Science.gov

Sample records for electron density profiles

  1. Electron Density Profiles of the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinsch, Bodo W.; Bilitza, Dieter; Benson, Robert F.

    2002-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h,F2 to - 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis- status.htm1. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling - 70% of the ionograms. An <> is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  2. Electron density profile description in the international reference ionosphere

    NASA Technical Reports Server (NTRS)

    Rawer, K.; Bilitza, D.

    1989-01-01

    Problems encountered during efforts to reformulate the IRI description of the electron density profile are examined. Consideration is given to Booker's (1979) proposal that the unique, analytic profile functions should cover the entire ionospheric height range. The IRI topside model is reviewed and the electron density profile of the middle and lower ionosphere are discussed. Rawer's (1983) procedure for combining the topside, middle, and lower ionospheric profiles into one analytic profile is reviewed.

  3. Electron density profile description in the international reference ionosphere

    NASA Astrophysics Data System (ADS)

    Rawer, K.; Bilitza, D.

    1989-10-01

    Problems encountered during efforts to reformulate the IRI description of the electron density profile are examined. Consideration is given to Booker's (1979) proposal that the unique, analytic profile functions should cover the entire ionospheric height range. The IRI topside model is reviewed and the electron density profile of the middle and lower ionosphere are discussed. Rawer's (1983) procedure for combining the topside, middle, and lower ionospheric profiles into one analytic profile is reviewed.

  4. Ionospheric electron density profile estimation using commercial AM broadcast signals

    NASA Astrophysics Data System (ADS)

    Yu, De; Ma, Hong; Cheng, Li; Li, Yang; Zhang, Yufeng; Chen, Wenjun

    2015-08-01

    A new method for estimating the bottom electron density profile by using commercial AM broadcast signals as non-cooperative signals is presented in this paper. Without requiring any dedicated transmitters, the required input data are the measured elevation angles of signals transmitted from the known locations of broadcast stations. The input data are inverted for the QPS model parameters depicting the electron density profile of the signal's reflection area by using a probabilistic inversion technique. This method has been validated on synthesized data and used with the real data provided by an HF direction-finding system situated near the city of Wuhan. The estimated parameters obtained by the proposed method have been compared with vertical ionosonde data and have been used to locate the Shijiazhuang broadcast station. The simulation and experimental results indicate that the proposed ionospheric sounding method is feasible for obtaining useful electron density profiles.

  5. Electron density spatial profiles of the DCP source

    NASA Astrophysics Data System (ADS)

    Zander, Andrew T.; Miller, Myron H.

    Electron densities are measured in the high current, analytical and intervening zones of a DCP whose operating parameters are systematically varied. Detailed Ne distribution profiles are obtained for various sleeve flow, nebulizer flow, arc current and matrix concentration regimes. Flowing argon is found to establish a thermal pinch in the high current zone and to steepen gradients in plasmas employed for spectrochemical analysis. The distinctive electron density distributions in the DCP are more sensitive to modulation of gas flow variables than to changes in arc current. Magnetic pressure has no discernible role in pinch formation. Electron densities in spectroscopic regions are minimally affected by easily ionized or other matrix constituents at usual analytical concentrations.

  6. Automated Processing of ISIS Topside Ionograms into Electron Density Profiles

    NASA Technical Reports Server (NTRS)

    Reinisch, bodo W.; Huang, Xueqin; Bilitza, Dieter; Hills, H. Kent

    2004-01-01

    Modeling of the topside ionosphere has for the most part relied on just a few years of data from topside sounder satellites. The widely used Bent et al. (1972) model, for example, is based on only 50,000 Alouette 1 profiles. The International Reference Ionosphere (IRI) (Bilitza, 1990, 2001) uses an analytical description of the graphs and tables provided by Bent et al. (1972). The Alouette 1, 2 and ISIS 1, 2 topside sounder satellites of the sixties and seventies were ahead of their times in terms of the sheer volume of data obtained and in terms of the computer and software requirements for data analysis. As a result, only a small percentage of the collected topside ionograms was converted into electron density profiles. Recently, a NASA-funded data restoration project has undertaken and is continuing the process of digitizing the Alouette/ISIS ionograms from the analog 7-track tapes. Our project involves the automated processing of these digital ionograms into electron density profiles. The project accomplished a set of important goals that will have a major impact on understanding and modeling of the topside ionosphere: (1) The TOPside Ionogram Scaling and True height inversion (TOPIST) software was developed for the automated scaling and inversion of topside ionograms. (2) The TOPIST software was applied to the over 300,000 ISIS-2 topside ionograms that had been digitized in the fkamework of a separate AISRP project (PI: R.F. Benson). (3) The new TOPIST-produced database of global electron density profiles for the topside ionosphere were made publicly available through NASA s National Space Science Data Center (NSSDC) ftp archive at . (4) Earlier Alouette 1,2 and ISIS 1, 2 data sets of electron density profiles from manual scaling of selected sets of ionograms were converted fiom a highly-compressed binary format into a user-friendly ASCII format and made publicly available through nssdcftp.gsfc.nasa.gov. The new database for the topside

  7. Metastable atom probe for measuring electron beam density profiles

    NASA Technical Reports Server (NTRS)

    Lockhart, J. M.; Zorn, J. C.

    1972-01-01

    Metastable atom probe was developed for measuring current density in electron beam as function of two arbitrary coordinates, with spatial resolution better than 0.5 mm. Probe shows effects of space charge, magnetic fields, and other factors which influence electron current density, but operates with such low beam densities that introduced perturbation is very small.

  8. Measurements of electron density profiles using an angular filter refractometer

    SciTech Connect

    Haberberger, D. Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H.

    2014-05-15

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.

  9. Electron trapping and acceleration across a parabolic plasma density profile.

    PubMed

    Kim, J U; Hafz, N; Suk, H

    2004-02-01

    It is known that as a laser wakefield passes through a downward density transition in a plasma some portion of the background electrons are trapped in the laser wakefield and the trapped electrons are accelerated to relativistic high energies over a very short distance. In this study, by using a two-dimensional (2D) particle-in-cell (PIC) simulation, we suggest an experimental scheme that can manipulate electron trapping and acceleration across a parabolic plasma density channel, which is easier to produce and more feasible to apply to the laser wakefield acceleration experiments. In this study, 2D PIC simulation results for the physical characteristics of the electron bunches that are emitted from the parabolic density plasma channel are reported in great detail. PMID:14995568

  10. Electron density profiles in the plasmasphere and trough

    NASA Astrophysics Data System (ADS)

    Laakso, H.; Masson, A.

    The plasmasphere is a manifestation of an ionospheric ion outflow that corotates with the Earth's magnetic field. This region has been studied for several decades but we still have lack of good empirical model for it. Since year 1996, the Polar satellite has passed through the inner magnetosphere more than 5,000 times, crossing the plasmapause region more than 15,000 times (sometimes four times per 18-hr orbit). Using the electron densities provided by the EFI experiment, we study statistically the density variation at L = 3-12 shells. With a power law fitting, we determine the plasmapause (PP) location and thickness, and the power law index of density slope in the plasmasphere and trough region. All characteristics reveal strong and interesting variations with MLT and Kp. The average PP location moves from L = 5 to L = 3.5 with increasing Kp. For any Kp, however, the MLT dependence is clear; both dawn- and duskside show particularly interesting activity. The PP thickness decreases with increasing Kp from 0.7 L to 0.1 L. Particularly on the nightside the plasmapause becomes very steep during increasing geomagnetic activity. On the dayside the PP thickness tends to remain always quite large (0.4-0.8 L). The trough power law index k (density is proportional to L-k) shows strong behavior with both MLT and Kp; for instance, in the post-midnight sector k decreases from 5 to 3 with increasing Kp whereas in the pre-midnight sector the change occurs between 4 and 3. Near noon k is 2.5 for all Kp conditions.

  11. An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Yue, X.; Schreiner, W. S.

    2015-10-01

    An improved method to retrieve electron density profiles from Global Positioning System (GPS) radio occultation (RO) data is presented and applied to Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations. The improved inversion uses a monthly grid of COSMIC F region peak densities (NmF2), which are obtained via the standard Abel inversion, to aid the Abel inversion by providing information on the horizontal gradients in the ionosphere. This lessens the impact of ionospheric gradients on the retrieval of GPS RO electron density profiles, reducing the dominant error source in the standard Abel inversion. Results are presented that demonstrate the NmF2 aided retrieval significantly improves the quality of the COSMIC electron density profiles. Improvements are most notable at E region altitudes, where the improved inversion reduces the artificial plasma cave that is generated by the Abel inversion spherical symmetry assumption at low latitudes during the daytime. Occurrence of unphysical negative electron densities at E region altitudes is also reduced. Furthermore, the NmF2 aided inversion has a positive impact at F region altitudes, where it results in a more distinct equatorial ionization anomaly. COSMIC electron density profiles inverted using our new approach are currently available through the University Corporation for Atmospheric Research COSMIC Data Analysis and Archive Center. Owing to the significant improvement in the results, COSMIC data users are encouraged to use electron density profiles based on the improved inversion rather than those inverted by the standard Abel inversion.

  12. Using tomography of GPS TEC to routinely determine ionospheric average electron density profiles

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.; Dyson, P. L.; Essex, E. A.

    2007-03-01

    This paper introduces a technique that calculates average electron density (Ne) profiles over a wide geographic area of coverage, using tomographic ionospheric Ne profiles. These Ne profiles, which can provide information of the Ne distribution up to global positioning system (GPS) orbiting altitude (with the coordination of space-based GPS tomographic profiles), can be incorporated into the next generation of the international reference ionosphere (IRI) model. An additional advantage of tomography is that it enables accurate modeling of the topside ionosphere. By applying the tomographic reconstruction approach to ground-based GPS slant total electron content (STEC), we calculate 3-h average Ne profiles over a wide region. Since it uses real measurement data, tomographic average Ne profiles describe the ionosphere during quiet and disturbed periods. The computed average Ne profiles are compared with IRI model profiles and average Ne profiles obtained from ground-based ionosondes.

  13. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    SciTech Connect

    Deng, B. H.; Kinley, J. S.; Schroeder, J.

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  14. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  15. Real time reconstruction of 3-D electron density distribution over Europe with TaD profiler

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Marinov, Pencho; Belehaki, Anna

    2015-04-01

    TaD (TSM-assisted Digisonde) profiler, developed on the base of Topside Sounder Model (TSM), provides vertical electron density profile (EDP) from the bottom of ionosphere up to the GNSS orbit heights over Digisonde sounding stations. TaD EDP uses the bottomside profile provided by Digisonde software and extends it above the F layer peak by representing O+ distribution by α-Chapman formula and H+ distribution by a single exponent. The profile above F layer peak takes the topside scale height HT and transition height hT from TSM and plasmasphere scale height Hp defined as a function of HT. All these profile parameters are adjusted to the current conditions by comparing the profile integral with measured GNSS TEC. The latter is taken from GNSS TEC maps produced by Royal Observatory of Belgium in the area (35˚, 60˚)N and (-15˚, 25˚)E. Maps of foF2 and hmF2 are produced in the same area on the base of DIAS (European Digital Upper Atmosphere Server) network of Digisonde stations and TaD profiles are calculated at all grid nodes (1˚x1˚) on latitude and longitude. Electron density at any point of the 3-D space is then obtained by simple interpolation between nodes. Possible use of reconstruction technique to GNSS applications is demonstrated by calculating the distribution of electron density along various ray paths of GNSS signals.

  16. Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Cui, J.; Guo, P.; Li, J. L.; Ping, J. S.; Jian, N. C.; Zhang, K. F.

    2015-05-01

    The S- and X-band dual-frequency Doppler radio occultation observations obtained by the Mars Express Radio Science (MaRS) experiments are reduced in this study. A total of 414 Martian electron density profiles are retrieved covering the period from DOY 93 2004 to DOY 304 2012. These observations are well distributed over both longitude and latitude, with Sun-Mars distance varying from 1.38 AU to 1.67 AU, the solar zenith angle (SZA) ranging from 52 ° to 122 ° . Due to the improved vertical resolution for the MaRS experiments, the vertical structures of the retrieved profiles appear to be more complicated than those revealed by early radio occultation experiments. Dayside electron density profiles have primary peaks (M2) typically around 130 km and secondary peaks (M1) around 110 km. Nightside electron density profiles are highly variable, many of which do not have double layer structures. Both the dayside and nightside electron density profiles reveal some atypical features such as topside layering above M2 and bottom-side layering below M1. The former likely represent the plasma fluctuations in response to the solar wind (SW) interactions with the Martian ionosphere, whereas the latter is thought to be induced by the meteoric influx. We fit the peak electron density of profiles up to terminator with a simple power relation (Nm =N0 Chk (χ) ) , with the best-fit subsolar peak electron density being N0 = (1.499 ± 0.002) ×105cm-3 , and the best-fit power index being k = 0.513 ± 0.001 . The measured total electron content (TEC) is obtained by integrating the observed electron density profile vertically from 50 km to 400 km, which is then compared with the ideal TEC computed from the one-layer Chapman model. We find that the one-layer Chapman model can generally underestimate the measured TEC up to ∼ 0.1 TECU (1TECU = 1.0 ×1016m-2) for 55 °

  17. Application of seamless vertical profiles for use in the topside electron density modeling

    NASA Astrophysics Data System (ADS)

    Triskova, L.; Galkin, I.; Truhlik, V.; Reinisch, B. W.

    Modeling of the topside electron (ion) density profiles, usually done within the Booker formalism, greatly benefits from the recently introduced representation by the Chapman function with continuously varying scale height, dubbed a vary-Chap function. The vary-Chap function is capable of producing smooth and seamless altitude dependences from a variety of previously developed empirical models. This paper presents a successful project of using the vary-Chap function to obtain a seamless representation of the electron density profiles based on three global models; the IRI (International Reference Ionosphere) for the bottomside ionosphere and an empirical topside electron density model and an empirical upper transition height model. The results show the advantage of the proposed method and its potential for implementation in the IRI.

  18. Propagation of terahertz waves in an atmospheric pressure microplasma with Epstein electron density profile

    SciTech Connect

    Yuan Chengxun; Zhou Zhongxiang; Zhang, Jingwen W.; Sun Hongguo; Wang He; Du Yanwei; Xiang Xiaoli

    2011-03-15

    Propagation properties of terahertz (THz) waves in a bounded atmospheric-pressure microplasma (AMP) are analyzed in this study. A modified Epstein profile model is used to simulate the electron density distribution caused by the plasma sheaths. By introducing the dielectric constant of a Drude-Lorentz model and using the method of dividing the plasma into a series of subslabs with uniform electron density, the coefficients of power reflection, transmission, and absorption are derived for a bounded microplasma structure. The effects of size of microplasma, electron density profile, and collision frequency on the propagation of THz waves are analyzed numerically. The results indicate that the propagation of THz waves in AMPs depend greatly on the above three parameters. It is demonstrated that the THz wave can play an important role in AMPs diagnostics; meanwhile, the AMP can be used as a novel potential tool to control THz wave propagation.

  19. Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the

  20. Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration

    2015-11-01

    A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

  1. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  2. Assessment of precision in ionospheric electron density profiles retrieved by GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Alexander, P.; de la Torre, A.; Hierro, R.; Llamedo, P.

    2014-12-01

    The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) is a six satellite radio occultation mission that was launched in April 2006. The close proximity of these satellites during some months after launch provides a unique opportunity to evaluate the precision of Global Positioning System (GPS) radio occultation (RO) retrievals of ionospheric electron density from nearly collocated and simultaneous observations. RO data from 30 consecutive days during July and August 2006 are divided into ten groups in terms of daytime or nighttime and latitude. In all cases, the best precision values (about 1%) are found at the F peak height and they slightly degrade upwards. For all daytime groups, it is seen that electron density profiles above about 120 km height exhibit a substantial improvement in precision. Nighttime groups are rather diverse: in particular, the precision becomes better than 10% above different levels between 120 and 200 km height. Our overall results show that up to 100-200 km (depending on each group), the uncertainty associated with the precision is in the order of the measured electron density values. Even worse, the retrieved values tend sometimes to be negative. Although we cannot rely directly on electron density values at these altitudes, the shape of the profiles could be indicative of some ionospheric features (e.g. waves and sporadic E layers). Above 200 km, the profiles of precision are qualitatively quite independent from daytime or latitude. From all the nearly collocated pairs studied, only 49 exhibited a difference between line of sight angles of both RO at the F peak height larger than 10°. After analyzing them we find no clear indications of a significant representativeness error in electron density profiles due to the spherical assumption above 120 km height. Differences in precision between setting and rising GPS RO may be attributed to the modification of the processing algorithms applied to rising cases

  3. Inferring E region electron density profiles at Jicamarca from Faraday rotation of coherent scatter

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Chau, J. L.

    2001-12-01

    A new technique for measuring E region plasma density profiles in the equatorial electrojet using a bistatic coherent scatter radar is described. The technique utilizes the Faraday rotation of the obliquely and coherently scattered signal. Plasma density versus altitude is inferred from the rate of Faraday rotation as a function of range and elevation angle. A narrow beam width is required to minimize returns from unwanted azimuths, but this can be achieved in a bistatic experiment using relatively small antenna arrays with widely spaced elements. We give a sample time sequence of daytime electron density profiles that were measured with the new technique at altitudes between 95 and 110 km. Scatter from pure two-stream waves makes it possible to measure both the bottomside and topside density profiles during the day. The importance of this new technique becomes evident when one realizes that only a few rocket flights have provided density profiles through these altitudes at the magnetic equator; the region has been inaccessible to any remote sensing technique until now.

  4. Thermalization time of noble metal nanoparticles: effects of the electron density profile

    NASA Astrophysics Data System (ADS)

    López-Bastidas, C.

    2012-02-01

    The lack of d-electron screening in the s-electron spill-out region at the surface of Ag nanoparticles increases the electron-electron interaction in this region compared to the bulk. Therefore when comparing the electron-electron interaction contribution to the thermalization time of nanoparticles of varying radius, smaller particles thermalize faster due to the increased surface to bulk ratio. One aspect which has not been addressed is the effect of the spatial distribution of charge at the surface of the nanoparticle. In this work it is shown that the size dependence of the thermalization time is very sensitive to the surface density profile. The electron thermalization time of conduction electrons in noble metal nanoparticles as a function of the radius is calculated. The sensitivity of the scattering rate to the spatial distribution of charge at the surface of the nanostructure is analyzed using several model surface profiles. The change in surface charge distribution via charging or coating of the nanospheres is shown to be a tool for control and probing of the ultra-fast electron-electron dynamics in metallic nanoparticles.

  5. F region electron density profile inversion from backscatter ionogram based on international reference ionosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Zhou, Chen; Zhang, Yuannong; Yang, Guobin; Jiang, Chunhua; Sun, Hengqing; Cui, Xiao

    2015-07-01

    Ionospheric backscatter sounding transmits HF (3-30 MHz) radio wave obliquely into ionosphere and receives echoes backscattered from remote ground. Due to the focusing effect, the echoes form leading edge on the swept frequency backscatter ionogram (BSI). This kind of backscatter ionogram contains plentiful ionospheric information, such as electron density, radio wave propagation modes and maximum usage frequency (MUF). By inversion algorithm, the backscatter ionogram can provide two-dimensional electron density profile (EDP) down range. In this paper, we propose an ionospheric F2 region EDP inversion algorithm. By utilizing the F2 bottomside electron density profile represented by the International Reference Ionosphere (IRI) model and ray tracing techniques, this approach inverts the leading edge of the backscatter ionogram to two dimensional F region EDP. Results of validation experiments demonstrate that the inverted ionospheric EDPs show good agreement with the results of vertical ionosonde and provide reliable information of ionosphere. Thus the proposed inversion algorithm provide an effective and accurate method for achieving large scale and remote ionospheric electron density structure.

  6. Nighttime E-region Electron Density Profiles Measured During the EQUIS II Campaign at Kwajalein Atoll

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Pfaff, R. F.; Fourre, R.; Kudeki, E.; Steigies, C. T.; Chau, K.; Sarango, M.

    2005-05-01

    The EQUIS II nighttime E-region rocket and radar measurements were made in order to improve our understanding of the electrodynamics associated with density gradients, neutral wind shear, and enhanced electric fields that develop post-sunset in the near-equatorial region. Four rocket experiments were launched on two separate nights in September, 2004 from Kwajalein Atoll (9.4° N, 167.5° E), while simultaneous E-region radar observations were made with the ALTAIR radar. The focus of this presentation are the electron density profiles measured by two instrumented rockets as they passed through the unstable region on the upleg and downleg. Each rocket used two Langmuir probes and an impedance probe of a new design to measure both the absolute electron density and small-scale density fluctuations with spatial scales on the order of one meter. The impedance probe returned measurements from 7 kHz to 4 MHz, using a new design that excited the plasma using a pseudo-white-noise generator, allowing for an altitude resolution of approximately 40 meters. These impedance curves allow determination of the electron density from the identification of the upper hybrid frequency. In addition, evidence is presented that the impedance probe observed the lower-frequency "series" resonance which is dependent on the electron temperature. Data from the Langmuir probes, a beacon experiment, and the impedance probe are compared and the resulting density profiles are examined to estimate their contribution to the observed electric field irregularities via the gradient-drift and other instabilities.

  7. A study of the Ionospheric electron density profile with FORMOSAT-3/COSMIC observation data

    NASA Astrophysics Data System (ADS)

    Chou, Min-Yang; Tsai, Ho-Fang; Lin, Chi-Yen; Lee, I.-Te; Lin, Charles; Liu, Jann-Yenq

    2015-04-01

    The GPS Occultation Experiment payload onboard FORMOSAT-3/COSMIC microsatellite constellation is capable of scanning the ionospheric structure by the radio occultation (RO) technique to retrieve precise electron density profiles since 2006. Due to the success of FORMOSAT-3/COSMIC, the follow-on mission, FORMOSAT-7/COSMIC-2, is to launch 12 microsatellites in 2016 and 2018, respectively, with the Global Navigation Satellite Systems (GNSS) RO instrument onboard for tracking GPS, Galileo and/or GLONASS satellite signals and to provide more than 8,000 RO soundings per day globally. An overview of the validation of the FORMOSAT-3/COSMIC ionospheric profiling is given by means of the traditional Abel transform through bending angle and total electron content (TEC), while the ionospheric data assimilation is also applied, based on the Gauss-Markov Kalman filter with the International Reference Ionosphere model (IRI-2007) and global ionosphere map (GIM) as background model, to assimilate TEC observations from FORMOSAT-3/COSMIC. The results shows comparison of electron density profiles from Abel inversion and data assimilation. Furthermore, an observing system simulation experiment is also applied to determine the impact of FORMOSAT-7/COSMIC-2 on ionospheric weather monitoring, which reveals an opportunity on advanced study of small spatial and temporal variations in the ionosphere.

  8. Recovery and validation of Mars ionospheric electron density profiles from Mariner 9

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Weiner, Sarah; Ferreri, Nicholas Roy

    2015-12-01

    Electron density profiles from the ionosphere of Mars that were obtained by the Mariner 9 radio occultation experiment in 1971-1972 have unique scientific value because they extend to higher altitudes than comparable datasets and were acquired during a tremendous dust storm that had substantial and poorly understood effects on the ionosphere. Yet these profiles are not publicly available in an accessible format. Here, we describe the recovery of these profiles, which are made available as part of this article. The validity of the profiles was tested by using them to explore the effects of a dust storm on the topside ionosphere, the morphology of the topside ionosphere, the behavior of the M1 layer, and possible meteoric layers. The dust storm that waned over the course of the primary mission (November-December 1971) had major effects on the ionosphere of Mars. It elevated the M1 and M2 layers of the ionosphere by 20-30 km, but the separation of the two layers stayed fixed throughout the primary mission, which suggests that the neutral atmosphere at these altitudes was not heated during the dust storm. However, the altitude of the 1500 cm -3 density level, a proxy for the top of the ionosphere, decreased steadily by 74±12 km over the course of the primary mission. Mariner 9 observations of the topside ionosphere differ from comparable Mars Express observations. Compared to Mars Express, the Mariner 9 data, which were acquired during a period of relatively high solar wind dynamic pressure, have lower densities at high altitudes. They are also more likely to have a "one scale height" morphology than a "two scale height" morphology. The peak density of the M1 layer depends on solar zenith angle and solar irradiance similarly to previous studies with Mars Global Surveyor observations, which indicates that dust storms do not affect the behavior of the peak density. No clear meteoric layers were identified.

