Science.gov

Sample records for electron device letters

  1. The Electronic Astrophysical Journal Letters Project

    NASA Astrophysics Data System (ADS)

    Dalterio, H. J.; Boyce, P. B.; Biemesderfer, C.; Warnock, A., III; Owens, E.; Fullton, J.

    The American Astronomical Society has developed a comprehensive system for the electronic dissemination of refereed astronomical research results. Our current focus is the production of an electronic version of the Astrophysical Journal Letters. With the help of a recent National Science Foundation grant, we have developed a system that includes: LATEX-based manuscript preparation, electronic submission, peer review, production, development of a database of SGML-tagged manuscripts, collection of page charges and other fees, and electronic manuscript storage and delivery. Delivery options include World-Wide Web access through HTML browsers such as Mosaic and Netscape, an email gateway, and a stand-alone client accessible through astronomical software packages such as IRAF. Our goal is to increase the access and usefulness of the journal by providing enhanced features such as faster publication, advanced search capabilities, forward and backward referencing, links to underlying data and links to adjunct materials in a variety of media. We have based our journal on open standards and freely available network tools wherever possible.

  2. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  3. Silicon Carbide Electronic Devices

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.

    2001-01-01

    The status of emerging silicon carbide (SiC) widebandgap semiconductor electronics technology is briefly surveyed. SiC-based electronic devices and circuits are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot function. Projected performance benefits of SiC electronics are briefly illustrated for several applications. However, most of these operational benefits of SiC have yet to be realized in actual systems, primarily owing to the fact that the growth techniques of SiC crystals are relatively immature and device fabrication technologies are not yet sufficiently developed to the degree required for widespread, reliable commercial use. Key crystal growth and device fabrication issues that limit the performance and capability of high-temperature and/or high-power SiC electronics are identified. The electrical and material quality differences between emerging SiC and mature silicon electronics technology are highlighted.

  4. Electronic security device

    DOEpatents

    Eschbach, Eugene A.; LeBlanc, Edward J.; Griffin, Jeffrey W.

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  5. Electronic security device

    DOEpatents

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-03-17

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

  6. Diamond Electronic Devices

    NASA Astrophysics Data System (ADS)

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175° C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (˜1 nm) doped layers in order to achieve high RT activation.

  7. Diamond Electronic Devices

    SciTech Connect

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175 deg.n C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin ({approx}1 nm) doped layers in order to achieve high RT activation.

  8. Letters

    NASA Astrophysics Data System (ADS)

    2001-03-01

    The Editor welcomes letters, by e-mail to ped@iop.org or by post to Dirac House, Temple Back, Bristol BS1 6BE Contents: Force on a pendulum Sound slows down Bond is back Force on a pendulum The simple pendulum has been used by several educationalists for investigating the patterns of thinking among students and their observations that Aristotelian thinking persists among students at college level. I had also considered the simple pendulum in my 1985 letter in Physics Today [1], so I was interested to read the test given by Lenka Czudková and Jana Musilová [2]. When students were asked to draw net forces acting on the particle at various positions, 31.9% of students believed that the net force was tangential to the particle's path the whole time. To me this is no surprise because in our derivation of the equation for the period of a simple pendulum we assume that the unbalanced sine component provides the restoring force for the harmonic motion of the bob. Of course, Czudková and Musilová's question asked students for the net force on the particle, not the component. The student's answer fits well with the logic of the equilibrium of forces and the parallelogram law. Lastly, let me bring out the similarity between the student's answer and the thinking of George Gamow. He used to call positrons 'donkey' electrons because of their displacement against the applied force, before Paul Dirac termed them positrons. Victor Weisskeptf told me this anecdote in a letter in May 1982. References [1] Sathe D 1985 Phys. Today 38 144 [2] Czudková L and Musilová J 2000 Phys. Educ. 35 428 Dileep V Sathe Dadawala Jr College, Pune, India Sound slows down Without wanting to stir up more trouble amongst the already muddy waters of Physics teaching, consider how many times you have heard (or, more worryingly, read) this: 'Sound waves travel faster in a denser material' But...The velocity of simple longitudinal waves in a bulk medium is given by v = (K/ρ)1/2 where K is

  9. Letters

    NASA Astrophysics Data System (ADS)

    2001-07-01

    child is charged. Because folk are so poor, the fees have to be very low and the resources bought are consequently minimal. Apparatus for physics lessons? Very rarely. Electricity, gas and water services to the labs? Sometimes. Physics textbooks? Very few, old and battered through much use. I visited the David Kuanda School in Lusaka, a high status technical school, and there met some very impressive teachers. Were they doing technical subjects like electronics and car maintenance? No, they could not afford to buy the required equipment, and thus did the academic subjects, physics, chemistry and maths etc, which were cheaper as they could be taught with 'chalk and talk'! Were their students bright, resourceful and keen to learn? They certainly were. Despite all these difficulties the teachers were seeking to teach, and help their students enjoy, the same physics that is common around the world—and prepare them for very similar exams at GCE and A-level, in English. If anyone would like to help a Zambian secondary school, perhaps by sending a set of physics texts no longer used here, or by providing some other resources, perhaps by forming a personal link with a school in Zambia, please contact me and I would be happy to help with arrangements. I could guarantee that you, and your students, would gain an enormous amount from such links—as well as making a real contribution to the development of a less favoured country. Brian E Woolnough Oxford University, UK brian.woolnough@edstud.ox.ac.uk Pedantry or compromise I write in response to S Wynchank's letter in the May issue entitled 'Grammar and Gender'. Many have been using 'They' as common-sex third-person pronoun for years, in order to avoid the irritating and clumsy 'Him or Her'. This commonsense compromise is logically compatible with the universal use of 'They' to include the singular... OF EITHER SEX! For example, in 'Those who ignore this instruction may lose their right to compensation.', both 'Those' and 'their

  10. Letters

    NASA Astrophysics Data System (ADS)

    2001-07-01

    child is charged. Because folk are so poor, the fees have to be very low and the resources bought are consequently minimal. Apparatus for physics lessons? Very rarely. Electricity, gas and water services to the labs? Sometimes. Physics textbooks? Very few, old and battered through much use. I visited the David Kuanda School in Lusaka, a high status technical school, and there met some very impressive teachers. Were they doing technical subjects like electronics and car maintenance? No, they could not afford to buy the required equipment, and thus did the academic subjects, physics, chemistry and maths etc, which were cheaper as they could be taught with 'chalk and talk'! Were their students bright, resourceful and keen to learn? They certainly were. Despite all these difficulties the teachers were seeking to teach, and help their students enjoy, the same physics that is common around the world—and prepare them for very similar exams at GCE and A-level, in English. If anyone would like to help a Zambian secondary school, perhaps by sending a set of physics texts no longer used here, or by providing some other resources, perhaps by forming a personal link with a school in Zambia, please contact me and I would be happy to help with arrangements. I could guarantee that you, and your students, would gain an enormous amount from such links—as well as making a real contribution to the development of a less favoured country. Brian E Woolnough Oxford University, UK brian.woolnough@edstud.ox.ac.uk Pedantry or compromise I write in response to S Wynchank's letter in the May issue entitled 'Grammar and Gender'. Many have been using 'They' as common-sex third-person pronoun for years, in order to avoid the irritating and clumsy 'Him or Her'. This commonsense compromise is logically compatible with the universal use of 'They' to include the singular... OF EITHER SEX! For example, in 'Those who ignore this instruction may lose their right to compensation.', both 'Those' and 'their

  11. Nanoscale Electronic Devices

    NASA Astrophysics Data System (ADS)

    Jing, Xiaoye

    Continuous downscaling in microelectronics has pushed conventional CMOS technology to its physical limits, while Moore's Law has correctly predicted the trend for decades, each step forward is accompanied with unprecedented technological difficulties and near-exponential increase in cost. At the same time, however, demands for low-power, low-cost and high-speed devices have never diminished, instead, even more stringent requirements have been imposed on device performances. It is therefore crucial to explore alternative materials and device architectures in order to alleviate the pressure caused by downscaling. To this end, we investigated two different approaches: (1) InSb nanowire based field effect transistors (NWFETs) and (2) single walled carbon nanotube (SWCNT) -- peptide nucleic acid (PNA) --SWCNT conjugate. Two types of InSb nanowires were synthesized by template-assisted electrochemistry and chemical vapor deposition (CVD) respectively. In both cases, NWFETs were fabricated by electron beam lithography (EBL) and crystallinity was confirmed by transmission electron microscopy (TEM) and selected area diffraction (SAD) patterns. For electrochemistry nanowire, ambipolar conduction was observed with strong p-type conduction, the effect of thermal annealing on the conductivity was analyzed, a NWFET model that took into consideration the underlapped region in top-gated NWFET was proposed. Hole mobility in the channel was calculated to be 292.84 cm2V-1s -1 with a density of 1.5x1017/cm3. For CVD nanowire, the diameter was below 40nm with an average of 20nm. Vapor-liquid-solid (VLS) process was speculated to be the mechanism responsible for nanowire growth. The efficient gate control was manifested by high ION/I OFF ratio which was on the order of 106 and a small inverse subthreshold slope (<200 mV/decade). Scale analysis was used to successfully account for disparities observed among a number of sample devices. N-type conduction was found in all NWFETs with

  12. Letters

    NASA Astrophysics Data System (ADS)

    2001-03-01

    The Editor welcomes letters, by e-mail to ped@iop.org or by post to Dirac House, Temple Back, Bristol BS1 6BE Contents: Force on a pendulum Sound slows down Bond is back Force on a pendulum The simple pendulum has been used by several educationalists for investigating the patterns of thinking among students and their observations that Aristotelian thinking persists among students at college level. I had also considered the simple pendulum in my 1985 letter in Physics Today [1], so I was interested to read the test given by Lenka Czudková and Jana Musilová [2]. When students were asked to draw net forces acting on the particle at various positions, 31.9% of students believed that the net force was tangential to the particle's path the whole time. To me this is no surprise because in our derivation of the equation for the period of a simple pendulum we assume that the unbalanced sine component provides the restoring force for the harmonic motion of the bob. Of course, Czudková and Musilová's question asked students for the net force on the particle, not the component. The student's answer fits well with the logic of the equilibrium of forces and the parallelogram law. Lastly, let me bring out the similarity between the student's answer and the thinking of George Gamow. He used to call positrons 'donkey' electrons because of their displacement against the applied force, before Paul Dirac termed them positrons. Victor Weisskeptf told me this anecdote in a letter in May 1982. References [1] Sathe D 1985 Phys. Today 38 144 [2] Czudková L and Musilová J 2000 Phys. Educ. 35 428 Dileep V Sathe Dadawala Jr College, Pune, India Sound slows down Without wanting to stir up more trouble amongst the already muddy waters of Physics teaching, consider how many times you have heard (or, more worryingly, read) this: 'Sound waves travel faster in a denser material' But...The velocity of simple longitudinal waves in a bulk medium is given by v = (K/ρ)1/2 where K is

  13. Synaptic devices based on purely electronic memristors

    NASA Astrophysics Data System (ADS)

    Pan, Ruobing; Li, Jun; Zhuge, Fei; Zhu, Liqiang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Cao, Hongtao; Fu, Bing; Li, Kang

    2016-01-01

    Memristive devices have been widely employed to emulate biological synaptic behavior. In these cases, the memristive switching generally originates from electrical field induced ion migration or Joule heating induced phase change. In this letter, the Ti/ZnO/Pt structure was found to show memristive switching ascribed to a carrier trapping/detrapping of the trap sites (e.g., oxygen vacancies or zinc interstitials) in ZnO. The carrier trapping/detrapping level can be controllably adjusted by regulating the current compliance level or voltage amplitude. Multi-level conductance states can, therefore, be realized in such memristive device. The spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in this type of synaptic device. Compared with filamentary-type memristive devices, purely electronic memristors have potential to reduce their energy consumption and work more stably and reliably, since no structural distortion occurs.

  14. Letters

    NASA Astrophysics Data System (ADS)

    2001-05-01

    The Editor welcomes letters, by e-mail to ped@iop.org or by post to Dirac House, Temple Back, Bristol BS1 6BE, UK. Contents: Quantum uncertainties Reflections in a plastic box A brief history of quantum physics Correction Grammar and gender Quantum uncertainties Whilst I enjoyed Gesche Pospiech's article ('Uncertainty and complementarity: the heart of quantum physics' 2000 Phys. Educ. 35 393 9) I would like to expand on two comments he makes. Firstly the author claims that QM is linear, and a consequence of this is that any two superimposed states form an admissible third state. This is rather too sweeping, as it is true only for degenerate states. Otherwise quantum mechanics would allow a continuum of energies between states by a simple admixture of levels. The proof of this statement is trivial. For a Hamiltonian H and two orthogonal wavefunctions, ψ1 and ψ2 with energies E1 and E2 then (ψ1 + ψ2) is not an eigenfunction of that Hamiltonian as H(ψ1 + ψ2) = E1ψ1 + E2ψ2 ≠ E(ψ1 + ψ2) for any value of E, unless E1 = E2. Secondly Pospiech states that quantum objects show wave- or particle-like behaviour, depending on the measuring apparatus, and that occasionally experiments (such as Taylor's) reveal both. I would contest the validity of this type of thinking. All experiments on quantum objects reveal both types of behaviour—even ones which simply show straight line motion of photons. What is important, in addition, is our interpretation of the results. It takes an understanding of QED, for example, to see that an experiment which otherwise shows particle behaviour is, in fact, showing quantum behaviour. More contentiously though I would suggest that detection apparatus is incapable of detecting anything other than particles. Wave-like behaviour is revealed only by an analysis of the paths the particle could have taken. In other words, the interference of continuous fields sometimes predicts the same results when the detection is averaged over many events

  15. Letters

    NASA Astrophysics Data System (ADS)

    2001-09-01

    The Editor welcomes letters, by e-mail to ped@iop.org or by post to Dirac House, Temple Back, Bristol BS1 6BE, UK. Contents: M-set as metaphor The abuse of algebra M-set as metaphor 'To see a World in a Grain of Sand And a Heaven in a Wild Flower Hold Infinity in the palm of your hand And Eternity in an hour' William Blake's implied relativity of spatial and temporal scales is intriguing and, given the durability of this worlds-within-worlds concept (he wrote in 1803) in art, literature and science, the blurring of distinctions between the very large and the very small must strike some kind of harmonious chord in the human mind. Could this concept apply to the physical world? To be honest, we cannot be absolutely sure. Most cosmological thinking still retains the usual notions of a finite universe and an absolute size scale extending from smallest to largest objects. In the boundless realm of mathematics, however, the story is quite different. The M-set was discovered by the French mathematician Benoit Mandelbrot in 1980, created by just a few simple lines of computer code that are repeated recursively. As in Blake's poem, this 'world' has no bottom we have an almost palpable archetype for the concept of infinity. I would use the word 'tangible', but one of the defining features of the M-set is that nowhere in the labyrinth can one find a surface smooth enough for a tangent. Upon magnification even surfaces that appeared to be smooth explode with quills and scrolls and lightning bolts and spiral staircases. And there is something more, something truly sublime. Observe a small patch with unlimited magnifying power and, as you observe the M-set on ever-smaller scales, down through literally endless layers of ornate structure, you occasionally come upon a rapidly expanding cortex of dazzling colour with a small black structure at its centre. The black spot appears to be the M-set itself! There is no end to the hierarchy, no bottom-most level, just endless recursive

  16. Letters

    NASA Astrophysics Data System (ADS)

    2001-01-01

    The Editor welcomes letters, by e-mail to ped@iop.org or by post to Dirac House, Temple Back, Bristol BS1 6BE, UK. Contents: Maths for physics? Help! Fire! Energy and mass Maths for physics? As a maths graduate working as a university research associate I should be well qualified to support my daughter, who has just started AS-level physics, with the maths she needs for the course. There seems to be little integration between the maths and physics departments, so that maths needed for physics has not yet been covered in maths lessons. This is a problem I remember from my own school days, but the shorter timescale and modular nature of the AS and A2 levels means that it is essential that this mismatch of knowledge is resolved now. I would like to know whether physics teachers in the UK have encountered this problem and whether there is a deficiency in the maths syllabus in relation to the requirements of the AS and A2 levels in Physics or whether this is a problem peculiar to my daughter's school. Eleanor Parent of A-level student, Sheffield, UK Help! Fire! Is there a crisis in physics education? Is physics didactics coming to an end? Yes and no. Being a delegate from Norway at the on-going conference Physics on Stage (6-10 November 2000) at CERN in Geneva, I have had the opportunity to discuss this with people from all over Europe. Yes, there is a crisis. (Look at the proceedings for details on this.) I'd like to take a broader look at this situation. Like Hari Seldon in Isaac Asimov's Foundation Trilogy, I believe that there is nothing like a real crisis to get things going... Famous is the quote from the American Patent Office around 1890: 'Everything has been invented that could be invented'. Fortunately, this spurred action. The Michelson and Morley experiment heralded a most exciting period for physics. Just a cosmic blink later we put a person on the Moon. Coming back to the crisis - I am certain that in the near future we will see an interesting development

  17. Letters

    NASA Astrophysics Data System (ADS)

    2001-09-01

    The Editor welcomes letters, by e-mail to ped@iop.org or by post to Dirac House, Temple Back, Bristol BS1 6BE, UK. Contents: M-set as metaphor The abuse of algebra M-set as metaphor 'To see a World in a Grain of Sand And a Heaven in a Wild Flower Hold Infinity in the palm of your hand And Eternity in an hour' William Blake's implied relativity of spatial and temporal scales is intriguing and, given the durability of this worlds-within-worlds concept (he wrote in 1803) in art, literature and science, the blurring of distinctions between the very large and the very small must strike some kind of harmonious chord in the human mind. Could this concept apply to the physical world? To be honest, we cannot be absolutely sure. Most cosmological thinking still retains the usual notions of a finite universe and an absolute size scale extending from smallest to largest objects. In the boundless realm of mathematics, however, the story is quite different. The M-set was discovered by the French mathematician Benoit Mandelbrot in 1980, created by just a few simple lines of computer code that are repeated recursively. As in Blake's poem, this 'world' has no bottom we have an almost palpable archetype for the concept of infinity. I would use the word 'tangible', but one of the defining features of the M-set is that nowhere in the labyrinth can one find a surface smooth enough for a tangent. Upon magnification even surfaces that appeared to be smooth explode with quills and scrolls and lightning bolts and spiral staircases. And there is something more, something truly sublime. Observe a small patch with unlimited magnifying power and, as you observe the M-set on ever-smaller scales, down through literally endless layers of ornate structure, you occasionally come upon a rapidly expanding cortex of dazzling colour with a small black structure at its centre. The black spot appears to be the M-set itself! There is no end to the hierarchy, no bottom-most level, just endless recursive

  18. Stretchable and foldable electronic devices

    DOEpatents

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong

    2014-12-09

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  19. Stretchable and foldable electronic devices

    DOEpatents

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong

    2013-10-08

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  20. Electronic measurement correction devices

    SciTech Connect

    Mahns, R.R.

    1984-04-01

    The electronics semi-conductor revolution has touched every industry and home in the nation. The gas industry is no exception. Sophisticated gas measurement instrumentation has been with us for several decades now, but only in the last 10 years or so has it really begun to boom. First marketed were the flow computers dedicated to orifice meter measurement; but with steadily decreasing manufacturing costs, electronic instrumentation is now moving into the area of base volume, pressure and temperature correction previously handled almost solely by mechanical integrating instruments. This paper takes a brief look at some of the features of the newcomers on the market and how they stack up against the old standby mechanical base volume/pressure/temperature correctors.

  1. Polymer electronic devices and materials.

    SciTech Connect

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  2. Ion plated electronic tube device

    DOEpatents

    Meek, T.T.

    1983-10-18

    An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  3. Stretchable Hydrogel Electronics and Devices.

    PubMed

    Lin, Shaoting; Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Koo, Hyunwoo; Yu, Cunjiang; Zhao, Xuanhe

    2016-06-01

    Stretchable hydrogel electronics and devices are designed by integrating stretchable conductors, functional chips, drug-delivery channels, and reservoirs into stretchable, robust, and biocompatible hydrogel matrices. Novel applications include a smart wound dressing capable of sensing the temperatures of various locations on the skin, delivering different drugs to these locations, and subsequently maintaining sustained release of drugs. PMID:26639322

  4. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, Ka-Ngo; Pincosy, Philip A.; Ehlers, Kenneth W.

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  5. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  6. Fullerene Derived Molecular Electronic Devices

    NASA Technical Reports Server (NTRS)

    Menon, Madhu; Srivastava, Deepak; Saini, Subbash

    1998-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale electronic devices. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal grapheme sheet, more complex joints require other mechanisms. In this work we explore structural and electronic properties of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme.

  7. Carbon footprint of electronic devices

    NASA Astrophysics Data System (ADS)

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  8. Organic materials for electronic devices

    NASA Astrophysics Data System (ADS)

    Zeng, Lichang

    Through light absorption and emission as well as charge carrier generation, transport and recombination, pi-conjugated molecules are central to electronic devices including organic field-effect transistors, organic light-emitting diodes, and organic solar cells. This thesis reports on materials development via molecular design, material synthesis and processing, device fabrication and characterization. Major accomplishments are summarized as follows. A series of oligo(fluorene-co-bithiophene)s, OF2Ts, have been synthesized and characterized for an investigation of the effects of oligomer length and pendant aliphatic structure on thermotropic properties, light absorption and emission, and anisotropic field-effect mobilities. Solvent-vapor annealing at room temperature was shown to be capable of orienting OF2Ts into monodomain glassy-nematic films with an orientational order parameter emulating that achieved with conventional thermal annealing on a rubbed polyimide alignment layer. Comprising hole- and electron-transporting moieties with flexible linkages, non-conjugated bipolar compounds have been developed for use as hosts for electrophosphorescence. These materials are characterized by an elevated glass transition temperature, morphological stability against crystallization, LUMO and HOMO levels unaffected by chemical bonding, and triplet energy unconstrained by the electrochemical energy gap. Phosphorescent OLEDs containing solution-processed emitting layers were fabricated with TRZ-3Cz(MP)2, TRZ-1Cz(MP)2 and Cz(MP)2 hosting Ir(mppy)3 for an illustration of how chemical composition and hence charge transport properties affect device performance. Bulk heterojunction organic solar cells comprising an active layer of P3HT:PCBM blend at a 1:1 mass ratio with thickness from 130 to 1200 mn have been fabricated and characterized before and after thermal annealing. Before thermal annealing, both short circuit current density and power conversion efficiency decrease with

  9. Single Molecule Electronics and Devices

    PubMed Central

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  10. 77 FR 50932 - Electronic Transmission of Customs Data-Outbound International Letter-Post Items

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... published on December 5, 2011 (76 FR 75786-75794), the Postal Service announced that, effective January 22... 20 Electronic Transmission of Customs Data--Outbound International Letter-Post Items AGENCY: Postal... a subject line of ``Electronic Transmission of Customs Data.'' Faxed comments are not accepted....

  11. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media... United States after importation of certain electronic devices, including wireless communication devices... importation of certain electronic devices, including wireless communication devices, tablet computers,...

  12. Biomaterials-Based Organic Electronic Devices

    PubMed Central

    Bettinger, Christopher J.; Bao, Zhenan

    2010-01-01

    Organic electronic devices have demonstrated tremendous versatility in a wide range of applications including consumer electronics, photovoltaics, and biotechnology. The traditional interface of organic electronics with biology, biotechnology, and medicine occurs in the general field of sensing biological phenomena. For example, the fabrication of hybrid electronic structures using both organic semiconductors and bioactive molecules has led to enhancements in sensitivity and specificity within biosensing platforms, which in turn has a potentially wide range of clinical applications. However, the interface of biomolecules and organic semiconductors has also recently explored the potential use of natural and synthetic biomaterials as structural components of electronic devices. The fabrication of electronically active systems using biomaterials-based components has the potential to realize a large set of unique devices including environmentally biodegradable systems and bioresorbable temporary medical devices. This article reviews recent advances in the implementation of biomaterials as structural components in organic electronic devices with a focus on potential applications in biotechnology and medicine. PMID:20607127

  13. Weak Values from Displacement Currents in Multiterminal Electron Devices.

    PubMed

    Marian, D; Zanghì, N; Oriols, X

    2016-03-18

    Weak values allow the measurement of observables associated with noncommuting operators. Up to now, position-momentum weak values have been mainly developed for (relativistic) photons. In this Letter, a proposal for the measurement of such weak values in typical electronic devices is presented. Inspired by the Ramo-Shockley-Pellegrini theorem that provides a relation between current and electron velocity, it is shown that the displacement current measured in multiterminal configurations can provide either a weak measurement of the momentum or strong measurement of position. This proposal opens new opportunities for fundamental and applied physics with state-of-the-art electronic technology. As an example, a setup for the measurement of the Bohmian velocity of (nonrelativistic) electrons is presented and tested with numerical experiments. PMID:27035291

  14. Weak Values from Displacement Currents in Multiterminal Electron Devices

    NASA Astrophysics Data System (ADS)

    Marian, D.; Zanghı, N.; Oriols, X.

    2016-03-01

    Weak values allow the measurement of observables associated with noncommuting operators. Up to now, position-momentum weak values have been mainly developed for (relativistic) photons. In this Letter, a proposal for the measurement of such weak values in typical electronic devices is presented. Inspired by the Ramo-Shockley-Pellegrini theorem that provides a relation between current and electron velocity, it is shown that the displacement current measured in multiterminal configurations can provide either a weak measurement of the momentum or strong measurement of position. This proposal opens new opportunities for fundamental and applied physics with state-of-the-art electronic technology. As an example, a setup for the measurement of the Bohmian velocity of (nonrelativistic) electrons is presented and tested with numerical experiments.

  15. Thermally triggered degradation of transient electronic devices.

    PubMed

    Park, Chan Woo; Kang, Seung-Kyun; Hernandez, Hector Lopez; Kaitz, Joshua A; Wie, Dae Seung; Shin, Jiho; Lee, Olivia P; Sottos, Nancy R; Moore, Jeffrey S; Rogers, John A; White, Scott R

    2015-07-01

    Thermally triggered transient electronics using wax-encapsulated acid, which enable rapid device destruction via acidic degradation of the metal electronic components are reported. Using a cyclic poly(phthalaldehyde) (cPPA) substrate affords a more rapid destruction of the device due to acidic depolymerization of cPPA. PMID:25991389

  16. Synaptic electronics: materials, devices and applications.

    PubMed

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. PMID:23999572

  17. Silk Fibroin for Flexible Electronic Devices.

    PubMed

    Zhu, Bowen; Wang, Hong; Leow, Wan Ru; Cai, Yurong; Loh, Xian Jun; Han, Ming-Yong; Chen, Xiaodong

    2016-06-01

    Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces. PMID:26684370

  18. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  19. Repetitively pumped electron beam device

    DOEpatents

    Schlitt, L.G.

    1979-07-24

    Disclosed is an apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired. 12 figs.

  20. Device fabrication: Three-dimensional printed electronics

    NASA Astrophysics Data System (ADS)

    Lewis, Jennifer A.; Ahn, Bok Y.

    2015-02-01

    Can three-dimensional printing enable the mass customization of electronic devices? A study that exploits this method to create light-emitting diodes based on 'quantum dots' provides a step towards this goal.

  1. Sub-electron noise charge coupled devices

    NASA Technical Reports Server (NTRS)

    Chandler, Charles E.; Bredthauer, Richard A.; Janesick, James R.; Westphal, James A.; Gunn, James E.

    1990-01-01

    A charge coupled device designed for celestial spectroscopy has achieved readout noise as low as 0.6 electrons rms. A nondestructive output circuit was operated in a special manner to read a single pixel multiple times. Off-chip electronics averaged the multiple values, reducing the random noise by the square root of the number of readouts. Charge capacity was measured to be 500,000 electrons. The device format is 1600 pixels horizontal by 64 pixels vertical. Pixel size is 28 microns square. Two output circuits are located at opposite ends of the 1600 bit CCD register. The device was thinned and operated backside illuminated at -110 degrees C. Output circuit design, layout, and operation are described. Presented data includes the photon transfer curve, noise histograms, and bar-target images down to 3 electrons signal. The test electronics are described, and future improvements are discussed.

  2. Exploiting plasmon-induced hot electrons in molecular electronic devices.

    PubMed

    Conklin, David; Nanayakkara, Sanjini; Park, Tae-Hong; Lagadec, Marie F; Stecher, Joshua T; Chen, Xi; Therien, Michael J; Bonnell, Dawn A

    2013-05-28

    Plasmonic nanostructures can induce a number of interesting responses in devices. Here we show that hot electrons can be extracted from plasmonic particles and directed into a molecular electronic device, which represents a new mechanism of transfer from light to electronic transport. To isolate this phenomenon from alternative and sometimes simultaneous mechanisms of plasmon-exciton interactions, we designed a family of hybrid nanostructure devices consisting of Au nanoparticles and optoelectronically functional porphyin molecules that enable precise control of electronic and optical properties. Temperature- and wavelength-dependent transport measurements are analyzed in the context of optical absorption spectra of the molecules, the Au particle arrays, and the devices. Enhanced photocurrent associated with exciton generation in the molecule is distinguished from enhancements due to plasmon interactions. Mechanisms of plasmon-induced current are examined, and it is found that hot electron generation can be distinguished from other possibilities. PMID:23550717

  3. Electronic cooling using thermoelectric devices

    SciTech Connect

    Zebarjadi, M.

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  4. Electronic cooling using thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2015-05-01

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  5. Electron beam sterilisation of heterogeneous medical devices

    NASA Astrophysics Data System (ADS)

    Sadat, T.; Morisseau, MrD.; Ross, MissA.

    1993-07-01

    Electron beam radiation is used in the sterilisation of medical disposable devices. High energy, 10 MeV, electron beam linear accelerators are in use worldwide for this purpose. The dose distribution achieved in the products treated influences the efficiency of treatment. This paper looks at the dose distribution achieved with such machines and the methods used to define it in heterogeneous products.

  6. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data... infringing electronic devices, including wireless communication devices, portable music and data...

  7. Novel Boron Subphthalocyanines for Organic Electronic Devices

    NASA Astrophysics Data System (ADS)

    Castrucci, Jeffrey Stephen

    Boron subphthalocyanines (BsubPcs) are a class of organic semiconductor materials that have been identified as having desirable properties for use in photovoltaic devices due to their strong light absorbance and the flexibility to develop tunable chemical derivatives. In particular, a lack of variety in available electron acceptors is an area where BsubPc derivatives can be readily substituted into existing photovoltaic device architectures. There are, however, no metrics to facilitate the rapid screening of different BsubPc derivatives. In this thesis, admittance spectroscopy is used to measure charge carrier mobility of these BsubPc derivatives, and photovoltaic cells are fabricated to evaluate these derivatives' performance in devices. We find that the measured electron carrier mobilities in thin films of BsubPc correlate with the single crystal structural parameters determined by X-ray diffraction. We also find that for BsubPcs, electron mobility measured by admittance spectroscopy is insufficient to predict photovoltaic performance when BsubPcs are used as an electron accepting layer in a device. BsubPc derivatives, however, are discovered as a new class of versatile molecules that can be designed and synthesized for use in photovoltaic devices to harvest singlet fission derived triplet excitons and consequently boost photovoltaic device photocurrent. This thesis also reports vacuum system design and construction to address experimental challenges arising from dealing with low solubility, high molar mass materials and limited amounts of high purity material.

  8. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  9. Treatment of Infected Cardiac Implantable Electronic Devices.

