Rethinking Faraday's Law for Teaching Motional Electromotive Force
ERIC Educational Resources Information Center
Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo
2012-01-01
This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena…
Ohshima, Ryo; Emoto, Hiroyuki; Shinjo, Teruya; Ando, Yuichiro; Shiraishi, Masashi
2015-05-07
Temperature evolution of electromotive force from Pt due to the inverse spin Hall effect is studied. Pure spin current is injected from yttrium-iron-garnet by using spin pumping technique. The electromotive force from the Pt monotonically decreases with decreasing temperature, and it is showed that there is a deviation between the measured and the calculated electromotive forces.
Thermo-Electromotive Force and Electrical Resistivity of Hydrogenated VT1-0 Titanium Alloy
NASA Astrophysics Data System (ADS)
Lider, A.; Larionov, V.; Kroening, M.; Kudiiarov, V.
2016-06-01
The method for measuring the structure transition of hydrogenated titanium from one state to another is suggested. The method is based on the comparison of thermo-electromotive force (thermo-emf), DC electrical resistance and the results of X-ray diffraction analysis. X-ray diffraction analysis is applied for identifying the quantity of defects in titanium structure. The authors have also identified the identical dependence of thermo-electromotive force and electrical resistivity on hydrogen concentration in titanium. The effect can be used for hydrogenated titanium structure control.
Emergence of electromotive force in precession-less rigid motion of deformed domain wall
NASA Astrophysics Data System (ADS)
Farajollahpour, Tohid; Darmiani, Narges; Phirouznia, Arash
2016-08-01
Recently it has been recognized that the electromotive force (emf) can be induced just by the spin precession where the generation of the electromotive force has been considered as a real-space topological pumping effect. It has been shown that the amount of the electromotive force is independent of the functionality of the localized moments. It was also demonstrated that the rigid domain wall (DW) motion cannot generate electromotive force in the system. Based on real-space topological pumping approach in the current study we show that the electromotive force can be induced by rigid motion of a deformed DW. We also demonstrate that the generated electromotive force strongly depends on the DW bulging. Meanwhile results show that the DW bulging leads to generation of the electromotive force both along the axis of the DW motion and normal to the direction of motion.
An Electromotive Force Measurement System for Alloy Fuels
Changhu Xing; Colby Jensen; Heng Ban; Robert Mariani; J. Rory Kennedy
2010-11-01
The development of advanced nuclear fuels requires a better understanding of the transmutation and micro-structural evolution of the materials. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this project is to design and build an experimental system to measure the thermodynamic properties of solid materials from which the understanding of their phase change can be determined. The apparatus was used to measure the electromotive force (EMF) of several materials in order to calibrate and test the system. The EMF of chromel was measured from 100°C to 800°C and compared with theoretical values. Additionally, the EMF measurement of Ni-Fe alloy was performed and compared with the Ni-Fe phase diagram. The prototype system is to be modified eventually and used in a radioactive hot-cell in the future.
Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence
Squire, J.; Bhattacharjee, A.
2015-11-01
This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.
Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence.
Squire, J; Bhattacharjee, A
2015-11-01
This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of α, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other. PMID:26651796
The Mean Electromotive Force Resulting from Magnetic Buoyancy Instability
NASA Astrophysics Data System (ADS)
Davies, C. R.; Hughes, D. W.
2011-02-01
Motivated both by considerations of the generation of large-scale astrophysical magnetic fields and by potential problems with mean magnetic field generation by turbulent convection, we investigate the mean electromotive force (emf) resulting from the magnetic buoyancy instability of a rotating layer of stratified magnetic field, considering both unidirectional and sheared fields. We discuss why the traditional decomposition into α and β effects is inappropriate in this case, and that it is only consideration of the entire mean emf that is meaningful. By considering a weighted average of the unstable linear eigenmodes, and averaging over the horizontal plane, we obtain depth-dependent emfs. For the simplified case of isothermal, ideal MHD, we are able to obtain an analytic expression for the emf; more generally, the emf has to be determined numerically. We calculate how the emf depends on the various parameters of the problem, particularly the rotation rate and the latitude of the magnetic layer.
Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence
Squire, J.; Bhattacharjee, A.
2015-11-02
Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.
Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence
Squire, J.; Bhattacharjee, A.
2015-11-02
Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less
Probing university students' understanding of electromotive force in electricity
NASA Astrophysics Data System (ADS)
Garzón, Isabel; De Cock, Mieke; Zuza, Kristina; van Kampen, Paul; Guisasola, Jenaro
2014-01-01
The goal of this study is to identify students' difficulties with learning the concepts of electromotive force (emf) and potential difference in the context of transitory currents and resistive direct-current circuits. To investigate these difficulties, we developed a questionnaire based on an analysis of the theoretical and epistemological framework of physics, which was then administered to first-year engineering and physics students at universities in Spain, Colombia, and Belgium. The results of the study show that student difficulties seem to be strongly linked to the absence of an analysis of the energy balance within the circuit and that most university students do not clearly understand the usefulness of and the difference between the concepts of potential difference and emf.
An electromotive force series in a borosilicate glass-forming melt
NASA Technical Reports Server (NTRS)
Schreiber, H. D.; Balazs, G. B.; Carpenter, B. E.; Kirkley, J. E.; Minnix, L. M.; Jamison, P. L.
1984-01-01
An electromotive force series for redox couples was defined as a function of oxygen fugacity in a borosilicate melt at 1150 C. The resulting order of relative reduction potentials can be used to estimate the amounts of redox species in glass during processing. The electromotive force series in this melt is comparable to those in other silicate glass-forming melts and in aqueous systems but differs in detail because of interaction of the solvents with individual redox couples.
NASA Astrophysics Data System (ADS)
Patiño Lopez, Luis-David; Dilhaire, Stefan; Grauby, Stéphane; Amine Salhi, M.; Ezzahri, Younès; Claeys, Wilfrid; Batsale, Jean-Christophe
2005-05-01
An in-depth study related to a new method of characterizing properties in thermoelectrics is proposed in this paper. This technique is appropriate for single or multi-layered thermoelectric devices. A modulated laser beam is used as a heater in order to generate a Seebeck electromotive force (EMF). The laser beam, line shaped, can be focused at any location along the sample surface, allowing spatially resolved measurements. Seebeck EMF measurements, associated with a versatile model based on the thermal quadrupoles method, allow determination of the sample Seebeck EMF profile and identifying of the sample thermal contact resistances, and should be useful for identification of devices and material thermoelectric properties.
Thermodynamic properties of liquid Au–Cu–Sn alloys determined from electromotive force measurements
Guo, Zhongnan; Hindler, Michael; Yuan, Wenxia; Mikula, Adolf
2011-01-01
The thermodynamic properties of the ternary Au–Cu–Sn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Three different cross-sections with constant Au:Cu ratios of 3:1, 1:1, and 1:3 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 1023 K. The partial free energies of Sn in liquid Au–Cu–Sn alloys were obtained from EMF data. The integral Gibbs free energy and the integral enthalpy at 900 K were calculated by Gibbs–Duhem integration. The ternary interaction parameters were evaluated using the Redlich–Kister–Muggianu polynomial. PMID:22039311
Experimental Study of a Single-Coil Induced-Electromotive-Force Plasma Accelerator
NASA Technical Reports Server (NTRS)
Matthews, Clarence W.; Cuddihy, William F.
1961-01-01
An experimental study was made of a single-coil induced-electromotive-force plasma accelerator which used a capacitor discharge for the driving force. A strong shock was observed from the first pulse with a velocity of 10(exp 6) centimeters per second. This shock was followed by three or four discharges which produced plasmoids moving at about 5 x 10(exp 6) centimeters per second. The efficiency of the accelerator was estimated to be about 3 percent in the production of the high-velocity plasmoids. Suggestions are made for the improvement of this type of accelerator.
Dember and photo-electromotive-force currents in silicon photoconductive detectors
NASA Astrophysics Data System (ADS)
Dikmelik, Yamaç; Davidson, Frederic M.
2004-09-01
Dember and photo-electromotive-force (PEMF) currents are investigated in silicon photoconductive detectors both theoretically and experimentally. Dember photocurrents were found to dominate the response of high-purity silicon samples with top-surface electrodes to a moving interference pattern. The use of surface electrodes leads to shadowed regions beneath the electrodes, and Dember photocurrents appear under short-circuit conditions. A single-charge-carrier model of the Dember effect is in good qualitative agreement with experimental results. We also show theoretically that the PEMF effect in silicon is weak compared with other semiconductors because of its relatively high intrinsic conductivity.
The nonequilibrium electromotive force. I. Measurements in a continuously stirred tank reactor
NASA Astrophysics Data System (ADS)
Keizer, Joel; Chang, On-Kok
1987-10-01
Based on a statistical thermodynamic theory, it has been predicted [J. Keizer, J. Chem. Phys. 82, 2751 (1985)] that at nonequilibrium steady states the electromotive force (EMF) of an electrochemical cell will differ from the local equilibrium value given by the Nernst equation. We describe here experiments designed to test this prediction for aqueous solutions of Fe2+ and Fe3+ in sulfate buffer. Using a continuously stirred tank reactor driven by a peristaltic pump, a feed solution containing Fe2+ and Fe3+ was mixed with a second feed solution containing the oxidant sodium peroxydisulfate Na2S2O8. The reaction leads to a steady nonequilibrium mixture, which at acidic pH in sulfate buffer is composed of Fe2+ and the ferric sulfate complexes FeSO+4 and Fe(SO4)-2. The EMF of this half-cell was measured vs a saturated calomel reference electrode as a function of residence time in the reactor. These potentials were compared to the Nernst potential calculated on the basis of the concentration ratio of Fe2+ to total Fe3+ at the steady states. The Nernst potential was reproducibly larger than the measured EMF by values that depended on the concentration ratio of Fe2+/Fe3+ in the feed solution and the residence time. The largest deviations were -1.8 mV, which occurred when the Fe2+/Fe3+ ratio was small and the residence time was about 40 s. We have ruled out streaming potentials, junction potentials, and incomplete mixing as the origin of this effect. We show that the dependence of the nonequilibrium portion of the EMF on feed concentrations and residence time is in good agreement with calculations based on methods that are described in the second paper in this series.
Fluctuations of the proton-electromotive force across the inner mitochondrial membrane
NASA Astrophysics Data System (ADS)
Procopio, Joaquim; Fornés, José A.
1997-05-01
The intermembrane mitochondrial space (IMMS) is delimited by the inner and outer mitochondrial membranes and defines a region of molecular dimension where fluctuations of the number of free protons and of transmembrane voltage can give rise to fluctuations in the proton-electromotive force EPMF across the inner mitochondrial membrane (IMM). We have applied the fluctuation-dissipation theorem to an electrical equivalent circuit consisting of a resistor Rm in parallel with a capacitor Cm representing the passive electrical properties of the IMM, in series with another capacitor Cb representing the proton-buffering power of the IMMS fluid. An access resistance Ra was defined as a link between the capacitor Cb and the membrane. Average EPMF fluctuations across the IMM were calculated for different assumptions concerning the intermembrane space dimensions. The calculated average EPMF fluctuations were in the vicinity of 100 mV for relaxation times in the few-microseconds range. The corresponding fluctuational protonic free energy is about 10 kJ/mole, which is comparable to the binding energy for protons in different transporters. This suggests that fluctuations in EPMF can be of relevance in the universe of forces influencing the molecular machinery embedded in the IMM.
NASA Astrophysics Data System (ADS)
Rüdiger, G.; Küker, M.
2016-07-01
Motivated by the empirical finding that the known hemispheric rules for the current helicity at the solar surface are not strict, we demonstrate the excitation of small-scale current helicity by the influence of large-scale helical magnetic background fields on nonrotating magnetoconvection. This is shown within a quasilinear analytic theory of driven turbulence and by nonlinear simulations of magnetoconvection that the resulting small-scale current helicity has the same sign as the large-scale current helicity, while the ratio of both pseudoscalars is of the order of the magnetic Reynolds number of the convection. The same models do not provide finite values of the small-scale kinetic helicity. On the other hand, a turbulence-induced electromotive force is produced including the diamagnetic pumping term, as well as the eddy diffusivity but, however, no α effect. It has thus been argued that the relations for the simultaneous existence of small-scale current helicity and α effect do not hold for the model of nonrotating magnetoconvection under consideration. Calculations for various values of the magnetic Prandtl number demonstrate that, for the considered diffusivities, the current helicity increases for growing magnetic Reynolds number, which is not true for the velocity of the diamagnetic pumping, which is in agreement with the results of the quasilinear analytical approximation.
NASA Astrophysics Data System (ADS)
Nguyen, Quang-Dich; Ueno, Satoshi
Axial-gap self-bearing motor (AGBM) is an electrical combination of an axial flux motor and a thrust magnetic bearing, hence it can support rotation and magnetic levitation without any additional windings. The goal of this paper is utilization of the state observer to research a new capability of sensorless speed control of a salient AGBM. First, analytical and theoretical evaluation for a sensorless speed vector control of a salient AGBM is presented. The approach is based on the estimation of the extended electromotive force (EEMF) through a Luenberger Observer (LO) with help of reference stator voltages, measured stator currents and measured axial displacement. Then, experiment is implemented based on dSpace1104 with two three-phase inverters. The experimental results confirm that the AGBM can simultaneously produce levitation force and rotational torque. Moreover, speed and axial displacement can be independently controlled without speed sensor.
On the nonlinear on-off dynamics of a butterfly valve actuated by an induced electromotive force
NASA Astrophysics Data System (ADS)
Kwuimy, C. A. Kitio; Ramakrishnan, S.; Nataraj, C.
2013-11-01
In this paper, we study the nonlinear dynamics of a butterfly valve actuated by the induced electromotive force (emf) of a permanent magnet, with a focus on the on-off dynamics of the valve and its nonlinear response under ambient perturbation. The complex interplay between the electromagnetic, hydrodynamic and mechanical forces leads to a fundamentally multiphysical, nonlinear dynamical model for the problem. First, we analyze the stability of the on-off conditions in terms of three critical dynamical parameters - the actuating DC voltage, inlet velocity and the opening angle. Next, the response of the system to perturbations around the equilibrium points is studied in terms of the frequency response using the method of multiple scales. Finally, evidence of fractality is established using Melnikov analysis and a plot of the basins of attraction. The results reported in the article, in addition to being of fundamental theoretical interest, are expected to impact practical design considerations of electromechanical butterfly valves. For a voltage ve>vc, theoretically, the system may undergo bifurcations into the physically infeasible domain α>αm (beyond the physical boundary). Practically however, this jump cannot be realized due to the stopper in the plunger. In other words, the valve will completely close the pipe under this condition, leading to catastrophic behavior. For a voltage ve
Speckle photo-electromotive force in Bi12SiO20: Effect of the speckle size
NASA Astrophysics Data System (ADS)
Salazar, Ángel
2013-07-01
A study of the speckle photo-electromotive force (PEMF) in a photorefractive sensor of amplitudes of micro-oscillations is presented. The experimental behavior of the first harmonic of the photocurrent generated as a function of the average speckle diameter and the oscillation amplitude of the speckle pattern is analyzed for a sensor implemented with a Bi12SiO20 (BSO) crystal. For a given light intensity, a nearly constant value of the maximum amplitude of the first harmonic was experimentally observed for the range of speckle sizes considered. This experimental result and the linear dependence of the vibration amplitude yielding the maximum of the photocurrent as a function of the speckle diameter were appropriately described by the mathematical model considered. Results show the possibility of adequately selecting the speckle size to optimize the output of speckle PEMF-based sensors depending on the oscillation amplitude to be measured.
NASA Astrophysics Data System (ADS)
Yamamoto, Hiroaki; Morishita, Masao; Yamamoto, Takeo; Furukawa, Kazuma
2011-02-01
The standard Gibbs energies of formation of Mo2B, αMoB, Mo2B5, and MoB4 in the molybdenum-boron binary system were determined by measuring electromotive forces of galvanic cells using an Y2O3-stabilized ZrO2 solid oxide electrolyte. The results are as follows: begin{aligned} Updelta_{{f}} {{G}}^circ ( {{{Mo}}2 {{B}}} )/{{J}} {{mol}}^{ - 1} & = - 193100 + 44.10T ± 700( {1198{{ K to }}1323{{ K}}( {925^circ {{C to }}1050^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ (α {{MoB}})/{{J}} {{mol}}^{ - 1} & = - 164000 + 26.45T ± 700( {1213{{ K to }}1328{{ K}}( {940^circ {{C to }}1055^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ ( {{{Mo}}2 {{B}}5 } )/{{J}} {{mol}}^{ - 1} & = - 622500 + 117.0T ± 3000( {1205{{ K to }}1294{{ K}}( {932^circ {{C to }}1021^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ ( {{{MoB}}4 } )/{{J}} {{mol}}^{ - 1} & = - 387300 + 93.53T ± 3000( {959{{ K to }}1153{{ K}}( {686^circ {{C to }}880^circ {{C}}} )} ) \\ where the standard pressure is 1 bar (100 kPa).
NASA Astrophysics Data System (ADS)
Ma, Lianxi
The magnetic flux ΦB, electromotive force, EMF, and current Iin, induced by a moving magnetic bar and an imaginary magnetic monopole in a superconducting solenoid of multiple turns and length L, are numerically calculated. The magnetic field of the bar magnet is approximated with the magnetic field along z axis of a solenoid with length l and radius a and current I, while the magnetic field of the monopole is supposed to be inversely proportional to r2. Calculations show that, for a bar magnet, ΦB and Iin essentially saturate when the bar moves inside superconducting solenoid, so EMF is zero while Iin is constant. EMF is only induced when the bar enters and exits the solenoid and Iin is zero after the bar leaves the solenoid. For a magnetic monopole, ΦB is discontinuous (from positive maximum to negative maximum) when the it moves through each turn of the superconducting solenoid, but EMF caused by dΦB /dt is continuous while the EMF induced by the a moving monopole is a delta function (moving monopole produces a ring-shaped E field). The total EMFTot in solenoid is the superposition of EMF of each turn of coil and the plateau appears. The current Iin continues to grow while the monopole leaves the solenoid. Thanks to Dr. Liancun Zheng and Mr. Lin Liu for verifying my calculation.
NASA Astrophysics Data System (ADS)
Bobrovskiy, Vadim
2016-04-01
We explore the results of the subterranean electric measurements obtained by exploiting of multi-electrode systems at the division of atmosphere and tectonosphere. Subterranean electromotive forces have been recorded in the surface soils during thunderstorm, one of which is the rarest phenomena in the territory of the Avacha Bay. Lightning occurred at distances of 15-18 km from subterranean electric stations. From WWLLN sferics we've got the lightning locations and time of registration. Pulse variations of the subterranean electromotive forces have been observed 1-15 minutes before the lightning strikes in the territory of Avacha Bay. We have investigated variations of subterranean electromotive forces and concluded that there is sufficiently distinct dependence between location of a subterranean electric station and location of a lightning strike. A peak in subterranean electric signals has been found 1-15 minutes prior to self-organization of lightning phenomena. The report sums recent activities in the field and propose the necessity to set subterranean multi-electrode systems for further research in thunderstorm/lightning active regions of the Earth as Kamchatka peninsula is not an active lightning region to make a progress in fulfilling such a task.
NASA Astrophysics Data System (ADS)
Ichikawa, Shinji; Tomita, Mutuwo; Doki, Shinji; Okuma, Shigeru
In this paper, sensorless control for synchronous reluctance motors (SynRMs) without signal injection and an inductance measurement for position estimation are proposed. In the case of SynRMs, accuracy of inductances is the most important thing to realize precise position estimation because inductances are largely varied by a magnetic saturation phenomenon. Therefore, the inductance measurement method, which can measure appropriate inductances for position estimation, is important as well as a sensorless control method. The inductance measurement based on the observer is discussed, and the measurement method and the parameter adjustment method for improvement in stability of the closed loop are proposed. The proposed method can measure inductances easily and be applied for permanent magnet synchronous motors, too. Finally, the proposed sensorless control method is verified by experiments.
Investigation of the mechanisms of action behind Electromotive Drug Administration (EMDA)
Vásquez, Juan Luis; Miklavčič, Damijan; Hermann, Gregers G.G.; Gehl, Julie
2016-01-01
Objective Bladder cancer is a cause of considerable morbidity worldwide. Electromotive Drug Administration is a method that combines intravesical chemotherapy with local electric field application. Electroporation has been suggested among other mechanisms as having a possible role in the therapy, so the goal of the present study was to investigate the electric fields present in the bladder wall during the treatment to determine which mechanisms might be involved. Material and Methods Electromotive Drug Administration involves applying intravesical mitomycin C with direct current of 20 mA delivered through a catheter electrode for 30 min. For numerical electric field computation we built a 3-D nonhomogeneous patient specific model based on CT images and used finite element method simulations to determine the electric fields in the whole body. Results Results indicate that highest electric field in the bladder wall was 37.7 V/m. The mean electric field magnitude in the bladder wall was 3.03 V/m. The mean magnitude of the current density in the bladder wall was 0.61 A/m2. Conclusions The present study shows that electroporation is not the mechanism of action in EMDA. A more likely explanation of the mechanism of action is iontophoretic forces increasing the mitomycin C concentration in the bladder wall.
Method of Calibrating a Force Balance
NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)
2015-01-01
A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.