  9. Rocket Measurement of a Daytime Electron Density Profile up to 620 Kilometers

    NASA Technical Reports Server (NTRS)

    Jackson, J. E.; Bauer, S. J.

    1961-01-01

    On April 27, 1961 at 1502 EST a four-stage research rocket was fired from Wallops Island, Virginia, to measure the ionospheric electron density distribution by means of Seddon's CW propagation technique. This experimental technique is based upon the dispersive Doppler effect measured at two harmonically related frequencies, in this case f = 12.267 Mc and 6f = 73.6 Mc. The electron density profile measured above the peak of the F2 region is representative of a diffusive-equilibrium distribution in an isothermal ionosphere having a temperature of 1640 deg +/- 90 deg K. This result, when compared with satellite and other data, indicates that the upper ionosphere is in thermodynamic equilibrium.

  10. The processing of electron density profiles from the Mars Express MARSIS topside sounder

    NASA Astrophysics Data System (ADS)

    Morgan, D. D.; Witasse, O.; Nielsen, E.; Gurnett, D. A.; Duru, F.; Kirchner, D. L.

    2013-05-01

    here present a manual for the reduction of data from ionograms obtained from the Mars Express MARSIS Active Ionospheric Sounding topside radar sounder. Sample data are presented with the procedure for processing them explained as simply as possible. We discuss the uncertainties inherent in the measurements as well as systematic problems with the data. A sample code is included to facilitate the inversion process. We also include a comparison with an electron density profile taken from the Mars Express Radio Science occultation experiment, showing agreement between the two methods, although the data are not simultaneous.

  11. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    SciTech Connect

    Brookman, M. W. Austin, M. E.; Petty, C. C.

    2015-12-10

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T{sub e} measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  12. High-latitude topside ionospheric vertical electron density profile changes in response to large magnetic storms

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-05-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst < -100 nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100 km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  13. Extracting the density profile of an electronic wave function in a quantum dot

    NASA Astrophysics Data System (ADS)

    Boyd, Erin E.; Westervelt, Robert M.

    2011-11-01

    We use a model of a one-dimensional nanowire quantum dot to demonstrate the feasibility of a scanning probe microscope (SPM) imaging technique that can extract both the energy of an electron state and the amplitude of its wave function using a single instrument. This imaging technique can probe electrons that are buried beneath the surface of a low-dimensional semiconductor structure and provide valuable information for the design of quantum devices. A conducting SPM tip, acting as a movable gate, measures the energy of an electron state using Coulomb blockade spectroscopy. When the tip is close to the nanowire dot, it dents the wave function Ψ(x) of the quantum state, changing the electron's energy by an amount proportional to |Ψ(x)|2. By recording the change in energy as the SPM tip is moved along the length of the dot, the density profile of the electronic wave function can be found along the length of the quantum dot.

  14. Electron Density Profile Measurements of a Translated Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Brown, D. J.; Ruden, E. L.

    2008-11-01

    A four-chord HeNe laser interferometer operating at 632.8 nm is being used to measure the electron density of a field-reversed configuration (FRC) for the magnetized target fusion experiment at the Air Force Research Laboratory. The design of the interferometer has been previously described [Bull. Am. Phys. Soc. 52, 84 (2007)]. We are focusing our efforts on measuring the radial density profile of an axially translated FRC as a function of time as it emerges from the bore of the conical theta coil in which it is formed. The goal is to perform these measurements where the FRC is moving and then is captured by a magnetic mirror that will serve to trap it inside a cylindrical aluminum liner. The liner will be imploded by the Shiva Star capacitor bank to heat the plasma compressively to a fusion-relevant regime [Bull. Am. Phys. Soc. 52, 257 (2007)]. Data will be presented showing the density evolution of the FRC while it is in the formation, translation, and compression regions. We also plan to divert one of the four probe beams into a single-mode optical fiber whose collimated output can be used to sample a diameter of the plasma at different axial locations. Progress on obtaining density information as a function of axial position with this technique will also be reported.

  15. Experimental confirmation of calculated phases and electron density profile for wet native collagen.

    PubMed Central

    Stinson, R H; Bartlett, M W; Kurg, T; Sweeny, P R; Hendricks, R W

    1979-01-01

    An experimental procedure is developed to phase the reflections obtained in x-ray diffraction investigations of collagen in native wet tendons. Phosphotungstic acid was used for isomorphous addition in phase determination and was located by electron microscopy. Structure factors (with phases) were obtained from the electron microscopy data for the heavy metal. Structure-factor magnitudes for collagen with and without the heavy metal were obtained from the x-ray diffraction data. The first 10 orders were investigated. Standard Argand diagrams provided two solutions for each of these, except the weak sixth order. In each case, one of the two possible solutions agrees well with the phases proposed on theoretical grounds by Hulmes et al. The present results suggest that their other proposed phases are probably correct. An electron density profile along the unit cell of the fibril is presented that shows a distinct step, as expected on the basis of the hole-overlap model. The overlap region is 48% of the length of the unit cell. Images FIGURE 2 PMID:262416

  16. Ionospheric electron density profiling and modeling of COSMIC follow-on simulations

    NASA Astrophysics Data System (ADS)

    Tsai, L.-C.; Su, S.-Y.; Liu, C. H.; Tulasi Ram, S.

    2016-02-01

    The FormoSat-3/ Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) has been proven a successful mission on profiling ionospheric electron density ( {N_e }) using the radio occultation (RO) technique. A follow-on program (called FS7/COSMIC2) is now in progress. The FS3/COSMIC follow-on mission will have six 24°-inclination and 550-km low Earth orbiting (LEO) satellites and six 72°-inclination and 750-km LEO satellites to receive Tri-G (GPS, GLONASS, and Galileo) satellite signals. FS7/COSMIC2 RO observations were simulated in this study by calculating limb-viewing GNSS-to-LEO TEC values separately through two independent ionospheric models (the TWIM and NeQuick models). We propose a compensatory Abel-inversion scheme to improve vertical N_e profiling and three-dimensional (3D) N_e modeling in this FS7/COSMIC2 simulation study with future real observations. In this FS7/COSMIC2 feasibility study the number of RO observations will increase of around 10 times compared with FS3/COSMIC, and the windowing day number to collect N_e profiles and to derive every half-hour 3D N_e model could be decreased from 30 to 3 days. The results show that the root-mean-square (RMS) foF2 and hmF2 difference improvements are 46 % (32 %) and 21 % (4.6 %), respectively, in relative percentage over the standard Abel inversion at the TWIM-background (NeQuick-background) simulation experiment. The RMS modeling errors are about one order less than those from FS3/COSMIC simulations.

  17. Reconstruction of the vertical electron density profile based on vertical TEC using the simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Chunhua; Yang, Guobin; Zhu, Peng; Nishioka, Michi; Yokoyama, Tatsuhiro; Zhou, Chen; Song, Huan; Lan, Ting; Zhao, Zhengyu; Zhang, Yuannong

    2016-05-01

    This paper presents a new method to reconstruct the vertical electron density profile based on vertical Total Electron Content (TEC) using the simulated annealing algorithm. The present technique used the Quasi-parabolic segments (QPS) to model the bottomside ionosphere. The initial parameters of the ionosphere model were determined from both International Reference Ionosphere (IRI) (Bilitza et al., 2014) and vertical TEC (vTEC). Then, the simulated annealing algorithm was used to search the best-fit parameters of the ionosphere model by comparing with the GPS-TEC. The performance and robust of this technique were verified by ionosonde data. The critical frequency (foF2) and peak height (hmF2) of the F2 layer obtained from ionograms recorded at different locations and on different days were compared with those calculated by the proposed method. The analysis of results shows that the present method is inspiring for obtaining foF2 from vTEC. However, the accuracy of hmF2 needs to be improved in the future work.

  18. Depth profile characterization technique for electron density in GaN films by infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamijoh, Takaaki; Ma, Bei; Morita, Ken; Ishitani, Yoshihiro

    2016-05-01

    Infrared reflectance spectroscopy is a noncontact measurement method for carrier density and mobility. In this article, the model determination procedure of layer-type nonuniform electron distribution is investigated, since the spectrum fitting hitherto has been conducted on the basis of a multilayer model defined in advance. A simplified case of a high-electron-density GaN layer embedded in a GaN matrix is mainly studied. The following procedure is found to be applicable. The first step is the determination of the high-density layer position in the vicinity of the surface, in the middle region, or in the vicinity of the interface. This is followed by the specification of the sheet electron density and the layer thickness of the high-density region. It is found that this procedure is also applicable to the characterization of two-dimensional electron gases in the vicinity of AlGaN/GaN heterointerfaces.

  19. Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2015-02-01

    The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peaking and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.

  20. Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry

    SciTech Connect

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2015-02-15

    The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peaking and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.

  1. Validation of ionospheric electron density profiles inferred from GPS occultation observations of the GPS/MET experiment

    NASA Astrophysics Data System (ADS)

    Kawakami, Todd Mori

    In April of 1995, the launch of the GPS Meteorology Experiment (GPS/MET) onboard the Orbview-1 satellite, formerly known as Microlab-1, provided the first technology demonstration of active limb sounding of the Earth's atmosphere with a low Earth orbiting spacecraft utilizing the signals transmitted by the satellites of the Global Positioning System (GPS). Though the experiment's primary mission was to probe the troposphere and stratosphere, GPS/MET was also capable of making radio occultation observations of the ionosphere. The application of the GPS occultation technique to the upper atmosphere created a unique opportunity to conduct ionospheric research with an unprecedented global distribution of observations. For operational support requirements, the Abel transform could be employed to invert the horizontal TEC profiles computed from the L1 and L2 phase measurements observed by GPS/MET into electron density profiles versus altitude in near real time. The usefulness of the method depends on how effectively the TEC limb profiles can be transformed into vertical electron density profiles. An assessment of GPS/MET's ability to determine electron density profiles needs to be examined to validate the significance of the GPS occultation method as a new and complementary ionospheric research tool to enhance the observational databases and improve space weather modeling and forecasting. To that end, simulations of the occultation observations and their inversions have been conducted to test the Abel transform algorithm and to provide qualitative information about the type and range of errors that might be experienced during the processing of real data. Comparisons of the electron density profiles inferred from real GPS/MET observations are then compared with coincident in situ measurements from the satellites of Defense Meteorological Satellite Program (DMSP) and ground-based remote sensing from digisonde and incoherent scatter radar facilities. The principal focus of

  2. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes

    SciTech Connect

    Fujiwara, Y. Nakamiya, A.; Sakakita, H.; Hirano, Y.; Kiyama, S.; Koguchi, H.

    2014-02-15

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10{sup 8} cm{sup −3} at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  3. Electron density profiles in the quiet lower ionosphere based on the results of modeling and experimental data

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Osepian, A.; Dalin, P.; Kirkwood, S.

    2012-09-01

    The theoretical PGI (Polar Geophysical Institute) model for the quiet lower ionosphere has been applied for computing the ionization rate and electron density profiles in the summer and winter D-region at solar zenith angles less than 80° and larger than 99° under steady state conditions. In order to minimize possible errors in estimation of ionization rates provided by solar electromagnetic radiation and to obtain the most exact values of electron density, each wavelength range of the solar spectrum has been divided into several intervals and the relations between the solar radiation intensity at these wavelengths and the solar activity index F10.7 have been incorporated into the model. Influence of minor neutral species (NO, H2O, O, O3) concentrations on the electron number density at different altitudes of the sunlit quiet D-region has been examined. The results demonstrate that at altitudes above 70 km, the modeled electron density is most sensitive to variations of nitric oxide concentration. Changes of water vapor concentration in the whole altitude range of the mesosphere influence the electron density only in the narrow height interval 73-85 km. The effect of the change of atomic oxygen and ozone concentration is the least significant and takes place only below 70 km. Model responses to changes of the solar zenith angle, solar activity (low-high) and season (summer-winter) have been considered. Modeled electron density profiles have been evaluated by comparison with experimental profiles available from the rocket measurements for the same conditions. It is demonstrated that the theoretical model for the quiet lower ionosphere is quite effective in describing variations in ionization rate, electron number density and effective recombination coefficient as functions of solar zenith angle, solar activity and season. The model may be used for solving inverse tasks, in particular, for estimations of nitric oxide concentration in the mesosphere.

  4. Assimilating Electron Density Profiles Measured by the Real Time Global Ionospheric Radio Observatory - GIRO

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Galkin, I. A.

    2009-04-01

    Operational applications of ionospheric models, whether they are first principles or data-driven models, rely on the accuracy of the models during quiet and disturbed conditions. Of course models can correctly describe ionospheric weather only if they assimilate measured ionospheric characteristics and electron density profiles (EDPs). For the "assimilating model" to make correct predictions, the measurements in turn must be accurate and reliable. Ionosondes provide the most accurate vertical EDPs at the site locations but do not cover all parts of the globe. Ionogram-derived EDPs have become the ground truth reference for ionospheric specification, presenting the unrivaled accuracy of the data on continuous demand for validation of alternative ionospheric techniques, including radio occultation, ultraviolet, and tomography. In recent years the digisonde network of ionosondes has grown to eighty stations and is expected to expand to more than 100 stations in the next couple of years. The new Digisonde-4D is running the Automatic Real Time Ionogram Scaler with True height inversion, ARTIST-5. The ARTIST-5 autoscaling program now calculates the EDPs together with density uncertainty limits at each height, making the data products suitable for ingestion in assimilative ionospheric models. In order to specify uncertainty at each height, two boundary profiles, inner and outer, are determined. The inner and outer boundaries reflect the uncertainties of the critical frequencies of each layer, the internal uncertainty of the starting height of the profile, and the uncertainties of the E valley model representation. The actual uncertainties are calculated from a cumulative difference characteristic representing a mismatch between automatically and manually scaled parameters (i.e., foF2, foF1) for the same ionogram. The cumulative differences are determined from statistical analysis of a large amount of ionograms for a specific station. The characteristics of interest are

  5. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ∼4 × 10{sup 19} m{sup −2} s{sup −1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  6. Ionospheric specification with analytical profilers: Evidences of non-Chapman electron density distribution in the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Verhulst, T.; Stankov, S. M.

    2015-04-01

    In relation to the development of an operational ionospheric monitoring and imaging system, the most frequently used analytical ionospheric profilers (Chapman, Epstein, Exponential) were investigated in terms of suitability for topside ionosphere modelling. For the purpose, topside sounder measurements onboard Alouette and ISIS satellites have been analysed. We have come to the conclusion that the use of the Chapman profiler should be exercised with precaution as there are evidences that there are conditions when other profilers are better fit for modelling purposes. This is highlighted during ionospheric disturbances (e.g. during geomagnetic storms), when the shape of the topside electron density distribution might be better described by an Epstein profiler rather than a Chapman profiler.

  7. A Simple Approach to Reproducing IMAGE/RPI-Derived Field-Aligned Electron Density Profiles During Plasmaspheric Refilling

    NASA Astrophysics Data System (ADS)

    Webb, P. A.; Reinisch, B. W.; Huang, X.; Reynolds, M. A.; Benson, R. F.; Green, J. L.

    2002-12-01

    Magnetic field-aligned electron-density (Ne) profiles can be calculated from active soundings using the Radio Plasma Imager (RPI) on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite. By observing these profiles under different geomagnetic conditions, the underlying physics that control the Ne distribution can be investigated. In this presentation RPI observations will be used to show that a magnetic field line depleted of plasma has an Ne distribution approximating a collisionless (CL) profile, while a saturated field line has a diffusive equilibrium (DE) profile. Furthermore, by using the RPI-derived profiles it is possible to observe the transition from the depleted CL profile to the saturated DE profile. Using computationally simple CL and DE models as upper and lower boundaries respectively, methods to vary the distribution between these two extremes that reproduces the refilling of the field-aligned Ne profiles observed by RPI will be presented. Furthermore, the results of this approach will be compared with the Multi-Species Kinetic Plasmasphere Model (MSKPM), a kinetic field-aligned model that simulates the plasmaspheric refilling by single particles from the underlying exosphere. Comparisons of the Global Plasmasphere Ionosphere Density (GPID) model with IMAGE Ne observations from passive and active RPI operations will demonstrate the increased accuracy of GPID when the improved CL-DE field-aligned Ne distribution is included in the model.

  8. Comparison of collisional radiative models for edge electron density reconstruction from Li I (2s-2p) emission profiles

    SciTech Connect

    Stoschus, H.; Hudson, B.; Munoz Burgos, J. M.; Thomas, D. M.; Schweinzer, J.

    2012-10-15

    Four collisional radiative models (CRMs) for reconstruction of the edge electron density profile from the measured Li I (2s-2p) emission profile of an accelerated lithium beam are compared using experimental data from DIII-D. It is shown for both L- and H-mode plasmas that edge density profiles reconstructed with the CRMs DDD2, ABSOLUT, [Sasaki et al. Rev. Sci. Instrum. 64, 1699 (1993)] and a new model developed at DIII-D agree in a density scan from n{sub e}{sup ped}= (2.0-6.5) Multiplication-Sign 10{sup 19} m{sup -3} within 20%, 20%, <5%, and 40%, respectively, of the pedestal density measured with Thomson scattering. Profile shape and absolute density vary in a scan of the effective ion charge Z{sub eff}= 1-6 up to a factor of two but agree with Thomson data for Z{sub eff}= 1-2 within the error bars.

  9. Topside-plasmasphere electron density profiles model by using AIS ionosonde measurements and calibrates GPS TEC data

    NASA Astrophysics Data System (ADS)

    Cesaroni, Claudio; Scotto, Carlo; Ippolito, Alessandro; Ciraolo, Luigi

    2013-04-01

    The Upper Atmosphere Physics group at INGV (Istituto Nazionale di Geofisica e Vulcanologia) developed Autoscala, a computer program for automatic scaling of the critical frequency foF2 and other ionospheric parameters derived from ionograms. Autoscala includes a routine that automatically estimates the electron density profile below F layer peak height hmF2, by adjusting the parameters of a model according to the recorded ionogram [Scotto (2009)]. By integrating this profile we can estimate bottom-side total electron content (bTEC). By means of a calibration technique [Ciraolo et al. (2007)], we are able to obtain calibrated vertical TEC (vTEC) values from GPS measurements over a receiver station. This method permits to estimate biases of the received signal due to transmitter-receiver hardware configuration. These biases must be eliminated from the GPS data in order to calibrate the experimental slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). The difference between vTEC and bottom-side TEC (bTEC) permits to evaluate electron content of the topside ionospheric region (tTEC). Starting from tTEC, bottom-side parameters (foF2, hmF2, scale height at hmF2) obtained by ionosonde and O+ - H+ transition level, we can solve a system of equations based on different ionospheric profiler (Chapman, sech-squared and exponential) the solution of which provides ion scale height [Stankov et al. (2003)]. This last factor is sufficient to establish the vertical distribution of electrons in topside and plasmasphere regions. Obtained vertical profiles could be used to develop a new model for real time estimation of TEC and topside electron density distribution. References: Scotto, C. (2009). Electron density profile calculation technique for Autoscala ionogram analysis. Advances in Space Research, 44(6), 756-766. doi:10.1016/j.asr.2009.04.037 Ciraolo, L., et al. "Calibration errors on experimental slant total electron content (TEC) determined with

  10. Study of Sheath Potential and Plasma Density Profiles in the Presence of Strong Secondary Electron Emission from Walls

    NASA Astrophysics Data System (ADS)

    Trung, Huy-Sinh; Kaganovich, Igor; Khrabrov, Alexander

    2011-10-01

    We study the behavior of plasmas confined within walls, which emit secondary electrons. A set of fluid equations for ions, the Vlasov equation for electrons, and Poisson's equation are solved together numerically to obtain potential and density distributions. We explore the transition to the space charge limited regime in the sheath. The potential and density profiles are monotonic if the emission coefficient is set below the critical emission coefficient. Above the critical emission coefficient, the profiles become non monotonic. We recover the results obtained by Hobbs & Wesson and compare them to the full-scale simulation results of a particle-in-cell code, EDIPIC. Research supported by the Department of Energy National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences.

  11. Electron density profile at the interfaces of bulk heterojunction solar cells and its implication on the S-kink characteristics

    NASA Astrophysics Data System (ADS)

    Gusain, Abhay; Singh, Surendra; Chauhan, A. K.; Saxena, Vibha; Jha, P.; Veerender, P.; Singh, Ajay; Varde, P. V.; Basu, Saibal; Aswal, D. K.; Gupta, S. K.

    2016-02-01

    The efficiency of a bulk heterojunction (BHJ) solar cell critically depends upon quality of its interfaces. The imperfect interfaces can lead to S-kink in the current-voltage characteristics that reduce the efficiency of BHJ solar cells. In this letter, using PCDTBT:PCBM based BHJ solar cells, we demonstrate that non-destructive X-ray reflectivity is powerful technique to estimate the electron density profile across the BHJ solar cells. A direct correlation is observed between the enhanced electron density at PEDOT:PSS/PCDTBT:PCBM interface and appearance of S-kink in J-V characteristics, which is also supported by X-ray photoelectron spectroscopy and Kelvin probe measurements.

  12. Ionosphere modeling by means of electron density profiles based on the satellite missions COSMIC, CHAMP and GRACE.

    NASA Astrophysics Data System (ADS)

    Limberger, Marco; Hugentobler, Urs; Schmidt, Michael; Dettmering, Denise; Liang, Wenjing; Jakowski, Norbert; Hoque, Mainul; Gerzen, Tatjana; Berdermann, Jens

    2013-04-01

    The Chapman function for the F2-layer of the ionsphere contains three physically defined key parameters, namely the maximum electron density NmF2, the corresponding peak height hmF2 and scale height HF2. Every quantity can be expressed as a series expansion in terms of the tensor product of three one-dimensional polynomial B-splines referring to longitude, latitude and time with unknown series coefficients. Polynomial B-splines are localizing base functions whose number depends on a level that is specified based on the density of given observations. In order to determine the three key parameters, an iterative estimation procedure is required since the Chapman function is non-linear. Therefore, prior information for the series coefficients have to be determined from initial values which can be extracted from a given model such as the Neustrelitz TEC model (NTCM). Depending on the spatial and temporal resolution of this initial model, the B-spline level will be set to allow for the representation of the parameters on a desired scale. The availability of observations with comparable density cannot be guaranteed but even in scenarios of less observation density it is possible to improve the initial parameters at those locations where measurements are given. Otherwise, data gaps are bridged by prior information. Global navigation satellite systems (GNSS) provide observations of the slant total electron content (STEC) with a high spatial and temporal resolution from a dense network of ground-based receivers. Nevertheless, the estimation of the key parameters suffers from an unfavorable geometry and the fact, that observations are given as integrated values of the electron density. The introduction of electron density profiles consisting of point wise measurements stabilizes the adjustment system. They can be derived for instance from radio occultation measurements between the Global Positioning System (GPS) and low earth orbiter (LEO) satellites. In the context of this

  13. A long-term study on the deletion criterion of questionable electron density profiles caused by ionospheric irregularities - COSMIC radio occultation technique

    NASA Astrophysics Data System (ADS)

    Uma, G.; Brahmanandam, P. S.; Chu, Y. H.