    PubMed

    Fakhro, Abdulla; Jalalabadi, Faryan; Brown, Rodger H; Izaddoost, Shayan A

    2016-05-01

    With their rising benefits, cardiac implantable electronic devices (CIEDs) such as pacemakers and left ventricular assist devices (LVADs) have witnessed a sharp rise in use over the past 50 years. As indications for use broaden, so too does their widespread employment with its attendant rise of CIED infections. Such large numbers of infections have inspired various algorithms mandating treatment. Early diagnosis of inciting organisms is crucial to tailoring appropriate antibiotic and or antifungal treatment. In addition, surgical debridement and explant of the device have been a longstanding modality of care. More novel therapies focus on salvage of the device by way of serial washouts and instilling drug-eluting antibiotic impregnated beads into the wound. The wound is then serially debrided until clean and closed. This technique is better suited to patients whose device cannot be removed, patients who are poor candidates for cardiac surgery, or patients who have failed conventional prior treatments. PMID:27152097

  10. Electron holography of devices with epitaxial layers

    SciTech Connect

    Gribelyuk, M. A. Ontalus, V.; Baumann, F. H.; Zhu, Z.; Holt, J. R.

    2014-11-07

    Applicability of electron holography to deep submicron Si devices with epitaxial layers is limited due to lack of the mean inner potential data and effects of the sample tilt. The mean inner potential V{sub 0} = 12.75 V of the intrinsic epitaxial SiGe was measured by electron holography in devices with Ge content C{sub Ge} = 18%. Nanobeam electron diffraction analysis performed on the same device structure showed that SiGe is strain-free in [220] direction. Our results showed good correlation with simulations of the mean inner potential of the strain-free SiGe using density function theory. A new method is proposed in this paper to correct electron holography data for the overlap of potentials of Si and the epitaxial layer, which is caused by the sample tilt. The method was applied to the analysis of the dopant diffusion in p-Field-effect Transistor devices with the identical gate length L = 30 nm, which had alternative SiGe geometry in the source and drain regions and was subjected to different thermal processing. Results have helped to understand electrical data acquired from the same devices in terms of dopant diffusion.

  11. Towards reproducible, scalable lateral molecular electronic devices

    NASA Astrophysics Data System (ADS)

    Durkan, Colm; Zhang, Qian

    2014-08-01

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  12. Electronic device aspects of neural network memories

    NASA Technical Reports Server (NTRS)

    Lambe, J.; Moopenn, A.; Thakoor, A. P.

    1985-01-01

    The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.

  13. Towards reproducible, scalable lateral molecular electronic devices

    SciTech Connect

    Durkan, Colm Zhang, Qian

    2014-08-25

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  14. Transient (lightning) protection for electronic measurement devices

    SciTech Connect

    Black, L.L.

    1995-12-01

    Electronic measurement devices have become a major part of the oil and gas business today. All of these devices operate on an electrical voltage. Any voltage introduced into the system that is beyond the predetermined tolerance will cause degradation of performance or in some cases failure of the device. The extent of the damage depends upon the dielectric strength of the circuit in question and upon the available energy. As electronic measurement devices are further developed to incorporate more solid state circuitry and operate at lower voltage levels the more susceptible they become to transients. Along with transient protection, the user must also be concerned with intrinsic safety requirements of the device to be protected. The devices and techniques used to protect the equipment from transients do not, in all cases, guarantee the user certification for use in hazardous environments. As a note of reference, some of the techniques listed in this paper as examples would not be allowed in hazardous areas without the addition of other devices to further isolate or clamp the available energy to a safe level. In other words, as the industry moves forward to improve the overall accuracy of the measurement system and adds data availability via communication networks, the transient protection scheme must become more sophisticated.

  15. RCRA toxicity characterization of discarded electronic devices.

    PubMed

    Musson, Stephen E; Vann, Kevin N; Jang, Yong-Chul; Mutha, Sarvesh; Jordan, Aaron; Pearson, Brian; Townsend, Timothy G

    2006-04-15

    The potential for discarded electronic devices to be classified as toxicity characteristic (TC) hazardous waste under provisions of the Resource Conservation and Recovery Act (RCRA) using the toxicity characteristic leaching procedure (TCLP) was examined. The regulatory TCLP method and two modified TCLP methods (in which devices were disassembled and leached in or near entirety) were utilized. Lead was the only element found to leach at concentrations greater than its TC limit (5 mg/L). Thirteen different types of electronic devices were tested using either the standard TCLP or modified versions. Every device type leached lead above 5 mg/L in at least one test and most devices leached lead above the TC limit in a majority of cases. Smaller devices that contained larger amounts of plastic and smaller amounts of ferrous metal (e.g., cellular phones, remote controls) tended to leach lead above the TC limit at a greater frequency than devices with more ferrous metal (e.g., computer CPUs, printers). PMID:16683614

  16. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  17. Stretchable polymer-based electronic device

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Wilson, Thomas S.; Hamilton, Julie K.; Benett, William J.; Tovar, Armando R.

    2008-02-26

    A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.

  18. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  19. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  20. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  1. Organic electronic devices via interface engineering

    NASA Astrophysics Data System (ADS)

    Xu, Qianfei

    This dissertation focuses on interface engineering and its influence on organic electronic devices. A comprehensive review of interface studies in organic electronic devices is presented in Chapter 1. By interface engineering at the cathode contact, an ultra-high efficiency green polymer light emitting diode is demonstrated in Chapter 2. The interface modification turns out to be solution processable by using calcium acetylacetonate, donated by Ca(acac)2. The device structure is Induim Tin Oxide (ITO)/3,4-polyethylenedioxythiophene-polystyrene-sulfonate (PEDOT)/Green polyfluorene/Ca(acac) 2/Al. Based on this structure, we obtained device efficiencies as high as 28 cd/A at 2650 cd/m2, which is about a 3 times improvement over previous devices. The mechanism of this nano-layer has been studied by I-L-V measurements, photovoltaic measurements, XPS/UPS studies, impedance measurements as well as transient EL studies. The interfacial layer plays a crucial role for the efficiency improvement. It is believed to work as a hole blocking layer as well as an electron injection layer. Meanwhile, a systematic study on ITO electrodes is also carried out in Chapter 4. By engineering the interface at ITO electrode, the device lifetime has been improved. In Chapter 5, very bright white emission PLEDs are fabricated based on blue polyfluorene (PF) doped with 1 wt% 6, 8, 15, 17-tetraphyenyl-1.18, 4.5, 9.10, 13.14-tetrabenzoheptacene (TBH). The maximum luminance exceeds 20,000 cd/m2. The maximum luminance efficiency is 3.55 cd/A at 4228 cd/m2 while the maximum power efficiency is 1.6 lm/W at 310 cd/m2. The white color is achieved by an incomplete energy transfer from blue PF to TBH. The devices show super stable CIE coordinates as a function of current density. The interface engineering is also applied to memory devices. In Chapter 6, a novel nonvolatile memory device is fabricated by inserting a buffer layer at the anode contact. Devices with the structure of Cu

  2. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide

  3. Plasmonically enhanced hot electron based photovoltaic device.

    PubMed

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths. PMID:23546103

  4. MOF-based electronic and opto-electronic devices.

    PubMed

    Stavila, V; Talin, A A; Allendorf, M D

    2014-08-21

    Metal-organic frameworks (MOFs) are a class of hybrid materials with unique optical and electronic properties arising from rational self-assembly of the organic linkers and metal ions/clusters, yielding myriads of possible structural motifs. The combination of order and chemical tunability, coupled with good environmental stability of MOFs, are prompting many research groups to explore the possibility of incorporating these materials as active components in devices such as solar cells, photodetectors, radiation detectors, and chemical sensors. Although this field is only in its incipiency, many new fundamental insights relevant to integrating MOFs with such devices have already been gained. In this review, we focus our attention on the basic requirements and structural elements needed to fabricate MOF-based devices and summarize the current state of MOF research in the area of electronic, opto-electronic and sensor devices. We summarize various approaches to designing active MOFs, creation of hybrid material systems combining MOFs with other materials, and assembly and integration of MOFs with device hardware. Critical directions of future research are identified, with emphasis on achieving the desired MOF functionality in a device and establishing the structure-property relationships to identify and rationalize the factors that impact device performance. PMID:24802763

  5. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use...

  6. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off...

  7. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use...

  8. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off...

  9. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off...

  10. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use...

  11. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use...

  12. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off...

  13. General Electronics Technician: Semiconductor Devices and Circuits.

    ERIC Educational Resources Information Center

    Hilley, Robert

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting an introductory course in general electronics focusing on semiconductor devices and circuits and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional…

  14. Electronics will transform drug delivery devices.

    PubMed

    Mazzoni, Paolo

    2004-03-01

    The drug delivery device sector will be transformed by electronically controlled alternatives that will maximise user safety and medical effectiveness and open the way to the introduction of high-power, next-generation drugs. Current business partnerships will need to change to allow this to happen. PMID:15154333

  15. New materials for electronic and solar devices

    SciTech Connect

    Not Available

    1990-12-21

    The partial contents are: New materials for electronic and solar devices; Applications of the photovoltaic systems; Technological steps in the solar cell production; Examples of the cell processing technology; Economic aspects of the PV panels production; Application of PV systems; Leading PV research centers and companies.

  16. Electronic Devices and Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Technical Education Research Centre-Southwest, Waco, TX.

    This course in electronic devices and systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  17. Animation Based Learning of Electronic Devices

    ERIC Educational Resources Information Center

    Gero, Aharon; Zoabi, Wishah; Sabag, Nissim

    2014-01-01

    Two-year college teachers face great difficulty when they teach the principle of operation of the bipolar junction transistor--a subject which forms the basis for electronics studies. The difficulty arises from both the complexity of the device and by the lack of adequate scientific background among the students. We, therefore, developed a unique…

  18. The Miniguide: A New Electronic Travel Device.

    ERIC Educational Resources Information Center

    Hill, Jeremy; Black, John

    2003-01-01

    This article describes the Miniguide, a new electronic travel device that assists people in moving about in a range of environments. The Miniguide is held in the palm and is used to scan left to right when walking. It provides vibratory feedback to the hand when it detects an obstacle. (Contains 5 references.) (CR)

  19. Electron transfer kinetics in molecular photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Heimer, Todd Anthony

    1997-11-01

    Solar energy devices based on the sensitization of nanostructured titanium dioxide semiconductors have proven to be efficient converters of photons into electricity. However, many questions remain concerning the factors which govern conversion efficiency, stability, and photovoltage in these molecular level devices. The energetics and kinetics of electron transfer at the semiconductor/sensitizer interface play a critical role in solar cell photoelectrochemical properties. Through electrochemical and spectroscopic techniques the kinetics of the interfacial electron transfer processes have been measured. The kinetics are in general complex, and various models based on distributions of first order reaction rates or higher order reactions have been used to describe the experimental observations. The unique molecular nature of these devices allows the energy levels involved in electron transfer to be tuned through synthetic modification of the sensitizer. Systematic studies of chemically related sensitizers allow conclusions to be drawn about the factors which govern interfacial electron transfer processes and therefore determine the photoelectrochemical properties of the device. Hopefully, this thesis presents a foundation of knowledge which can successfully direct future development of sensitizers and semiconductors for efficient conversion of light to electricity.

  20. Understanding degradation phenomena in organic electronic devices

    NASA Astrophysics Data System (ADS)

    A. K., Jagdish; Pavankumar, G.; Ramamurthy, Praveen C.; Roy Mahapatra, D.; Hegde, Gopalkrishna

    2015-03-01

    This study addresses a unique degradation mechanism in organic electronic devices occurring due to combined effects of electric field and temperature. A simple polymer diode structure consisting of a semiconducting polymer sandwiched between two electrodes (ITO and Al) is considered for degradation studies. It is observed that voltages beyond a certain value lead to fracture of polymer and aluminium films. As characterized, these defects show that the degradation nucleates in the form of a chain-like pattern consisting of alternating polymer fracture sites (hinges) and aluminium rupture sites (links). A mechanism is hypothesized based on experimental observations to explain the phenomenon. This is further validated by an analytical model for stress at degradation sites due to electric field and temperature. The model is used to develop a failure criteria based on device geometry, operating voltage and temperature. Experiments and modelling predict that this mechanism might be unique to soft thin film electronic devices.

  1. High performance flexible electronics for biomedical devices.

    PubMed

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine. PMID:25570912

  2. Theory of Electron Imaging in Small Devices

    SciTech Connect

    Heller, Eric J.

    2015-05-21

    The research in this program involved theoretical investigations of the transport of charge in graphene and small heterostructure devices. There is an important trend toward imaging electronic systems in real space, with the goal of understanding the specifics of individual samples rather than settling for ensemble and statistical descriptions. For example one of our goals has been the understanding of scanning probe microscopy (SPM) imaging of systems in which the motion of the carriers is restricted to two degrees of freedom, such as in grapheme and the two dimensional electron (and hole) gas (2DEGs and 2DHGs) in GaAs/AlGaAs heterostructures, or when the motion is restricted to one degree of freedom as in nanowires. SPM imaging uses the tip of a movable charged probe to alter the electrons locally, depleting or alternatively increasing the amount of charges in the electron gas just below the tip results in a change to the flow pattern of the charge. The focus of this research was on understanding how the tunable tip affects functional aspects of the device that can be used to understand electronic and transport properties. For instance, scanning over the device while measuring the conductance results in conductance maps, an imaging of the charge transport. This imaging is often semi-direct and requires theory and interpretation to extract all that can be deduced about the underlying physical quantities.

  3. Stretchable inorganic nanomembrane electronics for healthcare devices

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Son, Donghee; Kim, Jaemin

    2015-05-01

    Flexible or stretchable electronic devices for healthcare technologies have attracted much attention in terms of usefulness to assist doctors in their operating rooms and to monitor patients' physical conditions for a long period of time. Each device to monitor the patients' physiological signals real-time, such as strain, pressure, temperature, and humidity, etc. has been reported recently. However, their limitations are found in acquisition of various physiological signals simultaneously because all the functions are not assembled in one skin-like electronic system. Here, we describe a skin-like, multi-functional healthcare system, which includes single crystalline silicon nanomembrane based sensors, nanoparticle-integrated non-volatile memory modules, electro-resistive thermal actuators, and drug delivery. Smart prosthetics coupled with therapeutic electronic system would provide new approaches to personalized healthcare.

  4. Corrosion of electronic materials and devices.

    PubMed

    Comizzoli, R B; Frankenthal, R P; Milner, P C; Sinclair, J D

    1986-10-17

    Electronic materials and devices corrode in the same ways as automobiles, bridges, and pipelines, but their typically small dimensions make them orders of magnitude more susceptible to corrosion failure. As elsewhere, the corrosion involves interactions with the environment. Under control, these interactions can be put to use, as in the formation of protective and functional oxide films for superconducting devices. Otherwise, they cause damage, as in the electrolytic dissolution of conductors, even gold, in the presence of humidity and ionic contamination from atmospheric particles and gases. Preventing corrosion entails identifying the damaging interactions and excluding species that allow them to occur. PMID:17834532

  5. 75 FR 45696 - Pipeline Safety: Personal Electronic Device Related Distractions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Electronic Devices, 75 FR 9754, May 18, 2010; Limiting the Use of Wireless Communication Devices, 75 FR 16391... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Personal Electronic Device Related... personal electronic devices (PEDs) by individuals performing operations and maintenance activities on...

  6. Nanocoaxes for Optical and Electronic Devices

    PubMed Central

    Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.

    2014-01-01

    The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400

  7. Electronic voltage and current transformers testing device.

    PubMed

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware. PMID:22368510

  8. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  9. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  10. Electronic transport through nanotube contacts and devices

    NASA Astrophysics Data System (ADS)

    Buia, Calin Ioan

    2003-10-01

    Carbon nanotubes are materials with amazing mechanical and electronic properties, which makes them suitable for building nanoscale electronic devices and circuits. However, their electronic transport properties are not yet fully understood. In this study we aim to investigate the electronic transport through nanotube/nanotube contacts. Our calculations are based on Land auer-Buttiker formalism. The transmission function is computed using a Green's functions technique and a tight-binding hamiltonian. Two types of geometries are considered: parallel contact and concentric contact. Additionally we analyze the behavior of a nanotube Y-junction. We find that out of all the properties of individual nanotubes, chirality and symmetry have the most important effect on the electronic transport. As a rule, armchair/armchair and metallic zigzag/zigzag contacts show the best conduction. This is explained by the perfect in-registry atomic arrangement they can provide. The contact length and the local arrangement of the atoms in the contact area are factors that further influence the conductance. We found that in optimal conditions (i.e. in-registry atomic arrangement), a contact length of ˜10 nm is enough to achieve the same conductance as a perfect nanotube. Beyond that the conductance is modulated by quantum interference effects, due to the formation of a resonant cavity in the contact area. For concentric contacts, the states between which the electron hops when passing from one tube to the other must have compatible rotational symmetries, otherwise, the corresponding conduction channel will be suppressed. This results can be used to predict the electronic transport through various setups, including nanotube bundles and multiwall nanotubes.

  11. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory...

  12. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this...

  13. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for...

  14. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory...

  15. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory...

  16. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for...

  17. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this...

  18. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this...

  19. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of...

  20. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of...

  1. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for...

  2. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this...

  3. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device,...

  4. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of...

  5. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this...

  6. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this...

  7. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this...

  8. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for...

  9. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of...

  10. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this...

  11. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device,...

  12. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory...

  13. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for...

  14. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory...

  15. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Use of personal electronic devices. 220.305 Section 220.305 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A...

  16. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false General use of electronic devices. 220.303 Section 220.303 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A...

  17. Oxide bipolar electronics: materials, devices and circuits

    NASA Astrophysics Data System (ADS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; von Wenckstern, Holger

    2016-06-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo2O4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization.

  18. Letter of intent: a muon to electron conversion experiment at Fermilab

    SciTech Connect

    Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; Marciano, W.J.; Semertzidis, Y.; Yamin, P.; Kolomensky, Yu.G.; Ankenbrandt, C.M.; Bernstein, R.H.; Bogert, D.; /Fermilab /Idaho State U. /Illinois U., Urbana /Moscow, INR /Massachusetts U., Amherst /MUONS Inc., Batavia /Syracuse U. /Virginia U.

    2007-09-01

    We are writing this letter to express our interest in pursuing an experiment at Fermilab to search for neutrinoless conversion of muons into electrons in the field of a nucleus, which is a lepton flavor-violating (LFV) reaction. The sensitivity goal of this experiment represents an improvement of more than a factor of 10,000 over existing limits. It would provide the most sensitive test of LFV, a unique and essential window on new physics unavailable at the high energy frontier. We present a conceptual scheme that would exploit the existing Fermilab Accumulator and Debuncher rings to generate the required characteristics of the primary proton beam. The proposal requires only modest modifications to the accelerator complex beyond those already planned for the NOvA experiment, with which this experiment would be fully compatible; however, it could also benefit significantly from possible upgrades such as the 'Project X' linac. We include the conceptual design of the muon beam and the experimental apparatus, which use the previously proposed MECO experiment as a starting point.

  19. Mesoscopic electronic devices made by local oxidation of a titanium film covering gold islands

    NASA Astrophysics Data System (ADS)

    Vullers, R. J. M.; Ahlskog, M.; Cannaerts, M.; Van Haesendonck, C.

    2000-04-01

    The local oxidation produced by the tip of an atomic force microscope scanning on a thin metallic film allows to define narrow oxide lines, thus providing a method to fabricate lateral tunnel junctions. In such devices, with rather thick tunnel junction barriers, the electrical transport is governed by thermally activated hopping rather than by direct electron tunneling. In this letter we show that tunneling barriers can also be produced with Ti films covering small gold islands. The gold islands significantly shorten the effective tunneling distance, allowing to observe temperature-independent electron tunneling across the lateral barriers. The mixed Ti/Au tunnel barriers reveal Coulomb blockade effects which may be used for single-electron devices consisting of a single oxide line.

  20. Instrumentation for Molecular Electronics Device Research

    NASA Astrophysics Data System (ADS)

    Kibel, Ashley Ann

    This dissertation describes work on three projects concerning the design and implementation of instrumentation used to study potential organic electronic devices. The first section describes the conducting atomic force microscope (CAFM) in the study of the mechanical and electronic interactions between DNA bases and nucleosides. Previous STM data suggested that an STM tip could recognize single base pairs through an electronic interaction after a functionalized tip made contact with a self assembled monolayer then was retracted. The conducting AFM was employed in order to understand the mechanical interactions of such a system and how they were affecting electrical responses. The results from the conducting AFM showed that the scanning probe system was measuring multiple base-pair interactions, and thus did not have single base resolution. Further, results showed that the conductance between a single base-nucleoside pair is below the detection limit of a potential commercial sequencing device. The second section describes the modifications of a scanning probe microscope in order to study the conductance of single organic molecules under illumination. Modifications to the scanning probe microscope are described as are the control and data analysis software for an experiment testing the single molecule conductance of an organic molecule under illumination. This instrument was then tested using a novel charge-separation molecule, which is being considered for its potential photovoltaic properties. The experiments showed that the instrumentation is capable of detecting differences in conductance upon laser illumination of the molecule on a transparent conductive surface. The third section describes measurements using the illuminated CAFM, as well as the design and construction of an illuminated mercury drop electrode apparatus. Both instruments were tested by attempting to observe photovoltaic behavior in a novel self-organized film of the charge-separation molecules

  1. Electronic load for testing power generating devices

    NASA Technical Reports Server (NTRS)

    Friedman, E. B.; Stepfer, G.

    1968-01-01

    Instrument tests various electric power generating devices by connecting the devices to the input of the load and comparing their outputs with a reference voltage. The load automatically adjusts until voltage output of the power generating device matches the reference.

  2. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an...

  3. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an...

  4. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an...

  5. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an...

  6. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an...

  7. The Jordy Electronic Magnification Device: Opinions, Observations, and Commentary

    ERIC Educational Resources Information Center

    Francis, Barry

    2005-01-01

    The Jordy electronic magnification device is one of a small number of electronic headborne devices designed to provide people with low vision the capability to perform near-range, intermediate-range, and distance viewing tasks. This report seeks to define the benefits of using the Jordy as a low vision device by people who are legally blind. The…

  8. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic...

  9. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic...

  10. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic...

  11. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic...

  12. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic...

  13. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic...

  14. 77 FR 38829 - Certain Electronic Imaging Devices; Institution of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... COMMISSION Certain Electronic Imaging Devices; Institution of Investigation AGENCY: U.S. International Trade... importation, and the sale within the United States after importation of certain electronic imaging devices by... viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov . FOR FURTHER...

  15. Electrical and electronic devices and components: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Components and techniques which may be useful in the electronics industry are described. Topics discussed include transducer technology, printed-circuit technology, solid state devices, MOS transistors, Gunn device, microwave antennas, and position indicators.

  16. Crosslinked polymeric dielectric materials and electronic devices incorporating same

    NASA Technical Reports Server (NTRS)

    Marks, Tobin J. (Inventor); Facchetti, Antonio (Inventor); Wang, Zhiming (Inventor); Choi, Hyuk-Jin (Inventor); Suh, legal representative, Nae-Jeong (Inventor)

    2012-01-01

    Solution-processable dielectric materials are provided, along with precursor compositions and processes for preparing the same. Composites and electronic devices including the dielectric materials also are provided.

  17. Management of Cardiac Implantable Electronic Device Infection

    PubMed Central

    Podoleanu, Cristian

    2014-01-01

    Despite improved preventive measures, infection associated with the use of cardiac implantable electronic devices (CIEDs) to treat often life-threatening conditions is rising at an average annual rate of almost 5 %. This rise is being driven by the increasing complexity of CIED technology and by the advancing age and co-morbidities of the patients. Although CIED infection is usually suspected based on local signs at the generator pocket site, diagnosis can be challenging in patients presenting no local manifestations or symptoms. Diagnostic methods include microbiological testing and echocardiography, and may be completed by positron emission tomography (PET)/computed tomography (CT) scan in selected cases. CIED infection requires a multidisciplinary approach in view of hardware extraction, targeted antibiotic therapy and reimplantation on an as-needed basis. Antibiotic prophylaxis targeting staphylococcal flora is recommended but the relation of these infections to medical care exposes patients to multi-resistant bacteria. New preventive measures utilising an antibacterial sleeve look promising. Treatment can be started on an empirical basis using an antistaphylococcal agent but must be continued using targeted antibiotic therapy. Crucial questions remain as to the best prevention strategy, optimal duration and timing of antibiotic therapy, and the most effective reimplantation technique. PMID:26835089

  18. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2007-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  19. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2006-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  20. The Electronic "Scarlet Letter": Criminal Backgrounding and a Perpetual Spoiled Identity

    ERIC Educational Resources Information Center

    Murphy, Daniel S.; Fuleihan, Brian; Richards, Stephen C.; Jones, Richard S.

    2011-01-01

    Crimes are multifaceted events that are not adequately explained with basic descriptors, yet a considerable amount of significance is afforded to relatively few simplistic labels that make up the contemporary "scarlet letter." Today's criminal records create a lifetime of stigmatization for a person. These public records employ a limited range of…

  1. Ion age transport: developing devices beyond electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  2. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  3. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  4. Response to letter "Electron correlation and relativity of the 5f electrons in the Usbnd Zr alloy system"

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Marianetti, Chris A.; Morgan, Dane

    2016-08-01

    In the Letter [Söderlind et al., J. Nucl. Mater. 444, 356 (2014)], Söderlind et al. state their interpretation that 1) we view electron correlation to be strong and including spin-orbit coupling (SOC) to be necessary for U metal and Usbnd Zr alloy in our article [Xiong et al., J. Nucl. Mater. 443, 331 (2013)]. Further, they argue that 2) density functional theory (DFT) without adding the Hubbard U potential, especially when solved using all electron methods, already models U and Usbnd Zr accurately, and 3) adding the Hubbard U potential to DFT in DFT + U models U and Usbnd Zr worse than DFT according to volume, bulk modulus, and magnetic moments predicted from their calculations of the γU phase of elemental U metal. With respect to Söderlind et al.'s interpretation 1), we clarify that our opinions are that U and Usbnd Zr are not strongly, but weakly to moderately correlated and that including SOC is beneficial but not necessary for modeling most ground state properties of U and Usbnd Zr. With respect to Söderlind et al.'s argument 2) we demonstrate that previously neglected and very recent experimental data suggest that DFT in Söderlind's full-potential linear muffin-tin orbital calculations [Söderlind, Phys. Rev. B 66, 085113 (2002)] in fact models the bulk modulus and elastic constants of αU with errors considerably larger than other related elements, e.g., most transition metals. With respect to Söderlind et al.'s argument 3) we argue that they have inappropriately focused on just one phase (the BCC γU phase of U metal), neglecting the other phases which represent the majority of our evidence, and made overgeneralizations based on results at only one Ueff value of 2 eV. We therefore maintain our original conclusion that the accuracy of DFT for modeling U and Usbnd Zr has room for improvement and DFT + U can be of value for this purpose on at least some ground state properties.

  5. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Portable electronic devices. 91.21 Section 91.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES General § 91.21 Portable electronic devices. (a) Except as provided...

  6. Eliminating unwanted electrons in EBIS devices.

    PubMed

    Hershcovitch, Ady I

    2016-02-01

    In electron beam ion sources, step-wise ionization to high charge states is accomplished by magnetically confined electron beam. Electron space charge and high voltage electrodes confine the ions. The relativistic heavy ion collider (RHIC) ion source Debye length meets requirements for instabilities with free source of energy to grow. Electrons stripped from ions provide energy for a variety of microinstabilities to grow. Possible solution is to remove these electrons from the trap to a drift tube biased to higher voltage than the other tubes between the gate and the collector. If needed, a split drift tube for bleeding these electrons to ground is added. PMID:26931979

  7. Eliminating unwanted electrons in EBIS devices

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady I.

    2016-02-01

    In electron beam ion sources, step-wise ionization to high charge states is accomplished by magnetically confined electron beam. Electron space charge and high voltage electrodes confine the ions. The relativistic heavy ion collider (RHIC) ion source Debye length meets requirements for instabilities with free source of energy to grow. Electrons stripped from ions provide energy for a variety of microinstabilities to grow. Possible solution is to remove these electrons from the trap to a drift tube biased to higher voltage than the other tubes between the gate and the collector. If needed, a split drift tube for bleeding these electrons to ground is added.

  8. Wide temperature range electronic device with lead attachment

    NASA Technical Reports Server (NTRS)

    Farrell, R. (Inventor)

    1973-01-01

    A electronic device including lead attachment structure which permits operation of the devices over a wide temperature range is reported. The device comprises a core conductor having a thin coating of metal thereon whereby only a limited amount of coating material is available to form an alloy which bonds the core conductor to the device electrode, the electrode composition thus being affected only in the region adjacent to the lead.

  9. Three approaches in infrared imaging of electronic devices

    NASA Astrophysics Data System (ADS)

    Malyutenko, Volodymyr K.

    2003-09-01

    We present further progress in high-resolution time-resolved thermal imaging of electronic and optoelectronic devices. We show that concurrent multi-spectral mapping of light, emissivity, and heat patterns a single device produces may hold the key of the device performance improvement by visualizing current carrier distribution and heat flows. To demonstrate advantage of this approach, thermal heaters, light emitting devices, and Peltier coolers are tested with emphasis laid on uniformity of carrier distribution and thermal control.

  10. Active plasmonic devices via electron spin.

    PubMed

    Baron, C A; Elezzabi, A Y

    2009-04-27

    A class of active terahertz devices that operate via particle plasmon oscillations is introduced for ensembles consisting of ferromagnetic and dielectric micro-particles. By utilizing an interplay between spin-orbit interaction manifesting as anisotropic magnetoresistance and the optical distance between ferromagnetic particles, a multifaceted paradigm for device design is demonstrated. Here, the phase accumulation of terahertz radiation across the device is actively modulated via the application of an external magnetic field. An active plasmonic directional router and an active plasmonic cylindrical lens are theoretically explored using both an empirical approach and finite-difference time-domain calculations. These findings are experimentally supported. PMID:19399088

  11. Ion age transport: developing devices beyond electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  12. Fractal electronic devices: simulation and implementation.

    PubMed

    Fairbanks, M S; McCarthy, D N; Scott, S A; Brown, S A; Taylor, R P

    2011-09-01

    Many natural structures have fractal geometries that exhibit useful functional properties. These properties, which exploit the recurrence of patterns at increasingly small scales, are often desirable in applications and, consequently, fractal geometry is increasingly employed in diverse technologies ranging from radio antennae to storm barriers. In this paper, we explore the application of fractal geometry to electrical devices. First, we lay the foundations for the implementation of fractal devices by considering diffusion-limited aggregation (DLA) of atomic clusters. Under appropriate growth conditions, atomic clusters of various elements form fractal patterns driven by DLA. We perform a fractal analysis of both simulated and physical devices to determine their spatial scaling properties and demonstrate their potential as fractal circuit elements. Finally, we simulate conduction through idealized and DLA fractal devices and show that their fractal scaling properties generate novel, nonlinear conduction properties in response to depletion by electrostatic gates. PMID:21841218

  13. Fractal electronic devices: simulation and implementation

    NASA Astrophysics Data System (ADS)

    Fairbanks, M. S.; McCarthy, D. N.; Scott, S. A.; Brown, S. A.; Taylor, R. P.

    2011-09-01

    Many natural structures have fractal geometries that exhibit useful functional properties. These properties, which exploit the recurrence of patterns at increasingly small scales, are often desirable in applications and, consequently, fractal geometry is increasingly employed in diverse technologies ranging from radio antennae to storm barriers. In this paper, we explore the application of fractal geometry to electrical devices. First, we lay the foundations for the implementation of fractal devices by considering diffusion-limited aggregation (DLA) of atomic clusters. Under appropriate growth conditions, atomic clusters of various elements form fractal patterns driven by DLA. We perform a fractal analysis of both simulated and physical devices to determine their spatial scaling properties and demonstrate their potential as fractal circuit elements. Finally, we simulate conduction through idealized and DLA fractal devices and show that their fractal scaling properties generate novel, nonlinear conduction properties in response to depletion by electrostatic gates.

