to produce at the right cost and quality. The fabless business model is now well structured.

  16. Design of photonic phased array switches using nano electromechanical systems on silicon-on-insulator integration platform

    NASA Astrophysics Data System (ADS)

    Hussein, Ali Abdulsattar

    This thesis presents an introduction to the design and simulation of a novel class of integrated photonic phased array switch elements. The main objective is to use nano-electromechanical (NEMS) based phase shifters of cascaded under-etched slot nanowires that are compact in size and require a small amount of power to operate them. The structure of the switch elements is organized such that it brings the phase shifting elements to the exterior sides of the photonic circuits. The transition slot couplers, used to interconnect the phase shifters, are designed to enable biasing one of the silicon beams of each phase shifter from an electrode located at the side of the phase shifter. The other silicon beam of each phase shifter is biased through the rest of the silicon structure of the switch element, which is taken as a ground. Phased array switch elements ranging from 2x2 up to 8x8 multiple-inputs/multiple-outputs (MIMO) are conveniently designed within reasonable footprints native to the current fabrication technologies. Chapter one presents the general layout of the various designs of the switch elements and demonstrates their novel features. This demonstration will show how waveguide disturbances in the interconnecting network from conventional switch elements can be avoided by adopting an innovative design. Some possible applications for the designed switch elements of different sizes and topologies are indicated throughout the chapter. Chapter two presents the design of the multimode interference (MMI) couplers used in the switch elements as splitters, combiners and waveguide crossovers. Simulation data and design methodologies for the multimode couplers of interest are detailed in this chapter. Chapter three presents the design and analysis of the NEMS-operated phase shifters. Both simulations and numerical analysis are utilized in the design of a 0°-180° capable NEMS-operated phase shifter. Additionally, the response of some of the designed photonic phased

  17. MEMS practice: from the lab to the telescope

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.; Norton, Andrew P.; Evans, Julia W.; Reza, Layra; Severson, Scott A.; Dillon, Daren; Reinig, Marc; Gavel, Donald T.; Cornelissen, Steven; Macintosh, Bruce A.; Max, Claire E.

    2012-03-01

    Micro-electro-mechanical systems (MEMS) technology can provide for deformable mirrors (DMs) with excellent performance within a favorable economy of scale. Large MEMS-based astronomical adaptive optics (AO) systems such as the Gemini Planet Imager are coming on-line soon. As MEMS DM end-users, we discuss our decade of practice with the micromirrors, from inspecting and characterizing devices to evaluating their performance in the lab. We also show MEMS wavefront correction on-sky with the "Villages" AO system on a 1-m telescope, including open-loop control and visible-light imaging. Our work demonstrates the maturity of MEMS technology for astronomical adaptive optics.

  18. Major new thrust for MEMS engines.

    PubMed

    Wilson, J R

    2003-02-01

    The application of microelectromechanical systems (MEMS) to space flight is reviewed. The applications include use as microthrusters on mini-size and smaller satellites, in missile defense systems, and as propulsion systems for miniature unmanned aerial vehicles. PMID:12569916

  19. Passive magnetic bearings for vehicular electromechanical batteries

    SciTech Connect

    Post, R

    1996-03-01

    This report describes the design of a passive magnetic bearing system to be used in electromechanical batteries (flywheel energy storage modules) suitable for vehicular use. One or two such EMB modules might, for example, be employed in a hybrid-electric automobile, providing efficient means for power peaking, i.e., for handling acceleration and regenerative braking power demands at high power levels. The bearing design described herein will be based on a ''dual-mode'' operating regime.

  20. Impact of environmental conditions on the contact physics of gold contact RF microelectromechanical systems (MEMS) switches

    NASA Astrophysics Data System (ADS)

    Brown, Christopher John

    RF MEMS switch technology is poised to create a new generation of devices capable of vastly outperforming current mechanical and semiconductor switching technology. Despite the efforts of top industrial, academic, and government labs, commercialization of RF MEMS switches has lagged expectations. This dissertation focuses on issues associated with switch contact physics. Understanding the failure mechanisms for metal contact switches is a complex challenge. There is strong interplay between variables such as mechanical creep, deformation, contact heating, contact asperity size, real contact area, and current flow leading to the eventual failure of the switch. Stiction failures moreover are highly sensitive to ambient conditions and absorbed film layers at the switch contact. The experiments in this thesis seek to isolate individual failure mechanisms and tie them to the physics driving that behavior through correlation of experimental data and theoretical modeling. Four experiments in controlled environments were performed: (1) the impact of cryogenic temperatures on RF MEMS contacts, (2) a correlation between experimental data and theoretical modeling for gold asperity creep at room and cryogenic temperatures, (3) a power law relationship between contact resistance and time dependent creep, and (4) the pressure dependence of switch closure. Cryogenic temperatures were used to isolate contaminant film effects. Contaminant films were found to have less mobility at 77 K, and contact resistance measurements showed that the film could be reduced on the contact surface through mechanical cycling and high temperatures at the gold asperities. It was also noted at cryogenic temperatures that the choice of atmosphere was important. A nitrogen atmosphere at liquid nitrogen temperature produced variable contact resistance as the condensed liquid boiled off the switch contacts. Data was correlated with a single asperity creep model to show that change in contact resistance as

  1. Wafer scale interdigitated nanoelectrode devices functionalized using a MEMS-based deposition system

    NASA Astrophysics Data System (ADS)

    Martinez-Rivas, A.; Carcenac, F.; Saya, D.; Séverac, C.; Nicu, L.; Vieu, C.

    2012-03-01

    This paper reports on a methodology to elaborate interdigitated nanoelectrode devices (INDs) at the wafer scale, relying on a mix-and-match process which combines proximity optical lithography and electron beam lithography. An optimum exposure dose allowed fabricating nanodevices, at the wafer level, with a successful yield of 97%. The final devices are bonded onto conventional TO-8 packages. Electrical characterization in a short-circuited nanoelectrode is performed, revealing a 230 µΩ cm resistivity value at 23 °C. A MEMS-based spotter made of cantilevers (called Bioplume) has been used to obtain precise functionalization of the INDs with sub-picoliter volume solutions. These INDs are the basis of multiple tunnel junction nanodevices, intended to serve as novel highly sensitive nanobiosensors.

  2. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  3. Challenges in the Packaging of MEMS

    SciTech Connect

    Malshe, A.P.; Singh, S.B.; Eaton, W.P.; O'Neal, C.; Brown, W.D.; Miller, W.M.

    1999-03-26

    The packaging of Micro-Electro-Mechanical Systems (MEMS) is a field of great importance to anyone using or manufacturing sensors, consumer products, or military applications. Currently much work has been done in the design and fabrication of MEMS devices but insufficient research and few publications have been completed on the packaging of these devices. This is despite the fact that packaging is a very large percentage of the total cost of MEMS devices. The main difference between IC packaging and MEMS packaging is that MEMS packaging is almost always application specific and greatly affected by its environment and packaging techniques such as die handling, die attach processes, and lid sealing. Many of these aspects are directly related to the materials used in the packaging processes. MEMS devices that are functional in wafer form can be rendered inoperable after packaging. MEMS dies must be handled only from the chip sides so features on the top surface are not damaged. This eliminates most current die pick-and-place fixtures. Die attach materials are key to MEMS packaging. Using hard die attach solders can create high stresses in the MEMS devices, which can affect their operation greatly. Low-stress epoxies can be high-outgassing, which can also affect device performance. Also, a low modulus die attach can allow the die to move during ultrasonic wirebonding resulting to low wirebond strength. Another source of residual stress is the lid sealing process. Most MEMS based sensors and devices require a hermetically sealed package. This can be done by parallel seam welding the package lid, but at the cost of further induced stress on the die. Another issue of MEMS packaging is the media compatibility of the packaged device. MEMS unlike ICS often interface with their environment, which could be high pressure or corrosive. The main conclusion we can draw about MEMS packaging is that the package affects the performance and reliability of the MEMS devices. There is a

  4. MEMS thermal switch for spacecraft thermal control

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew A.; Firebaugh, Samara L.; Edwards, Richard L.; Keeney, Allen C.; Osiander, Robert

    2004-01-01

    Small satellites with their low thermal capacitance are vulnerable to rapid temperature fluctuations. Therefore, thermal control becomes important, but the limitations on mass and electrical power require new approaches. Possible solutions to actively vary the heat rejection of the satellite in response to variations in the thermal load and environmental condition are the use of a variable emissivity coating (VEC), micro-machined shutters and louvers, or thermal switches. An elegant way the radiate heat is to switch the thermal contact between the emitting surface and the radiator electrostatically. This paper describes the design and fabrication of an active radiator for satellite thermal control based on such a micro electromechanical (MEMS) thermal switch. The switch operates by electrostatically moving a high emissivity surface layer in and out of contact with the radiator. The electromechanical model and material considerations for the thermal design of the MEMS device are discussed. The design utilizes a highly thermal conductive gold membrane supported by low-conductance SU-8 posts. The fabrication process is described. Measured actuation voltages were consistent with the electrostatic model, ranging from 8 to 25 volts.

  5. On-Chip Micro-Electro-Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing.

    PubMed

    Erfan, Mazen; Sabry, Yasser M; Sakr, Mohammad; Mortada, Bassem; Medhat, Mostafa; Khalil, Diaa

    2016-05-01

    In this work, we study the detection of acetylene (C2H2), carbon dioxide (CO2) and water vapor (H2O) gases in the near-infrared (NIR) range using an on-chip silicon micro-electro-mechanical system (MEMS) Fourier transform infrared (FT-IR) spectrometer in the wavelength range 1300-2500 nm (4000-7692 cm(-1)). The spectrometer core engine is a scanning Michelson interferometer micro-fabricated using a deep-etching technology producing self-aligned components. The light is free-space propagating in-plane with respect to the silicon chip substrate. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator corresponding to about 30 cm(-1) resolution. Multi-mode optical fibers are used to connect light between the wideband light source, the interferometer, the 10 cm gas cell, and the optical detector. A wide dynamic range of gas concentration down to 2000 parts per million (ppm) in only 10 cm length gas cell is demonstrated. Extending the wavelength range to the mid-infrared (MIR) range up to 4200 nm (2380 cm(-1)) is also experimentally demonstrated, for the first time, using a bulk micro-machined on-chip MEMS FT-IR spectrometer. The obtained results open the door for an on-chip optical gas sensor for many applications including environmental sensing and industrial process control in the NIR/MIR spectral ranges. PMID:27044847

  6. Remotely accessible laboratory for MEMS testing

    NASA Astrophysics Data System (ADS)

    Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.

    2010-02-01

    We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.

  7. The Oral Fluid MEMS/NEMS Chip (OFMNC): diagnostic and translational applications.

    PubMed

    Li, Y; Denny, P; Ho, C-M; Montemagno, C; Shi, W; Qi, F; Wu, B; Wolinsky, L; Wong, D T

    2005-06-01

    The ability to monitor health status, disease onset and progression, and treatment outcome through non-invasive means is a most desirable goal in health-care promotion and delivery. There are three prerequisites for this goal to be realized: specific biomarkers associated with a health or disease state, a non-invasive approach to detect and monitor the biomarkers, and the technologies to discriminate between and among the biomarkers. We present a roadmap to achieve these goals using oral fluids as the diagnostic medium to scrutinize the health and/or disease status of individuals. This is an ideal opportunity to bridge state-of-the-art micro-/nano-electromechanical system (MEMS/NEMS) sensors to oral fluid for diagnostic applications. As the "mirror of body", oral fluid is a perfect medium to be explored for health and disease surveillance. The translational applications and opportunities are enormous. PMID:16000263

  8. The MEMSamp: using (RF-)MEMS switches for the micromechanical amplification of electronic signals

    NASA Astrophysics Data System (ADS)

    Merlijn van Spengen, W.; Roobol, Sander B.; Klaassen, Wouter P.; Oosterkamp, Tjerk H.

    2010-12-01

    Semiconductor-based electronic amplifiers are ubiquitous in the modern world, but have fundamental limitations, such as the impossibility of using them at extreme temperatures and their sensitivity to ionizing radiation. Also, they inherently have various sources of electronic noise. We have developed a MEMS (micro-electromechanical systems) switch based amplifier in which an electronic signal is mechanically amplified in power: the MEMSamp. The new device is suitable for the same applications as semiconductor-based amplifiers, with the additional advantage of a purely mechanical operation, circumventing the limitations mentioned above. A thermal noise analysis shows that a MEMSamp may be operated with much lower input noise than state-of-the-art semiconductor amplifiers. We expect optimized amplifiers based on this principle to be applicable in fields ranging from low-noise preamplifiers to radiation-hard power amplifiers, and from ultra-high temperature electronics to spacecrafts.

  9. Using a floating-gate MOS transistor as a transducer in a MEMS gas sensing system.

    PubMed

    Barranca, Mario Alfredo Reyes; Mendoza-Acevedo, Salvador; Flores-Nava, Luis M; Avila-García, Alejandro; Vazquez-Acosta, E N; Moreno-Cadenas, José Antonio; Casados-Cruz, Gaspar

    2010-01-01

    Floating-gate MOS transistors have been widely used in diverse analog and digital applications. One of these is as a charge sensitive device in sensors for pH measurement in solutions or using gates with metals like Pd or Pt for hydrogen sensing. Efforts are being made to monolithically integrate sensors together with controlling and signal processing electronics using standard technologies. This can be achieved with the demonstrated compatibility between available CMOS technology and MEMS technology. In this paper an in-depth analysis is done regarding the reliability of floating-gate MOS transistors when charge produced by a chemical reaction between metallic oxide thin films with either reducing or oxidizing gases is present. These chemical reactions need temperatures around 200 °C or higher to take place, so thermal insulation of the sensing area must be assured for appropriate operation of the electronics at room temperature. The operation principle of the proposal here presented is confirmed by connecting the gate of a conventional MOS transistor in series with a Fe(2)O(3) layer. It is shown that an electrochemical potential is present on the ferrite layer when reacting with propane. PMID:22163478

  10. Differentially piezoresistive transduction of high-Q encapsulated SOI-MEMS resonators with sub-100 nm gaps.

    PubMed

    Li, Cheng-Syun; Li, Ming-Huang; Li, Sheng-Shian

    2015-01-01

    A differentially piezoresistive (piezo-R) readout proposed for single-crystal-silicon (SCS) microelectromechanical systems (MEMS) resonators is implemented in a foundrybased resonator platform, demonstrating effective feedthrough cancellation using just simple piezoresistors from the resonator supports while maximizing their capacitively transduced driving areas. The SCS resonators are fabricated by a CMOS foundry using an SOI-MEMS technology together with a polysilicon refill process. A high electromechanical coupling coefficient is attained by the use of 50-nm transducer gap spacing. Moreover, a vacuum package of the fabricated resonators is carried out through wafer-level bonding process. In this work, the corner supporting beams of the resonator serve not only mechanical supports but also piezoresistors for detecting the motional signal, hence substantially simplifying the overall resonator design to realize the piezo-R sensing. In addition, the fabricated resonators are capable of either capacitive sensing or piezo-R detection under the same capacitive drive. To mitigate feedthrough signals from parasitics, a differential measurement configuration of the piezo-R transduction is implemented in this work, featuring more than 30-dB improvement on the feedthrough level as compared with the single-ended piezo-R counterpart and purely capacitive sensing readout. Furthermore, the high-Q design of the mechanical supports is also investigated, offering Q more than 10 000 with efficient piezo-R transduction for MEMS resonators. PMID:25585404

  11. Double-Layer Mediated Electromechanical Response of Amyloid Fibrils in Liquid Environment

    SciTech Connect

    Nikiforov, Maxim; Thompson, G. L.; Reukov, Vladimir V; Jesse, Stephen; Guo, Senli; Rodriguez, Brian; Seal, Katyayani; Vertegel, Alexey; Kalinin, Sergei V

    2010-01-01

    Harnessing electrical bias-induced mechanical motion on the nanometer and molecular scale is a critical step toward understanding the fundamental mechanisms of redox processes and implementation of molecular electromechanical machines. Probing these phenomena in biomolecular systems requires electromechanical measurements be performed in liquid environments. Here we demonstrate the use of band excitation piezoresponse force microscopy for probing electromechanical coupling in amyloid fibrils. The approaches for separating the elastic and electromechanical contributions based on functional fits and multivariate statistical analysis are presented. We demonstrate that in the bulk of the fibril the electromechanical response is dominated by double-layer effects (consistent with shear piezoelectricity of biomolecules), while a number of electromechanically active hot spots possibly related to structural defects are observed.