    2016-06-01

    The crucial assumption made in the retrieval of radio-occultated atmospheric parameters is the spherical symmetry of the atmospheric refractive index, which implies that no horizontal gradient of the refractive index exists along the spherical shell. Nevertheless, the presence of density irregularities will lead to scintillation and multipath effects that often create highly fluctuating and random electron density profiles. In this study, it is proposed a reliable data quality control (QC) approach to remove questionable electron density profiles (due to the presence of ionospheric irregularities) retrieved using the COSMIC radio occultation (RO) technique based on two parameters, namely, the gradient and fluctuation of the topside density profile. Statistics of seven years density profiles (July 2006-May 2013) are presented by determining the aforementioned parameters for every density profile. The main advantage of this data QC is that it uses COSMIC RO electron density profiles retrieved from the slant total electron content (TEC) that is estimated from the excess phases of the GPS L1 and L2 frequencies only to delete the questionable profiles, instead of relying on any model and other observations. A systematic criterion has been developed based on the statistics to relinquish the so-called questionable density profiles. The computed gradients and fluctuations of the topside ionosphere electron density profiles have shown a few important features including, solar activity dependency and pronounced variations in between around +40° and -40° latitudes. After the removal of questionable profiles, both peak densities and heights of the ionosphere F layer are presented globally in different seasons of years during 2007 and 2012 that revealed several important features.

  14. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  15. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR.

    PubMed

    Nam, Y U; Zoletnik, S; Lampert, M; Kovácsik, Ákos; Wi, H M

    2014-11-01

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels. PMID:25430341

  16. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    SciTech Connect

    Nam, Y. U. Wi, H. M.; Zoletnik, S.; Lampert, M.; Kovácsik, Ákos

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  17. Spatial profiles of electron and metastable atom densities in positive polarity fast ionization waves sustained in helium

    SciTech Connect

    Weatherford, Brandon R. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Barnat, E. V. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Xiong, Zhongmin E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Kushner, Mark J. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu

    2014-09-14

    Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3×10⁹cm s⁻¹, depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.

  18. Spatial profiles of electron and metastable atom densities in positive polarity fast ionization waves sustained in helium

    NASA Astrophysics Data System (ADS)

    Weatherford, Brandon R.; Xiong, Zhongmin; Barnat, E. V.; Kushner, Mark J.

    2014-09-01

    Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100-120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3 × 109 cm s-1, depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.

  19. Global characteristics of the upper transition height derived from the topside Alouette/ISIS topside sounder electron density profiles, the Formosat-3/COSMIC density profiles and the IRI ion composition model

    NASA Astrophysics Data System (ADS)

    Truhlik, Vladimir; Triskova, Ludmila; Benson, Robert; Bilitza, Dieter; Chu, Philip; Richards, Phil G.; Wang, Yongli

    The upper transition height (Ht) (the altitude of the transition from heavy atomic ions to light ions or in the simplest form the transition from O+ to H+) is an important parameter, representing the boundary between the ionosphere and the plasmasphere. Ht is very sensitive to various geophysical parameters, like solar and magnetic activity and strongly depends on latitude and local time. There were numerous studies of this parameter in past decades. In spite of these efforts, no model satisfactorily represents this parameter so far. Moreover, surprising evidence of very low transition heights during the last prolonged solar minimum, of a level never obtained before, have been reported. We investigate the upper transition height on the global scale. We made progress in processing large data sets of Ht deduced from the Alouette/ISIS topside sounder and from the Formosat-3/COSMIC vertical electron-density profiles Ne(h) using the theoretical Global Plasma Ionosphere Density (GPID) model (Webb and Essex, 2004) and a revised non-linear function describing the scale height vs. altitude (Titheridge, 1976) to fit the vertical density profiles to the observed profiles and to determine the upper transition height. Since both methods require the plasma temperatures and their gradients as input, these are calculated using the IRI2012 model. Both methods are verified using a large amount of electron and ion density profiles simulated by the FLIP theoretical model and their accuracy is discussed. We compare the results from Alouette/ISIS and Formosat-3/COSMIC and present a global distribution of the calculated Ht and its dependence on geophysical parameters. Finally we compare it with Ht calculated using the IRI ion composition model. Titheridge, J.E., 1976. Ion Transition Heights from Topside Electron-Density Profiles. Planetary and Space Science 24 (3), 229-245. Webb, P.A., Essex, E.A., 2004. A dynamic global model of the plasmasphere. Journal of Atmospheric and Solar

  20. Measurements of Electron Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2013-10-01

    Knowing spatial profiles of electron density (ne) in the underdense coronal region (n profiles. Plasmas were produced from flat CH targets illuminated by Nike KrF laser with total energies up to 1 kJ of 0.5 ~ 1 nsec FWHM pulses. The GIR resolved ne up to 3 ×1021 /cm3 in space taking 2D snapshot images of probe laser (λ = 263 nm, Δt = 10 ps) beamlets (50 μm spacing) refracted by the plasma at a selected time during the laser illumination. The individual beamlet transmittances were also measured for Te estimation. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera simultaneously detected light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay instabilities. The measured spatial profiles are compared with simulation results from the FAST3D radiation hydrocode and their effects on the LPI observations are investigated. Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  1. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    NASA Technical Reports Server (NTRS)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  2. Improving the Automatic Inversion of Digital Alouette/ISIS Ionogram Reflection Traces into Topside Electron Density Profiles

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Truhlik, Vladimir; Huang, Xueqin; Wang, Yongli; Bilitza, Dieter

    2012-01-01

    The topside sounders of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35 mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the Topside Ionogram Scalar With True-Height (TOPIST) algorithm, has been produced and used for the automatic inversion of the ionogram reflection traces on more than 100,000 ISIS-2 digital topside ionograms into topside vertical electron density profiles Ne(h). Here we present some topside ionospheric solar cycle variations deduced from the TOPIST database to illustrate the scientific benefit of improving and expanding the topside ionospheric Ne(h) database. The profile improvements will be based on improvements in the TOPIST software motivated by direct comparisons between TOPIST profiles and profiles produced by manual scaling in the early days of the ISIS program. The database expansion will be based on new software designed to overcome limitations in the original digital topside ionogram database caused by difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame sync pulse and/or the frequency markers. This improved and expanded TOPIST topside Ne(h) database will greatly enhance investigations into both short- and long-term ionospheric changes, e.g., the observed topside ionospheric responses to magnetic storms, induced by interplanetary magnetic clouds, and solar cycle variations, respectively.

  3. Improving the automatic inversion of digital Alouette/ISIS ionogram reflection traces into topside electron density profiles

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; Truhlik, Vladimir; Huang, Xueqin; Wang, Yongli; Bilitza, Dieter

    2012-04-01

    The topside sounders of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35 mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the Topside Ionogram Scalar With True-Height (TOPIST) algorithm, has been produced and used for the automatic inversion of the ionogram reflection traces on more than 100,000 ISIS-2 digital topside ionograms into topside vertical electron density profiles Ne(h). Here we present some topside ionospheric solar cycle variations deduced from the TOPIST database to illustrate the scientific benefit of improving and expanding the topside ionospheric Ne(h) database. The profile improvements will be based on improvements in the TOPIST software motivated by direct comparisons between TOPIST profiles and profiles produced by manual scaling in the early days of the ISIS program. The database expansion will be based on new software designed to overcome limitations in the original digital topside ionogram database caused by difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame sync pulse and/or the frequency markers. This improved and expanded TOPIST topside Ne(h) database will greatly enhance investigations into both short- and long-term ionospheric changes, e.g., the observed topside ionospheric responses to magnetic storms, induced by interplanetary magnetic clouds, and solar cycle variations, respectively.

  4. Development of frequency modulated continuous wave reflectometer for electron density profile measurement on the HL-2A tokamak

    SciTech Connect

    Zhong, W. L. Shi, Z. B.; Liu, Z. T.; Chen, W.; Jiang, M.; Li, J.; Cui, Z. Y.; Song, X. M.; Chen, L. Y.; Ding, X. T.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Huang, X. L.; Zou, X. L.

    2014-01-15

    The frequency modulated continuous wave reflectometer was developed for the first time on the HL-2A tokamak. The system utilizes a voltage controlled oscillator and an active multiplier for broadband coverage and detects as heterodyne mode. Three reflectometers have been installed and operated in extraordinary mode polarization on HL-2A to measure density profiles at low field side, covering the Q-band (33–50 GHz), V-band (50–75 GHz), and W-band (75–110 GHz). For density profile reconstruction from the phase shift of the probing wave, a corrected phase unwrapping method is introduced in this article. The effectiveness of the method is demonstrated. The density profile behavior of a fast plasma event is presented and it demonstrates the capability of the reflectometer. These diagnostics will be contributed to the routine density profile measurements and the plasma physics study on HL-2A.

  5. Estimation of electron density profile in ionospheric D and lower E region by Rocket observation and Full wave analysis of LF and MF radio waves

    NASA Astrophysics Data System (ADS)

    Ashihara, Y.; Ishisaka, K.; Okada, T.; Miyake, T.; Murayama, Y.; Nagano, I.

    Electrons in ionospheric D region are closely related to neutral dynamic meteorology and chemistry including such as hydrated ion and NOx though the electron density is very small about ten -- several thousand cc Therefore it has the possibility to find a new physical knowledge in mesosphere and lower ionosphere Radio wave propagation characteristics in ionospheric D and lower E region are affected by an electron density profile As a inverse problem the electron density profile can be estimated by radio wave propagation characteristics measured by a sounding rocket S-310-33 sounding rocket was launched at Uchinoura Space Center USC at 0 30 a m LT on January 18 2004 We observed magnetic field intensities of two radio waves transmitted from Kanoya air base 238kHz and NHK Kumamoto 2nd ch 873kHz by using radio wave receivers onboarded the rocket Both of the magnetic field intensities were absorbed suddenly at 89km altitude The propagation characteristics in the ionosphere are calculated by using Full wave method It needs the electron density profile previously to calculate the propagation characteristics by Full wave method The electron density profile is estimated by according the radio wave propagation characteristics calculated by Full wave analysis with the observed one This estimation technique is called radio wave absorption method We found the thin ionospheric layer of about 1km at the altitude of 89km The electron density in this region is 2 6 times10 3 cc The electron density compared with one at 88km it was large number

  6. Improving the Automatic Inversion of Digital ISIS-2 Ionogram Reflection Traces into Topside Vertical Electron-Density Profiles

    NASA Technical Reports Server (NTRS)

    Benson, R. F.; Truhlik, V.; Huang, X.; Wang, Y.; Bilitza, D.

    2011-01-01

    The topside-sounders on the four satellites of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35-mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the TOPside Ionogram Scalar with True-height (TOPIST) algorithm has been produced that enables the automatic inversion of ISIS-2 ionogram reflection traces into topside vertical electron-density profiles Ne(h). More than million digital Alouette/ISIS topside ionograms have been produced and over 300,000 are from ISIS 2. Many of these ISIS-2 ionograms correspond to a passive mode of operation for the detection of natural radio emissions and thus do not contain ionospheric reflection traces. TOPIST, however, is not able to produce Ne(h) profiles from all of the ISIS-2 ionograms with reflection traces because some of them did not contain frequency information. This information was missing due to difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame-sync pulse and/or the frequency markers. Of the many digital topside ionograms that TOPIST was able to process, over 200 were found where direct comparisons could be made with Ne(h) profiles that were produced by manual scaling in the early days of the ISIS program. While many of these comparisons indicated excellent agreement (<10% average difference over the entire profile) there were also many cases with large differences (more than a factor of two). Here we will report on two approaches to improve the automatic inversion process: (1) improve the quality of the digital ionogram database by remedying the missing frequency-information problem when possible, and (2) using the above-mentioned comparisons as

  7. Study of elf propagation anomalies as related to improved knowledge of electron density profiles produced by energetic particle precipitation

    NASA Astrophysics Data System (ADS)

    Imhof, W. L.; Gunton, R. C.; Larsen, T. R.; Reagan, J. B.; Gaines, E. E.; Meyeroff, R. E.

    1980-01-01

    A study has been made of extremely low frequency (ELF) wave propagation anomalies as related to energetic particle precipitation, principally during solar particle events (SPE). Based on calculation of the predicted signal strengths at Tromso for transmissions from the Wisconsin Test Facility (WTF) a criterion has been selected for possible use in a field test operation. If the ion pair production rates at 40 km are equal to or greater than 1 x 1000/cc/sec then it is probable that a 3 dB or larger reduction in signal strength would occur for such an event. Since this preliminary criterion is based on ELF signal strength computation assuming no local time variations along the propagation path, more detailed calculations of the local time ionospheric effects should be performed. A study was made of the expected effect of local time variations during solar particle events on the ELF propagation over the path from WTF to Tromso. Electron and ion density profiles for the various segments of the test path were calculated with the ion chemistry model, taking into account the local time for each segment. In a comparison of conditions measured and calculated for SPE72 on 4 August 1972 near the peak of the event and conditions measured and calculated for a similar case assuming a season of 21 December, very little difference in signal strength attenuation over the path was found.

  8. User's Guide: An Enhanced Modified Faraday Cup for the Profiling of the Power Density Distribution in Electron Beams

    SciTech Connect

    Elmer, J W; Teruya, A T; Palmer, T A

    2002-06-01

    This handbook describes the assembly and operation of an enhanced Modified Faraday Cup (MFC) diagnostic device for measuring the power density distribution of high power electron beams used for welding. The most recent version of this diagnostic device, [1] Version 2.0, contains modifications to the hardware components of previous MFC designs.[2] These modifications allow for more complete capture of the electrons and better electrical grounding, thus improving the quality of the acquired data and enabling a more accurate computed tomographic (CT) reconstruction [3,4] of the power density distribution of the electron beam to be performed. [ 5-9

  9. Visualization of electronic density

    DOE PAGESBeta

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  10. Using Bayesian analysis and Gaussian processes to infer electron temperature and density profiles on the Mega-Ampere Spherical Tokamak experiment

    SciTech Connect

    Nessi, G. T. von; Hole, M. J.

    2013-06-15

    A unified, Bayesian inference of midplane electron temperature and density profiles using both Thomson scattering (TS) and interferometric data is presented. Beyond the Bayesian nature of the analysis, novel features of the inference are the use of a Gaussian process prior to infer a mollification length-scale of inferred profiles and the use of Gauss-Laguerre quadratures to directly calculate the depolarisation term associated with the TS forward model. Results are presented from an application of the method to data from the high resolution TS system on the Mega-Ampere Spherical Tokamak, along with a comparison to profiles coming from the standard analysis carried out on that system.

  11. Using Bayesian analysis and Gaussian processes to infer electron temperature and density profiles on the Mega-Ampere Spherical Tokamak experiment.

    PubMed

    von Nessi, G T; Hole, M J

    2013-06-01

    A unified, Bayesian inference of midplane electron temperature and density profiles using both Thomson scattering (TS) and interferometric data is presented. Beyond the Bayesian nature of the analysis, novel features of the inference are the use of a Gaussian process prior to infer a mollification length-scale of inferred profiles and the use of Gauss-Laguerre quadratures to directly calculate the depolarisation term associated with the TS forward model. Results are presented from an application of the method to data from the high resolution TS system on the Mega-Ampere Spherical Tokamak, along with a comparison to profiles coming from the standard analysis carried out on that system. PMID:23822343

  12. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    SciTech Connect

    Yusof, Mohd Fahmi Mohd Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  13. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  14. Visualization of electronic density

    NASA Astrophysics Data System (ADS)

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-10-01

    The spatial volume occupied by an atom depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent algorithms and packages to calculate it numerically for other materials. Three-dimensional visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. In this paper, we explore several approaches to this, including the extension of an anaglyphic stereo visualization application based on the AViz package for hydrogen atoms and simple molecules to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting physical questions about nanotube properties.

  15. Spatially and temporally resolved electron number density measurements in a decaying laser-induced plasma using hydrogen-alpha line profiles

    NASA Astrophysics Data System (ADS)

    Parigger, Christian; Plemmons, D. H.; Lewis, J. W. L.

    1995-06-01

    A Nd:YAG laser was operated at 1064 nm and with 6-ns pulse duration to achieve optical breakdown in gaseous hydrogen at pressures of 150 and 810 Torr. Spatially and temporally resolved laser-induced emission spectra were measured early in the plasma decay. With hydrogen-alpha line profiles, electron number density values were determined along the laser beam plasma in the range 1019 to 1016 cc -1.

  16. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S-310-37 rocket

    NASA Astrophysics Data System (ADS)

    Ashihara, Y.; Ishisaka, K.; Miyake, T.

    2016-01-01

    The S-310-37 rocket, launched at 11:20 (JST) on 16 January 2007, was equipped with a radio receiver to observe the medium-frequency (MF) radio wave propagation characteristics in the ionosphere. The radio receiver measured the intensity and the waveform of the radio wave at 873 kHz from the NHK Kumamoto broadcasting station. The polarized mode waves' intensity characteristics were obtained by analyzing the observed waveform. In this study, the S-310-37 rocket-observed polarized mode waves' propagation characteristics are analyzed in order to estimate the electron density profile in the ionospheric D region. These observations become better measurement approach because the electron density profile in the ionospheric D region is difficult to be observed by other equipment such as a Langmuir probe. A Langmuir probe can measure in the ionospheric D region; however, the absolute values may be off by the influence of wake effects around the sounding rocket. It is demonstrated that the propagation characteristics of the polarized mode waves can be successfully used to derive the electron density profile in the ionospheric D region.

  17. Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles

    NASA Astrophysics Data System (ADS)

    Balachandra Swamy, A. C.

    EXTENDED ABSTRACT Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles A.C.Balachandra swmay & Late C.S.G.K. Setty Absorption of radio waves in the ionosphere is of great practical importance for radio communication and navigation systems. The first attempt to measure the absolute magnitude of the radiowave absorption were made by appletion and Ratcliffe (1930) using the frequency change method for medium frequency waves reflected from the E-region. They concluded from their experiment that the main part of the attenuation occurred below the reflection level and named the absorption region, D-region of the ionosphere. One of the basic properties of the ionosphere is the absorption of high Frequency Radiowaves. HF radiowave absorption results mainly from collisions between electrons (which are set into forced oscillations by the electric field of the wave) and neutral air particles, the RF energy abstracted from the wave being converted into thermal energy. The radiowave absorption in the ionosphere depends on electron density and collision frequency. The most important absorbing regions are the D-region and the lower E-region (50-100 Km.) The regular diurnal variation of the electron density in this height range is caused mainly by the changes in the depth of penetration of solar XUV radiations with solar zenith angle under quiet solar conditions. In 1937 Dellinger J.H.identified fade outs in high frequency radio circuits as due to abnormal ionospheric absorption associated with solar flares. The onset of the fade out was usually rapid and the duration was typically tens of minutes like that of the visible flare, because of the sudden onset, the immediate effects of solar flares are known collectively as sudden Ionospheric Disturbances (STD). The phenomenon discovered by Dellinger is usually called a short Wave Fadeout(SWF). Since the SWF is due to abnormal absorption

  18. Electron Bernstein wave electron temperature profile diagnostic

    SciTech Connect

    G. Taylor; P. Efthimion; B. Jones; T. Munsat; J. Spaleta; J. Hosea; R. Kaita; R. Majeski; J. Menard

    2000-07-20

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. where the plasma frequency is much greater than the electron cyclotron frequency, as in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition. Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large perpendicular wavenumber. This paper reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub o} {approximately} 2 kG, {approximately}10{sup 13} cm{sup {minus}3} and T{sub e} {approx} to 10 -- 200 eV. Results are presented for electromagnetic measurements of EBW emission, mode-converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode converted EBW radiation temperature was found to be less than or equal to T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance, where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for overdense plasmas.

  19. New Vary-Chap Profile of the Topside Ionosphere Electron Density Distribution for use with the IRI Model and the GIRO Real-Time Data

    NASA Technical Reports Server (NTRS)

    Nsumei, Patrick; Reinisch, Bodo W.; Huang, Xueqin; Bilitza, Dieter

    2012-01-01

    A new Vary-Chap function is introduced for the empirical modeling of the electron density N(h) profile in the topside ionosphere that uses a shape function S(h) in the generalized Chapman function. The Vary-Chap profile extends the bottomside profile that is specified by the IRI model or measured by the Global Ionospheric Radio Observatory (GIRO) to the altitude of the ISIS-2 satellite. Some 80,000 topside profiles, measured by the topside sounder on the ISIS-2 satellite were analyzed, and the shape function S(h) was calculated for each profile. A parameterized function S*(h), composed of two sub-functions S1(h) and S2(h), is fitted to the measured S(h) profile using three free parameters. At altitudes just above the F2 layer peak height hmF2, the shape function S1 controls S(h), and at greater altitudes S2 controls S(h). The height of the intersection of S1 and S2 is defined as the transition height h(sub T) indicating the transition from an O(+) to an H(+)-dominated profile shape. The observed transition heights range from approx.500 km to 800 km.

  20. ITER density profile with pellet injection

    SciTech Connect

    Houlberg, W.A.

    1989-01-01

    Particle transport in multi-pellet fueled JET plasmas in being examined to help evaluate density profile behavior in ITER. Preliminary results of the JET analysis were reported at the IAEA Technical Committee Meeting on Pellets in October 1988. In sawtooth free JET discharges, the density profile evolution after injection of pellets can be modeled with the neoclassical Ware pinch and a diffusion coefficient that is small in the plasma core and increased sharply in the vicinity of the q = 2 surface. This model is applicable to both ohmic and central ICRF heated discharges. Some of the auxiliary heated plasmas show a more rapid central density decay that appears to be related to MHD activity observed in soft x-ray signals. In these discharges the density profile evolution can be modeled with a temperature dependent diffusion coefficient and the neoclassical Ware pinch. There is a strong correlation between the inferred local particle and heat transport coefficients in all discharges. Plasmas with non-central pellet penetration show no significant density peaking, consistent with the small Ware pinch term. These results appear to conflict with those reported for ASDEX. There it was found that sustained pellet injection during neutral beam and ICRF heating, with pellet penetration of only half the plasma radius, led to markedly peaked electron density profiles as well as high edge recycling, reduced sawtooth activity, central impurity radiation, enhanced density limit, and improved global energy confinement. Thus, the implications of these results for ITER are still highly speculative because of the lack of knowledge about scaling with machine parameters. The JET results suggest that relatively deep fueling may be required to significantly influence the density profile shape, while the ASDEX results imply that partial penetration may be sufficient. 20 figs.

  1. Solar cycle effects on the structure of the electron density profiles in the dayside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kliore, Arvydas J.; Luhmann, Janet G.

    1991-01-01

    Results are presented of observations from the changes in the electron density structure of the dayside ionosphere of Venus that were brought about by changing solar activity. The ionopause height is generally low for values of the solar zenith angle below about 50 deg regardless of the phase in the solar cycle. At solar maximum, and at times of intermediate solar activity, the ionopause height for solar zenith angles greater than about 50 deg is highly variable, ranging from a minimum of about 200 km to a maximum of more than 1000 km. At times of solar minimum the great majority of all ionopause heights for all solar zenith angles are uniformly low, lying between 200 and 300 km. It is argued that the compressed nature of the Venus atmosphere at solar minimum is produced by permeation of the ionosphere by the solar wind magnetic field, which occurs when the solar wind dynamic pressure exceeds the ionospheric plasma pressure.

  2. Variations of E-region total electron content and electron density profiles over high latitudes during winter solstice 2007 using radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Agrawal, Kajli

    The space weather phenomenon involves the Sun, interplanetary space and the Earth. Different space weather conditions have diverse effects on the various layers of the Earth's atmosphere Technological advancements have created a situation in which human civilization is not only dependent on resources from deep inside the Earth, but also on the upper atmosphere and outer space region. Therefore, it is essential to improve the understanding of the impacts of space weather conditions on the ionosphere. This research focuses on the variation of total electron content (TEC) and the electron density within the E-region of the ionosphere, which extends from 80-150 km above the surface of the Earth, using radio occultation measurements obtained by COSMIC satellites and using Ionospheric Data Assimilation Four-Dimensional algorithm (IDA4D) which is used to mitigate the effects of F-region in the E-region estimation (Bust, Garner, & Gaussiran, 2004). E-region TEC and the electron density estimation for geomagnetic latitude range of 45°--80°, geomagnetic longitude range of -180°--180° and 1800--0600 MLT (magnetic local time) are presented for two active and two quiet days during winter solstice 2007. Active and quiet days are identified based on the Kp index values. Some of the important findings are (1) E-region electron peak density is higher during active days than during quiet days, and (2) during both types of days, higher density values were found at the magnetic latitude of >60° early morning MLT. Prominent E-region features (TEC and electron density) were observed during most active days over the magnetic latitude range of 60°-70° at ~02:00 MLT.