  14. Electron-phonon interaction on optical spectra of nanoelectronic devices

    NASA Technical Reports Server (NTRS)

    Kim, Q.

    2002-01-01

    Information obtained on the solid-state lattice dynamics by electron-phonon interaction between lattice phonons and electrons could open up to learn more about lattice dynamics and to apply it in nanoelectronic devices including software reliability, nano-size capacitors, master clock sources, as well as non-contact temperature probes on nano-electronic and photonicdevices.

  15. Optoelectronic devices utilizing materials having enhanced electronic transitions

    DOEpatents

    Black, Marcie R.

    2011-02-22

    An optoelectronic device that includes a material having enhanced electronic transitions. The electronic transitions are enhanced by mixing electronic states at an interface. The interface may be formed by a nano-well, a nano-dot, or a nano-wire.

  16. Optoelectronic devices utilizing materials having enhanced electronic transitions

    DOEpatents

    Black, Marcie R.

    2013-04-09

    An optoelectronic device that includes a material having enhanced electronic transitions. The electronic transitions are enhanced by mixing electronic states at an interface. The interface may be formed by a nano-well, a nano-dot, or a nano-wire.

  17. Thermal electron-tunneling devices as coolers and amplifiers.

    PubMed

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs' chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109

  18. Thermal electron-tunneling devices as coolers and amplifiers

    PubMed Central

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109

  19. Electronic pictures from charged-coupled devices

    NASA Technical Reports Server (NTRS)

    Mccann, D. H.; Turly, A. P.; White, M.

    1979-01-01

    Imaging system uses charge-coupled devices (CCD's) to generate TV-like pictures with high resolution, sensitivity, and signal-to-noise ratio. It combines detectors for five spectral bands as well as processing and control circuitry all on single silicon chip.

  20. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

    PubMed Central

    Dey, D.; Goswami, T.

    2011-01-01

    The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields. PMID:22131802

  1. Holmium hafnate: An emerging electronic device material

    NASA Astrophysics Data System (ADS)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Scott, James F.; Katiyar, Ram S.

    2015-03-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ˜20 and very low dielectric loss of ˜0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  2. Programmable synaptic devices for electronic neural nets

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Thakoor, A. P.

    1990-01-01

    The architecture, design, and operational characteristics of custom VLSI and thin film synaptic devices are described. The devices include CMOS-based synaptic chips containing 1024 reprogrammable synapses with a 6-bit dynamic range, and nonvolatile, write-once, binary synaptic arrays based on memory switching in hydrogenated amorphous silicon films. Their suitability for embodiment of fully parallel and analog neural hardware is discussed. Specifically, a neural network solution to an assignment problem of combinatorial global optimization, implemented in fully parallel hardware using the synaptic chips, is described. The network's ability to provide optimal and near optimal solutions over a time scale of few neuron time constants has been demonstrated and suggests a speedup improvement of several orders of magnitude over conventional search methods.

  3. Holmium hafnate: An emerging electronic device material

    SciTech Connect

    Pavunny, Shojan P. E-mail: rkatiyar@hpcf.upr.edu; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Katiyar, Ram S. E-mail: rkatiyar@hpcf.upr.edu; Scott, James F.

    2015-03-16

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho{sub 2}Hf{sub 2}O{sub 7} (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ∼20 and very low dielectric loss of ∼0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap E{sub g} of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  4. Molecular electronics with single molecules in solid-state devices.

    PubMed

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong. PMID:19734925

  5. Are Electronic Cardiac Devices Still Evolving?

    PubMed Central

    Mabo, P.

    2014-01-01

    Summary Objectives The goal of this paper is to review some important issues occurring during the past year in Implantable devices. Methods First cardiac implantable device was proposed to maintain an adequate heart rate, either because the heart’s natural pacemaker is not fast enough, or there is a block in the heart’s electrical conduction system. During the last forty years, pacemakers have evolved considerably and become programmable and allow to configure specific patient optimum pacing modes. Various technological aspects (electrodes, connectors, algorithms diagnosis, therapies, …) have been progressed and cardiac implants address several clinical applications: management of arrhythmias, cardioversion / defibrillation and cardiac resynchronization therapy. Results Observed progress was the miniaturization of device, increased longevity, coupled with efficient pacing functions, multisite pacing modes, leadless pacing and also a better recognition of supraventricular or ventricular tachycardia’s in order to deliver appropriate therapy. Subcutaneous implant, new modes of stimulation (leadless implant or ultrasound lead), quadripolar lead and new sensor or new algorithm for the hemodynamic management are introduced and briefly described. Each times, the main result occurring during the two past years are underlined and repositioned from the history, remaining limitations are also addressed. Conclusion Some important technological improvements were described. Nevertheless, news trends for the future are also considered in a specific session such as the remote follow-up of the patient or the treatment of heart failure by neuromodulation. PMID:25123732

  6. Simulation of electron transport in quantum well devices

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Gullapalli, K. K.; Reddy, V. R.; Neikirk, D. P.

    1992-01-01

    Double barrier resonant tunneling diodes (DBRTD) have received much attention as possible terahertz devices. Despite impressive experimental results, the specifics of the device physics (i.e., how the electrons propagate through the structure) are only qualitatively understood. Therefore, better transport models are warranted if this technology is to mature. In this paper, the Lattice Wigner function is used to explain the important transport issues associated with DBRTD device behavior.

  7. Handbook for dose enhancement effects in electronic devices

    NASA Astrophysics Data System (ADS)

    Long, D. M.; Millward, D. G.; Fitzwilson, R. L.; Chadsey, W. L.

    1983-03-01

    The handbook provides tabulation of dose enhancement factors for electronic devices in X-ray and gamma environments. The data is applicable to a wide range of semiconductor devices and selected types of capacitors. The radiation environment includes energy spectra for system design and for radiation test facilities.

  8. Inventory Control. Easily Made Electronic Device for Conductivity Experiments.

    ERIC Educational Resources Information Center

    Gadek, Frank J.

    1987-01-01

    Describes how to construct an electronic device to be used in conductivity experiments using a 35 millimeter film canister, nine volt battery replacement snaps, a 200-300 ohm resistor, and a light-emitting diode. Provides a diagram and photographs of the device. (TW)

  9. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  10. Method for integrating microelectromechanical devices with electronic circuitry

    SciTech Connect

    Barron, C.C.; Fleming, J.G.; Montague, S.

    1999-10-05

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCl) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  11. Printed Electronic Devices in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2004-01-01

    The space environment requires robust sensing, control, and automation, whether in support of human spaceflight or of robotic exploration. Spaceflight embodies the known extremes of temperature, radiation, shock, vibration, and static loads, and demands high reliability at the lowest possible mass. Because printed electronic circuits fulfill all these requirements, printed circuit technology and the exploration of space have been closely coupled throughout their short histories. In this presentation, we will explore the space (and space launch) environments as drivers of printed circuit design, a brief history of NASA's use of printed electronic circuits, and we will examine future requirements for such circuits in our continued exploration of space.

  12. Electronic 4-wheel drive control device

    NASA Technical Reports Server (NTRS)

    Hayato, S.; Takanori, S.; Shigeru, H.; Tatsunori, S.

    1984-01-01

    The internal rotation torque generated during operation of a 4-wheel drive vehicle is reduced using a control device whose clutch is attached to one part of the rear-wheel drive shaft. One torque sensor senses the drive torque associated with the rear wheel drive shaft. A second sensor senses the drive torque associated with the front wheel drive shaft. Revolution count sensors sense the revolutions of each drive shaft. By means of a microcomputer, the engagement of the clutch is changed to insure that the ratio of the torque sensors remains constant.

  13. Graphene-oxide-semiconductor planar-type electron emission device

    NASA Astrophysics Data System (ADS)

    Murakami, Katsuhisa; Tanaka, Shunsuke; Miyashita, Akira; Nagao, Masayoshi; Nemoto, Yoshihiro; Takeguchi, Masaki; Fujita, Jun-ichi

    2016-02-01

    Graphene was used as the topmost electrode for a metal-oxide-semiconductor planar-type electron emission device. With several various layers, graphene as a gate electrode on the thin oxide layer was directly deposited by gallium vapor-assisted chemical vapor deposition. The maximum efficiency of the electron emission, defined as the ratio of anode current to cathode current, showed no dependency on electrode thickness in the range from 1.8 nm to 7.0 nm, indicating that electron scattering on the inside of the graphene electrode is practically suppressed. In addition, a high emission current density of 1-100 mA/cm2 was obtained while maintaining a relatively high electron emission efficiency of 0.1%-1.0%. The graphene-oxide-semiconductor planar-type electron emission device has great potential to achieve both high electron emission efficiency and high electron emission current density in practical applications.

  14. Infected cardiac-implantable electronic devices: prevention, diagnosis, and treatment.

    PubMed

    Nielsen, Jens Cosedis; Gerdes, Jens Christian; Varma, Niraj

    2015-10-01

    Cardiac implantable electronic device (CIED) infection, according to current trends, appears to be an increasing problem. It can be indolent and its diagnosis challenging. Cardiac implantable electronic device infections are potentially lethal, and timely diagnosis and early initiation of correct treatment are of highest importance for patient prognosis. For reducing CIED infections, careful patient selection, preventative measures, and appropriate choice of device are key. The current review presents available data and consensus opinion within the field of CIED infection and identifies important current practice points and aspects for future development. Strategies for reducing CIED infection should be tested in sufficiently powered and well-designed multicentre randomized controlled trials. PMID:25749852

  15. Advances in modeling and simulation of vacuum electronic devices

    SciTech Connect

    Antonsen, T.M. Jr.; Mondelli, A.A.; Levush, B.; Verboncoeur, J.P.; Birdsall, C.K.

    1999-05-01

    Recent advances in the modeling and simulation of vacuum electronic devices are reviewed. Design of these devices makes use of a variety of physical models and numerical code types. Progress in the development of these models and codes is outlined and illustrated with specific examples. The state of the art in device simulation is evolving to the point such that devices can be designed on the computer, thereby eliminating many trial and error fabrication and test steps. The role of numerical simulation in the design process can be expected to grow further in the future.

  16. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Telecommunications America, LLC of Richardson, Texas (collectively, ``Samsung''). 76 FR 45860 (Aug. 1, 2011). The... Presidential Memorandum of July 21, 2005, 70 FR 43251 (July 26, 2005). During this period, the subject articles... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and...

  17. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... America, LLC of Richardson, Texas (collectively, ``Samsung''). 76 FR 45860 (Aug. 1, 2011). The complaint... Commission, and on the issues of remedy, the public interest, and bonding. 77 FR 70464. The Commission... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and...

  18. Future Opportunities for Advancing Glucose Test Device Electronics

    PubMed Central

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-01-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano “ink” composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, “ink,” and continuous processing development presents the opportunity for research collaboration with medical device designers. PMID:22027300

  19. Electronic systems miniaturization using programmable logic devices

    SciTech Connect

    Ashton, E.C.; Bergeson, G.C.

    1990-10-01

    This report describes the steps which were taken to miniaturize a target circuit using Erasable Programmable Logic Devices (EPLDs). The original objective of this project was to explore the miniaturization of a circuit using both Application Specific Integrated Circuits (ASICs) and EPLDs to meet the following goals: balance cost and circuit density; reduce fabrication time; improve quality control issues by keeping much of the design in-house; and eliminate security risks by partitioning the design into ASIC and PLD (EPLD) sections. Due to cost considerations, the target circuit was miniaturized using only PLDs. The results of this project indicate that PLDs are capable of realizing fairly dense circuitry, are considerably less expensive than ASICs (by a factor of 500--1000), and are able to eliminate security risks and reduce fabrication time by keeping the design completely in-house.

  20. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Electronic position fixing devices. 164.41 Section 164.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic...

  1. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Electronic position fixing devices. 164.41 Section 164.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic...

  2. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Electronic position fixing devices. 164.41 Section 164.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic...

  3. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Electronic position fixing devices. 164.41 Section 164.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic...

  4. More Abstracts on Effects of Radiation on Electronic Devices

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.

    1987-01-01

    Second volume of bibliography summarizes literature on radiation effects on new electronic devices. Includes those of protons, electrons, neutrons, gamma rays, and cosmic rays at energies up to about 20 GeV. Volume contains 219 abstracts from unclassified sources. Organized into four sections: dose-rate effects, new technology, post-irradiaton effects, and test environments.

  5. Incorporating Ethical Consumption into Electronic Device Acquisition: A Proposal

    ERIC Educational Resources Information Center

    Poggiali, Jennifer

    2016-01-01

    This essay proposes that librarians practice ethical consumption when purchasing electronic devices. Though librarians have long been engaged with environmentalism and social justice, few have suggested that such issues as e-waste and sweatshop labor should impact our decisions to acquire e-readers, tablets, and other electronics. This article…

  6. Detectors, devices and electronics for optics

    NASA Astrophysics Data System (ADS)

    Fajer, V.

    2007-06-01

    Objectives: The present course is devoted to engineers, physicists, and techniques which require basic tools for applying in experiments, measurements and research with optical instruments. Content: It is composed of the following topics: photodetectors, semiconductor devices, photomultiplier tubes, Faraday modulators, lock in amplifiers and automatic polarimeters. It begins with the definitions, classification and general characteristics of the photodetectors and its selection criteria for specific applications. There is included a section relative to different types of photodiodes and its differential characteristics, the photomultipliers are described showing its validity and application range. The different characteristics of Faraday cells which are widely employed as optical modulators are analyzed. Lock in amplifiers are shown and its applications in experimental arrangements. Content: It is composed of the following topics: photodetectors, semiconductor devices, photomultiplier tubes, Faraday modulators, lock in amplifiers and automatic polarimeters. It begins with the definitions, classification and general characteristics of the photodetectors and its selection criteria for specific applications. There is included a section relative to different types of photodiodes and its differential characteristics, the photomultipliers are described showing its validity and application range. The different characteristics of Faraday cells which are widely employed as optical modulators are analyzed. Lock in amplifiers are shown and its applications in experimental arrangements. Conclusion: this course could be given as a postgraduate course for Master in Science or Ph. D depending on the number and content of selected topics. It has been applied as an obligatory subject of the Optical Master in Science curriculum in the Superior Technical Institute (José Antonio Echeverría) of Havana, Cuba.

  7. 76 FR 22918 - In the Matter of Certain Handheld Electronic Computing Devices, Related Software, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... COMMISSION In the Matter of Certain Handheld Electronic Computing Devices, Related Software, and Components... States after importation of certain handheld electronic computing devices, related software, and... importation of certain handheld electronic computing devices, related software, and components thereof...

  8. 77 FR 44671 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Receipt of... received a complaint entitled Certain Wireless Consumer Electronics Devices and Components Thereof, DN 2904... within the United States after importation of certain wireless consumer electronics devices...

  9. 77 FR 51572 - Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of Investigation... United States after importation of certain wireless consumer electronics devices and components thereof... importation of certain wireless consumer electronics devices and components thereof that infringe one or...

  10. 78 FR 38361 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof... States after importation of certain portable electronic ] communications devices, including mobile phones... importation of certain portable electronic communications devices, including mobile phones and...

  11. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... Trade Commission has received a complaint entitled Certain Electronic Devices, Including Mobile Phones... electronic devices, including mobile phones and tablet computers, and components thereof. The complaint...

  12. Buffer layers and articles for electronic devices

    DOEpatents

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  13. Emerging electronic devices for THz sensing and imaging

    NASA Astrophysics Data System (ADS)

    Fay, P.; Xie, Y.; Zhao, Y.; Jiang, Z.; Rahman, S.; Xing, H.; Sensale-Rodriguez, B.; Liu, L.

    2014-09-01

    Continuing advances in scaling of conventional semiconductor devices are enabling mainstream electronics to operate in the millimeter-wave through THz regime. At the same time, however, novel devices and device concepts are also emerging to address the key challenges for systems in this frequency range, and may offer performance and functional advantages for future systems. In addition to new devices, advances in integration technology and novel system concepts also promise to provide substantial system-level performance and functionality enhancements. Several emerging devices and device concepts, as well as circuit-level concepts to take advantage of them, are discussed. Based on unconventional semiconductor device structures and operational principles, these devices offer the potential for significantly improved system sensitivity and frequency coverage. When combined in arrays, features such as polarimetric detection and frequency tunability for imaging can be achieved. As examples of emerging devices for millimeter-wave through THz sensing and imaging, heterostructure backward diodes in the InAs/AlSb/GaSb material system and GaN-based plasma-wave high electron mobility transistors (HEMTs) will be discussed. Based on interband tunneling, heterostructure backward diodes offer significantly increased sensitivity and extremely low noise for direct detection applications, and have been demonstrated with cutoff frequencies exceeding 8 THz. The plasma-wave HEMT is an emerging device concept that, by leveraging plasma-wave resonances in the two-dimensional electron gas within the channel of the HEMT, offers the prospect for both tunable narrowband detection as well as low-noise amplification at frequencies well into the THz. These emerging devices are both amenable to direct integration within compact planar radiating structures such as annular slot antennas for realization of polarimetric detection and frequency tuning for spectroscopy and imaging.

  14. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  15. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. PMID:26403162

  16. Modeling of high-current devices with explosive electron emission

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-01-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables the simulation of the charged particles’ dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform a time-frequency analysis of vircator radiation.

  17. dc-plasma-sprayed electronic-tube device

    DOEpatents

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  18. Perioperative Management of Multiple Noncardiac Implantable Electronic Devices.

    PubMed

    Ramos, Juan A; Brull, Sorin J

    2015-12-01

    The number of patients with noncardiac implantable electronic devices is increasing, and the absence of perioperative management standards, guidelines, practice parameters, or expert consensus statements presents clinical challenges. A 69-year-old woman presented for latissimus dorsi breast reconstruction. The patient had previously undergone implantation of a spinal cord stimulator, a gastric pacemaker, a sacral nerve stimulator, and an intrathecal morphine pump. After consultation with device manufacturers, the devices with patient programmability were switched off. Bipolar cautery was used intraoperatively. Postoperatively, all devices were interrogated to ensure appropriate functioning before home discharge. Perioperative goals include complete preoperative radiologic documentation of device component location, minimizing electromagnetic interference, and avoiding mechanical damage to implanted device components. PMID:26588030

  19. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    SciTech Connect

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  20. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    SciTech Connect

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  1. Axial Electron Heat Loss From Mirror Devices Revisited

    SciTech Connect

    Ryutov, D

    2004-08-16

    An issue of the axial electron heat loss is of a significant importance for mirror-based fusion devices. This problem has been considered in a number of publications but it is still shrouded in misconceptions. In this paper we revisit it once again. We discuss the following issues: (1) Formation of the electron distribution function in the end tank at large expansion ratios; (2) The secondary emission from the end plates and the ways of suppressing it (if needed); (3) Ionization and charge exchange in the presence of neutrals in the end tanks; (4) Instabilities caused by the peculiar shape of the electron distribution function and their possible impact on the electron heat losses; (5) Electron heat losses in the pulsed mode of operation of mirror devices.

  2. A Novel Device for Intravaginal Electronic Brachytherapy

    SciTech Connect

    Schneider, Frank Fuchs, Holger; Lorenz, Friedlieb; Steil, Volker; Ziglio, Francesco; Kraus-Tiefenbacher, Uta; Lohr, Frank; Wenz, Frederik

    2009-07-15

    Purpose: Postoperative intravaginal brachytherapy for endometrial carcinoma is usually performed with {sup 192}Ir high-dose rate (HDR) afterloading. A potential alternative is treatment with a broadband 50kV X-ray point source, the advantage being its low energy and the consequential steep dose gradient. The aim of this study was to create and evaluate a homogeneous cylindrical energy deposition around a newly designed vaginal applicator. Methods and Materials: To create constant isodose layers along the cylindrical plastic vaginal applicator, the source (INTRABEAM system) was moved in steps of 17-19.5 mm outward from the tip of the applicator. Irradiation for a predetermined time was performed at each position. The axial shift was established by a stepping mechanism that was mounted on a table support. The total dose/dose distribution was determined using film dosimetry (Gafchromic EBT) in a 'solid water' phantom. The films were evaluated with Mathematica 5.2 and OmniPro-I'mRT 1.6. The results (dose D0/D5/D10 in 0/5/10 mm tissue depth) were compared with an {sup 192}Ir HDR afterloading plan for multiple sampling points around the applicator. Results: Three different dose distributions with lengths of 3.9-7.3 cm were created. The irradiation time based on the delivery of 5/7 Gy to a 5 mm tissue depth was 19/26 min to 27/38 min. D0/D5/D10 was 150%/100%/67% for electronic brachytherapy and 140%/100%/74% for the afterloading technique. The deviation for repeated measurements in the phantom was <7%. Conclusions: It is possible to create a homogeneous cylindrical dose distribution, similar to {sup 192}Ir HDR afterloading, through the superimposition of multiple spherical dose distributions by stepping a kilovolt point source.

  3. Testing Electronic Devices for Single-Event Upset

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Malone, C. J.

    1986-01-01

    Report prepared describes equipment and summarizes both pretest and onsite procedures for testing of digital electronic devices for susceptibility to single-event upset. Term "single-event upset" denotes variety of temporary or permanent bit flips or latchup induced by single particles of ionizing radiation. Vacuum chamber houses device under test while exposed to ion beam. Vacuum chamber and associated equipment must be brought to ion-beam facility for test.

  4. Flexible Organic Electronics in Biology: Materials and Devices.

    PubMed

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-01

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. PMID:25393596

  5. [Implementation of a pretreatment device for an electronic nose].

    PubMed

    Bu, Fan-Yang; Wen, Xiao-Gang; Wan, Mei; Liu, Rui; Chen, Lü-Jun; Zhang, Yong-Ming

    2012-06-01

    A pretreament device was implemented for removing the interference of humidity on the baseline signal response of sensors in an electronic nose, which was used for rapid detection and real-time monitoring of volatile chlorinated hydrocarbons (VCHs) pollution in soil. The desiccant material was optimized, and the humidity removal performance and adsorpiton of VCHs was studied. The pretreatment device was evaluated by both the electronic nose and gas chromatography (GC) for its applicability in monitoring the PCE concentration in the desorption gas during the soil ventilation process. The following results were obtained: 1) A desiccant tube with anhydrous calcium chloride followed by a halogenated hydrocarbon separation tube was the best device, with a humidity removal rate of over 99%, and the baseline values of each sensor in the electronic nose were close to that of the control. 2) The desiccant device described above could continuously remove almost all the humidity from air with 75% humidity within 90 min, and the humidity removal rate remained above 95% within 120 min, while little interference was observed on the baseline of each sensor. 3) Little adsorption was observed by the pretreatment device, the relative error being only 3% - 5% between the concentration of VCHs before and after the filtration by the pretreatment device. 4) When applied for monitoring the remediation progress in a soil ventilation process, 99% of humidity was removed within 120 min from air with humidity of over 98%, and the data determined with the electronic nose and GC fitted each other very well, with R2 > 0.99. From the above, the pretreatment device connected with the electronic nose was considered to be applicable for monitoring the soil remediation process. PMID:22946199

  6. Inverted organic photovoltaic device with a new electron transport layer

    PubMed Central

    2014-01-01

    We demonstrate that there is a new solution-processed electron transport layer, lithium-doped zinc oxide (LZO), with high-performance inverted organic photovoltaic device. The device exhibits a fill factor of 68.58%, an open circuit voltage of 0.86 V, a short-circuit current density of −9.35 cm/mA2 along with 5.49% power conversion efficiency. In addition, we studied the performance of blend ratio dependence on inverted organic photovoltaics. Our device also demonstrates a long stability shelf life over 4 weeks in air. PMID:24674457

  7. Electronic firing systems and methods for firing a device

    DOEpatents

    Frickey, Steven J.; Svoboda, John M.

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  8. The Physiologic Effects of Multiple Simultaneous Electronic Control Device Discharges

    PubMed Central

    Dawes, Donald M.; Ho, Jeffrey D.; Reardon, Robert F.; Sweeney, James D.; Miner, James R.

    2010-01-01

    Objectives: Law enforcement and military personnel use electronic control devices to control non-compliant and actively resistive subjects. The TASER® Shockwave is a new electronic control device designed specifically as an area denial device capable of delivering multiple simultaneous discharges. This is the first study to examine the effects of multiple simultaneous device discharges in humans. Methods: Volunteers were exposed to multiple (two to three), simultaneous 5-second discharges from the Shockwave device to the chest, back, chest to abdomen, or thighs. Blood was analyzed before and after discharge for pH, lactate, potassium, creatine kinase (CK), and troponin. Continuous spirometry was performed before, during, and after the discharge. In addition, electrocardiograms (ECGs) before and after discharge were recorded, and echocardiography was used to determine the rhythm during discharge. Results: Small elevations of lactate occurred. Moderate increases in CK at 24 hours occurred and appeared to be related to the number of simultaneous discharges. There was a trend to a decrease in minute ventilation in the volunteers exposed to two simultaneous discharges, but it did not reach statistical significance. ECG changes only reflected an increase in vagal tone, and there was no evidence of capture by echocardiography. Five-second, simultaneous, multiple exposures to the TASER Shockwave device were reasonably tolerated by our human volunteers. Conclusion: Our study suggests that this device may have a reasonable risk/benefit ratio when used to protect an area from a threat. PMID:20411076

  9. Roll-to-roll manufacturing of electronic devices

    NASA Astrophysics Data System (ADS)

    Morrison, N. A.; Stolley, T.; Hermanns, U.; Kroemer, U.; Reus, A.; Lopp, A.; Campo, M.; Landgraf, H.

    2012-03-01

    Roll-to-Roll (R2R) production of thin film based electronic devices (e.g. solar cells, activematrix TFT backplanes & touch screens) combine the advantages of the use of inexpensive, lightweight & flexible substrates with high throughput production. Significant cost reduction opportunities can also be found in terms of processing tool capital cost, utilized substrate area and process gas flow when compared with batch processing systems. Nevertheless, material handling, device patterning and yield issues have limited widespread utilization of R2R manufacturing within the electronics industry.

  10. Study on the frequency characteristics of nanogap electron devices

    SciTech Connect

    Xu, Ji; Wang, Qilong E-mail: bell@seu.edu.cn; Qi, Zhiyang; Zhai, Yusheng; Zhang, Xiaobing E-mail: bell@seu.edu.cn

    2015-05-28

    Ballistic electron transport in the nanogap devices will make it practical to combine the advantages of solid-state devices and vacuum electron devices including high integration and high frequency characteristics. Although a number of experiments have been exploited on frequency characteristic in nanogap, less modeling or calculations were investigated at such scale yet. In this paper, the concept of mean flight time is proposed in order to theoretically determine the frequency in nanoscale. Traditionally, we have to first determine the frequency response diagram and then deduce the cut-off frequency. This work presents a new method for exploring the frequency characteristics of electron transport in a nanogap structure by calculations and numerical simulations. A double-gate structure was applied in the simulations, and the results suggest that the nanogap structure can perform in the THz range. Additionally, an equivalent circuit model was adopted to demonstrate the validity of this method. Our results provide a model for the intrinsic ballistic transportation of electrons inside the nanogap electron devices.

  11. Porphyrins as Molecular Electronic Components of Functional Devices

    PubMed Central

    Jurow, Matthew; Schuckman, Amanda E.; Batteas, James D.; Drain, Charles Michael

    2010-01-01

    The proposal that molecules can perform electronic functions in devices such as diodes, rectifiers, wires, capacitors, or serve as functional materials for electronic or magnetic memory, has stimulated intense research across physics, chemistry, and engineering for over 35 years. Because biology uses porphyrins and metalloporphyrins as catalysts, small molecule transporters, electrical conduits, and energy transducers in photosynthesis, porphyrins are an obvious class of molecules to investigate for molecular electronic functions. Of the numerous kinds of molecules under investigation for molecular electronics applications, porphyrins and their related macrocycles are of particular interest because they are robust and their electronic properties can be tuned by chelation of a metal ion and substitution on the macrocycle. The other porphyrinoids have equally variable and adjustable photophysical properties, thus photonic applications are potentiated. At least in the near term, realistic architectures for molecular electronics will require self-organization or nanoprinting on surfaces. This review concentrates on self-organized porphyrinoids as components of working electronic devices on electronically active substrates with particular emphasis on the effect of surface, molecular design, molecular orientation and matrix on the detailed electronic properties of single molecules. PMID:20936084

  12. Novel electron devices based on the unique properties of diamond

    NASA Astrophysics Data System (ADS)

    Yoder, M. N.

    An account is given of the unique design principles that apply to such electron devices as metal-insulator-metal photodetectors, cascade and virtual-contact FETs, and high-electron-mobility transistors. It is noted that while diamond is a high-power, high-temperature, or extremely HF amplifier, it cannot accomplish all three functions simultaneously. Attention is given to the significance of diamond's heat-dissipation capabilities.

  13. Micro- and Nanostructured Materials for Active Devices and Molecular Electronics

    SciTech Connect

    Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Mast, Eric S.; Hall, Michael G.; Bonham, Charles C.; Zumhoff, Mac R.; Williford, Rick E.

    2003-10-01

    Traditional single layer barrier coatings are not adequate in preventing degradation of the performance of organic molecular electronic and other active devices. Most advanced devices used in display technology now consist of micro and nanostructured small molecule, polymer and inorganic coatings with thin high reactive group 1A metals. This includes organic electronics such as organic light emitting devices (OLED). The lifetimes of these devices rapidly degrades when they are exposed to atmospheric oxygen and water vapor. Thin film photovoltaics and batteries are also susceptible to degradation by moisture and oxygen. Using in-line coating techniques we apply a composite nanostructured inorganic/polymer thin film barrier that restricts moisture and oxygen permeation to undetectable levels using conventional permeation test equipment. We describe permeation mechanisms for this encapsulation coating and flat panel display and other device applications. Permeation through the multilayer barrier coating is defect and pore limited and can be described by Knudsen diffusion involving a long and tortuous path. Device lifetime is also enhanced by the long lag times required to reach the steady state flux regime. Permeation rates in the range of 10-6 cc,g/m2/d have been achieved and OLED device lifetimes. The structure is robust, yet flexible. The resulting device performance and lifetimes will also be described. The barrier film can be capped with a thin film of transparent conductive oxide yielding an engineered nanostructured device for next generation, rugged, lightweight or flexible displays. This enables, for the first time, thin film encapsulation of emissive organic displays.

  14. Deformable devices with integrated functional nanomaterials for wearable electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-03-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  15. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position fixing devices. 121.410 Section 121.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS VESSEL...

  16. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment §...

  17. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment §...

  18. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment §...

  19. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position fixing devices. 121.410 Section 121.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS VESSEL...

  20. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position fixing devices. 121.410 Section 121.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS VESSEL...

  1. X-Ray-Diffraction Tests Of Irradiated Electronic Devices: II

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Lowry, Lynn E.; Barnes, Charles E.

    1993-01-01

    Report describes research on use of x-ray diffraction to measure stresses in metal conductors of complementary metal oxide/semiconductor (CMOS) integrated circuits exposed to ionizing radiation. Expanding upon report summarized in "X-Ray-Diffraction Tests Of Irradiated Electronic Devices: I" (NPO-18803), presenting data further suggesting relationship between electrical performances of circuits and stresses and strains in metal conductors.

  2. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 135.144 Section 135.144 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS...

  3. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 121.306 Section 121.306 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND...

  4. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 125.204 Section 125.204 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A...

  5. Travel in Adverse Weather Using Electronic Mobility Guidance Devices

    ERIC Educational Resources Information Center

    Farmer, Leicester W.

    1975-01-01

    After a discussion of the required characteristics of an ideal aid for blind individuals traveling in adverse weather, four electronic mobility guidance devices- the Mowat Sonar Sensor, the Russell E Model Pathsounder, the Bionic C-5 Laser Cane, and the Mark II Binaural Sensory Aid-are described in detail. (Author/SB)

  6. A Web Service and Interface for Remote Electronic Device Characterization

    ERIC Educational Resources Information Center

    Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.