  12. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  13. Efforts in developing design and simulation tools for MEMS: DS/MEMS and CA/MEMS

    NASA Astrophysics Data System (ADS)

    Youn, Sung Kie; Kwak, Byung M.; Kwon, Jang-Hyuk; Chang, Su-Young; Huh, Jae S.; Kim, Eugene

    2002-04-01

    In this work, multi-physics simulation software (CA/MEMS) and design-optimization software (DS/MEMS) tailored for MEMS devices are introduced. The CA/MEMS, which is a simulation engine for DS/MEMS, is a 3-D multi-physics analysis code utilizing various numerical methods such as FEM, BEM and FVM to efficiently model MEMS application problems. The current CA/MEMS includes analysis- modules for structural, thermal, electric, electromagnetic and fluidic fields and is capable of the analyses of various coupled- field problems for MEMS applications. DS/MEMS is design optimization engine for MEMS devices. With integrating CA/MEMS and pre/post processor into CAD environment, DS/MEMS is organized to work in parametric CAD platform. DS/MEMS consists of optimal design module and robust design module. The optimal design module provides users three methods nonlinear programming, Taguchi parameter design and the response surface method. The robust design module, which is specially developed for MEMS application, can be used to minimize the perturbation of performances of MEMS devices under uncertainties of MEMS devices, such as process tolerance and the change of operating environments. To verify the efficiency and accuracy of CA/MEMS and the practical usefulness of DS/MEMS, we have been comparing the simulated results of CA/MEMS with those of other commercial codes and experimental data of manufactured MEMS devices, and investigating the performances of the optimized designs through DS/MEMS.

  14. MEMS AO for Planet Finding

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Wallace, J. Kent; Shao, Mike; Schmidtlin, Edouard; Levine, B. Martin; Samuele, Rocco; Lane, Benjamin; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul

    2008-01-01

    This slide presentation reviews a method for planet finding using microelectromechanical systems (MEMS) Adaptive Optics (AO). The use of a deformable mirror (DM) is described as a part of the instrument that was designed with a nulling interferometer. The strategy that is used is described in detail.

  15. A Theoretical and Experimental Comparison of 3-3 and 3-1 Mode Piezoelectric Microelectromechanical Systems (MEMS)

    PubMed Central

    Kim, Donghwan; Hewa-Kasakarage, Nishshanka; Hall, Neal A.

    2014-01-01

    Two piezoelectric transducer modes applied in microelectromechanical systems are (i) the 3-1 mode with parallel electrodes perpendicular to a vertical polarization vector, and (ii) the 3-3 mode which uses interdigitated (IDT) electrodes to realize an in-plane polarization vector. This study compares the two configurations by deriving a Norton equivalent representation of each approach – including expressions for output charge and device capacitance. The model is verified using a microfabricated device comprised of multiple epitaxial silicon beams with sol-gel deposited lead zirconate titanate at the surface. The beams have identical dimensions and are attached to a common moving element at their tip. The only difference between beams is electrode configuration – enabling a direct comparison. Capacitance and charge measurements verify the presented theory with high accuracy. The Norton equivalent representation is general and enables comparison of any figure of merit, including electromechanical coupling coefficient and signal to noise ratio. With respect to coupling coefficient, the experimentally validated theory in this work suggests that 3-3 mode IDT-electrode configurations offer the potential for modest improvements compared against 3-1 mode devices (less than 2×), and the only geometrical parameter affecting this ratio is the fill factor of the IDT electrode. PMID:25309041

  16. Investigations of intraband quantum cascade laser source for a MEMS-scale photoacoustic sensor

    NASA Astrophysics Data System (ADS)

    Heaps, David A.; Pellegrino, Paul M.

    2007-04-01

    Photoacoustic spectroscopy is a useful monitoring technique that is well suited for trace gas detection applications. A sensitive and compact differential photoacoustic method for trace gas measurements is proposed. The technique possesses favorable detection characteristics that suggest the system dimensions may scale to a micro-system design. The objective of present work is to incorporate two strengths of the Army Research Laboratory (ARL); Interband Quantum Cascade Laser (ICL) source development and Chemical and Biological Sensing; we then applied them into a monolithic micro-electromechanical systems (MEMS) photoacoustic trace gas sensor. Previous data has shown that reducing the size of the photoacoustic cell can produce a very sensitive sensor using a CO II laser. Recent work has shown that with further reduction in the size of the photoacoustic cell in combination with an ICL as the source, produces favorable detection limits for Dimethyl Methyl Phosphonate (DMMP) a precursor to a nerve agent. These studies involve the incorporation of an ICL source operating at ~3.45 μm. This experimentation is expected to culminate in the creation of an extremely versatile MEMS photoacoustic sensor.

  17. CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application

    NASA Astrophysics Data System (ADS)

    Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin

    2015-12-01

    Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard

  18. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  19. MEMS Deformable Mirrors for Adaptive Optics in Astronomical Imaging

    NASA Astrophysics Data System (ADS)

    Cornelissen, S.; Bierden, P. A.; Bifano, T.

    We report on the development of micro-electromechanical (MEMS) deformable mirrors designed for ground and space-based astronomical instruments intended for imaging extra-solar planets. Three different deformable mirror designs, a 1024 element continuous membrane (32x32), a 4096 element continuous membrane (64x64), and a 331 hexagonal segmented tip-tilt-piston are being produced for the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) program, the Gemini Planet Imaging Instrument, and the visible nulling coronograph developed at JPL for NASA's TPF mission, respectively. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that was pioneered at Boston University and has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors will have an active aperture of up to 25.2mm consisting of thin silicon membrane mirror supported by an array of 1024 to 4096 electrostatic actuators exhibiting no hysteresis and sub-nanometer repeatability. The continuous membrane deformable mirrors, coated with a highly reflective metal film, will be capable of up to 4μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. The segmented device will have a range of motion of 1um of piston and a 600 arc-seconds of tip/tilt simultaneously and a surface finish of 1nm RMS. The individual mirror elements in this unique device, are designed such that they will maintain their flatness throughout the range of travel. New design features and fabrication processes are combined with a proven device architecture to achieve the desired performance and high reliability. Presented in this paper are device characteristic and performance results of these devices.

  20. Internet MEMS design tools based on component technology

    NASA Astrophysics Data System (ADS)

    Brueck, Rainer; Schumer, Christian

    1999-03-01

    The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.

  1. On-Orbit, Immuno-Based, Label-Free White Blood Cell Counting System with Microelectromechanical Sensor Technology (OILWBCS-MEMS)

    NASA Technical Reports Server (NTRS)

    Edmonds, Jessica

    2015-01-01

    Aurora Flight Sciences, in partnership with Draper Laboratory, has developed a miniaturized system to count white blood cells in microgravity environments. The system uses MEMS technology to simultaneously count total white blood cells, the five white blood cell differential subgroups, and various lymphocyte subtypes. The OILWBCS-MEMS detection technology works by immobilizing an array of white blood cell-specific antibodies on small, gold-coated membranes. When blood flows across the membranes, specific cells' surface protein antigens bind to their corresponding antibodies. This binding can be measured and correlated to cell counts. In Phase I, the partners demonstrated surface chemistry sensitivity and specificity for total white blood cells and two lymphocyte subtypes. In Phase II, a functional prototype demonstrated end-to-end operation. This rugged, miniaturized device requires minimal blood sample preparation and will be useful for both space flight and terrestrial applications.

  2. Mechanical contact in system-level models of electrostatically actuated RF-MEMS switches: experimental analysis and modeling

    NASA Astrophysics Data System (ADS)

    Niessner, Martin; Iannacci, Jacopo; Schrag, Gabriele

    2011-06-01

    Three different multi-energy domain coupled system-level models are used to simulate the closing and opening transients of a respective ohmic contact type RF-MEMS switch. The comparison of simulated and measured data shows that, due to the presence of multiple structural modes, none of the system-level models is able to capture exactly the initial closing and contact phase whilst dynamic pull-in. The system-level model, that uses a mechanical submodel based on modal superposition, produces the result closest to the real situation. Notably, the effective residual air gap, assumed whilst contact between the membrane with high surface roughness and the contact pads of the switch, is the most influential parameter in the simulation of the closing transient, as this parameter strongly affects the air damping on the device during pull-in. This finding demonstrates that a reliable model of air damping is a vital prerequisite for the predictive simulation of pull-in and pull-out transients.

  3. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors.

    PubMed

    Zhao, Lin; Guan, Dongxue; Landry, René; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR's attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  4. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors

    PubMed Central

    Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  5. Molecular sensors for MEMS

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Yung

    Molecular sensors, known as pressure-sensitive paint and temperature-sensitive paint, are applied inside MEMS devices to obtain the internal and external flow fields. The spatial resolution for the PSP and TSP measurements has improved to 5 mum. The low-pressure PSP sensor has been investigated for use in MEMS measurements, with an application range from continuum flow to transition flow. PSP and TSP measurements in different micro devices have been obtained with the flow fields covering steady and unsteady, subsonic and supersonic flow. In microchannel measurements, the pressure distributions inside the microchannel have been obtained for Knudsen number from 0.006 to 0.8. Compressibility and rarefaction effects can be observed in the PSP data. Detailed information at the channel inlet was also collected to discuss the entrance effect for different flow regimes. For micronozzle experiments, four different micronozzles have been fabricated to study geometry effects at the micro scale. The pressure maps inside the micronozzle devices have been obtained with PSP sensors. A modified schlieren technique is used to compare the PSP results and investigate the shock wave behavior at high- and low-pressure conditions. Thick viscous layers in the micronozzle have been observed in the low-pressure measurements. For microjet impingements, heat transfer measurements have been collected with different microjet devices by using TSP sensors. For supersonic impinging microjet measurements, both pressure and temperature data have been obtained at different pressure ratios, impingement angles and impingement distances. Measurements reveal that the magnitude and number of shock cells decreases in the micro scale due to strong viscous effects. For microturbine measurements, averaged results of PSP and TSP measurements have been obtained for a rotation speed from 1300 to 4000 rpm. Phase-averaged results have been collected by using a laser triggering system at rotation speed of 1400 rpm

  6. MEMS Packaging and Thermal Issues in Reliability

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Ting; Lin, Liwei

    The potential of MEMS/NEMS technologies has been viewed as a comparable or even bigger revolution than that of microelectronics. These scientific and engineering advancements in MEMS/NEMS could bring applications to reality previously unthinkable, from space systems, environmental instruments, to daily life appliances. As presented in previous chapters, the development of core MEMS/NEMS processes has already demonstrated a lot of commercial applications as well as future potentials with elaborated functionalities. However, a low cost and reliable package for the protection of these MEMS/NEMS products is still a very difficult task. Without addressing the packaging and reliability issues, no commercial products can be sold on the market. Packaging design and modeling, packaging material selection, packaging process integration, and packaging cost are main issues to be considered when developing a new MEMS packaging process. In this chapter, we will present the fundamentals of MEMS/NEMS packaging technology, including packaging processes, hermetic and vacuum encapsulations, thermal issues, packaging reliability, and future packaging trends. The future development of MEMS packaging will rely on the success of the implementation of several unique techniques, such as packaging design kits for system and circuit designer, low cost and high yield wafer level, chip-scale packaging techniques, effective testing techniques at the wafer-level to reduce overall testing costs; and reliable fabrication of an interposer [37.1] with vertical through-interconnects for device integrations.

  7. Integrated microphotonic-MEMS inertial sensors

    NASA Astrophysics Data System (ADS)

    Zandi, Kazem

    The objective of this thesis is to design, simulate, fabricate and characterize high sensitive low cost in-plane photonic-band-gap (PBG)-micro electromechanical systems (MEMS)-based miniature accelerometers and rotational rate sensors (gyroscopes) on a silicon-on-insulator (SOI) substrate in order to enable the integration of an array of two-axis of these sensors on a single SOI platform. Use of guided-wave optical devices integrated with MEMS on SOI for multichannel/multifunction sensor systems allows the use of multiple sensors to extend the measurement range and accuracy. This provides essential redundancy which makes long-term reliability in the space environment possible therefore reducing the possibility of system failure. The navigator microchip also represents the ability of accommodating diverse attitude and inertial sensors on the same microchip to eliminate the need of many separate sensors. The end product exhibits orders of magnitude reduction in system mass and size. Furthermore, redundancy improves the net performance and precision of the navigation measurement systems. Two classes of optical accelerometers/gyroscopes are considered in this thesis for application in smallsats navigation, one based on tunable Fabry-Perot (FP) filter, where the sensor is actuated by the applied acceleration providing a shift in the operating wavelength that varies linearly with the applied acceleration and the other one based on variable optical attenuator (VOA), where the sensor is actuated by the applied acceleration providing a linear change for small displacements around the waveguide propagation axis in the relative signal intensity with the applied acceleration. In the case of FP-based sensors, the FP microcavity consists of two distributed Bragg reflectors (DBR) in which one DBR mirror is attached to the proof mass of the system. As a consequence of acceleration/rotation, the relative displacement of the movable mirror with respect to the fixed mirror changes

  8. Design of Surface micromachined Compliant MEMS

    SciTech Connect

    Joe Anthony Bradley

    2002-08-01

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  9. Design of Surface Micromachined Compliant MEMS

    SciTech Connect

    Joe Anthony Bradley

    2002-12-31

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMs, most have used comb-drive actuation methods and bulk micromachining processes. This research focused on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  10. MEMS for Practical Applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.

  11. W-Coating for MEMS

    SciTech Connect

    Fleming, J.G.; Mani, S.S.; Sniegowski, J.J.

    1999-07-08

    The integration of miniaturized mechanical components has spawned a new technology known as microelectromechanical systems (MEMS). Surface micromachining, defined as the fabrication of micromechanical structures from deposited thin films, is one of the core technological processes underlying MEMS. Surface micromachined structures have a large ratio of surface area to volume which makes them particularly vulnerable to adhesion to the substrate or adjacent structures during release or in use--a problem is called stiction. Since microactuators can have surfaces in normal or sliding contact, function and wear are critical issues for reliable operation of MEMS devices. Surface modifications are needed to reduce adhesion and friction in micromechanical structures. In this paper, we will present a process used to selectively coat MEMS devices with Tungsten using a CVD (Chemical Vapor Deposition) process. We will discuss the effect of wet and vapor phase cleans along with different process variables. Endurance of the W coating is important, especially in applications where wear due to repetitive contacts with the film may occur. Further, tungsten is hard and chemically inert, Tungsten CVD is used in the integrated-circuit industry, which makes this, approach manufacturable.

  12. Electromechanical Devices. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electromechanical devices is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored training…

  13. Analysis of material properties for MEMS using interferometric measurements

    NASA Astrophysics Data System (ADS)

    O'Mahony, Conor; Hill, Martin; Mathewson, Alan

    2003-03-01

    As the scope and depth of research into microelectromechanical systems increases, the issue of mechanical characterisation has emerged as a major consideration in device design. It is now common to include a set of test structures on a MEMS wafer for extraction of thin film material properties (in particular, residual stress and Young's modulus). These structures usually consist of micromachined beams and strain gauges, and measurement techniques include tensile testing, electromechanical characterisation, SEM imaging, and Raman spectroscopy. However, some of these tests are destructive and difficult to carry out at wafer scale. This work uses electrostatic actuation to pull fixed-fixed beams towards the substrate, and a white-light interferometer to record the beam deflection profile. Finite-element simulation software is employed to model this deflection, and to estimate the material properties which minimise the difference between the measured and simulated profiles. The test is non-destructive, suitable for wafer-level characterisation, and the structures involved require less die space than other methods. We have developed a 1.5mm surface micromachining process for the fabrication of composite and monolayer structures with applications in relay switching, optical imaging and radio-frequency components. This work presents results obtained using interferometric analysis for both monolayer (titanium) and composite (SiOx - metal) thin films fabricated with this process.