  3. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research.

    PubMed

    Oh, Jaechul; Weaver, J L; Karasik, M; Chan, L Y

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (∼1 ns FWHM) with the intensity of 1.1 × 10(15) W/cm(2). The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 10(21) cm(-3) with the density scale length of 120 μm along the plasma symmetry axis. The resulting n(e) and T(e) profiles are verified to be self-consistent with the measured quantities of the refracted probe light. PMID:26329186

  4. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.

  5. Interstellar Electron Density Spectra

    NASA Astrophysics Data System (ADS)

    Lambert, Hendrick Clark

    This study concerns the investigation of the form of the wavenumber spectrum of the Galactic electron density fluctuations through an examination of the scattering of the radio pulses emitted by pulsars as they propagate through the diffuse ionized interstellar gas. A widely used model for the electron density spectrum is based on the simple power-law: Pne(q)∝ q-β, where β = 11/3 is usually assumed, corresponding to Kolmogorov's turbulence spectrum. The simple Kolmogorov model provides satisfactory agreement for observations along many lines of sight; however, major inconsistencies remain. The inconsistencies suggest that an increase in the ratio of the power between the high (10-8[ m]-1≤ q<=10-7[ m]-1) and low (10-13[ m]-1≤ q<=10-12[ m]-1) wavenumbers is needed. This enhancement in the ratio can in turn be achieved by either including an inner scale, corresponding to a dissipation scale for the turbulent cascade, in the Kolmogorov spectrum or by considering steeper spectra. Spectra with spectral exponents β > 4 have been in general rejected based on observations of pulsar refractive scintillations. The special case of β = 4 has been given little attention and is analyzed in detail. Physically, this 'β = 4' model corresponds to the random distribution, both in location and orientation, of discrete objects with relatively sharp boundaries across the line of sight. An outer scale is included in the model to account for the average size of such objects. We compare the predictions of the inner-scale and β = 4 models both with published observations and observations we made as part of this investigation. We conclude that the form of the wavenumber spectrum is dependent on the line of sight. We propose a composite spectrum featuring a uniform background turbulence in presence of randomly distributed discrete objects, as modeled by the β = model.

  6. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  7. Estimation of Electron Density profile Using the Propagation Characteristics of Radio Waves by S-520-29 Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Itaya, K.; Ishisaka, K.; Ashihara, Y.; Abe, T.; Kumamoto, A.; Kurihara, J.

    2015-12-01

    S-520-29 sounding rocket experiment was carried out at Uchinoura Space Center (USC) at 19:10 JST on 17 August, 2014. The purpose of this sounding rocket experiments is observation of sporadic E layer that appears in the lower ionosphere at near 100km. Three methods were used in order to observe the sporadic E layer. The first method is an optical method that observe the light of metal ion emitted by the resonance scattering in sporadic E layer using the imager. The second method is observation of characteristic of radio wave propagation that the LF/MF band radio waves transmitted from the ground. The third method is measuring the electron density in the vicinity of sounding rocket using the fast Langmuir probe and the impedance probe. We analyze the propagation characteristics of radio wave in sporadic E layer appeared from the results of the second method observation. This rocket was equipped with LF/MF band radio receiver for observe the LF/MF band radio waves in rocket flight. Antenna of LF/MF band radio receiver is composed of three axis loop antenna. LF/MF band radio receiver receives three radio waves of 873kHz (JOGB), 666kHz (JOBK), 60kHz (JJY) from the ground. 873kHz and 60kHz radio waves are transmitting from north side, and 666kHz radio waves are transmitting from the east side to the trajectory of the rocket. In the sounding rocket experiment, LF/MF band radio receiver was working properly. We have completed the observation of radio wave intensity. We analyze the observation results using a Doppler shift calculations by frequency analysis. Radio waves received by the sounding rocket include the influences of Doppler shift by polarization and the direction of rocket spin and the magnetic field of the Earth. So received radio waves that are separate into characteristics waves using frequency analysis. Then we calculate the Doppler shift from the separated data. As a result, 873kHz, 666kHz radio waves are reflected by the ionosphere. 60kHz wave was able to

  8. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  9. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Fainberg, J.; Osherovich, V. A.; Truhlik, V.; Wang, Y.; Arbacher, R. T.

    2011-12-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDAWeb). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  10. Electronic structure and electron momentum density in TiSi

    NASA Astrophysics Data System (ADS)

    Ghaleb, A. M.; Mohammad, F. M.; Sahariya, Jagrati; Sharma, Mukesh; Ahuja, B. L.

    2013-03-01

    We report the electron momentum density in titanium monosilicide using 241Am Compton spectrometer. Experimental Compton profile has been compared with the theoretical profiles computed using linear combination of atomic orbitals (LCAO). The energy bands, density of states and Fermi surface structures of TiSi are reported using the LCAO and the full potential linearized augmented plane wave methods. Theoretical anisotropies in directional Compton profiles are interpreted in terms of energy bands. To confirm the conducting behavior, we also report the real space analysis of experimental Compton profile of TiSi.

  11. Variability of the bottomside (B0, B1) profile parameters of ionospheric electron density over the lower mid-latitude Cyprus and comparisons with IRI-2012 model

    NASA Astrophysics Data System (ADS)

    Panda, Sampad Kumar; Haralambous, Haris; Mostafa, Md Golam

    2016-07-01

    The present study investigates the variations of the bottomside ionospheric electron density profile thickness (B0) and shape (B1) parameters, deduced from the manually scaled digisonde (DPS-4D) ionograms at the lower mid-latitude Cyprus (Geographic 35°N, 33°E) covering the period 2009-2014. The monthly median hourly values of these parameters during different seasons and solar activity conditions are compared with the International Reference Ionosphere model (IRI-2012) estimations using three different options namely: Bil-2000, Gul-1987, and ABT-2009. To ensure the quiet time profile, the ionograms of the geomagnetically disturbed periods are discarded from the datasets and the storm model in the IRI is intentionally turned off. The statistical studies reveal considerable discrepancies in the observed B0 parameters from the model simulations, though the divergences are minimal around the daytime and during the summer solstice seasons. Nevertheless, B0 with the Gul-1987 option apparently shows closer daytime value during the low solar active summer, whereas the ABT-2009 option manifested relatively better agreement during the high solar active summer months. The characteristic morning, evening, as well as nighttime departure in the model derived B0 parameters are conspicuous in all the seasons in spite of unnoticed perturbations in the B1, suggesting that further improvement in the existing model database is essential with additional in-situ experimental data across the lower mid-latitude region. The important extracts from this study may support in the international efforts of determining the best set of profile parameters for the climatological representation of the ionospheric electron density variation across the globe.

  12. Density fluctuations as an intrinsic mechanism of pressure profile formation

    NASA Astrophysics Data System (ADS)

    Vershkov, V. A.; Shelukhin, D. A.; Subbotin, G. F.; Dnestrovskij, Yu. N.; Danilov, A. V.; Melnikov, A. V.; Eliseev, L. G.; Maltsev, S. G.; Gorbunov, E. P.; Sergeev, D. S.; Krylov, S. V.; Myalton, T. B.; Ryzhakov, D. V.; Trukhin, V. M.; Chistiakov, V. V.; Cherkasov, S. V.

    2015-06-01

    This article provides new insight into previous and new experimental data regarding behaviour of small-scale density fluctuations in T-10 ohmic and electron cyclotron resonance heated (ECRH) discharges. The experiments demonstrate the existence of certain peaked-‘marginal’ normalized plasma pressure profiles in both ohmic and discharges with on-axis ECRH. Strong particle confinement degradation occurred when the normalized plasma pressure gradient exceeded this marginal profile gradient (fast density decay in ohmic, ‘density pump out’ in ECRH). The marginal profile could be achieved either with a flat density and peaked temperature profile or vice versa. Minimal turbulence level did not depend on heating power and was observed with the ‘optimal’ pressure profile, which was slightly broader than the marginal profile. The density fluctuations did not significantly contribute to the heat transport but determined particle fluxes to maintain the pressure profile. The experimental density behaviour could be reasonably described with the modified model of canonical profiles, which includes particle confinement deterioration under marginal pressure profile conditions.

  13. Characterization of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.

    2011-10-01

    Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.

  14. Integrated data analysis at TJ-II: The density profile

    SciTech Connect

    Milligen, B. Ph. van; Estrada, T.; Ascasibar, E.; Tafalla, D.; Lopez-Bruna, D.; Fraguas, A. Lopez; Jimenez, J. A.; Garcia-Cortes, I.; Dinklage, A.; Fischer, R.

    2011-07-15

    An integrated data analysis system based on Bayesian inference has been developed for the TJ-II stellarator. It reconstructs the electron density profile at a single time point, using data from interferometry, reflectometry, Thomson scattering, and the Helium beam, while providing a detailed error analysis. In this work, we present a novel analysis of the ambiguity inherent in profile reconstruction from reflectometry and show how the integrated data analysis approach elegantly resolves it. Several examples of the application of the technique are provided, in both low-density discharges with and without electrode biasing, and in high-density discharges with an (L-H) confinement transition.

  15. Universal density profile for cosmic voids.

    PubMed

    Hamaus, Nico; Sutter, P M; Wandelt, Benjamin D

    2014-06-27

    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., arXiv:1309.5087 [Mon. Not. R. Astron. Soc. (to be published)

  16. Measurements of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2012-10-01

    ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 < n < nc/4) of the plasma is essential to understanding the LPI observation. However, numerical simulation was the only way to access the profiles for the previous experiments. In the current Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.

  17. Electron density distributions in the high-latitude magnetosphere

    NASA Technical Reports Server (NTRS)

    Persoon, Ann M.

    1988-01-01

    Electron density profiles were constructed to study the plasma density depletions in the nightside auroral zone and the density variations with increasing altitude in the polar cap, using electric field spectrum measurements from the plasma wave instrument on DE-1. Sharply defined regions of depleted plasma densities were commonly observed on nightside auroral field lines, in which electron densities were strongly depleted in relation to the adjacent plasmaspheric and polar densities, forming a low-density cavity at about 70 deg invariant latitude. A correlation was found between low auroral plasma densities, upflowing ion distributions, and an energetic precipitating electron population, indicating that electron density depletions in the nightside auroral zone are directly associated with auroral acceleration processes.

  18. Ionospheric E-region electron density and neutral atmosphere variations

    NASA Technical Reports Server (NTRS)

    Stick, T. L.

    1976-01-01

    Electron density deviations from a basic variation with the solar zenith angle were investigated. A model study was conducted in which the effects of changes in neutral and relative densities of atomic and molecular oxygen on calculated electron densities were compared with incoherent scatter measurements in the height range 100-117 km at Arecibo, Puerto Rico. The feasibility of determining tides in the neutral atmosphere from electron density profiles was studied. It was determined that variations in phase between the density and temperature variation and the comparable magnitudes of their components make it appear improbable that the useful information on tidal modes can be obtained in this way.

  19. Electron Bernstein wave electron temperature profile diagnostic (invited)

    SciTech Connect

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., {omega}{sub pe}>>{Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau}>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k{sub perp}. In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0}{approx}2kG, {approx}10{sup 13}cm{sup -3} and T{sub e}{approx}10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {<=}T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe}>>{Omega}{sub ce}.

  20. Cusped Density Profiles of Gravitational Lens Objects

    NASA Astrophysics Data System (ADS)

    Mutka, P. T.

    2010-06-01

    We have developed an analytic formulation for axially symmetric GNFW lens model with parametrized cusp slope (α). The lensing theory has several implications, for example strong lensing is very difficult without cusped mass profile. Required cusp strength for strong lensing depends on the lens object mass and concentration. Exceedingly high concentrations are required for profiles, that have α>-1 in order to produce multiple lensed images. We study mass profiles of lens objects with double image lenses, since they are resilient against deviations from axial symmetry, perturbations from microlensing, and halo substructure. The statistics of the observed image flux ratios is connected to the general properties of the of the lens mass density profiles. Our analysis is based on a limiting value for the shallowest cusp slope αCSL able to produce the observed flux ratio with any lens geometry and lens-source alignment. The cusp slope limit (CSL) does not depend on cosmology, total lens mass, concentration or redshifts of the the lens and the lensed object. In case of axial symmetry the limiting value is depending only on the magnification ratio (observed flux ratio of the images). This removes uncertainties in the lens and source distributions from the statistical analysis. Distribution of these threshold values reveals existence of halo population(s) with similar profiles in the sample; most of the halos have cusp slope α = -1.95+/-0.02. We have also found an imprint of a second population with a cusp slope value α = -1.49+/-0.09. There is about 99 per cent estimated probability, that the observed feature in the distribution is produced by the second population of lenses, with their own characteristic density profile. We analyze error sources in our analysis with mock catalogues, and discuss about alternative explanations for the second population signature.

  1. Momentum-space properties from coordinate-space electron density

    SciTech Connect

    Harbola, Manoj K.; Zope, Rajendra R.; Kshirsagar, Anjali; Pathak, Rajeev K.

    2005-05-22

    Electron density and electron momentum density, while independently tractable experimentally, bear no direct connection without going through the many-electron wave function. However, invoking a variant of the constrained-search formulation of density-functional theory, we develop a general scheme (valid for arbitrary external potentials) yielding decent momentum-space properties, starting exclusively from the coordinate-space electron density. A numerical illustration of the scheme is provided for the closed-shell atomic systems He, Be, and Ne in their ground state and for 1s{sup 1} 2s{sup 1} singlet electronic excited state for helium by calculating the Compton profiles and the expectation values derived from given coordinate-space electron densities.

  2. Profiling compact toroid plasma density on CTIX with laser deflection

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  3. Stationary density profiles in the Alcator C-mod tokamak

    SciTech Connect

    Kesner, J.; Ernst, D.; Hughes, J.; Mumgaard, R.; Shiraiwa, S.; Whyte, D.; Scott, S.

    2012-12-15

    In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Discharges that transition from L-mode to I-mode are seen to maintain a self-similar stationary density profile as measured by Thomson scattering. For discharges with negative magnetic shear, an observed rise of the safety factor in the vicinity of the magnetic axis appears to be accompanied by a decrease of electron density, qualitatively consistent with the theoretical expectations.

  4. Electron density depletions in the nightside auroral zone

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Gurnett, D. A.; Peterson, W. K.; Waite, J. H., Jr.; Burch, J. L.; Green, J. L.

    1988-01-01

    Dynamics Explorer 1 measurements are used to investigate regions of low electron density in the nightside auroral zone. Sharply defined regions of low electron density are found in auroral zone crossings from the predusk hours until the early morning hours at all radial distances up to at least 4.6 earth radii. Densities in the auroral cavity are shown to fall to values below 0.3/cu cm. Within the auroral cavity, electron-density-profile variations of a factor of 2 or more on spatial scales of tens of kilometers are found, and the electron plasma frequency to electron cyclotron frequency ratios are 0.02-0.4. The results suggest associations between the density depletions in the nightside auroral zone and auroral acceleration processes.

  5. Column density profiles of multiphase gaseous haloes

    NASA Astrophysics Data System (ADS)

    Liang, Cameron J.; Kravtsov, Andrey V.; Agertz, Oscar

    2016-05-01

    We analyse circumgalactic medium (CGM) in a suite of high-resolution cosmological re-simulations of a Milky Way size galaxy and show that CGM properties are quite sensitive to details of star formation-feedback loop modelling. The simulation that produces a realistic late-type galaxy, fails to reproduce existing observations of the CGM. In contrast, simulation that does not produce a realistic galaxy has the predicted CGM in better agreement with observations. This illustrates that properties of galaxies and properties of their CGM provide strong complementary constraints on the processes governing galaxy formation. Our simulations predict that column density profiles of ions are well described by an exponential function of projected distance d: N ∝ e^{-d/h_s}. Simulations thus indicate that the sharp drop in absorber detections at larger distances in observations does not correspond to a `boundary' of an ion, but reflects the underlying steep exponential column density profile. Furthermore, we find that ionization energy of ions is tightly correlated with the scaleheight hs: h_s ∝ E_ion^{0.74}. At z ≈ 0, warm gas traced by low-ionization species (e.g. Mg II and C IV) has hs ≈ 0.03 - 0.07Rvir, while higher ionization species (O VI and Ne VIII) have hs ≈ 0.32 - 0.45Rvir. Finally, the scaleheights of ions in our simulations evolve slower than the virial radius for z ≤ 2, but similarly to the halo scale radius, rs. Thus, we suggest that the column density profiles of galaxies at different redshifts should be scaled by rs rather than the halo virial radius.

  6. Electron (charge) density studies of cellulose models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the ...

  7. Image of electron densities from line and plane projections

    NASA Astrophysics Data System (ADS)

    Kontrym-Sznajd, G.; Samsel-Czekała, M.; Biasini, M.

    2008-04-01

    We compare Fourier transforms with orthogonal polynomials techniques applied in reconstructing three-dimensional electron-positron momentum densities from two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectra and electron momentum densities from one-dimensional Compton profiles (1D-CP). In the case of Fourier transforms, we show results for two different algorithms: filtered back projection and Fourier-Bessel method. These techniques are presented for 2D-ACAR spectra in Y, ErGa3 and model profiles.

  8. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  9. Electron density studies of methyl cellobioside

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...

  10. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    SciTech Connect

    Habibi, M.; Ghamari, F.

    2012-10-15

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron density profiles in enhancing laser self-focusing.

  11. The mapping of electronic energy distributions using experimental electron density.

    PubMed

    Tsirelson, Vladimir G

    2002-08-01

    It is demonstrated that the approximate kinetic energy density calculated using the second-order gradient expansion with parameters of the multipole model fitted to experimental structure factors reproduces the main features of this quantity in a molecular or crystal position space. The use of the local virial theorem provides an appropriate derivation of approximate potential energy density and electronic energy density from the experimental (model) electron density and its derivatives. Consideration of these functions is not restricted by the critical points in the electron density and provides a comprehensive characterization of bonding in molecules and crystals. PMID:12149553

  12. A determination of the current density in electron beams

    NASA Technical Reports Server (NTRS)

    Beil, R. J.

    1982-01-01

    Current gathering rotating probe techniques were used to examine the envelope shape and power density profile of electron beams used in electron beam welding devices. The electron power density contours which determine the shape of the weld vapor cavity, penetration, and local heat distribution were considered. A mathematical analysis consistent with a rotating probe technique necessary to determine the current density distribution (assumed symmetrically radial) in a cross-section of the beam is provided. An explanation of the experimental technique for obtaining data, a BASIC language computer program to determine the current density from the data, and a study indicating the level of confidence to be associated with results obtained are also provided. An example of the application of the analysis to some experimental electron beam data is included.

  13. Analysis of the IMAGE RPI electron density data and CHAMP plasmasphere electron density reconstructions with focus on plasmasphere modelling

    NASA Astrophysics Data System (ADS)

    Gerzen, T.; Feltens, J.; Jakowski, N.; Galkin, I.; Reinisch, B.; Zandbergen, R.

    2016-09-01

    The electron density of the topside ionosphere and the plasmasphere contributes essentially to the overall Total Electron Content (TEC) budget affecting Global Navigation Satellite Systems (GNSS) signals. The plasmasphere can cause half or even more of the GNSS range error budget due to ionospheric propagation errors. This paper presents a comparative study of different plasmasphere and topside ionosphere data aiming at establishing an appropriate database for plasmasphere modelling. We analyze electron density profiles along the geomagnetic field lines derived from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite/Radio Plasma Imager (RPI) records of remote plasma sounding with radio waves. We compare these RPI profiles with 2D reconstructions of the topside ionosphere and plasmasphere electron density derived from GNSS based TEC measurements onboard the Challenging Minisatellite Payload (CHAMP) satellite. Most of the coincidences between IMAGE profiles and CHAMP reconstructions are detected in the region with L-shell between 2 and 5. In general the CHAMP reconstructed electron densities are below the IMAGE profile densities, with median of the CHAMP minus IMAGE residuals around -588 cm-3. Additionally, a comparison is made with electron densities derived from passive radio wave RPI measurements onboard the IMAGE satellite. Over the available 2001-2005 period of IMAGE measurements, the considered combined data from the active and passive RPI operations cover the region within a latitude range of ±60°N, all longitudes, and an L-shell ranging from 1.2 to 15. In the coincidence regions (mainly 2 ⩽ L ⩽ 4), we check the agreement between available active and passive RPI data. The comparison shows that the measurements are well correlated, with a median residual of ∼52 cm-3. The RMS and STD values of the relative residuals are around 22% and 21% respectively. In summary, the results encourage the application of IMAGE RPI data for

  14. Radial density profile measurement by using the multichannel microwave interferometer in GAMMA 10

    SciTech Connect

    Yoshikawa, M.; Matsumoto, T.; Shima, Y.; Negishi, S.; Miyata, Y.; Mizuguchi, M.; Imai, N.; Yoneda, Y.; Hojo, H.; Itakura, A.; Imai, T.

    2008-10-15

    Plasma density radial profile measurements are an important study for fusion plasma researches. We reconstructed a multichannel microwave interferometer for radial plasma electron density and density fluctuation measurements with both changing the transmission horn position and using the Teflon lens by only using this system in a single plasma shot. By using this system, we can successfully measure the radial density and density fluctuation spectra in a single plasma shot.

  15. The effect of the induced magnetic field on the electron density vertical profile of the Mars' ionosphere: A Mars Express MARSIS radar data analysis and interpretation, a case study

    NASA Astrophysics Data System (ADS)

    Ramírez-Nicolás, M.; Sánchez-Cano, B.; Witasse, O.; Blelly, P.-L.; Vázquez, L.; Lester, M.

    2016-07-01

    We report the indirect detection of an induced magnetic field in the ionosphere of Mars and its effects on the electron density behaviour. The observations were made by the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) aboard Mars Express, in its Active Ionospheric Sounding mode. During several orbits on June 2006, the ionosphere showed an unusual behaviour, characterised by a compression of the plasma above the main ionospheric peak as observed by the topside total electron content, the plasma scale height, and the local plasma in the Mars Express surroundings. The compression was most likely due to an induced magnetic field originating from the solar wind and measured by the MARSIS antennas, which was able to penetrate into the ionosphere. In particular, for several profiles, the density distribution can be clearly defined by two different plasma scale heights, which indicates a transition region between both of them. From the balance of magnetic and thermal plasma pressures and from a comparison with a numerical model of the Martian ionosphere, the hypothesis of a penetrating induced magnetic field down to a transition altitude around 150 km is confirmed. This compressed ionosphere has also been compared with data from other orbits in the same location and at the same time period, i.e. 18.5 days of difference between first and last orbits, where there is no measured induced magnetic field, and the orbits show a clearly different behaviour.

  16. Electron density measurements in highly electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we present experimental measurements of the electron density in very electronegative ‘ion–ion’ Ar–SF6 plasmas where previous investigations using Langmuir probes have observed electronegativities of up to 5000. The electron density is measured using a short matched dipole probe technique that provides a tolerance better than  ±2 · 1013 m‑3. The results demonstrate that the electron density in the low pressure plasma source (which contains a magnetic filter) can be reduced to around 2.7 · 1013 m‑3 with a corresponding plasma electronegativity of about 4000; close to that from fluid simulation predictions. The highest electronegativity, and lowest electron density, is achieved with a pure SF6 plasma, while adding only 6% SF6 to Ar allows the electronegativity to be increased from 0 to a few hundred with a corresponding decrease in the electron density by more than a thousand. The impedance probe based on a short matched dipole appears to be a practical diagnostic that can be used for independent measurements of the electron density in very electronegative plasmas, and opens up the possibility to further investigate and optimize electronegative plasma sources.