    2011-01-01

    A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…

  7. Front and backside processed thin film electronic devices

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  8. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... devices, including mobile phones and tablet computers, and components thereof by reason of infringement of... certain electronics devices, including mobile phones and tablet computers, and components thereof...

  9. Electrodes mitigating effects of defects in organic electronic devices

    DOEpatents

    Heller, Christian Maria Anton

    2008-05-06

    A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.

  10. Electronic simulation of a multiterminal quantum Hall effect device

    NASA Astrophysics Data System (ADS)

    Sosso, A.; Capra, P. P.

    1999-04-01

    A circuit with only resistors and unity gain amplifiers can be proven to be equivalent to the Ricketts and Kemeny electrical model of multiterminal quantum Hall effect (QHE) devices. By means of the new equivalent circuit, commercial software for electronic circuit analysis can be used to study a QHE measurement system. Moreover, it can be easily implemented, and we were able to build a circuit that simulates the electrical behavior of a QHE device. Particular care was taken in the design to reduce the effect of parasitic capacitances, which act as loads connected to the device terminals. Bootstrap buffers have been adopted to significantly reduce the capacitance of input stage. The small residual loading effect can be calculated and eliminated, allowing simulation of a QHE device with good accuracy.

  11. Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2012-01-01

    Executive Summary Objective The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions. Clinical Need: Condition and Target Population Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD. Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities. Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs. Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however

  12. Electron deuteron scattering with HERA, a letter of intent for an experimental programme with the H1 detector

    SciTech Connect

    T. Alexopoulos; et. al.

    2003-12-01

    This document outlines the case for a program of electron-deuteron scattering measurements at HERA using the H1 detector. The goals of the e D program are to map the partonic structure of the nucleon at large Q2 and low x, to explore the valence quark distributions at the highest x values, to provide a precise measurement of the strong coupling constant and to investigate the parton recombination phenomena revealed in shadowing and their relationship to diffraction. The importance of these measurements for the understanding of the perturbative and non-perturbative aspects of QCD thought to be responsible for nucleon structure is discussed, as is the significance of the measurements for future experimental programs. Some modifications to both the H1 apparatus and the HERA accelerator are necessary to realize this program; these are presented in the document. Mention is also made of questions that will remain unanswered following the completion of the above program and the potential role of HERA and of H1 in investigating these questions is outlined. Physicists and Institutes interested in supporting this project are asked to inform Max Klein (klein@ifh.de) and Tim Greenshaw (green@hep.ph.liv.ac.uk) that they would like to have their names on the Letter of Intent by Wednesday 30th April 2003.

  13. 78 FR 56245 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Request for... limited exclusion order against certain wireless consumer electronics devices and components thereof... Corporation of Kyoto, Japan; Kyocera Communications, Inc. of San Diego, California; LG Electronics, Inc....

  14. Semi-shunt field emission in electronic devices

    NASA Astrophysics Data System (ADS)

    Karpov, V. G.; Shvydka, Diana

    2014-08-01

    We introduce a concept of semi-shunts representing needle shaped metallic protrusions shorter than the distance between a device electrodes. Due to the lightening rod type of field enhancement, they induce strong electron emission. We consider the corresponding signature effects in photovoltaic applications; they are: low open circuit voltages and exponentially strong random device leakiness. Comparing the proposed theory with our data for CdTe based solar cells, we conclude that stress can stimulate semi-shunts' growth making them shunting failure precursors. In the meantime, controllable semi-shunts can play a positive role mitigating the back field effects in photovoltaics.

  15. Biomolecular electronic devices based on self-organized deoxyguanosine nanocrystals.

    PubMed

    Rinaldi, Ross; Branca, Emanuela; Cingolani, Roberto; Di Felice, Rosa; Calzolari, Arrigo; Molinari, Elisa; Masiero, Salvatore; Spada, Gianpero; Gottarelli, Giovanni; Garbesi, Anna

    2002-04-01

    We report on a new class of hybrid electronic devices based on a DNA nucleoside (deoxyguanosine lipophilic derivative) whose assembled polymeric ribbons interconnect a submicron metallic gate. The device exhibits large conductivity at room temperature, rectifying behavior and strong current-voltage hysteresis. The transport mechanism through the molecules is investigated by comparing films with different self-assembling morphology. We found that the main transport mechanism is connected to pi-pi interactions between guanosine molecules and to the formation of a strong dipole along ribbons, consistently with the results of our first-principles calculations. PMID:11971799

  16. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    SciTech Connect

    Black, Douglas R.; Lanzisera, Steven M.; Lai, Judy; Brown, Richard E.; Singer, Brett C.

    2012-09-01

    Miscellaneous and electronic loads (MELs) consume about one-thirdof the primary energy used in US buildings, and their energy use is increasing faster than other end-uses. In healthcare facilities, 30percent of the annual electricity was used by MELs in 2008. This paper presents methods and challenges for estimating medical MELs energy consumption along with estimates of energy use in a hospital by combining device-level metered data with inventories and usage information. An important finding is that common, small devices consume large amounts of energy in aggregate and should not be ignored when trying to address hospital energy use.

  17. Electron guns and collectors developed at INP for electron cooling devices

    SciTech Connect

    Sharapa, A.N.; Shemyakin, A.V.

    1997-09-01

    Institute of Nuclear Physics (INP) has a rich experience in designing electron guns and collectors for electron cooling devices. This paper is a review of the experience of several INP research groups in this field. Some results obtained at INP for systems without a guiding magnetic field are also discussed.

  18. Cardiac Implantable Electronic Device Infection in Patients at Risk

    PubMed Central

    Tarakji, Khaldoun G; Ellis, Christopher R; Defaye, Pascal; Kennergren, Charles

    2016-01-01

    The incidence of infection following implantation of cardiac implantable electronic devices (CIEDs) is increasing at a faster rate than that of device implantation. Patients with a CIED infection usually require hospitalisation and complete device and lead removal. A significant proportion die from their infection. Transvenous lead extraction (TLE) is associated with rare but serious complications including major vascular injury or cardiac perforation. Operator experience and advances in lead extraction methods, including laser technology and rotational sheaths, have resulted in procedures having a low risk of complication and mortality. Strategies for preventing CIED infections include intravenous antibiotics and aseptic surgical techniques. An additional method to reduce CIED infection may be the use of antibacterial TYRX™ envelope. Data from non-randomised cohort studies have indicated that antibacterial envelope use can reduce the incidence of CIED infection by more than 80 % in high-risk patients and a randomised clinical trial is ongoing. PMID:27403296

  19. Exploiting the colloidal nanocrystal library to construct electronic devices

    NASA Astrophysics Data System (ADS)

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high–dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  20. Exploiting the colloidal nanocrystal library to construct electronic devices.

    PubMed

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second. PMID:27124455

  1. Interface engineering for high performance graphene electronic devices

    NASA Astrophysics Data System (ADS)

    Jung, Dae Yool; Yang, Sang Yoon; Park, Hamin; Shin, Woo Cheol; Oh, Joong Gun; Cho, Byung Jin; Choi, Sung-Yool

    2015-06-01

    A decade after the discovery of graphene flakes, exfoliated from graphite, we have now secured large scale and high quality graphene film growth technology via a chemical vapor deposition (CVD) method. With the establishment of mass production of graphene using CVD, practical applications of graphene to electronic devices have gained an enormous amount of attention. However, several issues arise from the interfaces of graphene systems, such as damage/unintentional doping of graphene by the transfer process, the substrate effects on graphene, and poor dielectric formation on graphene due to its inert features, which result in degradation of both electrical performance and reliability in actual devices. The present paper provides a comprehensive review of the recent approaches to resolve these issues by interface engineering of graphene for high performance electronic devices. We deal with each interface that is encountered during the fabrication steps of graphene devices, from the graphene/metal growth substrate to graphene/high-k dielectrics, including the intermediate graphene/target substrate.

  2. Metallization of bacterial cellulose for electrical and electronic device manufacture

    SciTech Connect

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  3. Innovative Field Emitters for High-Voltage Electronic Devices

    NASA Astrophysics Data System (ADS)

    Sominski, G. G.; Sezonov, V. E.; Taradaev, E. P.; Tumareva, T. A.; Zadiranov, Yu. M.; Kornishin, S. Yu.; Stepanova, A. N.

    2015-12-01

    We describe multitip field emitters with protective coatings, which were developed in Peter the Great St. Petersburg Polytechnic University. The coatings ensure long-term operation of the emitters under high currents and technical vacuum. Innovative multi-layer emitters composed of contacting nanolayers of materials with different work functions are presented as well. The possibility by using the developed emitters in high-voltage electronic devices is demonstrated.

  4. Transvenous Lead Extraction for Cardiac Implantable Electronic Devices.

    PubMed

    Shea, Julie B

    2015-01-01

    This article illustrates the important role that lead extraction plays in the management of patients with cardiac implantable electronic devices. Individualized care of the patient is paramount when considering lead management strategies. The critical care nurse must have a comprehensive understanding of the indications, procedural considerations, and preprocedural and postprocedural care for patients undergoing lead extraction procedures, thereby improving patient safety and maximizing patient outcomes. PMID:26484992

  5. The revolution in SiGe: impact on device electronics

    NASA Astrophysics Data System (ADS)

    Harame, D. L.; Koester, S. J.; Freeman, G.; Cottrel, P.; Rim, K.; Dehlinger, G.; Ahlgren, D.; Dunn, J. S.; Greenberg, D.; Joseph, A.; Anderson, F.; Rieh, J.-S.; Onge, S. A. S. T.; Coolbaugh, D.; Ramachandran, V.; Cressler, J. D.; Subbanna, S.

    2004-03-01

    SiGe is having a major impact in device electronics. The most mature application is the SiGe BiCMOS technology which is in production throughout the world. The areas of most rapid growth are in CMOS where SiGe is being considered for a wide variety of elements including raised S/D, poly-SiGe Gates, in buffer layers to create a tensile strained Si layer, and as the conducting channel in MODFETs.

  6. The molecular electronic device and the biochip computer: present status.

    PubMed

    Haddon, R C; Lamola, A A

    1985-04-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but

  7. The Molecular Electronic Device and the Biochip Computer: Present Status

    NASA Astrophysics Data System (ADS)

    Haddon, R. C.; Lamola, A. A.

    1985-04-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology--is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules

  8. The molecular electronic device and the biochip computer: present status.

    PubMed Central

    Haddon, R C; Lamola, A A

    1985-01-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but

  9. Modeling of explosive electron emission and electron beam dynamics in high-current devices

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-03-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of the cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables simulating the charged particles' dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform the time-frequency analysis of vircator radiation.

  10. Calcium chloride electron injection/extraction layers in organic electronic devices

    SciTech Connect

    Qu, Bo E-mail: qhgong@pku.edu.cn; Gao, Zhi; Yang, Hongsheng; Xiao, Lixin; Chen, Zhijian; Gong, Qihuang E-mail: qhgong@pku.edu.cn

    2014-01-27

    Nontoxic calcium chloride (CaCl{sub 2}) was introduced into organic electronic devices as cathode buffer layer (CBL). The turn-on voltage and maximum luminance of organic light-emitting diode (OLED) with 1.5 nm CaCl{sub 2} was 3.5 V and 21 960 cd/m{sup 2}, respectively. OLED with 1.5 nm CaCl{sub 2} possessed comparable electroluminescent characteristics to that of the commonly used LiF. Moreover, the performance of the organic photovoltaic device with 0.5 nm CaCl{sub 2} was comparable to that of the control device with LiF. Therefore, CaCl{sub 2} has the potential to be used as the CBL for organic electronic devices.

  11. Opto-electronic devices with nanoparticles and their assemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (< 100nm) particles provide tremendous possibilities due to their unique electrical, optical, and mechanical properties. Plethora of NPs with various chemical composition, size and shape has been synthesized. Clever designs of sub-wavelength structures enable observation of unusual properties of materials, and have led to new areas of research such as metamaterials. This dissertation describes two self-assemblies of gold nanoparticles, leading to an ultra-soft thin film and multi-functional single electron device at room temperature. First, the layer-by-layer self-assembly of 10nm Au nanoparticles and polyelectrolytes is shown to behave like a cellular-foam with modulus below 100 kPa. As a result, the composite thin film (˜ 100nm) is 5 orders of magnitude softer than an equally thin typical polymer film. The thin film can be compressed reversibly to 60% strain. The extraordinarily low modulus and high compressibility are advantageous in pressure sensing applications. The unique mechanical properties of the composite film lead to development of an ultra-sensitive tactile imaging device capable of screening for breast cancer. On par with human finger sensitivity, the tactile device can detect a 5mm imbedded object up to 20mm below the surface with low background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au

  12. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  13. Critical appraisal of cardiac implantable electronic devices: complications and management

    PubMed Central

    Padeletti, Luigi; Mascioli, Giosuè; Perini, Alessandro Paoletti; Grifoni, Gino; Perrotta, Laura; Marchese, Procolo; Bontempi, Luca; Curnis, Antonio

    2011-01-01

    Population aging and broader indications for the implant of cardiac implantable electronic devices (CIEDs) are the main reasons for the continuous increase in the use of pacemakers (PMs), implantable cardioverter-defibrillators (ICDs) and devices for cardiac resynchronization therapy (CRT-P, CRT-D). The growing burden of comorbidities in CIED patients, the greater complexity of the devices, and the increased duration of procedures have led to an augmented risk of infections, which is out of proportion to the increase in implantation rate. CIED infections are an ominous condition, which often implies the necessity of hospitalization and carries an augmented risk of in-hospital death. Their clinical presentation may be either at pocket or at endocardial level, but they can also manifest themselves with lone bacteremia. The management of these infections requires the complete removal of the device and subsequent, specific, antibiotic therapy. CIED failures are monitored by competent public authorities, that require physicians to alert them to any failures, and that suggest the opportune strategies for their management. Although the replacement of all potentially affected devices is often suggested, common practice indicates the replacement of only a minority of devices, as close follow-up of the patients involved may be a safer strategy. Implantation of a PM or an ICD may cause problems in the patients’ psychosocial adaptation and quality of life, and may contribute to the development of affective disorders. Clinicians are usually unaware of the psychosocial impact of implanted PMs and ICDs. The main difference between PM and ICD patients is the latter’s dramatic experience of receiving a shock. Technological improvements and new clinical evidences may help reduce the total burden of shocks. A specific supporting team, providing psychosocial help, may contribute to improving patient quality of life. PMID:22915942

  14. Individual carbon nanotubes for quantum electronic and quantum photonic devices

    NASA Astrophysics Data System (ADS)

    Ai, Nan

    2011-12-01

    Carbon nanotubes (CNTs) are promising materials since their unique one dimensional geometry leads to remarkable physical properties such as ballistic transport, long mean free path, large direct band gaps, high mechanical tensile strength and strong exciton binding energies, which make them attractive candidates for applications in high-performance nanoelectronics and nanophotonics. CNT-based field-effect transistors (CNT-FETs) are considered to be ideally suited for future nanoelectronics. Single CNT-FETs made by depositing metal electrodes on top of individual CNTs with E-beam lithography have achieved great performance but are limited for massive large area integrated circuit fabrication. Therefore, this thesis demonstrates characteristics of CNT-FETs made by registered in-plane growth utilizing tailored nanoscale catalyst patterns and chemical vapor deposition (CVD), resulting in CNT arrays directly bridging source and drain. The demonstrated access to individual CNTs with pronounced semiconducting behavior opens also the possibility to form more advanced nanoelectronic structures such as CNT quantum dots. CNT-based single electron transistors (CNT-SETS) are promising for quantum electronic devices operating with ultra-low power consumption and allow fundamental studies of electron transport. In addition to existing CNT-SETS based on individual CNTs, we have fabricated the first CNT-SETS based on in-plane grown CNTs using the CVD technique. The demonstrated utilization of registered in-plane growth opens possibilities to create novel SET device geometries which are more complex, i.e. laterally ordered and scalable, as required for advanced quantum electronic devices. Blinking and spectral diffusion are hallmarks of nanoscale light emitters and a challenge for creating stable fluorescent biomarkers or efficient nonclassical light sources. The studies of blinking of CNTs are still in the explorative stage. In this thesis, I show the first experimental

  15. Ultra-thin layer packaging for implantable electronic devices

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Aellen, T.; Uhl, S.; Graf, B.; Keppner, H.; Tardy, Y.; Burger, J.

    2013-07-01

    State of the art packaging for long-term implantable electronic devices generally uses reliable metal and glass housings; however, these are limited in the miniaturization potential and cost reduction. This paper focuses on the development of biocompatible hermetic thin-film packaging based on poly-para-xylylene (Parylene-C) and silicon oxide (SiOx) multilayers for smart implantable microelectromechanical systems (MEMS) devices. For the fabrication, a combined Parylene/SiOx single-chamber deposition system was developed. Topological aspects of multilayers were characterized by atomic force microscopy and scanning electron microscopy. Material compositions and layer interfaces were analyzed by Fourier transform infrared spectrometry and x-ray photoelectron spectroscopy. To evaluate the multilayer corrosion protection, water vapor permeation was investigated using a calcium mirror test. The calcium mirror test shows very low water permeation rates of 2 × 10-3 g m-2 day-1 (23 °C, 45% RH) for a 4.7 µm multilayer, which is equivalent to a 1.9 mm pure Parylene-C coating. According to the packaging standard MIL-STD-883, the helium gas tightness was investigated. These helium permeation measurements predict that a multilayer of 10 µm achieves the hermeticity acceptance criterion required for long-term implantable medical devices.

  16. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2010-06-20

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  17. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  18. Development of medical electronic devices in the APL space department

    NASA Technical Reports Server (NTRS)

    Newman, A. L.

    1985-01-01

    Several electronic devices for automatically correcting specific defects in a body's physiologic regulation and allowing approximately normal functioning are described. A self-injurious behavior inhibiting system (SIBIS) is fastened to the arm of a person with chronic self-injurious behavior patterns. An electric shock is delivered into the arm whenever the device senses above-threshold acceleration of the head such as occur with head-bangers. Sounding a buzzer tone with the shock eventually allows transference of the aversive stimulus to the buzzer so shocks are no longer necessary. A programmable implantable medication system features a solenoid pump placed beneath the skin and refueled by hypodermic needle. The pump functions are programmable and can deliver insulin, chemotherapy mixes and/or pain killers according to a preset schedule or on patient demand. Finally, an automatic implantible defibrillator has four electrodes attached directly to the heart for sensing electrical impulses or emitting them in response to cardiac fibrillation.

  19. Cumulative Interference to Aircraft Radios from Multiple Portable Electronic Devices

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2005-01-01

    Cumulative interference effects from portable electronic devices (PEDs) located inside a passenger cabin are conservatively estimated for aircraft radio receivers. PEDs' emission powers in an aircraft radio frequency band are first scaled according to their locations' interference path loss (IPL) values, and the results are summed to determine the total interference power. The multiple-equipment-factor (MEF) is determined by normalizing the result against the worst case contribution from a single device. Conservative assumptions were made and MEF calculations were performed for Boeing 737's Localizer, Glide-slope, Traffic Collision Avoidance System, and Very High Frequency Communication radio systems where full-aircraft IPL data were available. The results show MEF for the systems to vary between 10 and 14 dB. The same process was also used on the more popular window/door IPL data, and the comparison show the multiple-equipment-factor results came within one decibel (dB) of each other.

  20. Cardiac Implantable Electronic Device Infection: From an Infection Prevention Perspective

    PubMed Central

    Sastry, Sangeeta; Rahman, Riaz; Yassin, Mohamed H.

    2015-01-01

    A cardiac implantable electronic device (CIED) is indicated for patients with severely reduced ejection fraction or with life-threatening cardiac arrhythmias. Infection related to a CIED is one of the most feared complications of this life-saving device. The rate of CIED infection has been estimated to be between 2 and 25; though evidence shows that this rate continues to rise with increasing expenditure to the patient as well as healthcare systems. Multiple risk factors have been attributed to the increased rates of CIED infection and host comorbidities as well as procedure related risks. Infection prevention efforts are being developed as defined bundles in numerous hospitals around the country given the increased morbidity and mortality from CIED related infections. This paper aims at reviewing the various infection prevention measures employed at hospitals and also highlights the areas that have relatively less established evidence for efficacy. PMID:26550494

  1. Electronic SSKIN pathway: reducing device-related pressure ulcers.

    PubMed

    Campbell, Natalie

    2016-08-11

    This article describes how an interprofessional project in a London NHS Foundation Trust was undertaken to develop an intranet-based medical device-related pressure ulcer prevention and management pathway for clinical staff working across an adult critical care directorate, where life-threatening events require interventions using medical devices. The aim of this project was to improve working policies and processes to define key prevention strategies and provide clinicians with a clear, standardised approach to risk and skin assessment, equipment use, documentation and reporting clinical data using the Trust's CareVue (electronic medical records), Datix (incident reporting and risk-management tool) and eTRACE (online clinical protocol ordering) systems. The process included the development, trial and local implementation of the pathway using collaborative teamwork and the SSKIN care bundle tool. The experience of identifying issues, overcoming challenges, defining best practice and cascading SSKIN awareness training is shared. PMID:27523768

  2. SOIS Support for Onboard Device Virtualisation and the Use of Electronic Data Sheets

    NASA Astrophysics Data System (ADS)

    Fowell, Stuart D.; Melvin, Richard; Mendham, Peter; Torelli, Felice; Taylor, Chris

    2014-08-01

    This paper describes the motivation for, current status of prototyping, and planned standardisation of SOIS Electronic Data Sheets. This is based upon the recent "Adoption of Electronic Data Sheets for Device Virtualisation for Onboard Devices" TRP project for ESA.

  3. 77 FR 32996 - Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Microsoft Corporation (``Microsoft'') of Redmond, Washington. 76 FR 22918. The complaint, as amended... COMMISSION Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof... importation of certain handheld electronic computing devices, related software, and components thereof...

  4. Letter Imperfect

    ERIC Educational Resources Information Center

    Kramer, Stephen

    2003-01-01

    In this essay, the author, a 5th-grade teacher, questions how well a standardized test can measure his students. This article presents a letter he wrote for the Washington state science test scorer regarding his students' test scores. He shares stories about some of the students in his class. He points out that tests can turn out to be more like…

  5. Electron-doping of graphene-based devices by hydrazine

    SciTech Connect

    Feng, Tingting; Xie, Dan; Wang, Dongxia; Wen, Lang; Wu, Mengqiang

    2014-12-14

    A facile and effective technique to tune the electronic properties of graphene is essential to facilitate the flexibility of graphene-based device performances. Here, the use of hydrazine as a solution-processable and effective n-type dopant for graphene is described. By dropping hydrazine solutions at different concentrations on a graphene surface, the Dirac point of graphene can be remarkably tuned. The transport behavior of graphene can be changed from p-type to n-type accordingly, demonstrating the controllable and adjustable doping effect of the hydrazine solutions. Accompanying the Dirac point shift is an enhanced hysteretic behavior of the graphene conductance, indicating an increasing trap state density induced by the hydrazine adsorbates. The electron-doping of graphene by the hydrazine solutions can be additionally confirmed with graphene/p-type silicon heterojunctions. The decrease of the junction current after the hydrazine treatment demonstrates an increase of the junction barrier between graphene and silicon, which is essentially due to the electron-doping of graphene and the resultant upshift of the Fermi level. Finally, partially doped graphene is realized and its electrical property is studied to demonstrate the potential of the hydrazine solutions to selectively electron-doping graphene for future electronic applications.

  6. Decontamination of blood soaked electronic devices using ultrasonic technology.

    PubMed

    Dudeck, Kimberly C; Brennan, Tamara C; Embury, Daniel J

    2012-01-10

    With advancements in technology allowing for the miniaturization of consumer electronics, criminal investigations of all types frequently involve the forensic examination of electronic devices, such as cellular telephones, smartphones, and portable flash memory; in some extreme, violent cases, these devices are found covered in blood. Due to the complexity of such devices, standard operating procedures for the complete removal of blood had not previously been established by the Royal Canadian Mounted Police prior to this study. The electronics industry has adopted the use of the ultrasonic cleaner for sanitizing printed circuit boards (PCBs) by removing residues and contaminants. High frequency sound waves created by the machine penetrate and remove dirt and residues; however, early research during the 1950s recorded these sound waves breaking the internal bonds of integrated circuit chips. Experimentation with modern ultrasonic technology was used to determine if internal components were damaged, as well as if ultrasonic cleaning was the most suitable method for the removal of dried and liquid blood from a PCB. Several disinfectant solutions were compared against the 0.5% Triton(®) X-100 detergent solution in the ultrasonic cleaner, including: 10% sodium hypochlorite bleach, 85% isopropyl alcohol, and Conflikt(®) disinfectant spray. The results not only demonstrated that the ultrasonic cleaner did not damage the vital memory chip on the PCB, but also, with the assistance of Conflikt(®), was able to remove all traces of blood as indicated by Hemastix(®) reagent strips. Of five methods experimented with, two cycles of ultrasonic cleaning followed by sanitization with Conflikt(®) proved to be the only procedure capable of removing all traces of blood, as confirmed with both Hemastix(®) reagent strips and the hemochromogen test. PMID:21820828

  7. Personal Electronic Devices and Their Interference with Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Ross, Elden; Ely, Jay J. (Technical Monitor)

    2001-01-01

    A compilation of data on personal electronic devices (PEDs) attributed to having created anomalies with aircraft systems. Charts and tables display 14 years of incidents reported by pilots to the Aviation Safety Reporting System (ASRS). Affected systems, incident severity, sources of anomaly detection, and the most frequently identified PEDs are some of the more significant data. Several reports contain incidents of aircraft off course when all systems indicated on course and of critical events that occurred during landings and takeoffs. Additionally, PEDs that should receive priority in testing are identified.

  8. An electronic portal imaging device as a physics tool.

    PubMed

    Curtin-Savard, A; Podgorsak, E B

    1997-01-01

    An electronic portal imaging device (EPID) can be used not only to acquire megavoltage patient images but also to measure certain radiation beam parameters of the linear accelerator. EPID images can be used to verify field junctions, center of collimator rotation, or radiation vs. light field coincidence. If the EPID images are calibrated in terms of dose rate, an EPID can be applied to beam penumbra measurement, collimator transmission determination, or compensator verification. Beam parameters measured with EPIDs are in close agreement with those measured with film or ionization chamber, making EPIDs reliable physics tools for quality control of various beam parameters in radiotherapy. PMID:9243462

  9. The use of a portable electronic device in accident dosimetry.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2008-01-01

    The use of a portable electronic device in accident dosimetry has been investigated. The thermoluminescence properties of a surface-mount alumina-rich ceramic resonator from a USB flash drive were investigated. The following characteristics were verified: the absence of a zero-dose signal, gamma dose response, dose recycling behaviour, fading and optical bleaching. Finally, this component has been successfully used to determine a simulated accident dose (1 d following the irradiation event). It is concluded that it should be possible to perform rapid and reliable accident dose assessments with such components using conventional thermoluminescence dosimetry equipment. PMID:18703583

  10. Cardiovascular implantable electronic devices: patient education, information and ethical issues.

    PubMed

    Manaouil, Cécile; Gignon, Maxime; Traulle, Sarah

    2012-09-01

    Cardiovascular implantable electronic devices (CIED) are implanted increasingly frequently. CIEDs are indicated for the treatment of bradycardia, tachycardia and heart failure and therefore improve quality of life and life expectancy. CIED can treat ventricular arrhythmias that would be fatal without immediate care. However, CIEDs raise several patient education, medico-legal, and ethical questions that will be addressed in this article. Information is a patient's right, and necessary for informed consent. When implanting a CIED, the patient must be educated about the need for the device, the function of the device, any restrictions that apply postimplant, and postimplant follow-up methods and schedules. This transfer of information to the patient makes the patient responsible. The occupational physician can determine whether a patient wearing a CIED is able to work. Under current French law, patients are not prohibited from working while wearing a CIED. However, access to certain job categories remains limited, such as jobs involving mechanical stress to the chest, exposure to electromagnetic fields, or jobs requiring permanent vigilance. Pacemakers and defibrillators are medical treatments and are subject to the same ethical and clinical considerations as any other treatment. However, stopping a pacemaker or a defibrillator raises different ethical issues. Implantable Cardioverter Defibrillator shocks can be considered to be equivalent to resuscitation efforts and can be interpreted as being unreasonable in an end-of-life patient. Pacing is painless and it is unlikely to unnecessarily prolong the life of a patient with a terminal disease. Patients with a CIED should live as normally as possible, but must also be informed about the constraints related to the device and must inform each caregiver about the presence of the device. The forensic and ethical implications must be assessed in relation to current legislation. PMID:23248837

  11. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  12. Electronic heat current rectification in hybrid superconducting devices

    SciTech Connect

    Fornieri, Antonio Giazotto, Francesco; Martínez-Pérez, María José

    2015-05-15

    In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.

  13. Creating standardized electronic data sheets for applications and devices

    NASA Astrophysics Data System (ADS)

    Hansen, L. J.; Lanza, D.

    The Air Force Research Laboratory (AFRL) continues to develop infrastructure to enable the modular construction of satellites using an open network architecture and off-the-shelf avionics for space systems. Recent efforts have included the refinement of an ontology to formalize a standard language for the exchange of data and commands between components, including hardware and software, which is still evolving. AFRL is also focusing effort on creating standard interfaces using electronic data sheets based on this recently defined ontology. This paper will describe the development of standard interfaces that are documented in terms of an electronic datasheet for a specific application. The datasheet will identify the standard interfaces between hardware devices and software applications that are needed for a specific satellite function, in this case, a spacecraft guidance, navigation, and control (GN& C) application for Sun pointing. Finally, the benefits of using standardized interfaces will be discussed.

  14. Electronic heat current rectification in hybrid superconducting devices

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Martínez-Pérez, María José; Giazotto, Francesco

    2015-05-01

    In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.

  15. Raman and infrared spectroscopy of organic electronic devices

    NASA Astrophysics Data System (ADS)

    Furukawa, Y.

    2010-09-01

    We present Raman and infrared studies on the structures of organic semiconductor thin films used for electronic devices. The Raman spectra of crystalline and amorphous states of an organic semiconductor, N,N'-di-1-naphthaleyl-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD), were measured. These states give rise to slightly different peak positions and widths of each Raman band. Raman images were observed for polycrystalline pentacene films evaporated on a silicon substrate. The structural defects were found in the images of the intensity ratio I1596/I1533, which reflects the orientation of molecules i.e., crystalline domains. Photoinduced infrared absorption from the composite of regioregular poly(3-dodecylthiphene) and C60 was measured by the difference FT-IR method. The observed absorption is attributable to photogenerated carriers. The action spectra of photoinduced infrared absorption are explained by electron transfer from photogenerated excited states on a polymer chain to C60.

  16. 75 FR 38118 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... COMMISSION In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof, and... importation, and the sale within the United States after importation of certain electronic devices with image... certain electronic devices with image processing systems, components thereof, and associated software...

  17. 77 FR 24513 - Certain Electronic Devices Having a Retractable USB Connector; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... COMMISSION Certain Electronic Devices Having a Retractable USB Connector; Notice of Receipt of Complaint... complaint entitled Certain Electronic Devices Having a Retractable USB Connector, DN 2892; the Commission is... certain electronic devices having a retractable USB connector. The complaint names as respondents...

  18. 77 FR 21584 - Certain Consumer Electronics and Display Devices and Products Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... COMMISSION Certain Consumer Electronics and Display Devices and Products Containing Same; Institution of... States after importation of certain consumer electronics and display devices and products containing same... electronics and display devices and products containing same that infringe one or more of claims 2, 3, 5,...