  14. MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  15. Low-coherence interferometric absolute distance gauge for study of MEMS structures

    NASA Astrophysics Data System (ADS)

    Walecki, Wojciech J.; Lai, Kevin; Pravdivtsev, Alexander; Souchkov, Vitali; Van, Phuc; Azfar, Talal; Wong, Tim; Lau, S. H.; Koo, Ann

    2005-01-01

    The most commonly employed tools for wafer thickness and topography metrology are based on capacitance method, which due to physical size of probes, and may not be suitable for direct measurement of multi-layer non-conductive wafers or Micro Electromechanical Systems (MEMS) structures. Recently developed that low coherence interferometry provides solution, which overcomes limitations of these methods. Selected MEMS applications including characterization of deep (high aspect) trenches and membrane structures have been also developed. The above listed applications were limited to measurements of relative distance between two optical interfaces in material transparent at the wavelength of probing radiation. Absolute distance gauging by fiber optic low coherence interferometer is difficult due to large thermal drift (of the order of 0.04 mm/K). We demonstrate that this drift is a result of thermal changes of refractive index of fiber optic glass. We present solution eliminating this drift is based on introduction of the additional reference plane in the signal arm of the Michelson interferometer. Use of this reference plane eliminates influence of changes of refractive index of glass fibers on result of measurement and improves thermal stability of low coherence interferometer by three orders of magnitude.

  16. Graphene ``microdrums'' on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors

    NASA Astrophysics Data System (ADS)

    Wang, Qiugu; Hong, Wei; Dong, Liang

    2016-03-01

    We present a microelectromechanical system (MEMS) graphene-based pressure sensor realized by transferring a large area, few-layered graphene on a suspended silicon nitride thin membrane perforated by a periodic array of micro-through-holes. Each through-hole is covered by a circular drum-like graphene layer, namely a graphene ``microdrum''. The uniqueness of the sensor design is the fact that introducing the through-hole arrays into the supporting nitride membrane allows generating an increased strain in the graphene membrane over the through-hole array by local deformations of the holes under an applied differential pressure. Further reasons contributing to the increased strain in the devised sensitive membrane include larger deflection of the membrane than that of its imperforated counterpart membrane, and direct bulging of the graphene microdrum under an applied pressure. Electromechanical measurements show a gauge factor of 4.4 for the graphene membrane and a sensitivity of 2.8 × 10-5 mbar-1 for the pressure sensor with a good linearity over a wide pressure range. The present sensor outperforms most existing MEMS-based small footprint pressure sensors using graphene, silicon, and carbon nanotubes as sensitive materials, due to the high sensitivity.

  17. Graphene "microdrums" on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors.

    PubMed

    Wang, Qiugu; Hong, Wei; Dong, Liang

    2016-04-14

    We present a microelectromechanical system (MEMS) graphene-based pressure sensor realized by transferring a large area, few-layered graphene on a suspended silicon nitride thin membrane perforated by a periodic array of micro-through-holes. Each through-hole is covered by a circular drum-like graphene layer, namely a graphene "microdrum". The uniqueness of the sensor design is the fact that introducing the through-hole arrays into the supporting nitride membrane allows generating an increased strain in the graphene membrane over the through-hole array by local deformations of the holes under an applied differential pressure. Further reasons contributing to the increased strain in the devised sensitive membrane include larger deflection of the membrane than that of its imperforated counterpart membrane, and direct bulging of the graphene microdrum under an applied pressure. Electromechanical measurements show a gauge factor of 4.4 for the graphene membrane and a sensitivity of 2.8 × 10(-5) mbar(-1) for the pressure sensor with a good linearity over a wide pressure range. The present sensor outperforms most existing MEMS-based small footprint pressure sensors using graphene, silicon, and carbon nanotubes as sensitive materials, due to the high sensitivity. PMID:26988111

  18. MEMS-based and switched-capacitor approaches for miniature power supply applications

    NASA Astrophysics Data System (ADS)

    Bedair, Sarah S.; Meyer, Christopher D.; Lazarus, Nathan; Dougherty, Christopher; Pulskamp, Jeffrey S.; Morgan, Brian; Polcawich, Ronald; Lin, Xue; Bashirullah, Rizwan; Kierzewski, Iain; Martin, Joel; Power, Brian

    2014-06-01

    This paper summarizes work towards creating mm-scale power converters using high-frequency CMOS as well as MEMS and micro-machined passives. Reducing the converter size is largely motivated by creating power supplies for micro-robotic platforms (with millimeter and milligram scales) without negatively impacting robotic system functionality. MEMS power passives are first presented where thin-film piezoelectric transformers and resonators are shown as an electromechanical approach to achieve ultra-miniature passives at the chip scale. Piezoelectric transformers fabricated with thin-film lead zirconate titanate (PZT) on silicon are measured and show ~60% efficiencies with 240 and 75 Ω loads. These transformers have resonant frequencies ranging between 14 and 20 MHz. Work towards creating transmission lines fabricated with air-core inductors and ferroelectric capacitors is also presented. Finally, a fullyintegrated bi-directional converter in CMOS is shown driving mm-scale robotic wings made with PZT. The converter's maximum efficiency is 77% at ~800μW load with 9V output and demonstrates <3x voltage boost in 0.13-μm triple-well CMOS.

  19. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes

    PubMed Central

    Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-01-01

    Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail. PMID:27275823

  20. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes.

    PubMed

    Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-01-01

    Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m³ to 900 kg/m³ and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail. PMID:27275823

  1. A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors

    PubMed Central

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Yuan, Xuebing; Liu, Sheng

    2016-01-01

    To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE) of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS) with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination. PMID:26907294

  2. A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors.

    PubMed

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Yuan, Xuebing; Liu, Sheng

    2016-01-01

    To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE) of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS) with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination. PMID:26907294

  3. Functional Micro-Dispensers based on Micro-Electro-Mechanical-Systems (MEMS) integrated with fabrics as functional materials to protect humans from mosquito feeding.

    PubMed

    Bernier, Ulrich R; Gurman, Pablo; Clark, Gary G; Elman, Noel

    2015-12-28

    Functional Micro-Dispensers (FMDs) based on Micro-Electro-Mechanical-Systems (MEMS) were designed to deliver spatial repellents that reduce the ability of mosquitoes to feed on humans. FMDs were integrated with fabrics as functional materials for protection against mosquito bites. The use of MEMS devices provides an unprecedented control over the release kinetics by means of integration with electronics for selective and timely activation of each device to perform controlled release of pesticides in air. In addition, because MEMS manufacturing techniques evolved from the microelectronic industry, FMDs can be mass produced at very low cost. Trials using FMDs that contained transfluthrin improved protection against mosquito feeding in human subjects above that of permethrin-treated uniform fabric worn on the arm of the volunteer. The overall reduction in feeding was approximately 90% compared to the untreated fabric control, and about 50% reduction compared to the permethrin-treated fabric control. The devices were efficacious over course of 32 days. FMDs have the potential for a simple and cost-effective implementation for mass adoption as wearable devices integrated in fabrics as active functional materials. PMID:26415856

  4. Si-based RF MEMS components.

    SciTech Connect

    Stevens, James E.; Nordquist, Christopher Daniel; Baker, Michael Sean; Fleming, James Grant; Stewart, Harold D.; Dyck, Christopher William

    2005-01-01

    Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.

  5. An investigation into graphene exfoliation and potential graphene application in MEMS devices

    NASA Astrophysics Data System (ADS)

    Fercana, George; Kletetschka, Gunther; Mikula, Vilem; Li, Mary

    2011-02-01

    The design of microelectromecanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) are often materials-limited with respect to the efficiency and capability of the material. Graphene, a one atom thick honeycomb lattice of carbon, is a highly desired material for MEMS applications. Relevant properties of graphene include the material's optical transparency, mechanical strength, energy efficiency, and electrical and thermal conductivity due to its electron mobility. Aforementioned properties make graphene a strong candidate to supplant existing transparent electrode technology and replace the conventionally used material, indium-tin oxide. In this paper we present preliminary results on work toward integration of graphene with MEMS structures. We are studying mechanical exfoliation of highly ordered pyrolytic graphite (HOPG) crystals by repeatedly applying and separating adhesive materials from the HOPG surface. The resulting graphene sheets are then transferred to silicon oxide substrate using the previously applied adhesive material. We explored different adhesive options, particularly the use of Kapton tape, to improve the yield of graphene isolation along with chemical cross-linking agents which operate on a mechanism of photoinsertion of disassociated nitrene groups. These perfluorophenyl nitrenes participate in C=C addition reactions with graphene monolayers creating a covalent binding between the substrate and graphene. We are focusing on maximizing the size of isolated graphene sheets and comparing to conventional exfoliation. Preliminary results allow isolation of few layer graphene (FLG) sheets (n<3) of approximately 10μm x 44μm. Photolithography could possibly be utilized to tailor designs for microshutter technology to be used in future deep space telescopes.

  6. Scalable fabrication of carbon-based MEMS/NEMS and their applications: a review

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Zhan, Xiaobin; Xi, Shuang; Long, Hu; Gong, Bo; Li, Junjie; Cheng, Siyi; Huang, Yuanyuan; Tang, Zirong

    2015-11-01

    The carbon-based micro/nano electromechanical system (MEMS/NEMS) technique provides a powerful approach to large-scale manufacture of high-aspect-ratio carbon structures for wafer-level processing. The fabricated three-dimensional (3D) carbon structures have the advantages of excellent electrical and electrochemical properties, and superior biocompatibility. In order to improve their performance for applications in micro energy storage devices and microsensors, an increase in the footprint surface area is of great importance. Various approaches have been proposed for fabricating large surface area carbon-based structures, including the integration of nanostructures such as carbon nanotubes (CNTs), graphene, nanowires, nanofilms and nanowrinkles onto 3D structures, which has been proved to be effective and productive. Moreover, by etching the 3D photoresist microstructures through oxygen plasma or modifying the photoresist with specific materials which can be etched in the following pyrolysis process, micro/nano hierarchical carbon structures have been fabricated. These improved structures show excellent performance in various applications, especially in the fields of biological sensors, surface-enhanced Raman scattering, and energy storage devices such as micro-supercapacitors and fuel cells. With the rapid development of microelectronic devices, the carbon-based MEMS/NEMS technique could make more aggressive moves into microelectronics, sensors, miniaturized power systems, etc. In this review, the recent advances in the fabrication of micro/nano hierarchical carbon-based structures are introduced and the technical challenges and future outlook of the carbon-based MEMS/NEMS techniques are also analyzed.

  7. MEMS as low-cost high-volume semiconductor solutions: it's all in the packaging and assembly

    NASA Astrophysics Data System (ADS)

    Brown, Joe; Lutz, Markus; Partridge, Aaron; Gupta, Pavan; Radza, Eric

    2008-02-01

    Micro-electromechanical (MEMS) oscillators are now in production and shipping in quantity. Early development of micro mechanical devices provided the understanding that metal beams could be fabricated and they would resonate as a time reference. The issues of performance and price have prevented silicon entry into the quartz dominated market until recent developments in semiconductor processing and assembly. Today MEMS oscillators are the world's smallest programmable precision oscillators and are displacing quartz technology in the +/- 50 ppm accuracy spec. New oscillators extend the technology with spread spectrum, voltage control, and improved jitter performance. New ultra-thin packaging, made possible by the small encapsulated MEMS resonators, provides the word's thinnest precision oscillators.

  8. Optical MEMS-based arrays

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    2003-07-01

    Industrial Micro Electro Mechanical Systems (MEMS) developers are rapidly bringing to demonstration inertial radio frequency, and optical MEMS devices and components. The Army has a requirement for compact, highly reliable, and inexpensive laser beam steering components for missile seekers and unmanned aerial vehicles remote sensing components to provide a fast scanning capability for pointing, acquisition, tracking, and data communication. The coupling of this requirement with recent developments in the micro-optics area, has led scientists and engineers at the Army Aviation and Missile Command (AMCOM) to consider optical MEMS-based phased arrays, which have potential applications in the commercial industry as well as in the military, as a replacement for gimbals. Laser beam steering in commercial applications such as free space communicataion, scanning display, bar-code reading, and gimbaled seekers; require relatively large monolithic micro-mirrors to accomplish the required optical resolution. The Army will benefit from phased arrays composed of relatively small micro-mirrors that can be actuated through large deflection angles with substantially reduced volume times. The AMCOM Aviation and Missile Research, Development, and Engineering Center (AMRDEC) has initiated a research project to develop MEMS-based phased arrays for use in a small volume, inexpensive Laser Detection and Ranging (LADAR) seeker that is particularly attractive because of its ability to provide large field-of-regard and autonomous target acquisition for reconnaissance mission applications. The primary objective of the collaborative project with the Defence Advanced Research Projects Agency (DARPA) is to develop a rugged, MEMS-based phased arrays for incorporation into the 2-D scanner of a LADAR seeker. Design challenges and approach to achieving performance requirements will be discussed.

  9. Multifunctional optical system-on-a-chip for heterogeneous fiber optic sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Pang, Cheng; Gupta, Ashwani

    2015-08-01

    In this article, we review our recent progress on the development of a multifunctional optical system-on-a-chip platform, which can be used for achieving heterogeneous wireless fiber optical sensor networks. A multifunctional optical sensor platform based on the micro-electromechanical systems (MEMS) technology is developed. The key component of the multifunctional optical sensor platform is a MEMS based tunable Fabry-Pérot (FP) filter, which can be used as a phase modulator or a wavelength tuning device in a multifunctional optical sensing system. Mechanics model of the FP filter and optics model of the multifunctional optical sensing system are developed to facilitate the design of the filter. The MEMS FP filter is implemented in a multifunctional optical sensing system including both Fabry-Perot interferometer based sensors and Fiber Bragg grating sensors. The experimental results indicate that this large dynamic range tunable filter can enable high performance heterogeneous optical sensing for many applications.

  10. Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

    SciTech Connect

    Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

    1998-05-01

    Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

  11. MEMS metrology techniques

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2004-12-01

    The MEMS industry currently produces over $13 billion in annual revenue, with devices in such diverse applications as blood pressure sensors, projection displays, optical switches, printers, hard drives, and gyroscopes. As production techniques improve, ever more functions may be served by MEMS, and the industry is growing at an annual rate of more than 15%. The large diversity of MEMS leads to many challenges in metrology, as each design has different critical factors which will affect its performance. Unlike traditional semiconductor devices, MEMS require characterization both in their static state and under actuation. Parameters of interest include shape, dimensions, surface roughness, sidewall angles, film thickness, residual stress, feature volumes, response times, thermal properties, resonance frequencies, stiction, environmental immunity and more. This talk will discuss the strengths and weaknesses of a variety of techniques for MEMS surface metrology. Bright- and dark-field microscopy, scanning electron microscopy, contact and non-contact surface profilometry, atomic force microscopy, laser Doppler vibrometry and digital holography are some of the primary techniques used to evaluate MEMS surfaces and motion. While no single technique can fully characterize all MEMS devices, or even one device under all conditions, the utility of each of the different types of instruments is increasing as they are pushed by MEMS and other industries to provide more characterization capability. With a broad understanding of the various metrology techniques available, the one or few critical instruments to measure a given class of devices will hopefully be more easily understood.