  17. Wavelet analysis of electron-density maps.

    PubMed

    Main, P; Wilson, J

    2000-05-01

    The wavelet transform is a powerful technique in signal processing and image analysis and it is shown here that wavelet analysis of low-resolution electron-density maps has the potential to increase their resolution. Like Fourier analysis, wavelet analysis expresses the image (electron density) in terms of a set of orthogonal functions. In the case of the Fourier transform, these functions are sines and cosines and each one contributes to the whole of the image. In contrast, the wavelet functions (simply called wavelets) can be quite localized and may only contribute to a small part of the image. This gives control over the amount of detail added to the map as the resolution increases. The mathematical details are outlined and an algorithm which achieves a resolution increase from 10 to 7 A using a knowledge of the wavelet-coefficient histograms, electron-density histogram and the observed structure amplitudes is described. These histograms are calculated from the electron density of known structures, but it seems likely that the histograms can be predicted, just as electron-density histograms are at high resolution. The results show that the wavelet coefficients contain the information necessary to increase the resolution of electron-density maps. PMID:10771431

  18. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  19. FMCW Reflectometry for Electron Density Measurements on LTX

    NASA Astrophysics Data System (ADS)

    Kubota, S.; Nguyen, X. V.; Peebles, W. A.; Majeski, R.; Kaita, R.

    2012-10-01

    An FMCW (frequency-modulated continuous-wave) reflectometer is being developed and installed on the Lithium Tokamak Experiment (LTX). The initial system will have two channels covering 13.5--33 GHz for (O-mode) electron density measurements in the range of 0.2-1.3x10^13 cm-3. The reflectometer is designed to provide electron density profile measurements for fueling studies using the molecular cluster injector (MCI), the supersonic gas injector (SGI), as well as external gas puffing. The ultrafast time resolution >=4 μs allows tracking of both the fast evolution of the density profile as well as fluctuations. A future third channel will extend the frequency range to 53 GHz for coverage up to 3.5x10^13 cm-3. The system design, along with simulations using ray tracing and 2-D full-wave codes showing the measurement capabilities and data as available, will be presented.

  20. Theoretical study of lithium ionic conductors by electronic stress tensor density and electronic kinetic energy density.

    PubMed

    Nozaki, Hiroo; Fujii, Yosuke; Ichikawa, Kazuhide; Watanabe, Taku; Aihara, Yuichi; Tachibana, Akitomo

    2016-07-01

    We analyze the electronic structure of lithium ionic conductors, Li3PO4 and Li3PS4, using the electronic stress tensor density and kinetic energy density with special focus on the ionic bonds among them. We find that, as long as we examine the pattern of the eigenvalues of the electronic stress tensor density, we cannot distinguish between the ionic bonds and bonds among metalloid atoms. We then show that they can be distinguished by looking at the morphology of the electronic interface, the zero surface of the electronic kinetic energy density. © 2016 Wiley Periodicals, Inc. PMID:27232445

  1. Computing 1-D atomic densities in macromolecular simulations: The density profile tool for VMD

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni

    2014-01-01

    Molecular dynamics simulations have a prominent role in biophysics and drug discovery due to the atomistic information they provide on the structure, energetics and dynamics of biomolecules. Specialized software packages are required to analyze simulated trajectories, either interactively or via scripts, to derive quantities of interest and provide insight for further experiments. This paper presents the Density Profile Tool, a package that enhances the Visual Molecular Dynamics environment with the ability to interactively compute and visualize 1-D projections of various density functions of molecular models. We describe how the plugin is used to perform computations both via a graphical interface and programmatically. Results are presented for realistic examples, all-atom bilayer models, showing how mass and electron densities readily provide measurements such as membrane thickness, location of structural elements, and how they compare to X-ray diffraction experiments.

  2. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  3. Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks

    SciTech Connect

    Skyman, A. Tegnered, D. Nordman, H. Strand, P.

    2014-09-15

    Particle transport due to Ion Temperature Gradient (ITG)/Trapped Electron Mode (TEM) turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear treatment and nonlinear simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. The gyrokinetic results are compared and contrasted with results from a computationally efficient fluid model. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, plasma β, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary background density profile is sensitive. This is shown to be the case in scans over magnetic shear, collisionality, elongation, and temperature ratio, for which the simultaneous zero flux electron and impurity profiles are calculated. A slight asymmetry between hydrogen, deuterium, and tritium with respect to profile peaking is obtained, in particular, for scans in collisionality and temperature ratio.

  4. Amplitude modulated heterodyne reflectometer for density profile and density fluctuation profile measurements at W7-AS

    SciTech Connect

    Hirsch, M.; Hartfuss, H.; Geist, T.; de la Luna, E.

    1996-05-01

    A broadband heterodyne reflectometer operating in the frequency range 75{endash}110 GHz in extraordinary mode polarization is used at the W7-AS stellarator for both fast density profile determination and density fluctuation studies. The probing signal is amplitude modulated at a frequency 133 MHz using the envelope phase for profile evaluation and the carrier phase to determine the fluctuation information simultaneously. Separate Gaussian beam optics for final signal launch and detection permits a beam waist of about 2 cm at the reflecting layer in the plasma. Amplitude modulated detection is accomplished in the intermediate frequency part by synchronous detection after recovery of the carrier by narrow-band filtering. Voltage controlled solid state oscillators followed by active frequency multiplication allow to scan the full frequency band within less than 1 ms. For typical W7-AS operation the accessible density range is 1{times}10{sup 19} to 6{times}10{sup 19} m{sup {minus}3} for on axis magnetic field of 2.5 T and 4.5{times}10{sup 19} to 10{times}10{sup 19} m{sup {minus}3} for 1.25 T, respectively. The probed radial positions range between 0.2{lt}{ital r}/{ital a}{lt}1.1 depending on plasma conditions ({ital a}{approx_equal}17 cm). {copyright} {ital 1996 American Institute of Physics.}

  5. Density profile control in a large diameter, helicon plasma

    SciTech Connect

    Cluggish, B.P.; Anderegg, F.A.; Freeman, R.L.; Gilleland, J.; Hilsabeck, T.J.; Isler, R.C.; Lee, W.D.; Litvak, A.A.; Miller, R.L.; Ohkawa, T.; Putvinski, S.; Umstadter, K.R.; Winslow, D.L.

    2005-05-15

    Plasmas with peaked radial density profiles have been generated in the world's largest helicon device, with plasma diameters of over 70 cm. The density profiles can be manipulated by controlling the phase of the current in each strap of two multistrap antenna arrays. Phase settings that excite long axial wavelengths create hollow density profiles, whereas settings that excite short axial wavelengths create peaked density profiles. This change in density profile is consistent with the cold-plasma dispersion relation for helicon modes, which predicts a strong increase in the effective skin depth of the rf fields as the wavelength decreases. Scaling of the density with magnetic field, gas pressure, and rf power is also presented.

  6. Determination of the Electron Cyclotron Current Drive Profile

    SciTech Connect

    Luce, T.C.; Petty, C.C.; Schuster, D.I.; Makowski, M.A.

    1999-11-01

    Evaluation of the profile of non-inductive current density driven by absorption of electron cyclotron waves (ECCD) using time evolution of the poloidal flux indicated a broader profile than predicted by theory. To determine the nature of this broadening, a 1-1/2 D transport calculation of current density evolution was used to generate the signals which the DIII-D motional Stark effect (MSE) diagnostic would measure in the event that the current density evolution followed the neoclassical Ohm's law with the theoretical ECCD profile. Comparison with the measured MSE data indicates the experimental data is consistent with the ECCD profile predicted by theory. The simulations yield a lower limit on the magnitude of the ECCD which is at or above the value found in Fokker-Planck calculations of the ECCD including quasilinear and parallel electric field effects.

  7. Tomography of the ionospheric electron density with geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Minkwitz, D.; van den Boogaart, K. G.; Gerzen, T.; Hoque, M.

    2015-08-01

    In relation to satellite applications like global navigation satellite systems (GNSS) and remote sensing, the electron density distribution of the ionosphere has significant influence on trans-ionospheric radio signal propagation. In this paper, we develop a novel ionospheric tomography approach providing the estimation of the electron density's spatial covariance and based on a best linear unbiased estimator of the 3-D electron density. Therefore a non-stationary and anisotropic covariance model is set up and its parameters are determined within a maximum-likelihood approach incorporating GNSS total electron content measurements and the NeQuick model as background. As a first assessment this 3-D simple kriging approach is applied to a part of Europe. We illustrate the estimated covariance model revealing the different correlation lengths in latitude and longitude direction and its non-stationarity. Furthermore, we show promising improvements of the reconstructed electron densities compared to the background model through the validation of the ionosondes Rome, Italy (RO041), and Dourbes, Belgium (DB049), with electron density profiles for 1 day.

  8. Electronics. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP) contains a competency list verified by expert workers and developed through a modified DACUM (Developing a Curriculum) involving business, industry, labor, and community agency representatives from Ohio. This OCAP identifies the occupational, academic, and employability skills (competencies)…

  9. Two-color terahertz interferometer based on the frequency-splitted orthogonal polarization modes of the water vapor laser and designed for measuring the electron density profile in the L-2M stellarator

    SciTech Connect

    Letunov, A. A.; Logvinenko, V. P.; Zav'yalov, V. V.

    2008-03-15

    An upgraded diagnostics for measuring the electron density profile in the L-2M stellarator is proposed. The existing diagnostics employs an interferometer based on an HCN laser with a mechanical frequency shifter and unmagnetized InSb detectors cooled with liquid helium. It is proposed to replace the HCN laser with a water vapor laser operating simultaneously at two wavelengths (220 and 118 {mu}m). Being equipped with an anisotropic exit mirror, the water vapor laser allows the generation of orthogonally polarized, frequency-splitted modes at each of these wavelengths with a frequency difference of several tens of kilohertzs. Such a scheme makes it possible to get rid of the mechanical frequency shifter. Moreover, simultaneous measurements at two wavelengths allow one to reliably separate the phase increments introduced by the plasma electron component and by variations in the lengths of the interferometer arms. To take full advantage of this scheme, specially developed cryogenic receivers consisting of Ge and InSb photodetectors placed one after another will be used. To increase the response of the system near {lambda} = 220 {mu}m, the InSb detector is placed in a Almost-Equal-To 0.55-T magnetic field.

  10. Electron density measurement by differential interferometry

    SciTech Connect

    Ding, W. X.; Brower, D. L.; Deng, B. H.; Yates, T.

    2006-10-15

    A novel differential interferometer is being developed to measure the electron density gradient and its fluctuations. Two separate laser beams with slight spatial offset and frequency difference are coupled into a single mixer making a heterodyne measurement of the phase difference which is <1% of the total phase change experienced by each beam separately. This measure of the differential phase is made at multiple spatial points and can be inverted directly to provide the local density distribution.

  11. New Data on the Topside Electron Density Distribution

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert F.

    2001-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.

  12. A Robust High Current Density Electron Gun

    NASA Astrophysics Data System (ADS)

    Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.

    1996-11-01

    Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.

  13. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy.

    PubMed

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-01

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials. PMID:26646862

  14. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  15. Measurement of the lunar neutron density profile

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1975-01-01

    Relatively small discrepancies between Apollo 17 lunar neutron probe experiment (LNPE) data and theoretical calculations by Lingenfelter, Canfield, and Hampel in the effect of Cd absorption on the neutron density, and in the relative Sm-149 to Gd-157 capture rates reported previously, imply that the true lunar Gd-157 capture rate is about one-half of that derived theoretically.

  16. Teaching Chemistry with Electron Density Models

    NASA Astrophysics Data System (ADS)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  17. Void alignment and density profile applied to measuring cosmological parameters

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang

    2015-12-01

    We study the orientation and density profiles of the cosmological voids with Sloan Digital Sky Survey (SDSS; Ahn et al.) 10 data. Using voids to test Alcock-Paczynski effect has been proposed and tested in both simulations and actual SDSS data. Previous observations imply that there exist an empirical stretching factor which plays an important role in the voids' orientation. Simulations indicate that this empirical stretching factor is caused by the void galaxies' peculiar velocities. Recently Hamaus et al. found that voids' density profiles are universal and their average velocities satisfy linear theory very well. In this paper, we first confirm that the stretching effect exists using independent analysis. We then apply the universal density profile to measure the cosmological parameters. We find that the void density profile can be a tool to measure the cosmological parameters.

  18. Synopsis of D- and E-region electron densities during the energy budget campaign

    NASA Technical Reports Server (NTRS)

    Friedrich, M.; Baker, K. D.; Brekke, A.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Thrane, E. V.; Smith, L. G.; Torkar, K. M.

    1982-01-01

    Electron density profiles from ground-based and rocket-borne measurements conducted at three sites in northern Scandinavia under various degrees of geophysical disturbances are presented. These data are checked against an instantaneous picture of the ionospheric absorption obtained via the dense riometer network. A map of the riometer absorption and measured electron densities over Scandinavia is given.

  19. Towards a Best Practice Electronic Course Profile

    ERIC Educational Resources Information Center

    Wadley, David

    2010-01-01

    Higher education institutions are introducing standardised electronic course profiles (ECPs) to advance quality outcomes. Involving both "message" and "medium", they alter traditional practice and interpretations. Critical examination is required of the values, presuppositions and operation of the nascent system. Lacking much theory, analysis…

  20. Electronics Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile covers the occupation of electronics technician. Section 1 provides the occupation definition. Section 2 lists development committee members. Section 3 provides the leveling codes--abbreviations for grade level, (by the end of grade 12, by the end of associate degree), academic codes (communications, math, or…

  1. Recent improvements of the broadband FMCW reflectometry system for density profile measurements on ASDEX Upgrade

    SciTech Connect

    Silva, A.; Manso, M.; Varela, P.; Cupido, L.; Meneses, L.

    2006-10-15

    The broadband FMCW reflectometry system on ASDEX Upgrade has had significant improvements extending its measuring capabilities both on high and low density plasmas: (i) the upgrade of the W band to probe electron densities up to 12.4x10{sup 19} m{sup -3} with O mode (ii) Q and V frequency bands operating in X mode to probe the edge plasma and to provide information for O-mode profile initialization, and (iii) a new dynamic frequency calibration method to take into account all existing delays in the hyperabrupt varactor-tuned oscillator (HTO) tuning port and driver electronics. These improvements are particularly important to measure accurately the edge pedestal region of high density ITER relevant discharges. Density profiles obtained in high density discharges are presented and compared with results from both Li-beam and Thomson scattering diagnostics.

  2. Temperature, N2, and N density profiles of Triton's atmosphere - Observations and model

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.; Sandel, B. R.; Herbert, F.; Vervack, R. J.

    1993-02-01

    Improved analysis of the Voyager Ultraviolet Spectrometer observations of the solar occultation by Triton yields the isothermal temperature and N2 number densities in the altitude range 475-675 km. The signature of atomic nitrogen in the occultation spectra is identified, its density profile is derived, and an experimental value of the escape rate of N atoms is given. The one-dimensional thermal conductivity equation for a spherical atmosphere is solved, taking into account CO heating and cooling and heating by precipitating electrons, solar radiation, and chemical effects. Finally, profiles of number densities of N, H2, and H are calculated.

  3. Temperature, N2, and N density profiles of Triton's atmosphere - Observations and model

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Sandel, B. R.; Herbert, F.; Vervack, R. J., Jr.

    1993-01-01

    Improved analysis of the Voyager Ultraviolet Spectrometer observations of the solar occultation by Triton yields the isothermal temperature and N2 number densities in the altitude range 475-675 km. The signature of atomic nitrogen in the occultation spectra is identified, its density profile is derived, and an experimental value of the escape rate of N atoms is given. The one-dimensional thermal conductivity equation for a spherical atmosphere is solved, taking into account CO heating and cooling and heating by precipitating electrons, solar radiation, and chemical effects. Finally, profiles of number densities of N, H2, and H are calculated.

  4. The virialization density of peaks with general density profiles under spherical collapse

    SciTech Connect

    Rubin, Douglas; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2013-12-01

    We calculate the non-linear virialization density, Δ{sub c}, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of Δ{sub c} which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for Δ{sub c} for halos in an Einstein de-Sitter and a ΛCDM universe. As examples, we consider power-law initial profiles as well as spherically averaged peak profiles calculated from the statistics of a Gaussian random field. We find that, depending on the profiles used, Δ{sub c} is smaller by a factor of a few to as much as a factor of 10 as compared to the density given by the standard calculation ( ≈ 200). Using our results, we show that, for halo finding algorithms that identify halos through an over-density threshold, the halo mass function measured from cosmological simulations can be enhanced at all halo masses by a factor of a few. This difference could be important when using numerical simulations to assess the validity of analytic models of the halo mass function.

  5. The flat density profiles of massive, and relaxed galaxy clusters

    SciTech Connect

    Popolo, A. Del

    2014-07-01

    The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction. Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total

  6. Correlated quantum transport of density wave electrons.

    PubMed

    Miller, J H; Wijesinghe, A I; Tang, Z; Guloy, A M

    2012-01-20

    Recently observed Aharonov-Bohm quantum interference of the period h/2e in charge density wave rings strongly suggests that correlated density wave electron transport is a cooperative quantum phenomenon. The picture discussed here posits that quantum solitons nucleate and transport current above a Coulomb blockade threshold field. We propose a field-dependent tunneling matrix element and use the Schrödinger equation, viewed as an emergent classical equation as in Feynman's treatment of Josephson tunneling, to compute the evolving macrostate amplitudes, finding excellent quantitative agreement with voltage oscillations and current-voltage characteristics in NbSe(3). A proposed phase diagram shows the conditions favoring soliton nucleation versus classical depinning. PMID:22400766

  7. Electron Density Calibration for Radiotherapy Treatment Planning

    SciTech Connect

    Herrera-Martinez, F.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Ruiz-Trejo, C.; Celis-Lopez, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, A.

    2006-09-08

    Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density ({rho}e) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a large range of {rho}e to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head.

  8. Symmetry measures of the electron density.

    PubMed

    Casanova, David; Alemany, Pere; Alvarez, Santiago

    2010-10-01

    In this communication we define electronic symmetry operation and symmetry group measures, eSOM and eSGM, respectively, develop the basic algorithms to obtain them, and give some examples of the possible applications of these new computational tools. These new symmetry measures based on the electron density have been tested in an analysis of (a) the inversion symmetry for heteronuclear diatomic molecules, for the eclipsed and staggered conformations of ethane and tetrafluoroethane, and for a series of octahedral sulfur halides; (b) the reflection symmetry of three different conformers of tetrafluoroethene; and (c) the loss of C(6) symmetry along the B(2u) distortion mode of benzene and an analysis of rotational symmetry for different six-member ring heterocycles. PMID:20652983

  9. Electron Density Calibration for Radiotherapy Treatment Planning

    NASA Astrophysics Data System (ADS)

    Herrera-Martínez, F.; Rodríguez-Villafuerte, M.; Martínez-Dávalos, A.; Ruiz-Trejo, C.; Celis-López, M. A.; Lárraga-Gutiérrez, J. M.; García-Garduño, A.

    2006-09-01

    Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density (ρe) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a large range of ρe to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head.

  10. Reanalysis of relativistic electron phase space density

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri; Chen, Yue; Kondrashov, Dmitri

    In this study we perform a reanalysis of the sparse relativistic electron data using a relatively simple one-dimensional radial diffusion model and a Kalman filtering approach. The results of the reanalysis clearly show pronounced peaks in the electron phase space density (PSD), which can not be explained by the variations in the outer boundary, and can only be produced by a local acceleration processes. The location of the innovation vector shows that local acceleration is most efficient at L* = 5.5. To verify that our results are not affected by the limitations of the satellite orbit and coverage, we performed an "identical twin" experiments with synthetic data specified only at the locations for which CRRES observations are available. Our results indicate that the model with data assimilation can accurately reproduce the underlying structure of the PSD even when data is sparse.

  11. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Wenbin; Burns, Alan; Yue, Xinan; Zhang, Shunrong; Zhang, Yongliang; Huang, Chaosong

    2016-01-01

    Ionospheric F2 region peak densities (NmF2) are expected to have a positive correlation with total electron content (TEC), and electron densities usually show an anticorrelation with electron temperatures near the ionospheric F2 peak. However, during the 17 March 2015 great storm, the observed TEC, NmF2, and electron temperatures of the storm-enhanced density (SED) over Millstone Hill (42.6°N, 71.5°W, 72° dip angle) show a quiet different picture. Compared with the quiet time ionosphere, TEC, the F2 region electron density peak height (hmF2), and electron temperatures above ~220 km increased, but NmF2 decreased significantly within the SED. This SED occurred where there was a negative ionospheric storm effect near the F2 peak and below it, but a positive storm effect in the topside ionosphere. Thus, this SED event was a SED in TEC but not in NmF2. The very low ionospheric densities below the F2 peak resulted in a much reduced downward heat conduction for the electrons, trapping the heat in the topside in the presence of heat source above. This, in turn, increased the topside scale height so that even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm time topside ionospheric electron density profiles were much closer to diffusive equilibrium than the nonstorm time profiles, indicating less daytime plasma flow between the ionosphere and the plasmasphere.

  12. Improved density profile measurements in the C-2U advanced beam-driven FRC plasmas

    NASA Astrophysics Data System (ADS)

    Beall, Michael; Deng, B. H.; Schroeder, Jon; Settles, Greg; Kinley, John; Gota, Hiroshi; Thompson, Matt; the TAE Team

    2015-11-01

    The goal of Tri Alpha Energy's C-2U experiment is to demonstrate FRC sustainment via neutral beam injection. Accurate equilibrium profiles are essential for determining optimum operating regimes and studying physics phenomena. Electron density profiles in C-2 were measured by a CO2/HeNe laser interferometer. All C-2 chords were located below the machine axis causing difficulties due to spatial under-sampling in case of vertical plasma motion. As part of C-2U, additional chords were added above the axis and a complimentary 4-chord far-infrared (FIR) interferometer was developed. The FIR system is based on 2 HCOOH lasers optically pumped by a CO2 laser. This upgrade allowed for higher density resolution and broad spectral bandwidth. Results of improved density profile measurement will be presented, including fast ion effects. Plasma wobble is also characterized via density centroid measurements.

  13. The Robustness of Dark Matter Density Profiles in Dissipationless Mergers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Stelios; Zentner, Andrew R.; Kravtsov, Andrey V.

    2006-04-01

    We present a comprehensive series of dissipationless N-body simulations to investigate the evolution of density distribution in equal-mass mergers between dark matter (DM) halos and multicomponent galaxies. The DM halo models are constructed with various asymptotic power-law indices ranging from steep cusps to corelike profiles and the structural properties of the galaxy models are motivated by the ΛCDM paradigm of structure formation. The adopted force resolution allows robust density profile estimates in the inner ~1% of the virial radii of the simulated systems. We demonstrate that the central slopes and overall shapes of the remnant density profiles are virtually identical to those of the initial systems, suggesting that the remnants retain a remarkable memory of the density structure of their progenitors, despite the relaxation that accompanies merger activity. We also find that halo concentrations remain approximately constant through hierarchical merging involving identical systems and show that remnants contain significant fractions of their bound mass well beyond their formal virial radii. These conclusions hold for a wide variety of initial asymptotic density slopes, orbital energies, and encounter configurations, including sequences of consecutive merger events, simultaneous mergers of several systems, and mergers of halos with embedded cold baryonic components in the form of disks, spheroids, or both. As an immediate consequence, the net effect of gas cooling, which contracts and steepens the inner density profiles of DM halos, should be preserved through a period of dissipationless major merging. Our results imply that the characteristic universal shape of DM density profiles may be set early in the evolution of halos.

  14. Weather Effects on the D-region Electron Density

    NASA Astrophysics Data System (ADS)

    Eccles, V.; Rice, D.; Sojka, J. J.; Hunsucker, R. D.; Raitt, W. J.