Dynamic atomic force microscopy methods
NASA Astrophysics Data System (ADS)
García, Ricardo; Pérez, Rubén
2002-09-01
In this report we review the fundamentals, applications and future tendencies of dynamic atomic force microscopy (AFM) methods. Our focus is on understanding why the changes observed in the dynamic properties of a vibrating tip that interacts with a surface make possible to obtain molecular resolution images of membrane proteins in aqueous solutions or to resolve atomic-scale surface defects in ultra high vacuum (UHV). Our description of the two major dynamic AFM modes, amplitude modulation atomic force microscopy (AM-AFM) and frequency modulation atomic force microscopy (FM-AFM) emphasises their common points without ignoring the differences in experimental set-ups and operating conditions. Those differences are introduced by the different feedback parameters, oscillation amplitude in AM-AFM and frequency shift and excitation amplitude in FM-AFM, used to track the topography and composition of a surface. The theoretical analysis of AM-AFM (also known as tapping-mode) emphasises the coexistence, in many situations of interests, of two stable oscillation states, a low and high amplitude solution. The coexistence of those oscillation states is a consequence of the presence of attractive and repulsive components in the interaction force and their non-linear dependence on the tip-surface separation. We show that key relevant experimental properties such as the lateral resolution, image contrast and sample deformation are highly dependent on the oscillation state chosen to operate the instrument. AM-AFM allows to obtain simultaneous topographic and compositional contrast in heterogeneous samples by recording the phase angle difference between the external excitation and the tip motion (phase imaging). Significant applications of AM-AFM such as high-resolution imaging of biomolecules and polymers, large-scale patterning of silicon surfaces, manipulation of single nanoparticles or the fabrication of single electron devices are also reviewed. FM-AFM (also called non
Detection of electromotive force induced by domain wall motion
NASA Astrophysics Data System (ADS)
Beach, Geoffrey
2010-03-01
A magnetic domain wall can be displaced by current via the transfer of spin angular momentum from conduction electrons to the local magnetization. The capacity of spin-transfer torque to drive domain wall motion is now well established experimentally and theoretically [1], and is a central topic in the growing field of spintronics. This talk will describe the first experimental evidence [2] that the coupling between spin and charge also works in reverse; namely, that a domain wall driven by a field through a stationary electron gas generates an experimentally-detectible voltage. This new spintronic effect [3] was measured by precisely controlling the motion of a single domain wall in a Permalloy nanowire and isolated from other sources using a field modulation scheme to differentiate between the small domain wall-induced voltage and conventional inductive voltages. The domain wall-induced voltage was found to scale in proportion to the driving field magnitude, and its sign depends only on the direction of domain wall motion. These results are consistent with theoretical predictions [2, 4, 5], and will be discussed in terms of a generalized two-dimensional topological framework [2] capable of treating vortex DWs. [4pt] [1] G.S.D. Beach, M. Tsoi, and J.L. Erskine, J. Magn. Magn. Mater. 320, 1272 (2008). [0pt] [2] S. Yang, G.S.D. Beach, C. Knutson, D. Xiao, Q. Niu, M. Tsoi, and J.L. Erskine, Phys. Rev. Lett. 102, 067201 (2009). [0pt] [3]. R. McMichael, and M. Stiles, Physics 2, 11 (2009). [0pt] [4] L. Berger, Phys. Rev. B 33, 1572 (1986) [0pt] [5] S. E. Barnes and S. Maekawa, Appl. Phys. 89, 122507 (2006).
The Electromotive Series and Other Non-Absolute Scales
NASA Astrophysics Data System (ADS)
Peckham, Gavin D.
1998-01-01
This article describes an analogy which may be used to illustrate the principles that underlie the establishment of non-absolute scales of measurements that are evaluated relative to a chosen reference point. The analogy is interwoven with the establishment of the electromotive series, but may be extended to other parameters such as the Celsius and Fahrenheit temperature scales, potential energies, formation and reaction enthalpies, etc.
Measuring Cell Forces by a Photoelastic Method
Curtis, Adam; Sokolikova-Csaderova, Lucia; Aitchison, Gregor
2007-01-01
A new method for measuring the mechanical forces exerted by cells on the substratum and through the substratum to act on other cells is described. This method depends upon the growth of cells on a photoelastic substratum, polydimethylsiloxane coated with a near monolayer of fibronectin. Changes in the forces applied by the cells to the substratum lead to changes in birefringence, which can be measured and recorded by the Polscope computer-controlled polarizing microscope. The changes in azimuth and retardance can be measured. A method for calibrating the stress is described. The method is sensitive down to forces of 1 pN per square microns. Fairly rapid changes with time can be recorded with a time resolution of ∼1 s. The observations show that both isolated adhering, spread cells and also cells close to contact exert stresses on the substratum and that the stresses are those that would be produced by forces of 10–1000 pN per cell. The forces are almost certainly exerted on nearby cells since movement of one cell causes strains to appear around other nearby cells. The method has the defect that strains under the cells, though detectable in principle, are unclear due to birefringence of the components of the cytoplasm and nucleus. It is of special interest that the strains on the substratum can change in the time course of a few seconds and appear to be concentrated near the base of the lamellopodium of the cell as though they originated there. As well as exerting forces on the substratum in the direction of the long axis of the cell, appreciable forces are exerted from the lateral sides of the cell. The observations and measurements tend to argue that microtopography and embedded beads can concentrate the forces. PMID:17189310
Integrated force method versus displacement method for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.
1990-01-01
A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.
Integrated force method versus displacement method for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Berke, L.; Gallagher, R. H.
1991-01-01
A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EEs) are integrated with the global compatibility conditions (CCs) to form the governing set of equations. In IFM the CCs are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.
Fidelity of the Integrated Force Method Solution
NASA Technical Reports Server (NTRS)
Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya
2002-01-01
The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.
Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.
1998-01-01
Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.
BOFFO - BOUNDARY FORCE METHOD FOR ORTHOTROPIC MATERIALS
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1994-01-01
In the field of fracture mechanics, stress-intensity factors are important parameters for predicting fracture strengths and fatigue lives. BOFFO performs stress analysis of two-dimensional linear elastic orthotropic or composite bodies with or without cracks using the Boundary Force Method. The Boundary Force Method is versatile since complex geometries, crack configurations, and load distributions can be analyzed with ease. The BOFFO program is easy to use because only the boundaries of the region of interest are modeled using a built-in mesh generator. Stresses can be computed at any specified point in the body. Stress-intensity factor solutions and strain-energy release rates are computed for both mode I and mixed mode fracture problems. The Boundary Force Method is a numerical technique that uses the fundamental solutions for concentrated forces and moments in an infinite sheet to obtain the solution to the boundary value problem of interest. These fundamental solutions are used in the BOFFO program to exactly satisfy the stress-free conditions on the crack faces. The other boundary conditions are approximately satisfied by applying the appropriate sets of concentrated horizontal and vertical forces and moments along the boundary. The problem configuration is defined using two sets of axes. The global X- and Y-axes define the specimen boundaries, loads, and material properties. The local axes define the crack length and orientation. The user can specify four types of symmetry conditions: symmetry about the X-axis, symmetry about the Y-axis, symmetry about the X- and Y-axes, or no symmetry. The lines of symmetry are not modeled as boundaries. The accuracy of the solution depends on how well the boundary conditions are approximated, which in turn depends on the refinement of the boundary mesh. BOFFO uses the radial-line method for element mesh generation. BOFFO is written in FORTRAN V for execution on CDC CYBER 170 Series computers running NOS. The execution time
Integrated Force Method for Indeterminate Structures
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Halford, Gary R.; Patnaik, Surya N.
2008-01-01
Two methods of solving indeterminate structural-mechanics problems have been developed as products of research on the theory of strain compatibility. In these methods, stresses are considered to be the primary unknowns (in contrast to strains and displacements being considered as the primary unknowns in some prior methods). One of these methods, denoted the integrated force method (IFM), makes it possible to compute stresses, strains, and displacements with high fidelity by use of modest finite-element models that entail relatively small amounts of computation. The other method, denoted the completed Beltrami Mitchell formulation (CBMF), enables direct determination of stresses in an elastic continuum with general boundary conditions, without the need to first calculate displacements as in traditional methods. The equilibrium equation, the compatibility condition, and the material law are the three fundamental concepts of the theory of structures. For almost 150 years, it has been commonly supposed that the theory is complete. However, until now, the understanding of the compatibility condition remained incomplete, and the compatibility condition was confused with the continuity condition. Furthermore, the compatibility condition as applied to structures in its previous incomplete form was inconsistent with the strain formulation in elasticity.
Multilevel summation method for electrostatic force evaluation.
Hardy, David J; Wu, Zhe; Phillips, James C; Stone, John E; Skeel, Robert D; Schulten, Klaus
2015-02-10
The multilevel summation method (MSM) offers an efficient algorithm utilizing convolution for evaluating long-range forces arising in molecular dynamics simulations. Shifting the balance of computation and communication, MSM provides key advantages over the ubiquitous particle–mesh Ewald (PME) method, offering better scaling on parallel computers and permitting more modeling flexibility, with support for periodic systems as does PME but also for semiperiodic and nonperiodic systems. The version of MSM available in the simulation program NAMD is described, and its performance and accuracy are compared with the PME method. The accuracy feasible for MSM in practical applications reproduces PME results for water property calculations of density, diffusion constant, dielectric constant, surface tension, radial distribution function, and distance-dependent Kirkwood factor, even though the numerical accuracy of PME is higher than that of MSM. Excellent agreement between MSM and PME is found also for interface potentials of air–water and membrane–water interfaces, where long-range Coulombic interactions are crucial. Applications demonstrate also the suitability of MSM for systems with semiperiodic and nonperiodic boundaries. For this purpose, simulations have been performed with periodic boundaries along directions parallel to a membrane surface but not along the surface normal, yielding membrane pore formation induced by an imbalance of charge across the membrane. Using a similar semiperiodic boundary condition, ion conduction through a graphene nanopore driven by an ion gradient has been simulated. Furthermore, proteins have been simulated inside a single spherical water droplet. Finally, parallel scalability results show the ability of MSM to outperform PME when scaling a system of modest size (less than 100 K atoms) to over a thousand processors, demonstrating the suitability of MSM for large-scale parallel simulation. PMID:25691833
Multilevel Summation Method for Electrostatic Force Evaluation
2015-01-01
The multilevel summation method (MSM) offers an efficient algorithm utilizing convolution for evaluating long-range forces arising in molecular dynamics simulations. Shifting the balance of computation and communication, MSM provides key advantages over the ubiquitous particle–mesh Ewald (PME) method, offering better scaling on parallel computers and permitting more modeling flexibility, with support for periodic systems as does PME but also for semiperiodic and nonperiodic systems. The version of MSM available in the simulation program NAMD is described, and its performance and accuracy are compared with the PME method. The accuracy feasible for MSM in practical applications reproduces PME results for water property calculations of density, diffusion constant, dielectric constant, surface tension, radial distribution function, and distance-dependent Kirkwood factor, even though the numerical accuracy of PME is higher than that of MSM. Excellent agreement between MSM and PME is found also for interface potentials of air–water and membrane–water interfaces, where long-range Coulombic interactions are crucial. Applications demonstrate also the suitability of MSM for systems with semiperiodic and nonperiodic boundaries. For this purpose, simulations have been performed with periodic boundaries along directions parallel to a membrane surface but not along the surface normal, yielding membrane pore formation induced by an imbalance of charge across the membrane. Using a similar semiperiodic boundary condition, ion conduction through a graphene nanopore driven by an ion gradient has been simulated. Furthermore, proteins have been simulated inside a single spherical water droplet. Finally, parallel scalability results show the ability of MSM to outperform PME when scaling a system of modest size (less than 100 K atoms) to over a thousand processors, demonstrating the suitability of MSM for large-scale parallel simulation. PMID:25691833
Are shear force methods adequately reported?
Holman, Benjamin W B; Fowler, Stephanie M; Hopkins, David L
2016-09-01
This study aimed to determine the detail to which shear force (SF) protocols and methods have been reported in the scientific literature between 2009 and 2015. Articles (n=734) published in peer-reviewed animal and food science journals and limited to only those testing the SF of unprocessed and non-fabricated mammal meats were evaluated. It was found that most of these SF articles originated in Europe (35.3%), investigated bovine species (49.0%), measured m. longissimus samples (55.2%), used tenderometers manufactured by Instron (31.2%), and equipped with Warner-Bratzler blades (68.8%). SF samples were also predominantly thawed prior to cooking (37.1%) and cooked sous vide, using a water bath (50.5%). Information pertaining to blade crosshead speed (47.5%), recorded SF resistance (56.7%), muscle fibre orientation when tested (49.2%), sub-section or core dimension (21.8%), end-point temperature (29.3%), and other factors contributing to SF variation were often omitted. This base failure diminishes repeatability and accurate SF interpretation, and must therefore be rectified. PMID:27107727
A polygonal method for haptic force generation
Anderson, T. |
1996-12-31
Algorithms for computing forces and associated surface deformations (graphical and physical) are given, which, together with a force feedback device can be used to haptically display virtual objects. The Bendable Polygon algorithm, created at Sandia National Labs and the University of New Mexico, for visual rendering of computer generated surfaces is also presented. An implementation using the EIGEN virtual reality environment, and the PHANToM (Trademark) haptic interface, is reported together with suggestions for future research.
Electromotive Triggering and Single Sweep Analysis of Vestibular Evoked Myogenic Potentials (VEMPs).
Hecker, Dietmar J; Lohscheller, Joerg; Schorn, Bianca; Koch, Klaus Peter; Schick, Bernhard; Dlugaiczyk, Julia
2014-01-01
Cervical (c) and ocular (o) vestibular evoked myogenic potentials (VEMPs) provide important tools for measuring otolith function. However, two major drawbacks of this method are encountered in clinical practice. First, recording of oVEMPs is compromised by small n10 amplitudes. Second, VEMP analysis is currently based on the averaging technique, resulting in a loss of information compared to single sweep analysis. Here, we: 1) developed a novel electromotive trigger mechanism for evoking VEMPs by bone-conducted vibration to the forehead and 2) established maximum entropy extraction of complex wavelet transforms for calculation of phase synchronization between VEMP single sweeps. Both c- and oVEMPs were recorded for n=10 healthy individuals. The oVEMP n10 amplitude was consistently higher (right: 24.84±9.71 μV; left: 27.40±14.55 μV) than previously described. Stable VEMP signals were reached after a smaller number of head taps (oVEMPs 6; cVEMPs 11) compared to current recommendations. Phase synchronization vectors and phase shift values were successfully determined for simulated and clinically recorded VEMPs, providing information about the impact of noise and phase jitter on the VEMP signal. Thus, the proposed method constitutes an easy-to-use approach for the fast detection and analysis of VEMPs in clinical practice. PMID:23529108
A New Method of Comparing Forcing Agents in Climate Models
Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.; Jarvis, Andrew
2015-10-14
We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approach for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.
A Simple Method for Measuring Linguopalatal Contact Force During Speech
NASA Astrophysics Data System (ADS)
Tsuji, Ryunosuke; Matsumuta, Masafumi; Niikawa, Takuya; Nohara, Kanji; Tachimura, Takashi; Wada, Takeshi; Chihara, Kunihiro
This paper proposes a using probe for measuring of contact force between tongue and palatal, during speech. We developed a 0.03 mm-thick stainless steel tongue force probe with a 3x5 mm force sensor at the tip. Linguopalatal contact force was measured by inserting the probe into the oral cavity. Contact force was measured at the following three locations. Based on the coordinate and measurement obtained at the three points, the action point of tongue force was calculated by the weighted mean. Linguopalatal contact force was measured in four adult men and women without articulation disorder and in three adult men with articulation disorders. Results showed that the action point of tongue force in subjects with articulation disorders was further toward the pharynx than that in subjects without articulation disorders. Linguopalatal contact pressure was then measured again by asking the subjects with articulation disorders to wear a palatal augmentation prosthesis (PAP) to compensate for insufficient linguopalatal contact force. The action point of tongue force became better approximated to that of subjects without articulation disorders. Given these results, our simple method for measuring linguopalatal contact force using a tongue force probe appears to be a promising tool for speech therapists treating articulation disorders.
Double Force Compensation Method to Enhance the Performance of a Null Balance Force Sensor
NASA Astrophysics Data System (ADS)
Choi, In-Mook; Choi, Dong-June; Kim, Soo Hyun
2002-06-01
Microforce measurement is becoming more essential as precision industries such as biomedicine, precision chemistry, semiconductor manufacturing, and so forth develop. A null balance method has been introduced in order to improve on force measurement performances involving a loadcell. The null-balance type force sensor is analyzed and designed for the improvement of measurement performances. The measurement range and the resolution are dependent on the force generation capacity and the various error sources. These characteristics are estimated and verified according to the mechanical sensitivity and the force compensation sensitivity. Two different coil systems are designed and tested experimentally. Double force compensation is proposed in order to obtain a large range and high resolution. The measurement range of the large coil system and the resolution of the small one are fully realized by the double compensation method. After manufacturing, a range over 300 gf and resolution under ± 0.1 mgf were obtained by the double compensation method.
Integrated Force Method Solution to Indeterminate Structural Mechanics Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.
2004-01-01
Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.
Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy
Illek, Esther; Giessibl, Franz J
2012-01-01
Summary In frequency-modulation atomic force microscopy the direct observable is the frequency shift of an oscillating cantilever in a force field. This frequency shift is not a direct measure of the actual force, and thus, to obtain the force, deconvolution methods are necessary. Two prominent methods proposed by Sader and Jarvis (Sader–Jarvis method) and Giessibl (matrix method) are investigated with respect to the deconvolution quality. Both methods show a nontrivial dependence of the deconvolution quality on the oscillation amplitude. The matrix method exhibits spikelike features originating from a numerical artifact. By interpolation of the data, the spikelike features can be circumvented. The Sader–Jarvis method has a continuous amplitude dependence showing two minima and one maximum, which is an inherent property of the deconvolution algorithm. The optimal deconvolution depends on the ratio of the amplitude and the characteristic decay length of the force for the Sader–Jarvis method. However, the matrix method generally provides the higher deconvolution quality. PMID:22496997
a Method for Determining the Impact Force in Crash Testing
NASA Astrophysics Data System (ADS)
Fujii, Y.; Isobe, D.; Saito, S.; Fujimoto, H.; Miki, Y.
2000-11-01
A method for measuring the impact force in crash testing is developed. In this method, a mass is made to collide with the object being tested and the instantaneous value of the impact force is measured as the inertial force acting on the mass. To realise linear motion with sufficiently small friction acting on the mass, a pneumatic linear bearing is used, and the velocity and acceleration of the mass, the moving part of the bearing, are measured using an optical interferometer. The relative combined standard uncertainty in determining the impact force in a three-point bending test is estimated to be 0.5×10 -2(0.5%) of the maximum value of the impact force.
A Method for Implementing Force-Limited Vibration Control
NASA Technical Reports Server (NTRS)
Worth, Daniel B.
1997-01-01
NASA/GSFC has implemented force-limited vibration control on a controller which can only accept one profile. The method uses a personal computer based digital signal processing board to convert force and/or moment signals into what appears to he an acceleration signal to the controller. This technique allows test centers with older controllers to use the latest force-limited control techniques for random vibration testing. The paper describes the method, hardware, and test procedures used. An example from a test performed at NASA/GSFC is used as a guide.
A novel adaptive force control method for IPMC manipulation
NASA Astrophysics Data System (ADS)
Hao, Lina; Sun, Zhiyong; Li, Zhi; Su, Yunquan; Gao, Jianchao
2012-07-01
IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable.
Intravesical electromotive drug administration for the treatment of non-infectious chronic cystitis.
Riedl, C R; Knoll, M; Plas, E; Stephen, R L; Pflüger, H
1997-01-01
Seventeen patients with non-infectious chronic cystitis (NICC) (9 with interstitial cystitis, 6 patients with radiation cystitis, 1 with chemocystitis and 1 with lupoid cystitis) were treated with electromotive administration of intravesical lidocaine and dexamethasone followed by hydrodistension of the bladder. Complete resolution of symptoms for an average of 7.5 months was observed in 11 patients (65%), partial improvement in 4 (23.5%). In this series no complications occurred. Electromotive drug administration (EMDA) and cystodistension were well tolerated by all patients. The treatment was performed on an outpatient basis, thus reducing therapeutic costs. The results presented demonstrate that the combination of EMDA and bladder hydrodistension is an effective first-line treatment for NICC patients. PMID:9449584
Acoustic radiation force-based elasticity imaging methods
Palmeri, Mark L.; Nightingale, Kathryn R.
2011-01-01
Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies. PMID:22419986
Easy and direct method for calibrating atomic force microscopy lateral force measurements
Liu, Wenhua; Bonin, Keith; Guthold, Martin
2010-01-01
We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616
New force replica exchange method and protein folding pathways probed by force-clamp technique
NASA Astrophysics Data System (ADS)
Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan
2008-01-01
We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the Cα-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes linear, as
Force-coupling method for flows with ellipsoidal particles
NASA Astrophysics Data System (ADS)
Liu, D.; Keaveny, E. E.; Maxey, M. R.; Karniadakis, G. E.
2009-06-01
The force-coupling method, previously developed for spherical particles suspended in a liquid flow, is extended to ellipsoidal particles. In the limit of Stokes flow, there is an exact correspondence with known analytical results for isolated particles. More generally, the method is shown to provide good approximate results for the particle motion and the flow field both in viscous Stokes flow and at finite Reynolds number. This is demonstrated through comparison between fully resolved direct numerical simulations and results from the numerical implementation of the force-coupling method with a spectral/hp element scheme. The motion of settling ellipsoidal particles and neutrally buoyant particles in a Poiseuille flow are discussed.
NASA Astrophysics Data System (ADS)
Davies, C. R.; Hughes, D. W.
2011-03-01
Due to a technical error during the production process, several vector symbols were omitted from the published version of this paper. A full corrected version of the paper is included with this Erratum. See the accompanying PDF and HTML files. IOP Publishing sincerely regrets this error.
Electromotive force measurements on cells involving beta-alumina solid electrolyte
NASA Technical Reports Server (NTRS)
Choudhury, N. S.
1973-01-01
Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.
Electromotive force measurements on cells involving beta-alumina solid electrolyte
NASA Technical Reports Server (NTRS)
Choudhury, N.
1973-01-01
Open circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta- alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two phase solid electrolyte can be used to monitor oxygen chemical potentials as low as that corresponding to Al, Al2O3 coexistence. The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.
An improved method for determining force balance calibration accuracy
NASA Astrophysics Data System (ADS)
Ferris, Alice T.
The results of an improved statistical method used at Langley Research Center for determining and stating the accuracy of a force balance calibration are presented. The application of the method for initial loads, initial load determination, auxiliary loads, primary loads, and proof loads is described. The data analysis is briefly addressed.
Efficient forced vibration reanalysis method for rotating electric machines
NASA Astrophysics Data System (ADS)
Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo
2015-01-01
Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.
Detection of forced oscillations in power systems with multichannel methods
Follum, James D.
2015-09-30
The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Making use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.
Initial testing of two DEMI (Driesbach Electromotive Inc. ) Model 4E zinc-air rechargeable cells
Hardin, J.E.; Martin, M.E.
1989-10-23
The purpose of this document is to report the results of INEL laboratory testing of two DEMI 4E Aerobic Power Battery Cells (collectively designated Pack 46 in INEL records). The 4E Aerobic Power Battery is a secondary battery developed privately by Driesbach Electromotive Inc. (DEMI). The battery employs zinc as the anode and a bifunctional air cathode. This testing was performed as the first phase of a cooperative agreement between INEL and DEMI leading to the construction and testing of electric vehicle-size cells, to be followed eventually by a battery pack. 3 refs., 3 figs., 5 tabs.
A moiré method of visualizing electromagnetic force lines
NASA Astrophysics Data System (ADS)
Yuk, K. C.; Lee, T. H.; Chang, S.