  12. MEMS metrology techniques

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2005-01-01

    The MEMS industry currently produces over $13 billion in annual revenue, with devices in such diverse applications as blood pressure sensors, projection displays, optical switches, printers, hard drives, and gyroscopes. As production techniques improve, ever more functions may be served by MEMS, and the industry is growing at an annual rate of more than 15%. The large diversity of MEMS leads to many challenges in metrology, as each design has different critical factors which will affect its performance. Unlike traditional semiconductor devices, MEMS require characterization both in their static state and under actuation. Parameters of interest include shape, dimensions, surface roughness, sidewall angles, film thickness, residual stress, feature volumes, response times, thermal properties, resonance frequencies, stiction, environmental immunity and more. This talk will discuss the strengths and weaknesses of a variety of techniques for MEMS surface metrology. Bright- and dark-field microscopy, scanning electron microscopy, contact and non-contact surface profilometry, atomic force microscopy, laser Doppler vibrometry and digital holography are some of the primary techniques used to evaluate MEMS surfaces and motion. While no single technique can fully characterize all MEMS devices, or even one device under all conditions, the utility of each of the different types of instruments is increasing as they are pushed by MEMS and other industries to provide more characterization capability. With a broad understanding of the various metrology techniques available, the one or few critical instruments to measure a given class of devices will hopefully be more easily understood.

  13. Close Up - Mem Fox.

    ERIC Educational Resources Information Center

    Moss, Barbara

    2003-01-01

    Presents an interview with Mem Fox, a teacher educator and children's book author well known throughout the world. Discusses writing books for children, and the mistakes she made early in her career as a writer. Notes that Mem is a tireless advocate for meaningful literacy instruction, and her "Radical Reflections: Passionate Opinions on Teaching,…

  14. Design of active temperature compensated composite free-free beam MEMS resonators in a standard process

    NASA Astrophysics Data System (ADS)

    Xereas, George; Chodavarapu, Vamsy P.

    2014-03-01

    Frequency references are used in almost every modern electronic device including mobile phones, personal computers, and scientific and medical instrumentation. With modern consumer mobile devices imposing stringent requirements of low cost, low complexity, compact system integration and low power consumption, there has been significant interest to develop batch-manufactured MEMS resonators. An important challenge for MEMS resonators is to match the frequency and temperature stability of quartz resonators. We present 1MHz and 20MHz temperature compensated Free-Free beam MEMS resonators developed using PolyMUMPS, which is a commercial multi-user process available from MEMSCAP. We introduce a novel temperature compensation technique that enables high frequency stability over a wide temperature range. We used three strategies: passive compensation by using a structural gold (Au) layer on the resonator, active compensation through using a heater element, and a Free-Free beam design that minimizes the effects of thermal mismatch between the vibrating structure and the substrate. Detailed electro-mechanical simulations were performed to evaluate the frequency response and Quality Factor (Q). Specifically, for the 20MHz device, a Q of 10,000 was obtained for the passive compensated design. Finite Element Modeling (FEM) simulations were used to evaluate the Temperature Coefficient of frequency (TCf) of the resonators between -50°C and 125°C which yielded +0.638 ppm/°C for the active compensated, compared to -1.66 ppm/°C for the passively compensated design and -8.48 ppm/°C for uncompensated design for the 20MHz device. Electro-thermo-mechanical simulations showed that the heater element was capable of increasing the temperature of the resonators by approximately 53°C with an applied voltage of 10V and power consumption of 8.42 mW.

  15. Packaging and Reliability Issues in Micro/Nano Systems

    NASA Astrophysics Data System (ADS)

    Kim, Jongbaeg; Cheng, Yu-Ting; Chiao, Mu; Lin, Liwei

    The potential of MEMS/NEMS technologies has been viewed as a revolution comparable or even bigger than that of microelectronics. These scientific and engineering advancements in micro-/nano-electromechanical systems (MEMS)/(NEMS) could bring previously unthinkable applications to reality, from space systems, environmental instruments, to daily-life appliances. As presented in previous chapters, the development of core MEMS/NEMS processes has already demonstrated a lot of commercial applications as well as future potentials with elaborate functionalities. However, creating a low-cost reliable package for the protection of these MEMS/NEMS products is still a very difficult task. Without addressing these packaging and reliability issues, no commercial products can be sold on the market. Packaging design and modeling, packaging material selection, packaging process integration, and packaging cost are the main issues to be considered. In this chapter, we will present the fundamentals of MEMS/NEMS packaging technology, including packaging processes, hermetic and vacuum encapsulations, thermal issues, packaging reliability, and future packaging trends. The future development of MEMS packaging will rely on the success of the implementation of several unique techniques, such as packaging design kits for system and circuit designer, low-cost wafer-level and chip-scale packaging techniques, effective testing techniques, and reliable fabrication of an interposer [56.1] with vertical through-interconnects for device integrations.

  16. MEMS Applications in Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Reshotko, E.; Mehregany, M.; Bang, C.

    1998-01-01

    Microelectromechanical systems (MEMS) embodies the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible bulk and surface micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including microsensors and microactuators, are attractive because they can be made small (characteristic dimension about 100 microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. For aerodynamic measurements, it is preferred that sensors be small so as to approximate measurement at a point, and in fact, MEMS pressure sensors, wall shear-stress sensors, heat flux sensors and micromachined hot wires are nearing application. For the envisioned application to wind tunnel models, MEMS sensors can be placed on the surface or in very shallow grooves. MEMS devices have often been fabricated on stiff, flat silicon substrates, about 0.5 mm thick, and therefore were not easily mounted on curved surfaces. However, flexible substrates are now available and heat-flux sensor arrays have been wrapped around a curved turbine blade. Electrical leads can also be built into the flexible substrate. Thus MEMS instrumented wind tunnel models do not require deep spanwise grooves for tubes and leads that compromise the strength of conventionally instrumented models. With MEMS, even the electrical leads can potentially be eliminated if telemetry of the signals to an appropriate receiver can be implemented. While semiconductor silicon is well known for its electronic properties, it is also an excellent mechanical material for MEMS applications. However, silicon electronics are limited to operations below about 200 C, and silicon's mechanical properties start to diminish above 400 C. In recent years, silicon carbide (SiC) has emerged as the leading material candidate for

  17. Challenges in the Packaging of MEMS

    SciTech Connect

    BROWN, WILLIAM D.; EATON, WILLIAM P.; MALSHE, AJAY P.; MILLER, WILLIAM M.; O'NEAL, CHAD; SINGH, SUSHILA B.

    1999-09-24

    Microelectromechanical Systems (MEMS) packaging is much different from conventional integrated circuit (IC) packaging. Many MEMS devices must interface to the environment in order to perform their intended function, and the package must be able to facilitate access with the environment while protecting the device. The package must also not interfere with or impede the operation of the MEMS device. The die attachment material should be low stress, and low outgassing, while also minimizing stress relaxation overtime which can lead to scale factor shifts in sensor devices. The fabrication processes used in creating the devices must be compatible with each other, and not result in damage to the devices. Many devices are application specific requiring custom packages that are not commercially available. Devices may also need media compatible packages that can protect the devices from harsh environments in which the MEMS device may operate. Techniques are being developed to handle, process, and package the devices such that high yields of functional packaged parts will result. Currently, many of the processing steps are potentially harmful to MEMS devices and negatively affect yield. It is the objective of this paper to review and discuss packaging challenges that exist for MEMS systems and to expose these issues to new audiences from the integrated circuit packaging community.

  18. Characterization of Kova-Pyrex Anodically Bonded Samples: A New Packaging Approach for MEMS Devices

    NASA Technical Reports Server (NTRS)

    Vargo, S.; Green, A.; Mueller, J.; Bame, D.; Reinicke, R.

    2000-01-01

    The ability to anodically bond Kovar to Pyrex 7740 significantly expands the packaging approaches available for MEMS devices. This technique greatly simplifies and reliably interconnects micropropulsion MEMS components (thrusters, valves) with the attached propellant system.

  19. Monolithic integration of a MOSFET with a MEMS device

    DOEpatents

    Bennett, Reid; Draper, Bruce

    2003-01-01

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  20. Nano-electromechanical oscillators (NEMOs) for RF technologies.

    SciTech Connect

    Wendt, Joel Robert; Czaplewski, David A.; Gibson, John Murray; Webster, James R.; Carton, Andrew James; Keeler, Bianca Elizabeth Nelson; Carr, Dustin Wade; Friedmann, Thomas Aquinas; Tallant, David Robert; Boyce, Brad Lee; Sullivan, John Patrick; Dyck, Christopher William; Chen, Xidong

    2004-12-01

    Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need

  1. SHERPA Electromechanical Test Bed

    NASA Technical Reports Server (NTRS)

    Wason, John D.

    2005-01-01

    SHERPA (Strap-on High-altitude Entry Reconnaissance and Precision Aeromaneuver system) is a concept for low-cost-high-accuracy Martian reentry guidance for small scout-class missions with a capsule diameter of approximately 1 meter. This system uses moving masses to change the center of gravity of the capsule in order to control the lift generated by the controlled imbalance. This project involved designing a small proof-of-concept demonstration system that can be used to test the concept through bench-top testing, hardware-in-the-loop testing, and eventually through a drop test from a helicopter. This project has focused on the Mechatronic design aspects of the system including the mechanical, electrical, computer, and low-level control of the concept demonstration system.

  2. Electromechanical phenomena in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Lew Yan Voon, L. C.; Willatzen, M.

    2011-02-01

    Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the

  3. Microwave Nano-abacus Electro-mechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Peng, Haibing; Chang, C. W.; Aloni, S.; Yuzvinsky, T. D.; Zettl, A.

    2007-03-01

    We describe nanoscale electromechanical oscillators capable of operating in ambient-pressure air at room temperature with unprecedented fundamental resonance frequency of ˜4 GHz. The devices, created from suspended carbon nanotubes loaded abacus-style with inertial metal clamps yielding short effective beam lengths, open windows for immediate practical microwave frequency nanoelectromechanical systems (NEMS) applications.

  4. The Impact of Emerging MEMS-Based Microsystems on US Defense Applications

    SciTech Connect

    STAPLE,BEVAN D.; JAKUBCZAK II,JEROME F.

    2000-01-20

    This paper examines the impact of inserting Micro-Electro-Mechanical Systems (MEMS) into US defense applications. As specific examples, the impacts of micro Inertial Measurement Units (IMUs), radio frequency MEMS (RF MEMS), and Micro-Opto-Electro-Mechanical Systems (MOEMS) to provide integrated intelligence, communication, and control to the defense infrastructure with increased affordability, functionality, and performance are highlighted.

  5. Impact Damage Detection in Composite Plates using a Self-diagnostic Electro-Mechanical Impedance-based Structural Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Sharif-Khodaei, Z.; Ghajari, M.; Aliabadi, M. H.

    2015-03-01

    In this work, application of the electro-mechanical impedance (EMI) method in structural health monitoring as a damage detection technique has been investigated. A damage metric based on the real and imaginary parts of the impedance measures is introduced. Numerical and experimental tests are carried out to investigate the applicability of the method for various types of damage, such as debonding between the transducers and the plate, faulty sensors and impact damage in composite plates. The effect of several parameters, such as environmental effects, frequency sweep, severity of damage, location of damage, etc., on the damage metric has been reported.

  6. Change of characteristic length with packaging for torsional MEMS switch

    NASA Astrophysics Data System (ADS)

    Bansal, Deepak; Anuroop, Kumar, Prem; Kaur, Maninder; Gaur, Surender; Kothari, Prateek; Singh, Arvind K.; Rangra, Kamaljit

    2016-04-01

    Fluid continuity theory is used to describe the dynamic response of open Micro-Electro-Mechanical-System (MEMS) devices. For a packaged device, at low pressure, the fluid continuity theory is no longer valid and a rarefication theory based on a Knudsen number is used. In an open MEMS device, the characteristic length which determines the Knudsen number is represented by the gap between the MEMS bridge and underneath actuation electrodes. On the other hand, for a packaged device, effective characteristic length is modified with the packaging cavity height. In this paper, for a packaged MEMS device, effective characteristic length with reference to the packaging height is derived.

  7. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  8. A tunable electromechanical Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Liu, Fei

    Acoustic liners are used in turbofan engine nacelles for the suppression of engine noise. For a given engine, there are different optimum impedance distributions associated with take-off, cut-back, and approach flight conditions. The impedance of conventional acoustic liners is fixed for a given geometry, and conventional active liner approaches are impractical. This project addresses the need for a tunable impedance through the development of an electromechanical Helmholtz resonator (EMHR). The device consists of a Helmholtz resonator with the standard rigid backplate replaced by a compliant piezoelectric composite. Analytical models (i.e., a lumped element model (LEM) and a transfer matrix (TM) representation of the EMHR) are developed to predict the acoustic behavior of the EMHR. The EMHR is experimentally investigated using the standard two-microphone method (TMM). The measurement results validate both the LEM and the TM of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open-circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom (DOF) system and an enhanced tuning range of over 47% that is not restricted by the short- and open-circuit limits. Damping coefficient measurements for a piezoelectric backplate in a vacuum chamber are performed and indicate that the damping is dominated by structural damping losses. A Pareto optimization design based on models of the EMHR is performed with non-inductive loads. The EMHR with non-inductive loads has 2DOF and two resonant frequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously, so a trade-off (Pareto solution) must be reached. The Pareto solution shows how design trade-offs can be used to satisfy

  9. Integration of a bioMEMS device into a disposable microfluidic cartridge for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Ortiz, Pedro; Keegan, Neil; Spoors, Julia; Hedley, John; Harris, Alun; Burdess, Jim; Burnett, Richard; Velten, Thomas; Biehl, Margit; Knoll, Thorsten; Haberer, Werner; Solomon, Matthew; Campitelli, Andrew; McNeil, Calum

    2009-02-01

    A microfluidic system for cancer diagnostics based around a core MEMS biosensor technology is presented in this paper. The principle of the MEMS biosensor is introduced and the functionalisation strategy for cancer marker recognition is described. In addition, the successful packaging and integration of functional MEMS biosensor devices are reported herein. This ongoing work represents one of the first hybrid systems to integrate a PCB packaged silicon MEMS device into a disposable microfluidic cartridge.

  10. Three-axis MEMS Accelerometer for Structural Inspection

    NASA Astrophysics Data System (ADS)

    Barbin, E.; Koleda, A.; Nesterenko, T.; Vtorushin, S.

    2016-01-01

    Microelectromechanical system accelerometers are widely used for metrological measurements of acceleration, tilt, vibration, and shock in moving objects. The paper presents the analysis of MEMS accelerometer that can be used for the structural inspection. ANSYS Multiphysics platform is used to simulate the behavior of MEMS accelerometer by employing a finite element model and MATLAB/Simulink tools for modeling nonlinear dynamic systems.