    2009-05-01

    Studies of D-region ionization are complicated by the low electron densities and the altitude range involved. The D-region bottom-side densities are less than 100 cm-3 and the D-region altitudes are inaccessible to most in-situ measurements. Available methods, such as sounding rockets and incoherent scatter radar, can provide detailed profiles for specific times and locations, but mesoscale characterization of D-region weather effects is difficult to obtain. Specifically the horizontal structuring of these densities and to which drivers they are most sensitive is unclear. The response of the D-region to solar inputs, background radiation sources, and wind transport from high latitudes needs to be better understood to improve both our understanding and modeling efforts. The Agile beacon monitor network measures signal strength from radio beacons from three important frequency ranges. The measurements in three frequency ranges, VLF (3-30kHz), LF (30-300 kHz), and HF (0.3-30 MHz), cooperatively help define the D region more precisely. The daytime D-region is perhaps best known for absorption of frequencies below 30 MHz. Measurements of radio signal absorption are useful in describing the D-region response to solar flares and the winter absorption anomaly. Description of the D- region bottom-side and nighttime D-region density requires a different methodology. VLF and LF propagation analysis is sensitive to densities in the 0.1 to 10 cm-3 range. Networks of receivers over these frequency ranges provide an approach for observing the horizontal spatial distribution of the lower D-region density. The D-region electron densities may be inferred by interpreting signal levels at VLF, LF, and HF using D-region models and propagation analysis. This paper describes how the model electron density profiles are modified to include weather effects. Variations are observed in day and night data even during the quietest solar conditions; some variations are consistent with

  15. Transverse profile imager for ultrabright electron beams

    NASA Astrophysics Data System (ADS)

    Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem

    2015-08-01

    A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.

  16. Simulating confined particles with a flat density profile.

    PubMed

    Korolkovas, Airidas

    2016-08-01

    Particle simulations confined by sharp walls usually develop an oscillatory density profile. For some applications, most notably soft matter liquids, this behavior is often unrealistic and one expects a monotonic density climb instead. To reconcile simulations with experiments, we propose mirror-and-shift boundary conditions where each interface is mapped to a distant part of itself. The main result is that the particle density increases almost monotonically from zero to bulk, over a short distance of about one particle diameter. The method is applied to simulate a polymer brush in explicit solvent, grafted on a flat silicon substrate. The simulated density profile agrees favorably with neutron reflectometry measurements and self-consistent field theory results. PMID:27627239

  17. Simulating confined particles with a flat density profile

    NASA Astrophysics Data System (ADS)

    Korolkovas, Airidas

    2016-08-01

    Particle simulations confined by sharp walls usually develop an oscillatory density profile. For some applications, most notably soft matter liquids, this behavior is often unrealistic and one expects a monotonic density climb instead. To reconcile simulations with experiments, we propose mirror-and-shift boundary conditions where each interface is mapped to a distant part of itself. The main result is that the particle density increases almost monotonically from zero to bulk, over a short distance of about one particle diameter. The method is applied to simulate a polymer brush in explicit solvent, grafted on a flat silicon substrate. The simulated density profile agrees favorably with neutron reflectometry measurements and self-consistent field theory results.

  18. Profile modification and hot electron temperature from resonant absorption at modest intensity

    SciTech Connect

    Albritton, J.R.; Langdon, A.B.

    1980-10-13

    Resonant absorption is investigated in expanding plasmas. The momentum deposition associated with the ejection of hot electrons toward low density via wavebreaking readily exceeds that of the incident laser radiation and results in significant modification of the density profile at critical. New scaling of hot electron temperature with laser and plasma parameters is presented.

  19. On the Density Profile of the Globular Cluster M92

    NASA Astrophysics Data System (ADS)

    Di Cecco, A.; Zocchi, A.; Varri, A. L.; Monelli, M.; Bertin, G.; Bono, G.; Stetson, P. B.; Nonino, M.; Buonanno, R.; Ferraro, I.; Iannicola, G.; Kunder, A.; Walker, A. R.

    2013-04-01

    We present new number density and surface brightness profiles for the globular cluster M92 (NGC 6341). These profiles are calculated from optical images collected with the CCD mosaic camera MegaCam at the Canada-France-Hawaii Telescope and with the Advanced Camera for Surveys on the Hubble Space Telescope. The ground-based data were supplemented with the Sloan Digital Sky Survey photometric catalog. Special care was taken to discriminate candidate cluster stars from field stars and to subtract the background contamination from both profiles. By examining the contour levels of the number density, we found that the stellar distribution becomes clumpy at radial distances larger than ~13', and there is no preferred orientation of contours in space. We performed detailed fits of King and Wilson models to the observed profiles. The best-fit models underestimate the number density inside the core radius. Wilson models better represent the observations, in particular in the outermost cluster regions: the good global agreement of these models with the observations suggests that there is no need to introduce an extra-tidal halo to explain the radial distribution of stars at large radial distances. The best-fit models for the number density and the surface brightness profiles are different, even though they are based on the same observations. Additional tests support the evidence that this fact reflects the difference in the radial distribution of the stellar tracers that determine the observed profiles (main-sequence stars for the number density, bright evolved stars for the surface brightness). Based in part on data obtained from the ST-ECF Science Archive Facility. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency.

  20. Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance

    NASA Technical Reports Server (NTRS)

    Sachs, E. M.

    1984-01-01

    The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.

  1. Calculation of nanodrop profile from fluid density distribution.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2016-05-01

    Two approaches are examined, which can be used to determine the drop profile from the fluid density distributions (FDDs) obtained on the basis of microscopic theories. For simplicity, only two-dimensional (cylindrical, or axisymmetrical) distributions are examined and it is assumed that the fluid is either in contact with a smooth solid or separated from the smooth solid by a lubricating liquid film. The first approach is based on the sharp-kink interface approximation in which the density of the liquid inside and the density of the vapor outside the drop are constant with the exception of the surface layer of the drop where the density is different from the above ones. In this case, the drop profile was calculated by minimizing the total potential energy of the system. The second approach is based on a nonuniform FDD obtained either by the density functional theory or molecular dynamics simulations. To determine the drop profile from such an FDD, which does not contain sharp interfaces, three procedures can be used. In the first two procedures, P1 and P2, the one-dimensional FDDs along straight lines which are parallel to the surface of the solid are extracted from the two-dimensional FDD. Each of those one-dimensional FDDs has a vapor-liquid interface at which the fluid density changes from vapor-like to liquid-like values. Procedure P1 uses the locations of the equimolar dividing surfaces for the one-dimensional FDDs as points of the drop profile. Procedure P2 is based on the assumption that the fluid density is constant on the surface of the drop, that density being selected either arbitrarily or as a fluid density at the location of the equimolar dividing surface for one of the one-dimensional FDDs employed in procedure P1. In the third procedure, P3, which is suggested for the first time in this paper, the one-dimensional FDDs are taken along the straight lines passing through a selected point inside the drop (radial line). Then, the drop profile is

  2. Measurement of the lunar neutron density profile. [Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1974-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically.

  3. Electron profile stiffness and critical gradient studies

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P.; White, A. E.; Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L.; Holland, C.; McKee, G. R.

    2012-08-15

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

  4. New signal processing technique for density profile reconstruction using reflectometry.

    PubMed

    Clairet, F; Ricaud, B; Briolle, F; Heuraux, S; Bottereau, C

    2011-08-01

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10(16) m(-1). For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma. PMID:21895243

  5. New signal processing technique for density profile reconstruction using reflectometry

    SciTech Connect

    Clairet, F.; Bottereau, C.; Ricaud, B.; Briolle, F.; Heuraux, S.

    2011-08-15

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10{sup 16} m{sup -1}. For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  6. Imaginary time density-density correlations for two-dimensional electron gases at high density

    SciTech Connect

    Motta, M.; Galli, D. E.; Moroni, S.; Vitali, E.

    2015-10-28

    We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.

  7. Comet Halley neutral gas density profile along the Vega 1 trajectory measured by NGE. [Neutral Gas Experiment (NGE)

    NASA Technical Reports Server (NTRS)

    Curtis, C. C.; Fan, C. Y.; Hsieh, K. C.; Hunten, D. M.; Ip, WING-H.; Keppler, E.; Richter, A. K.; Umlauft, G.; Afonin, V. V.; Dyachkov, A. V.

    1986-01-01

    Data from the Vega 1 permitted the determination of the total neutral gas density profile along the spacecraft trajectory. Discounting small fluctuations, the field ionization source instrument measured a density profile which varied approximately as the inverse radial distance squared. Data from the electron impact ionization instrument yielded a series of calibration points; e.g., the neutral density at 100,000 km is 10,000/cc. The combined data provide a calibrated total density profile, and imply a neutral production rate of 10 to the 30th power molecules/sec.

  8. Estimating tropical-forest density profiles from multibaseline interferometric SAR

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert; Chapman, Bruce; dos Santos, Joao Roberto; Dutra, Luciano; Goncalves, Fabio; da Costa Freitas, Corina; Mura, Jose Claudio; de Alencastro Graca, Paulo Mauricio

    2006-01-01

    Vertical profiles of forest density are potentially robust indicators of forest biomass, fire susceptibility and ecosystem function. Tropical forests, which are among the most dense and complicated targets for remote sensing, contain about 45% of the world's biomass. Remote sensing of tropical forest structure is therefore an important component to global biomass and carbon monitoring. This paper shows preliminary results of a multibasline interfereomtric SAR (InSAR) experiment over primary, secondary, and selectively logged forests at La Selva Biological Station in Costa Rica. The profile shown results from inverse Fourier transforming 8 of the 18 baselines acquired. A profile is shown compared to lidar and field measurements. Results are highly preliminary and for qualitative assessment only. Parameter estimation will eventually replace Fourier inversion as the means to producing profiles.

  9. Electron Densities and Alkali Atoms in Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Koskinen, T.; Yelle, R. V.

    2014-11-01

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  10. Electron densities and alkali atoms in exoplanet atmospheres

    SciTech Connect

    Lavvas, P.; Koskinen, T.; Yelle, R. V.

    2014-11-20

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  11. Observed Variations of O5+ Velocity Distributions with Electron Density

    NASA Astrophysics Data System (ADS)

    Kohl, J. L.; Cranmer, S. R.; Frazin, R. A.; Miralles, M.; Strachan, L.

    2001-05-01

    The Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO satellite has been used to measure the line profiles of O~VI 103.2 and 103.7 nm versus heliographic height in a variety of coronal holes and streamers during the period from 1996 to 2001. Those observations have been used to derive velocity distributions in the line-of-sight direction, which is typically perpendicular to the apparent magnetic field direction. In the case of polar coronal holes at solar minimum, the electron density is the smallest observed and the most-probable speed is the largest observed reaching values as high as 500 km/s at the largest heights. The O5+ most-probable speed is much larger than the hydrogen speed in those structures. The ratio of O5+ to hydrogen most-probable speeds increases with height. In contrast, the O5+ values are much smaller than those of hydrogen at the base of high-latitude streamers and never reach the hydrogen values at any observed height. The electron density in those structures is much greater than in the solar minimum coronal holes. Other structures have intermediate values of the electron density and O5+ most-probable speeds. In general, the O5+ most-probable speed and its ratio to the hydrogen value seem to decrease with increasing density. This apparent observational correlation may be related to thermalization from higher collision rates or it might be related to the physical process that causes the extreme O5+ perpendicular heating. This work is supported by NASA under Grant NAG5-10093 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency, and by PRODEX (Swiss Contribution).

  12. Midplane neutral density profiles in the National Spherical Torus Experiment

    SciTech Connect

    Stotler, D. P. Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podestà, M.; Roquemore, A. L.; Ross, P. W.; Scotti, F.

    2015-08-15

    Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 10{sup 17 }m{sup −3} and atomic densities ranging from 1 to 7 × 10{sup 16 }m{sup −3}; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. The uncertainties in the neutral densities associated with other model inputs and assumptions are ≤50%.

  13. Midplane neutral density profiles in the National Spherical Torus Experiment

    SciTech Connect

    Stotler, D. P.; Scotti, F.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.; Roquemore, A. L.; Ross, P. W.

    2015-08-13

    Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 1017 m–3 and atomic densities ranging from 1 to 7 ×1016 m–3; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. Furthermore, the uncertainties in the neutral densities associated with other model inputs and assumptions are ≤ 50%.

  14. Midplane neutral density profiles in the National Spherical Torus Experiment

    DOE PAGESBeta

    Stotler, D. P.; Scotti, F.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.; Roquemore, A. L.; Ross, P. W.

    2015-08-13

    Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 1017 m–3 and atomic densities ranging frommore » 1 to 7 ×1016 m–3; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. Furthermore, the uncertainties in the neutral densities associated with other model inputs and assumptions are ≤ 50%.« less

  15. Temperature, Density, and Heating Profiles of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Plowman, Joseph; Martens, P. C.; Kankelborg, C.; Ritchie, M.; Scott, J.; Sharma, R.

    2013-07-01

    We show detailed results of a combined DEM and density-sensitive line ratio analysis of coronal loops observed simultaneously by EIS and AIA. The temperature and density profiles of the loop are compared to and isolated from those of the surrounding material, and these properties are fit to an analytic strand heating model developed by Martens (2010). This research builds on our previously reported work by analyzing a number of coronal loops (including one observed by the Hi-C rocket), improved background subtraction and loop fitting. These improvements allow us to place significant constraints on the heating distribution of coronal loops.

  16. THE DARK MATTER DENSITY PROFILE OF THE FORNAX DWARF

    SciTech Connect

    Jardel, John R.; Gebhardt, Karl E-mail: gebhardt@astro.as.utexas.edu

    2012-02-10

    We construct axisymmetric Schwarzschild models to measure the mass profile of the Local Group dwarf galaxy Fornax. These models require no assumptions to be made about the orbital anisotropy of the stars, as is the case for commonly used Jeans models. We test a variety of parameterizations of dark matter density profiles and find cored models with uniform density {rho}{sub c} = (1.6 {+-} 0.1) Multiplication-Sign 10{sup -2} M{sub Sun} pc{sup -3} fit significantly better than the cuspy halos predicted by cold dark matter simulations. We also construct models with an intermediate-mass black hole, but are unable to make a detection. We place a 1{sigma} upper limit on the mass of a potential intermediate-mass black hole at M{sub .} {<=} 3.2 Multiplication-Sign 10{sup 4} M{sub Sun }.

  17. Density profile consistency, particle pinch, and cold pulse propagation in DIII-D

    NASA Astrophysics Data System (ADS)

    Baker, D. R.

    1997-06-01

    It has been recently proposed that, for highly turbulent discharges, there exists a consistent density profile for the trapped electrons in a high aspect ratio circular cross-section tokamak, which has a radial variation proportional to 1/q(r), where q is the usual safety factor. It is shown here that this result can be extended to include passing electrons and noncircular cross-section moderate aspect ratio tokamaks. This new prediction for the density profile is compared to the time evolution of the measured electron density profile in low confinement mode (L-mode) shots in the tokamak known as DIII-D [L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I. p. 159], where the q profile is changed in time during the discharge. Once an expression for the consistent density profile is known, it is trivial to obtain an expression for Vp/D, where Vp is the particle pinch velocity and D is the particle diffusion coefficient. This expression is compared with the value of Vp/D, which is obtained from an analysis, utilizing the ONETWO transport code [R. Dominguez and R. Waltz, Nucl. Fusion 27, 65 (1987)], of certain high confinement mode (H-mode) DIII-D discharges, which are free from edge localized modes. The dependence of density on q can be extended to a dependence of temperature on q through the adiabatic relation. The dependence of temperature on q can then predict one type of cold pulse propagation phenomena. By way of introduction, a simple analogy with a dynamic incompressible fluid system is made.

  18. The first in situ electron temperature and density measurements of the Martian nightside ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.; Ergun, R. E.; Morooka, M.; Delory, G.; Andrews, D. J.; Lillis, Robert J.; McEnulty, T.; Weber, T. D.; Chamandy, T. M.; Eriksson, A. I.; Mitchell, D. L.; Mazelle, C.; Jakosky, B. M.

    2015-11-01

    The first in situ nightside electron density and temperature profiles at Mars are presented as functions of altitude and local time (LT) from the Langmuir Probe and Waves (LPW) instrument on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission spacecraft. LPW is able to measure densities as low as ˜100 cm-3, a factor of up to 10 or greater improvement over previous measurements. Above 200 km, near-vertical density profiles of a few hundred cubic centimeters were observed for almost all nightside LT, with the lowest densities and highest temperatures observed postmidnight. Density peaks of a few thousand cubic centimeters were observed below 200 km at all nightside LT. The lowest temperatures were observed below 180 km and approach the neutral atmospheric temperature. One-dimensional modeling demonstrates that precipitating electrons were able to sustain the observed nightside ionospheric densities below 200 km.

  19. [Determination of electron density in atmospheric pressure radio frequency dielectric barrier discharges by Stark broadening].

    PubMed

    Li, Sen; Liu, Zhong-wei; Chen, Qiang; Liu, Fu-ping; Wang, Zheng-duo; Yang, Li-zhen

    2012-01-01

    The use of high frequency power to generate plasma at atmospheric pressure is a relatively new development. An apparatus of atmospheric pressure radio frequency dielectric barrier discharge was constructed. Plasma emission based measurement of electron density in discharge columns from Stark broadening Ar is discribed. The spacial profile of electron density was studied. In the middle of the discharge column, as the input power increases from 138 to 248 W, the electron density rises from 4.038 x 10(21) m(-3) to 4.75 x 10(21) m(-3). PMID:22497121

  20. Density profile of pyrolite under the lower mantle conditions

    SciTech Connect

    Ricolleau, Angele; Fei, Yingwei; Cottrell, Elizabeth; Watson, Heather; Deng, Liwei; Zhang, Li; Fiquet, Guillaume; Auzende, Anne-Line; Roskosz, Mathieu; Morard, Guillaume; Prakapenka, Vitali

    2009-04-13

    The pyrolite model is one of the possible compositions of the Earth's lower mantle. The lower mantle's composition is generally modelled by comparing seismic observations with mineral physics data of possible lower mantle end-member phases. Here, we report the compression behavior of a natural KLB-1 peridotite (a representative composition of the pyrolite model) in a quasi-hydrostatic environment at simultaneous high pressure (P) and temperature (T), covering the entire range of lower mantle P-T conditions up to 112 GPa. This is the first experimentally determined density profile of pyrolite under the lower mantle conditions. The results allow us to directly compare the measured density of peridotite mantle along the geotherm with the Preliminary Reference Earth Model (PREM) derived from seismic observations, without extrapolation. The comparison shows significant mismatch between the two, which calls for a re-evaluation of the PREM density model or a non-pyrolite lower mantle composition.

  1. Electronic Flux Density beyond the Born-Oppenheimer Approximation.

    PubMed

    Schild, Axel; Agostini, Federica; Gross, E K U

    2016-05-19

    In the Born-Oppenheimer approximation, the electronic wave function is typically real-valued and hence the electronic flux density (current density) seems to vanish. This is unfortunate for chemistry, because it precludes the possibility to monitor the electronic motion associated with the nuclear motion during chemical rearrangements from a Born-Oppenheimer simulation of the process. We study an electronic flux density obtained from a correction to the electronic wave function. This correction is derived via nuclear velocity perturbation theory applied in the framework of the exact factorization of electrons and nuclei. To compute the correction, only the ground state potential energy surface and the electronic wave function are needed. For a model system, we demonstrate that this electronic flux density approximates the true one very well, for coherent tunneling dynamics as well as for over-the-barrier scattering, and already for mass ratios between electrons and nuclei that are much larger than the true mass ratios. PMID:26878256

  2. A multichannel interferometer for electron density measurements in COMPASS

    NASA Astrophysics Data System (ADS)

    Edlington, Trevor; Wylde, Richard

    1992-10-01

    A compact seven channel interferometer has been designed and built to measure electron density profiles in the COMPASS (compact assembly) tokamak. Two far-infrared (FIR) laser cavities are optically pumped with a single continuous-wave CO2 laser, generating two similar beams at λ=433 μm with a small, tunable difference frequency (0.5-1.0 MHz). The COMPASS facility incorporates a complex set of poloidal field coils close to the vacuum vessel as well as a versatile set of close coupled ``helical'' resonant magnetic perturbation windings which severely restrict diagnostic access. As a result a novel approach to the optical circuit has been necessary. Wire grid polarizers are used to divide the laser power equally between channels and to overlay probing and local oscillator beams after the probe beams have made a double pass through the plasma. Gaussian beam-mode optics is used to minimize the size of the optical components.

  3. Size dependent thermalization time of Ag nanoparticles and the surface density profile

    NASA Astrophysics Data System (ADS)

    Lopez-Bastidas, Catalina

    2009-03-01

    It is well known that the lack of d-electron screening in the s-electron spill-out region at the surface of Ag nanoparticles increases the electron-electron interaction in this region compared to the bulk. Therefore when comparing the electron-electron interaction contribution to the thermalization time of Ag nanoparticles of varying radius, smaller particles thermalize faster due to the increased surface to bulk ratio. One aspect which has not been addressed is the effect of the spatial distribution of charge at the surface of the nanoparticle. In this work it is shown that the size dependence of the thermalization time is very sensitive to the surface density profile. The electron thermalization time of conduction electrons in Ag nanoparticles as a function of the radius is calculated. The sensitivity of the scattering rate to the spatial distribution of charge at the surface of the nanostructure is analyzed using several model surface profiles. The change in surface charge distribution via charging or coating of the nanospheres is shown to be a tool for control and probing of the ultra-fast electron-electron dynamics in metallic nanoparticles.

  4. Adaptive method for electron bunch profile prediction

    NASA Astrophysics Data System (ADS)

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.

  5. Adaptive method for electron bunch profile prediction

    SciTech Connect

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.

  6. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements

    NASA Astrophysics Data System (ADS)

    Ryu, K.; Lee, E.; Chae, J. S.; Parrot, M.; Pulinets, S.

    2014-10-01

    We report the processes and results of statistical analysis on the ionospheric electron density data measured by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite over a period of 6 years (2005-2010), in order to investigate the correlation between seismic activity and equatorial plasma density variations. To simplify the analysis, three equatorial regions with frequent earthquakes were selected and then one-dimensional time series analysis between the daily seismic activity indices and the equatorial ionization anomaly (EIA) intensity indices, which represent relative equatorial electron density increase, were performed for each region. The statistically significant values of the lagged cross-correlation function, particularly in the region with minimal effects of longitudinal asymmetry, indicate that some of the very large earthquakes with M > 5.0 in the low-latitude region can accompany observable precursory and concurrent EIA enhancements, even though the seismic activity is not the most significant driver of the equatorial ionospheric evolution. The physical mechanisms of the seismo-ionospheric coupling is consistent with our observation, and the possibility of earthquake prediction using the EIA intensity variation is discussed.

  7. Probing Electron Dynamics with the Laplacian of the Momentum Density

    SciTech Connect

    Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon

    2012-09-24

    This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.

  8. [The reconstruction of welding arc 3D electron density distribution based on Stark broadening].

    PubMed

    Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min

    2012-10-01

    The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma. PMID:23285847

  9. Current profile reconstruction using electron temperature imaging diagnostics

    NASA Astrophysics Data System (ADS)

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L. F.; Finkenthal, M.; Pacella, D.; Kaita, R.; Stratton, B.; Sabbagh, S.

    2004-10-01

    Flux surface shape information can be used to constrain the current profile for reconstruction of the plasma equilibrium. One method of inferring flux surface shape relies on plasma x-ray emission; however, deviations from the flux surfaces due to impurity and density asymmetries complicate the interpretation. Electron isotherm surfaces should correspond well to the plasma flux surfaces, and equilibrium constraint modeling using this isotherm information constrains the current profile. The KFIT code is used to assess the profile uncertainty and to optimize the number, location and SNR required for the Te detectors. As Te imaging detectors we consider tangentially viewing, vertically spaced, linear gas electron multiplier arrays operated in pulse height analysis (PHA) mode and multifoil soft x-ray arrays. Isoflux coordinate sets provided by Te measurements offer a strong constraint on the equilibrium reconstruction in both a stacked horizontal array configuration and a crossed horizontal and vertical beam system, with q0 determined to within ±4%. The required SNR can be provided with either PHA or multicolor diagnostic techniques, though the multicolor system requires ˜×4 better statistics for comparable final errors.