2008-08-01
We propose a simple moiré method of visualizing electromagnetic force lines. The indicial equation is first derived for the tangent (or normal) curve to the electric field (or magnetic induction) around two parallel-line charges (or currents). The derived equation is then shown to have a one-to-one correspondence with that of the moiré fringe formed by two overlapped radial gratings. Since the tangent (or normal) curve to the electric field (or the magnetic induction) corresponds to the direction of the electric (or magnetic) force on a test charge (or current), the radial grating moirés can be used for the visualization of electric (or magnetic) force lines.
A calibration method for lateral forces for use with colloidal probe force microscopy cantilevers
Quintanilla, M. A. S.; Goddard, D. T.
2008-02-15
A calibration method is described for colloidal probe cantilevers that enables friction force measurements obtained using lateral force microscopy (LFM) to be quantified. The method is an adaptation of the lever method of Feiler et al. [A. Feiler, P. Attard, and I. Larson, Rev. Sci. Instum. 71, 2746 (2000)] and uses the advantageous positioning of probe particles that are usually offset from the central axis of the cantilever. The main sources of error in the calibration method are assessed, in particular, the potential misalignment of the long axis of the cantilever that ideally should be perpendicular to the photodiode detector. When this is not taken into account, the misalignment is shown to have a significant effect on the cantilever torsional stiffness but not on the lateral photodiode sensitivity. Also, because the friction signal is affected by the topography of the substrate, the method presented is valid only against flat substrates. Two types of particles, 20 {mu}m glass beads and UO{sub 3} agglomerates attached to silicon tapping mode cantilevers were used to test the method against substrates including glass, cleaved mica, and UO{sub 2} single crystals. Comparisons with the lateral compliance method of Cain et al. [R. G. Cain, S. Biggs, and N. W. Page, J. Colloid Interface Sci. 227, 55 (2000)] are also made.
NASA Astrophysics Data System (ADS)
Witzke, V.; Silvers, L. J.; Favier, B.
2016-08-01
Shear flows are ubiquitous in astrophysical objects including planetary and stellar interiors, where their dynamics can have significant impact on thermo-chemical processes. Investigating the complex dynamics of shear flows requires numerical calculations that provide a long time evolution of the system. To achieve a sufficiently long lifetime in a local numerical model the system has to be forced externally. However, at present, there exist several different forcing methods to sustain large-scale shear flows in local models. In this paper we examine and compare various methods used in the literature in order to resolve their respective applicability and limitations. These techniques are compared during the exponential growth phase of a shear flow instability, such as the Kelvin-Helmholtz (KH) instability, and some are examined during the subsequent non-linear evolution. A linear stability analysis provides reference for the growth rate of the most unstable modes in the system and a detailed analysis of the energetics provides a comprehensive understanding of the energy exchange during the system's evolution. Finally, we discuss the pros and cons of each forcing method and their relation with natural mechanisms generating shear flows.
ERIC Educational Resources Information Center
Gamble, Reed
1989-01-01
Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)
An improved boundary force method for analysing cracked anisotropic materials
NASA Technical Reports Server (NTRS)
Tan, P. W.; Bigelow, C. A.
1989-01-01
The Boundary Force Method (BFM), a form of indirect boundary element method, is used to analyze composite laminates with cracks. The BFM uses the orthotropic elasticity solution for a concentrated horizontal and vertical force and a moment applied at a point in a cracked, infinite sheet as the fundamental solution. The necessary stress functions for this fundamental solution were formulated using the complex variables theory of orthotropic elasticity. The current method is an improvement over a previous method using only forces and no moment. The improved method was verified by comparing it to accepted solutions for a finite-width, center-crack specimen subjected to uniaxial tension. Four graphite/epoxy laminates were used: (0 + or - 45/90)sub s, (0), (+ or - 45)sub s, and (+ or - 30)sub s. The BFM results agreed well with accepted solutions. Convergence studies showed that with the addition of the moment in the fundamental solution, the number of boundary elements required for a converged solution was significantly reduced. Parametric studies were done for two configurations for which no orthotropic solutions are currently available; a single edge crack and an inclined single edge crack.
An improved boundary force method for analyzing cracked anisotropic materials
NASA Technical Reports Server (NTRS)
Tan, Paul W.; Bigelow, Catherine A.
1988-01-01
The Boundary Force Method (BFM), a form of indirect boundary element method, is used to analyze composite laminates with cracks. The BFM uses the orthotropic elasticity solution for a concentrated horizontal and vertical force and a moment applied at a point in a cracked, infinite sheet as the fundamental solution. The necessary stress functions for this fundamental solution were formulated using the complex variable theory of orthotropic elasticity. The current method is an improvement over a previous method using only forces and no moment. The improved method was verified by comparing it to accepted solutions for a finite-width, center-crack specimen subjected to uniaxial tension. Four graphite/epoxy laminates were used: (0 + or - 45/90)sub s, (0), (+ or - 45)sub s, and (+ or - 30)sub s. The BFM results agreed well with accepted solutions. Convergence studies showed that with the addition of the moment in the fundamental solution, the number of boundary elements required for a converged solution was significantly reduced. Parametric studies were done for two configurations for which no orthotropic solutions are currently available; a single edge crack and an inclined single edge crack.
Forced vibration of flexible body systems. A dynamic stiffness method
NASA Astrophysics Data System (ADS)
Liu, T. S.; Lin, J. C.
1993-10-01
Due to the development of high speed machinery, robots, and aerospace structures, the research of flexible body systems undergoing both gross motion and elastic deformation has seen increasing importance. The finite element method and modal analysis are often used in formulating equations of motion for dynamic analysis of the systems which entail time domain, forced vibration analysis. This study develops a new method based on dynamic stiffness to investigate forced vibration of flexible body systems. In contrast to the conventional finite element method, shape functions and stiffness matrices used in this study are derived from equations of motion for continuum beams. Hence, the resulting shape functions are named as dynamic shape functions. By applying the dynamic shape functions, the mass and stiffness matrices of a beam element are derived. The virtual work principle is employed to formulate equations of motion. Not only the coupling of gross motion and elastic deformation, but also the stiffening effect of axial forces is taken into account. Simulation results of a cantilever beam, a rotating beam, and a slider crank mechanism are compared with the literature to verify the proposed method.
Force-free magnetic fields - The magneto-frictional method
NASA Technical Reports Server (NTRS)
Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.
1986-01-01
The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.
Choosing the forcing terms in an inexact Newton method
Eisenstat, S.C.; Walker, H.F.
1994-12-31
An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.
Satellite methods underestimate indirect climate forcing by aerosols
Penner, Joyce E.; Xu, Li; Wang, Minghuai
2011-01-01
Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmosphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for ln(Nc) versus ln(AOD) derived from PD results do not represent the atmospheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using ln(Nc) versus ln(AI) (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Nevertheless, the AIE using ln(Nc) versus ln(AI) may be substantially incorrect on a regional basis and may underestimate or overestimate the global average forcing by 25 to 35%. PMID:21808047
Force method in a pseudo-potential lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Hu, Anjie; Li, Longjian; Uddin, Rizwan
2015-08-01
Single component pseudo-potential lattice Boltzmann models have been widely studied due to their simplicity and stability in multiphase simulations. While numerous models have been proposed, comparative analysis and advantages and disadvantages of different force schemes are often lacking. A pseudo-potential model to simulate large density ratios proposed by Kupershtokh et al. [1] is analyzed in detail in this work. Several common used force schemes are utilized and results compared. Based on the numerical results, the relatively most accurate force scheme proposed by Guo et al. [2] is selected and applied to improve the accuracy of Kupershtokh et al.'s model. Results obtained using the modified Kupershtokh et al.'s model [1] for different value of τ are compared with those obtained using Li et al.'s model [3]. Effect of relaxation time τ on the accuracy of the results is reported. Moreover, it is noted that the error in the density ratio predicted by the model is directly correlated with the magnitude of the spurious velocities on (curved) interfaces. Simulation results show that, the accuracy of Kupershtokh et al.'s model can be improved with Guo et al.'s force scheme [2]. However, the errors and τ's effects are still noticeable when density ratios are large. To improve the accuracy of the pseudo-potential model and to reduce the effects of τ, two possible methods were discussed in the present work. Both, a rescaling of the equation of state and multi-relaxation time, are applied and are shown to improve the prediction of the density ratios.
Numerical method for wave forces acting on partially perforated caisson
NASA Astrophysics Data System (ADS)
Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou
2015-04-01
The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.
Primal and Dual Integrated Force Methods Used for Stochastic Analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.
2005-01-01
At the NASA Glenn Research Center, the primal and dual integrated force methods are being extended for the stochastic analysis of structures. The stochastic simulation can be used to quantify the consequence of scatter in stress and displacement response because of a specified variation in input parameters such as load (mechanical, thermal, and support settling loads), material properties (strength, modulus, density, etc.), and sizing design variables (depth, thickness, etc.). All the parameters are modeled as random variables with given probability distributions, means, and covariances. The stochastic response is formulated through a quadratic perturbation theory, and it is verified through a Monte Carlo simulation.
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-04-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-05-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this
Force evaluation in the lattice Boltzmann method involving curved geometry
NASA Astrophysics Data System (ADS)
Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi
2002-04-01
The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum-exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second-order accuracy based on our recent works [Mei et al., J. Comput. Phys. 155, 307 (1999); ibid. 161, 680 (2000)]. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.
Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry
NASA Technical Reports Server (NTRS)
Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.
Gap engineering using Hellmann-Feynmann forces: method and applications
NASA Astrophysics Data System (ADS)
Prasai, Kiran; Biawas, Parthapratim; Drabold, D. A.
Materials with optimized band gap are needed in many specialized applications. In this talk, we demonstrate that Hellmann-Feynman forces associated with the gap states can be used to find atomic coordinates that yield desired electronic density of states. Using tight-binding models, we show that this approach may be used to arrive at electronically designed models of amorphous silicon and carbon. We provide a simple recipe to include a priori electronic information in the formation of computer models of materials, and prove that this information may have profound structural consequences. We'll briefly discuss implementation of the method in ab-initio molecular dynamics simulations and highlight the latest feats of the method ranging from modeling amorphous semi-conducting materials to understanding the structure and properties of memory materials. K. Prasai, P. Biswas, and D. A. Drabold, Scientific reports, 5 (2015).
Computational Catalysis Using the Artificial Force Induced Reaction Method.
Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji
2016-04-19
The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately
Slater, SE; Patel, P; Viney, R; Foster, M; Porfiri, E; James, ND; Montgomery, B
2014-01-01
Introduction Preliminary studies show that device assisted intravesical therapies appear more effective than passive diffusion intravesical therapy for the treatment of non-muscle invasive bladder cancer (NMIBC) in specific settings, and phase III studies are now being conducted. Consequently, we have undertaken a non-systematic review with the objective of describing the scientific basis and mechanisms of action of electromotive drug administration (EMDA) and chemohyperthermia (CHT). Methods PubMed, ClinicalTrials.gov and the Cochrane Library were searched to source evidence for this non-systematic review. Randomised controlled trials, systematic reviews and meta-analyses were evaluated. Publications regarding the scientific basis and mechanisms of action of EMDA and CHT were identified, as well as clinical studies to date. Results EMDA takes advantage of three phenomena: iontophoresis, electro-osmosis and electroporation. It has been found to reduce recurrence rates in NMIBC patients and has been proposed as an addition or alternative to bacillus Calmette–Guérin (BCG) therapy in the treatment of high risk NMIBC. CHT improves the efficacy of mitomycin C by three mechanisms: tumour cell cytotoxicity, altered tumour blood flow and localised immune responses. Fewer studies have been conducted with CHT than with EMDA but they have demonstrated utility for increasing disease-free survival, especially in patients who have previously failed BCG therapy. Conclusions It is anticipated that EMDA and CHT will play important roles in the management of NMIBC in the future. Techniques of delivery should be standardised, and there is a need for more randomised controlled trials to evaluate the benefits of the treatments alongside quality of life and cost-effectiveness. PMID:25198970
A contoured continuum surface force model for particle methods
NASA Astrophysics Data System (ADS)
Duan, Guangtao; Koshizuka, Seiichi; Chen, Bin
2015-10-01
A surface tension model is essential to simulate multiphase flows with deformed interfaces. This study develops a contoured continuum surface force (CCSF) model for particle methods. A color function that varies sharply across the interface to mark different fluid phases is smoothed in the transition region, where the local contour curvature can be regarded as the interface curvature. The local contour passing through each reference particle in the transition region is extracted from the local profile of the smoothed color function. The local contour curvature is calculated based on the Taylor series expansion of the smoothed color function, whose derivatives are calculated accurately according to the definition of the smoothed color function. Two schemes are proposed to specify the smooth radius: fixed scheme, where 2 ×re (re = particle interaction radius) is assigned to all particles in the transition region; and varied scheme, where re and 2 ×re are assigned to the central and edged particles in the transition region respectively. Numerical examples, including curvature calculation for static circle and ellipse interfaces, deformation of square droplet to a circle (2D and 3D), droplet deformation in shear flow, and droplet coalescence, are simulated to verify the CCSF model and compare its performance with those of other methods. The CCSF model with the fixed scheme is proven to produce the most accurate curvature and lowest parasitic currents among the tested methods.
Novel scanning force microscopy methods for investigation of transcription complexes
NASA Astrophysics Data System (ADS)
Guthold, Martin
1997-11-01
Scanning force microscopy (SFM) methods were developed to investigate the structure and the dynamics of E. coli transcription complexes. The described techniques will also be applicable to the study of other protein-nucleic acid complexes. First, the deposition process of DNA molecules onto a mica surface was investigated using polymer chain statistics. Conditions were found in which DNA molecules, and also protein-DNA complexes, are able to equilibrate on the surface. These findings imply that DNA and protein-DNA complexes attain a lowest energy state on the surface, and that meaningful structural information can, therefore, be obtained from the corresponding SFM images. Using these imaging conditions, SFM was then used to investigate various transcription complexes. The structures of crucial intermediates in the transcriptional activation of RNA polymeraseċsigma54 by NtrC were visualized and analyzed. Moreover, a new method was pioneered to identify the position of specific subunits in multi- protein assemblies. In this method, a specific subunit is tagged with a short piece of DNA which renders it easily recognizable in SFM images. This technique was employed to determine the positions of the two α subunits and the βsp/prime subunit in RNA polymerase-DNA complexes. Finally, SFM imaging in liquid was used to investigate the dynamics of the specific and non-specific interactions between RNA polymerase and DNA. Image sequences of an RNA polymerase actively transcribing a DNA template were obtained and analyzed. Image sequences of non-specific complexes were also obtained, and showed the RNA polymerase moving along the DNA in a one- dimensional random walk. The latter experiments provide some of the first direct evidence that RNA polymerase diffuses along DNA to facilitate promoter location. Chapters II, III, V and VI of this dissertation include material which has been previously published with co- authors. The co-authors are acknowledged at the beginning of
Method of generating and measuring static small force using down-slope component of gravity
NASA Astrophysics Data System (ADS)
Fujii, Yusaku
2007-06-01
A method of generating and measuring static small forces at the micro-Newton level is proposed. In the method, the down-slope component of gravity acting on a mass on an inclined plane is used as a static force. To realize a linear motion of the mass with a small friction, an aerostatic linear bearing is used. The forces acting on the mass, such as the down-slope component of gravity and the dynamic frictional force, are determined by the levitation mass method. In an experiment, a static small force of approximately 183μN is generated and measured with a standard uncertainty of approximately 2μN.
Geometrical force constraint method for vessel and x-ray angiogram simulation.
Song, Shuang; Yang, Jian; Fan, Jingfan; Cong, Weijian; Ai, Danni; Zhao, Yitian; Wang, Yongtian
2016-01-01
This study proposes a novel geometrical force constraint method for 3-D vasculature modeling and angiographic image simulation. For this method, space filling force, gravitational force, and topological preserving force are proposed and combined for the optimization of the topology of the vascular structure. The surface covering force and surface adhesion force are constructed to drive the growth of the vasculature on any surface. According to the combination effects of the topological and surface adhering forces, a realistic vasculature can be effectively simulated on any surface. The image projection of the generated 3-D vascular structures is simulated according to the perspective projection and energy attenuation principles of X-rays. Finally, the simulated projection vasculature is fused with a predefined angiographic mask image to generate a realistic angiogram. The proposed method is evaluated on a CT image and three generally utilized surfaces. The results fully demonstrate the effectiveness and robustness of the proposed method. PMID:26890908
A non-invasive method of tendon force measurement.
Pourcelot, Philippe; Defontaine, Marielle; Ravary, Bérangère; Lemâtre, Mickaël; Crevier-Denoix, Nathalie
2005-10-01
The ability to measure the forces exerted in vivo on tendons and, consequently, the forces produced by muscles on tendons, offers a unique opportunity to investigate questions in disciplines as varied as physiology, biomechanics, orthopaedics and neuroscience. Until now, tendon loads could be assessed directly only by means of invasive sensors implanted within or attached to these collagenous structures. This study shows that the forces acting on tendons can be measured, in a non-invasive way, from the analysis of the propagation of an acoustic wave. Using the equine superficial digital flexor tendon as a model, it is demonstrated that the velocity of an ultrasonic wave propagating along the main axis of a tendon increases with the force applied to this tendon. Furthermore, we show that this velocity measurement can be performed even in the presence of skin overlying the tendon. To validate this measurement technique in vivo, the ultrasonic velocity plots obtained in the Achilles tendon at the walk were compared to the loads plots reported by other authors using invasive transducers. PMID:16084214
NASA Astrophysics Data System (ADS)
Nakano, Katsushi; Suzuki, Yoshihiko
1999-04-01
For inspection of high aspect ratio structures like narrow semiconductor trenches, a thin membrane probe and a new force detection method have been proposed. Instead of conventional conical and pyramidal tips, a thin silicon nitride cantilever was set up vertically, and its edge was used as a tip. The membrane probe named as twist-probe (TP) was oscillated in the twisting resonance to detect a force from both vertical and lateral directions. About 100 μm long, 0.7 μm thick TP was fabricated as a trial. Amplitude versus distance curve measurements showed that the TP has a high spacing change sensitivity between the tip and a sample in both vertical and lateral directions. A trench cross-section imaging was demonstrated successfully with a TP and the twist resonant force detection method.
Lomboy, Gilson; Sundararajan, Sriram; Wang Kejin; Subramaniam, Shankar
2011-11-15
A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materials obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.
Systems and methods of detecting force and stress using tetrapod nanocrystal
Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul
2013-08-20
Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.
Force measuring valve assemblies, systems including such valve assemblies and related methods
DeWall, Kevin George; Garcia, Humberto Enrique; McKellar, Michael George
2012-04-17
Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.
Assigning a Price to Radiative Forcing: Methods, Results, and Implications
NASA Astrophysics Data System (ADS)
Lutz, D. A.; Howarth, R. B.
2015-12-01
Climate change mitigation frameworks have increasingly begun to include components that involve active management of the land surface. Predominantly, these programs focus on the sequestration of greenhouse gasses in vegetation and soils, generating offset credits for projects which demonstrate considerable storage. However, it is widely known that biogeophysical interactions between the land surface and the atmosphere, such as latent and sensible heat flux, albedo radiative forcing, and surface roughness, can in many cases outweigh the influence of greenhouse gas storage on global and local climate. Surface albedo, in particular, has attracted attention in the context of these frameworks because it has been shown to influence the overall climate benefits of high-latitude forest growth through tradeoffs between carbon sequestration and radiative forcing from seasonal snow cover albedo. Here we review a methodology for pricing albedo-related radiative forcing through the use of an integrated assessment model, present the results under several emissions and social preference scenarios, and describe the implications that this pricing methodology may have on forest land management in the Northeastern United States. Additionally, we investigate the consequences of projected decreased winter precipitation on the net climate benefits of snow albedo throughout the state of New Hampshire, USA.
Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B
2016-06-01
This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running. PMID:25996964
Prediction of Ground Surface Temperature and Soil Moisture Content by the Force-Restore Method
NASA Astrophysics Data System (ADS)
Hu, Zhenglin; Islam, Shafiqul
1995-10-01
The parsimony and computational efficiency offered by the force-restore approximation of the diffusion equation have motivated its widespread application in modeling ground surface temperature. Different assumptions regarding the definition of ground surface temperature have resulted in different versions of the force-restore method. Here, four existing versions of the force-restore method for ground surface temperature are compared and contrasted. An improved version of the force-restore method is developed by minimizing the error produced by the force-restore approximation of the heat diffusion equation. The proposed model performs well for the physically realistic ranges of scaled soil thickness and reproduces amplitude and phase that are quite close to the exact solution of the diffusion equation under a single periodic forcing. It is shown that neglect of higher harmonics can produce appreciable errors in the force-restore method if the upper soil thickness is less than the damping depth of the diurnal forcing. The success of the force-restore approximation in modeling ground surface temperature has prompted its application in the prediction of soil moisture content. However, extension of the force-restore method for the prediction of soil moisture content is not straightforward. There are two major difficulties in modeling soil moisture content by the force-restore method. One is the situation-dependent relative importance of the suction term and gravity term in the Richards equation and the other is the choice of state variable, moisture content versus suction head, in the solution of the force-restore method for soil moisture prediction. Both of these could produce appreciable errors in the force-restore treatment of soil moisture evolution.
Methods for Manipulating CaF Using Optical Polychromatic Forces
NASA Astrophysics Data System (ADS)
Eyler, Edward E.; Galica, Scott E.; Aldridge, Leland M.
2013-06-01
We are undertaking theoretical and experimental studies of laser deceleration and cooling of molecules using coherent multi-frequency optical forces. A primary objective is to reduce radiative loss into dark states when a pure two-level cycling transition is unavailable. The optical bichromatic force (BCF) can multiply the available velocity change for a given number of radiative cycles, by employing alternating cycles of excitation and stimulated emission from opposing directions. Tests in atomic helium show that when the BCF is combined with frequency chirping, very large decelerations are achieved. We report numerical studies of variations intended to further optimize deceleration, including a 4-color version. We describe progress on experimental tests using the 531 nm B ^2Σ^+leftrightarrow X ^2Σ^+ transition in CaF. We also describe low-cost lasers and electronics developed for these experiments. Several versatile new instruments are based on 32-bit microcontrollers, interfaced to an Android tablet that provides a touch-screen graphical interface. These include a timing/ramp generator, a PZT driver, a temperature controller, and even a phase-synchronized dual 35-4000 MHz rf synthesizer that fits on a 2 1/4" × 4 3/4" board. This research is supported by the National Science Foundation. M.A. Chieda and E.E. Eyler, Phys. Rev. A 86, 053415 (2012); also Phys. Rev. A 84, 063401 (2011).
[Methods of substance abuse prevention in the Armed Forces].