  11. A Three-Dimensional Microdisplacement Sensing System Based on MEMS Bulk-Silicon Technology

    PubMed Central

    Wu, Junjie; Lei, Lihua; Chen, Xin; Cai, Xiaoyu; Li, Yuan; Han, Tao

    2014-01-01

    For the dimensional measurement and characterization of microsized and nanosized components, a three-dimensional microdisplacement sensing system was developed using the piezoresistive effect in silicon. The sensor was fabricated using microelectromechanical system bulk-silicon technology, and it was validated using the finite element method. A precise data acquisition circuit with an accuracy of 20 μV was designed to obtain weak voltage signals. By calibration, the sensing system was shown to have a sensitivity of 17.29 mV/μm and 4.59 mV/μm in the axial and lateral directions, respectively; the nonlinearity in these directions was 0.8% and 1.0% full scale, respectively. A full range of 4.6 μm was achieved in the axial direction. Results of a resolution test indicated that the sensing system had a resolution of 5 nm in the axial direction and 10 nm in the lateral direction. PMID:25360581

  12. On-line smoothing for an integrated navigation system with low-cost MEMS inertial sensors.

    PubMed

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai; Lai, Ying-Chih; Chang, Chin-Chia; Cai, Jia-Ming; Huang, Shih-Ching

    2012-01-01

    The integration of the Inertial Navigation System (INS) and the Global Positioning System (GPS) is widely applied to seamlessly determine the time-variable position and orientation parameters of a system for navigation and mobile mapping applications. For optimal data fusion, the Kalman filter (KF) is often used for real-time applications. Backward smoothing is considered an optimal post-processing procedure. However, in current INS/GPS integration schemes, the KF and smoothing techniques still have some limitations. This article reviews the principles and analyzes the limitations of these estimators. In addition, an on-line smoothing method that overcomes the limitations of previous algorithms is proposed. For verification, an INS/GPS integrated architecture is implemented using a low-cost micro-electro-mechanical systems inertial measurement unit and a single-frequency GPS receiver. GPS signal outages are included in the testing trajectories to evaluate the effectiveness of the proposed method in comparison to conventional schemes. PMID:23443403

  13. Performance of a MEMS-based AO-OCT system using Fourier Reconstruction

    SciTech Connect

    Evans, J; Zawadzki, R; Jones, S; Olivier, S; Werner, J S

    2009-01-21

    Adaptive optics (AO) and optical coherence tomography (OCT) are powerful imaging modalities that, when combined, can provide high-resolution (3.5 {micro}m isotropic), 3-D images of the retina. The AO-OCT system at UC Davis has demonstrated the utility of this technology for microscopic, volumetric, in vivo retinal imaging. The current system uses an AOptix bimorph deformable mirror (DM) for low-order, high-stroke correction and a 140-actuator Boston Micromachines DM for high-order correction. Developments to improve performance or functionality of the instrument are on-going. Based on previous work in system characterization we have focused on improved AO control. We present preliminary results and remaining challenges for a newly implemented Fourier transform reconstructor (FTR). The previously reported error budget analysis is also reviewed and updated, with consideration of how to improve both the amount of residual error and the robustness of the system. Careful characterization of the AO system will lead to improved performance and inform the design of future systems.

  14. memP

    Energy Science and Technology Software Center (ESTSC)

    2010-02-05

    The lightweight heap profiling tool memP Version 1 provides a library that can be used with MPI applications that make use of heap memory allocations to provide profile data based on the per-task high-water-mark of heap allocation. The memP output is generated as a text report that can present summary information or specific detail of the allocation call site data for each task The memP library source code is based on teh mpiP MPI profilingmore » library (http://mpip.sourceforge.net), but is substantially different in functionality and organization.« less

  15. Charging characteritiscs of ultrananocrystalline diamond in RF MEMS capacitive switches.

    SciTech Connect

    Sumant, A. V.; Goldsmith, C.; Auciello, O.; Carlisle, J.; Zheng, H.; Hwang, J. C. M.; Palego, C.; Wang, W.; Carpick, R.; Adiga, V.; Datta, A.; Gudeman, C.; O'Brien, S.; Sampath, S.

    2010-05-01

    Modifications to a standard capacitive MEMS switch process have been made to allow the incorporation of ultra-nano-crystalline diamond as the switch dielectric. The impact on electromechanical performance is minimal. However, these devices exhibit uniquely different charging characteristics, with charging and discharging time constants 5-6 orders of magnitude quicker than conventional materials. This operation opens the possibility of devices which have no adverse effects of dielectric charging and can be operated near-continuously in the actuated state without significant degradation in reliability.

  16. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators

    PubMed Central

    Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated. PMID:26792224

  17. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators.

    PubMed

    Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated. PMID:26792224

  18. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators

    NASA Astrophysics Data System (ADS)

    Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated.

  19. Micromachined sensor systems on a chip: The integration of MEMS with CMOS and its applications

    SciTech Connect

    Smith, J.; Montague, S.; Sniegowski, J.

    1997-03-01

    The monolithic integration of micromechanical devices with their controlling electronics offers potential increases in performance as well as decreased cost for these devices. Analog Devices has demonstrated the commercial viability of this integration by interleaving micromechanical fabrication steps with microelectronic fabrication steps to produce a single-axis accelerometer on a chip. A next-generation integrated technology developed at Sandia National Laboratories eliminates many of the constraints associated with Analog`s process. This new technology enables the manufacture of complex micromachined sensor systems on a chip. An overview of Sandia`s micromachined system-on-a-chip technology along with application of the technology to inertial sensor systems designed by researchers at U.C. Berkeley will be given.

  20. An Implantable MEMS Micropump System for Drug Delivery in Small Animals

    PubMed Central

    Gensler, Heidi; Sheybani, Roya; Li, Po-Ying; Lo, Ronalee; Meng, Ellis

    2012-01-01

    We present the first implantable drug delivery system for controlled dosing, timing, and location in small animals. Current implantable drug delivery devices do not provide control over these factors or are not feasible for implantation in research animals as small as mice. Our system utilizes an integrated electrolysis micropump, is refillable, has an inert drug reservoir for broad drug compatibility, and is capable of adjustment to the delivery regimen while implanted. Electrochemical impedance spectroscopy (EIS) was used for characterization of electrodes on glass substrate and a flexible Parylene substrate. Benchtop testing of the electrolysis actuator resulted in flow rates from 1 to 34 μL/min on glass substrate and up to 6.8 μL/min on Parylene substrate. The fully integrated system generated a flow rate of 4.72 ± 0.35 μL/min under applied constant current of 1.0 mA while maintaining a power consumption of only ~3 mW. Finally, we demonstrated in vivo application of the system for anti-cancer drug delivery in mice. PMID:22273985

  1. MEMS scanner mirror based system for retina scanning and in eye projection

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Dallmann, Hans-Georg; Schelinski, Uwe; Grüger, Heinrich

    2015-02-01

    Many applications could benefit from miniaturized systems to scan blood vessels behind the retina in the human eye, so called "retina scanning". This reaches from access control to sophisticated security applications and medical devices. High volume systems for consumer applications require low cost and a user friendly operation. For example this includes no need for removal of glasses and self-adjustment, in turn guidance of focus and point of attraction by simultaneous projection for the user. A new system has been designed based on the well-known resonantly driven 2-d scanner mirror of Fraunhofer IPMS. A combined NIR and VIS laser system illuminates the eye through an eye piece designed for an operating distance allowing the use of glasses and granting sufficient field of view. This usability feature was considered to be more important than highest miniaturization. The modulated VIS laser facilitates the projection of an image directly onto the retina. The backscattered light from the continuous NIR laser contains the information of the blood vessels and is detected by a highly sensitive photo diode. A demonstrational setup has been realized including readout and driving electronics. The laser power was adjusted to an eye-secure level. Additional security features were integrated. Test measurements revealed promising results. In a first demonstration application the detection of biometric pattern of the blood vessels was evaluated for issues authentication in.

  2. MEMS based pumped liquid cooling systems for micro/nano spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; Shakkottai, P.; Sur, T. W.

    2000-01-01

    The electronic and other payload power densities in future micro/nano spacecraft are expected to exceed 25 Watts/cm(sup 2) and require advanced thermal control concepts and technologies to keep their payload within allowable temperature limits. This paper presents background on the need for pumped liquid cooling systems for future micro/nano spacecraft and results from this ongoing experimental investigation.

  3. Electromechanical magnetization switching

    SciTech Connect

    Chudnovsky, Eugene M.; Jaafar, Reem

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  4. Characteristics of semiconductor bridge (SCB) plasma generated in a micro-electro-mechanical system (MEMS)

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Uk; Park, Chong-Ook; Park, Myung-Il; Kim, Sun-Hwan; Lee, Jung-Bok

    2002-12-01

    Plasma ignition method has been applied in various fields particularly to the rocket propulsion, pyrotechnics, explosives, and to the automotive air-bag system. Ignition method for those applications should be safe and also operate reliably in hostile environments such as; electromagnetic noise, drift voltage, electrostatic background and so on. In the present Letter, a semiconductor bridge (SCB) plasma ignition device was fabricated and its plasma characteristics including the propagation speed of the plasma, plasma size, and plasma temperature were investigated with the aid of the visualization of micro scale plasma (i.e., ⩽350 μm), which generated from a micro-electro-mechanical poly-silicon semiconductor bridge (SCB).

  5. Low-Frequency, Low-G MEMS Piezoelectric Energy Harvester

    NASA Astrophysics Data System (ADS)

    Xu, R.; Kim, S. G.

    2015-12-01

    This paper reports the design, modeling and fabrication of a novel MEMS device for low-frequency, low-g vibration energy harvesting. The new design is based on bi-stable buckled beam structure. To implement the design at MEMS scale, we further proposed to employ residual stress in micro-fabricated thin films. With an electromechanical lumped model, the multi-layer beam could be designed to achieve bi-stability with desired frequency range and excitation amplitude. A macro-scale prototype has been built and tested to verifies the prediction of the performance enhancement of the bi-stable beam at low frequencies. A MEMS scale prototype has been fabricated and tested to verify the frequency range at low excitation amplitude. The MEMS device shows wide operating frequency range from 50Hz to 150Hz at 0.2g without external proof mass. The same device with external proof mass has lower frequency range (< 10Hz) with boosted deflection amplitude.

  6. Electromechanical simulations of dislocations

    NASA Astrophysics Data System (ADS)

    Skiba, Oxana; Gracie, Robert; Potapenko, Stanislav

    2013-04-01

    Improving the reliability of micro-electronic devices depends in part on developing a more in-depth understanding of dislocations because dislocations are barriers to charge carriers. To this end, the quasi-static simulation of discrete dislocations dynamics in materials under mechanical and electrical loads is presented. The simulations are based on the extended finite element method, where dislocations are modelled as internal discontinuities. The strong and weak forms of the boundary value problem for the coupled system are presented. The computation of the Peach-Koehler force using the J-integral is discussed. Examples to illustrate the accuracy of the simulations are presented. The motion of the network of the dislocations under different electrical and mechanical loads is simulated. It was shown that even in weak piezoelectric materials the effect of the electric field on plastic behaviour is significant.

  7. Sacrificial bridges for MEMS fabrication

    NASA Astrophysics Data System (ADS)

    Chang, Chao-Min; Chen, Yang-Che; Fong, Chien-Fu; Guu, Yunn-Horng; Chen, Rongshun; Yeh, J. Andrew; Hou, Max T.

    2011-09-01

    This study discusses sacrificial bridges that are used to release MEMS devices. Before being released, sacrificial bridges connect all the component structures into an integral structure. Solder bump bonding is used to mount the MEMS chip on another chip or a printed circuit board (PCB) and to maintain the alignment among all component structures after removal of the sacrificial bridges. Two types of sacrificial bridges were designed, analyzed and fabricated. The fabrication process—which used low resistivity single crystal silicon (SCS) wafers as the device material—was developed to implement the sacrificial bridges. Novel SCS through silicon vias (TSVs), which interconnect stacked chips, was made using the same process. An electrostatic comb drive actuator was fabricated and mounted onto a PCB. The fabricated actuator was tested to demonstrate the feasibility of the fabrication process, sacrificial bridges and SCS TSVs. The results show that the actuator worked well. Its maximum displacement and resonant frequency were 69.9 µm and 406 Hz, respectively. This method is promising for the delivery of a novel 3D system in package for MEMS devices.

  8. Exactly solvable chaos in an electromechanical oscillator.

    PubMed

    Owens, Benjamin A M; Stahl, Mark T; Corron, Ned J; Blakely, Jonathan N; Illing, Lucas

    2013-09-01

    A novel electromechanical chaotic oscillator is described that admits an exact analytic solution. The oscillator is a hybrid dynamical system with governing equations that include a linear second order ordinary differential equation with negative damping and a discrete switching condition that controls the oscillatory fixed point. The system produces provably chaotic oscillations with a topological structure similar to either the Lorenz butterfly or Rössler's folded-band oscillator depending on the configuration. Exact solutions are written as a linear convolution of a fixed basis pulse and a sequence of discrete symbols. We find close agreement between the exact analytical solutions and the physical oscillations. Waveform return maps for both configurations show equivalence to either a shift map or tent map, proving the chaotic nature of the oscillations. PMID:24089945

  9. Exactly solvable chaos in an electromechanical oscillator

    NASA Astrophysics Data System (ADS)

    Owens, Benjamin A. M.; Stahl, Mark T.; Corron, Ned J.; Blakely, Jonathan N.; Illing, Lucas

    2013-09-01

    A novel electromechanical chaotic oscillator is described that admits an exact analytic solution. The oscillator is a hybrid dynamical system with governing equations that include a linear second order ordinary differential equation with negative damping and a discrete switching condition that controls the oscillatory fixed point. The system produces provably chaotic oscillations with a topological structure similar to either the Lorenz butterfly or Rössler's folded-band oscillator depending on the configuration. Exact solutions are written as a linear convolution of a fixed basis pulse and a sequence of discrete symbols. We find close agreement between the exact analytical solutions and the physical oscillations. Waveform return maps for both configurations show equivalence to either a shift map or tent map, proving the chaotic nature of the oscillations.

  10. Understanding multi-scale structural evolution in granular systems through gMEMS

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Tordesillas, Antoinette

    2013-06-01

    We show how the rheological response of a material to applied loads can be systematically coded, analyzed and succinctly summarized, according to an individual grain's property (e.g. kinematics). Individual grains are considered as their own smart sensor akin to microelectromechanical systems (e.g. gyroscopes, accelerometers), each capable of recognizing their evolving role within self-organizing building block structures (e.g. contact cycles and force chains). A symbolic time series is used to represent their participation in such self-assembled building blocks and a complex network summarizing their interrelationship with other grains is constructed. In particular, relationships between grain time series are determined according to the information theory Hamming distance or the metric Euclidean distance. We then use topological distance to find network communities enabling groups of grains at remote physical metric distances in the material to share a classification. In essence grains with similar structural and functional roles at different scales are identified together. This taxonomy distills the dissipative structural rearrangements of grains down to its essential features and thus provides pointers for objective physics-based internal variable formalisms used in the construction of robust predictive continuum models.

  11. Advanced Microgravity Acceleration Measurement Systems (AMAMS) Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2003-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project is part of NASA s Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical systems (MEMS) for acceleration sensor systems to replace existing electromechanical sensor systems presently used to assess relative gravity levels aboard spacecraft. These systems are used to characterize both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data is useful to the microgravity life sciences, microgravity physical sciences, and structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, with enhanced long-term calibration stability.

  12. Nonlinear electromechanical response of the ferroelectret ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Döring, Joachim; Bovtun, Viktor; Bartusch, Jürgen; Erhard, Anton; Kreutzbruck, Marc; Yakymenko, Yuriy

    2010-08-01

    The ultrasonic transmission between two air-coupled polypropylene (PP) ferroelectret (FE) transducers in dependence on the amplitude of the high-voltage exciting pulse revealed a strongly nonlinear electromechanical response of the FE transmitter. This phenomenon is described by a linear increase of the inverse electromechanical transducer constant t_{33}^{(1)} of the PP FE film with an increase of the exciting electrical pulse amplitude. Enlargement of t_{33}^{(1)} by a factor of 4 was achieved by application of 3500 V exciting pulses. The electrostriction contribution to t_{33}^{(1)} can be attributed to the electrostatic force between electrodes and the Maxwell stress effect. The nonlinear electromechanical properties of the PP FE result in a strong increase of its air-coupled ultrasonic (ACUS) figure of merit ( FOM) under the high-voltage excitation, which exceeds results of the PP FE technological optimization. The FOM increase can be related to the increase of PP FE coupling factor and/or to the decrease of its acoustic impedance. A significant enhancement of the ACUS system transmission (12 dB) and signal-to-noise ratio (32 dB) was demonstrated by the increase of excitation voltage up to 3500 V. The nonlinear electromechanical properties of the PP FEs seem to be very important for their future applications.

  13. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    NASA Astrophysics Data System (ADS)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  14. Liquid Tunable Microlenses based on MEMS techniques

    PubMed Central

    Zeng, Xuefeng; Jiang, Hongrui

    2013-01-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480

  15. Liquid tunable microlenses based on MEMS techniques

    NASA Astrophysics Data System (ADS)

    Zeng, Xuefeng; Jiang, Hongrui

    2013-08-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven and those integrated within microfluidic systems.