  19. 76 FR 72439 - Certain Consumer Electronics and Display Devices and Products Containing Same; Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... COMMISSION Certain Consumer Electronics and Display Devices and Products Containing Same; Receipt of... received a complaint entitled In Re Certain Consumer Electronics and Display Devices and Products... electronics and display devices and products containing same. The complaint names Research In Motion Ltd....

  20. 49 CFR 220.307 - Use of railroad-supplied electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Use of railroad-supplied electronic devices. 220... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating...

  1. 49 CFR 220.307 - Use of railroad-supplied electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Use of railroad-supplied electronic devices. 220... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating...

  2. 49 CFR 220.307 - Use of railroad-supplied electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Use of railroad-supplied electronic devices. 220... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating...

  3. 49 CFR 220.307 - Use of railroad-supplied electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Use of railroad-supplied electronic devices. 220... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating...

  4. 49 CFR 220.307 - Use of railroad-supplied electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Use of railroad-supplied electronic devices. 220... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating...

  5. Polarization Effects in Methylammonium Lead Iodide Electronic Devices

    NASA Astrophysics Data System (ADS)

    Labram, John; Fabini, Douglas; Perry, Erin; Lehner, Anna; Wang, Hengbin; Glaudell, Anne; Wu, Guang; Evans, Hayden; Buck, David; Cotta, Robert; Echegoyen, Luis; Wudl, Fred; Seshadri, Ram; Chabinyc, Michael

    The immense success of group IV and III-V semiconductors has resulted in disruptive new photovoltaic (PV) cell technologies emerging extremely infrequently. For this reason, the recent progress in Methylammonium Lead Iodide (MAPbI3) solar cells can be viewed as a highly significant historic event. Despite the staggering recent progress made in reported power conversion efficiency (PCE), debate remains intense on the nature of the various instabilities synonymous with these devices. Using various electronic device measurements, we here present a body of experimental evidence consistent with the existence of a mobile ionic species within the MAPbI3 perovskite. Temperature-dependent transistor measurements reveal operating FET devices only below approximately 210K. This is attributed to ionic screening of the (otherwise charge-neutral) semiconductor-dielectric interface. Temperature-dependent pulsed-gate and impedance spectroscopy experiments also reveal behavior consistent with this interpretation. MAPbI3 PV cells were found to possess a PCE which decreases significantly below 210K. Combined, these set of measurements provide an interesting and consistent description of the internal processes at play within the MAPbI3 perovskite structure.

  6. Designing bistable [2]rotaxanes for molecular electronic devices.

    PubMed

    Dichtel, William R; Heath, James R; Stoddart, J Fraser

    2007-06-15

    The development of molecular electronic components has been accelerated by the promise of increased circuit densities and reduced power consumption. Bistable rotaxanes have been assembled into nanowire crossbar devices, where they may be switched between low- and high-conductivity states, forming the basis for a molecular memory. These memory devices have been scaled to densities of 10(11) bits cm(-2), the 2020 node for memory of the International Technology Roadmap for Semiconductors. Investigations of the kinetics and thermodynamics associated with the electromechanical switching processes of several bistable [2]rotaxane derivatives in solution, self-assembled monolayers on gold, polymer electrolyte gels and in molecular switch tunnel junction devices are consistent with a single, universal switching mechanism whose speed is dependent largely on the environment, as well as on the structure of the switching molecule. X-ray reflectometry studies of the bistable rotaxanes assembled into Langmuir monolayers also lend support to an oxidatively driven mechanical switching process. Structural information obtained from Fourier transform reflection absorption infrared spectroscopy of rotaxane monolayers taken before and after evaporation of a Ti top electrode confirmed that the functionality responsible for switching is not affected by the metal deposition process. All the considerable experimental data, taken together with detailed computational work, support the hypothesis that the tunnelling current hysteresis, which forms the basis of memory operation, is a direct result of the electromechanical switching of the bistable rotaxanes. PMID:17430812

  7. Physics and simulation study of nanoscale electronic devices

    NASA Astrophysics Data System (ADS)

    Mehrotra, Saumitra R.

    Silicon based CMOS technology has seen continuous scaling of device dimensions for past three decades. There is a lot of focus on incorporating different high mobility channel materials and new device architectures for post-Si CMOS logic technology, making it a multifaceted problem. In this thesis some of the multiple challenges concerning new CMOS technologies are addressed. High carrier mobility alloyed channel materials like SiGe and InGaAs suffer from scattering due to disorder called, alloy scattering. The current theory of alloy scattering present in literature/text books can be called rudimentary at the best due to lack of a strong theoretical foundation and/or use of fitting parameters to explain experimental measurements. We present a new atomistic approach based on tight-binding parameters to understanding the alloy disorder. Using this approach we are able to provide new insights into the theory of alloy scattering and explain the experimental measurements in bulk SiGe and InGaAs that were till now based on just fitting parameters. With an updated understanding of alloy scattering, hole mobility in SiGe nanowires is calculated using a linearized Boltzmann formalism. Bulk Ge exhibits high hole mobility makeing it ideal for PMOS devices. Nano patterning of Ge/SiGe leads to Ge nanofins with both uniaxial and biaxial strain components, making it a device architecture design problem. Fully atomistic simulations involving molecular dynamics (ReaxFF force field) based relaxation for strain relaxation; tight-binding based bandstructure calculations and a linearized Boltzmann transport model for mobility calculations are performed. Final phonon mobility calculations reveal nearly 3.5 X improvements compared to biaxial strained Ge in Ge nanofins with width reduction. High electron mobility III--V's are projected to be a material of choice for post-Si NMOS. These low electron mass materials suffer from the 'DOS bottleneck' issue. Transistor designs based on using

  8. Glass fragments from portable electronic devices: Implications for forensic examinations.

    PubMed

    Seyfang, Kelsey E; Redman, Kahlee E; Popelka-Filcoff, Rachel S; Kirkbride, K Paul

    2015-12-01

    Personal electronic devices (PEDs) are now widespread in the community. Many such devices have glass display screens that, despite being a relatively strong and specialised material, are vulnerable to breakage. Unlike other glass objects that are usually thrown away when they break, PEDs can still function with a broken or cracked screen and it is not uncommon for their owners to keep using them in this condition. Broken PED screens, therefore, might represent a new and significant source of glass fragments that are present on the clothing and belongings of the general public and individuals suspected of offences involving the breaking of glass. The forensic implications of this new source of glass fragments in the community were investigated. PED glass is easily recognised using scanning electron microscopy-energy dispersive X-ray analysis and refractive index measurement and is easily distinguished from domestic and automotive soda-lime glass using these methods; as a consequence there should be no confusion of soda-lime glass fragments and PED glass fragments in forensic glass casework. In cases where the objective is to compare recovered glass fragments to a putative PED source, comparison using refractive index measurement and elemental analysis achieves good discrimination between sources. PMID:26587905

  9. Observation of molecular level behavior in molecular electronic junction device

    NASA Astrophysics Data System (ADS)

    Maitani, Masato

    In this dissertation, I utilize AFM based scanning probe measurement and surface enhanced Raman scattering based vibrational spectroscopic analysis to directly characterize topographic, electronic, and chemical properties of molecules confined in the local area of M3 junction to elucidate the molecular level behavior of molecular junction electronic devices. In the introduction, the characterization of molecular electronic devices with different types of metal-molecule-metal (M3) structures based upon self-assembled monolayers (SAMs) is reviewed. A background of the characterization methods I use in this dissertation, conducting probe atomic force microscopy (cp-AFM) and surface enhanced Raman spectroscopy (SERS), is provided in chapter 1. Several attempts are performed to create the ideal top metal contacts on SAMs by metal vapor phase deposition in order to prevent the metal penetration inducing critical defects of the molecular electronic devices. The scanning probe microscopy (SPM), such as cp-AFM, contact mode (c-) AFM and non-contact mode (nc-) AFM, in ultra high vacuum conditions are utilized to study the process of the metal-SAM interface construction in terms of the correlation between the morphological and electrical properties including the metal nucleation and filament generation as a function of the functionalization of long-chain alkane thiolate SAMs on Au. In chapter 2, the nascent condensation process of vapor phase Al deposition on inert and reactive SAMs are studied by SPM. The results of top deposition, penetration, and filament generation of deposited Al are discussed and compared to the results previously observed by spectroscopic measurements. Cp-AFM was shown to provide new insights into Al filament formation which has not been observed by conventional spectroscopic analysis. Additionally, the electronic characteristics of individual Al filaments are measured. Chapter 3 reveals SPM characterization of Au deposition onto --COOH terminated SAMs

  10. Electron-electron interaction, weak localization and spin valve effect in vertical-transport graphene devices

    SciTech Connect

    Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei; Liu, Guangtong

    2014-04-14

    We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.

  11. Methods for synchronizing a countdown routine of a timer key and electronic device

    DOEpatents

    Condit, Reston A.; Daniels, Michael A.; Clemens, Gregory P.; Tomberlin, Eric S.; Johnson, Joel A.

    2015-06-02

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  12. Recent progress in printed 2/3D electronic devices

    NASA Astrophysics Data System (ADS)

    Klug, Andreas; Patter, Paul; Popovic, Karl; Blümel, Alexander; Sax, Stefan; Lenz, Martin; Glushko, Oleksandr; Cordill, Megan J.; List-Kratochvil, Emil J. W.

    2015-09-01

    New, energy-saving, efficient and cost-effective processing technologies such as 2D and 3D inkjet printing (IJP) for the production and integration of intelligent components will be opening up very interesting possibilities for industrial applications of molecular materials in the near future. Beyond the use of home and office based printers, "inkjet printing technology" allows for the additive structured deposition of photonic and electronic materials on a wide variety of substrates such as textiles, plastics, wood, stone, tiles or cardboard. Great interest also exists in applying IJP in industrial manufacturing such as the manufacturing of PCBs, of solar cells, printed organic electronics and medical products. In all these cases inkjet printing is a flexible (digital), additive, selective and cost-efficient material deposition method. Due to these advantages, there is the prospect that currently used standard patterning processes can be replaced through this innovative material deposition technique. A main issue in this research area is the formulation of novel functional inks or the adaptation of commercially available inks for specific industrial applications and/or processes. In this contribution we report on the design, realization and characterization of novel active and passive inkjet printed electronic devices including circuitry and sensors based on metal nanoparticle ink formulations and the heterogeneous integration into 2/3D printed demonstrators. The main emphasis of this paper will be on how to convert scientific inkjet knowledge into industrially relevant processes and applications.

  13. Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vickie

    1996-01-01

    An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.

  14. 78 FR 4418 - Electronic Submission Process for Requesting Export Certificates From the Center for Devices and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... HUMAN SERVICES Food and Drug Administration Electronic Submission Process for Requesting Export... availability of an electronic submission process for requesting export certificates for products regulated by FDA's Center for Devices and Radiological Health (CDRH). The electronic process will help fulfill...

  15. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  16. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  17. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    PubMed Central

    Zebda, A.; Cosnier, S.; Alcaraz, J.-P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm−2 and a volumetric power of 161 μW mL−1. We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  18. Why We Need Postmortem Analysis of Cardiac Implantable Electronic Devices.

    PubMed

    Mauf, Sabrina; Jentzsch, Thorsten; Laberke, Patrick J; Thali, Michael J; Bartsch, Christine

    2016-07-01

    The prevalence of cardiac implantable electronic devices (CIEDs), pacemakers and implantable cardioverter defibrillators (ICDs) is increasing. However, postmortem analysis of CIEDs is not performed routinely. Fourteen consecutive CIEDs were analyzed. The indication for and date of implantation, technical data, CIED reprogramming, heart rhythm disturbances, patient demographics and medical consultations were investigated. Death during the first year after implantation was seen in 54%, whereof 71% consulted a physician within 10 days before death. The time of death was attributed to a particular day in 29%. There was a relationship between CIEDs and cause/manner of death in 50%. Although limited by a small sample size, this study advocates the routine postmortem CIED analysis for forensic and clinical purposes in selected cases. Patients with CIEDs seem to show an increased risk of death during the first year after implantation. The analysis of CIEDs can be helpful in evaluating the time/cause/manner of death. PMID:27364278

  19. Single glucose biofuel cells implanted in rats power electronic devices.

    PubMed

    Zebda, A; Cosnier, S; Alcaraz, J-P; Holzinger, M; Le Goff, A; Gondran, C; Boucher, F; Giroud, F; Gorgy, K; Lamraoui, H; Cinquin, P

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm(-2) and a volumetric power of 161 μW mL(-1). We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  20. Use and safety of conducted electronic devices: what is known?

    PubMed

    Nugent, K; Cevik, C

    2013-06-01

    Conductive electronic devices (CED), such as Taser and stun guns, are sold worldwide for use by security services, although they have also been used for self-defence and even for torture. CED are promoted as non-lethal weapons which can potentially save lives. However, there are multiple reports of deaths temporally associated with CED use. These weapons have definite physiological effects in normal volunteers, especially when accompanied by exertion. Medical examiners often report that deaths followed physical encounters which included the use of CED were due to natural causes, excited delirium and/or drug intoxication. These cases present complex situations in which multiple factors potentially contribute to the death, including electric shocks which cause neuromuscular incapacitation, severe pain and anxiety. Public health officials, physicians and hospital personnel need to be aware that individuals controlled with CED are at increased risk of death. We need better recording of incidents worldwide to understand the extent and outcomes of CED use. PMID:24975188

  1. [Electronic portal image device dosimetry for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2013-01-01

    Recently electronic portal image devices (EPIDs) have been widely used for quality assurance and dose verification. However there are no reports describing EPID dosimetry for Elekta volumetric modulated arc therapy (VMAT). We have investigated EPID dosimetry during VMAT delivery using a commercial software EPIDose with an Elekta Synergy linac. Dose rate dependence and the linac system sag during gantry rotation were measured. Gamma indices were calculated between measured doses using an EPID and calculation made by a treatment planning system for prostate VMAT test plans. The results were also compared to gamma indices using films and a two-dimensional detector array, MapCHECK2. The pass rates of the gamma analysis with a criterion of 3% and 2 mm for the three methods were over 96% with good consistency. Our results have showed that EPID dosimetry is feasible for Elekta VMAT. PMID:23358333

  2. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  3. Electron-hole asymmetry in two-terminal graphene devices

    NASA Astrophysics Data System (ADS)

    Hannes, W.-R.; Jonson, M.; Titov, M.

    2011-07-01

    A theoretical model is proposed to describe asymmetric gate-voltage dependence of conductance and noise in two-terminal ballistic graphene devices. The model is analyzed independently within the self-consistent Hartree and Thomas-Fermi approximations. Our results justify the prominent role of metal contacts in recent experiments with suspended graphene flakes. The contact-induced electrostatic potentials in graphene demonstrate a power-law decay, with the exponent varying from -1 to -0.5. Within our model we explain electron-hole asymmetry and strong Fabri-Perot oscillations of the conductance and noise with positive doping, which were observed in many experiments with submicrometer samples. Limitations of the Thomas-Fermi approximation in a vicinity of the Dirac point are discussed.

  4. Electron Transport Simulations of 4-Terminal Crossed Graphene Nanoribbons Devices

    NASA Astrophysics Data System (ADS)

    Brandimarte, Pedro; Papior, Nick R.; Engelund, Mads; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel

    Recently, it has been reported theoretically a current switching mechanism by voltage control in a system made by two perpendicular 14-armchair graphene nanoribbons (GNRs). In order to investigate the possibilities of using crossed GNRs as ON/OFF devices, we have studied their electronic and transport properties as function structural parameters determining the crossing. Our calculations were performed with TranSIESTA code, which has been recently generalized to consider N >= 1 arbitrarily distributed electrodes at finite bias. We find that the transmission along each individual GNR and among them strongly depends on the stacking. For a 60° rotation angle, the lattice matching in the crossing region provokes a strong scattering effect that translates into an increased interlayer transmission. FP7 FET-ICT PAMS-project (European Commission, contract 610446), MINECO (Grant MAT2013-46593-C6-2-P) and Basque Dep. de Educación, UPV/EHU (Grant IT-756-13).

  5. Dosimetric review of cardiac implantable electronic device patients receiving radiotherapy.

    PubMed

    Prisciandaro, Joann I; Makkar, Akash; Fox, Colleen J; Hayman, James A; Horwood, Laura; Pelosi, Frank; Moran, Jean M

    2015-01-01

    A formal communication process was established and evaluated for the management of patients with cardiac implantable electronic devices (CIEDs) receiving radiation therapy (RT). Methods to estimate dose to the CIED were evaluated for their appropriateness in the management of these patients. A retrospective, institutional review board (IRB) approved study of 69 patients with CIEDs treated with RT between 2005 and 2011 was performed. The treatment sites, techniques, and the estimated doses to the CIEDs were analyzed and compared to estimates from published peripheral dose (PD) data and three treatment planning systems(TPSs) - UMPlan, Eclipse's AAA and Acuros algorithms. When measurements were indicated, radiation doses to the CIEDs ranged from 0.01-5.06 Gy. Total peripheral dose estimates based on publications differed from TLD measurements by an average of 0.94 Gy (0.05-4.49 Gy) and 0.51 Gy (0-2.74 Gy) for CIEDs within 2.5 cm and between 2.5 and 10 cm of the treatment field edge, respectively. Total peripheral dose estimates based on three TPSs differed from measurements by an average of 0.69 Gy (0.02-3.72 Gy) for CIEDs within 2.5 cm of the field edge. Of the 69 patients evaluated in this study, only two with defibrillators experienced a partial reset of their device during treatment. Based on this study, few CIED-related events were observed during RT. The only noted correlation with treatment parameters for these two events was beam energy, as both patients were treated with high-energy photon beams (16 MV). Differences in estimated and measured CIED doses were observed when using published PD data and TPS calculations. As such, we continue to follow conservative guidelines and measure CIED doses when the device is within 10 cm of the field or the estimated dose is greater than 2 Gy for pacemakers or 1 Gy for defibrillators. PMID:25679176

  6. Remote monitoring of cardiac implantable electronic devices (CIED).

    PubMed

    Zeitler, Emily P; Piccini, Jonathan P

    2016-08-01

    With increasing indications and access to cardiac implantable electronic devices (CIEDs) worldwide, the number of patients needing CIED follow-up continues to rise. In parallel, the technology available for managing these devices has advanced considerably. In this setting, remote monitoring (RM) has emerged as a complement to routine in-office care. Rigorous studies, randomized and otherwise, have demonstrated advantages to patient with CIED management systems, which incorporates RM resulting in authoritative guidelines from relevant professional societies recommending RM for all eligible patients. In addition to clinical benefits, CIED management programs that include RM have been shown to be cost effective and associated with high patient satisfaction. Finally, RM programs hold promise for the future of CIED research in light of the massive data collected through RM databases converging with unprecedented computational capability. This review outlines the available data associated with clinical outcomes in patients managed with RM with an emphasis on randomized trials; the impact of RM on patient satisfaction, cost-effectiveness, and healthcare utilization; and possible future directions for the use of RM in clinical practice and research. PMID:27134007

  7. Electronic and optoelectronic materials and devices inspired by nature

    NASA Astrophysics Data System (ADS)

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

  8. The evolution of the cardiac implantable electronic device connector.

    PubMed

    Mond, Harry G; Helland, John R; Fischer, Avi

    2013-11-01

    Cardiac implantable electronic devices (CIEDs) play a vital role in the management of cardiac rhythm disturbances. The devices are comprised of two primary components: a generator and lead joined by a connector. Original pacemaker lead connectors were created de novo at the time of implantation or replacement and were very unreliable. With the development of new lead designs, creation of a standard connector configuration, the IS-1 connector became mandatory. Similar connector development also occurred with the advent of the implantable cardioverter defibrillator (ICD), resulting in creation of the high voltage standard: the DF-1 connector. Differing from a pacemaker lead, the ICD lead connector requires one IS-1 connector and one or two DF-1 connectors, resulting in a large cumbersome lead connector and generator header block. Recently, a revolutionary quad pole single plug connector standard has been approved for market release. These are the single-pin DF4 and IS4 lead connectors that carry low- and high-voltage poles or all low-voltage poles, respectively. These connectors, together with new labeling guidelines, have simplified operative procedures and reduced errors, when mating lead connectors into the generator's connector block. PMID:23808816

  9. Physical characteristics of a commercial electronic portal imaging device.

    PubMed

    Althof, V G; de Boer, J C; Huizenga, H; Stroom, J C; Visser, A G; Swanenburg, B N

    1996-11-01

    An electronic portal imaging device (EPID) for use in radiotherapy with high energy photons has been under development since 1985 and has been in clinical use since 1988. The x-ray detector consists of a metal plate/fluorescent screen combination, which is monitored by a charge-coupled device (CDD)-camera. This paper discusses the physical quantities governing image quality. A model which describes the signal and noise propagation through the detector is presented. The predicted contrasts and signal-to-noise ratios are found to be in agreement with measurements based on the EPID images. Based on this agreement the visibility of low contrast structures in clinical images has been calculated with the model. Sufficient visibility of relevant structures (4-10 mm water-equivalent thickness) has been obtained down to a delivered dose of 4 cGy at dose maximum. It is found that the described system is not limited by quantum noise but by camera read-out noise. In addition we predict that with a new type of CCD sensor the signal-to-noise ratio can be increased by a factor of 5 at small doses, enabling high quality imaging, for most relevant clinical situations, with a patient dose smaller than 4 cGy. The latter system would be quantum noise limited. PMID:8947896

  10. Applications of Direct Detection Device in Transmission Electron Microscopy

    PubMed Central

    Jin, Liang; Milazzo, Anna-Clare; Kleinfelder, Stuart; Li, Shengdong; Leblanc, Philippe; Duttweiler, Fred; Bouwer, James C.; Peltier, Steven T.; Ellisman, Mark H.; Xuong, Nguyen-Huu

    2008-01-01

    A prototype Direct Detection Device (DDD) camera system has shown great promise in improving both the spatial resolution and the signal to noise ratio for electron microscopy at 120–400 keV beam energies (Xuong, et al., 2007. Methods in Cell Biology, 79, 721–739). Without the need for a resolution-limiting scintillation screen as in the charge coupled device (CCD), the DDD camera can outperform CCD based systems in terms of spatial resolution, due to its small pixel size (5 μm). In this paper, the modulation transfer function (MTF) of the DDD prototype is measured and compared with the specifications of commercial scientific CCD camera systems. Combining the fast speed of the DDD with image mosaic techniques, fast wide-area imaging is now possible. In this paper, the first large area mosaic image and the first tomography dataset from the DDD camera are presented, along with an image processing algorithm to correct the specimen drift utilizing the fast readout of the DDD system. PMID:18054249

  11. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    SciTech Connect

    Goyal, Amit

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  12. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    NASA Astrophysics Data System (ADS)

    Lazzarino, L. L.; Di Palma, E.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Dattoli, G.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Giannessi, L.; Mostacci, A.; Musumeci, P.; Petralia, A.; Petrillo, V.; Pompili, R.; Rau, J. V.; Rossi, A. R.; Sabia, E.; Vaccarezza, C.; Villa, F.

    2014-11-01

    We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL) device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line "simulation" of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  13. The development of silicon carbide-based power electronics devices

    NASA Astrophysics Data System (ADS)

    Hopkins, Richard H.; Perkins, John F.

    1995-01-01

    In 1989 Westinghouse created an internally funded initiative to develop silicon carbide materials and device technology for a variety of potential commercial and military applications. Westinghouse saw silicon carbide as having the potential for dual use. For space applications, size and weight reductions could be achieved, together with increased reliability. Terrestrially, uses in harsh-temperature environments would be enabled. Theoretically, the physical and electrical properties of silicon carbide were highly promising for high-power, high-temperature, radiation-hardened electronics. However, bulk material with the requisite electronic qualities was not available, and the methods needed to produce a silicon carbide wafer—to fabricate high-quality devices—and to transition these technologies into a commercial product were considered to be a high-risk investment. It was recognized that through a collaborative effort, the CCDS could provide scientific expertise in several areas, thus reducing this risk. These included modeling of structures, electrical contacts, dielectrics, and epitaxial growth. This collaboration has been very successful, with developed technologies being transferred to Westinghouse.

  14. Electron Transport Materials: Synthesis, Properties and Device Performance

    SciTech Connect

    Cosimbescu, Lelia; Wang, Liang; Helm, Monte L.; Polikarpov, Evgueni; Swensen, James S.; Padmaperuma, Asanga B.

    2012-06-01

    We report the design, synthesis and characterization, thermal and photophysical properties of two silane based electron transport materials, dibenzo[b,d]thiophen-2-yltriphenylsilane (Si{phi}87) and (dibenzo[b,d]thiophen-2-yl)diphenylsilane (Si{phi}88) and their performance in blue organic light emitting devices (OLEDs). The utility of these materials in blue OLEDs with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C']picolinate (Firpic) as the phosphorescent emitter was demonstrated. Using the silane Si{phi}87 as the electron transport material (ETm) an EQE of 18.2% was obtained, with a power efficiency of 24.3 lm/W (5.8V at 1mA/cm{sup 2}), in a heterostructure. When Si{phi}88 is used, the EQE is 18.5% with a power efficiency of 26.0 lm/W (5.5V at 1mA/cm{sup 2}).

  15. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Music and Data Processing Devices, and Tablet Computers; Notice of Institution of Investigation... communication devices, portable music and data processing devices, and tablet computers by reason of... communication devices, portable music and data processing devices, and tablet computers that infringe one...

  16. Chalcogenide based materials and devices for flexible electronics applications

    NASA Astrophysics Data System (ADS)

    Salas-Villasenor, Ana Lizeth

    The scaling of large-area electronics for applications in flat-panel displays, digital X-ray images, and flexible electronics is pushing the technological and cost limits of conventional materials and device processing. Chemical bath deposited chalcogenide films are attractive for thin film transistors (TFTs) for large area electronics given its simple fabrication, low temperature and compatibility with most substrates. In this dissertation, we describe the development of a high performance chalcogenide based TFTs using chemical bath deposition (CBD) methods. Cadmium sulfide (CdS) and lead sulfide (PbS) are used as the TFT channel layer. The influence of several CBD parameters is studied. CBD pH and CdS film thickness have a profound influence on the TFT electrical characteristics. These parameters impact film cluster size and impurity concentration. With the optimized CdS deposition conditions TFTs with excellent electrical properties are demonstrated. With a novel photolithography approach demonstrated here, TFTs with mobilities as high as 18 cm2 /V s, Ion/Ioff of 109 and V T shift of less than 0.1 eV were fabricated. To achieve these TFTs characteristics, a variety of contact materials, gate dielectrics, annealing conditions and device structures were studied. The factors affecting VT instability for CdS based TFTs are also presented and correlated to electrode materials, gate dielectrics, and post-annealing. In summary, TFT instability is correlated to traps and impurities at the dielectric/semiconductor and/or in the semiconductor film. In addition, this dissertation demonstrates CdS TFTs integration in hybrid complementary metal-oxide-semiconductor (CMOS) circuits. In particular, logic gates and ferroelectric random access (FRAM) memory cells are demonstrated. Finally, CdS based TFTs on flexible and transparent substrates with excellent stability and mobility of 10-18 cm2/V-s, threshold voltage of 1.6-4.8 V, and Ion/Ioff ratios of 107 are demonstrated. This

  17. 78 FR 6834 - Certain Cases for Portable Electronic Devices; Institution of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... COMMISSION Certain Cases for Portable Electronic Devices; Institution of Investigation AGENCY: U.S... portable electronic devices by reason of infringement of U.S. Patent No. 8,204,561 (``the '561 patent....usitc.gov . The public record for this investigation may be viewed on the Commission's electronic...

  18. 77 FR 14422 - Certain Consumer Electronics and Display Devices and Products Containing Same; Notice of Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... COMMISSION Certain Consumer Electronics and Display Devices and Products Containing Same; Notice of Receipt... Commission has received a complaint entitled Certain Consumer Electronics and Display Devices and Products... importation, and the sale within the United States after importation of certain consumer electronics...

  19. The cardiac implantable electronic device power source: evolution and revolution.

    PubMed

    Mond, Harry G; Freitag, Gary

    2014-12-01

    Although the first power source for an implantable pacemaker was a rechargeable nickel-cadmium battery, it was rapidly replaced by an unreliable short-life zinc-mercury cell. This sustained the small pacemaker industry until the early 1970s, when the lithium-iodine cell became the dominant power source for low voltage, microampere current, single- and dual-chamber pacemakers. By the early 2000s, a number of significant advances were occurring with pacemaker technology which necessitated that the power source should now provide milliampere current for data logging, telemetric communication, and programming, as well as powering more complicated pacing devices such as biventricular pacemakers, treatment or prevention of atrial tachyarrhythmias, and the integration of innovative physiologic sensors. Because the current delivery of the lithium-iodine battery was inadequate for these functions, other lithium anode chemistries that can provide medium power were introduced. These include lithium-carbon monofluoride, lithium-manganese dioxide, and lithium-silver vanadium oxide/carbon mono-fluoride hybrids. In the early 1980s, the first implantable defibrillators for high voltage therapy used a lithium-vanadium pentoxide battery. With the introduction of the implantable cardioverter defibrillator, the reliable lithium-silver vanadium oxide became the power source. More recently, because of the demands of biventricular pacing, data logging, and telemetry, lithium-manganese dioxide and the hybrid lithium-silver vanadium oxide/carbon mono-fluoride laminate have also been used. Today all cardiac implantable electronic devices are powered by lithium anode batteries. PMID:25387600

  20. Image readout device with electronically variable spatial resolution

    NASA Technical Reports Server (NTRS)

    Benz, H. A. (Inventor)

    1981-01-01

    An invention relating to the use of a standing acoustic wave charge storage device as an image readout device is described. A frequency f sub 1 was applied to the storage transfer device to create a traveling electric field in the device in one direction along a straight line. A second frequency f sub 2 was applied to the charge transfer device to create a traveling electric field opposite to the first traveling electric field. A standing wave was created. When an image was focused on the charge transfer device, light was stored in the wells of the standing wave. When the frequency f sub 2 is removed from the device, the standing wave tends to break up and the charges stored move to an electrode connected to an output terminal and to a utilization device where the received charges represent the image on the surface of the charge transfer device along a projection of said straight line.

  1. Dispersion of heavy ion deposited energy in nanometric electronic devices: Experimental measurements and simulation possibilities

    NASA Astrophysics Data System (ADS)

    Raine, M.; Gaillardin, M.; Paillet, P.; Duhamel, O.; Martinez, M.; Bernard, H.

    2015-12-01

    The dispersion of heavy ion deposited energy is explored in nanometric electronic devices. Experimental data are reported, in a large thin SOI diode and in a SOI FinFET device, showing larger distributions of collected charge in the nanometric volume device. Geant4 simulations are then presented, using two different modeling approaches. Both of them seem suitable to evaluate the dispersion of deposited energy induced by heavy ion beams in advanced electronic devices with nanometric dimensions.

  2. Extreme service packaging for silicon carbide electronic devices

    NASA Astrophysics Data System (ADS)

    Guinel, Maxime Jean-Francois

    Electronic devices based on silicon carbide (SiC) represent a good choice for a variety of new high temperature, high power electronic applications. Moreover, SiC ceramics have great potentials for use in harsh environments. Nevertheless, many technical challenges still need to be addressed, including high temperature stability. Results obtained on several levels in the development of a SiC-based package are presented. The sealing of ceramic packages is generally accomplished using specialty glasses. Several commercial glasses were tested in view of their application as glass sealants. The reactions between SiC and certain oxides present in the glasses were responsible for the formation of CO gas. Selection criteria were developed based on thermodynamic calculations. This approach provides valuable information in tailoring suitable glasses. The oxidation of SiC in air results in the formation of silica that does not prove to be protective above about 1800 K because of interfacial reactions with its SiC substrate. The oxidation of both single crystal and polycrystalline SiC, between 973 and 2053 K, resulted in the formation of quartz, cristobalite or tridymite, which are the stable crystalline polymorphs of silica at ambient pressure. The polymorphs were pure SiO2, and contamination of the oxide scales from the oxidizing environment did not occur. The only variable affecting the occurrence of a specific polymorph was the oxidation temperature. Cristobalite was formed at temperatures ≥ 1673 K, tridymite between 1073 and 1573 K, while quartz formed at 973 K. Cristobalite was observed to grow in a spherulitic fashion from amorphous silica. This was not the case for tridymite and quartz, which appeared to grow as oriented crystalline films. The presence of a thin layer of silicon oxycarbide was detected at the SiC/SiO 2 interface. Formation of reliable and homogeneous interconnects can be a critical issue for demanding applications. The approach that was undertaken to

  3. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    NASA Astrophysics Data System (ADS)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  4. System and method for interfacing large-area electronics with integrated circuit devices

    DOEpatents

    Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd

    2016-07-12

    A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.