Fisun, A Ia; Shamreĭ, V K; Marchenko, A A; Sinenchenko, A G; Pastushenkov, A V
2013-09-01
Dynamics of substance abuse morbidity in the Armed Forces of the Russian Federation during the last 10 years (2002-2012) was analyzed. Results of performed analysis showed decreasing tendency since 2007 in conscripts (0.07% in 2012) and in contract soldiers (0.3% in 2012). Alcoholism prevailed in the structure of substance abuse in conscripts (0.05%), drug abuses were diagnosed 2,5 times less often (0.02%). In contract soldiers non-alcohol abuses were diagnosed in 0.004% of cases. It is stated that the major aims of substance abuse prevention are qualitative recruiting of military units (especially in troops maintaining the combat readiness) and departments (subunits) of military education, creating conditions for propaganda for healthy lifestyle, prohibition of drugs and psychopharmaceuticals in military units. For early detection of persons liable to substance abuse and facts of drug consumption it is necessary to perform a medical examination with the help of special program apparatus complex (such as "Addicts") and take into account clinical signs of addiction. Besides, it is necessary to introduce planned and unexpected medical examinations of servicemen. Algorithm of measures in case of detection of serviceman with alcohol or drug intoxication is given. In conclusion the main organizational principals of substance abuse prevention in the Armed Forces are given. PMID:24341196
NASA Astrophysics Data System (ADS)
Volkov, E. A.
1983-04-01
A method is proposed for the analysis of the stationary regime of an electric circuit with nonlinearities described by arbitrary analytic functions under the effect of a finite number of harmonic electromotive forces. The method makes it possible to determine the complex amplitudes of harmonics on circuit elements as a power series of the emf amplitudes with coefficients that are functions of circuit-element parameters. The method can easily be programmed, and, on a digital computer, can be used to analyze relatively complex circuits.
NASA Astrophysics Data System (ADS)
Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.
2014-11-01
Charges injection and accumulation in the dielectric remains a critical issue, mainly because these phenomena are involved in a great number of failure mechanisms in cables or electronic components. Achieving a better understanding of the mechanisms leading to charge injection, transport and trapping under electrical stress and of the relevant interface phenomena is a high priority. The classical methods used for space charge density profile measurements have a limited spatial resolution, which prevents them being used for investigating thin dielectric layers or interface processes. Thus, techniques derived from atomic force microscopy (AFM) have been investigated more and more for this kind of application, but so far they have been limited by their lack of in-depth sensitivity. In this paper a new method for space charge probing is described, the electrostatic force distance curve (EFDC), which is based on electrostatic force measurements using AFM. A comparison with the results obtained using kelvin force microscopy (KFM) allowed us to highlight the fact that EFDC is sensitive to charges localized in the third-dimension.
Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method
Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang
2014-01-01
In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556
Cutting force predication based on integration of symmetric fuzzy number and finite element method.
Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang
2014-01-01
In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556
Savelberg, H H; Kooloos, J G; Huiskes, R; Kauer, J M
1993-11-01
A method has been developed to calculate the forces that are developed in the ligaments of a joint specimen during motions. This indirect method is needed since direct measurements fail in the case of small ligaments. As an example the small ligaments of the carpal joint are considered. The rationale of the method is that the force generated in a ligament depends on the amount of strain to which it is subjected and on its material characteristics. In the method presented the lengths of the ligaments are determined in vitro at several joint positions by means of röntgenstereophotogrammetry. The zero-force length and the force-elongation relationship are determined on the same ligaments isolated in a materials testing machine. Over a considerable part of the strain range the measurement errors are relatively small compared to the forces determined, less than 10%. The method is applicable to joints in situations where other measuring methods cannot be used. The present analysis shows, however, that the force values determined are susceptible to preconditioning of the ligaments. In preconditioned ligaments the forces could be up to 50% lower than in the non-preconditioned situation. This suggests that ligament forces may vary considerably in vivo, depending on the extent of preconditioning provoked by a particular function. PMID:8262996
Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.
Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M
2016-06-21
We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy. PMID:27230942
A method of evaluating the dynamic response of materials to forced oscillation
NASA Astrophysics Data System (ADS)
Fujii, Yusaku
2006-07-01
An optical method of evaluating the dynamic response of materials to forced oscillation is proposed. The force acting on the material being tested is measured as the inertial force of the mass levitated with sufficiently small friction using an aerostatic linear bearing. The material is sandwiched between the mass and a linear actuator, which generates the oscillating force. During the oscillation measurement, the Doppler shift frequency of the laser beam reflected by the mass is measured with high accuracy using an optical interferometer. Then, the velocity, the position, the acceleration and the inertial force of the mass are calculated from the frequency. The velocity and position of the linear actuator are also measured using the optical interferometer. The dynamic response of a gel block to an oscillating force is determined by means of the proposed method.
Study on the Calculation of Magnetic Force Based on the Equivalent Magnetic Charge Method
NASA Astrophysics Data System (ADS)
Li, Jiangang; Tan, Qingchang; Zhang, Yongqi; Zhang, Kuo
Magnetic drivers have been used widely in the pharmaceutical, chemical, petroleum, food and other industries with its perfect sealing without contact. Common method of calculating of the magnetic force are the Maxwell equations, empirical formulas, and he equivalent magnetic charge method as well. The Maxwell equations method is the most complicated and the empirical formulas method is the simplest with low accuracy. The equivalent magnetic charge method is simpler than the Maxwell equations method and more accurate than the empirical formulas method. In this paper, the magnetic force of the magnetic driver of reciprocate in line is calculated with the equivalent magnetic charge method and was compared with the experiment.
Method of generating and measuring static small force using down-slope component of gravity.
Fujii, Yusaku
2007-06-01
A method of generating and measuring static small forces at the micro-Newton level is proposed. In the method, the down-slope component of gravity acting on a mass on an inclined plane is used as a static force. To realize a linear motion of the mass with a small friction, an aerostatic linear bearing is used. The forces acting on the mass, such as the down-slope component of gravity and the dynamic frictional force, are determined by the levitation mass method. In an experiment, a static small force of approximately 183 microN is generated and measured with a standard uncertainty of approximately 2 microN. PMID:17614648
A rapid method for the evaluation of the ionic permeabilities across epithelial cell membranes.
Movileanu, L
1999-02-01
This short note presents a recipe for the calculation of the ionic permeabilities across epithelial cell membranes. The method requires the Goldman-Hodgkin-Katz formalism as well as the consideration of the equivalent electrical circuit for an epithelial cell. The equivalent electrical circuit is solved in terms of the equivalent electromotive forces coupled in series with the ionic resistances of both cell membranes (apical and basolateral). The present procedure is feasible for any leaky epithelial cell membrane with the condition that this membrane (apical or basolateral) does not contain primary or secondary mechanisms for active transport. PMID:10100952
Improved accuracy for finite element structural analysis via a new integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
Improved accuracy for finite element structural analysis via an integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
Measurement of Vocal Fold Collision Forces during Phonation: Methods and Preliminary Data
ERIC Educational Resources Information Center
Gunter, Heather E.; Howe, Robert D.; Zeitels, Steven M.; Kobler, James B.; Hillman, Robert E.
2005-01-01
Forces applied to vocal fold tissue as the vocal folds collide may cause tissue injury that manifests as benign organic lesions. A novel method for measuring this quantity in humans in vivo uses a low-profile force sensor that extends along the length and depth of the glottis. Sensor design facilitates its placement and stabilization so that…
Extensions of the Ritz-Galerkin method for the forced, damped vibrations of structural elements
NASA Technical Reports Server (NTRS)
Leissa, A. W.; Young, T. H.
1984-01-01
The Ritz-Galerkin methods were used to obtain approximate solutions for free undamped, vibration problems. It is demonstrated that these same methods may be used straightforwardly to analyze forced vibrations with damping without requiring the free vibration eigenfunctions. It was shown that the Galerkin method is an effective technique for these types of problems. The Ritz method has the advantage that it does not need to satisfy the force-type boundary conditions, which is particularly important for plates and shells. Proper functionals representing the forcing and damping terms were developed. Two types of damping--viscous and material (hysteretic) are discussed. Distributed and concentrated exciting forces are treated. Numerical results are obtained for cantilevered beams and rectangular plates. The rates of convergence of the solutions are shown. Approximate solutions from the present methods are compared with the exact solutions for the cantilever beam.
Karatay, Durmus U; Zhang, Jie; Harrison, Jeffrey S; Ginger, David S
2016-04-25
Dynamic force spectroscopy (DFS) measurements on biomolecules typically require classifying thousands of repeated force spectra prior to data analysis. Here, we study classification of atomic force microscope-based DFS measurements using machine-learning algorithms in order to automate selection of successful force curves. Notably, we collect a data set that has a testable positive signal using photoswitch-modified DNA before and after illumination with UV (365 nm) light. We generate a feature set consisting of six properties of force-distance curves to train supervised models and use principal component analysis (PCA) for an unsupervised model. For supervised classification, we train random forest models for binary and multiclass classification of force-distance curves. Random forest models predict successful pulls with an accuracy of 94% and classify them into five classes with an accuracy of 90%. The unsupervised method using Gaussian mixture models (GMM) reaches an accuracy of approximately 80% for binary classification. PMID:27010122
Electrochemical methods for generation of a biological proton motive force
Zeikus, Joseph Gregory; Shin, Hyoun S.; Jain, Mahendra K.
2008-12-02
Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.
New method for assessment of gait variability based on wearable ground reaction force sensor.
Liu, Tao; Inoue, Yoshio; Shibata, Kyoko
2008-01-01
In this paper, a new quantitative method of analyzing gait variability using a developed wearable ground reaction force (GRF) sensor system is presented. The design of the sensor system is based on the use of five small 3-axial sensors distributed on the underside of a shoe, so that in human dynamics analysis this system can continuously measure vertical pressure force and bio-directional friction forces referring to anterior-posterior friction force and mediolateral friction force. Compared to existing spatio-temporal evaluation methods using traditional force plates or instrumented treadmills, the new method was developed based on measurements of ambulatory or wearable force sensor which can continuously measure ground reaction force in various environments not limited to the laboratory environment. The area of the center of pressure (CoP) distribution on the foot-plate and the average coefficient of variation of the 3-axial GRF, which correlate strongly with the distribution of CoP, are suggested parameters for quantifying gait variability. To certify the effectiveness of these parameters, we conducted an experimental study on a group of volunteer subjects who walked under a designed experimental protocol. PMID:19163171
A local damage detection approach based on restoring force method
NASA Astrophysics Data System (ADS)
Zhan, Chao; Li, Dongsheng; Li, Hongnan
2014-09-01
Chain-like systems have been studied by many researchers for their simple structure and wide range of application. Previously, the damage in a chain-like system was detected by the reduction of the mass-normalized stiffness coefficient for certain elements as reported by Nayeri et al. (2008 [16]). However, some shortcomings exist in that approach and for overcoming them; an improved approach is derived and presented in this paper. In our improved approach, the mass normalized stiffness coefficients under two states (baseline state and potentially damaged state) are first estimated by a least square method, then these mass-stiffness coupled coefficients are decoupled to derive stiffness and mass relative change ratios for individual elements. These ratios are assembled in a vector, which is defined as damage indication vector (DIV). Each component in DIV is normalized individually to one to get multiple solutions. These solutions are averaged for estimating relative system changes, while abnormal solutions are discarded. The work of judging a solution as normal or abnormal is done by a cluster analysis algorithm. The most intriguing merit of this improved approach is that the relative stiffness and mass changes, which are coupled in the previous approach, can be separately identified. By this approach, the damage (single or multiple) extent and location can be correctly detected under operational conditions, meanwhile the proposed damage index has a clear physical meaning and is directly related to the stiffness reduction of corresponding structural elements. For illustrating the effectiveness and robustness of the improved approach, numerical simulation of a four floor building was carried out and experimental data from a structure tested at the Los Alamos National Laboratory was employed. Identified structural changes with both simulation and experimental data properly indicated the location and extent of actual structural damage, which validated the proposed
Mundy, Peter D; Lake, Jason P; Carden, Patrick J C; Smith, Neal A; Lauder, Mike A
2016-03-01
There are two perceived criterion methods for measuring power output during the loaded countermovement jump (CMJ): the force platform method and the combined method (force platform + optoelectronic motion capture system). Therefore, the primary aim of the present study was to assess agreement between the force platform method and the combined method measurements of peak power and mean power output during the CMJ across a spectrum of loads. Forty resistance-trained team sport athletes performed maximal effort CMJ with additional loads of 0 (body mass only), 25, 50, 75 and 100% of body mass (BM). Bias was present for peak velocity, mean velocity, peak power and mean power at all loads investigated, and present for mean force up to 75% of BM. Peak velocity, mean velocity, peak power and mean power 95% ratio limits of agreement were clinically unacceptable at all loads investigated. The 95% ratio limits of agreement were widest at 0% of BM and decreased linearly as load increased. Therefore, the force platform method and the combined method cannot be used interchangeably for measuring power output during the loaded CMJ. As such, if power output is to be meaningfully investigated, a standardised method must be adopted. PMID:27075378
Prediction of metallic nano-optical trapping forces by finite element-boundary integral method.
Pan, Xiao-Min; Xu, Kai-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing
2015-03-01
The hybrid of finite element and boundary integral (FE-BI) method is employed to predict nano-optical trapping forces of arbitrarily shaped metallic nanostructures. A preconditioning strategy is proposed to improve the convergence of the iterative solution. Skeletonization is employed to speed up the design and optimization where iteration has to be repeated for each beam configuration. The radiation pressure force (RPF) is computed by vector flux of the Maxwell's stress tensor. Numerical simulations are performed to validate the developed method in analyzing the plasmonic effects as well as the optical trapping forces. It is shown that the proposed method is capable of predicting the trapping forces of complex metallic nanostructures accurately and efficiently. PMID:25836836
NASA Astrophysics Data System (ADS)
Akin-Ojo, Omololu; Song, Yang; Wang, Feng
2008-08-01
A new method called adaptive force matching (AFM) has been developed that is capable of producing high quality force fields for condensed phase simulations. This procedure involves the parametrization of force fields to reproduce ab initio forces obtained from condensed phase quantum-mechanics/molecular-mechanics (QM/MM) calculations. During the procedure, the MM part of the QM/MM is iteratively improved so as to approach ab initio quality. In this work, the AFM method has been tested to parametrize force fields for liquid water so that the resulting force fields reproduce forces calculated using the ab initio MP2 and the Kohn-Sham density functional theory with the Becke-Lee-Yang-Parr (BLYP) and Becke three-parameter LYP (B3LYP) exchange correlation functionals. The AFM force fields generated in this work are very simple to evaluate and are supported by most molecular dynamics (MD) codes. At the same time, the quality of the forces predicted by the AFM force fields rivals that of very expensive ab initio calculations and are found to successfully reproduce many experimental properties. The site-site radial distribution functions (RDFs) obtained from MD simulations using the force field generated from the BLYP functional through AFM compare favorably with the previously published RDFs from Car-Parrinello MD simulations with the same functional. Technical aspects of AFM such as the optimal QM cluster size, optimal basis set, and optimal QM method to be used with the AFM procedure are discussed in this paper.
An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field
Yao, Jin
2015-02-10
A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.
Thermal imbalance force modelling for a GPS satellite using the finite element method
NASA Technical Reports Server (NTRS)
Vigue, Yvonne; Schutz, Bob E.
1991-01-01
Methods of analyzing the perturbation due to thermal radiation and determining its effects on the orbits of GPS satellites are presented, with emphasis on the FEM technique to calculate satellite solar panel temperatures which are used to determine the magnitude and direction of the thermal imbalance force. Although this force may not be responsible for all of the force mismodeling, conditions may work in combination with the thermal imbalance force to produce such accelerations on the order of 1.e-9 m/sq s. If submeter accurate orbits and centimeter-level accuracy for geophysical applications are desired, a time-dependent model of the thermal imbalance force should be used, especially when satellites are eclipsing, where the observed errors are larger than for satellites in noneclipsing orbits.
A comparison of force reconstruction methods for a lumped mass beam
Bateman, V.I.; Mayes, R.L.; Carne, T.G.
1992-11-01
Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure`s elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).
A comparison of force reconstruction methods for a lumped mass beam
Bateman, V.I.; Mayes, R.L.; Carne, T.G.
1992-01-01
Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure's elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).
Borštnik, Urban; Miller, Benjamin T; Brooks, Bernard R; Janežič, Dušanka
2011-11-15
Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007
Estimation of cable tension force using the frequency-based system identification method
NASA Astrophysics Data System (ADS)
Kim, Byeong Hwa; Park, Taehyo
2007-07-01
This work proposes a new technique to estimate cable tension force from measured natural frequencies. The proposed method is able to simultaneously identify tension force, flexural rigidity, and axial rigidity of a cable system. Firstly, a finite element model that can consider both sag-extensibility and flexural rigidity is constructed for a target cable system. Next, a frequency-based sensitivity-updating algorithm is applied to identify the model. The proposed approach is applicable to a wide range of a cable system that is beyond the applicable limits of the existing methods. From the experimental works, it is seen that the tension force is determined with an accuracy of 3% by the proposed approach. Furthermore, it is observed that the flexural rigidity of cable with high bending stiffness is proportional to the applied tension force.
Dielectric Boundary Forces in Numerical Poisson-Boltzmann Methods: Theory and Numerical Strategies.
Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2011-10-01
Continuum modeling of electrostatic interactions based upon the numerical solutions of the Poisson-Boltzmann equation has been widely adopted in biomolecular applications. To extend their applications to molecular dynamics and energy minimization, robust and efficient methodologies to compute solvation forces must be developed. In this study, we have first reviewed the theory for the computation of dielectric boundary forces based on the definition of the Maxwell stress tensor. This is followed by a new formulation of the dielectric boundary force suitable for the finite-difference Poisson-Boltzmann methods. We have validated the new formulation with idealized analytical systems and realistic molecular systems. PMID:22125339
Dielectric boundary force in numerical Poisson-Boltzmann methods: Theory and numerical strategies
NASA Astrophysics Data System (ADS)
Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2011-10-01
Continuum modeling of electrostatic interactions based upon the numerical solutions of the Poisson-Boltzmann equation has been widely adopted in biomolecular applications. To extend their applications to molecular dynamics and energy minimization, robust and efficient methodologies to compute solvation forces must be developed. In this study, we have first reviewed the theory for the computation of dielectric boundary force based on the definition of the Maxwell stress tensor. This is followed by a new formulation of the dielectric boundary force suitable for the finite-difference Poisson-Boltzmann methods. We have validated the new formulation with idealized analytical systems and realistic molecular systems.
Apparatus and method for continuous electroplating. [Patent application
Conlon, T.P. Jr.; Holmes, S.D.
1981-11-19
An apparatus and method are disclosed for performing a continuous electroplating process upon an elongate conductive stock article. A closed housing assembly retaining an electroplating solution and having a conductive housing body and flexible, nonconductive end walls is connected to the positive pole of a source of electromotive force. The end walls have an aperture for receiving the conducting stock article in sliding and sealing contact. The stock article is connected to the negative pole of the source of electromotive force. The conductive housing body and the section of the conductive stock article within the housing body are coextensive, coaxial and spaced a uniform distance apart. The housing body has an inlet at the bottom and an outlet at the top allowing the housing assembly to fill completely with plating solution. The inlet has a reduced nozzle to create turbulence and spiral circulating motion of the plating solution moved by a pump connected by nonconductive conduits. The solution is circulated through an open reservoir. A coolant may be conveyed through the interior in a hollow stock article to cool the surface being electroplated. Different sizes of coaxial metal insert sleeves may be telescopically received in the housing body.
Element Library for Three-Dimensional Stress Analysis by the Integrated Force Method
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.
1996-01-01
The Integrated Force Method, a recently developed method for analyzing structures, is extended in this paper to three-dimensional structural analysis. First, a general formulation is developed to generate the stress interpolation matrix in terms of complete polynomials of the required order. The formulation is based on definitions of the stress tensor components in term of stress functions. The stress functions are written as complete polynomials and substituted into expressions for stress components. Then elimination of the dependent coefficients leaves the stress components expressed as complete polynomials whose coefficients are defined as generalized independent forces. Such derived components of the stress tensor identically satisfy homogenous Navier equations of equilibrium. The resulting element matrices are invariant with respect to coordinate transformation and are free of spurious zero-energy modes. The formulation provides a rational way to calculate the exact number of independent forces necessary to arrive at an approximation of the required order for complete polynomials. The influence of reducing the number of independent forces on the accuracy of the response is also analyzed. The stress fields derived are used to develop a comprehensive finite element library for three-dimensional structural analysis by the Integrated Force Method. Both tetrahedral- and hexahedral-shaped elements capable of modeling arbitrary geometric configurations are developed. A number of examples with known analytical solutions are solved by using the developments presented herein. The results are in good agreement with the analytical solutions. The responses obtained with the Integrated Force Method are also compared with those generated by the standard displacement method. In most cases, the performance of the Integrated Force Method is better overall.
A calibration method for optical trap force by use of electrokinetic phenomena
NASA Astrophysics Data System (ADS)
Yu, Youli; Zhang, Zhenxi; Zhang, Xiaolin
2006-09-01
An experimental method for calibration of optical trap force upon cells by use of electrokinetic phenomena is demonstrated. An electronkinetic sample chamber system (ESCS) is designed instead of a common sample chamber and a costly automatism stage, thus the experimental setup is simpler and cheaper. Experiments indicate that the range of the trap force measured by this method is piconewton and sub-piconewton, which makes it fit for study on non-damage interaction between light and biological particles with optical tweezers especially. Since this method is relevant to particle electric charge, by applying an alternating electric field, the new method may overcome the problem of correcting drag force and allow us to measure simultaneously optical trap stiffness and particle electric charge.
Multiple-mode nonlinear free and forced vibrations of beams using finite element method
NASA Technical Reports Server (NTRS)
Mei, Chuh; Decha-Umphai, Kamolphan
1987-01-01
Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.
Zhu, X. S.; Wang, H. N.; Du, Z. L.; Fan, Y. L.
2013-05-10
We undertake an attempt to reconstruct the Sun's non-force-free magnetic field. The solar corona is often considered to be magnetohydrostatic. We solve the full MHD equations with a semi-realistic atmosphere model to attain this stationary state. Our method is tested with a Sun-like model which simulates the emergence of a magnetic flux rope passing from below the photosphere into the corona. Detailed diagnostics shows that our method can model the forced field more successfully than the optimization and potential method, but it still needs to be applied to real data.
Method for Six-Legged Robot Stepping on Obstacles by Indirect Force Estimation
NASA Astrophysics Data System (ADS)
Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun
2016-04-01
Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.
Melnikov's method at a saddle-node and the dynamics of the forced Josephson junction
Schecter, S.
1987-11-01
A version of Melnikov's method is developed for time-periodic perturbations of a planar vector field having a separatrix loop at a saddle-node. The method is applied to the forced pendulum, or josephson junction, equation ..beta..phi+phi+sin=rho+epsilonsin..omega..t.