  16. Docking-mechanism attenuator with electromechanical damper

    NASA Technical Reports Server (NTRS)

    Syromyatnikov, V. S.

    1971-01-01

    Theoretical and practical problems involved in the application of electromechanical damping for spacecraft docking-mechanism attenuation are discussed. Some drawbacks of hydraulic dampers used for the purpose are pointed out. The basic scheme of the attenuator with the electromechanical damper is given.

  17. Electromechanical wave imaging for arrhythmias

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Thanh-Hieu Nguyen, Vu; Legrand, Diégo; Okrasinski, Stan; Costet, Alexandre; Gambhir, Alok; Garan, Hasan; Konofagou, Elisa E.

    2011-11-01

    Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstruction of images over multiple cardiac cycles, precluding the application of EWI for non-periodic arrhythmias such as fibrillation. In this study, new imaging sequences are developed and applied based on flash- and wide-beam emissions to image the entire heart at very high frame rates (2000 fps) during free breathing in a single heartbeat. The methods are first validated by imaging the heart of an open-chest canine while simultaneously mapping the electrical activation using a 64-electrode basket catheter. Feasibility is then assessed by imaging the atria and ventricles of closed-chest, conscious canines during sinus rhythm and during right-ventricular pacing following atrio-ventricular dissociation, i.e., during a non-periodic rhythm. The EW was validated against electrode measurements in the open-chest case, and followed the expected electrical propagation pattern in the closed-chest setting. These results indicate that EWI can be used for the characterization of non-periodic arrhythmias in conditions similar to the clinical setting, in a single heartbeat, and during free breathing.

  18. Electromechanical Wave Imaging for Arrhythmias

    PubMed Central

    Provost, Jean; Nguyen, Vu Thanh-Hieu; Legrand, Diégo; Okrasinski, Stan; Costet, Alexandre; Gambhir, Alok; Garan, Hasan; Konofagou, Elisa E.

    2015-01-01

    Electromechanical Wave Imaging (EWI) is a novel ultrasound-based imaging modality for the mapping of the electromechanical wave (EW), i.e., the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in previous studies. However, the methods used previously to map the EW required the reconstruction of images over multiple cardiac cycle, precluding the application of EWI for non-periodic arrhythmia such as fibrillation. In this study, we develop new imaging sequences based on flash and wide-beam emissions to image the entire heart at very high frame rate (2000 fps) during free breathing in a single heartbeat. The methods are first validated by imaging the heart of an open-chest canine while simultaneously mapping the electrical activation using a 64-electrode basket catheter. Feasibility is then assessed by imaging the atria and ventricles of closed-chest, conscious canines during sinus rhythm and during right-ventricular pacing following atrioventricular dissociation, i.e., a non-periodic rhythm. The EW was validated against electrode measurements in the open-chest case, and followed the expected electrical propagation pattern in the closed-chest setting. These results indicate that EWI can be used for the characterization of non-periodic arrhythmia in conditions close to the clinical setting, in a single heartbeat, and during free-breathing. PMID:22024555

  19. Electromechanical wave imaging for arrhythmias.

    PubMed

    Provost, Jean; Nguyen, Vu Thanh-Hieu; Legrand, Diégo; Okrasinski, Stan; Costet, Alexandre; Gambhir, Alok; Garan, Hasan; Konofagou, Elisa E

    2011-11-21

    Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstruction of images over multiple cardiac cycles, precluding the application of EWI for non-periodic arrhythmias such as fibrillation. In this study, new imaging sequences are developed and applied based on flash- and wide-beam emissions to image the entire heart at very high frame rates (2000 fps) during free breathing in a single heartbeat. The methods are first validated by imaging the heart of an open-chest canine while simultaneously mapping the electrical activation using a 64-electrode basket catheter. Feasibility is then assessed by imaging the atria and ventricles of closed-chest, conscious canines during sinus rhythm and during right-ventricular pacing following atrio-ventricular dissociation, i.e., during a non-periodic rhythm. The EW was validated against electrode measurements in the open-chest case, and followed the expected electrical propagation pattern in the closed-chest setting. These results indicate that EWI can be used for the characterization of non-periodic arrhythmias in conditions similar to the clinical setting, in a single heartbeat, and during free breathing. PMID:22024555

  20. Innovative automatic resonant mode identification for nano-scale dynamic full-field characterization of MEMS using interferometric fringe analysis

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Huang, Yao-Ting; Lai, Huang-Wen; Chen, Jin-Liang; Chang, Calvin C.

    2008-12-01

    A dynamic 3D nano-scale surface profilometer was successfully developed for novel automatic resonant frequency identification using stroboscopic interferometric principle. With rapid increase in the application of micro electromechanical systems (MEMS) to industries, the needs of accurate dynamic characterization have become a major challenge in design and fabrication. In view of such, an interferometric microscopy was developed using LED stroboscopic interferometry to achieve dynamic full-field profilometry and characterization of MEMS with a measurement bandwidth exceeding 1 MHz. Most importantly, a novel detection algorithm was also developed employing interferogram fringe density measure for automatic resonant frequency identification. Natural resonant modes of a series of microstructures can be accurately detected, giving values consistent with theoretical ones. To verify the effectiveness of the developed methodology, an AFM cantilever microbeam and a cross-bridge microbeam were measured to analyze their full-field resonant vibratory shapes. Our experimental results confirmed that the resonant vibration of the tested beams can be fully characterized while achieving an accuracy in vertical measurement of 3-5 nm with a vertical measurement range of tens of micrometers.

  1. Quantum electromechanics on silicon nitride nanomembranes

    NASA Astrophysics Data System (ADS)

    Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.

    2016-08-01

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom--mechanical, optical and microwave--would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments.

  2. Electromechanically active polymer blends for actuation

    NASA Astrophysics Data System (ADS)

    Su, Ji; Ounaies, Zoubeida; Harrison, Joycelyn S.; Bar-Cohen, Yoseph; Leary, Sean P.

    2000-06-01

    Actuator mechanisms that are lightweight, durable, and efficient are needed to support telerobotic requirements, for future NASA missions. In this work, we present a series of electromechanically active polymer blends that can potentially be used as actuators for a variety of applications. This polymer blend combines an electrostrictive graft-elastomer with a ferroelectric poly (vinylidene fluoride-trifluoroethylene) polymer. Mechanical and piezoelectric properties of the blends as a function of temperature, frequency and relative composition of the two constituents in the blends have been studied. Electric field induced strain response of the blend films has also been studied as a function of the relative composition. A bending actuator device was developed incorporating the use of the polymer blend materials. The results and the possible effects of the combination of piezoelectricity and electrostriction in a material system are presented and discussed. This type of analysis may enable the design of blend compositions with optimal strain, mechanical, and dielectric properties for specific actuator applications.

  3. MEMS Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    vandenBerg, A.; Spiering, V. L.; Lammerink, T. S. J.; Elwenspoek, M.; Bergveld, P.

    1995-01-01

    Micro-technology enables the manufacturing of all kinds of components for miniature systems or micro-systems, such as sensors, pumps, valves, and channels. The integration of these components into a micro-electro-mechanical system (MEMS) drastically decreases the total system volume and mass. These properties, combined with the increasing need for monitoring and control of small flows in (bio)chemical experiments, makes MEMS attractive for space applications. The level of integration and applied technology depends on the product demands and the market. The ultimate integration is process integration, which results in a one-chip system. An example of process integration is a dosing system of pump, flow sensor, micromixer, and hybrid feedback electronics to regulate the flow. However, for many applications, a hybrid integration of components is sufficient and offers the advantages of design flexibility and even the exchange of components in the case of a modular set up. Currently, we are working on hybrid integration of all kinds of sensors (physical and chemical) and flow system modules towards a modular system; the micro total analysis system (micro TAS). The substrate contains electrical connections as in a printed circuit board (PCB) as well as fluid channels for a circuit channel board (CCB) which, when integrated, form a mixed circuit board (MCB).

  4. In-situ Iberian pig carcass classification using a micro-electro-mechanical system (MEMS)-based near infrared (NIR) spectrometer.

    PubMed

    Zamora-Rojas, E; Pérez-Marín, D; De Pedro-Sanz, E; Guerrero-Ginel, J E; Garrido-Varo, A

    2012-03-01

    Iberian pig (IP) products are gourmet foods highly appreciated at international markets, reaching high prices, because of its exquisite flavors. At present, there aren't practical and affordable analytical methods which can authenticate every single piece put on the market. This paper reports on the performance of a handheld micro-electro-mechanical system (MEMS)-based spectrometer (1600-2400nm) for authentication-classification of individual IP carcasses into different commercial categories. Performance (accuracy and instrumental design) of the instrument was compared with that of high-resolution NIRS monochromators (400-2500nm). A total of 300 carcasses of IPs raised under different feeding regimes ("Acorn", "Recebo" and "Feed") were analyzed in three modes (intact fat in the carcass, skin-free subcutaneous fat samples and melted fat samples). The best classification results for the MEMS instrument were: 93.9% "Acorn" carcasses correctly classified, 96.4% "Feed" and 60.6% "Recebo", respectively. Evaluation of model performance confirmed the suitability of the handheld device for individual, fast, non-destructive, low-cost analysis of IP carcasses on the slaughterhouse line. PMID:22075264

  5. Influence of a non-uniform stress on the electromechanical transduction coefficient of a magnetostrictive unimorph

    NASA Astrophysics Data System (ADS)

    Starke, E.; Marschner, U.; Pfeifer, G.; Fischer, W.-J.; Flatau, A. B.

    2010-04-01

    In this paper an electromechanical network model of a magnetostrictive unimorph structure, acting as solenoid coil core, is developed. For typical applications a non-uniform stress distribution in the magnetostrictive layer results which is simulated via FEM. This phenomenon leads to a spatial varying electromechanical transduction coefficient for large deflections and was taken into account by coupled finite electromechanical network elements. By simplifying the finite network model an easy to use new network model is obtained which enables the fast analysis of the system and optimization of sensor and actor properties.

  6. The NASA GSFC MEMS Colloidal Thruster

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Jamieson, Brian G.; Norgaard, Peter C.; Chepko, Ariane B.

    2004-01-01

    A number of upcoming missions require different thrust levels on the same spacecraft. A highly scaleable and efficient propulsion system would allow substantial mass savings. One type of thruster that can throttle from high to low thrust while maintaining a high specific impulse is a Micro-Electro-Mechanical System (MEMS) colloidal thruster. The NASA GSFC MEMS colloidal thruster has solved the problem of electrical breakdown to permit the integration of the electrode on top of the emitter by a novel MEMS fabrication technique. Devices have been successfully fabricated and the insulation properties have been tested to show they can support the required electric field. A computational finite element model was created and used to verify the voltage required to successfully operate the thruster. An experimental setup has been prepared to test the devices with both optical and Time-Of-Flight diagnostics.

  7. Quantitative Accelerated Life Testing of MEMS Accelerometers

    PubMed Central

    Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul

    2007-01-01

    Quantitative Accelerated Life Testing (QALT) is a solution for assessing the reliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shown in this paper and an attempt to assess the reliability level for a batch of MEMS accelerometers is reported. The testing plan is application-driven and contains combined tests: thermal (high temperature) and mechanical stress. Two variants of mechanical stress are used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tilting and high temperature is used. Tilting is appropriate as application-driven stress, because the tilt movement is a natural environment for devices used for automotive and aerospace applications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The test results demonstrated the excellent reliability of the studied devices, the failure rate in the “worst case” being smaller than 10-7h-1.

  8. MEMS for optical communication: present and future

    NASA Astrophysics Data System (ADS)

    Pu, Chuan; Lee, Shi-sheng; Park, Sangtae; Chu, Patrick B.; Brener, Igal

    2002-07-01

    The current fiber optical communication system has evolved into a complicated multi-wavelength system with the deployment of Wavelength Division Multiplexing (WDM) networks. Many innovative technologies are desired to materialize its vast capacities and promises. MEMS technology has recently emerged as a competitive candidate to solve many technical challenges encountered in current WDM networks. Its applications have spanned from large scale optical switch fabrics such as optical cross-connects, optical add/drop multiplexers, to a large variety of active and passive optical components for transmission networks, such as tunable lasers and filters, dispersion compensation devices, amplifier gain equalizers, polarization controllers, and many others. In this paper we will discuss the current development status, promises and challenges, and the future prospects of MEMS technologies for optical communication, with a primary focus on MEMS-based optical cross-connects.

  9. MEMS reliability: The challenge and the promise

    SciTech Connect

    Miller, W.M.; Tanner, D.M.; Miller, S.L.; Peterson, K.A.

    1998-05-01

    MicroElectroMechanical Systems (MEMS) that think, sense, act and communicate will open up a broad new array of cost effective solutions only if they prove to be sufficiently reliable. A valid reliability assessment of MEMS has three prerequisites: (1) statistical significance; (2) a technique for accelerating fundamental failure mechanisms, and (3) valid physical models to allow prediction of failures during actual use. These already exist for the microelectronics portion of such integrated systems. The challenge lies in the less well understood micromachine portions and its synergistic effects with microelectronics. This paper presents a methodology addressing these prerequisites and a description of the underlying physics of reliability for micromachines.

  10. High voltage DC switchgear development for multi-kW space power system: Aerospace technology development of three types of solid state power controllers for 200-1100VDC with current ratings of 25, 50, and 80 amperes with one type utilizing an electromechanical device

    NASA Technical Reports Server (NTRS)

    Billings, W. W.

    1981-01-01

    Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.

  11. RF MEMS Based Reconfigurable Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  12. Design and test of electromechanical actuators for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Weir, Rae Ann

    1993-01-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  13. Design and test of electromechanical actuators for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Weir, Rae Ann

    1993-05-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  14. Monitoring of slope-instabilities and deformations with Micro-Electro-Mechanical-Systems (MEMS) in wireless ad-hoc Sensor Networks

    NASA Astrophysics Data System (ADS)

    Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.

    2009-04-01

    In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy

  15. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  16. Micro electro-mechanical heater

    DOEpatents

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2016-04-19

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  17. Quasi-optical MEMS switching array technology

    NASA Astrophysics Data System (ADS)

    Zhang, Weikang

    During this Ph.D. dissertation research, both experimental and theoretical investigations have been conducted to develop new micro-elecro-mechancical systems (MEMS) based technologies and new device concepts for the microwave and millimeter wave frequency range. A proof-of-principle E-band (60GHz˜90GHz) MEMS switching array has been successful designed and constructed, where 400 MEMS switches form a two dimensional array on a 2inch x 2inch quartz substrate. The E-band MEMS grid array switch has demonstrated >6 dB maximum isolation at 76 GHz and >10 dB on/off contrast ratio at 70˜85 GHz. Extensive work has been carried out with the aim of developing a compact impedance matching method for quasi-optic grid arrays. A new device concept is presented, where bulk micro-machining techniques are utilized to create a new class of artificial materials with continuously variable dielectric constant for use in millimeter wave quasi-optical systems. Based on this bulk micro-machined material, two novel quasi-optical impedance transformers have been modeled, designed, and characterized, which provide ideal impedance matching for quasi-optical systems. Photonic bandgap (PBG) RF circuit models also have been studied for microwave and millimeter wave applications. During the course of this development activity, materials characteristics have been analyzed for their suitability in quasi-optical grid array circuit and RF MEMS device applications. Air bridge MEMS switches have been designed, fabricated and characterized for microwave and millimeter wave applications.

  18. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  19. Detection of Electromechanical Wave Propagation Using Synchronized Phasor Measurements

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Prakash; Dambhare, Sanjay; Pramanik, Ashutosh

    2014-01-01

    Considering electrical network as a continuum has become popular for electromechanical wave analysis. This paper reviews the concept of electromechanical wave propagation. Analysis of large number of generator ring system will be an easy way to illustrate wave propagation. The property of traveling waves is that the maximum and minimum values do not occur at the same time instants and hence the difference between these time delays can be easily calculated. The homogeneous, isotropic 10 generator ring system is modeled using electromagnetic transient simulation programs. The purpose of this study is to investigate the time delays and wave velocities using Power System Computer Aided Design (PSCAD)/Electromagnetic Transient Program (EMTP). The disturbances considered here are generator disconnections and line trips.