  5. Detecting and locating electronic devices using their unintended electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Stagner, Colin Blake

    Electronically-initiated explosives can have unintended electromagnetic emissions which propagate through walls and sealed containers. These emissions, if properly characterized, enable the prompt and accurate detection of explosive threats. The following dissertation develops and evaluates techniques for detecting and locating common electronic initiators. The unintended emissions of radio receivers and microcontrollers are analyzed. These emissions are low-power radio signals that result from the device's normal operation. In the first section, it is demonstrated that arbitrary signals can be injected into a radio receiver's unintended emissions using a relatively weak stimulation signal. This effect is called stimulated emissions. The performance of stimulated emissions is compared to passive detection techniques. The novel technique offers a 5 to 10 dB sensitivity improvement over passive methods for detecting radio receivers. The second section develops a radar-like technique for accurately locating radio receivers. The radar utilizes the stimulated emissions technique with wideband signals. A radar-like system is designed and implemented in hardware. Its accuracy tested in a noisy, multipath-rich, indoor environment. The proposed radar can locate superheterodyne radio receivers with a root mean square position error less than 5 meters when the SNR is 15 dB or above. In the third section, an analytic model is developed for the unintended emissions of microcontrollers. It is demonstrated that these emissions consist of a periodic train of impulses. Measurements of an 8051 microcontroller validate this model. The model is used to evaluate the noise performance of several existing algorithms. Results indicate that the pitch estimation techniques have a 4 dB sensitivity improvement over epoch folding algorithms.

  6. Endoscopic Electrosurgery in Patients with Cardiac Implantable Electronic Devices

    PubMed Central

    Baeg, Myong Ki; Kim, Sang-Woo; Ko, Sun-Hye; Lee, Yoon Bum; Hwang, Seawon; Lee, Bong-Woo; Choi, Hye Jin; Park, Jae Myung; Lee, In-Seok; Oh, Yong-Seog; Choi, Myung-Gyu

    2016-01-01

    Background/Aims: Patients with cardiac implantable electronic devices (CIEDs) undergoing endoscopic electrosurgery (EE) are at a risk of electromagnetic interference (EMI). We aimed to analyze the effects of EE in CIED patients. Methods: Patients with CIED who underwent EE procedures such as snare polypectomy, endoscopic submucosal dissection (ESD), and endoscopic retrograde cholangiopancreatography (ERCP) with endoscopic sphincterotomy (EST) were retrospectively analyzed. Postprocedural symptoms as well as demographic and outpatient follow-up data were reviewed through medical records. Electrical data, including preprocedural and postprocedural arrhythmia records, were reviewed through pacemaker interrogation, 24-hour Holter monitoring, or electrocardiogram. Results: Fifty-nine procedures in 49 patients were analyzed. Fifty procedures were performed in 43 patients with a pacemaker, and nine were performed in six patients with an implantable cardioverter-defibrillator. There were one gastric and 44 colon snare polypectomies, five gastric and one colon ESDs, and eight ERCPs with EST. Fifty-five cases of electrical follow-up were noted, with two postprocedural changes not caused by EE. Thirty-one pacemaker interrogations had procedure recordings, with two cases of asymptomatic tachycardia. All patients were asymptomatic with no adverse events. Conclusions: Our study reports no adverse events from EE in patients with CIED, suggesting that this procedure is safe. However, because of the possibility of EMI, recommendations on EE should be followed. PMID:26867552

  7. Surgical management of infected cardiac implantable electronic devices.

    PubMed

    Chaudhry, Umar A R; Harling, Leanne; Ashrafian, Hutan; Athanasiou, Christina; Tsipas, Pantelis; Kokotsakis, John; Athanasiou, Thanos

    2016-01-15

    The growing use of cardiac implantable electronic devices (CIED) has led to infections requiring intervention. These are traditionally managed using a percutaneous transvenous approach to fully extract the culpable leads. Indications for such strategies are well-established and range from simple traction to the use of powered extraction tools including laser sheaths. Where such attempts fail, or if there are further complications, then there may be need for a cardiothoracic surgical approach. Limited evidence is currently available on the merits of individual strategies, and these are mainly drawn from case reports or series. Most utilise cardiopulmonary bypass, cardioplegic arrest and entry within the right atrium to allow direct visualisation of any vegetation and safely explant all CIED components whilst avoiding perforation, valvular and paravalvular damage. In this review, we describe a number of these and the unique challenges faced by surgeons when attempting to extract CIED. It is clear that future work should concentrate on creating clear consensus and guidelines on indications, risks and measures of efficacy outcomes for various surgical techniques. PMID:26590887

  8. Effect of symmetry on electronic properties of nano devices

    SciTech Connect

    Lamba, Vijay Kr Anju,; Aditi; Garg, O. P.

    2015-06-24

    Nano devices are a promising candidate for new technology nowadays. Great effort has been devoted recently to understand the charge transport at the interfaces in nano junctions and the role of the symmetry in the transport properties of molecular junctions. However, these studies have been largely based on the analysis of the low-bias conductance, which does not allow elucidating the exact influence of the symmetry in both the electronic structure and transport characteristics of the interfaces. In this work we present a theoretical study of the transport properties, and how conductance changes with symmetry. Herein, we investigate a di-thiol benzene (DTB) single-molecule system in which sulphur group from the molecule are anchored to two facing gold electrodes. We have performed first principles calculations of the transport properties of these molecules using a combination of density functional theory and non-equilibrium Green’s function techniques. Our computational results show that for the asymmetric models, the onset of the larger current occurs at current and conductance in the negative bias regime than that in the positive bias regime, and with ΔL increasing the conductance peak shifts towards the lower negative bias so that the I(G)-V curves behave more asymmetric. Further with variation of electrode surface we found that coupling constant for coned shaped electrode is less as compared to 2X2, and 3X3 atom electrodes, so there will be lower potential barrier for canonical electrode in comparison to that of others.

  9. Spray cooling characteristics of nanofluids for electronic power devices.

    PubMed

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-01-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm(2) with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10(-4) kg/cm(2)s. PMID:25852429

  10. Spray cooling characteristics of nanofluids for electronic power devices

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-03-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm2 with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10-4 kg/cm2s.

  11. Emergency Dosimetry Using Ceramic Components in Personal Electronic Devices

    NASA Astrophysics Data System (ADS)

    Kouroukla, E. C.; Bailiff, I. K.; Terry, I.

    2014-02-01

    The rapid assessment of radiation dose to members of the public exposed to significant levels of ionizing radiation during a radiological incident presents a significant difficulty in the absence of planned radiation monitoring. However, within most personal electronic devices components such as resistors with alumina substrates can be found that have potentially suitable properties as solid state dosimeters using luminescence measurement techniques. The suitability of several types of ceramic-based components (e.g., resonators, inductors and resistors) has been previously examined using optically stimulated luminescence (OSL) and thermoluminescence (TL) techniques to establish their basic characteristics for the retrospective determination of absorbed dose. In this paper, we present results obtained with aluminum oxide surface mount resistors extracted from mobile phones that further extend this work. Very encouraging results have been obtained related to the measurement of luminescence sensitivity, dose response, reusability, limit of detection, signal reproducibility and known-dose recovery. However, the alumina exhibits a rapid loss of the latent luminescence signal with time following irradiation attributed to athermal (or anomalous) fading. The issues related to obtaining a reliable correction protocol for this loss and the detailed examinations required of the fading behavior are discussed.

  12. Effect of symmetry on electronic properties of nano devices

    NASA Astrophysics Data System (ADS)

    Lamba, Vijay Kr; Garg, O. P.; Anju, Aditi

    2015-06-01

    Nano devices are a promising candidate for new technology nowadays. Great effort has been devoted recently to understand the charge transport at the interfaces in nano junctions and the role of the symmetry in the transport properties of molecular junctions. However, these studies have been largely based on the analysis of the low-bias conductance, which does not allow elucidating the exact influence of the symmetry in both the electronic structure and transport characteristics of the interfaces. In this work we present a theoretical study of the transport properties, and how conductance changes with symmetry. Herein, we investigate a di-thiol benzene (DTB) single-molecule system in which sulphur group from the molecule are anchored to two facing gold electrodes. We have performed first principles calculations of the transport properties of these molecules using a combination of density functional theory and non-equilibrium Green's function techniques. Our computational results show that for the asymmetric models, the onset of the larger current occurs at current and conductance in the negative bias regime than that in the positive bias regime, and with ΔL increasing the conductance peak shifts towards the lower negative bias so that the I(G)-V curves behave more asymmetric. Further with variation of electrode surface we found that coupling constant for coned shaped electrode is less as compared to 2X2, and 3X3 atom electrodes, so there will be lower potential barrier for canonical electrode in comparison to that of others.

  13. Front and backside processed thin film electronic devices

    DOEpatents

    Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang; Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  14. Graphene Electronic Device Based Biosensors and Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  15. Novel transparent electrodes allow sustainable production of electronic devices

    SciTech Connect

    Constant, Kristen

    2010-12-27

    A novel technique for fabricating inexpensive, transparent electrodes from common metals has been developed by engineers and scientists at Iowa State University and Ames Laboratory. They exhibit very high transparency and are very good electrical conductors. This is a combination of properties that is difficult to achieve with common materials. The most frequently used transparent electrode in today's high-technology devices (such as LCD screens) is indium tin oxide (ITO). While ITO performs well in these applications, the supply of indium is very limited. In addition, it is rapidly decreasing as consumer demand for flat-panel electronics is skyrocketing. According to a 2004 US Geological Survey report, as little as 14 years exploitation of known indium reserves remains. In addition to increasing prices, the dwindling supply of indium suggests its use is not sustainable for future generations of electronics enthusiasts. Solar cells represent another application where transparent electrodes are used. To make solar-energy collection economically feasible, all parts of solar photovoltaics must be made more efficient and cost-effective. Our novel transparent electrodes have the potential to do both. In addition, there is much interest in developing more efficient, cost-effective, and environmentally friendly lighting. Incandescent light bulbs are very inefficient, because most of their energy consumption is wasted as heat. Fluorescent lighting is much more efficient but still uses mercury, an environmental toxin. An attractive alternative is offered by LEDs, which have very high efficiencies and long lifetimes, and do not contain mercury. If made bright enough, LED use for general lighting could provide a viable alternative. We have fabricated electrodes from more commonly available materials, using a technique that is cost effective and environmentally friendly. Most of today's electronic devices are made in specialized facilities equipped with low

  16. Molecular-based electronically switchable tunnel junction devices.

    PubMed

    Collier, C P; Jeppesen, J O; Luo, Y; Perkins, J; Wong, E W; Heath, J R; Stoddart, J F

    2001-12-19

    Solid-state tunnel junction devices were fabricated from Langmuir Blodgett molecular monolayers of a bistable [2]catenane, a bistable [2]pseudorotaxane, and a single-station [2]rotaxane. All devices exhibited a (noncapacitive) hysteretic current-voltage response that switched the device between high- and low-conductivity states, although control devices exhibited no such response. Correlations between the structure and solution-phase dynamics of the molecular and supramolecular systems, the crystallographic domain structure of the monolayer film, and the room-temperature device performance characteristics are reported. PMID:11741428

  17. 76 FR 67200 - Prospective Grant of Exclusive License: Electron Paramagnetic Resonance Devices and Systems for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Exclusive License: Electron... of use limited to electron paramagnetic resonance devices and systems for oximetry. DATES:...

  18. Management of Patients With Cardiovascular Implantable Electronic Devices in Dental, Oral, and Maxillofacial Surgery.

    PubMed

    Tom, James

    2016-01-01

    The prevalence of cardiovascular implantable electronic devices as life-prolonging and life-saving devices has evolved from a treatment of last resort to a first-line therapy for an increasing number of patients. As these devices become more and more popular in the general population, dental providers utilizing instruments and medications should be aware of dental equipment and medications that may affect these devices and understand the management of patients with these devices. This review article will discuss the various types and indications for pacemakers and implantable cardioverter-defibrillators, common drugs and instruments affecting these devices, and management of patients with these devices implanted for cardiac dysrhythmias. PMID:27269668

  19. Applications of Electronic Devices in the Sixth Form Laboratory

    ERIC Educational Resources Information Center

    Dyson, J. E.

    1974-01-01

    Described are two experiments using electronic circuits designed for the activities. The first experiment is Ruchardt's experiment and the second demonstrates the distribution of velocity of electrons. (RH)

  20. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    NASA Astrophysics Data System (ADS)

    Patel, Sahil Jaykumar

    Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface

  1. Use of portable electronic devices in a hospital setting and their potential for bacterial colonization.

    PubMed

    Khan, Amber; Rao, Amitha; Reyes-Sacin, Carlos; Hayakawa, Kayoko; Szpunar, Susan; Riederer, Kathleen; Kaye, Keith; Fishbain, Joel T; Levine, Diane

    2015-03-01

    Portable electronic devices are increasingly being used in the hospital setting. As with other fomites, these devices represent a potential reservoir for the transmission of pathogens. We conducted a convenience sampling of devices in 2 large medical centers to identify bacterial colonization rates and potential risk factors. PMID:25557772

  2. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    SciTech Connect

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  3. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.

    PubMed

    Koo, Hyung-Jun; Velev, Orlin D

    2013-01-01

    We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics. PMID:24404020

  4. 78 FR 22899 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... COMMISSION Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products... the sale within the United States after importation of certain electronic devices having placeshifting... Commission's Rules of Practice and Procedure, 19 CFR 210.10 (2012). Scope of Investigation: Having...

  5. 49 CFR 220.315 - Operational tests and inspections; further restrictions on use of electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operational tests and inspections; further restrictions on use of electronic devices. 220.315 Section 220.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices §...

  6. Activating Students' Interest and Participation in Lectures and Practical Courses Using Their Electronic Devices

    ERIC Educational Resources Information Center

    Wijtmans, Maikel; van Rens, Lisette; van Muijlwijk-Koezen, Jacqueline E.

    2014-01-01

    Interactive teaching with larger groups of students can be a challenge, but the use of mobile electronic devices by students (smartphones, tablets, laptops) can be used to improve classroom interaction. We have examined several types of tasks that can be electronically enacted in classes and practical courses using these devices: multiple choice…

  7. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... COMMISSION In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and... electronic devices, including mobile phones, portable music players, and computers, by reason of infringement... mobile phones, portable music players, or computers that infringe one or more of claims 1-12 of...

  8. 77 FR 31039 - Certain Electronic Devices Having a Retractable USB Connector; Institution of Investigation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... COMMISSION Certain Electronic Devices Having a Retractable USB Connector; Institution of Investigation... electronic devices having a retractable USB connector by reason of infringement of certain claims of U.S... retractable USB connector that infringe one or more of claims 1-4, 7, and 8 of the `210 patent and claims...

  9. 77 FR 31876 - Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Properties Holdings, Inc. of New Rochelle, New York (``GPH''). 77 FR 21584 (April 10, 2012). The complaint... COMMISSION Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not To... importation of certain consumer electronics and display devices and products containing the same by reason...

  10. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof... published a notice (78 FR 12892, May 31, 2013) of receipt of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN 2958; the Commission...

  11. Recent progress on thin-film encapsulation technologies for organic electronic devices

    NASA Astrophysics Data System (ADS)

    Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei

    2016-03-01

    Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.

  12. Cardiac Implantable Electronic Devices and End-of-Life Care: An Australian Perspective.

    PubMed

    Alhammad, Nasser J; O'Donnell, Mark; O'Donnell, David; Mariani, Justin A; Gould, Paul A; McGavigan, Andrew D

    2016-08-01

    Cardiac implantable electronic devices (pacemakers and defibrillators) are increasingly common in modern cardiology practice, and health professionals from a variety of specialties will encounter patients with such devices on a frequent basis. This article will focus on the subset of patients who may request, or be appropriate for, device deactivation and discuss the issues surrounding end-of-life decisions, along with the ethical and legal implications of device deactivation. PMID:27320854

  13. Threefold Increase of the Bulk Electron Temperature of Plasma Discharges in a Magnetic Mirror Device

    NASA Astrophysics Data System (ADS)

    Bagryansky, P. A.; Shalashov, A. G.; Gospodchikov, E. D.; Lizunov, A. A.; Maximov, V. V.; Prikhodko, V. V.; Soldatkina, E. I.; Solomakhin, A. L.; Yakovlev, D. V.

    2015-05-01

    This Letter describes plasma discharges with a high temperature of bulk electrons in the axially symmetric high-mirror-ratio (R =35 ) open magnetic system gas dynamic trap (GDT) in the Budker Institute (Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over a number of sequential shots is 660 ±50 eV with the plasma density being 0.7 ×1 019 m-3 ; in few shots, electron temperature exceeds 900 eV. This corresponds to at least a threefold increase with respect to previous experiments both at GDT and at other comparable machines, thus, demonstrating the highest quasistationary (about 1 ms) electron temperature achieved in open traps. The breakthrough is made possible by application of a new 0.7 MW /54.5 GHz electron cyclotron resonance heating system in addition to standard 5 MW heating by neutral beams, and application of a radial electric field to mitigate the flute instability.

  14. Letters to the Editor

    NASA Astrophysics Data System (ADS)

    1998-01-01

    All the Letters to the Editor in this issue are in the same PostScript or PDF file. Contents Physics and history Arthur I Miller Department of Science & Technology Studies, University College London, Gower Street, London WC1E 6BT, UK Physics and history: a reply David Miller Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK Cathode rays, the electron and Thomson's discovery John Harris 33 Glentham Road, London SW13 9JD, UK Vectors: swallow them whole! David Wheeler Mahanakorn University of Technology, Bangkok, Thailand

  15. An electronic device to record consensual reflex in human pupil.

    PubMed

    Pinheiro, H M; Costa, R M; Camilo, E N R; Gang, Hua

    2015-01-01

    Examination of the pupil offers an objective evaluation of visual function as well as the vegetative pathways to the eye. This work proposes the development of an effective method and a portable device to test the consensual pupillary reflex. The first results demonstrate the success of a new device construction and methodology to record the consensual reflex with different stimulus, in a situation of complete blockage of light. PMID:26262208

  16. LETTER TO THE EDITOR: Distortion of molecular electron density distributions by an intense laser field: dissociative ionization of ?

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, K.; Bhardwaj, V. R.; Safvan, C. P.; Mathur, D.

    1997-05-01

    The interaction of a tetrahedral molecule (carbon tetrachloride) with intense, 532 nm, 35 ps, 0953-4075/30/10/003/img2 linearly polarized, laser fields is explored theoretically and experimentally. Distortions caused by the laser field in the molecular electron density distributions are computed in an approximate fashion using quantum-chemical techniques. A comparative experimental study is performed of the dissociative ionization of 0953-4075/30/10/003/img3 in such an intense laser field and also by electron impact. Significant differences are observed and attempts are made to explore the possibility that these can be explained using field-distorted electron density distributions. Angular distributions of the 0953-4075/30/10/003/img4 fragment ion have also been measured and show a pronounced anisotropy with the ion signal being detected mainly along the direction of the laser's polarization axis.

  17. Scaling law of electron confinement in a zero beta polywell device

    SciTech Connect

    Gummersall, David V.; Carr, Matthew; Cornish, Scott; Kachan, Joe

    2013-10-15

    Orbital theory simulation was applied to an electron trap that uses a cube shaped magnetic cusp known as a Polywell device. The purpose of this device is to create a virtual cathode in order to achieve nuclear fusion using inertial electrostatic confinement. Analytical expressions of the electron confinement time and average position within the device were obtained in terms of the current in the field coils, the dimensions of the device, and the kinetic energy of the electrons. Comparisons with numerical simulations showed good agreement over a parameter range that spanned several orders of magnitude for the current. In addition, power loss from electrons exiting the trap was estimated in order to obtain minimum power requirement to maintain a virtual cathode within the device.

  18. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    PubMed

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices. PMID:24121237

  19. Weak localization and electron–electron interactions in few layer black phosphorus devices

    NASA Astrophysics Data System (ADS)

    Shi, Yanmeng; Gillgren, Nathaniel; Espiritu, Timothy; Tran, Son; Yang, Jiawei; Watanabe, Kenji; Taniguchi, Takahashi; Lau, Chun Ning

    2016-09-01

    Few layer phosphorene (FLP) devices are extensively studied due to their unique electronic properties and potential applications on nano-electronics. Here we present magnetotransport studies which reveal electron–electron interactions as the dominant scattering mechanism in hexagonal boron nitride-encapsulated FLP devices. From weak localization measurements, we estimate the electron dephasing length to be 30 to 100 nm at low temperatures, which exhibits a strong dependence on carrier density n and a power-law dependence on temperature (∼T ‑0.4). These results establish that the dominant scattering mechanism in FLP is electron–electron interactions.

  20. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  1. [Perioperative management of patients equipped with cardiac implanted electronic devices].

    PubMed

    Booke, Michael; Casu, Sebastian

    2016-04-01

    Anaesthetists are in increasing frequency confronted with patients equipped with cardiac implantable electrical devices. A consensus conference standardized the handling of such patients for elective cases. However, this multidisciplinary approach is characterized by a complexity, which is hard to handle in emergency cases and even in nowadays clinical routine. However, risks associated with electrocautery or electromagnetic interference can be easily handled applying a significantly easier approach. Telemetric reprogramming and/or postoperative interrogation of the cardiac implanted eletronical device can be avoided in most cases. PMID:27070514

  2. X-Ray-Diffraction Tests Of Irradiated Electronic Devices: I

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Lowry, Lynn E.; Barnes, Charles E.

    1993-01-01

    X-ray-diffraction tests performed on aluminum conductors in commercial HI1-507A complementary metal oxide/semiconductor (CMOS) integrated-circuit analog multiplexers, both before and after circuits exposed to ionizing radiation from Co(60) source, and after postirradiation annealing at ambient and elevated temperatures. Tests in addition to electrical tests performed to determine effects of irradiation and of postirradiation annealing on electrical operating characteristics of circuits. Investigators sought to determine whether relationship between effects of irradiation on devices and physical stresses within devices. X-ray diffraction potentially useful for nondestructive measurement of stresses.

  3. Forecasting of electronic devices lifetime on the basis of activation models of functional parameters drift

    NASA Astrophysics Data System (ADS)

    Kozlova, I. N.

    2016-04-01

    We propose a model of functional parameters drift for electronic devices, allowing predicting their lifetime. The method of model parameters estimation is developed. The developed model allows optimizing the accelerated tests modes, taking into account the complex impact of stress factors. The results are applicable for modern electronic devices with a failure rate less than 1 FIT. The results are applicable if the physical and chemical processes leading to electronic devices degradation have an activation mechanism; the activation process is due to the temperature.

  4. Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.

    PubMed

    Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro

    2016-01-01

    : The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles. PMID:27172301

  5. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 92 Stat. 1477 (33 U.S.C. 1231); 49 CFR 1.46(n)(4)) ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electronic position fixing... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic...

  6. Electron-phonon cooling in large monolayer graphene devices

    NASA Astrophysics Data System (ADS)

    McKitterick, Christopher B.; Prober, Daniel E.; Rooks, Michael J.

    2016-02-01

    We present thermal measurements of large-area (over 1000 μ m2 ) monolayer graphene samples at cryogenic temperatures to study the electron-phonon thermal conductivity of graphene. By using two large samples with areas which differ by a factor of 10, we are able to clearly show the area dependence of the electron-phonon cooling. We find that, at temperatures far below the Bloch-Grüneisen temperature TBG, the electron-phonon cooling power is accurately described by the T4 temperature dependence predicted for clean samples. Using this model, we are able to extract a value for the electron-phonon coupling constant as a function of gate voltage and the graphene electron-lattice deformation potential.

  7. Electron transport in nano-scaled piezoelectronic devices

    NASA Astrophysics Data System (ADS)

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  8. Silicon microbench heater elements for packaging opto-electronic devices

    SciTech Connect

    Combs, R.; Keiser, P.; Kleint, K.; Pocha, M.; Patterson, F.; Strand, O.T.

    1995-09-01

    Examples are presented of the application of Lawrence Livermore National Laboratory`s expertise in photonics packaging. Several examples of packaged devices will be described. Particular attention is given to silicon microbenches incorporating heaters and their use in semiconductor optical amplifier fiber pigtailing and packaging.

  9. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    ERIC Educational Resources Information Center

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  10. Crossed Andreev reflection versus electron transfer in three-terminal graphene devices

    NASA Astrophysics Data System (ADS)

    Haugen, Håvard; Huertas-Hernando, Daniel; Brataas, Arne; Waintal, Xavier

    2010-05-01

    We investigate the transport properties of three-terminal graphene devices, where one terminal is superconducting and two are normal metals. The terminals are connected by nanoribbons. Electron transfer (ET) and crossed Andreev reflection (CAR) are identified via the nonlocal signal between the two normal terminals. Analytical expressions for ET and CAR in symmetric devices are found. We compute ET and CAR numerically for asymmetric devices. ET dominates CAR in symmetric devices, but CAR can dominate ET in asymmetric devices, where only the zero-energy modes of the zigzag nanoribbons contribute to the transport.

  11. Microfabrication of fine electron beam tunnels using UV-LIGA and embedded polymer monofilaments for vacuum electron devices

    NASA Astrophysics Data System (ADS)

    Joye, Colin D.; Calame, Jeffrey P.; Nguyen, Khanh T.; Garven, Morag

    2012-01-01

    Vacuum electron devices require electron beams to be transported through hollow channels that pass through an electromagnetic slow-wave circuit. These electron 'beam tunnels' are shrinking toward sizes smaller than traditional techniques can manage as the operating frequencies push toward the THz. A novel technique is described and experimentally demonstrated that uses polymer monofilaments of arbitrary cross-sectional shape combined with ultraviolet photolithography (UV-LIGA) of SU-8 photoresists. This combination of monofilaments and SU-8 structures comprises a 3D mold around which copper is electroformed to produce high-quality beam tunnels of arbitrary length and size along with the electromagnetic circuits. True round beam tunnels needed for upper-millimeter wave and THz vacuum electron devices can now be fabricated in a single UV-LIGA step. These techniques are also relevant to microfluidic devices and other applications requiring very small, straight channels with aspect ratios of several hundred or more.

  12. Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets.

    PubMed

    Brenckle, Mark A; Cheng, Huanyu; Hwang, Sukwon; Tao, Hu; Paquette, Mark; Kaplan, David L; Rogers, John A; Huang, Yonggang; Omenetto, Fiorenzo G

    2015-09-16

    The recent introduction of transient, bioresorbable electronics into the field of electronic device design offers promise for the areas of medical implants and environmental monitors, where programmed loss of function and environmental resorption are advantageous characteristics. Materials challenges remain, however, in protecting the labile device components from degradation at faster than desirable rates. Here we introduce an indirect passivation strategy for transient electronic devices that consists of encapsulation in multiple air pockets fabricated from silk fibroin. This approach is investigated through the properties of silk as a diffusional barrier to water penetration, coupled with the degradation of magnesium-based devices in humid air. Finally, silk pockets are demonstrated to be useful for controlled modulation of device lifetime. This approach may provide additional future opportunities for silk utility due to the low immunogenicity of the material and its ability to stabilize labile biotherapeutic dopants. PMID:26305434

  13. Automatic testing device facilitates noise checks and electronic calibrations

    NASA Technical Reports Server (NTRS)

    Harrold, J. L.; Weegmann, C. F.

    1967-01-01

    Automatic Digital Noise Checker determines the noise content of the many analog imputs of a data acquisition system and whether the Electronic Calibrations /EC/ on some data channels are operating properly.

  14. In depth characterization of electron transport in 14 nm FD-SOI CMOS devices

    NASA Astrophysics Data System (ADS)

    Shin, Minju; Shi, Ming; Mouis, Mireille; Cros, Antoine; Josse, Emmanuel; Kim, Gyu-Tae; Ghibaudo, Gérard

    2015-10-01

    In this paper, carrier transport properties in highly scaled (down to 14 nm-node) FDSOI CMOS devices are presented from 77 K to 300 K. At first, we analyzed electron transport characteristics in terms of different gate-oxide stack in NMOS long devices. So, we found that SOP and RCS can be the dominant contribution of additional mobility scatterings in different temperature regions. Then, electron mobility degradation in short channel devices was deeply investigated. It can be stemmed from additional scattering mechanisms, which were attributed to process-induced defects near source and drain. Finally, we found that mobility enhancement by replacing Si to SiGe channel in PMOS devices was validated and this feature was not effective anymore in sub-100 nm devices. The critical lengths were around 50 nm and 100 nm for NMOS and PMOS devices, respectively.

  15. LETTER TO THE EDITOR: Near-threshold behaviour of electron elastic scattering cross sections for Fr: a Regge pole analysis

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Msezane, A. Z.; Sokolovski, D.

    2006-11-01

    Elastic partial and integral cross sections for e--Fr scattering are investigated at electron energies E's near the threshold to understand the mechanism of electron attachment and predict new manifestations. The calculation uses the Mulholland formula, implemented within the complex angular momentum description of scattering wherein resonances are rigorously defined as singularities of the S-matrix. We benchmark our approach by comparing the calculated results with those from the recent Dirac R-matrix method (Bahrim et al 2001 Phys. Rev. A 63 042710). We find that near threshold there is no Ramsauer-Townsend minimum and that there is a shape resonance at E = 0.034 eV, in agreement with the Bahrim et al results. However, contrary to the Dirac R-matrix data, a new sharp f-resonance appears at E = 0.354 eV and a p-wave Wigner threshold behaviour is identified. Some results for e--Cs are also presented. The general agreement with the Dirac R-matrix results gives credence to our simple and novel approach.

  16. Luminescent coupling in planar opto-electronic devices

    NASA Astrophysics Data System (ADS)

    Wilkins, Matthew; Valdivia, Christopher E.; Gabr, Ahmed M.; Masson, Denis; Fafard, Simon; Hinzer, Karin

    2015-10-01

    Effects of luminescent coupling are observed in monolithic 5 V, five-junction GaAs phototransducers. Power conversion efficiency was measured at 61.6% ± 3% under the continuous, monochromatic illumination for which they were designed. Modeling shows that photon recycling can account for up to 350 mV of photovoltage in these devices. Drift-diffusion based simulations including a luminescent coupling term in the continuity equation show a broadening of the internal quantum efficiency curve which agrees well with experimental measurements. Luminescent coupling is shown to expand the spectral bandwidth of the phototransducer by a factor of at least 3.5 for devices with three or more junctions, even in cases where multiple absorption/emission events are required to transfer excess carriers into the limiting junction. We present a detailed description of the novel luminescent coupling modeling technique used to predict these performance enhancements.

  17. Opto-electronic transport properties of graphene oxide based devices

    SciTech Connect

    Das, Poulomi; Ibrahim, Sk; Pal, Tanusri; Chakraborty, Koushik; Ghosh, Surajit

    2015-06-24

    Large area, solution-processed, graphene oxide (GO)nanocomposite based photo FET has been successfully fabricated. The device exhibits p-type charge transport characteristics in dark condition. Our measurements indicate that the transport characteristics are gate dependent and extremely sensitive to solar light. Photo current decay mechanism of GO is well explained and is associated with two phenomena: a) fast response process and b) slow response process. Slow response photo decay can be considered as the intrinsic phenomena which are present for both GO and reduced GO (r-GO), whereas the first response photo decay is controlled by the surface defect states. Demonstration of photo FET performance of GO thin film is a significant step forward in integrating these devices in various optoelectronic circuits.