NASA Astrophysics Data System (ADS)
Park, Hyunwook; Pan, Xiaomin; Lee, Changhoon; Choi, Jung-Il
2016-06-01
A novel immersed boundary (IB) method based on an implicit direct forcing (IDF) scheme is developed for incompressible viscous flows. The key idea for the present IDF method is to use a block LU decomposition technique in momentum equations with Taylor series expansion to construct the implicit IB forcing in a recurrence form, which imposes more accurate no-slip boundary conditions on the IB surface. To accelerate the IB forcing convergence during the iterative procedure, a pre-conditioner matrix is introduced in the recurrence formulation of the IB forcing. A Jacobi-type parameter is determined in the pre-conditioner matrix by minimizing the Frobenius norm of the matrix function representing the difference between the IB forcing solution matrix and the pre-conditioner matrix. In addition, the pre-conditioning parameter is restricted due to the numerical stability in the recurrence formulation. Consequently, the present pre-conditioned IDF (PIDF) enables accurate calculation of the IB forcing within a few iterations. We perform numerical simulations of two-dimensional flows around a circular cylinder and three-dimensional flows around a sphere for low and moderate Reynolds numbers. The result shows that PIDF yields a better imposition of no-slip boundary conditions on the IB surfaces for low Reynolds number with a fairly larger time step than IB methods with different direct forcing schemes due to the implicit treatment of the diffusion term for determining the IB forcing. Finally, we demonstrate the robustness of the present PIDF scheme by numerical simulations of flow around a circular array of cylinders, flows around a falling sphere, and two sedimenting spheres in gravity.
[Comparison of cell elasticity analysis methods based on atomic force microscopy indentation].
Wang, Zhe; Hao, Fengtao; Chen, Xiaohu; Yang, Zhouqi; Ding, Chong; Shang, Peng
2014-10-01
In order to investigate in greater detail the two methods based on Hertz model for analyzing force-distance curve obtained by atomic force microscopy, we acquired the force-distance curves of Hela and MCF-7 cells by atomic force microscopy (AFM) indentation in this study. After the determination of contact point, Young's modulus in different indentation depth were calculated with two analysis methods of "two point" and "slope fitting". The results showed that the Young's modulus of Hela cell was higher than that of MCF-7 cell,which is in accordance with the F-actin distribution of the two types of cell. We found that the Young's modulus of the cells was decreased with increasing indentation depth and the curve trends by "slope fitting". This indicated that the "slope fitting" method could reduce the error caused by the miscalculation of contact point. The purpose of this study was to provide a guidance for researcher to choose an appropriate method for analyzing AFM indentation force-distance curve. PMID:25764725
Yang, Yuanyuan; Wang, Lei; Tan, Jiubin; Zhao, Bo
2016-01-01
This paper presents an induced voltage linear extraction method for disturbing force self-sensing in the application of giant magnetostrictive actuators (GMAs). In this method, a Kelvin bridge combined with an active device is constructed instead of a conventional Wheatstone bridge for extraction of the induced voltage, and an additional GMA is adopted as a reference actuator in the self-sensing circuit in order to balance the circuit bridge. The linear fitting of the measurement data is done according to the linear relationship between the disturbing forces and the integral of the induced voltage. The experimental results confirm the good performance of the proposed method, and the self-sensitivity of the disturbing forces is better than 2.0 (mV·s)/N. PMID:27213399
Dynamic Analysis With Stress Mode Animation by the Integrated Force Method
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.
1997-01-01
Dynamic animation of stresses and displacements, which complement each other, can be a useful tool in the analysis and design of structural components. At the present time only displacement-mode animation is available through the popular stiffness formulation. This paper attempts to complete this valuable visualization tool by augmenting the existing art with stress mode animation. The reformulated method of forces, which in the literature is known as the integrated force method (IFM), became the analyzer of choice for the development of stress mode animation because stresses are the primary unknowns of its dynamic analysis. Animation of stresses and displacements, which have been developed successfully through the IFM analyzers, is illustrated in several examples along with a brief introduction to IFM dynamic analysis. The usefulness of animation in design optimization is illustrated considering the spacer structure component of the International Space Station as an example. An overview of the integrated force method analysis code (IFM/ANALYZERS) is provided in the appendix.
Method and apparatus for adaptive force and position control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.
A new facility to realize a nanonewton force standard based on electrostatic methods
NASA Astrophysics Data System (ADS)
Nesterov, V.; Mueller, M.; Frumin, L. L.; Brand, U.
2009-06-01
A new differential nanoforce facility, based on a disc-pendulum with electrostatic stiffness reduction and an electrostatic force compensation for the measurement of horizontal forces in the range below 1 µN, is presented. First measurements in air over an averaging time of 50 s show a noise level of the facility of 42 pN. The method and the results of measuring the light pressure of a red He-Ne laser with a power of 7 mW (FL = 47 pN) are presented. The force measurement uncertainty of the device is below 5%, for a force to be measured of 1 nN and a measuring duration of 50 s.
Isospin-violating nucleon-nucleon forces using the method of unitary transformation
Evgeny Epelbaum; Ulf-G. Meissner
2005-02-01
Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.
NASA Astrophysics Data System (ADS)
Wijesinghe, Philip; Sampson, David D.; Kennedy, Brendan F.
2016-03-01
Accurate quantification of forces, applied to, or generated by, tissue, is key to understanding many biomechanical processes, fabricating engineered tissues, and diagnosing diseases. Many techniques have been employed to measure forces; in particular, tactile imaging - developed to spatially map palpation-mimicking forces - has shown potential in improving the diagnosis of cancer on the macro-scale. However, tactile imaging often involves the use of discrete force sensors, such as capacitive or piezoelectric sensors, whose spatial resolution is often limited to 1-2 mm. Our group has previously presented a type of tactile imaging, termed optical palpation, in which the change in thickness of a compliant layer in contact with tissue is measured using optical coherence tomography, and surface forces are extracted, with a micro-scale spatial resolution, using a one-dimensional spring model. We have also recently combined optical palpation with compression optical coherence elastography (OCE) to quantify stiffness. A main limitation of this work, however, is that a one-dimensional spring model is insufficient in describing the deformation of mechanically heterogeneous tissue with uneven boundaries, generating significant inaccuracies in measured forces. Here, we present a computational, finite-element method, which we term computational optical palpation. In this technique, by knowing the non-linear mechanical properties of the layer, and from only the axial component of displacement measured by phase-sensitive OCE, we can estimate, not only the axial forces, but the three-dimensional traction forces at the layer-tissue interface. We use a non-linear, three-dimensional model of deformation, which greatly increases the ability to accurately measure force and stiffness in complex tissues.
Gatti, Christopher J.; Doro, Lisa Case; Langenderfer, Joseph E.; Mell, Amy G.; Maratt, Joseph D.; Carpenter, James E.; Hughes, Richard E.
2008-01-01
Background Accurate prediction of in vivo muscle forces is essential for relevant analyses of musculoskeletal biomechanics. The purpose of this study was to evaluate three methods for predicting muscle forces of the shoulder by comparing calculated muscle parameters, which relate electromyographic activity to muscle forces. Methods Thirteen subjects performed sub-maximal, isometric contractions consisting of six actions about the shoulder and two actions about the elbow. Electromyography from 12 shoulder muscles and internal shoulder moments were used to determine muscle parameters using traditional multiple linear regression, principal-components regression, and a sequential muscle parameter determination process using principal-components regression. Muscle parameters were evaluated based on their sign (positive or negative), standard deviations, and error between the measured and predicted internal shoulder moments. Findings It was found that no method was superior with respect to all evaluation criteria. The sequential principal-components regression method most frequently produced muscle parameters that could be used to estimate muscle forces, multiple regression best predicted the measured internal shoulder moments, and the results of principal-components regression fell between those of sequential principal-components regression and multiple regression. Interpretation The selection of a muscle parameter estimation method should be based on the importance of the evaluation criteria. Sequential principal-components regression should be used if a greater number of physiologically accurate muscle forces are desired, while multiple regression should be used for a more accurate prediction of measured internal shoulder moments. However, all methods produced muscle parameters which can be used to predict in vivo muscle forces of the shoulder. PMID:17945401
Finite Element Method Based Modeling for Prediction of Cutting Forces in Micro-end Milling
NASA Astrophysics Data System (ADS)
Pratap, Tej; Patra, Karali
2016-04-01
Micro-end milling is one of the widely used processes for producing micro features/components in micro-fluidic systems, biomedical applications, aerospace applications, electronics and many more fields. However in these applications, the forces generated in the micro-end milling process can cause tool vibration, process instability and even cause tool breakage if not minimized. Therefore, an accurate prediction of cutting forces in micro-end milling is essential. In this work, a finite element method based model is developed using ABAQUS/Explicit 6.12 software for prediction of cutting forces in micro-end milling with due consideration of tool edge radius effect, thermo-mechanical properties and failure parameters of the workpiece material including friction behaviour at tool-chip interface. Experiments have been performed for manufacturing of microchannels on copper plate using 500 µm diameter tungsten carbide micro-end mill and cutting forces are acquired through a dynamometer. Predicted cutting forces in feed and cross feed directions are compared with experimental results and are found to be in good agreements. Results also show that FEM based simulations can be applied to analyze size effects of specific cutting forces in micro-end milling process.
Proteus: a direct forcing method in the simulations of particulate flows
NASA Astrophysics Data System (ADS)
Feng, Zhi-Gang; Michaelides, Efstathios E.
2005-01-01
A new and efficient direct numerical method for the simulation of particulate flows is introduced. The method combines desired elements of the immersed boundary method, the direct forcing method and the lattice Boltzmann method. Adding a forcing term in the momentum equation enforces the no-slip condition on the boundary of a moving particle. By applying the direct forcing scheme, Proteus eliminates the need for the determination of free parameters, such as the stiffness coefficient in the penalty scheme or the two relaxation parameters in the adaptive-forcing scheme. The method presents a significant improvement over the previously introduced immersed-boundary-lattice-Boltzmann method (IB-LBM) where the forcing term was computed using a penalty method and a user-defined parameter. The method allows the enforcement of the rigid body motion of a particle in a more efficient way. Compared to the "bounce-back" scheme used in the conventional LBM, the direct-forcing method provides a smoother computational boundary for particles and is capable of achieving results at higher Reynolds number flows. By using a set of Lagrangian points to track the boundary of a particle, Proteus eliminates any need for the determination of the boundary nodes that are prescribed by the "bounce-back" scheme at every time step. It also makes computations for particles of irregular shapes simpler and more efficient. Proteus has been developed in two- as well as three-dimensions. This new method has been validated by comparing its results with those from experimental measurements for a single sphere settling in an enclosure under gravity. As a demonstration of the efficiency and capabilities of the present method, the settling of a large number (1232) of spherical particles is simulated in a narrow box under two different boundary conditions. It is found that when the no-slip boundary condition is imposed at the front and rear sides of the box the particles motion is significantly hindered
Guo, Ying; Lu, Qingyou; Hou, Yubin
2014-05-15
We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increase output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.
A self-force approach to the two-body problem: The Green function method
NASA Astrophysics Data System (ADS)
Casals, Marc
2016-06-01
The inspiral of a stellar-mass astrophysical object into a massive black hole may be modeled within perturbation theory of General Relativity via the so-called self-force. In this paper, we present a novel method for the calculation of the self-force which is based on the Green function (GF) of the wave equation satisfied by the field created by the smaller object. We review the results in [M. Casals, S. Dolan, A. C. Ottewill and B. Wardell, Phys. Rev. D 88 (2013) 044022; B. Wardell, C. R. Galley, A. Zenginoğlu, M. Casals, S. R. Dolan and A. C. Ottewill, Phys. Rev. D 89 (2014) 084021] on the GF and the self-force on a scalar charge (as a model for the gravitational case) moving on a Schwarzschild black hole spacetime. This GF method offers an appealing geometrical insight into the origin of the self-force and is a promising candidate for practical self-force calculations.
A general method for computing the total solar radiation force on complex spacecraft structures
NASA Technical Reports Server (NTRS)
Chan, F. K.
1981-01-01
The method circumvents many of the existing difficulties in computational logic presently encountered in the direct analytical or numerical evaluation of the appropriate surface integral. It may be applied to complex spacecraft structures for computing the total force arising from either specular or diffuse reflection or even from non-Lambertian reflection and re-radiation.
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.
1996-01-01
The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.
Flow force and torque on submerged bodies in lattice-Boltzmann methods via momentum exchange.
Giovacchini, Juan P; Ortiz, Omar E
2015-12-01
We review the momentum exchange method to compute the flow force and torque on a submerged body in lattice-Boltzmann methods by presenting an alternative derivation. Our derivation does not depend on a particular implementation of the boundary conditions at the body surface, and it relies on general principles. After the introduction of the momentum exchange method in lattice-Boltzmann methods, some formulations were introduced to compute the fluid force on static and moving bodies. These formulations were introduced in a rather intuitive, ad hoc way. In our derivation, we recover the proposals most frequently used, in some cases with minor corrections, gaining some insight into the two most used formulations. At the end, we present some numerical tests to compare different approaches on a well-known benchmark test that support the correctness of the formulas derived. PMID:26764848
Flow force and torque on submerged bodies in lattice-Boltzmann methods via momentum exchange
NASA Astrophysics Data System (ADS)
Giovacchini, Juan P.; Ortiz, Omar E.
2015-12-01
We review the momentum exchange method to compute the flow force and torque on a submerged body in lattice-Boltzmann methods by presenting an alternative derivation. Our derivation does not depend on a particular implementation of the boundary conditions at the body surface, and it relies on general principles. After the introduction of the momentum exchange method in lattice-Boltzmann methods, some formulations were introduced to compute the fluid force on static and moving bodies. These formulations were introduced in a rather intuitive, ad hoc way. In our derivation, we recover the proposals most frequently used, in some cases with minor corrections, gaining some insight into the two most used formulations. At the end, we present some numerical tests to compare different approaches on a well-known benchmark test that support the correctness of the formulas derived.
Simulation method of Kelvin probe force microscopy at nanometer range and its application
NASA Astrophysics Data System (ADS)
Masago, A.; Tsukada, M.; Shimizu, M.
2010-11-01
The partitioned-real-space density-functional-based tight-binding (PR-DFTB) method is proposed as a simulation method for calculating the quantum electronic states in Kelvin probe force microscopy (KPFM). This method can be used when a tip is set on a sample surface with a nonorbital-hybridization distance and an applied bias voltage. The PR-DFTB method can perform self-consistent calculations of a system that consists of two subsystems (the tip and the sample). Each subsystem is expressed by a block element of the Fock matrix and thus is characterized by the Fermi level in the block element. Consequently, charge distributions on the two subsystems can be calculated individually. Furthermore, charge redistributions in the subsystems induced by approach of them under an applied bias voltage can also be calculated. Using the proposed PR-DFTB method, we can clarify the mechanism by observing the local contact potential difference (LCPD). Unlike the conventional description of the Kelvin force, the force acting between a biased tip and a sample depends not only on the net charge transferred between the tip and the sample but also on the multipole forces generated by the microscopic charge distribution within the tip and the sample. This is the mechanism responsible for observing the “apparent” LCPD. KPFM images generated from the minimum bias voltage in the force-bias curve (i.e., LCPD images) are theoretically simulated using tip models for a Si or hydrogenated Si cluster for simple models of a Si(111)-c(4×2) surface, a monohydride Si(001) surface with/without a defect, and a Si(111)-(5×5) dimer-adatom-stacking fault (DAS) surface.
Equation-of-motion approach of spin-motive force
Yamane, Yuta; Ieda, Jun'ichi; Ohe, Jun-ichiro; Maekawa, Sadamichi; Barnes, Stewart E.
2011-04-01
We formulate a quantitative theory of an electromotive force of spin origin, i.e., spin-motive force, by the equation-of-motion approach. In a ferromagnetic metal, electrons couple to the local magnetization via the exchange interaction. The electrons are affected by spin dependent forces due to this interaction and the spin-motive force and the anomalous Hall effect appears. We have revealed that the origin of these phenomena is a misalignment between the conduction electron spin and the local magnetization.
NASA Astrophysics Data System (ADS)
Zhang, Xueyong; Ma, Jianguo
2006-11-01
A new method for simultaneous measuring the applanation force and area and a device based on this method are presented for intraocular pressure measurement. A photoelectric probe transducer acting as applalation area detector converted the diminished quantity of light returned from applanation surface of the cone prism into one electronic signal, and a micro strain gauge acting as applation force detector converted changing load related to the resilient force of the eye into another electronic signal. A 16-bit single-chip microprocessor with E2PROM in the electronic circuit played the role of a nucleus, which stored the program instructions and the interrelated data. Laboratory experiments were carried out on a stimulated cornea clamped in a Perspex chamber connected to a hydraulic manometer to obtain intraocular pressure at different levels. Preliminary trials were carried out comparing the values obtained with those of the Goldmann tonometer. Diminished quantity of the light is directly proportional to the applanation area of the cornea and the changing load detected by strain gauge is equated to the resilient force of the eye. A new kind of tonometer can be constructed based on this principle. Experimental results on a stimulated eyeball showed the present tonometer reading has good agreement with that of the Goldmann tonometer. Further study including clinical trials and application is required to evaluate the accuracy and usefulness of this method.
Joint strength measurements of individual fiber-fiber bonds: An atomic force microscopy based method
NASA Astrophysics Data System (ADS)
Schmied, Franz J.; Teichert, Christian; Kappel, Lisbeth; Hirn, Ulrich; Schennach, Robert
2012-07-01
We are introducing a method to measure tensile strength of individual fiber-fiber bonds within a breaking force range of 0.01 mN-1 mN as well as the energy consumed during breaking. Until now, such a method was not available. Using a conventional atomic force microscope and a specifically designed sample holder, the desired force and the breaking behavior can be analyzed by two different approaches. First, dynamic loading can be applied, where force-versus-distance curves are employed to determine the proportions of elastic energy and energy dissipated in the bond. Second, static loading is utilized to study viscoelastic behavior and calculate viscoelastic energy contributions. To demonstrate the capability of the proposed method, we are presenting results for breaking strength of kraft pulp fiber-fiber bonds in tensile opening mode. The procedure is by no means restricted to cellulose fibers, it has the potential to quantify joint strength of micrometer-sized fibers in general.
NASA Astrophysics Data System (ADS)
Xu, Xin; Mares, Jesus; Groven, Lori J.; Son, Steven F.; Reifenberger, Ronald G.; Raman, Arvind
2015-01-01
Most explosives are micro- and nanoscale composite material systems consisting of energetic crystals, amorphous particles, binders, and additives whose response to mechanical, thermal, or electromagnetic insults is often controlled by submicrometer-scale heterogeneities and interfaces. Several advanced dynamic atomic force microscopy (AFM) techniques, including phase imaging, force volume mode, and Kelvin probe force microscopy with resonance enhancement for dielectric property mapping, have been used to map the local physical properties of mock explosive materials systems, allowing the identification of submicrometer heterogeneities in electrical and mechanical properties that could lead to the formation of hotspots under electromagnetic or mechanical stimuli. The physical interpretation of the property maps and the methods of image formation are presented. Possible interpretations of the results and future applications to energetic material systems are also discussed.
A method of improving the dynamic response of 3D force/torque sensors
NASA Astrophysics Data System (ADS)
Osypiuk, Rafał; Piskorowski, Jacek; Kubus, Daniel
2016-02-01
In the paper attention is drawn to adverse dynamic properties of filters implemented in commercial measurement systems, force/torque sensors, which are increasingly used in industrial robotics. To remedy the problem, it has been proposed to employ a time-variant filter with appropriately modulated parameters, owing to which it is possible to suppress the amplitude of the transient response and, at the same time, to increase the pulsation of damped oscillations; this results in the improvement of dynamic properties in terms of reducing the duration of transients. This property plays a key role in force control and in the fundamental problem of the robot establishing contact with rigid environment. The parametric filters have been verified experimentally and compared with filters available for force/torque sensors manufactured by JR3. The obtained results clearly indicate the advantages of the proposed solution, which may be an interesting alternative to the classic methods of filtration.
Validation of engineering methods for predicting hypersonic vehicle controls forces and moments
NASA Technical Reports Server (NTRS)
Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.
1991-01-01
This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.
NASA Astrophysics Data System (ADS)
Kunc, K.
1983-02-01
It is shown how the variation of lattice dynamical force constants caused by substitutional isoelectronic impurities can be evaluated ab initio. The approach, illustrated on the example of Al in GaAs, is based on local density functional and uses ionic pseudopotentials of Al, Ga, As as the only input; Hellmann-Feynman theorem is applied in order to extract from self-consistent electronic charge densities the forces acting on atoms in periodic patterns in which entire planes of impurities are displaced. The defect-induced variations of inter planar force constants are converted into the inter atomic ones, which can be compared with those determined by phenomenological models from the measured local mode frequencies. A method is presented which allows to account for the effect of relaxation without requiring an explicit determination of the latter. Particular problems resulting from dealing with entire plane of defects are discussed and an estimate for relaxation is given.
Prediction of atomic force microscope probe dynamics through the receptance coupling method
Mehrpouya, M.; Park, S. S.
2011-12-15
The increased growth in the use of tip-based sensing, manipulations, and fabrication of devices in atomic force microscopy (AFM) necessitates the accurate prediction of the dynamic behavior of the AFM probe. The chip holder, to which the micro-sensing device is attached, and the rest of the AFM system can affect the overall dynamics of the probe. In order to consider these boundary effects, we propose a novel receptance coupling method to mathematically combine the dynamics of the AFM setup and probe, based on the equilibrium and compatibility conditions at the joint. Once the frequency response functions of displacement over force at the tool tip are obtained, the dynamic interaction forces between the tip and the sample in nanoscale can be determined by measuring the probe tip displacement.
The effect of acceleration versus displacement methods on steady-state boundary forces
NASA Technical Reports Server (NTRS)
Mcghee, D. S.
1992-01-01
This study describes the acceleration and displacement methods for use in the recovery of coupled system boundary forces. A simple two degree of freedom system has been used for illustration. The effect of the choice of method for use with indeterminate or over-constrained boundaries has been investigated. It has specifically looked at results from a simple two dimensional beam problem using both methods. Much work has been done on the effect of Craig-Bampton modal truncation system displacements and forces, however, little work has been done on system level modal truncation. The findings of this study indicate that the effect of this system level truncation is significant. This may be particularly true for the 35 Hz system cutoff frequency that is required by the space shuttle. From this study's findings, recommendations for areas of study with space shuttle payload systems are made.
A fast high-order method to calculate wakefield forces in an electron beam
Qiang, Ji; Mitchell, Chad; Ryne, Robert D.