  10. Compton profile study and electronic properties of tantalum diboride.

    PubMed

    Raykar, Veera; Bhamu, K C; Ahuja, B L

    2013-07-01

    We have reported the first-ever experimental Compton profile (CP) of TaB2 using 20 Ci(137)Cs Compton spectrometer. To compare the experimental data, we have also computed the theoretical CPs using density functional theory (DFT) and hybridization of DFT and Hartree-Fock (HF) within linear combination of the atomic orbitals (LCAO) method. In addition, we have reported energy bands and density of states of TaB2 using LCAO and full potential-linearized augmented plane wave (FP-LAPW) methods. A real space analysis of CP of TaB2 confirms its metallic character which is in tune with the cross-overs of Fermi level by energy bands and Fermi surface topology. A comparison of equal-valence-electron-density (EVED) experimental profiles of isoelectronic TaB2 and NbB2 show more covalent (or less ionic) character of TaB2 than that of NbB2 which is in agreement with available ionicity data. PMID:23518037

  11. On the (non-)universality of halo density profiles

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt

    We present a systematic study of the density profiles of dark matter halos in LambdaCDM cosmologies, focusing on the question whether these profiles are "universal", i.e., whether they follow the same functional form regardless of halo mass, redshift, cosmology, and other parameters. The inner profiles (r [special character omitted] R vir) can be described as a function of only mass and concentration, and we thus begin by investigating whether there is a universal, cosmology-independent relation between those two parameters. We propose a model in which concentration is a function only of a halo's peak height and the local slope of the matter power spectrum. This model matches the concentrations in LambdaCDM and scale-free simulations, correctly extrapolates over 16 orders of magnitude in halo mass, and differs significantly from all previously proposed models at high masses and redshifts. We find that the outer profiles (r [special character omitted] Rvir) are remarkably universal across redshifts when radii are rescaled by R200m, whereas the inner profiles are most universal in units of R200c, highlighting that universality depends upon the definition of the halo boundary. Furthermore, we discover that the profiles exhibit significant deviations from the supposedly universal analytic formulae previously suggested in the literature, such as the NFW and Einasto forms. In particular, the logarithmic slope of the profiles of massive or rapidly accreting halos steepens more sharply than predicted around r ≈ R200m, where the steepness increases with increasing peak height or mass accretion rate. We propose a new, accurate fitting formula that takes these dependencies into account. Finally, we demonstrate that the profile steepening corresponds to the caustic at the apocenter of infalling matter on its first orbit. We call the location of the caustic the splashback radius, Rsp, and propose this radius as a new, physically motivated definition of the halo boundary. We

  12. Analytic solutions of the Rayleigh equation for linear density profiles

    NASA Astrophysics Data System (ADS)

    Cherfils, C.; Lafitte, O.

    2000-08-01

    We consider the Rayleigh-Taylor instability in linear density profiles and we derive the exact analytic expressions of the growth rates and associated eigenfunctions. We study the behavior of the multiple eigenvalues in both the short- and the long-wavelength limit. As the largest eigenvalue γmax reduces to the classical Rayleigh growth rate; the other eigenvalues vanish as the front thickness tends to zero. Furthermore, the simple expression of γmax exact to first order in the long-wavelength limit differs from the widely used estimate Akg/(1+AkL0), where g is the acceleration, A the Atwood number, k the wave number of the perturbation, and L0 the minimum density gradient scale length.

  13. Ligand identification using electron-density mapcorrelations

    SciTech Connect

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn,Judith D.

    2006-12-01

    A procedure for the identification of ligands bound incrystal structuresof macromolecules is described. Two characteristics ofthe density corresponding to a ligand are used in the identificationprocedure. One is the correlation of the ligand density with each of aset of test ligands after optimization of the fit of that ligand to thedensity. The other is the correlation of a fingerprint of the densitywith the fingerprint of model density for each possible ligand. Thefingerprints consist of an ordered list of correlations of each the testligands with the density. The two characteristics are scored using aZ-score approach in which the correlations are normalized to the mean andstandard deviation of correlations found for a variety of mismatchedligand-density pairs, so that the Z scores are related to the probabilityof observing a particular value of the correlation by chance. Theprocedure was tested with a set of 200 of the most commonly found ligandsin the Protein Data Bank, collectively representing 57 percent of allligands in the Protein Data Bank. Using a combination of these twocharacteristics of ligand density, ranked lists of ligand identificationswere made for representative (F-o-F-c) exp(i phi(c)) difference densityfrom entries in the Protein Data Bank. In 48 percent of the 200 cases,the correct ligand was at the top of the ranked list of ligands. Thisapproach may be useful in identification of unknown ligands in newmacromolecular structures as well as in the identification of whichligands in a mixture have bound to a macromolecule.

  14. Investigating the Origins of Dark Matter Halo Density Profiles

    NASA Astrophysics Data System (ADS)

    Williams, Liliya L. R.; Babul, Arif; Dalcanton, Julianne J.

    2004-03-01

    Although high-resolution N-body simulations make robust empirical predictions of the density distribution within cold dark matter halos, these studies have yielded little physical insight into the origins of the distribution. We therefore attempt to investigate the problem using analytic and semianalytic approaches. Simple analytic considerations suggest that the inner slope of the central cusps in dark matter halos cannot be steeper than α=2 (where ρ~r-α), with α=1.5-1.7 being a more realistic upper limit. Moreover, our analysis suggests that any number of effects, whether real (e.g., angular momentum imparted by tidal torques and secondary perturbations) or artificial (e.g., two-body interactions, the accuracy of the numerical integrator, round-off errors) will result in shallower slopes. We also find that the halos should exhibit a well-defined relationship between rperi/rapo and jθ/jr. We derive this relationship analytically and speculate that it may be ``universal.'' Using a semianalytic scheme based on Ryden & Gunn, we further explore the relationship between the specific angular momentum distribution in a halo and its density profile. For present purposes, we restrict ourselves to halos that form primarily via the nearly smooth accretion of matter, and consider only the specific angular momentum generated by secondary perturbations associated with the cold dark matter spectrum of density fluctuations. Compared to those formed in N-body simulations, our ``semianalytic'' halos are more extended, have flatter rotation curves, and have a higher specific angular momentum, even though we have not yet taken into account the effects of tidal torques. Whether the density profile of numerical halos is indeed the result of loss in angular momentum outside the central region, and whether this loss is a feature of hierarchical merging and major mergers in particular, is under investigation.

  15. Density profile of strongly correlated spherical Yukawa plasmas

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Henning, C.; Ludwig, P.; Golubnychiy, V.; Baumgartner, H.; Piel, A.; Block, D.

    2006-10-01

    Recently the discovery of 3D-dust crystals [1] excited intensive experimental and theoretical activities [2-4]. Details of the shell structure of these crystals has been very well explained theoretically by a simple model involving an isotropic Yukawa-type pair repulsion and an external harmonic confinement potential [4]. On the other hand, it has remained an open question how the average radial density profile, looks like. We show that screening has a dramatic effect on the density profile, which we derive analytically for the ground state. Interestingly, the result applies not only to a continuous plasma distribution but also to simulation data for the Coulomb crystals exhibiting the above mentioned shell structure. Furthermore, excellent agreement between the continuum model and shell models is found [5]. [1] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005) [3] P. Ludwig, S. Kosse, and M. Bonitz, Phys. Rev. E 71, 046403 (2005) [4] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006) [5] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E

  16. Electronic properties and momentum densities of tin chalcogenides: Validation of PBEsol exchange-correlation potential

    NASA Astrophysics Data System (ADS)

    Ahuja, B. L.; Raykar, Veera; Joshi, Ritu; Tiwari, Shailja; Talreja, Sonal; Choudhary, Gopal

    2015-05-01

    We report Compton profiles of SnS and SnTe at a momentum resolution of 0.34 a.u. using a 20 Ci 137Cs Compton spectrometer. To compare our experimental data, we have also computed the theoretical Compton profiles using density functional theory within linear combination of atomic orbitals (LCAO) method. To interpret the relative nature of bonding in these compounds, we have scaled the experimental and theoretical Compton profiles on equal-valence-electron-density (EVED). On the basis of EVED profiles, it is seen that SnTe shows more covalent character than SnS. To rectify the substantial disagreement between experimental and theoretical band gaps, we have also presented the energy bands and density of states of both the compounds using full-potential linearized augmented plane wave method (FP-LAPW) including spin-orbit interaction within the PBEsol exchange-correlation potential.

  17. Electron and ion densities in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Langer, W. D.

    1974-01-01

    A quantitative theory of ionization in diffuse clouds is developed which includes H(+) charge exchange with O. Dissociative charge exchange of He(+) with H2 plays an important role in the densities of H(+) and He(+). The abundance of HD is also discussed.

  18. Gutzwiller density functional theory for correlated electron systems

    SciTech Connect

    Ho, K. M.; Schmalian, J.; Wang, C. Z.

    2008-02-04

    We develop a density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wave function which exactly obeys the Gutzwiller approximation for all one-particle operators. The solution of the many-electron problem is mapped onto the self-consistent solution of a set of single-particle Schroedinger equations, analogously to standard DFT-local density approximation calculations.

  19. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  20. Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Rhodes, T. L.; Carter, T. A.; McKee, G. R.; Shafer, M. W.; Staebler, G. M.; Burrell, K. H.; DeBoo, J. C.; Prater, R.

    2010-02-15

    New measurements show that long-wavelength (k{sub t}hetarho{sub s}<0.5) electron temperature fluctuations can play an important role in determining electron thermal transport in low-confinement mode (L-mode) tokamak plasmas. In neutral beam-heated L-mode tokamak plasmas, electron thermal transport and the amplitude of long-wavelength electron temperature fluctuations both increase in cases where local electron cyclotron heating (ECH) is used to modify the plasma profiles. In contrast, the amplitude of simultaneously measured long-wavelength density fluctuations does not significantly increase. Linear stability analysis indicates that the ratio of the trapped electron mode (TEM) to ion temperature gradient (ITG) mode growth rates increases in the cases with ECH. The increased importance of the TEM drive relative to the ITG mode drive in the cases with ECH may be associated with the increases in electron thermal transport and electron temperature fluctuations.

  1. Measurement of the electron density in a subatmospheric dielectric barrier discharge by spectral line shape

    SciTech Connect

    Dong Lifang; Qi Yuyan; Liu Weiyuan; Fan Weili

    2009-07-01

    The electron density in a subatmospheric dielectric barrier discharge by using argon spectral line shape is measured for the first time. With the gas pressure increasing in the range of 1x10{sup 4} Pa-6x10{sup 4} Pa, the line profiles of argon 696.54 nm are measured. An asymmetrical deconvolution procedure is applied to separate the Gaussian and Lorentzian profile from the measured spectral line. The gas temperature is estimated by using rotational temperature of N{sub 2}{sup +}. By subtracting the van der Waals broadening and partial Lorentzian instrumental broadening from the Lorentzian broadening, the Stark broadening is obtained and used to estimate the electron density. It is found that the electron density in dielectric barrier discharge increases with the increase in gas pressure.

  2. The density profile of the elliptical planetary nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    Soker, Noam; Zucker, Daniel B.; Balick, Bruce

    1992-01-01

    We present the three-dimensional density structure of the elliptical planetary nebula NGC 3242, deconvolved from its H-alpha image. Using the simplistic assumptions that each mass element preserves its original velocity, which is radial and depends only on latitude, we deduce from this density profile the variation of mass-loss rate from the progenitor of NGC 3242 with latitude and time. The resulting somewhat qualitative mass-loss geometry and history are used to constrain models for the formation of the elliptical structure of NGC 3242. We argue that a triple system, with a very close brown dwarf companion and a more massive distant tertiary star, is compatible with the morphology of NGC 3242. In this model the brown dwarf, of about 0.01 solar mass, shared a common envelope with the progenitor star, and spun up the envelope through deposition of angular momentum. The oblate rotating envelope blew an axisymmetrical wind. We suggest that the presence of a third star, with a mass of about 1 solar mass and an orbital period of about 4000 years, could have caused the large scale deviation from axial symmetry seen in the density structure.

  3. Dopant profiling based on scanning electron and helium ion microscopy.

    PubMed

    Chee, Augustus K W; Boden, Stuart A

    2016-02-01

    In this paper, we evaluate and compare doping contrast generated inside the scanning electron microscope (SEM) and scanning helium ion microscope (SHIM). Specialised energy-filtering techniques are often required to produce strong doping contrast to map donor distributions using the secondary electron (SE) signal in the SEM. However, strong doping contrast can be obtained from n-type regions in the SHIM, even without energy-filtering. This SHIM technique is more sensitive than the SEM to donor density changes above its sensitivity threshold, i.e. of the order of 10(16) or 10(17)donorscm(-3) respectively on specimens with or without a p-n junction; its sensitivity limit is well above 2×10(17)acceptorscm(-3) on specimens with or without a p-n junction. Good correlation is found between the widths and slopes of experimentally measured doping contrast profiles of thin p-layers and the calculated widths and slopes of the potential energy distributions across these layers, at a depth of 1 to 3nm and 5 to 10nm below the surface in the SHIM and the SEM respectively. This is consistent with the mean escape depth of SEs in silicon being about 1.8nm and 7nm in the SHIM and SEM respectively, and we conclude that short escape depth, low energy SE signals are most suitable for donor profiling. PMID:26624515

  4. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; Rhodes, T. L.; Dimits, A. M.; Bravenec, R.; Grierson, B. A.; Holland, C.; Lohr, J.; Marinoni, A.; McKee, G. R.; Petty, C. C.; Rost, J. C.; Schmitz, L.; Wang, G.; Zemedkun, S.; Zeng, L.

    2016-05-01

    A series of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven trapped electron mode (DGTEM) turbulence dominates the inner core of H-mode plasmas during strong electron cyclotron heating (ECH). Adding 3.4 MW ECH doubles Te/Ti from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This suggests that fusion α-heating may degrade inner core confinement in H-mode plasmas with moderate density peaking and low collisionality, with equal electron and ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] (and GENE [Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes but also density fluctuation spectra from Doppler backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0>qmin>1 .

  5. Measurement of electron density using reactance cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Seong, D. J.; Chang, H. Y.

    2016-05-01

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure the electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).

  6. Role of Density Gradient Driven Trapped Electron Modes in the H-Mode Inner Core with Electron Heating

    NASA Astrophysics Data System (ADS)

    Ernst, D.

    2015-11-01

    We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.

  7. Ionospheric Electron Density during Magnetically Active Times over Istanbul

    NASA Astrophysics Data System (ADS)

    Naz Erbaş, Bute; Kaymaz, Zerefsan; Ceren Moral, Aysegul; Emine Ceren Kalafatoglu Eyiguler, R. A..

    2016-07-01

    In this study, we analyze electron density variations over Istanbul using Dynasonde observations during the magnetically active times. In order to perform statistical analyses, we first determined magnetic storms and magnetospheric substorm intervals from October 2012 to October 2015 using Kyoto's magnetic index data. Corresponding ionospheric parameters, such as critical frequency of F2 region (foF2), maximum electron density height (hmF2), total electron density (TEC) etc. were retrieved from Dynasonde data base at Istanbul Technical University's Space Weather Laboratory. To understand the behavior of electron density during the magnetically active times, we remove the background quiet time variations first and then quantify the anomalies. In this presentation, we will report results from our preliminary analyses from the selected cases corresponding to the strong magnetic storms. Initial results show lower electron densities at noon times and higher electron densities in the late afternoon toward sunset times when compared to the electron densities of magnetically quiet times. We also compare the results with IRI and TIEGCM ionospheric models in order to understand the physical and dynamical causes of these variations. During the presentation we will also discuss the role of these changes during the magnetically active times on the GPS communications through ionosphere.

  8. Ultrashort Pulse Reflectometry (USPR) Density Profile Measurements on GAMMA-10

    NASA Astrophysics Data System (ADS)

    Domier, C. W.; Roh Luhmann, Y., Jr.; Mase, A.; Kubota, S.

    1999-11-01

    Ultrashort pulse reflectometry (USPR) involves time-of-flight measurements of extremely broadband, high speed chirped signals ( ns sweep times). A multichannel USPR system has been installed on the central cell of the GAMMA-10 mirror machine located at the University of Tsukuba, Japan. Here, the output from a 65 ps FWHM impulse generator is stretched and amplified to form a 10 ns duration, 11-18 GHz chirp signal. A five channel X-mode USPR receiver, with frequency channels at 12, 13, 15, 16 and 17 GHz, measures the double-pass time delay of each reflected subpacket simultaneously with 25 ps time resolution. Density profile and fluctuation data collected on GAMMA-10 will be presented.

  9. Squeezed states of electrons and transitions of the density of states

    NASA Technical Reports Server (NTRS)

    Lee, Seung Joo; Um, Chung IN

    1993-01-01

    Electron systems which have low dimensional properties have been constructed by squeezing the motion in zero, one, or two-directions. An isolated quantum dot is modeled by a potential box with delta-profiled, penetrable potential walls embedded in a large outer box with infinitely high potential walls which represent the world function with respect to vacuum. We show the smooth crossover of the density of states from the three-dimensional to the quasi-zero dimensional electron gas.

  10. Validation of Ionosonde Electron Density Reconstruction Algorithms with IONOLAB-RAY in Central Europe

    NASA Astrophysics Data System (ADS)

    Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra

    2016-07-01

    Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used

  11. Advances of the density profile reflectometry on TORE SUPRA

    NASA Astrophysics Data System (ADS)

    Clairet, F.; Bottereau, C.; Chareau, J. M.; Sabot, R.

    2003-03-01

    Significant improvements have been achieved in the performances of the broadband reflectometry for the density profile measurements on Tore Supra. The frequency range of the former 50-75 GHz X-mode reflectometer has been extended with an additional device operating between 75 and 110 GHz. Both setups have ultrafast sweeping capabilities allowing full band measurements in 20 μs. The heterodyne detection and the intermediate frequency system have been upgraded to record beat frequencies up to 100 MHz with a signal to noise ratio of about 40 dB. The in phase and quadrature-type phase detection system (IQ detector) provides sine and cosine components of the received signal for a separate measurement of the phase and the amplitude. A new fast data acquisition system in Versa Module Europa format has been developed. It allows sampling frequency up to 200 MHz with 32 Mo memory capabilities per channel and 10 bit resolution digitizers. Edge profile measurements are now available for a wide range of toroidal magnetic fields (from 3 to 4 T).

  12. Modification of ionospheric electron density by dust suspension

    NASA Astrophysics Data System (ADS)

    Srivastava, Sweta; Mishra, Rashmi; Singh Sodha, Mahendra

    2016-05-01

    On the basis of a dynamic analysis the effectiveness of dust suspension for the reduction and enhancement of electron density in the E-layer of the ionosphere has been investigated in this paper. The analysis is based on the modelling of the E-layer as the Chapman α layer (validated earlier); the electron/ion production function, arrived at by Chapman and effective electron temperature-dependent electron–ion recombination coefficients in agreement with observations have been used. The balance of the charge on the particles and the number/energy balance of the constituents have been taken into account. The following is the physics of the change in electron density in the ionosphere by the suspension of dust. First, the dust provides a source (emission) and sink (accretion) of electrons. Second, the dust emits photoelectrons with energies much higher than those of ambient electrons, which enhances the electron temperature, leading to a reduced electron–ion recombination coefficient, and thus to a higher electron density. An interplay of these processes and the natural processes of electron production/annihilation determines the electron density and temperature in the dust suspension in the ionosphere. The numerical results, corresponding to suspension of dust of silicate (high work function) and Cs coated bronze (low work function) in the E-layer at 105 \\text{km} are presented and discussed.

  13. Core Temperature and Density Profiles from Multispectral Imaging of ICF Plasmas

    SciTech Connect

    Koch, J A; Barbee, T W Jr.; Dalhed, S; Haan, S; Izumi, N; Lee, R W; Welser, L; McCrorey, D L; Mancini, R C; Marshall, F; Meyerhoffer, D; Sangster, C; Smalyuk, V; Soures, J; Klein, L

    2003-08-26

    We have developed a multiple monochromatic x-ray imaging diagnostic using an array of pinholes coupled to a multilayer Bragg mirror, and we have used this diagnostic to obtain unique multispectral imaging data of inertial-confinement fusion implosion plasmas. Argon dopants in the fuel allow emission images to be obtained in the Ar He-b and Ly-b spectral regions, and these images provide data on core temperature and density profiles. We have analyzed these data to obtain quasi-three-dimensional maps of electron temperature and scaled electron density within the core for several cases of drive symmetry, and we observed a two-lobed structure evolving for increasingly prolate-asymmetric drive. This structure is invisible in broad-band x-ray images. Future work will concentrate on hydrodynamics simulations for comparison with the data.

  14. Picosecond imaging of low-density plasmas by electron deflectometry.

    PubMed

    Centurion, M; Reckenthaeler, P; Krausz, F; Fill, E E

    2009-02-15

    We have imaged optical-field ionized plasmas with electron densities as low as 10(13) cm(-3) on a picosecond timescale using ultrashort electron pulses. Electric fields generated by the separation of charges are imprinted on a 20 keV probe electron pulse and reveal a cloud of electrons expanding away from a positively charged plasma core. Our method allows for a direct measurement of the electron energy required to escape the plasma and the total charge. Simulations reproduce the main features of the experiment and allow determination of the energy of the electrons. PMID:19373367

  15. Electron momentum density, band structure, and structural properties of SrS

    SciTech Connect

    Sharma, G.; Munjal, N.; Vyas, V.; Kumar, R.; Sharma, B. K.; Joshi, K. B.

    2013-10-15

    The electron momentum density, the electronic band structure, and the structural properties of SrS are presented in this paper. The isotropic Compton profile, anisotropies in the directional Compton profiles, the electronic band structure and density of states are calculated using the ab initio periodic linear combination of atomic orbitals method with the CRYSTAL06 code. Structural parameters of SrS-lattice constants and bulk moduli in the B1 and B2 phases-are computed together with the transition pressure. The computed parameters are well in agreement with earlier investigations. To compare the calculated isotropic Compton profile, measurement on polycrystalline SrS is performed using 5Ci-{sup 241}Am Compton spectrometer. Additionally, charge transfer is studied by means of the Compton profiles computed from the ionic model. The nature of bonding in the isovalent SrS and SrO compounds is compared on the basis of equal-valenceelectron-density profiles and the bonding in SrS is found to be more covalent than in SrO.

  16. Control of laser-wakefield acceleration by the plasma-density profile.

    PubMed

    Pukhov, A; Kostyukov, I

    2008-02-01

    We show that both the maximum energy gain and the accelerated beam quality can be efficiently controlled by the plasma-density profile. Choosing a proper density gradient one can uplift the dephasing limitation and keep the phase synchronism between the bunch of relativistic particles and the plasma wave over extended distances. Putting electrons into the n th wake period behind the driving laser pulse, the maximum energy gain is increased by the factor, which is proportional to n, over that in the case of uniform plasma. Layered plasma is suggested to keep the resonant condition for laser-wakefield excitation. The acceleration is limited then by laser depletion rather than by dephasing. Further, we show that the natural energy spread of the particle bunch acquired at the acceleration stage can be effectively removed by a matched deceleration stage, where a larger plasma density is used. PMID:18352081

  17. Electron Densities Near Io from Galileo Plasma Wave Observations

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Persoon, A. M.; Kurth, W. S.; Roux, A.; Bolton, S. J.