  20. Exploratory studies of new avenues to achieve high electromechanical response and high dielectric constant in polymeric materials

    NASA Astrophysics Data System (ADS)

    Huang, Cheng

    High performance soft electronic materials are key elements in advanced electronic devices for broad range applications including capacitors, actuators, artificial muscles and organs, smart materials and structures, microelectromechanical (MEMS) and microfluidic devices, acoustic devices and sensors. This thesis exploits new approaches to improve the electromechanical response and dielectric response of these materials. By making use of novel material phenomena such as large anisotropy in dipolar response in liquid crystals (LCs) and all-organic composites in which high dielectric constant organic solids and conductive polymers are either physically blended into or chemically grafted to a polymer matrix, we demonstrate that high dielectric constant and high electromechanical conversion efficiency comparable to that in ceramic materials can be achieved. Nano-composite approach can also be utilized to improve the performance of the electronic electroactive polymers (EAPs) and composites, for example, exchange coupling between the fillers and matrix with very large dielectric contrast can lead to significantly enhance the dielectric response as well as electromechanical response when the heterogeneity size of the composite is comparable to the exchange length. In addition to the dielectric composites, in which high dielectric constant fillers raise the dielectric constant of composites, conductive percolation can also lead to high dielectric constant in polymeric materials. An all-polymer percolative composite is introduced which exhibits very high dielectric constant (>7,000). The flexible all-polymer composites with a high dielectric constant make it possible to induce a high electromechanical response under a much reduced electric field in the field effect electroactive polymer (EAP) actuators (a strain of 2.65% with an elastic energy density of 0.18 J/cm3 can be achieved under a field of 16 V/mum). Agglomeration of the particles can also be effectively prevented

  1. Signal bi-amplification in networks of unidirectionally coupled MEMS

    NASA Astrophysics Data System (ADS)

    Tchakui, Murielle Vanessa; Woafo, Paul; Colet, Pere

    2016-01-01

    The purpose of this paper is to analyze the propagation and the amplification of an input signal in networks of unidirectionally coupled micro-electro-mechanical systems (MEMS). Two types of external excitations are considered: sinusoidal and stochastic signals. We show that sinusoidal signals are amplified up to a saturation level which depends on the transmission rate and despite MEMS being nonlinear the sinusoidal shape is well preserved if the number of MEMS is not too large. However, increasing the number of MEMS, there is an instability that leads to chaotic behavior and which is triggered by the amplification of the harmonics generated by the nonlinearities. We also show that for stochastic input signals, the MEMS array acts as a band-pass filter and after just a few elements the signal has a narrow power spectra.

  2. MEMS performance challenges: packaging and shock tests

    NASA Astrophysics Data System (ADS)

    Chang, Jiyoung; Yang, Chen; Zhang, Bin; Lin, Liwei

    2011-06-01

    This paper describes recent advances in the MEMS performance challenges with emphases on packaging and shock tests. In the packaging area, metal to metal bonding processes have been developed to overcome limitations of the glass frit bonding by means of two specific methods: (1) pre-reflow of solder for enhanced bonding adhesion, and (2) the insertion of thin metal layer between parent metal bonding materials. In the shock test area, multiscale analysis for a MEMS package system has been developed with experimental verifications to investigate dynamic responses under drop-shock tests. Structural deformation and stress distribution data are extracted and predicted for device fracture and in-operation stiction analyses for micro mechanical components in various MEMS sensors, including accelerometers and gyroscopes.

  3. VCSELs for interferometric readout of MEMS sensors

    NASA Astrophysics Data System (ADS)

    Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Keeler, Gordon A.; Shaw, Michael J.; Baker, Michael S.; Okandan, Murat

    2016-03-01

    We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.

  4. MEMS-Based Spinning Nozzle

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2003-01-01

    A nozzle body and assembly for delivering atomized fuel to a combustion chamber. The nozzle body is rotatably mounted onto a substrate. One or more curvilinear fuel delivery channels are in flow communication with an internal fuel distribution cavity formed in the nozzle body. Passage of pressurized fuel through the nozzle body causes the nozzle body to rotate. Components of the nozzle assembly are formed of silicon carbide having surfaces etched by deep reactive ion etching utilizing MEMS (micro-electro-mechanical systems) technology. A fuel premix chamber is carried on the substrate in flow communication with a supply passage in the nozzle body.

  5. Respiratory Magnetogram Detected with a MEMS Device

    PubMed Central

    Dominguez-Nicolas, Saul M.; Juarez-Aguirre, Raul; Herrera-May, Agustin L.; Garcia-Ramirez, Pedro; Figueras, Eduard; Gutierrez-D., Edmundo A.; Tapia, Jesus A.; Trejo, Argelia; Manjarrez, Elias

    2013-01-01

    Magnetic fields generated by the brain or the heart are very useful in clinical diagnostics. Therefore, magnetic signals produced by other organs are also of considerable interest. Here we show first evidence that thoracic muscles can produce a strong magnetic flux density during respiratory activity, that we name respiratory magnetogram. We used a small magnetometer based on microelectromechanical systems (MEMS), which was positioned inside the open thoracic cage of anaesthetized and ventilated rats. With this new MEMS sensor of about 20 nT resolution, we recorded a strong and rhythmic respiratory magnetogram of about 600 nT. PMID:24046516

  6. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

  7. Measurements of silicon dry-etching rates and profiles in MEMS foundries and their application to MEMS design software

    NASA Astrophysics Data System (ADS)

    Takano, T.; Ikehara, T.; Maeda, R.

    2007-12-01

    Deep reactive ion etching (DRIE) is an important tool in MEMS fabrication to achieve three-dimensional structures. However, the etching profiles are not yet perfect. We had etching test samples fabricated in three MEMS foundries and measured the etching rates, sidewall angles, mask selectivity, and sidewall roughness against the line and space of 2 to 5000 μm. We also performed similar DRIE processes using our system and compared our samples and the samples from the foundries. The measurement results revealed the typical fabrication results in the MEMS foundries and their differences. The data were included in the database of MemsONE, a newly developed MEMS design software, and can be used for the process emulations.

  8. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of

  9. Optical zoom lens module using MEMS deformable mirrors for portable device

    NASA Astrophysics Data System (ADS)

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  10. Portable electro-mechanically cooled high-resolution germanium detector

    NASA Astrophysics Data System (ADS)

    Neufeld, K. W.; Ruhter, W. D.

    1995-05-01

    We have integrated a small, highly-reliable, electro-mechanical cryo-cooler with a high-resolution germanium detector for portable/field applications. The system weighs 6.8 kg and requires 40 watts of power to operate once the detector is cooled to its operating temperature. The detector is a 500 mm(exp 2) by 20-mm thick low-energy configuration that gives a full-width at half maximum (FWHM) energy resolution of 523 eV at 122 keV, when cooled with liquid nitrogen. The energy resolution of the detector, when cooled with the electro-mechanical cooler, is 570 eV at 122 keV. We have field tested this system in measurements of plutonium and uranium for isotopic and enrichment information using the MGA and MGAU analysis programs without any noticeable effects on the results.

  11. An electromechanical attenuator/actuator for Space Station docking

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean; Carroll, Monty B.

    1987-01-01

    The development of a docking system for aerospace vehicles has identified the need for reusable and variably controlled attenuators/actuators for energy absorption and compliance. One approach to providing both the attenuator and the actuator functions is by way of an electromechanical attenuator/actuator (EMAA) as opposed to a hydraulic system. The use of the electromechanical devices is considered to be more suitable for a space environment because of the absence of contamination from hydraulic fluid leaks and because of the cost effectiveness of maintenance. A smart EMAA that uses range/rate/attitude sensor information to preadjust a docking interface to eliminate misalignments and to minimize contact and stroking forces is described. A prototype EMAA was fabricated and is being tested and evaluated. Results of preliminary testing and analysis already performed have established confidence that this concept is feasible and will provide the desired reliability and low maintenance for repetitive long term operation typical of Space Station requirements.

  12. A Biased View on the Nanoworld: Electromechanical Imaging By SPM

    SciTech Connect

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Proksch, Roger

    2007-01-01

    Coupling between electrical and mechanical phenomena is one of the fundamental natural mechanisms manifested in materials and systems ranging from ferroelectrics and multiferroics to electroactive polymers and biological systems. Electromechanics refers to a broad class of phenomena in which mechanical deformation is induced by an external electric field, or, conversely, electric charge is generated by the application of an external force. This coupling has obvious practical uses in actuators, sensors, tunable optics, and energy harvesting, and is also of great interest since it is inherently tied to physical materials properties. In ferroelectrics, electromechanical behavior is directly linked to polarization, and hence, can be used to study polarization reversal mechanisms, domain wall growth and pinning, cross-coupled phenomena in multiferroics, and electron-lattice coupling.

  13. Electromechanical Mode Online Estimation using Regularized Robust RLS Methods

    SciTech Connect

    Zhou, Ning; Trudnowski, Daniel; Pierre, John W; Mittelstadt, William

    2008-11-01

    This paper proposes a regularized robust recursive least square (R3LS) method for on-line estimation of power-system electromechanical modes based on synchronized phasor measurement unit (PMU) data. The proposed method utilizes an autoregressive moving average exogenous (ARMAX) model to account for typical measurement data, which includes low-level pseudo-random probing, ambient, and ringdown data. A robust objective function is utilized to reduce the negative influence from non-typical data, which include outliers and missing data. A dynamic regularization method is introduced to help include a priori knowledge about the system and reduce the influence of under-determined problems. Based on a 17-machine simulation model, it is shown through the Monte-Carlo method that the proposed R3LS method can estimate and track electromechani-cal modes by effectively using combined typical and non-typical measurement data.

  14. 40 HP Electro-Mechanical Actuator

    NASA Technical Reports Server (NTRS)

    Fulmer, Chris

    1996-01-01

    This report summarizes the work performed on the 40 BP electro-mechanical actuator (EMA) system developed on NASA contract NAS3-25799 for the NASA National Launch System and Electrical Actuation (ELA) Technology Bridging Programs. The system was designed to demonstrate the capability of large, high power linear ELA's for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, high frequency power source, drive electronics and a linear actuator. The power source is a 25kVA 20 kHz Mapham inverter. The drive electronics are based on the pulse population modulation concept and operate at a nominal frequency of 40 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response and step response tests were conducted at the Marshall Space Flight Center facility. A complete description of the system and all test results can be found in the body of the report.

  15. Shifting the Intertial Navigation Paradigm with the MEMS Technology

    NASA Technical Reports Server (NTRS)

    Crain, Timothy P., II; Bishop, Robert H.; Brady, Tye

    2010-01-01

    "Why don't you use MEMS?" is of the most common questions posed to navigation systems engineers designing inertial navigation solutions in the modern era. The question stems from a general understanding that great strides have been made in terrestrial MEMS accelerometers and attitude rate sensors in terms of accuracy, mass, and power. Yet, when compared on a unit-to-unit basis, MEMS devices do not provide comparable performance (accuracy) to navigation grade sensors in several key metrics. This paper will propose a paradigm shift where the comparison in performance is between multiple MEMS devices and a single navigation grade sensor. The concept is that systematically, a sufficient number of MEMS sensors may mathematically provide comparable performance to a single navigation grade device and be competitive in terms power and mass allocations when viewed on a systems level. The implication is that both inertial navigation system design and fault detection, identification, and recovery could benefit from a system of MEMS devices in the same way that swarm sensing has benefited Earth observation and astronomy. A survey of the state of the art in inertial sensor accuracy scaled by mass and power will be provided to show the scaled error in MEMS and navigation graded devices, a mathematical comparison of multi-unit to single-unit sensor errors will be developed, and preliminary application to an Orion lunar skip atmospheric entry trajectory will be explored.

  16. Shifting the Inertial Navigation Paradigm with MEMS Technology

    NASA Technical Reports Server (NTRS)

    Crain, Timothy; Brady, Tye; Bishop, Robert H.

    2010-01-01

    Why don t you use MEMS? is one of the most common questions posed to navigation systems engineers designing inertial navigation solutions in the modern era. The question stems from a general understanding that great strides have been made in terrestrial MEMS accelerometers and attitude rate sensors in terms of accuracy, mass, and power. Yet, when compared on a unit-to-unit basis, MEMS devices do not provide comparable performance (accuracy) to navigation grade sensors. This paper will propose a paradigm shift where the comparison in performance is between multiple MEMS devices and a single navigation grade sensor. The concept is that systematically, a sufficient number of MEMS sensors may mathematically provide comparable performance to a single navigation grade device and be competitive in terms power and mass allocations when viewed on a systems level. The implication is that both inertial navigation system design and fault detection, identification, and recovery could benefit from a system of MEMS devices in the same way that swarm sensing has benefited Earth observation and astronomy. A survey of the state of the art in inertial sensor accuracy scaled by mass and power will be provided to show the specific error in MEMS and navigation graded devices, a mathematical comparison of multi-unit to single-unit sensor errors will be developed, and preliminary applications to Constellation vehicles will be explored.

  17. EDITORIAL: Selected papers from the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2011) Selected papers from the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2011)

    NASA Astrophysics Data System (ADS)

    Cho, Young-Ho

    2012-09-01

    This special section of Journal of Micromechanics and Microengineering features papers selected from the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2011), held at Sejong Hotel in Seoul, Korea during 15-18 November 2011. Since the first PowerMEMS workshop held in Sendai, Japan in 2000, the workshop has developed as the premier forum for reporting research results in micro and nanotechnology for power generation, energy conversion, harvesting and processing applications, including in-depth technical issues on nanostructures and materials for small-scale high-density energy and thermal management. Potential PowerMEMS applications cover not only portable power devices for consumer electronics and remote sensors, but also micro engines, impulsive thrusters and fuel cells for systems ranging from the nanometer to the millimeter scale. The 2011 technical program consists of 1 plenary talk, 4 invited talks and 118 contributed presentations. The 48 oral and 70 poster presentations, selected by 27 Technical Program Committee Members from 131 submitted abstracts, have stimulated lively discussion maximizing the interaction between participants. Among them, this special section includes 9 papers covering micro-scale power generators, energy converters, harvesters, thrusters and thermal coolers. Finally, we are grateful to the members of the International Steering Committee, the Technical Program Committee, and the Local Organizing Committee for their efforts and contributions to PowerMEMS 2011. We also thank the two companies Samsung Electro-Mechanics and LG Elite for technical tour arrangements. Special thanks go to Dr Ian Forbes, the editorial staff of the Journal of Micromechanics and Microengineering, as well as to the staff of IOP Publishing for making this special section possible.

  18. Effect of nonlinear electromechanical interaction upon wind power generator behavior

    NASA Astrophysics Data System (ADS)

    Selyutskiy, Yury D.; Klimina, Liubov A.

    2014-12-01

    A mathematical model is developed for describing a small horizontal axis wind turbine with electric generator, such that the electromechanical interaction is non-linear in current. Dependence of steady regimes of the system upon parameters of the model is studied. In particular, it is shown that increase of wind speed causes qualitative restructuring of the set of steady regimes, which leads to considerable change in behavior of the wind power generator. The proposed model is verified against data obtained in experiments.

  19. Electromechanical actuator for the tongs of a servomanipulator

    DOEpatents

    Martin, H. Lee; Killough, Stephen M.

    1986-01-01

    Computer-augmented electromechanical system is provided for controlling the tongs of a servomanipulator. The mechanical tongs are motor-driven through the remote slave arm of the manipulator, and the motor control current is supplied by a position sensor which senses the position of a spring-loaded trigger in the master arm handle on the manipulator. The actuator for the tongs provides the operator with artificial force reflection in a unilateral force-force control loop.