2012-03-22
In this paper we report on a high-order fast method to numerically calculate wakefield forces in an electron beam given a wake function model. This method is based on a Newton-Cotes quadrature rule for integral approximation and an FFT method for discrete summation that results in an O(Nlog(N)) computational cost, where N is the number of grid points. Using the Simpson quadrature rule with an accuracy of O(h4), where h is the grid size, we present numerical calculation of the wakefields from a resonator wake function model and from a one-dimensional coherent synchrotron radiation (CSR) wake model. Besides the fast speed and high numerical accuracy, the calculation using the direct line density instead of the first derivative of the line density avoids numerical filtering of the electron density function for computing the CSR wakefield force. I. INTRODUCTION
ERIC Educational Resources Information Center
De Luca, R.
2009-01-01
It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…
New method of space debris cleaning based on light negative force: tractor laser
NASA Astrophysics Data System (ADS)
Sun, Qiongge; Gao, Long; Li, Chen
2016-01-01
This paper presents a new way of space debris removal and protection, that is, using tractor laser, which based on light negative force, to achieve space debris cleaning and shielded. Tractor laser is traceable from the theory of optical tweezers, accompanied with non-diffraction beam. These kind of optical beams have the force named negative force pointing to optical source, this will bring the object along the trajectory of laser beam moving to the optical source. The negative force leads to the new method to convey and sampling the space micro-objects. In this paper, the application of tractor laser in the space debris collection and protection of 1cm is studied. The application of the several tractor beams in the space debris and sample collection is discussed. The proposed method can reduce the requirements of the laser to the satellite platform, and realize the collection of space debris, make the establishment of the space garbage station possible, and help to study the spatial non contact sample transmission and reduce the risk of space missions.
Accurate computation of surface stresses and forces with immersed boundary methods
NASA Astrophysics Data System (ADS)
Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim
2016-09-01
Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.
NASA Astrophysics Data System (ADS)
Jenke, Martin Günter; Santschi, Christian; Hoffmann, Patrik
2008-02-01
Accurate simultaneous measurements on the topography and electrostatic force field of 500nm pitch interdigitated electrodes embedded in a thin SiO2 layer in a plane perpendicular to the orientation of the electrodes are shown for the first time. A static force distance curve (FDC) based method has been developed, which allows a lateral and vertical resolution of 25 and 2nm, respectively. The measured force field distribution remains stable as result of the well controlled fabrication procedure of Pt cantilever tips that allows thousands of FDC measurements. A numerical model is established as well which demonstrates good agreement with the experimental results.
Daniell method for power spectral density estimation in atomic force microscopy.
Labuda, Aleksander
2016-03-01
An alternative method for power spectral density (PSD) estimation--the Daniell method--is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion--the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum. PMID:27036781
Structure prediction of an S-layer protein by the mean force method
NASA Astrophysics Data System (ADS)
Horejs, C.; Pum, D.; Sleytr, U. B.; Tscheliessnig, R.
2008-02-01
S-layer proteins have a wide range of application potential due to their characteristic features concerning self-assembling, assembling on various surfaces, and forming of isoporous structures with functional groups located on the surface in an identical position and orientation. Although considerable knowledge has been experimentally accumulated on the structure, biochemistry, assemble characteristics, and genetics of S-layer proteins, no structural model at atomic resolution has been available so far. Therefore, neither the overall folding of the S-layer proteins—their tertiary structure—nor the exact amino acid or domain allocations in the lattices are known. In this paper, we describe the tertiary structure prediction for the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2. This calculation was based on its amino acid sequence using the mean force method (MF method) achieved by performing molecular dynamic simulations. This method includes mainly the thermodynamic aspects of protein folding as well as steric constraints of the amino acids and is therefore independent of experimental structure analysis problems resulting from biochemical properties of the S-layer proteins. Molecular dynamic simulations were performed in vacuum using the simulation software NAMD. The obtained tertiary structure of SbsB was systematically analyzed by using the mean force method, whereas the verification of the structure is based on calculating the global free energy minimum of the whole system. This corresponds to the potential of mean force, which is the thermodynamically most favorable conformation of the protein. Finally, an S-layer lattice was modeled graphically using CINEMA4D and compared with scanning force microscopy data down to a resolution of 1nm. The results show that this approach leads to a thermodynamically favorable atomic model of the tertiary structure of the protein, which could be verified by both the MF Method and the lattice model.
Study on Two Methods for Nonlinear Force-Free Extrapolation Based on Semi-Analytical Field
NASA Astrophysics Data System (ADS)
Liu, S.; Zhang, H. Q.; Su, J. T.; Song, M. T.
2011-03-01
In this paper, two semi-analytical solutions of force-free fields (Low and Lou, Astrophys. J. 352, 343, 1990) have been used to test two nonlinear force-free extrapolation methods. One is the boundary integral equation (BIE) method developed by Yan and Sakurai ( Solar Phys. 195, 89, 2000), and the other is the approximate vertical integration (AVI) method developed by Song et al. ( Astrophys. J. 649, 1084, 2006). Some improvements have been made to the AVI method to avoid the singular points in the process of calculation. It is found that the correlation coefficients between the first semi-analytical field and extrapolated field using the BIE method, and also that obtained by the improved AVI method, are greater than 90% below a height 10 of the 64×64 lower boundary. For the second semi-analytical field, these correlation coefficients are greater than 80% below the same relative height. Although differences between the semi-analytical solutions and the extrapolated fields exist for both the BIE and AVI methods, these two methods can give reliable results for heights of about 15% of the extent of the lower boundary.
A novel measuring method of clamping force for electrostatic chuck in semiconductor devices
NASA Astrophysics Data System (ADS)
Kesheng, Wang; Jia, Cheng; Yin, Zhong; Linhong, Ji
2016-04-01
Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accurately measure the clamping force. To reduce the negative factors influencing measurement precision and repeatability, this article presents a novel method to measure the clamping force and we elaborate both the principle and the key procedure. A micro-force probe component is introduced to monitor, adjust, and eliminate the gap between the wafer and the electrostatic chuck. The contact force between the ruby probe and the wafer is selected as an important parameter to characterize de-chucking, and we have found that the moment of de-chucking can be exactly judged. Moreover, this article derives the formula calibrating equivalent action area of backside gas pressure under real working conditions, which can effectively connect the backside gas pressure at the moment of de-chucking and the clamping force. The experiments were then performed on a self-designed measuring platform. The de-chucking mechanism is discussed in light of our analysis of the experimental data. Determination criteria for de-chucking point are summed up. It is found that the relationship between de-chucking pressure and applied voltage conforms well to quadratic equation. Meanwhile, the result reveals that actual de-chucking behavior is much more complicated than the description given in the classical empirical formula. Project supported by No. 02 National Science and Technology Major Project of China (No. 2011ZX02403-004).
Method of simultaneous measurement of two direction force and temperature using FBG sensor head.
Kisała, Piotr; Cięszczyk, Sławomir
2015-04-01
This paper presents a method for measuring two components of bending force and temperature using one sensor head. Indirect inference based on the spectra of two fiber Bragg gratings (FBGs) placed on a cantilever beam is used. The method was developed during work on the inverse problem of determining a nonuniform stress distribution based on FBG spectra. A gradient in the FBG stress profile results in a characteristic shape of its reflective spectrum. The simultaneous measurements of force and temperature were possible through the use of an appropriate layout of the sensor head. The spectral characteristics of the sensor's gratings do not retain full symmetry, which is due to the geometry of the sensor's head and the related difference in the distribution of the axial stress of the gratings. In the proposed approach, the change in width of the sum of the normalized transmission spectra was used to determine the value of the applied force. In the presented method, an increase in the sensitivity of this change to the force is obtained relative to the other known systems. A change in the spectral width was observed for an increase in bending forces from 0 to 150 N. The sensitivity coefficient of the spectral width to force, defined as the ratio of the change of the spectral half-width to the change in force was 2.6e-3 nm/N for the first grating and 1.2e-3 nm/N for the second grating. However, the sensitivity of the whole sensor system was 5.8e-3 nm/N, which is greater than the sum of the sensitivities of the individual gratings. For the purpose of this work, a station with a thermal chamber has been designed with a bracket on which fiber optic transducers have been mounted for use in further measurements. The sensor head in this experiment is considered to be a universal device with potential applications in other types of optical sensors, and it can be treated as a module for development through its multiplication on a single optical fiber. PMID
Another method to compute the thermodynamic Casimir force in lattice models
NASA Astrophysics Data System (ADS)
Hasenbusch, Martin
2009-12-01
We discuss a method that allows us to compute the thermodynamic Casimir force at a given temperature in lattice models by performing a single Monte Carlo simulation. It is analogous to the one used by de Forcrand and co-workers in the study of ‘t Hooft loops and the interface tension in SU(N) lattice gauge models in four dimensions. We test the method at the example of thin films in the XY universality class. In particular we simulate the improved two-component ϕ4 model on the simple cubic lattice. This allows us to compare with our previous study, where we have computed the Casimir force by numerically integrating energy densities over the inverse temperature.
The fast multipole method and point dipole moment polarizable force fields
NASA Astrophysics Data System (ADS)
Coles, Jonathan P.; Masella, Michel
2015-01-01
We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.
Another method to compute the thermodynamic Casimir force in lattice models.
Hasenbusch, Martin
2009-12-01
We discuss a method that allows us to compute the thermodynamic Casimir force at a given temperature in lattice models by performing a single Monte Carlo simulation. It is analogous to the one used by de Forcrand and co-workers in the study of 't Hooft loops and the interface tension in SU(N) lattice gauge models in four dimensions. We test the method at the example of thin films in the XY universality class. In particular we simulate the improved two-component phi4 model on the simple cubic lattice. This allows us to compare with our previous study, where we have computed the Casimir force by numerically integrating energy densities over the inverse temperature. PMID:20365131
The fast multipole method and point dipole moment polarizable force fields.
Coles, Jonathan P; Masella, Michel
2015-01-14
We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems. PMID:25591340
NASA Astrophysics Data System (ADS)
Piche, Steffanie
Understanding the impact of coastal forests on the propagation of rapidly advancing onshore tsunami bores is difficult due to complexity of this phenomenon and the large amount of parameters which must be considered. The research presented in the thesis focuses on understanding the protective effect of the coastal forest on the forces generated by the tsunami and its ability to reduce the propagation and velocity of the incoming tsunami bore. Concern for this method of protecting the coast from tsunamis is based on the effectiveness of the forest and its ability to withstand the impact forces caused by both the bore and the debris carried along by it. The devastation caused by the tsunami has been investigated in recent examples such as the 2011 Tohoku Tsunami in Japan and the Indian Ocean Tsunami which occurred in 2004. This research examines the reduction of the spatial extent of the tsunami bore inundation and runup due to the presence of the coastal forest, and attempts to quantify the impact forces induced by the tsunami bores and debris impact on the structures. This research work was performed using a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method which is a single-phase three-dimensional model. The simulations performed in this study were separated into three sections. The first section focused on the reduction of the extent of the tsunami inundation and the magnitude of the bore velocity by the coastal forest. This section included the analysis of the hydrodynamic forces acting on the individual trees. The second section involved the numerical modeling of some of the physical laboratory experiments performed by researchers at the University of Ottawa, in cooperation with colleagues from the Ocean, Coastal and River Engineering Lab at the National Research Council, Ottawa, in an attempt to validate the movement and impact forces of floating driftwood on a column. The final section modeled the movement and impact of floating debris
The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask
2014-01-01
In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed. PMID:25247823
Daniell method for power spectral density estimation in atomic force microscopy
NASA Astrophysics Data System (ADS)
Labuda, Aleksander
2016-03-01
An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.
Mochizuki, Masahito; Oguchi, Masahiro; Kim, Seong-Oh; Jackman, Joshua A; Ogawa, Tetsu; Lkhamsuren, Ganchimeg; Cho, Nam-Joon; Hayashi, Tomohiro
2015-07-28
Peptide coatings on material surfaces have demonstrated wide application across materials science and biotechnology, facilitating the development of nanobio interfaces through surface modification. A guiding motivation in the field is to engineer peptides with a high and selective binding affinity to target materials. Herein, we introduce a quantitative force mapping method in order to evaluate the binding affinity of peptides to various hydrophilic oxide materials by atomic force microscopy (AFM). Statistical analysis of adhesion forces and probabilities obtained on substrates with a materials contrast enabled us to simultaneously compare the peptide binding affinity to different materials. On the basis of the experimental results and corresponding theoretical analysis, we discuss the role of various interfacial forces in modulating the strength of peptide attachment to hydrophilic oxide solid supports as well as to gold. The results emphasize the precision and robustness of our approach to evaluating the adhesion strength of peptides to solid supports, thereby offering guidelines to improve the design and fabrication of peptide-coated materials. PMID:26125092
A method to study precision grip control in viscoelastic force fields using a robotic gripper.
Lambercy, Olivier; Metzger, Jean-Claude; Santello, Marco; Gassert, Roger
2015-01-01
Instrumented objects and multipurpose haptic displays have commonly been used to investigate sensorimotor control of grasping and manipulation. A major limitation of these devices, however, is the extent to which the experimenter can vary the interaction dynamics to fully probe sensorimotor control mechanisms. We propose a novel method to study precision grip control using a grounded robotic gripper with two moving, mechanically coupled finger pads instrumented with force sensors. The device is capable of stably rendering virtual mechanical properties with a wide dynamic range of achievable impedances. Eight viscoelastic force fields with different combinations of stiffness and damping parameters were implemented, and tested on eight healthy subjects performing 30 consecutive repetitions of a grasp, hold, and release task with time and position constraints. Rates of thumb and finger force were found to be highly correlated (r>0.9) during grasping, revealing that, despite the mechanical coupling of the two finger pads, subjects performed grasping movements in a physiological fashion. Subjects quickly adapted to the virtual dynamics (within seven trials), but, depending on the presented force field condition, used different control strategies to correctly perform the task. The proof of principle presented in this paper underscores the potential of such a one-degree-of-freedom robotic gripper to study neural control of grasping, and to provide novel insights on sensorimotor control mechanisms. PMID:25014953
Generalization of Faraday's Law to include nonconservative spin forces.
Barnes, S E; Maekawa, S
2007-06-15
The usual Faraday's Law E=-dPhi/dt determines an electromotive force E which accounts only for forces resulting from the charge of electrons. In ferromagnetic materials, in general, there exist nonconservative spin forces which also contribute to E. These might be included in Faraday's Law if the magnetic flux Phi is replaced by [Planck's constant/(-e)]gamma, where gamma is a Berry phase suitably averaged over the electron spin direction. These contributions to E represent the requirements of energy conservation in itinerant ferromagnets with time dependent order parameters. PMID:17677979
Inoue, S.; Magara, T.; Choe, G. S.; Kim, K. S.; Pandey, V. S.; Shiota, D.; Kusano, K.
2014-01-01
We develop a nonlinear force-free field (NLFFF) extrapolation code based on the magnetohydrodynamic (MHD) relaxation method. We extend the classical MHD relaxation method in two important ways. First, we introduce an algorithm initially proposed by Dedner et al. to effectively clean the numerical errors associated with ∇ · B . Second, the multigrid type method is implemented in our NLFFF to perform direct analysis of the high-resolution magnetogram data. As a result of these two implementations, we successfully extrapolated the high resolution force-free field introduced by Low and Lou with better accuracy in a drastically shorter time. We also applied our extrapolation method to the MHD solution obtained from the flux-emergence simulation by Magara. We found that NLFFF extrapolation may be less effective for reproducing areas higher than a half-domain, where some magnetic loops are found in a state of continuous upward expansion. However, an inverse S-shaped structure consisting of the sheared and twisted loops formed in the lower region can be captured well through our NLFFF extrapolation method. We further discuss how well these sheared and twisted fields are reconstructed by estimating the magnetic topology and twist quantitatively.
Bouchard, Richard R.; Hsu, Stephen J.; Palmeri, Mark L.; Rouze, Ned C.; Nightingale, Kathryn R.; Trahey, Gregg E.
2011-01-01
A noninvasive method of characterizing myocardial stiffness could have significant implications in diagnosing cardiac disease. Acoustic radiation force (ARF)–driven techniques have demonstrated their ability to discern elastic properties of soft tissue. For the purpose of myocardial elasticity imaging, a novel ARF-based imaging technique, the displacement ratio rate (DRR) method, was developed to rank the relative stiffnesses of dynamically varying tissue. The basis and performance of this technique was demonstrated through numerical and phantom imaging results. This new method requires a relatively small temporal (<1 ms) and spatial (tenths of mm2) sampling window and appears to be independent of applied ARF magnitude. The DRR method was implemented in two in vivo canine studies, during which data were acquired through the full cardiac cycle by imaging directly on the exposed epicardium. These data were then compared with results obtained by acoustic radiation force impulse (ARFI) imaging and shear wave velocimetry, with the latter being used as the gold standard. Through the cardiac cycle, velocimetry results portray a range of shear wave velocities from 0.76–1.97 m/s, with the highest velocities observed during systole and the lowest observed during diastole. If a basic shear wave elasticity model is assumed, such a velocity result would suggest a period of increased stiffness during systole (when compared with diastole). Despite drawbacks of the DRR method (i.e., sensitivity to noise and limited stiffness range), its results predicted a similar cyclic stiffness variation to that offered by velocimetry while being insensitive to variations in applied radiation force. PMID:21645966
Estimation of tensile force in tie-rods using a frequency-based identification method
NASA Astrophysics Data System (ADS)
Amabili, M.; Carra, S.; Collini, L.; Garziera, R.; Panno, A.
2010-05-01
A technique is developed to identify in-situ the tensile force in tie-rods which are used in ancient monumental masonry buildings to eliminate the lateral load exercised by the vaults and arcs. The technique is based on a frequency-based identification method that allows to minimize the measurement error and that is of simple execution. In particular, the first natural frequencies of the tie-rods are experimentally identified by measuring the frequency response functions (FRFs) with instrumented hammer excitation; four to six natural frequencies can be easily identified with a simple test. Then, a numerical model, based on the Rayleigh-Ritz method, is developed for the axially loaded tie-rod by using the Timoshenko beam theory retaining shear deformation and rotary inertia. Non-uniform section of the rod is considered since this is often the case for hand-made tie-rods in old buildings. The part of the tie-rod inserted inside the masonry wall is also modeled and a simple support is assumed at the extremities inside the walls. The constraints given to the part of the tie-rod inserted inside the masonry structure are assumed to be elastic foundations. The tensile force and the stiffness of the foundation are the unknowns. In some cases, the length of the rod inside the masonry wall can be also assumed as unknown. The numerical model is used to calculate the natural frequencies for a given set of unknowns. Then, a weighted difference between the calculated and identified natural frequencies is calculated and this difference is minimized in order to identify the unknowns, and in particular the tensile force. An estimation of the error in the identification of the force is given. The technique has been tested on five tie-rods at the ground floor of the famous castle of Fontanellato, Italy.
A direct micropipette-based calibration method for atomic force microscope cantilevers
Liu, Baoyu; Yu, Yan; Yao, Da-Kang; Shao, Jin-Yu
2009-01-01
In this report, we describe a direct method for calibrating atomic force microscope (AFM) cantilevers with the micropipette aspiration technique (MAT). A closely fitting polystyrene bead inside a micropipette is driven by precisely controlled hydrostatic pressures to apply known loads on the sharp tip of AFM cantilevers, thus providing a calibration at the most functionally relevant position. The new method is capable of calibrating cantilevers with spring constants ranging from 0.01 to hundreds of newtons per meter. Under appropriate loading conditions, this new method yields measurement accuracy and precision both within 10%, with higher performance for softer cantilevers. Furthermore, this method may greatly enhance the accuracy and precision of calibration for colloidal probes. PMID:19566228
Magnetic Forces Simulation of Bulk HTS over Permanent Magnetic Railway with Numerical Method
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Zhuang, Shujun
2012-10-01
Magnetic levitation forces of bulk high temperature superconductor (HTS) above two types permanent magnet railway (PMR) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E- J power law is used to describe the electrical field vs. current density nonlinear characteristic of HTS. The applied magnetic fields induced by the PMR are calculated by the standard analysis method with the equivalent surface current model. By the method, the calculation formulation of magnetic fields generated by Halbach PMR and symmetrical PMR is derived respectively. The simulation results show that the finite element dynamic mesh rebuilding problem of HTS magnetic levitation transportation system comprised of bulk HTS and PMR can be easily avoided by the methods.
A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading
Kennedy, Scott J.; Cole, Daniel G.; Clark, Robert L.
2009-12-15
This work presents a method for force calibration of rectangular atomic force microscopy (AFM) microcantilevers under heavy fluid loading. Theoretical modeling of the thermal response of microcantilevers is discussed including a fluid-structure interaction model of the cantilever-fluid system that incorporates the results of the fluctuation-dissipation theorem. This model is curve fit to the measured thermal response of a cantilever in de-ionized water and a cost function is used to quantify the difference between the theoretical model and measured data. The curve fit is performed in a way that restricts the search space to parameters that reflect heavy fluid loading conditions. The resulting fitting parameters are used to calibrate the cantilever. For comparison, cantilevers are calibrated using Sader's method in air and the thermal noise method in both air and water. For a set of eight cantilevers ranging in stiffness from 0.050 to 5.8 N/m, the maximum difference between Sader's calibration performed in air and the new method performed in water was 9.4%. A set of three cantilevers that violate the aspect ratio assumption associated with the fluid loading model (length-to-width ratios less than 3.5) ranged in stiffness from 0.85 to 4.7 N/m and yielded differences as high as 17.8%.
Perspectives on the simulation of protein-surface interactions using empirical force field methods.
Latour, Robert A
2014-12-01
Protein-surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein-surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242
A method for embedding circular force-free flux ropes in potential magnetic fields
Titov, V. S.; Török, T.; Mikic, Z.; Linker, J. A.
2014-08-01
We propose a method for constructing approximate force-free equilibria in pre-eruptive configurations in which a thin force-free flux rope is embedded into a locally bipolar-type potential magnetic field. The flux rope is assumed to have a circular-arc axis, a circular cross-section, and electric current that is either concentrated in a thin layer at the boundary of the rope or smoothly distributed across it with a maximum of the current density at the center. The entire solution is described in terms of the magnetic vector potential in order to facilitate the implementation of the method in numerical magnetohydrodynamic (MHD) codes that evolve the vector potential rather than the magnetic field itself. The parameters of the flux rope can be chosen so that its subsequent MHD relaxation under photospheric line-tied boundary conditions leads to nearly exact numerical equilibria. To show the capabilities of our method, we apply it to several cases with different ambient magnetic fields and internal flux-rope structures. These examples demonstrate that the proposed method is a useful tool for initializing data-driven simulations of solar eruptions.