  18. Luminescent coupling in planar opto-electronic devices

    SciTech Connect

    Wilkins, Matthew Valdivia, Christopher E.; Gabr, Ahmed M.; Hinzer, Karin; Masson, Denis; Fafard, Simon

    2015-10-14

    Effects of luminescent coupling are observed in monolithic 5 V, five-junction GaAs phototransducers. Power conversion efficiency was measured at 61.6% ± 3% under the continuous, monochromatic illumination for which they were designed. Modeling shows that photon recycling can account for up to 350 mV of photovoltage in these devices. Drift-diffusion based simulations including a luminescent coupling term in the continuity equation show a broadening of the internal quantum efficiency curve which agrees well with experimental measurements. Luminescent coupling is shown to expand the spectral bandwidth of the phototransducer by a factor of at least 3.5 for devices with three or more junctions, even in cases where multiple absorption/emission events are required to transfer excess carriers into the limiting junction. We present a detailed description of the novel luminescent coupling modeling technique used to predict these performance enhancements.

  19. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    NASA Technical Reports Server (NTRS)

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  20. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade...

  1. 75 FR 45697 - Safety Advisory Notice: Personal Electronic Device Related Distractions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ...PHMSA is issuing a safety advisory notice to remind offerors and carriers of hazardous materials of the risks associated with the use of personal electronic devices (PEDs) by individuals operating motor vehicles that contain hazardous...

  2. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  3. Overview of multimedia content protection in consumer electronics devices

    NASA Astrophysics Data System (ADS)

    Eskicioglu, Ahmet M.; Delp, Edward J., III

    2000-05-01

    A digital home network is a cluster of digital audio/visual (A/V) devices including set-top boxes, TVs, VCRs, DVD players, and general-purpose computing devices such as personal computers. The network may receive copyrighted digital multimedia content from a number of sources. This content may be broadcast via satellite or terrestrial systems, transmitted by cable operators, or made available as prepackaged media (e.g., a digital tape or a digital video disc). Before releasing their content for distribution, the content owners may require protection by specifying access conditions. Once the content is delivered to the consumer, it moves across home the network until it reaches its destination where it is stored or displayed. A copy protection system is needed to prevent unauthorized access to bit streams in transmission from one A/V device to another or while it is in storage on magnetic or optical media. Recently, two fundamental groups of technologies, encryption and watermarking, have been identified for protecting copyrighted digital multimedia content. This paper is an overview of the work done for protecting content owners' investment in intellectual property.

  4. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ..., based on a complaint filed by Saxon Innovation, LLC of Tyler, Texas (``Saxon''). 74 FR 4231. The... a complaint filed by Saxon. 74 FR 14578-9. The complaint, as amended and supplemented, alleges... respondents Samsung Electronics Co., Ltd. of Seoul, Korea; Samsung Electronics America, Inc. of...

  5. A Master Trainer Class for Professionals in Teaching the UltraCane Electronic Travel Device

    ERIC Educational Resources Information Center

    Penrod, William; Corbett, Michael D.; Blasch, Bruce

    2005-01-01

    Electronic travel devices are used to transform information about the environment that would normally be perceived through the visual sense into a form that can be perceived by people who are blind or have low vision through another sense (Blasch, Long, & Griffin-Shirley, 1989). They are divided into two broad categories: primary devices and…

  6. 78 FR 24817 - Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ...The National Highway Traffic Safety Administration (NHTSA) is concerned about the effects of distraction on motor vehicle safety due to drivers' use of electronic devices. Consequently, NHTSA is issuing nonbinding, voluntary Driver Distraction Guidelines (NHTSA Guidelines) to promote safety by discouraging the introduction of excessively distracting devices in vehicles. This notice announces......

  7. Variably spaced superlattice energy filter, a new device design concept for high-energy electron injection

    NASA Technical Reports Server (NTRS)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    A new variably spaced superlattice energy filter is proposed which provides high-energy injection of electrons into a bulk semiconductor layer based on resonant tunneling between adjacent quantum well levels which are brought into alignment by an applied bias. Applications of this concept to a variety of optoelectronic devices and to thin-film electroluminescent devices and photodetectors are discussed.

  8. Testing methods and techniques: Testing electrical and electronic devices: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The methods, techniques, and devices used in testing various electrical and electronic apparatus are presented. The items described range from semiconductor package leak detectors to automatic circuit analyzer and antenna simulators for system checkout. In many cases the approaches can result in considerable cost savings and improved quality control. The testing of various electronic components, assemblies, and systems; the testing of various electrical devices; and the testing of cables and connectors are explained.

  9. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.; Kuball, Martin

    2015-12-01

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  10. Sleep and use of electronic devices in adolescence: results from a large population-based study

    PubMed Central

    Hysing, Mari; Pallesen, Ståle; Stormark, Kjell Morten; Jakobsen, Reidar; Lundervold, Astri J; Sivertsen, Børge

    2015-01-01

    Objectives Adolescents spend increasingly more time on electronic devices, and sleep deficiency rising in adolescents constitutes a major public health concern. The aim of the present study was to investigate daytime screen use and use of electronic devices before bedtime in relation to sleep. Design A large cross-sectional population-based survey study from 2012, the youth@hordaland study, in Hordaland County in Norway. Setting Cross-sectional general community-based study. Participants 9846 adolescents from three age cohorts aged 16–19. The main independent variables were type and frequency of electronic devices at bedtime and hours of screen-time during leisure time. Outcomes Sleep variables calculated based on self-report including bedtime, rise time, time in bed, sleep duration, sleep onset latency and wake after sleep onset. Results Adolescents spent a large amount of time during the day and at bedtime using electronic devices. Daytime and bedtime use of electronic devices were both related to sleep measures, with an increased risk of short sleep duration, long sleep onset latency and increased sleep deficiency. A dose–response relationship emerged between sleep duration and use of electronic devices, exemplified by the association between PC use and risk of less than 5 h of sleep (OR=2.70, 95% CI 2.14 to 3.39), and comparable lower odds for 7–8 h of sleep (OR=1.64, 95% CI 1.38 to 1.96). Conclusions Use of electronic devices is frequent in adolescence, during the day as well as at bedtime. The results demonstrate a negative relation between use of technology and sleep, suggesting that recommendations on healthy media use could include restrictions on electronic devices. PMID:25643702

  11. Device for the removal of sulfur dioxide from exhaust gas by pulsed energization of free electrons

    SciTech Connect

    Mizuno, A.; Clements, J.S.; Davis, R.H.

    1984-01-01

    The performance of a new device using pulsed streamer corona for the removal of sulfur dioxide from humid air has been evaluated. The pulsed streamer corona produced free electrons which enhance gas-phase chemical reactions, and convert SO/sub 2/ to sulfuric acid mist. The SO/sub 2/ removal efficiency was compared with that of the electron-beam flue-gas treatment process. The comparison demonstrates the advantage of the novel device.

  12. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    SciTech Connect

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Kuball, Martin; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.

    2015-12-21

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  13. On letter frequency effects.

    PubMed

    New, Boris; Grainger, Jonathan

    2011-10-01

    In four experiments we examined whether the frequency of occurrence of letters affects performance in the alphabetic decision task (speeded letter vs. pseudo-letter classification). Experiments 1A and 1B tested isolated letters and pseudo-letters presented at fixation, and Experiments 2A and 2B tested the same stimuli inserted at the 1st, 3rd, or 5th position in a string of Xs. Significant negative correlations between letter frequency and response times to letter targets were found in all experiments. The correlations were found to be stronger for token frequency counts compared with both type frequency and frequency rank, stronger for frequency counts based on a book corpus compared with film subtitles, and stronger for measures counting occurrences as the first letter of words compared with inner letters and final letters. Correlations for letters presented in strings of Xs were found to depend on letter case and position-in-string. The results are in favor of models of word recognition that implement case-specific and position-specific letter representations. PMID:21855049

  14. Optical tracing of multiple charges in single-electron devices

    NASA Astrophysics Data System (ADS)

    Faez, Sanli; van der Molen, Sense Jan; Orrit, Michel

    2014-11-01

    Single molecules that exhibit narrow optical transitions at cryogenic temperatures can be used as local electric-field sensors. We derive the single-charge sensitivity of aromatic organic dye molecules, based on quantum mechanical considerations. Through numerical modeling, we demonstrate that by using currently available technologies it is possible to optically detect charging events in a granular network with a sensitivity better than 10-5e /√{Hz } and track positions of multiple electrons, simultaneously, with nanometer spatial resolution. Our results pave the way for minimally invasive optical inspection of electronic and spintronic nanodevices and building hybrid optoelectronic interfaces that function at both single-photon and single-electron levels.

  15. A detachable electronic device for use with a long white cane to assist with mobility.

    PubMed

    O'Brien, Emily E; Mohtar, Aaron A; Diment, Laura E; Reynolds, Karen J

    2014-01-01

    Vision-impaired individuals often use a long white cane to assist them with gathering information about their surroundings. However, these aids are generally not used to detect obstacles above knee height. The purpose of this study is to determine whether a low-cost, custom-built electronic device clipped onto a traditional cane can provide adequate vibratory warning to the user of obstacles above knee height. Sixteen normally sighted blindfolded individuals participated in two mobility courses which they navigated using a normal white cane and a white cane with the electronic device attached. Of the 16 participants, 10 hit fewer obstacles, and 12 covered less ground with the cane when the electronic device was attached. Ten participants found navigating with the electronic device easier than just the white cane alone. However, the time taken on the mobility courses, the number of collisions with obstacles, and the area covered by participants using the electronic device were not significantly different (p > 0.05). A larger sample size is required to determine if the trends found have real significance. It is anticipated that additional information provided by this electronic device about the surroundings would allow users to move more confidently within their environment. PMID:25771607

  16. Simultaneous specimen and stage cleaning device for analytical electron microscope

    DOEpatents

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  17. Field mapping with nanometer-scale resolution for the next generation of electronic devices.

    PubMed

    Cooper, David; de la Peña, Francisco; Béché, Armand; Rouvière, Jean-Luc; Servanton, Germain; Pantel, Roland; Morin, Pierre

    2011-11-01

    In order to improve the performance of today's nanoscaled semiconductor devices, characterization techniques that can provide information about the position and activity of dopant atoms and the strain fields are essential. Here we demonstrate that by using a modern transmission electron microscope it is possible to apply multiple techniques to advanced materials systems in order to provide information about the structure, fields, and composition with nanometer-scale resolution. Off-axis electron holography has been used to map the active dopant potentials in state-of-the-art semiconductor devices with 1 nm resolution. These dopant maps have been compared to electron energy loss spectroscopy maps that show the positions of the dopant atoms. The strain fields in the devices have been measured by both dark field electron holography and nanobeam electron diffraction. PMID:21972919

  18. Advances in molecular electronics: Synthesis and testing of potential molecular electronic devices

    NASA Astrophysics Data System (ADS)

    Price, David Wilson, Jr.

    New potential molecular electronics devices have been synthesized based on our knowledge of previous systems that have come out of our group. Previous studies and current studies have shown that simple molecular systems demonstrate negative differential resistance (NDR) and memory characteristics. The new systems rely primarily on the redox properties of the compounds to improve upon the solid state properties already observed. Most of these new organic compounds use thiol-based "alligator clips" for attachment to metal surfaces. Some of the compounds, however, contain different "alligator clips," primarily isonitriles, for attachment to metal substrates. It is our hope that these new "alligator clips" will offer lower conductivity barriers (higher current density). Electrochemical tests have been performed in order to evaluate those redox properties and in the hope of using those electrochemical results as a predictive tool to evaluate the usefulness of those compounds. Also, organic structures with polymerizable functionalities have been synthesized in order to cross-link the molecules once they are a part of a self-assembled monolayer (SAM). This has been shown to enable the electrochemical growth of polypyrrole from a SAM in a controllable manner.

  19. Analytic procedures for determining dimensional redundancies in electronic devices

    NASA Technical Reports Server (NTRS)

    Herskowitz, G. J.

    1972-01-01

    Methods for ascertaining dimensional redundancies in mathematical functions related to electronic phenomena and for removal of redundancies are presented. Two computer programs, one to determine a complete B-matrix and the other to optimize the matrix, are discussed. Three subroutines are analyzed.

  20. Semiconductor Devices and Applications. Electronics Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Chappell, John; And Others

    This module is the fifth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross-reference table of instructional materials. Sixteen instructional units cover: semiconductor materials; diodes; diode applications and…

  1. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    SciTech Connect

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  2. Materials, structures, and devices for high-speed electronics

    NASA Astrophysics Data System (ADS)

    Woollam, John A.; Snyder, Paul G.

    1992-12-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  3. Materials, structures, and devices for high-speed electronics

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  4. Effects of partial hydrogenation on electronic transport properties in C60 molecular devices

    NASA Astrophysics Data System (ADS)

    Chen, L. N.; Cao, C.; Wu, X. Z.; Ma, S. S.; Huang, W. R.; Xu, H.

    2012-12-01

    By using nonequilibrium Green's functions in combination with the density-function theory, we investigate electronic transport properties of molecular devices with pristine and partial hydrogenation. The calculated results show that the electronic transport properties of molecular devices can be modulated by partial hydrogenation. Interestingly, our results exhibit negative differential resistance behavior in the case of the imbalance H-adsorption in C60 molecular devices under low bias. However, negative differential resistance behavior cannot be observed in the case of the balance H-adsorption. A mechanism is proposed for the hydrogenation and negative differential resistance behavior.

  5. RED-LETTER DAYS

    EPA Science Inventory

    The word "red-letter" is an adjective meaning "of special significance." It's origin is from the practice of marking Christian holy days in red letters on calendars. The "red-letter days" to which I refer occurred while I was a graduate student of ...

  6. All About Letters.

    ERIC Educational Resources Information Center

    Post Office Dept., Washington, DC.

    This booklet, designed to promote the letter writing habit, provides information about writing letters in a variety of situations. It is divided into several short sections with illustrations. Reasons to write letters and postcards are offered by several authors and celebrites including Stevie Wonder, Darryl Stingley, and "Dear Abby." Addresses…

  7. Writing Letters of Recommendation

    ERIC Educational Resources Information Center

    Withers, Jennie

    2009-01-01

    The purpose of this essay is to instruct teachers how to write a letter of recommendation for their students. It includes when to say no, what the student needs to provide the teacher and how to write a strong letter. I am a teacher with sixteen years experience and therefore have written many letters for students. This instructional essay will…

  8. Double deflection system for an electron beam device

    DOEpatents

    Parker, Norman W.; Golladay, Steven D.; Crewe, Albert V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations.

  9. Development of reliable electronic packaging solutions for spacecraft avionics miniaturization using embedded passice devices

    NASA Technical Reports Server (NTRS)

    Schatzel, Don

    2003-01-01

    Miniaturization of electronic packages will play a key rule in future space avionics systems. Smaller avionics packages will reduce payloads while providing greater functionality for information processing and mission instrumentation. Current surface mount technology discrete passive devices not only take up significant space but also add weight. To that end, the use of embedded passive devices, such as capacitors, inductors and resistors will be instrumental in allowing electronics to be made smaller and lighter. Embedded passive devices fabricated on silicon or like substrates using thin film technology, promise great savings in circuit volume, as well as potentially improving electrical performance by decreasing parasitic losses. These devices exhibit a low physical profile and allow the circuit footprint to be reduced by stacking passive elements within a substrate. Thin film technologies used to deposit embedded passive devices are improving and costs associated with the process are decreasing.

  10. Fabrication techniques and applications of flexible graphene-based electronic devices

    NASA Astrophysics Data System (ADS)

    Luqi, Tao; Danyang, Wang; Song, Jiang; Ying, Liu; Qianyi, Xie; He, Tian; Ningqin, Deng; Xuefeng, Wang; Yi, Yang; Tian-Ling, Ren

    2016-04-01

    In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) Program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and China's Postdoctoral Science Foundation (CPSF).

  11. Simulation of Ultra-Small Electronic Devices: The Classical-Quantum Transition Region

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    Concern is increasing about how quantum effects will impact electronic device operation as down-scaling continues along the SIA Roadmap through 2010. This document describes part of a new semiconductor device modeling (SDM) program at NAS to investigate these concerns by utilizing advanced NAS and third-party numerical computation software to rapidly implement and investigate electronic device models including quantum effects. This SDM project will investigate quantum effects in devices in the classical-quantum transition region, especially sub-0.1 mm MOSFETs. Specific tasks planned for this project include the use of quantum corrections to the classical drift-diffusion and hydrodynamic models of electron transport, arid the use of nominally quantum models including significant scattering.

  12. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2016-07-05

    A method for fabricating an organic light emitting device stack involves depositing a first conductive electrode layer over a substrate; depositing a first set of one or more organic layers, wherein at least one of the first set of organic layers is a first emissive layer and one of the first set of organic layers is deposited by a solution-based process that utilizes a first solvent; depositing a first conductive interlayer by a dry deposition process; and depositing a second set of one or more organic layers, wherein at least one of the second set of organic layers is a second emissive layer and one of the second set of organic layers is deposited by a solution-based process that utilizes a second solvent, wherein all layers that precede the layer deposited using the second solvent are insoluble in the second solvent.

  13. Standard source for certification of optical-electronic devices

    NASA Astrophysics Data System (ADS)

    Fastova, Natalia I.; Maraev, Anton A.; Ishanin, Gennady G.

    2016-04-01

    To reduce the error at the certification of optoelectronic devices, sources and detectors of the standard sources and its diaphragm must be thermally stabilized in order to create a uniform background. We developed an uncooled model blackbody TCID-100 with working temperature up to 100°C with a thermally stabilized transmitter and the diaphragm set. The developed model is a cylinder made of red copper with a conical cavity. Cone length was chosen empirically to provide uniform heating over the entire length of the blackbody cavity. With the developed model, we conducted cavity temperature measurement transmitter, which enabled to evaluate the advantages and drawbacks of the blackbody design. In this article we examined models of blackbodies, the most popular types of cavities and the calculation of the thermal emissivity for them. We have designed blackbody and measured the cavity temperature change over the time.

  14. Device for providing high-intensity ion or electron beam

    DOEpatents

    McClanahan, Edwin D.; Moss, Ronald W.

    1977-01-01

    A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.

  15. 78 FR 23593 - Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... that infringe certain claims of six Immersion patents. 77 FR 20847 (Apr. 6, 2012). The notice of... COMMISSION Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation AGENCY: U.S....usitc.gov . The public record for this investigation may be viewed on the Commission's electronic...

  16. Fabrication and characterization of nanoelectronic devices for electron beam lithography applications

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojing

    Vertically aligned carbon nanofibers (VACNFs) have shown promise for use as field emission electron sources. Dual-gate field emission structures (triodes) have been fabricated and characterized. The electron beams can be successfully focused in these triodes. These studies show VACNF based field emission devices are promising for electron beam lithography applications. In this thesis, work is continued on triode device investigation. Methods to improve the device fabrication, to understand/optimize the device performance, and to repair defective triodes are presented. Numerical simulation of the triode performance is included. Depth of field (DOF) of these triode structures is calculated by simulation and is determined to be ˜5mum for the current triode structures. The DOF can be improved by employing thicker electrodes. The optimum beam radius is also reduced for thick electrodes. 3D modeling of the structure misalignment shows that a very small and well-converged beam is observed for the maximum shifts studied: 100nm focus electrode shift or 50nm VACNF shift, although astigmatism and coma-type aberrations will increase somewhat from these misalignments. The simulation results are promising and warrant further research on these devices. Single-gate individual cathode-addressable devices are successfully fabricated. VACNFs are successfully grown on an insulating substrate instead of a conductive silicon substrate for this purpose. Electron field emission is demonstrated to be successful from these devices. Several possible fabrication schemes to achieve fully self-aligning aperture formation in triode fabrication are designed and discussed. The best way to achieve self-alignment is to employ a process based on both chemical mechanical polishing (CMP) and reactive ion etching (RIE) selectivity. Fully self-aligned devices are successfully fabricated in this manner. Repair on a missing/defective VACNF in triodes is shown to be promising using an electron beam

  17. On Becoming a Doctor of Humane Letters.

    PubMed

    Tribble Md, Curt

    2016-01-01

    In an era of rapid, cheap, and efficient electronic communication, the practice-and art-of letter writing has faded. There are many reasons for us as physicians and surgeons to resist this evolution. And, there are many opportunities to employ letter writing to the benefit of ourselves, our patients, and our colleagues. A true Doctor of Humane Letters is an honorary degree, generally awarded for significant contributions to society.  However, given that humane can be defined as showing compassion, understanding, mercy, and tolerance, we can all strive to be worthy of such a distinction. There are many mundane letters familiar to us all, such as letters of recommendation, letters of thanks, and letters of commendation. However, I would like to offer some suggestions about other less common, but useful, types of letters that might prove valuable to physicians both in training and in practice. These include letters of inquiry, condolence, reflection, and explanation, as well as some notes about missives that are often best written but not sent. PMID:27585190

  18. Depth of field of diffraction-limited imaging system incorporating electronic devices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kimiaki

    2014-11-01

    The depth of field is investigated for an imaging system in which optical imaging and electronic devices, such as an electronic sensor and a display, are combined. When the spatial frequency of pixels in the electronic devices is higher than the cut-off frequency of the optical system, it is shown that the depth of field is almost the same as that of the optical system itself. In the case where the spatial frequency is lower than the cut-off frequency of the optical system, the depth of field increases, and the features of the increase are shown in imaging systems both with and without an optical low-pass filter.

  19. Learning to write letters: examination of student and letter factors.

    PubMed

    Puranik, Cynthia S; Petscher, Yaacov; Lonigan, Christopher J

    2014-12-01

    Learning to write the letters of the alphabet is an important part of learning how to write conventionally. In this study, we investigated critical factors in the development of letter-writing skills using exploratory item response models to simultaneously account for variance in responses due to differences between students and between letters. Letter-writing skills were assessed in 415 preschool children aged 3 to 5 years. At the student level, we examined the contribution of letter-name knowledge, letter-sound knowledge, and phonological awareness to letter-writing skills. At the letter level, we examined seven intrinsic and extrinsic factors in understanding how preschool children learn to write alphabet letters: first letter of name, letters in name, letter order, textual frequency, number of strokes, symmetry, and letter type. Results indicated that variation in letter-writing skills was accounted for more by differences between students rather than by differences between letters, with most of the variability accounted for by letter-name knowledge and age. Although significant, the contribution of letter-sound knowledge and phonological awareness was relatively small. Student-level mechanisms underlying the acquisition of letter-writing skills are similar to the mechanisms underlying the learning of letter sounds. However, letter characteristics, which appear to play a major role in the learning of letter names and letter sounds, did not appear to influence learning how to write letters in a substantial way. The exception was if the letter was in the child's name. PMID:25181463

  20. Inelastic electron tunneling spectroscopy of local "spin accumulation" devices

    NASA Astrophysics Data System (ADS)

    Tinkey, Holly N.; Li, Pengke; Appelbaum, Ian

    2014-06-01

    We investigate the origin of purported "spin accumulation" signals observed in local "three-terminal" (3T) measurements of ferromagnet/insulator/n-Si tunnel junctions using inelastic electron tunneling spectroscopy (IETS). Voltage bias and magnetic field dependences of the IET spectra were found to account for the dominant contribution to 3T magnetoresistance, thus indicating that it arises from inelastic tunneling through impurities and defects at junction interfaces and within the barrier, rather than from spin accumulation due to pure elastic tunneling into bulk Si as has been previously assumed.

  1. First principles modelling of contact resistance in molecular electronic devices.

    NASA Astrophysics Data System (ADS)

    Stokbro, Kurt; Taylor, Jeremy; Brandbyge, Mads

    2002-03-01

    We have used the TranSIESTA package[1,2] to investigate the contact resistance of gold-thiol bonds. The TranSIESTA package is a new density functional code employing local basis sets[3], combined with a non-equilibrium Greens function transport scheme. With this package we can calculate the selfconsistent electronic structure of a nanostructure coupled to 3-dimensional electrodes with different electrochemical potentials, using the same level of model chemistry for the electrodes as for the nanostructure. We have used the method to calculate the electron transport through DiThiol-Benzene (DTB) connected to gold electrodes. The transport properties have been calculated for a range of different molecule-electrode couplings, and I will discuss the influence of the coupling on the molecular conductance, and compare with experimental data. [1] M. Brandbyge, K. Stokbro, J. Taylor, J. L. Mozos, P. Ordejon, Material Research Society symposium proceedings volume 636, D9.25 (2000). [2] M. Brandbyge, K. Stokbro, J. Taylor, J. L. Mozos, P. Ordejon, Condmat 0110650 [3] SIESTA: D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).

  2. Complex influence of space environment on materials and electronic devices in the conditions of microgravity

    NASA Astrophysics Data System (ADS)

    Musabayev, T.; Zhantayev, Zh.; Grichshenko, V.

    2016-09-01

    The paper presents a new physical model describing the processes in materials and electronic devices under the influence of cosmic rays in microgravity. The model identifies specific features of formation of the area of radiation defects (ARD) in the electronic materials in microgravity. The mechanism of interaction between the ARD and memory modules in microgravity causing malfunction and failure of onboard electronics is considered. The results of failure of memory modules under real conditions are presented.

  3. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  4. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    PubMed

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. PMID:24943999

  5. PROTEOTRONICS: The emerging science of protein-based electronic devices

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Pousset, Jeremy; Reggiani, Lino

    2015-10-01

    Protein-mediated charge transport is of relevant importance in the design of protein based electronics and in attaining an adequate level of understanding of protein functioning. This is particularly true for the case of transmembrane proteins, like those pertaining to the G protein coupled receptors (GPCRs). These proteins are involved in a broad range of biological processes like catalysis, substance transport, etc., thus being the target of a large number of clinically used drugs. This paper briefly reviews a variety of experiments devoted to investigate charge transport in proteins and present a unified theoretical model able to relate macroscopic experimental results with the conformations of the amino acids backbone of the single protein.

  6. Introduction. Carbon-based electronics: fundamentals and device applications.

    PubMed

    Nicholas, Robin J; Mainwood, Alison; Eaves, Laurence

    2008-01-28

    Carbon-based materials offer a number of exciting possibilities for both new science and applications. Many of these are based on the novel band structure of graphene, by which solids mimic the properties of relativistic fermions and which offers the potential for high speed nanoscale electronics. When sheets of graphene are rolled up to make carbon nanotubes, further interesting properties are found; for example, both semiconducting and metallic nanotubes able to be produced. The novel properties of these new materials, together with the already remarkable properties of diamond itself, are discussed by a series of experts who came together in May 2007 to discuss and debate the potential for future development. PMID:18024353

  7. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement

    PubMed Central

    Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E.; Yang, Miaomiao; Brenckle, Mark A.; Kim, Stanley; Kaplan, David L.; Rogers, John A.; Omenetto, Fiorenzo G.

    2014-01-01

    A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period. PMID:25422476

  8. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement.

    PubMed

    Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E; Yang, Miaomiao; Brenckle, Mark A; Kim, Stanley; Kaplan, David L; Rogers, John A; Omenetto, Fiorenzo G

    2014-12-01

    A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period. PMID:25422476

  9. Power electronics performance in cryogenic environment: evaluation for use in HTS power devices

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Valtchev, S.; Pina, J.; Gonçalves, A.; Ventim Neves, M.; Rodrigues, A. L.

    2008-02-01

    Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.

  10. Rational design of metal-organic electronic devices: A computational perspective

    NASA Astrophysics Data System (ADS)

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device

  11. Electron and spin transport studies of gated lateral organic devices

    NASA Astrophysics Data System (ADS)

    Alborghetti, S.; Coey, J. M. D.; Stamenov, P.

    2012-12-01

    In view of the many, often contradictory, reports of magneto-resistance (MR) in spin valve stacks containing a layer of organic semiconductor, mostly of the small molecule variety, we have investigated interdigitated lateral structures with an organic layer deposited in the narrow gap between two ferromagnetic electrodes, which are well-suited for studying charge and spin transport in novel (high resistivity) semiconducting materials. For the channel material we used three different organic semiconductors, the small molecule tris-(8-hydroxyquinoline) aluminum (Alq3), single crystals of pentacene, and the conductive polymer poly(3-hexylthiophene) (P3HT). The channel length was 80 nm. Temperature-dependent current-voltage characteristics reveal that in all instances the current is limited by field-assisted thermionic injection over an energy barrier at the metal/organic interface. No measurable magneto-resistance was observed down to 7 K. The interface energy barrier, together with the vastly different electronic structure of metals and organics close to the Fermi level, preclude spin injection. Nonetheless, unlike the case of inorganic semiconductors, the insertion of an artificial tunnel barrier at the contact did not improve spin injection. Gate-dependent measurements exhibited short-channel effects and transistor operation with on/off ratios of 103, but no magneto-resistance. We suggest the observations are a consequence of the formation of bipolaron-states at increasing carrier concentration.

  12. Mechanical flip-chip for ultra-high electron mobility devices

    SciTech Connect

    Bennaceur, Keyan; Schmidt, Benjamin A.; Gaucher, Samuel; Laroche, Dominique; Lilly, Michael P.; Reno, John L.; West, Ken W.; Pfeiffer, Loren N.; Gervais, Guillaume

    2015-09-22

    In this study, electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.

  13. Mechanical Flip-Chip for Ultra-High Electron Mobility Devices

    PubMed Central

    Bennaceur, Keyan; Schmidt, Benjamin A.; Gaucher, Samuel; Laroche, Dominique; Lilly, Michael P.; Reno, John L.; West, Ken W.; Pfeiffer, Loren N.; Gervais, Guillaume

    2015-01-01

    Electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility. PMID:26391400

  14. Mechanical Flip-Chip for Ultra-High Electron Mobility Devices.

    PubMed

    Bennaceur, Keyan; Schmidt, Benjamin A; Gaucher, Samuel; Laroche, Dominique; Lilly, Michael P; Reno, John L; West, Ken W; Pfeiffer, Loren N; Gervais, Guillaume

    2015-01-01

    Electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility. PMID:26391400

  15. Threefold Increase of the Bulk Electron Temperature of Plasma Discharges in a Magnetic Mirror Device.

    PubMed

    Bagryansky, P A; Shalashov, A G; Gospodchikov, E D; Lizunov, A A; Maximov, V V; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Yakovlev, D V

    2015-05-22

    This Letter describes plasma discharges with a high temperature of bulk electrons in the axially symmetric high-mirror-ratio (R=35) open magnetic system gas dynamic trap (GDT) in the Budker Institute (Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over a number of sequential shots is 660±50  eV with the plasma density being 0.7×10^{19}  m^{-3}; in few shots, electron temperature exceeds 900 eV. This corresponds to at least a threefold increase with respect to previous experiments both at GDT and at other comparable machines, thus, demonstrating the highest quasistationary (about 1 ms) electron temperature achieved in open traps. The breakthrough is made possible by application of a new 0.7  MW/54.5  GHz electron cyclotron resonance heating system in addition to standard 5 MW heating by neutral beams, and application of a radial electric field to mitigate the flute instability. PMID:26047233

  16. Cardiac implantable electronic device infections: the enemy that lurks beneath the skin.

    PubMed

    Margey, Ronan

    2010-01-01

    The use of cardiac implantable electronic devices has increased exponentially in recent years with expanding indications and the aging of the general population. Despite improvements in device design, infection control practices, and the administration of antibiotic prophylaxis, the rate of cardiac implantable electronic device (CIED) infection has increased at a faster rate. With CIED infection becoming an increasing management problem, the purpose of this paper is to review the epidemiology, causes, pathogenesis, management and outcomes of CIED infection, and to summarize the recent updated guidelines published by the American Heart Association. While an extensive retrospective literature exists, only a few prospective clinical studies exist to help guide our management of this important problem. Research continues into the diagnosis, treatment and prevention of CIED infection. CIED infection is a growing clinical problem with significant morbidity and mortality. Summarizing the currently available literature, CIED infection is best managed by a combined strategy of complete device and lead extraction plus appropriately tailored antimicrobial therapy. PMID:21395519

  17. Direct Electron Heating at Moderate Harmonic Number for Compact Ignition Devices

    SciTech Connect

    R. Majeski

    1999-07-01

    Direct electron heating of compact ignition devices by radio-frequency power in the 300-400 MHz,range is discussed. The possible advantage of this approach to heating an ignition device, as opposed to resonant heating of an ion population, is the insensitivity to the exact value of the magnitude field. Heating with central power deposition during a toroidal field ramp is therefore possible.