  20. A multimode electromechanical parametric resonator array

    PubMed Central

    Mahboob, I.; Mounaix, M.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2014-01-01

    Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. In a variation to this approach, we identify 75 harmonic vibration modes in a single electromechanical resonator of which 7 can also be parametrically excited. The parametrically resonating modes exhibit vibrations with only 2 oscillation phases which are used to build a binary information array. We exploit this array to execute a mechanical byte memory, a shift-register and a controlled-NOT gate thus vividly illustrating the availability and functionality of an electromechanical resonator array by simply utilising higher order vibration modes. PMID:24658349

  1. Circuit electromechanics with single photon strong coupling

    SciTech Connect

    Xue, Zheng-Yuan Yang, Li-Na; Zhou, Jian

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  2. The 18 mm[superscript 2] Laboratory: Teaching MEMS Development with the SUMMiT Foundry Process

    ERIC Educational Resources Information Center

    Dallas, T.; Berg, J. M.; Gale, R. O.

    2012-01-01

    This paper describes the goals, pedagogical system, and educational outcomes of a three-semester curriculum in microelectromechanical systems (MEMS). The sequence takes engineering students with no formal MEMS training and gives them the skills to participate in cutting-edge MEMS research and development. The evolution of the curriculum from…

  3. Photonic MEMS switch applications

    NASA Astrophysics Data System (ADS)

    Husain, Anis

    2001-07-01

    As carriers and service providers continue their quest for profitable network solutions, they have shifted their focus from raw bandwidth to rapid provisioning, delivery and management of revenue generating services. Inherently transparent to data rate the transmission wavelength and data format, MEMS add scalability, reliability, low power and compact size providing flexible solutions to the management and/or fiber channels in long haul, metro, and access networks. MEMS based photonic switches have gone from the lab to commercial availability and are now currently in carrier trials and volume production. 2D MEMS switches offer low up-front deployment costs while remaining scalable to large arrays. They allow for transparent, native protocol transmission. 2D switches enable rapid service turn-up and management for many existing and emerging revenue rich services such as storage connectivity, optical Ethernet, wavelength leasing and optical VPN. As the network services evolve, the larger 3D MEMS switches, which provide greater scalability and flexibility, will become economically viable to serve the ever-increasing needs.

  4. Finline technology for millimeter-wave MEMS

    NASA Astrophysics Data System (ADS)

    Fu, Jeffrey S.; Zhou, Jiaoyun; Lu, Yilong; Ma, Jianguo; Shen, Zhongxiang

    2003-04-01

    Recent development of finline 35 GHz MEM modules like Gunn oscillator, PIN switch, and filters at Nanyang Technological University will be discussed. The design tools and measurement equipments like Advanced Design System (ADS), High Frequency Structure Simulator (HFSS) and Vector Network Analyzer (VNA) are used extensively throughout the work.

  5. Electromechanical response of NCC-PEO composites

    NASA Astrophysics Data System (ADS)

    Bass, Patrick S.; Baltzell, Matthew; Zhang, Lin; Zhang, Daihui; Tu, Maobing; Cheng, Zhongyang

    2014-03-01

    Poly(ethylene oxide) (PEO) has been widely studied as a solid-polymer electrolyte where both the cations and anions can move inside of it under an applied electric field. The motion of these charge carriers in the PEO results in the accumulation of ions close to the electrodes. The inherent size difference between the types of ions causes an unequal volume change between the two sides which translates to an observed mechanical bending. This is similar to electroactive polymers made from conducting polymers. Typically, PEO has a slow response. Some efforts have been given to develop PEO-based polymer blends to improve their performance. In this work, a fundamental study on the electromechanical response is conducted: the time dependence of the electromechanical response is characterized for PEO under different electric fields. Based on the results, a new methodology to monitor the electromechanical response is introduced. The method is based on the frequency dependence of the samples' dielectric properties. To improve the electromechanical response, the PEO is embedded with piezoelectric nanocrystalline cellulose (NCC). NCC is a biomass derivative that is biodegradable, renewable, and inexpensive. The dielectric, mechanical, and electromechanical properties of the NCC-PEO composites are characterized. It is found that the mechanical and electromechanical properties of the PEO are significantly improved with adding NCC. For example, the composites with 1.5 vol.% of NCC exhibit an electromechanical strain and elastic modulus that is 33.4% and 20.1% higher, respectively, than for PEO without NCC. However, the electromechanical response decreases when the NCC content is high.

  6. Electromechanical flight control actuator, volume 1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An electromechanical actuator was developed that will follow a proportional control command with minimum wasted energy to demonstrate the feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts. The approach was restricted to a four-channel redundant configuration. Each channel has independent drive and control electronics, a brushless electric motor with brake, and velocity and position feedback transducers. A differential gearbox sums the output velocities of the motors. Normally, two motors are active and the other two are braked.

  7. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    SciTech Connect

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  8. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2005-01-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  9. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2004-12-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  10. Characteristic of torsional vibration of mill main drive excited by electromechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yifang; Yan, Xiaoqiang; Lin, Qihui

    2016-01-01

    In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMULINK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.

  11. Surface roughness, asperity contact and gold RF MEMS switch behavior

    NASA Astrophysics Data System (ADS)

    Rezvanian, O.; Zikry, M. A.; Brown, C.; Krim, J.

    2007-10-01

    Modeling predictions and experimental measurements were obtained to characterize the electro-mechanical response of radio frequency (RF) microelectromechanical (MEM) switches due to variations in surface roughness and finite asperity deformations. Three-dimensional surface roughness profiles were generated, based on a Weierstrass-Mandelbrot fractal representation, to match the measured roughness characteristics of contact bumps of manufactured RF MEMS switches. Contact asperity deformations due to applied contact pressures were then obtained by a creep constitutive formulation. The contact pressure is derived from the interrelated effects of roughness characteristics, material hardening and softening, temperature increases due to Joule heating and contact forces. This modeling framework was used to understand how contact resistance evolves due to changes in the real contact area, the number of asperities in contact, and the temperature and resistivity profiles at the contact points. The numerical predictions were qualitatively consistent with the experimental measurements and observations of how contact resistance evolves as a function of deformation time history. This study provides a framework that is based on integrated modeling and experimental measurements, which can be used in the design of reliable RF MEMS devices with extended life cycles.

  12. A nonlinear generalized continuum approach for electro-mechanical coupling

    NASA Astrophysics Data System (ADS)

    Skatulla, S.; Arockiarajan, A.; Sansour, C.

    2008-07-01

    Electro-active polymers (EAP) are "smart materials" whose mechanical properties may be changed significantly by the application of electric field. Hence, these materials can serve as actuators in electro-mechanical systems, artificial muscles, etc. In this paper, we provide a generalized continuum framework basis for the characterization of the nonlinear electroelastic properties of these materials. This approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is then completed by Dirichlet boundary conditions for the displacement field and the electric potential and then derivatives normal to the boundary. The basic idea behind this generalized continuum framework is the consideration of a micro- and a macro-space which together span the generalized space. All quantities including the constitutive law for the electro-mechanically coupled nonlinear hyperelasticity are defined in the generalized space. Numerical examples are presented to demonstrate the numerical accuracy of the implemented formulation using the mesh free method.

  13. Thermopiezoelectric and Nonlinear Electromechanical Effects in Quantum Dots and Nanowires

    NASA Astrophysics Data System (ADS)

    Patil, Sunil; Bahrami-Samani, M.; Melnik, R. V. N.; Toropova, M.; Zu, Jean

    2010-01-01

    We report thermopiezoelectric (TPE) and nonlinear electromechanical (NEM) effects in quantum dots (QD) and nanowires (NW) analyzed with a model based on coupled thermal, electric and mechanical balance equations. Several representative examples of low dimensional semiconductor structures (LDSNs) are studied. We focus mainly on GaN/AlN QDs and CdTe/ZnTe NWs which we analyze for different geometries. GaN/AlN nano systems are observed to be more sensitive to thermopiezoelectric effects than those of CdTe/ZnTe. Furthermore, noticeable qualitative and quantitative variations in electromechanical fields are observed as a consequence of taking into account NEM effects, in particular in GaN/AlN QDs.

  14. Controller modeling and evaluation for PCV electro-mechanical actuator

    NASA Astrophysics Data System (ADS)

    Parker, Joey K.

    1993-11-01

    Hydraulic actuators are currently used to operate the propellant control valves (PCV) for the space shuttle main engine (SSME) and other rocket engines. These actuators are characterized by large power to weight ratios, large force capabilities, and rapid accelerations, which favor their use in control valve applications. However, hydraulic systems are also characterized by susceptibility to contamination, which leads to frequent maintenance requirements. The Control Mechanisms Branch (EP34) of the Component Development Division of the Propulsion Laboratory at the Marshall Space Flight Center (MSFC) has been investigating the application of electromechanical actuators as replacements for the hydraulic units in PCV's over the last few years. This report deals with some testing and analysis of a PCV electromechanical actuator (EMA) designed and fabricated by HR Textron, Inc. This prototype actuator has undergone extensive testing by EP34 personnel since early 1993. At this time, the performance of the HR Textron PCV EMA does not meet requirements for position tracking.

  15. Controller modeling and evaluation for PCV electro-mechanical actuator

    NASA Technical Reports Server (NTRS)

    Parker, Joey K.

    1993-01-01

    Hydraulic actuators are currently used to operate the propellant control valves (PCV) for the space shuttle main engine (SSME) and other rocket engines. These actuators are characterized by large power to weight ratios, large force capabilities, and rapid accelerations, which favor their use in control valve applications. However, hydraulic systems are also characterized by susceptibility to contamination, which leads to frequent maintenance requirements. The Control Mechanisms Branch (EP34) of the Component Development Division of the Propulsion Laboratory at the Marshall Space Flight Center (MSFC) has been investigating the application of electromechanical actuators as replacements for the hydraulic units in PCV's over the last few years. This report deals with some testing and analysis of a PCV electromechanical actuator (EMA) designed and fabricated by HR Textron, Inc. This prototype actuator has undergone extensive testing by EP34 personnel since early 1993. At this time, the performance of the HR Textron PCV EMA does not meet requirements for position tracking.

  16. MEMS-based sensor arrays for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    2002-07-01

    Scientists and engineers at the Army Aviation Missile Command's (AMCOM) Research, Development and Engineering Center (RDEC) are cooperatively working with the Defense Advanced Research Projects Agency (DARPA), other Army agencies, and industry to provide technical solutions for the Army's transformation efforts into the 21st Century force. Advanced technologies are being exposed to achieve the performance and cost goals dictated by the emerging missions of the Transformed Army. It is well established that MEMS technology offers the potential solution to cost, size, and weight issues for the soldier, missile, gun, ground vehicles, and aircraft applications. MEMS sensor arrays are currently being investigated to meet system performance requirements and provide more robust mission capability. A Science and Technology Objective, Research and Development Project is underway at AMCOM/RDEC to develop controlled MEMS sensor arrays to provide for full military dynamic performance ranges using miniature sensor system. MEMS-based angular rate sensors are enhanced with vibration feedback form MEMS accelerometers for output signal stabilization in high-vibration environments. Multi-range MEMS-based accelerometers, cooperatively developed by Government and industry, are being multiplexed to provide dynamic range expansion. An array of integrated accelerometers is expected to increase the dynamic range by an order of magnitude. Future projections suggest that MEMS sensor array technology will be applicable to a broad range of military applications, which include environmental sensor suites for structural health monitoring and forward reconnaissance and surveillance; and optical and radio frequency phased arrays for fast beam steering.

  17. Electromechanical Materials for Cryogenic Use

    NASA Technical Reports Server (NTRS)

    Leidinger, Peter; Pilgrim, Steven M.

    1996-01-01

    Electromechanical materials can be used in smart sensor and actuator devices. Yet none performing at low temperatures are available. To meet this need, Pb((MgNi)(1/3)Ta(2/3))03 was synthesized as an electrostrictive ceramic for applications in cryogenic environments. Employing the columbite precursor route, samples with 0% to 100% Ni substitution for Mg were prepared, but only samples with Ni-substitutions less than or equal to 20% yielded primarily the desired perovskite phase. For these compositions the temperature of highest permittivity decreased linearly with increasing Ni content to yield a minimum value of -124 C for 20% Ni-substitution. This composition showed good relaxor dielectric behavior with a maximum relative permittivity of 5890 at 1 kHz. Additionally, in samples with excess MgO, the magnitude of permittivity doubled. In this effort, Pb((MgNi)(1/3)Ta(2/3))03 (PMNiTa) was fabricated to lower its transition temperature by substituting Ni for Mg successively.

  18. Electromechanics of packed granular beds

    SciTech Connect

    Robinson, K.S.

    1982-01-01

    Strong, electrical, interparticle forces are induced by applied electric fields within packed beds of dielectric particles. Proposed applications utilizing electropacked beds (EPBs) or electrofluidized beds (EFBs) include air filtration and gas clean-up, fine particle separation, commercial drying and coating processes, heat and mass transfer, and bulk bed control. A new distributed circuit model of the electrical interparticle force is presented that identifies the role of surface roughness as determining the interparticle spacing. The dc steady state force is predicted to increase nearly linearly with the applied electric field and is theoretically independent of particle surface conductivity. The electric stress is found to vary nearly linearly with the applied electric field. Data are generally consistent with the theoretical contention that increased surface roughness decreases electromechanical effects. Surface conductivity variations of three to four times have no measurable effect on the dc steady state electric stress. The electric stress is insensitive to the dielectric properties of the interstitial gas eliminating Townsend discharge as a candidate for the nonlinear charge transport process thought to occur near interparticle contacts. The theoretical upper bound of the electric stress calculated using the distributed circuit model falls within the scatter of the data if a limit on the electric field in the interparticle gap which models nonlinear charge transport is in the range of 1 to 6 x 10/sup 7/ V/m. Estimates of the charge relaxation time using transient angle of repose experiments are somewhat smaller but comparable with theoretical values calculated by ignoring nonlinear charge transport.

  19. Monitoring of slope-instabilities and deformations with Micro-Electro-Mechanical-Systems (MEMS) in wireless ad-hoc Sensor Networks

    NASA Astrophysics Data System (ADS)

    Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.

    2009-04-01

    In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy

  20. Design and development of a CPW-based 5-bit switched-line phase shifter using inline metal contact MEMS series switches for 17.25 GHz transmit/receive module application

    NASA Astrophysics Data System (ADS)

    Dey, Sukomal; Koul, Shiban K.

    2014-01-01

    A radio frequency micro-electro-mechanical system (RF-MEMS) phase shifter based on switchable delay line concept with maximum desirable phase shift and good reliability is presented in this paper. The phase shifter is based on the switchable reference and delay line configurations with inline metal contact series switches that employs MEMS systems based on electrostatic actuation and implemented using coplanar waveguide (CPW) configuration. Electromechanical behaviour of the MEMS switch has been extensively investigated using commercially available simulation tools and validated using system level simulation. A detailed design and performance analysis of the phase shifter has been carried out as a function of various structural parameters with reference to the gold-based surface micromachining process on alumina substrate. The mechanical, electrical, transient, intermodulation distortion (IMD) and loss performance of an MEMS switch have been experimentally investigated. The individual primary phase-bits (11.25°/22.5°/45°/90°/180°) that are fundamental building blocks of a complete 5-bit phase shifter have been designed, fabricated and experimentally characterized. Furthermore, two different 5-bit switched-line phase shifters, that lead to 25% size reduction and result in marked improvement in the reliability of the complete 5-bit phase shifter with 30 V actuation voltage, have been developed. The performance comparison between two different CPW-based switched-line phase shifters have been extensively investigated and validated. The complete 5-bit phase shifter demonstrates an average insertion loss of 5.4 dB with a return loss of better than 14 dB at 17.25 GHz. The maximum phase error of 1.3° has been obtained at 17.25 GHz from these 5-bit phase shifters.