Roush, James R.; Davies, George J.; Ellenbecker, Todd S.; Rauh, Mitchell J.
2009-01-01
Background The importance of the scapular stabilizing muscles has led to an increased interest in quantitative measurements of their strength. Few studies have measured isometric or concentric isokinetic forces. Additionally, limited reports exist on the reliability of objective measures for testing scapular protraction and retraction muscle strength or scapular testing that does not involve the glenohumeral joint. Objective To determine the reliability of four new methods of measuring the maximal isometric strength of key scapular stabilizing muscles for the actions of protraction and retraction, both with and without the involvement of the glenohumeral (GH) joint. Methods The Isobex® stationary tension dynamometer was used to measure the maximal isometric force (kg) on thirty healthy females (ages 22–26 years). Three measures were taken for each method that was sequentially randomized for three separate testing sessions on three nonconsecutive days. Results Intraclass correlations (ICC2,3) for intrasession reliability and (ICC3,3) for intersession reliability ranged from 0.95 to 0.98, and 0.94 to 0.96 respectively. The standard errors of measurement (95% confidence interval [CI]) were narrow. Scatter grams for both protraction and retraction testing methods demonstrated a significant relationship, 0.92 for protraction (95% CI 0.83 to 0.96) and 0.93 for retraction (95% CI 0.87 to 0.97). Bland-Altman plots indicated good agreement between the two methods for measuring protraction strength but a weaker agreement for the two methods measuring retraction strength. Discussion/Conclusion The four new methods assessed in this study indicate reliable options for measuring scapular protraction or retraction isometric strength with or without involving the GH joint for young healthy females. PMID:21509104
NASA Astrophysics Data System (ADS)
Martin-Olmos, Cristina; Stieg, Adam Z.; Gimzewski, James K.
2012-06-01
A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.
A body-force based method to generate supersonic equilibrium turbulent boundary layer profiles
NASA Astrophysics Data System (ADS)
Waindim, M.; Gaitonde, D. V.
2016-01-01
We further develop a simple counterflow body force-based approach to generate an equilibrium spatially developing turbulent boundary layer suitable for Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES) of viscous-inviscid interactions. The force essentially induces a small separated region in an incoming specified laminar boundary layer. The resulting unstable shear layer then transitions and breaks down to yield the desired unsteady profile. The effects of wall thermal conditions are explored to demonstrate the capability of the method for both fixed wall and adiabatic wall conditions. We then describe an efficient method to select parameters that ensure transition by examining precursor signatures using generalized stability variables. These precursors are shown to be evident in a computational domain spanning only a small region around the trip and can also be detected using 2D simulations. Finally, the method is tested for different Mach numbers ranging from 1.7 to 2.9, with emphasis on flow field surveys, Reynolds stresses, and energy spectra. These results provide guidance on boundary conditions for desired boundary layer thickness at each Mach number. The consequences of using a much lower Reynolds number in computation relative to experiment are evident at the higher Mach number, where a self sustaining turbulent boundary layer is more difficult to obtain.
Martin-Olmos, Cristina; Stieg, Adam Z; Gimzewski, James K
2012-06-15
A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices. PMID:22595697
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Taylor, Lawrence W., Jr.
1987-01-01
A semi-empirical method is presented for the estimation of aerodynamic forces and moments acting on a steadily spinning (rotating) light airplane. The airplane is divided into wing, body, and tail surfaces. The effect of power is ignored. The strip theory is employed for each component of the spinning airplane to determine its contribution to the total aerodynamic coefficients. Then, increments to some of the coefficients which account for centrifugal effect are estimated. The results are compared to spin tunnel rotary balance test data.
Quasi-ellipsoidal heads to ASME Code under internal pressure stress analysis by the Force Method
Guedes, E.
1996-12-01
Torispherically-dished pressure vessel heads that meet Section VIII of the ASME Code can be completely analyzed by means of the so-called Force Method. Thus combined normal stresses (pressure plus radial growth plus bending) at the shell junctures that make up those heads may be determined to a good degree of accuracy, along with the ideal bending-free location of the welding line (circumferential joint that connects head to shell). As a useful consequence, head skirt is kept to a safe minimum.
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.
1995-01-01
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.
1995-11-07
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.
NASA Astrophysics Data System (ADS)
Bogdevicius, Marijonas; Zygiene, Rasa; Bureika, Gintautas; Dailydka, Stasys
2016-05-01
The simplified method to determine a vertical impact force of wheel with flat and rail interaction is presented in this article. The presented simplified method can be used to identify maximum contact force and its distribution in the contact length between the damaged wheel and the rail. The vertical impact force depends on geometrical parameters of the rail and wheel with flat, speed of vehicle and the angle of deviation of rail. This article demonstrates the influence of wheel with flat geometrical parameters, speed of vehicle to maximum contact force and its distribution in the contact zone. The obtained values of the simplified method for determination of a vertical contact force are compared with the results obtained from field measurements.
Evaluation of slice shear force as an objective method of assessing beef longissimus tenderness.
Shackelford, S D; Wheeler, T L; Koohmaraie, M
1999-10-01
Experiments were conducted to develop an optimal protocol for measurement of slice shear force (SSF) and to evaluate SSF as an objective method of assessing beef longissimus tenderness. Whereas six cylindrical, 1.27-cm-diameter cores are typically removed from each steak for Warner-Bratzler shear force (WBSF) determination, a single 1-cm-thick, 5-cm-long slice is removed from the lateral end of each longissimus steak for SSF. For either technique, samples are removed parallel to the muscle fiber orientation and sheared across the fibers. Whereas WBSF uses a V-shaped blade, SSF uses a flat blade with the same thickness (1.016 mm) and degree of bevel (half-round) on the shearing edge. In Exp. 1, longissimus steaks were acquired from 60 beef carcasses to determine the effects of belt grill cooking rate (very rapid vs. rapid) and conditions of SSF measurement (hot vs cold) on the relationship of SSF with trained sensory panel (TSP) tenderness rating. Slice shear force was more strongly correlated with TSP tenderness rating when SSF measurement was conducted immediately after cooking (r = -.74 to -.76) than when steaks were chilled (24 h, 4 degrees C) before SSF measurement (r = -.57 to -.72). When SSF measurement was conducted immediately after cooking, the relationship of SSF with TSP tenderness rating did not differ among the belt grill cooking protocols used to cook the SSF steak. In Exp. 2, longissimus steaks were acquired from 479 beef carcasses to compare the ability of SSF and WBSF of 1.27-cm-diameter cores to predict TSP tenderness ratings. Slice shear force was more strongly correlated with sensory panel tenderness rating than was WBSF (r = -.82 vs -.77). In Exp. 3, longissimus steaks were acquired from 110 beef carcasses to evaluate the repeatability (.91) of SSF over a broad range of tenderness. Slice shear force is a more rapid, more accurate, and technically less difficult technique than WBSF. Use of the SSF technique could facilitate the collection of
The Australian Defence Force Mental Health Prevalence and Wellbeing Study: design and methods
Hooff, Miranda Van; McFarlane, Alexander C.; Davies, Christopher E.; Searle, Amelia K.; Fairweather-Schmidt, A. Kate; Verhagen, Alan; Benassi, Helen; Hodson, Stephanie E.
2014-01-01
Background The Australian Defence Force (ADF) Mental Health Prevalence and Wellbeing Study (MHPWS) is the first study of mental disorder prevalence in an entire military population. Objective The MHPWS aims to establish mental disorder prevalence, refine current ADF mental health screening methods, and identify specific occupational factors that influence mental health. This paper describes the design, sampling strategies, and methodology used in this study. Method At Phase 1, approximately half of all regular Navy, Army, and Air Force personnel (n=24,481) completed self-report questionnaires. At Phase 2, a stratified sub-sample (n=1,798) completed a structured diagnostic interview to detect mental disorder. Based on data from non-responders, data were weighted to represent the entire ADF population (n=50,049). Results One in five ADF members met criteria for a 12-month mental disorder (22%). The most common disorder category was anxiety disorders (14.8%), followed by affective (9.5%) and alcohol disorders (5.2%). At risk ADF sub-groups were Army personnel, and those in the lower ranks. Deployment status did not have an impact on mental disorder rates. Conclusion This study has important implications for mental health service delivery for Australian and international military personnel as well as contemporary veterans. PMID:25206944
NASA Astrophysics Data System (ADS)
Yuan, Jianping; Zhu, Zhanxia; Ming, Zhenfeng; Luo, Qiuyue
2015-07-01
This paper proposes an innovative method for simulating space microgravity effects. The new approach combines the neutral buoyancy and the electromagnetic force on the tested-body to balance the gravity and simulate the microgravity effects. In the paper, we present in some detail the magnetism-buoyancy hybrid microgravity simulation system, its components, functions and verification. We describe some key techniques such as ground-space similarity, the homogenization of electromagnetic field, the precise control of microgravity effects in dynamic environment, measurement in the hybrid suspension system. With this innovative microgravity simulation system, we prove through experiments and tests that our innovative method is feasible and effective and that the simulation fidelity is even higher than the neutral buoyancy system.
A multipole accelerated desingularized method for computing nonlinear wave forces on bodies
Scorpio, S.M.; Beck, R.F.
1996-12-31
Nonlinear wave forces on offshore structures are investigated. The fluid motion is computed using an Euler-Lagrange time domain approach. Nonlinear free surface boundary conditions are stepped forward in time using an accurate and stable integration technique. The field equation with mixed boundary conditions that result at each time step are solved at N nodes using a desingularized boundary integral method with multipole acceleration. Multipole accelerated solutions require O(N) computational effort and computer storage while conventional solvers require O(N{sup 2}) effort and storage for an iterative solution and O(N{sup 3}) effort for direct inversion of the influence matrix. These methods are applied to the three dimensional problem of wave diffraction by a vertical cylinder.
A finite-volume numerical method to calculate fluid forces and rotordynamic coefficients in seals
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1992-01-01
A numerical method to calculate rotordynamic coefficients of seals is presented. The flow in a seal is solved by using a finite-volume formulation of the full Navier-Stokes equations with appropriate turbulence models. The seal rotor is perturbed along a diameter such that the position of the rotor is a sinusoidal function of time. The resulting flow domain changes with time, and the time-dependent flow in the seal is solved using a space conserving moving grid formulation. The time-varying fluid pressure reaction forces are then linked with the rotor center displacement, velocity and acceleration to yield the rotordynamic coefficients. Results for an annular seal are presented, and compared with experimental data and other more simplified numerical methods.
Wave system fitting: A new method for force measurements in shock tunnels with long test duration
NASA Astrophysics Data System (ADS)
Luo, Changtong; Wang, Yunpeng; Wang, Chun; Jiang, Zonglin
2015-10-01
Force measurements in shock tunnels are difficult due to the existence of vibrations excited by a sudden aerodynamic loading. Accelerometer inertia compensation could reduce its negative effect to some extent, but has inherent problems. A new signal decomposition method, wave system fitting (WSF), is proposed to remove vibration waves of low frequency. The WSF is accelerometer-free. It decomposes the balance signal and can separate vibration waves without the influence on the DC component, and it does work no matter the cycle of the sample signal is complete or not. As a standard signal post-processing tool in JF-12, the application results show that it works reliably with high accuracy, and it can also explain puzzling signals encountered in JF-12. WSF method is especially useful and irreplaceable whenever only a few cycles of a periodic signal could be obtained, as is usual for shock tunnels.
NASA Technical Reports Server (NTRS)
2004-01-01
The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.
An efficient algorithm using matrix methods to solve wind tunnel force-balance equations
NASA Technical Reports Server (NTRS)
Smith, D. L.
1972-01-01
An iterative procedure applying matrix methods to accomplish an efficient algorithm for automatic computer reduction of wind-tunnel force-balance data has been developed. Balance equations are expressed in a matrix form that is convenient for storing balance sensitivities and interaction coefficient values for online or offline batch data reduction. The convergence of the iterative values to a unique solution of this system of equations is investigated, and it is shown that for balances which satisfy the criteria discussed, this type of solution does occur. Methods for making sensitivity adjustments and initial load effect considerations in wind-tunnel applications are also discussed, and the logic for determining the convergence accuracy limits for the iterative solution is given. This more efficient data reduction program is compared with the technique presently in use at the NASA Langley Research Center, and computational times on the order of one-third or less are demonstrated by use of this new program.
Imposing the free-slip condition with a continuous forcing immersed boundary method
NASA Astrophysics Data System (ADS)
Kempe, Tobias; Lennartz, Matthias; Schwarz, Stephan; Fröhlich, Jochen
2015-02-01
The numerical simulation of spherical and ellipsoidal bubbles in purified fluids requires the imposition of the free-slip boundary condition at the bubble surface. This paper describes a numerical method for the implementation of free-slip boundary conditions in the context of immersed boundary methods. In contrast to other numerical approaches for multiphase flows, the realization is not straightforward. The reason is that the immersed boundary method treats the liquid as well as the gas phase as a field of constant density and viscosity with a fictitious fluid inside the bubble. The motion of the disperse phase is computed explicitly by solving the momentum balance for each of its elements and is coupled to the continuous phase via additional source terms in the Navier-Stokes equations. The paper starts with illustrating that an ad hoc method is unsuccessful. On this basis, a new method is proposed employing appropriate direct forcing at the bubble surface. A central finding is that with common ratios between the step size of the grid and the bubble diameter, curvature terms need to be accounted for to obtain satisfactory results. The new method is first developed for spherical objects and then extended to generally curved interfaces. This is done by introducing a local coordinate system which approximates the surface in the vicinity of a Lagrangian marker with the help of the two principal curvatures of the surface at this point. The numerical scheme is then validated for spherical and ellipsoidal objects with or without prescribed constant angular velocity. It is shown that the proposed method achieves similar convergence behavior as the method for no-slip boundaries. The results are compared to analytical solutions for creeping flow around a sphere and to numerical reference data obtained on a body-fitted grid. The numerical tests confirm the excellent performance of the proposed method.
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Wright, Jan R.
1989-01-01
Force appropriation methods aim to provide an estimate for the force pattern required to excite a 'pure' normal mode in a vibration test where multiple exciters are available. In this paper, a new method based upon a Singular Value Decompositon approach is presented. The appropriated force vector which minimizes the in-plane response components while maximizing the required quadrature components is found, subject to a fixed force norm. The method can accommodate more transducers than exciters and also more exciters than effective degrees of freedom. The method is demonstrated upon a six degree of freedom theoretical model and it is shown that an estimate for the effective degrees of freedom can be obtained.
NASA Astrophysics Data System (ADS)
Abdel-Jaber, H.; Glisic, B.
2014-07-01
Structural health monitoring (SHM) consists of the continuous or periodic measurement of structural parameters and their analysis with the aim of deducing information about the performance and health condition of a structure. The significant increase in the construction of prestressed concrete bridges motivated this research on an SHM method for the on-site determination of the distribution of prestressing forces along prestressed concrete beam structures. The estimation of the distribution of forces is important as it can give information regarding the overall performance and structural integrity of the bridge. An inadequate transfer of the designed prestressing forces to the concrete cross-section can lead to a reduced capacity of the bridge and consequently malfunction or failure at lower loads than predicted by design. This paper researches a universal method for the determination of the distribution of prestressing forces along concrete beam structures at the time of transfer of the prestressing force (e.g., at the time of prestressing or post-tensioning). The method is based on the use of long-gauge fiber optic sensors, and the sensor network is similar (practically identical) to the one used for damage identification. The method encompasses the determination of prestressing forces at both healthy and cracked cross-sections, and for the latter it can yield information about the condition of the cracks. The method is validated on-site by comparison to design forces through the application to two structures: (1) a deck-stiffened arch and (2) a curved continuous girder. The uncertainty in the determination of prestressing forces was calculated and the comparison with the design forces has shown very good agreement in most of the structures’ cross-sections, but also helped identify some unusual behaviors. The method and its validation are presented in this paper.
Forced degradation of nepafenac: Development and validation of stability indicating UHPLC method.
Runje, Mislav; Babić, Sandra; Meštrović, Ernest; Nekola, Irena; Dujmić-Vučinić, Željka; Vojčić, Nina
2016-05-10
This paper presents stability study of the nonsteroidal anti-inflammatory drug (NSAID) nepafenac. In order to investigate stability of nepafenac, it was subjected to forced degradation under different stress conditions: acid and base hydrolysis, oxidation, humidity, heat and light. A novel stability indicating reverse phase ultra high performance liquid chromatographic (UHPLC) method coupled to ultraviolet detector has been developed to separate nepafenac and all related compounds (2-aminobenzophenone, Cl-thionepafenac, thionepafenac, Cl-nepafenac, hydroxy-nepafenac, and cyclic-nepafenac). Efficient chromatographic separation was achieved on a Waters Acquity BEH C18 stationary phase with a gradient elution. Quantification was carried out at 235 nm at a flow rate of 0.6 mL/min(-1). The resolution between nepafenac and six potential impurities is found to be greater than 2.0. The developed method was validated with respect to specificity, LOD, LOQ, linearity, precision, accuracy and robustness. The r(2) values for nepafenac and six potential impurities were all greater than 0.999. The developed method is capable to detect impurities of nepafenac at a level of 0.005% with respect to test concentration of 1.0mg/mL. Significant degradation is observed in acid, base and oxidative degradation conditions and degradation products (DPs) were identified using mass spectrometry analysis; two of them were found to be a known process related impurities (hydroxy- and cyclic-nepafenac) whereas four degradation products were identified as new degradation impurities. The forced degradation samples were assayed against a qualified reference standard and the mass balance was found to be close to 99.5%. PMID:26871279
Multi-Sphere Method for modeling spacecraft electrostatic forces and torques
NASA Astrophysics Data System (ADS)
Stevenson, Daan; Schaub, Hanspeter
2013-01-01
The use of electrostatic (Coulomb) actuation for formation flying is attractive because non-renewable fuel reserves are not depleted and plume impingement issues are avoided. Prior analytical electrostatic force models used for Coulomb formations assume spherical spacecraft shapes, which include mutual capacitance and induced effects. However, this framework does not capture any orientation-dependent forces or torques on generic spacecraft geometries encountered during very close operations and docking scenarios. The Multi-Sphere Method (MSM) uses a collection of finite spheres to represent a complex shape and analytically approximate the Coulomb interaction with other charged bodies. Finite element analysis software is used as a truth model to determine the optimal sphere locations and radii. The model is robust to varying system parameters such as prescribed voltages and external shape size. Using the MSM, faster-than-realtime electrostatic simulation of six degree of freedom relative spacecraft motion is feasible, which is crucial for the development of robust relative position and orientation control algorithms in local space situational awareness applications. To demonstrate this ability, the rotation of a cylindrical craft in deep space is simulated, while charge control from a neighboring spacecraft is used to de-spin the object. Using a 1 m diameter craft separated by 10 m from a 3 by 1 m cylindrical craft in deep space, a 2 °/s initial rotation rate can be removed from the cylinder within 3 days, using electric potentials up to 30 kV.
Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods.
Bizarro, C V; Alemany, A; Ritort, F
2012-08-01
RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na(+)]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg(2+) salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs. PMID:22492710
Study of New Start Method for Position Sensorless Brushless DC Motor
NASA Astrophysics Data System (ADS)
Kawabata, Yukio; Endo, Tsunehiro; Takakura, Yuhachi; Ishii, Makoto
The position sensor-less drive technique based on the back electromotive force (EMF) has been widely used for brush-less DC motor drives. However, it is impossible to detect the rotor position at low-speed by using this technique. Therefore, the motor must be accelerated by the open loop based synchronous drive up to the middle speed. The open loop based synchronous drive extremely influences the motor performance. The torque pulsation and the over current can be occurred by using that. This paper proposes a new start method for the brush-less DC motors. In this method, the rotor position can be detected the moment the motor is driven. As a result, the open loop based synchronous drive can be eliminated, rapid acceleration and high performance of the motor drives are achieved. Effectiveness of the proposed method is shown by experimental results.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
Grundlingh, A A; Grossman, E S; Shrivastava, S; Witcomb, M J
2013-10-01
This study compared digital and visual colour tooth colour assessment methods in a sample of 99 teeth consisting of incisors, canines and pre-molars. The teeth were equally divided between Control, Ozicure Oxygen Activator bleach and Opalescence Quick bleach and subjected to three treatments. Colour readings were recorded at nine intervals by two assessment methods, VITA Easyshade and VITAPAN 3D MASTER TOOTH GUIDE, giving a total of 1782 colour readings. Descriptive and statistical analysis was undertaken using a GLM test for Analysis of Variance for a Fractional Design set at a significance of P < 0.05. Atomic force micros copy was used to examine treated ename surfaces and establish surface roughness. Visual tooth colour assessment showed significance for the independent variables of treatment, number of treatments, tooth type and the combination tooth type and treatment. Digital colour assessment indicated treatment and tooth type to be of significance in tooth colour change. Poor agreement was found between visual and digital colour assessment methods for Control and Ozicure Oxygen Activator treatments. Surface roughness values increased two-fold for Opalescence Quick specimens over the two other treatments, implying that increased light scattering improved digital colour reading. Both digital and visual colour matching methods should be used in tooth bleaching studies to complement each other and to compensate for deficiencies. PMID:24660413
Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method.
Ferré, Nicolas; Assfeld, Xavier; Rivail, Jean-Louis
2002-04-30
The pure quantum mechanics method, called Local Self-Consistent Field (LSCF), that allows to optimize a wave function within the constraint that some predefined spinorbitals are kept frozen, is discussed. These spinorbitals can be of any shape, and their occupation numbers can be 0 or 1. Any post-Hartree-Fock method, based on the restricted or unrestricted Hartree-Fock Slater determinant, and Kohn-Sham-based DFT method are available. The LSCF method is easily applied to hybrid quantum mechanics/molecular mechanics (QM/MM) procedure where the quantum and the classical parts are covalently bonded. The complete methodology of our hybrid QM/MM scheme is detailed for studies of macromolecular systems. Not only the energy but also the gradients are derived; thus, the full geometry optimization of the whole system is feasible. We show that only specific force field parameters are needed for a correct description of the molecule, they are given for some general chemical bonds. A careful analysis of the errors induced by the use of molecular mechanics in hybrid computation show that a general procedure can be derived to obtain accurate results at low computation effort. The methodology is applied to the structure determination of the crambin protein and to Menshutkin reactions between primary amines and chloromethane. PMID:11939595
ERIC Educational Resources Information Center
Grim, Nancy C.
This paper reports on a study that used Hestenes' Force Concept Inventory (FCI) to describe Newtonian force concepts and misconception belief systems held by preservice teachers in physical science and physics students attending an urban university in Chicago, Illinois. Results indicate that constructivist instruction in force concepts was of…
NASA Astrophysics Data System (ADS)
Mo, M. Y.; Kantorovich, L.