  18. Ion implantation in compound semiconductors for high-performance electronic devices

    SciTech Connect

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-05-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb.

  19. Peculiarities of the charge transport in the gas discharge electronic device with irradiated porous zeolite

    NASA Astrophysics Data System (ADS)

    Ozturk, Sevgul; Koseoglu, Kivilcim; Ozer, Metin; Salamov, Bahtiyar G.

    2015-11-01

    The influence of pressure and β-radiation (1 kGy β doses) on the charge transport mechanism, charge trapping effects in porous zeolite surfaces and breakdown voltage (UB) are discussed in atmospheric microplasmas for the first time. This is due to exposure the zeolite cathode (ZC) to β-radiation resulting in substantial decreases in the UB, discharge currents and conductivity due to increase in porosity of the material. Results indicated that the enhancement of plasma light intensity and electron emission from the ZC surface with the release of trapped electrons which are captured by the defect centers following β-irradiation. The porosity of the ZC and radiation defect centers has significant influence on the charge transport of the microstructure and optical properties of the devices manufactured on its base. Thus, we confirm that the ZCir is a suitable cathode material for plasma light source, field emission displays, energy storage devices and low power gas discharge electronic devices.

  20. Impact of Electronic Device Use in Class on Pharmacy Students’ Academic Performance

    PubMed Central

    Johnson, Heather L.; Wrobel, Mark J.

    2012-01-01

    Objectives. To evaluate and assess the impact of pharmacy students’ electronic device (e-device) use during a lecture-based pharmacotherapeutics sequence. Methods. A validated survey instrument to assess e-device use was e-mailed to 238 second- (P2) and third-year (P3) pharmacy students. Grades were reviewed retrospectively and correlated with e-device use to determine its impact on academic performance. Results. Of 140 responding students (59% response rate), 106 reported using e-devices during class for course-related (91.5%) and non-course-related (81.1%) activities. When P2 and P3 students were combined, e-device use was not associated with academic performance (p = 0.70). Academic performance was not impacted among P3 students (p = 0.86), but P2 students performed better academically if they refrained from using e-devices during class (mean grade = 88.5% vs. 83.3%; p=0.019). Conclusions. The impact of e-device use on overall academic performance was negligible. Use of e-devices by students enrolled in their first pharmacotherapeutics course may negatively impact academics. PMID:23193331

  1. Ion sputter textured graphite. [anode collector plates in electron tube devices

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Forman, R.; Curren, A. N.; Wintucky, E. G. (Inventor)

    1982-01-01

    A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. An ion flux having an energy between 500 eV and 1000 eV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spines. Such textured surfaces are especially useful as anode collector plates in high efficiency electron tube devices.

  2. 3D strain measurement in electronic devices using through-focal annular dark-field imaging.

    PubMed

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-01

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824

  3. Ultra-slim flexible glass for roll-to-roll electronic device fabrication

    NASA Astrophysics Data System (ADS)

    Garner, Sean; Glaesemann, Scott; Li, Xinghua

    2014-08-01

    As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.

  4. Development of a prototype T-shaped fast switching device for electron cyclotron current drive systems

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Kenji; Nagashima, Koji; Honzu, Toshihiko; Saigusa, Mikio; Oda, Yasuhisa; Takahashi, Koji; Sakamoto, Keishi

    2016-09-01

    A T-shaped high-power switching device composed of circular corrugated waveguides with three ports and double dielectric disks made of sapphire was proposed as a fast switching device based on a new principle in electron cyclotron current drive systems. This switching device has the advantages of operating at a fixed frequency and being compact. The design of the prototype switch was obtained by numerical simulations using a finite-difference time-domain (FDTD) method. The size of these components was optimized for the frequency band of 170 GHz. Low-power tests were carried out in a cross-shaped model.

  5. Steps toward fabricating cryogenic CMOS compatible single electron devices for future qubits.

    SciTech Connect

    Wendt, Joel Robert; Childs, Kenton David; Ten Eyck, Gregory A.; Tracy, Lisa A.; Eng, Kevin; Stevens, Jeffrey; Nordberg, Eric; Carroll, Malcolm S.; Lilly, Michael Patrick

    2008-08-01

    We describe the development of a novel silicon quantum bit (qubit) device architecture that involves using materials that are compatible with a Sandia National Laboratories (SNL) 0.35 mum complementary metal oxide semiconductor (CMOS) process intended to operate at 100 mK. We describe how the qubit structure can be integrated with CMOS electronics, which is believed to have advantages for critical functions like fast single electron electrometry for readout compared to current approaches using radio frequency techniques. Critical materials properties are reviewed and preliminary characterization of the SNL CMOS devices at 4.2 K is presented.

  6. Effects of dust particles and layer properties on organic electronic devices fabricated by stamping

    NASA Astrophysics Data System (ADS)

    Cao, Yifang; Kim, Changsoon; Forrest, Stephen R.; Soboyejo, Wole

    2005-08-01

    The mechanical properties of organic semiconductor thin films are determined using nanoindentation. The measured mechanical properties are incorporated into finite element simulations of deformation that arise during cathode patterning of organic electronic devices by pressure stamping methods. Simulations show that dust particles interposed between the stamp and film surface affect the evolution of contact areas when silicon or compliant polydimethyl-siloxane stamp dies are employed. We also examine the effects of the transferred metal layer thickness and stamp bulk modulus. Experimental and modeling results are found to be in good agreement. The implications of the results are discussed for the fabrication of a range of organic electronic devices.

  7. Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.

  8. 75 FR 28651 - In the Matter of Certain Electronic Paper Towel Dispensing Devices and Components Thereof; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... COMMISSION In the Matter of Certain Electronic Paper Towel Dispensing Devices and Components Thereof; Notice... the sale within the United States after importation of certain electronic paper towel dispensing... electronic paper towel dispensing devices or components thereof that infringe one or more of claims 1-7 of...

  9. On the macroscopic quantization in mesoscopic rings and single-electron devices

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.

    2016-05-01

    In this letter we investigate the phenomenon of macroscopic quantization and consider particle on the ring interacting with the dissipative bath as an example. We demonstrate that even in presence of environment, there is macroscopically quantized observable which can take only integer values in the zero temperature limit. This fact follows from the total angular momentum conservation combined with momentum quantization for bare particle on the ring. The nontrivial thing is that the model under consideration, including the notion of quantized observable, can be mapped onto the Ambegaokar-Eckern-Schon model of the single-electron box (SEB). We evaluate SEB observable, originating after mapping, and reveal new physics, which follows from the macroscopic quantization phenomenon and the existence of additional conservation law. Some generalizations of the obtained results are also presented.

  10. Mode-selective vibrational modulation of charge transport in organic electronic devices

    NASA Astrophysics Data System (ADS)

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David

    2015-08-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500-1,700 cm-1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.

  11. Designing electronic anisotropy of three-dimensional carbon allotropes for the all-carbon device

    NASA Astrophysics Data System (ADS)

    Xu, Li-Chun; Song, Xian-Jiang; Wang, Ru-Zhi; Yang, Zhi; Li, Xiu-Yan; Yan, Hui

    2015-07-01

    Extending two-dimensional (2D) graphene nanosheets to a three-dimensional (3D) network can enhance the design of all-carbon electronic devices. Based on the great diversity of carbon atomic bonding, we have constructed four superlattice-type carbon allotrope candidates, containing sp2-bonding transport channels and sp3-bonding insulating layers, using density functional theory. It was demonstrated through systematic simulations that the ultra-thin insulating layer with only three-atom thickness can switch off the tunneling transport and isolate the electronic connection between the adjacent graphene strips, and these alternating perpendicular strips also extend the electron road from 2D to 3D. Designing electronic anisotropy originates from the mutually perpendicular π bonds and the rare partial charge density of the corresponding carriers in insulating layers. Our results indicate the possibility of producing custom-designed 3D all-carbon devices with building blocks of graphene and diamond.

  12. Designing electronic anisotropy of three-dimensional carbon allotropes for the all-carbon device

    SciTech Connect

    Xu, Li-Chun Song, Xian-Jiang; Yang, Zhi; Li, Xiu-Yan; Wang, Ru-Zhi; Yan, Hui

    2015-07-13

    Extending two-dimensional (2D) graphene nanosheets to a three-dimensional (3D) network can enhance the design of all-carbon electronic devices. Based on the great diversity of carbon atomic bonding, we have constructed four superlattice-type carbon allotrope candidates, containing sp{sup 2}-bonding transport channels and sp{sup 3}-bonding insulating layers, using density functional theory. It was demonstrated through systematic simulations that the ultra-thin insulating layer with only three-atom thickness can switch off the tunneling transport and isolate the electronic connection between the adjacent graphene strips, and these alternating perpendicular strips also extend the electron road from 2D to 3D. Designing electronic anisotropy originates from the mutually perpendicular π bonds and the rare partial charge density of the corresponding carriers in insulating layers. Our results indicate the possibility of producing custom-designed 3D all-carbon devices with building blocks of graphene and diamond.

  13. Evaluation test of the energy monitoring device in industrial electron beam facilities

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Corda, U.; Cornia, G.; Kovács, A.

    2009-07-01

    The electron beam energy monitoring device, previously developed and tested under standard laboratory conditions using electron beams in the energy range 4-12 MeV, has now been tested under industrial irradiation conditions in high-energy, high-power electron beam facilities. The measuring instrument was improved in order to measure high peak current delivered at low pulse repetition rate as well. Tests, with good results, were carried out at two different EB plants: one equipped with a LUE-8 linear electron accelerator of 7 MeV maximum energy used for cross-linking of cables and for medical device sterilization, and the other with a 10 MeV Rhodotron type TT 100 used for in-house sterilization.

  14. LETTER TO THE EDITOR: High colour rendering index non-doped-type white organic light-emitting devices with a RGB-stacked multilayer structure

    NASA Astrophysics Data System (ADS)

    Xie, Wenfa; Zhao, Yi; Li, Chuannan; Liu, Shiyong

    2005-12-01

    A non-doped-type white organic light-emitting device with high colour rendering index has been reported. The structure of the device is ITO/NPB (50 nm)/TPBI (3 nm)/Alq3 (d nm)/DCM2 (0.1 nm)/TPBI (40 - d nm)/Alq3 (10 nm)/LiF/Al, where NPB is N, N'-bis-(1-naphthyl)-N, N'-diphenyl-1, 1'-biph-enyl-4, 4'-diamine, TPBI is 2, 2', 2''-(1, 3, 5-phenylene) tris(1-phenyl-1H-benzimidazole), Alq3 is tris (8-hydroxyquinoline) aluminium, DCM2 is [2-methyl-6-[2-(2, 3, 6, 7-tetrahydro-1H, 5H-benzo[ij] quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene] propane-dinitrile. Through the optimization of d, pure white emission with CIE coordinates of (0.3198, 0.3400) at 9 V was obtained, at which the colour temperature and colour rendering index were 6080 K and 97, respectively. The CIE coordinates of the device change from (0.4552, 0.3867) at 4 V to (0.2864, 0.2865) at 19 V that are well in the white region. Its maximum luminance was 10 855 cd m-2 at 19 V and maximum power efficiency was 1.31 lm W-1 at 5 V.

  15. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  16. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    NASA Astrophysics Data System (ADS)

    Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai

    2016-08-01

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  17. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  18. Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device

    SciTech Connect

    Mueller, Knut; Rosenauer, Andreas; Ryll, Henning; Ordavo, Ivan; Ihle, Sebastian; Soltau, Heike; Strueder, Lothar; Volz, Kerstin; Zweck, Josef

    2012-11-19

    A high-speed direct electron detection system is introduced to the field of transmission electron microscopy and applied to strain measurements in semiconductor nanostructures. In particular, a focused electron probe with a diameter of 0.5 nm was scanned over a fourfold quantum layer stack with alternating compressive and tensile strain and diffracted discs have been recorded on a scintillator-free direct electron detector with a frame time of 1 ms. We show that the applied algorithms can accurately detect Bragg beam positions despite a significant point spread each 300 kV electron causes during detection on the scintillator-free camera. For millisecond exposures, we find that strain can be measured with a precision of 1.3 Multiplication-Sign 10{sup -3}, enabling, e.g., strain mapping in a 100 Multiplication-Sign 100 nm{sup 2} region with 0.5 nm resolution in 40 s.

  19. Pilot Study of a New Adjustable Thermoplastic Mandibular Advancement Device for the Management of Obstructive Sleep Apnoea-Hypopnoea Syndrome: A Brief Research Letter

    PubMed Central

    El Ibrahimi, Mohammed; Laabouri, Mounir

    2016-01-01

    Background: Prefabricated adjustable thermoplastic mandibular advancement devices (PAT-MADs) are a practical short-term treatment for obstructive sleep apnoea-hypopnoea syndrome (OSAHS) in patients who have failed or refused continuous positive airway pressure (CPAP) therapy. Objective: To assess the effectiveness of a new professionally-fitted PAT-MAD in patients with OSAHS in Morocco. Method: Twenty-four adults with mild, moderate or severe OSAHS were fitted with the PAT-MAD (BluePro®; BlueSom, France). Respiratory parameters (apnoea-hypopnoea index (AHI), oxygen desaturation index (ODI)) and daytime sleepiness using the Epworth Sleepiness scale (ESS) were assessed before and after treatment. Adverse events were recorded. Results: Mean treatment duration was 106.3 ± 73.4 days. Mean AHI score decreased from 21.4 ± 7.4 to 9.3 ± 4.1 after treatment (p<0.0001) (mean reduction of 57.0 ± 12.3%). Mean ESS and ODI also decreased at EOS (from 10.4 ± 2.8 to 7.3 ± 2.3, mean reduction 30.3 ± 12.2%, p=0.0001; and 7.0 ± 6.9 to 4.7 ± 4.0, mean reduction 30.5 ± 25.0%, p=0.2, respectively). Treatment was considered to have been successful in 22 patients (91.7%) who had mild OSAHS or an AHI score of ≤5 at the end of the study. The device was well-tolerated. Conclusion: This new PAT-MAD appears to be effective at reducing respiratory parameters and improving daytime alertness in patients with OSAHS. Long term studies in a larger number of patients are warranted to assess the long-term efficacy, retention and side-effects of this device. PMID:27499821

  20. 77 FR 11588 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... COMMISSION Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof AGENCY: U... capturing and transmitting images and components thereof by reason of infringement of certain claims of U.S... capturing and transmitting images and components thereof by reason of infringement of one or more of...

  1. 76 FR 55944 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... filed by S3 Graphics Co. Ltd. and S3 Graphics Inc. (collectively, ``S3G''). 75 FR 38118 (July 1, 2010... 21, 2005, 70 FR 43251 (July 26, 2005). During this period, the subject articles would be entitled to... COMMISSION In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof,...

  2. 77 FR 4059 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... COMMISSION Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Receipt... Images, and Components Thereof, DN 2869; the Commission is soliciting comments on any public interest... for capturing and transmitting images, and components thereof. The complaint names Apple Inc....

  3. 76 FR 73677 - Investigations: Terminations, Modifications and Rulings: Certain Electronic Devices With Image...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    .... (collectively, ``S3G''). 75 FR 38118 (July 1, 2010). The complaint alleged violations of section 337 of the... COMMISSION Investigations: Terminations, Modifications and Rulings: Certain Electronic Devices With Image... Apple violated section 337. Specifically, the ALJ found that Apple computers utilizing an...

  4. 78 FR 16531 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Eastman Kodak Company of Rochester, New York. 77 FR 11588-89 (Feb. 27, 2012). The complaint alleges a... COMMISSION Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof... images, and components thereof. The complaint further alleges that an industry in the United...

  5. 76 FR 58841 - Certain Digital Televisions and Components Thereof, and Certain Electronic Devices Having a Blu...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... FR 12994-5 (Mar. 9, 2011). The complaints allege violations of section 337 of the Tariff Act of 1930...-Ray Disc Player and Components Thereof; Notice of Commission Determination Not To Review an Initial...; and 5,923,711, and of certain electronic devices having a Blu-Ray disc player and components...

  6. Subterahertz acoustical pumping of electronic charge in a resonant tunneling device.

    PubMed

    Young, E S K; Akimov, A V; Henini, M; Eaves, L; Kent, A J

    2012-06-01

    We demonstrate that controlled subnanosecond bursts of electronic charge can be transferred through a resonant tunneling diode by successive picosecond acoustic pulses. The effect exploits the nonlinear current-voltage characteristics of the device and its asymmetric response to the compressive and tensile components of the strain pulse. This acoustoelectronic pump opens new possibilities for the control of quantum phenomena in nanostructures. PMID:23003634

  7. Five Ways to Hack and Cheat with Bring-Your-Own-Device Electronic Examinations

    ERIC Educational Resources Information Center

    Dawson, Phillip

    2016-01-01

    Bring-your-own-device electronic examinations (BYOD e-exams) are a relatively new type of assessment where students sit an in-person exam under invigilated conditions with their own laptop. Special software restricts student access to prohibited computer functions and files, and provides access to any resources or software the examiner approves.…

  8. 78 FR 2437 - Corrected: Certain Cases For Portable Electronic Devices; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Cases For Portable Electronic Devices, DN 2927; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR...

  9. 77 FR 15390 - Certain Mobile Electronic Devices Incorporating Haptics; Receipt of Amended Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ...Notice is hereby given that the U.S. International Trade Commission has received an amended complaint entitled Certain Mobile Electronic Devices Incorporating Haptics, DN 2875; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR...

  10. 78 FR 116 - Certain Cases for Portable Electronic Devices: Notice of Receipt of Complaint; Solicitation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Cases For Portable Electronic Devices, DN 2927; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR...

  11. 77 FR 24764 - Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... published February 24, 2012, at 77 FR 11200, is extended. You should submit your comments early enough to... Register published on April 11, 2000 (65 FR 19477-78) or you may visit http://DocketInfo.dot.gov... proposing voluntary NHTSA Driver Distraction Guidelines for in-vehicle electronic devices (77 FR 11200)....

  12. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Music Players, and Computers, and Components Thereof; Notice of Institution of Investigation AGENCY: U.S... tablets, portable music players, and computers, and components thereof by reason of infringement of... importation of certain electronic devices, including mobile phones, mobile tablets, portable music...

  13. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    SciTech Connect

    Kruszyna, Marta

    2010-01-05

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.

  14. 78 FR 16707 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE... AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Devices Having...

  15. 77 FR 75189 - Certain Electronic Devices Having a Retractable USB Connector; Termination of an Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    .... 77 FR 31039-40 (Aug. 12, 2011). The notice of investigation named more than forty respondents. The... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices Having a Retractable USB Connector; Termination of an...

  16. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  17. 75 FR 59197 - Hazardous Materials: Limiting the Use of Electronic Devices by Highway

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Distractions (Safety Advisory Notice No.10-5)'' on August 3, 2010 (75 FR 45697) to alert the hazardous... Docket FMCSA-2009-0370 (75 FR 16391). The final rule prohibits texting by CMV drivers operating in... ``texting'' in Sec. 383.5 (75 FR 16403) as follows: Electronic device includes, but is not limited to,...

  18. 75 FR 39971 - In the Matter of Certain Electronic Imaging Devices; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Electronic Imaging Devices; Notice of Investigation AGENCY: U.S... that information on this matter can be obtained by contacting the Commission's TDD terminal on...

  19. Electronic Device of Didactic and Electrometric Interest for the Study of RLC Circuits.

    ERIC Educational Resources Information Center

    Rodriguez, Angel L. Perez; And Others

    1979-01-01

    Presents a method of studying RLC circuits with the help of the oscilloscope in the XYZ mode, complemented by an electronic device which generates a marker-trace on the screen and which is used to measure frequencies without the need of a reference point on the screen. (Author/GA)

  20. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  1. 76 FR 79708 - Certain Portable Electronic Devices And Related Software; Submission for OMB Review; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... Corporation (``HTC'') of Taiwan. 75 FR 34,484-85 (June 17, 2010). The complaint alleged violations of the... Commission's action. See Presidential Memorandum of July 21, 2005, 70 FR 43251 (July 26, 2005). During this... COMMISSION Certain Portable Electronic Devices And Related Software; Submission for OMB Review;...

  2. 77 FR 11157 - Certain Portable Electronic Devices and Related Software; Final Determination Finding No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... Corporation (``HTC'') of Taiwan. 75 FR 34,484-85 (June 17, 2010). The complaint alleged violations of the... and requested briefing on nine issues, and on remedy, the public interest and bonding. 76 FR 79708-09... COMMISSION Certain Portable Electronic Devices and Related Software; Final Determination Finding No...

  3. 78 FR 71643 - Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... (collectively ``Complainants''). 77 FR 51572-573 (August 24, 2012). The complaint alleges violations of section... 21, 2005, 70 FR 43251 (July 26, 2005). During this period, the subject articles would be entitled to... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination...

  4. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    NASA Astrophysics Data System (ADS)

    Kruszyna, Marta

    2010-01-01

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The ewaluation of dosimetric verification for various organ, during a 2 year period is given.

  5. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN 2958; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and......

  6. 76 FR 10771 - Hazardous Materials: Limiting the Use of Electronic Devices by Highway

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ...'' on an electronic device while driving a CMV in interstate commerce (75 FR 4305). The guidance...-2009-0370 (75 FR 16391). The final rule prohibits texting by CMV drivers operating in interstate... Rulemaking in the Federal Register (75 FR 16391). FMCSA reviewed the over 400 public comments submitted...

  7. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    NASA Astrophysics Data System (ADS)

    Do, Van-Nam

    2014-09-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes.

  8. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    NASA Astrophysics Data System (ADS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-09-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  9. TASER® Electronic Control Device-Induced Rhabdomyolysis and Renal Failure: A Case Report

    PubMed Central

    Ahmad, Ibrahim

    2015-01-01

    Many law enforcement agencies around the United States are employing the use of TASER® electronic control devices (TASER® International Inc.) to subdue combative suspects. Since its inception the TASER® has had a temporal association with reports of rhabdomyolysis. Case reports have reported TASER® induced rhabdomyolysis as mild but serious cases have also been reported. Herein we present the case of a single patient who was admitted to our health network with severe rhabdomyolysis after receiving TASER® shocks and review the pertinent literature. No direct link has been established between clinically significant rhabdomyolysis and TASER® device application but this case serves as an example of a sparsely documented but serious complication that may occur in patients who are at risk for restraint by an electronic control device. PMID:26557540

  10. TASER(®) Electronic Control Device-Induced Rhabdomyolysis and Renal Failure: A Case Report.

    PubMed

    Gleason, James Benjamin; Ahmad, Ibrahim

    2015-10-01

    Many law enforcement agencies around the United States are employing the use of TASER(®) electronic control devices (TASER(®) International Inc.) to subdue combative suspects. Since its inception the TASER(®) has had a temporal association with reports of rhabdomyolysis. Case reports have reported TASER(®) induced rhabdomyolysis as mild but serious cases have also been reported. Herein we present the case of a single patient who was admitted to our health network with severe rhabdomyolysis after receiving TASER(®) shocks and review the pertinent literature. No direct link has been established between clinically significant rhabdomyolysis and TASER(®) device application but this case serves as an example of a sparsely documented but serious complication that may occur in patients who are at risk for restraint by an electronic control device. PMID:26557540

  11. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    SciTech Connect

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  12. Metamorphopsia and letter recognition

    PubMed Central

    Wiecek, Emily; Dakin, Steven C.; Bex, Peter

    2014-01-01

    Acuity is the most commonly used measure of visual function, and reductions in acuity are associated with most eye diseases. Metamorphopsia—a perceived distortion of visual space—is another common symptom of visual impairment and is currently assessed qualitatively using Amsler (1953) charts. In order to quantify the impact of metamorphopsia on acuity, we measured the effect of physical spatial distortion on letter recognition. Following earlier work showing that letter recognition is tuned to specific spatial frequency (SF) channels, we hypothesized that the effect of distortion might depend on the spatial scale of visual distortion just as it depends on the spatial scale of masking noise. Six normally sighted observers completed a 26 alternate forced choice (AFC) Sloan letter identification task at five different viewing distances, and the letters underwent different levels of spatial distortion. Distortion was controlled using spatially band-pass filtered noise that spatially remapped pixel locations. Noise was varied over five spatial frequencies and five magnitudes. Performance was modeled with logistic regression and worsened linearly with increasing distortion magnitude and decreasing letter size. We found that retinal SF affects distortion at midrange frequencies and can be explained with the tuning of a basic contrast sensitivity function, while object-centered distortion SF follows a similar pattern of letter object recognition sensitivity and is tuned to approximately three cycles per letter (CPL). The interaction between letter size and distortion makes acuity an unreliable outcome for metamorphopsia assessment. PMID:25453116

  13. The Business Letter.

    ERIC Educational Resources Information Center

    Nederland Independent School District, TX.

    GRADES OR AGES: Grades 9-12. SUBJECT MATTER: Business. ORGANIZATION AND PHYSICAL APPEARANCE: This guide, designed for direct student use, indicates the parts of a business letter, a placement guide, and steps for typing letters. Worksheets and illustrations indicate forms of block and indented styles; open, closed, and mixed punctuation; the…

  14. Letters from a Suicide

    ERIC Educational Resources Information Center

    Barnes, Donna Holland; Lawal-Solarin, Foluso Williams; Lester, David

    2007-01-01

    There has been no published study on personal letters written before an individual's suicidal death hitherto, although studies have been done using diaries. The purpose of this study was to search for trends in the use of particular linguistic categories in a series of personal letters written before an individual's suicidal death. A linguistic…

  15. Research on the the device of non-angular vibration for opto-electronic platform

    NASA Astrophysics Data System (ADS)

    An, Yuan; Song, Chun-peng; Kuang, Rong-jun; Jin, Guang

    2010-10-01

    The opto-electronic platform is the main equipment for aviation reconnaissance. It is a surveillance system with the function of search, recognition orientation and tracking by opto- electronic instruments. It is made up of opto- electronic instruments which are used to get high quality image , and stabilization tracking system to control stabilization and gesture of platform for exact tracking. The opto-electronic platform purpose is to achieve high quality image. Besides the impact of optic system, the image quality of the system is influenced greatly in the vibration environment .The research worked by Zhao peng which demonstrated the affection caused by angular vibration was worse than which caused by line vibration, and what was multiplied direct ratio with plane altitude. So it is necessary to design a new device which could be used widely and has good angular vibration isolation effect. According to the theory of parallelogram, the non-angular vibration device had been designed with spatial links, and the theory of non-angular vibration was analyzed. The three-dimensional model was set with UG, the analysis was done by ADAMS/vibration software. The acceleration and displacement response of the device in each direction was calculated by inspiriting it with sine wave of the acceleration in three directions, and the stiffness and damp were studied. All the work prove the design principle of the device is reasonable, and the device is adopted to keep the platform motion moving horizontally, at the meantime the device is good at isolating vibration in all directions.

  16. Heterogeneous integration technology for hybrid optoelectronic and electronic device and module fabrication

    NASA Astrophysics Data System (ADS)

    Jin, Michael Sungchun

    Various forms of optical computing architectures have promised enhanced processing capabilities well beyond the limits of traditional VLSI technology during the past decade. However, the progress toward realizing this vision has been severely limited by the lack of mature technology to fabricate heterogeneously integrated optoelectronic transceiver arrays (consisting of VLSI electronics with optoelectronic devices) that are necessary to link the functionality of photonic input/output devices with electronic processors. This dissertation describes a research effort that addressed this need by exploring innovative, yet highly manufacturable integration approaches that can be utilized to fabricate hybrid optoelectronic transceivers by integrating thin silicon device layers on bulk electro-optic (e.g. lead lanthanum zirconate titanate- PLZT) and other host substrates. The two integration techniques developed are: (1) B& P (Bond and Processing) technology involving bonding of bulk-quality thin silicon layer to PLZT followed by low temperature NMOS processing and (2) DDB (Direct-Device Bonding) technology, where circuit layer fabricated in SOI-silicon is thinned and bonded directly to a PLZT substrate. Characteristics of electronic circuits and modulators in integrated Si/PLZT SLMs are measured to be comparable to that of reference devices fabricated in bulk silicon and PLZT substrates. The application of the developed integration technology specifically toward fabricating Si/PLZT spatial light modulator is examined in detail. The developed device layer grafting technology based on chemo-mechanical lapping and reactive ion etching processes can be applied to assemble miniature ``mixed technology'' systems consisting of devices fabricated by different manufacturing processes (e.g. CMOS, MEMS, VCSEL and GaAs processes) in a monolithic fashion. The latter half of the thesis details experimental

  17. A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires

    NASA Astrophysics Data System (ADS)

    Saranti, Konstantina; Alotaibi, Sultan; Paul, Shashi

    2016-06-01

    The work described in this paper focuses on the utilisation of silicon nanowires as the information storage element in flash-type memory devices. Silicon nanostructures have attracted attention due to interesting electrical and optical properties, and their potential integration into electronic devices. A detailed investigation of the suitability of silicon nanowires as the charge storage medium in two-terminal non-volatile memory devices are presented in this report. The deposition of the silicon nanostructures was carried out at low temperatures (less than 400 °C) using a previously developed a novel method within our research group. Two-terminal non-volatile (2TNV) memory devices and metal-insulator-semiconductor (MIS) structures containing the silicon nanowires were fabricated and an in-depth study of their characteristics was carried out using current-voltage and capacitance techniques.

  18. A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires.

    PubMed

    Saranti, Konstantina; Alotaibi, Sultan; Paul, Shashi

    2016-01-01

    The work described in this paper focuses on the utilisation of silicon nanowires as the information storage element in flash-type memory devices. Silicon nanostructures have attracted attention due to interesting electrical and optical properties, and their potential integration into electronic devices. A detailed investigation of the suitability of silicon nanowires as the charge storage medium in two-terminal non-volatile memory devices are presented in this report. The deposition of the silicon nanostructures was carried out at low temperatures (less than 400 °C) using a previously developed a novel method within our research group. Two-terminal non-volatile (2TNV) memory devices and metal-insulator-semiconductor (MIS) structures containing the silicon nanowires were fabricated and an in-depth study of their characteristics was carried out using current-voltage and capacitance techniques. PMID:27279431

  19. A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires

    PubMed Central

    Saranti, Konstantina; Alotaibi, Sultan; Paul, Shashi

    2016-01-01

    The work described in this paper focuses on the utilisation of silicon nanowires as the information storage element in flash-type memory devices. Silicon nanostructures have attracted attention due to interesting electrical and optical properties, and their potential integration into electronic devices. A detailed investigation of the suitability of silicon nanowires as the charge storage medium in two-terminal non-volatile memory devices are presented in this report. The deposition of the silicon nanostructures was carried out at low temperatures (less than 400 °C) using a previously developed a novel method within our research group. Two-terminal non-volatile (2TNV) memory devices and metal-insulator-semiconductor (MIS) structures containing the silicon nanowires were fabricated and an in-depth study of their characteristics was carried out using current-voltage and capacitance techniques. PMID:27279431

  20. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.