    2001-01-01

    This paper presents an overview of electron densities obtained near Io from the Galileo plasma wave instrument during the first four flybys of Io. These flybys were Io, which was a downstream wake pass that occurred on December 7, 1995; I24, which was an upstream pass that occurred on October 11, 1999; I25, which was a south polar pass that occurred on November 26, 1999; and I27, which was an upstream pass that occurred on February 22, 2000. Two methods were used to measure the electron density. The first was based on the frequency of upper hybrid resonance emissions, and the second was based on the low-frequency cutoff of electromagnetic radiation at the electron plasma frequency. For three of the flybys, Io, I25, and I27, large density enhancements were observed near the closest approach to Io. The peak electron densities ranged from 2.1 to 6.8 x 10(exp 4) per cubic centimeters. These densities are consistent with previous radio occultation measurements of Io's ionosphere. No density enhancement was observed during the I24 flyby, most likely because the spacecraft trajectory passed too far upstream to penetrate Io's ionosphere. During two of the flybys, I25 and I27, abrupt step-like changes were observed at the outer boundaries of the region of enhanced electron density. Comparisons with magnetic field models and energetic particle measurements show that the abrupt density steps occur as the spacecraft penetrated the boundary of the Io flux tube, with the region of high plasma density on the inside of the flux tube. Most likely the enhanced electron density within the Io flux tube is associated with magnetic field lines that are frozen to Io by the high conductivity of Io's atmosphere, thereby enhancing the escape of plasma along the magnetic field lines that pass through Io's ionosphere.

  18. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ˜16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  19. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    PubMed

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles. PMID:26932019

  20. SOLAR NEUTRINO PHYSICS OSCILLATIONS: SENSITIVITY TO THE ELECTRONIC DENSITY IN THE SUN'S CORE

    SciTech Connect

    Lopes, Ilidio; Turck-Chieze, Sylvaine E-mail: ilopes@uevora.pt

    2013-03-01

    Solar neutrinos coming from different nuclear reactions are now detected with high statistics. Consequently, an accurate spectroscopic analysis of the neutrino fluxes arriving on Earth's detectors becomes available, in the context of neutrino oscillations. In this work, we explore the possibility of using this information to infer the radial profile of the electronic density in the solar core. So, we discuss the constraints on the Sun's density and chemical composition that can be determined from solar neutrino observations. This approach constitutes an independent and alternative diagnostic to the helioseismic investigations already done. The direct inversion method, which we propose to obtain the radial solar electronic density profile, is almost independent of the solar model.

  1. Temporal-spatial modeling of electron density enhancement due to successive lightning strokes

    NASA Astrophysics Data System (ADS)

    Lay, Erin H.; Rodger, Craig J.; Holzworth, Robert H.; Cho, Mengu; Thomas, Jeremy N.

    2010-11-01

    We report results on the temporal-spatial modeling of electron density enhancement due to successive lightning strokes. Stroke rates based on World-Wide Lightning Location Network measurements are used as input to an axisymmetric Finite Difference Time Domain model that describes the effect of lightning electromagnetic pulses (EMP) on the ionosphere. Each successive EMP pulse interacts with a modified background ionosphere due to the previous pulses, resulting in a nonlinear electron density perturbation over time that eventually reaches a limiting value. The qualitative ionospheric response to successive EMPs is presented in 2-D, axisymmetric space. Results from this study show that the nonlinear electron density perturbations due to successive lightning strokes must be taken into account and varies with altitude. The limiting maximum electron density is reached earlier in time for higher altitudes, and the most significant effect occurs at 88 km. The limiting modeled electron density profile in the 83-91 km altitude range does not depend on the initial electron density.

  2. High-current density, high-brightness electron beams from large-area lanthanum hexaboride cathodes

    NASA Astrophysics Data System (ADS)

    Loschialpo, P.; Kapetanakos, C. A.

    1987-12-01

    Large (approx. 5 cm) diameter lanthanum hexaboride (LaB6) cathodes operated at 10 kV have produced 1 to 5 micro electron pulses with current density between 10 and 20 A/sq cm. Normalized beam brightness, has been consistently measured. To obtain this high current density, the LaB6 cathodes have been heated to temperatures between approximately 1600 to 1800 C. Very uniform temperature profiles are obtained by applying a carefully tailored electron bombardment heating power distribution. These measurements have been made between pressure .000001 to .00001 Torr, i.e., under much less demanding vacuum conditions than that required by conventional dispenser type cathodes.

  3. Evidence of Electron Density Enhancements at Enceladus' Apoapsis

    NASA Astrophysics Data System (ADS)

    Persoon, A. M.; Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Groene, J. B.

    2015-12-01

    Enceladus' plumes are the dominant source of plasma in Saturn's magnetosphere. Icy particles and water vapor are vented into the inner magnetosphere through fissures in Enceladus' southern polar region. These fissures are subjected to tidal stresses that vary as Enceladus moves in a slightly eccentric orbit around Saturn. Plume activity is greatest when tidal stress is minimal. This occurs when Enceladus is farthest away from Saturn in its orbit (the Enceladus apoapsis). This study will show temporal variations in the electron density distribution that correlate with the position of Enceladus in its orbit around Saturn, with strong density enhancements in the vicinity of Enceladus when the moon is near apoapsis. Equatorial electron density measurements derived from the upper hybrid resonance frequency from the Cassini Radio and Plasma Wave Science (RPWS) experiment are used to illustrate these electron density enhancements.

  4. Anti-Viral Antibody Profiling by High Density Protein Arrays

    PubMed Central

    Bian, Xiaofang; Wiktor, Peter; Kahn, Peter; Brunner, Al; Khela, Amritpal; Karthikeyan, Kailash; Barker, Kristi; Yu, Xiaobo; Magee, Mitch; Wasserfall, Clive H.; Gibson, David; Rooney, Madeleine E; Qiu, Ji; LaBaer, Joshua

    2015-01-01

    Viral infections elicit anti-viral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection and understanding of the mechanisms of virus associated diseases. In this work, we assayed anti-viral antibodies using a novel high density-nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter- array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal to background (S/B) ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis (JIA) and type 1 diabetes (T1D). Common as well as unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development. PMID:25758251

  5. Role of ionization and electron drift velocity profile to Rayleigh instability in a Hall thruster plasma

    SciTech Connect

    Singh, Sukhmander; Malik, Hitendra K.

    2012-07-01

    Role of ionization to Rayleigh instability is clarified in a Hall thruster plasma under the variety of profiles of electron drift velocity, namely, step-like profile (SLP) and two different super-Gaussian profiles (SGP1 and SGP2). For this, a relevant Rayleigh equation is derived and solved numerically using fourth-order Runge-Kutta method. Interestingly, an upper cutoff frequency of oscillations {omega}{sub max} is realized for the occurrence of the instability that shows dependence on the ionization rate {alpha}, electron drift velocity u{sub 0}, electron cyclotron frequency {Omega}, azimuthal wave number k{sub y}, plasma density n{sub 0}, density gradient {partial_derivative}n{sub 0}/{partial_derivative}x, ion (electron) thermal speed V{sub thI}(V{sub thE}), and ion (electron) plasma frequency {omega}{sub pi}({omega}{sub pe}). The frequency {omega}{sub max} follows the trend {omega}{sub max} (for SGP2) >{omega}{sub max} (for SLP) >{omega}{sub max} (for SGP1) and shows a similar behaviour with ionization for all types of the velocity profiles. The instability is found to grow faster for the higher {alpha} and the ion temperature but it acquires lower rate under the effect of the higher electron temperature; the perturbed potential also varies in accordance with the growth rate. The electron temperature influences the growth rate and cutoff frequency less significantly in comparison with the ion temperature.

  6. Electron density and gas density measurements in a millimeter-wave discharge

    NASA Astrophysics Data System (ADS)

    Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-08-01

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  7. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    NASA Astrophysics Data System (ADS)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.

  8. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGESBeta

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm₋3 in amore » low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  9. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography. PMID:26931847

  10. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    SciTech Connect

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Smith, D. R.; Yuh, H.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  11. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    NASA Astrophysics Data System (ADS)

    Ruiz Ruiz, J.; Ren, Y.; Guttenfelder, W.; White, A. E.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Smith, D. R.; Yuh, H.

    2015-12-01

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, kρe ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  12. Amplification of current density modulation in a FEL with an infinite electron beam

    SciTech Connect

    Wang, G.; Litvinenko, V.N.; Webb, S.D.

    2011-03-28

    We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with {kappa}-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain. In developing an analytical model for a FEL-based coherent electron cooling system, an infinite electron beam has been assumed for the modulation and correction processes. While the assumption has its limitation, it allows for an analytical close form solution to be obtained, which is essential for investigating the underlying scaling law, benchmarking the simulation codes and understanding the fundamental physics. 1D theory was previously applied to model a CeC FEL amplifier. However, the theory ignores diffraction effects and does not provide the transverse profile of the amplified electron density modulation. On the other hand, 3D theories developed for a finite electron beam usually have solutions expanded over infinite number of modes determined by the specific transverse boundary conditions. Unless the mode with the largest growth rate substantially dominates other modes, both evaluation and extracting scaling laws can be complicated. Furthermore, it is also preferable to have an analytical FEL model with assumptions consistent with the other two sections of a CeC system. Recently, we developed the FEL theory in an infinitely wide electron beam with {kappa}-1 (Lorentzian) energy distribution. Close form solutions have been obtained for the amplified current modulation initiated by an external electric field with various spatial-profiles. In this work, we extend the theory into {kappa}-2 energy distribution and study the evolution of current density induced by an initial density modulation.

  13. Density-shear instability in electron magneto-hydrodynamics

    SciTech Connect

    Wood, T. S. Hollerbach, R.; Lyutikov, M.

    2014-05-15

    We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is “at least as stable” as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.

  14. Multiband reflectometry system for density profile measurement with high temporal resolution on JET tokamak

    SciTech Connect

    Sirinelli, A.; Alper, B.; Fessey, J.; Hogben, C.; Sandford, G.; Walsh, M. J.; Cupido, L.; Meneses, L. [Instituto de Plasmas e FuSao Nuclear, Instituto Superior Tecnico, Associacao EURATOM Collaboration: JET-EFDA Contributors

    2010-10-15

    A new system has been installed on the JET tokamak consisting of six independent fast-sweeping reflectometers covering four bands between 44 and 150 GHz and using orthogonal polarizations. It has been designed to measure density profiles from the plasma edge to the center, launching microwaves through 40 m of oversized corrugated waveguides. It has routinely produced density profiles with a maximum repetition rate of one profile every 15 {mu}s and up to 100 000 profiles per pulse.

  15. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  16. Radial Electron Temperature and Density Measurements Using Thomson Scattering System in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Ohta, K.; Wang, X.; Chikatsu, M.; Kohagura, J.; Shima, Y.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Yasuhara, R.; Yamada, I.; Funaba, H.; Minami, T.

    2015-11-01

    A Thomson scattering (TS) system in GAMMA 10/PDX has been developed for the measurement of radial profiles of electron temperature and density in a single plasma and laser shot. The TS system has a large solid angle optical collection system and high-sensitivity signal detection system. The TS signals are obtained using four-channel high-speed digital oscilloscopes controlled by a Windows PC. We designed the acquisition program for six oscilloscopes to obtain 10-Hz TS signals in a single plasma shot, following which the time-dependent electron temperatures and densities can be determined. Moreover, in order to obtain larger TS signal intensity in the edge region, we added a second collection mirror. The radial electron temperatures and densities at six radial positions in GAMMA 10/PDX were successfully obtained.

  17. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    SciTech Connect

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  18. Measuring ionospheric electron density using the plasma frequency probe

    SciTech Connect

    Jensen, M.D.; Baker, K.D. )

    1992-02-01

    During the past decade, the plasma frequency probe (PFP) has evolved into an accurate, proven method of measuring electron density in the ionosphere above about 90 km. The instrument uses an electrically short antenna mounted on a sounding rocket that is immersed in the plasma and notes the frequency where the antenna impedance is large and nonreactive. This frequency is closely related to the plasma frequency, which is a direct function of free electron concentration. The probe uses phase-locked loop technology to follow a changing electron density. Several sections of the plasma frequency probe circuitry are unique, especially the voltage-controlled oscillator that uses both an electronically tuned capacitor and inductor to give the wide tuning range needed for electron density measurements. The results from two recent sounding rocket flights (Thunderstorm II and CRIT II) under vastly different plasma conditions demonstrate the capabilities of the PFP and show the importance of in situ electron density measurements of understanding plasma processes. 9 refs.

  19. Proton cooling in ultracold low-density electron gas

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Bronin, S. Y.; Manykin, E. A.; Zelener, B. B.; Zelener, B. V.; Khikhlukha, D. R.

    2015-11-01

    A sole proton energy loss processes in an electron gas and the dependence of these processes on temperature and magnetic field are studied using molecular dynamics techniques in present work. It appears that for electron temperatures less than 100 K many body collisions affect the proton energy loss and these collisions must be taken into account. The influence of a strong magnetic field on the relaxation processes is also considered in this work. Calculations were performed for electron densities 10 cm-3, magnetic field 1-3 Tesla, electron temperatures 10-50 K, initial proton energies 100-10000 K.

  20. Improvement of retrieved FORMOSAT-3/COSMIC electron densities validated by ionospheric sounder measurements at Jicamarca

    NASA Astrophysics Data System (ADS)

    Aragon-Angel, A.; Liou, Y.-A.; Lee, C.-C.; Reinisch, B. W.; HernáNdez-Pajares, M.; Juan, M.; Sanz, J.

    2011-10-01

    Inversion techniques applied to GPS-LEO radio occultation data allow the retrieval of accurate and worldwide-distributed refractivity profiles, which, in the case of the ionosphere, can be converted into electron densities providing information regarding the electron content distribution in this atmospheric region. In order to guarantee the accuracy of the electron density retrievals, two key points should be taken into account: the horizontal gradients of the electronic distribution and the topside electron content above the LEO orbit. The deployment in April 2006 of the satellite Constellation Observing System for Meteorology Ionosphere and Climate (FORMOSAT-3/COSMIC), carrying GPS receivers on board, provides valuable radio occultation data with global and almost uniform coverage overcoming the sparsity of data from previous LEO missions (for instance, GPS/MET, CHAMP, and SAC-C). This is also one of the main limitations of other sources providing direct observations, such as ionosondes. In this study, the improved Abel transform inversion is used to analyze derived ionospheric electron density profiles of the whole year 2007 in a scenario with very high electron density gradients: The neighboring area of Jicamarca (76.9°W, 12°S, dip latitude: 1°N), Perú, located at very low latitude and close to the geomagnetic equator, and the influence of the Appleton-Hartree equatorial anomaly (Davies, 1990). Moreover, different strategies to account for the topside electron content in the occultation data inversion are compared and discussed, taking advantage of the availability of FORMOSAT-3/COSMIC data sets and manually calibrated measurements from Jicamarca DPS. Statistical results show that for the current scenario the improvements are only about 10%, evidencing that the lack of colocation is one important source of error for the classical Abel inversion. Implications with respect to the plasmaspheric contribution have been derived from this data set analysis, in

  1. Measurements of neutral density profiles using a deuterium Balmer-alpha diagnostic in the C-2 FRC plasma

    SciTech Connect

    Gupta, Deepak K.; Deng, B. H.; Knapp, K.; Sun, X.; Thompson, M. C.

    2012-10-15

    In C-2 field-reversed configuration (FRC) device, low neutral density outside the FRC separatrix is required to minimize the charge exchange loss of fast particles. Titanium gettering is used in C-2 to reduce the wall recycling and keep the neutral density low in plasma edge. The measurements of neutral density radial profile are desirable to understand the plasma recycling and the effects of titanium gettering. These measurements are also needed to study the interaction of neutral beams with FRC plasma and confinement of fast ions. Diagnostic based on absolute deuterium Balmer-alpha (D-alpha) radiation measurements is developed and deployed on C-2 device to measure the radial profile of neutral density. Simultaneous measurements of electron density and temperature are done using CO{sub 2} interferometer, Thomson scattering, and triple probes diagnostics along with absolute D-alpha radiation. Abel inversion was performed to get the time dependent radial profile of the local D-alpha emission density. Neutral density profiles are obtained under different machine conditions of titanium deposition.

  2. Rocket radio measurement of electron density in the nighttime ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Smith, L. G.

    1979-01-01

    One experimental technique based on the Faraday rotation effect of radio waves is presented for measuring electron density in the nighttime ionosphere at midlatitudes. High frequency linearly-polarized radio signals were transmitted to a linearly-polarized receiving system located in a spinning rocket moving through the ionosphere. Faraday rotation was observed in the reference plane of the rocket as a change in frequency of the detected receiver output. The frequency change was measured and the information was used to obtain electron density data. System performance was evaluated and some sources of error were identified. The data obtained was useful in calibrating a Langmuir probe experiment for electron density values of 100/cu cm and greater. Data from two rocket flights are presented to illustrate the experiment.

  3. Electron temperature and density relationships in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Hammond, C. M.; Phillips, J. L.; Balogh, A.

    1995-01-01

    We examine 10 coronal mass ejections from the in-ecliptic portion of the Ulysses mission. Five of these CMEs are magnetic clouds. In each case we observe an inverse relationship between electron temperature and density. For protons this relationship is less clear. Earlier work has shown a similar inverse relationship for electrons inside magnetic clouds and interpreted it to mean that the polytropic index governing the expansion of electrons is less than unity. This requires electrons to be heated as the CME expands. We offer an alternative view that the inverse relationship between electron temperature and density is caused by more rapid cooling of the denser plasma through collisions. More rapid cooling of denser plasma has been shown for 1 AU measurements in the solar wind. As evidence for this hypothesis we show that the denser plasma inside the CMEs tends to be more isotropic indicating a different history of collisions for the dense plasma. Thus, although the electron temperature inside CMEs consistently shows an inverse correlation with the density, this is not an indication of the polytropic index of the plasma but instead supports the idea of collisional modification of the electrons during their transit from the sun.

  4. Electron density in the cusp ionosphere: increase or depletion?

    NASA Astrophysics Data System (ADS)

    Pitout, Frédéric; Blelly, Pierre-Louis

    2003-07-01

    Radar observations indicate that the electron density may decrease significantly in the cusp ionosphere, despite the intense precipitation of low-energy electrons originating from the magnetosheath. We have modeled the ionospheric footprints of the cusp and mantle regions, and we focus on the two rival processes acting pro and con the electron density build-up in those regions of intense precipitation, which also happened to be regions of strong electric field. On one hand, the precipitation provides the ionosphere with electrons; on the other hand, the strong electric field heats up the ion population, stimulating the production of NO+. A fraction of the NO+ produced then feeds the electron-consuming chemical reaction NO+ + e- -> NO in the F1-region, although this reaction is not favored in presence of a high electron temperature. We investigate various combinations of E-field and initial electron densities. Our simulations clearly show that the overall result depends on the origin of the flux tube, which eventually opens in the cusp region. We interpret our results in terms of seasonal effects, IMF-By and MLT dependence.

  5. Optimal-transport formulation of electronic density-functional theory

    NASA Astrophysics Data System (ADS)

    Buttazzo, Giuseppe; De Pascale, Luigi; Gori-Giorgi, Paola

    2012-06-01

    The most challenging scenario for Kohn-Sham density-functional theory, that is, when the electrons move relatively slowly trying to avoid each other as much as possible because of their repulsion (strong-interaction limit), is reformulated here as an optimal transport (or mass transportation theory) problem, a well-established field of mathematics and economics. In practice, we show that to solve the problem of finding the minimum possible internal repulsion energy for N electrons in a given density ρ(r) is equivalent to find the optimal way of transporting N-1 times the density ρ into itself, with the cost function given by the Coulomb repulsion. We use this link to set the strong-interaction limit of density-functional theory on firm ground and to discuss the potential practical aspects of this reformulation.

  6. Electron densities and the excitation of CN in molecular clouds

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1991-01-01

    In molecular clouds of modest density and relatively high fractional ionization, the rotational excitation of CN is controlled by a competition among electron impact, neutral impact and the interaction with the cosmic background radiation. The degree of excitation can be measured through optical absorption lines and millimeter-wave emission lines. The available, accurate data on CN in diffuse and translucent molecular clouds are assembled and used to determine electron densities. The derived values, n(e) = roughly 0.02 - 0.5/cu cm, imply modest neutral densities, which generally agree well with determinations by other techniques. The absorption- and emission-line measurements of CN both exclude densities higher than n(H2) = roughly 10 exp 3.5/cu cm on scales varying from 0.001 to 60 arcsec in these clouds.

  7. Electron density compression and oscillating effects on laser energy absorption in overdense plasma targets.

    PubMed

    Ge, Z Y; Zhuo, H B; Yu, W; Yang, X H; Yu, T P; Li, X H; Zou, D B; Ma, Y Y; Yin, Y; Shao, F Q; Peng, X J

    2014-03-01

    An analytical model for energy absorption during the interaction of an ultrashort, ultraintense laser with an overdense plasma is proposed. Both the compression effect of the electron density profile and the oscillation of the electron plasma surface are self-consistently included, which exhibit significant influences on the laser energy absorption. Based on our model, the general scaling law of the compression effect depending on laser strength and initial density is derived, and the temporal variation of the laser absorption due to the boundary oscillating effect is presented. It is found that due to the oscillation of the electron plasma surface, the laser absorption rate will vibrate periodically at ω or 2ω frequency for the p-polarized and s-polarized laser, respectively. The effect of plasma collision on the laser absorption has also been investigated, which shows a considerable rise in absorption with increasing electron-ion collision frequency for both polarizations. PMID:24730955

  8. Electron density and plasma dynamics of a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J.

    2016-07-01

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH2 at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ṡ 1015 cm-3 for a single accelerated plasma and a maximum value of ≈2.6 ṡ 1016 cm-3 for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  9. Shock-wave-based density down ramp for electron injection

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei; Li, Ji; Sun, Jun; Luo, Xisheng

    2012-02-01

    We demonstrate a sharp density transition for electron injection in laser wakefield acceleration through numerical study. This density transition is generated by a detached shock wave induced by a cylinder inserted into a supersonic helium gas flow. In a Mach 1.5 flow, the scale length of the density transition Lgrad can approximately equal to plasma wavelength λp at the shock front, and can be further reduced with an increase of the flow Mach number. A density down ramp with Lgrad≥λp can reduce the phase velocity of the wakefield and lower the energy threshold for the electrons to be trapped. Moreover, the quality of the accelerated beam may be greatly improved by precisely controlling of Lgrad to be one λp. For an even sharper density down ramp with Lgrad≪λp, the oscillating electrons in the plasma wave will up shift their phase when crossing the ramp, therefore a fraction of the electrons are injected into the accelerating field. For this injection mechanism, there is no threshold requirement for the pump laser intensity to reach wave breaking, which is a big advantage as compared with other injection mechanisms.

  10. Reconstruction of the ionospheric electron density by geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; van den Boogaart, Karl Gerald; Hoque, Mainul; Gerzen, Tatjana

    2015-04-01

    The ionosphere is the upper part of the atmosphere where sufficient free electrons exist to affect the propagation of radio waves. Typically, the ionosphere extends from about 50 - 1000 km and its morphology is mainly driven by solar radiation, particle precipitation and charge exchange. Due to the strong ionospheric impact on many applications dealing with trans-ionospheric signals such as Global Navigation Satellite Systems (GNSS) positioning, navigation and remote sensing, the demand for a highly accurate reconstruction of the electron density is ever increasing. Within the Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) the utilization of the upcoming radar mission TanDEM-L and its related products are prepared. The TanDEM-L mission will operate in L-band with a wavelength of approximately 24 cm and aims at an improved understanding of environmental processes and ecosystem change, e.g. earthquakes, volcanos, glaciers, soil moisture and carbon cycle. Since its lower frequency compared to the X-band (3 cm) and C-band (5 cm) radar missions, the influence of the ionosphere will increase and might lead to a significant degradation of the radar image quality if no correction is applied. Consequently, our interest is the reconstruction of the ionospheric electron density in order to mitigate the ionospheric delay. Following the ionosphere's behaviour we establish a non-stationary and anisotropic spatial covariance model of the electron density separated into a vertical and horizontal component. In order to estimate the model's parameters we chose a maximum likelihood approach. This approach incorporates GNSS total electron content measurements, representing integral measurements of the electron density between satellite to receiver ray paths, and the NeQuick model as a non-stationary trend. Based on a multivariate normal distribution the spatial covariance model parameters are optimized and afterwards the 3D electron density can be