2001-02-01
We apply the non-equilibrium statistical operator method to non-contact atomic force microscopy, considering explicitly the statistical effects of (classical) vibrations of surface atoms and associated energy transfer from the tip to the surface. We derive several, physically and mathematically equivalent, forms of the equation of motion for the tip, each containing a friction term due to the so-called intrinsic mechanism of energy dissipation first suggested by Gauthier and Tsukada. Our exact treatment supports the results of some earlier work which were all approximate. We also demonstrate, using the same theory, that the distribution function of the tip in the coordinate-momentum phase subspace is governed by the Fokker-Planck equation and should be considered as strongly peaked around the exact values t and t of the momentum and the position of the tip, respectively.
Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method
NASA Technical Reports Server (NTRS)
Chander, R.
1990-01-01
The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.
Campo, A.; Tebeest, K.; Lacoa, U.; Morales, J.C.
1996-10-01
A semianalytic analysis of in-tube turbulent forced convection is performed whose special computational feature is the combination of the method of lines, the finite volume technique, and a radial coordinate transformation. First, a numerical solution of the momentum equation was obtained by a simple Runge-Kutta integration scheme. Second, the energy equation was reformulated into a system of ordinary differential equations of first order. Each equation in the system controls the temperature along a line in a mesh consisting of concentric lines. Reliable analytic solutions for the temperature distribution of fluids in the region of thermal development can be determined for combinations of Reynolds and Prandtl numbers. Predicted results for the distributions of mean bulk temperature and local Nusselt numbers for air, water, and oils compare satisfactorily with the available experimental data.
Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop
Sali, Andrej; Berman, Helen M.; Schwede, Torsten; Trewhella, Jill; Kleywegt, Gerard; Burley, Stephen K.; Markley, John; Nakamura, Haruki; Adams, Paul; Bonvin, Alexandre M.J.J.; Chiu, Wah; Dal Peraro, Matteo; Di Maio, Frank; Ferrin, Thomas E.; Grünewald, Kay; Gutmanas, Aleksandras; Henderson, Richard; Hummer, Gerhard; Iwasaki, Kenji; Johnson, Graham; Lawson, Catherine L.; Meiler, Jens; Marti-Renom, Marc A.; Montelione, Gaetano T.; Nilges, Michael; Nussinov, Ruth; Patwardhan, Ardan; Rappsilber, Juri; Read, Randy J.; Saibil, Helen; Schröder, Gunnar F.; Schwieters, Charles D.; Seidel, Claus A. M.; Svergun, Dmitri; Topf, Maya; Ulrich, Eldon L.; Velankar, Sameer; Westbrook, John D.
2016-01-01
Summary Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models? PMID:26095030
Method and apparatus for simulating gravitational forces on a living organism
NASA Technical Reports Server (NTRS)
Thornton, W. E. (Inventor)
1983-01-01
A method and apparatus for simulating gravitational forces on a living organism wherein a series of negative pressures are externally applied to successive length-wise sections of a lower limb of the organism. The pressures decreasing progressively with distance of said limb sections from the heart of the organism. A casing defines a chamber adapted to contain the limb of the organism and is rigidified to resist collapse upon the application of negative pressures to the interior of the chamber. Seals extend inwardly from the casing for effective engagement with the limb of the organism and, in cooperation with the limb, subdivide the chamber into a plurality of compartments each in negative pressure communicating relation with the limb.
Multipolar Ewald Methods, 2: Applications Using a Quantum Mechanical Force Field
2015-01-01
A fully quantum mechanical force field (QMFF) based on a modified “divide-and-conquer” (mDC) framework is applied to a series of molecular simulation applications, using a generalized Particle Mesh Ewald method extended to multipolar charge densities. Simulation results are presented for three example applications: liquid water, p-nitrophenylphosphate reactivity in solution, and crystalline N,N-dimethylglycine. Simulations of liquid water using a parametrized mDC model are compared to TIP3P and TIP4P/Ew water models and experiment. The mDC model is shown to be superior for cluster binding energies and generally comparable for bulk properties. Examination of the dissociative pathway for dephosphorylation of p-nitrophenylphosphate shows that the mDC method evaluated with the DFTB3/3OB and DFTB3/OPhyd semiempirical models bracket the experimental barrier, whereas DFTB2 and AM1/d-PhoT QM/MM simulations exhibit deficiencies in the barriers, the latter for which is related, in part, to the anomalous underestimation of the p-nitrophenylate leaving group pKa. Simulations of crystalline N,N-dimethylglycine are performed and the overall structure and atomic fluctuations are compared with the experiment and the general AMBER force field (GAFF). The QMFF, which was not parametrized for this application, was shown to be in better agreement with crystallographic data than GAFF. Our simulations highlight some of the application areas that may benefit from using new QMFFs, and they demonstrate progress toward the development of accurate QMFFs using the recently developed mDC framework. PMID:25691830
Nuclear spin imaging with hyperpolarized nuclei created by brute force method
NASA Astrophysics Data System (ADS)
Tanaka, Masayoshi; Kunimatsu, Takayuki; Fujiwara, Mamoru; Kohri, Hideki; Ohta, Takeshi; Utsuro, Masahiko; Yosoi, Masaru; Ono, Satoshi; Fukuda, Kohji; Takamatsu, Kunihiko; Ueda, Kunihiro; Didelez, Jean-P.; Prossati, Giorgio; de Waard, Arlette
2011-05-01
We have been developing a polarized HD target for particle physics at the SPring-8 under the leadership of the RCNP, Osaka University for the past 5 years. Nuclear polarizaton is created by means of the brute force method which uses a high magnetic field (~17 T) and a low temperature (~ 10 mK). As one of the promising applications of the brute force method to life sciences we started a new project, "NSI" (Nuclear Spin Imaging), where hyperpolarized nuclei are used for the MRI (Magnetic Resonance Imaging). The candidate nuclei with spin ½hslash are 3He, 13C, 15N, 19F, 29Si, and 31P, which are important elements for the composition of the biomolecules. Since the NMR signals from these isotopes are enhanced by orders of magnitudes, the spacial resolution in the imaging would be much more improved compared to the practical MRI used so far. Another advantage of hyperpolarized MRI is that the MRI is basically free from the radiation, while the problems of radiation exposure caused by the X-ray CT or PET (Positron Emission Tomography) cannot be neglected. In fact, the risk of cancer for Japanese due to the radiation exposure through these diagnoses is exceptionally high among the advanced countries. As the first step of the NSI project, we are developing a system to produce hyperpolarized 3He gas for the diagnosis of serious lung diseases, for example, COPD (Chronic Obstructive Pulmonary Disease). The system employs the same 3He/4He dilution refrigerator and superconducting solenoidal coil as those used for the polarized HD target with some modification allowing the 3He Pomeranchuk cooling and the following rapid melting of the polarized solid 3He to avoid the depolarization. In this report, the present and future steps of our project will be outlined with some latest experimental results.
NASA Astrophysics Data System (ADS)
Kang, Jae-Hoon
2016-09-01
Hysterically damped free and forced vibrations of axial and torsional bars are investigated using a closed form exact method. The method is exact and yields closed form expressions for the vibratory displacements. This is in contrast with the well known eigenfunction superposition method which requires expressing the distributed forcing functions and the displacement response functions as infinite sums of free vibration eigenfunctions. The hysterically damped free vibration frequencies and corresponding damped mode shapes are calculated and plotted instead of undamped free vibration and mode shapes which is typically computed and applied in vibration problems. The hysterically damped natural frequency equations are exactly derived. Accurate axial or torsional amplitude vs. forcing frequency curves showing the forced response due to distributed loading are displayed with various hysteretic damping parameters.
Method to measure the force to pull and to break pin bones of fish.
Balaban, Murat O; Jie, Hubert; Yin Yee, Yin; Alçiçek, Zayde
2015-02-01
A texture measurement device was modified to measure the force required to pull pin bones from King salmon (Oncorhynchus tshawytscha), snapper (Pagrus auratus), and kahawai (Arripis trutta). Pulled bones were also subjected to tension to measure the breaking force. For all fish, the pulling force depended on the size of the fish, and on the length of the pin bone (P < 0.05). In general, larger fish required greater pulling force to remove pin bones. For example, fresh small salmon (about 1500 g whole) required 600 g on average to pull pin bones, and large fish (about 3700 g whole) required 850 g. Longer bones required greater pulling force. The breaking force followed the same trend. In general, the breaking force was greater than the pulling force. This allows the removal of the bones without breaking them. There was no statistically significant (P > 0.05) difference between the forces (both pulling and breaking) from fresh and frozen/thawed samples, although in general frozen/thawed samples required less force to pull. With the quantification of pulling and breaking forces for pin bones, it is possible to design and build better, "more intelligent" pin bone removal equipment. PMID:25604165
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; To, S.
2014-08-01
Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-01
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
Identifying a robust method to build RCMs ensemble as climate forcing for hydrological impact models
NASA Astrophysics Data System (ADS)
Olmos Giménez, P.; García Galiano, S. G.; Giraldo-Osorio, J. D.
2016-06-01
The regional climate models (RCMs) improve the understanding of the climate mechanism and are often used as climate forcing to hydrological impact models. Rainfall is the principal input to the water cycle, so special attention should be paid to its accurate estimation. However, climate change projections of rainfall events exhibit great divergence between RCMs. As a consequence, the rainfall projections, and the estimation of uncertainties, are better based in the combination of the information provided by an ensemble approach from different RCMs simulations. Taking into account the rainfall variability provided by different RCMs, the aims of this work are to evaluate the performance of two novel approaches based on the reliability ensemble averaging (REA) method for building RCMs ensembles of monthly precipitation over Spain. The proposed methodologies are based on probability density functions (PDFs) considering the variability of different levels of information, on the one hand of annual and seasonal rainfall, and on the other hand of monthly rainfall. The sensitivity of the proposed approaches, to two metrics for identifying the best ensemble building method, is evaluated. The plausible future scenario of rainfall for 2021-2050 over Spain, based on the more robust method, is identified. As a result, the rainfall projections are improved thus decreasing the uncertainties involved, to drive hydrological impacts models and therefore to reduce the cumulative errors in the modeling chain.
An Improved Calibration Method for Hydrazine Monitors for the United States Air Force
Korsah, K
2003-07-07
This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentration of the sample atmosphere in the interface module. The Kintek reference gas is then used to calibrate the hydrazine monitors. Thus, coulometric titration is only used to periodically assess the performance of the Kintek reference gas generation system, and is not required for hydrazine monitor calibrations. One advantage of using coulometric titration for verifying the concentration of the reference gas is that it is a primary standard (if used for simple solutions), thereby guaranteeing, in principle, that measurements will be traceable to SI units (i.e., to the mole). The effect of humidity of the reference gas was characterized by using the results of concentrations determined by coulometric titration to develop a humidity correction graph for the Kintek 491 reference gas generation system. Using this calibration method, calibration uncertainty has been reduced by 50% compared to the current method used to calibrate hydrazine monitors in the Air Force inventory and calibration time has also been reduced by more than 20%. Significant findings from studies documented in this report are the following: (1) The Kintek 491 reference gas generation system (generator, humidifier and interface module) can be used to calibrate hydrazine detectors. (2) The Kintek system output
The adaptive buffered force QM/MM method in the CP2K and AMBER software packages
Mones, Letif; Jones, Andrew; Götz, Andreas W; Laino, Teodoro; Walker, Ross C; Leimkuhler, Ben; Csányi, Gábor; Bernstein, Noam
2015-01-01
The implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25649827
Comparative analysis of methods for determining bite force in the spiny dogfish Squalus acanthias.
Huber, Daniel Robert; Motta, Philip Jay
2004-01-01
Many studies have identified relationships between the forces generated by the cranial musculature during feeding and cranial design. Particularly important to understanding the diversity of cranial form amongst vertebrates is knowledge of the generated magnitudes of bite force because of its use as a measure of ecological performance. In order to determine an accurate morphological proxy for bite force in elasmobranchs, theoretical force generation by the quadratomandibularis muscle of the spiny dogfish Squalus acanthias was modeled using a variety of morphological techniques, and lever-ratio analyses were used to determine resultant bite forces. These measures were compared to in vivo bite force measurements obtained with a pressure transducer during tetanic stimulation experiments of the quadratomandibularis. Although no differences were found between the theoretical and in vivo bite forces measured, modeling analyses indicate that the quadratomandibularis muscle should be divided into its constituent divisions and digital images of the cross-sections of these divisions should be used to estimate cross-sectional area when calculating theoretical force production. From all analyses the maximum bite force measured was 19.57 N. This relatively low magnitude of bite force is discussed with respect to the ecomorphology of the feeding mechanism of S. acanthias to demonstrate the interdependence of morphology, ecology, and behavior in organismal design. PMID:14695686
NASA Astrophysics Data System (ADS)
Vuolo, M. R.; Schulz, M.; Balkanski, Y.; Takemura, T.
2014-01-01
The quantification and understanding of direct aerosol forcing is essential in the study of climate. One of the main issues that makes its quantification difficult is the lack of a complete understanding of the role of the vertical distribution of aerosols and clouds. This work aims at reducing the uncertainty of aerosol top-of-the-atmosphere (TOA) forcing due to the vertical superposition of several short-lived atmospheric components, in particular different aerosol species and clouds. We propose a method to quantify the contribution of different parts of the atmospheric column to the TOA forcing as well as to evaluate the contribution to model differences that is exclusively due to different spatial distributions of aerosols and clouds. We investigate the contribution of aerosol above, below and in clouds by using added diagnostics in the aerosol-climate model LMDz. We also compute the difference between the TOA forcing of the ensemble of the aerosols and the sum of the forcings from individual species in clear sky. This difference is found to be moderate for the global average (14%) but can reach high values regionally (up to 100%). Nonlinear effects are even more important when superposing aerosols and clouds. Four forcing computations are performed: one where the full aerosol 3-D distribution is used, and then three where aerosols are confined to regions above, inside and below clouds, respectively. We find that the TOA forcing of aerosols depends crucially on the presence of clouds and on their position relative to that of the aerosol, in particular for black carbon (BC). We observe a strong enhancement of the TOA forcing of BC above clouds, attenuation for BC below clouds, and a moderate enhancement when BC is found within clouds. BC above clouds accounts for only about 30% of the total BC optical depth but for 55% of the forcing, while forcing efficiency increases by a factor of 7.5 when passing from below to above clouds. The different behaviour of forcing
NASA Astrophysics Data System (ADS)
Nesterov, Vladimir
2009-08-01
A nanonewton force facility, based on a disk-pendulum with electrostatic stiffness reduction and electrostatic force compensation, for the measurement of horizontal forces in the range below 1 µN, is presented. It consists of a measuring system and an identical reference system. Recent experiments with the nanonewton force facility have achieved agreement between an electrostatic force and a gravitational force of 80 nN with an uncertainty of less than 3%. A novel method for measurements of the air (vacuum) permittivity at zero frequencies by means of the nanonewton force facility is presented. First measurements in air show a permittivity of the air ɛ ≈ 8.71 × 10-12 F m-1 with an uncertainty of 3%. From a theoretical analysis, it follows that this method can be used for the measurement of the vacuum permittivity ɛ0 at zero frequencies with a relative uncertainty of about 10-5. The precise measurement of the vacuum permittivity ɛ0 for an electrostatic field would be another test for the correctness of Maxwell's equations.
NASA Astrophysics Data System (ADS)
Parvanova, Sonia
2012-03-01
An idea related to the calculation of stress intensity factors based on the standard appearance of the force-displacement curve is developed in this paper. The presented procedure predicts the shape of the graphics around the point under consideration form where indirectly the stress intensity factors are obtained. The numerical implementation of the new approach is achieved by using element free Galerkin method, which is a variant of meshless methods and requires only nodal data for a domain discretization without a finite element mesh. A MATLAB software code for two dimensional elasticity problems has been worked out, along with intrinsic basis enrichment for precise modelling of the singular stress field around the crack tip. One numerical example of a rectangular plate with different lengths of a symmetric edge crack is portrayed. The stress intensity factors obtained by the present numerical approach are compared with analytical solutions. The errors in the stress intensity factors for opening fracture mode I are less than 1% although the model mesh is relatively coarse.
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.
1991-01-01
The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's, (2) the cluster or field CC's, and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown. The utilization of CC's has resulted in the novel integrated force method (IFM). The solution that is obtained by the IFM converges with a significantly fewer number of elements, compared to the stiffness and the hybrid methods.
Effective method to measure back emfs and their harmonics of permanent magnet ac motors
NASA Astrophysics Data System (ADS)
Jiang, Q.; Bi, C.; Lin, S.
2006-04-01
As the HDD spindle motors become smaller and smaller, the back electromotive forces (emfs) measurement faces the new challenges due to their low inertias and small sizes. This article proposes a novel method to measure the back emfs and their harmonic components of PM ac motors only through a freewheeling procedure. To eliminate the influence of the freewheeling deceleration, the phase flux linkages are employed to obtain the back emf amplitudes and phases of the fundamental and harmonic components by using finite Fourier series analysis. The proposed method makes the freewheeling measurement of the back emfs and their harmonics accurate and fast. It is especially useful for the low inertia PM ac motors, such as spindle motors for small form factor HDDs.
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.
1990-01-01
Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.
ERIC Educational Resources Information Center
Anker, Richard
1983-01-01
This article discusses the difficulties involved in obtaining accurate labor force data for Third World women, from the point of view of interviewers, respondents, and labor statisticians or economists. Suggestions are then made regarding alternative definitions of the labor force and survey questionnaire structures in order to overcome some of…
Method for imaging liquid and dielectric materials with scanning polarization force microscopy
Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong
1999-01-01
The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.
Method for imaging liquid and dielectric materials with scanning polarization force microscopy
Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.
1999-03-09
The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.
Seru, Surbhi; Romanyk, Dan L; Toogood, Roger W; Carey, Jason P; Major, Paul W
2014-01-01
Introduction: The objectives of this study were to determine whether there is a difference in the magnitude of forces and moments produced by elastic ligation when compared to passive ligation, and whether these forces and moments propagate differently along the arch for the two ligation types. A lingual incisor malalignment was used in this study. Methods: The Orthodontic Simulator (OSIM) was used to quantify the three-dimensional forces and moments applied on the teeth given a lingually displaced incisor. A repeated measures MANOVA was performed to statistically analyze the data. Results: The interaction factor illustrated convincing evidence that there is a difference in maximum force and moment values for all outcome variables between ligation types considering all tooth positions along the arch. The mean differences for FX and FY between ligation types were found to be clinically significant, with values for elastic ligation consistently higher than passive ligation. Conclusion: It was found that the maximum forces and moments produced by elastic ligation are greater than those produced by passive ligation and that the magnitude of this difference for the mesiodistal and buccolingual forces is clinically relevant. Additionally, it was determined that elastic ligation causes forces and moments to propagate further along the arch than passive ligation for all outcome variables. PMID:25400715
Active Design Method for the Static Characteristics of a Piezoelectric Six-Axis Force/Torque Sensor
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2014-01-01
To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezoelectric six-axis force sensor experimental prototype is developed according to the analytical mathematical model and numerical simulation model, and selected static characteristic parameters (including sensitivity, isotropic degree and cross-coupling) are tested using this model with three approaches. The measured results are in agreement with the analytical results from the static-active design method. Therefore, this study has successfully established a foundation for further research into the piezoelectric multi-axis force sensor and an overall design approach based on static characteristics. PMID:24451460
Active design method for the static characteristics of a piezoelectric six-axis force/torque sensor.
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2014-01-01
To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezoelectric six-axis force sensor experimental prototype is developed according to the analytical mathematical model and numerical simulation model, and selected static characteristic parameters (including sensitivity, isotropic degree and cross-coupling) are tested using this model with three approaches. The measured results are in agreement with the analytical results from the static-active design method. Therefore, this study has successfully established a foundation for further research into the piezoelectric multi-axis force sensor and an overall design approach based on static characteristics. PMID:24451460
Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air
NASA Technical Reports Server (NTRS)
Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.
2009-01-01
We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.
Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.
2015-04-21
Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that
Hasan, Md Sharif; Kayesh, Ruhul; Begum, Farida; Rahman, S M Abdur
2016-01-01
The aim of our current research was to synthesize some transition metal complexes of Naproxen, determine their physical properties, and examine their relative stability under various conditions. Characterizations of these complexes were done by 1H-NMR, Differential Scanning Calorimetry (DSC), FT-IR, HPLC, and scanning electron microscope (SEM). Complexes were subjected to acidic, basic, and aqueous hydrolysis as well as oxidation, reduction, and thermal degradation. Also the reversed phase high-performance liquid chromatography (RP-HPLC) method of Naproxen outlined in USP was verified for the Naproxen-metal complexes, with respect to accuracy, precision, solution stability, robustness, and system suitability. The melting points of the complexes were higher than that of the parent drug molecule suggesting their thermal stability. In forced degradation study, complexes were found more stable than the Naproxen itself in all conditions: acidic, basic, oxidation, and reduction media. All the HPLC verification parameters were found within the acceptable value. Therefore, it can be concluded from the study that the metal complexes of Naproxen can be more stable drug entity and offer better efficacy and longer shelf life than the parent Naproxen. PMID:27034891
Usukura, Eiji; Narita, Akihiro; Yagi, Akira; Ito, Shuichi; Usukura, Jiro
2016-01-01
An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5-6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology. PMID:27273367
A comparison of reconstruction methods for undersampled atomic force microscopy images.
Luo, Yufan; Andersson, Sean B
2015-12-18
Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip-sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images. PMID:26585418
A comparison of reconstruction methods for undersampled atomic force microscopy images
NASA Astrophysics Data System (ADS)
Luo, Yufan; Andersson, Sean B.
2015-12-01
Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip-sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images.
NASA Astrophysics Data System (ADS)
Nagasaka, Y.; Hatakeyama, T.; Okuda, M.; Nagashima, A.
1988-07-01
This article is devoted to the theory and experiment of the forced Rayleigh scattering method for measurement of thermal diffusivity of liquids which can be employed in the form of an instrument operated optically in a contact-free manner. The theoretical considerations included are: (1) effect of cell wall, (2) effect of dye, (3) effect of Gaussian beam intensity distribution, (4) effect of heating duration time, and (5) effect of coupled dye and wall for a heavily absorbing sample. The errors caused by inadequate setting of optical conditions are also analyzed: (1) effects of grating thickness and (2) effects of initial temperature amplitude. Experimental verifications of the theory have been carried out through the measurements on toluene and water as standard reference substances. As a result of these experiments and theory, the criteria for optimum measuring conditions became available. To demonstrate the applicability of the present theory and the apparatus, the thermal diffusivities of toluene and methanol have been measured near room temperature under atmospheric pressure. The accuracy of the present measurement is estimated to be ±3%.