Science.gov

Sample records for electron impact collision

  1. Electron Impact Collision Strength in Si IX

    NASA Astrophysics Data System (ADS)

    Noman, Hala; Gokce, Y.; Nahar, Sultana; Pradhan, Anil

    2016-05-01

    Results from work in progress under Iron Project on the electron impact excitation collision strengths and rate coefficients for transitions between the fine-structure levels of the 2s2 2p2 , 2 s 2p3 , 2p4 , 2s2 2 p 3 s , 2s2 2 p 3 p , and 2s2 2 p 3 d configurations in Si IX will be presented. The fine structure collision strength has been calculated at very fine energy mesh using relativistic effects in Breit-Pauli R-matrix method. Maxwellian averaged collision strengths have been tabulated for all possible transitions among all 46 enrgy levels. We made comparisions of our results with the previously reported results in the literature and found significant differences in low the temperature range (Te < 106 K) for few of the transitions. The correction to the previous reported values results due to more extensive expansion for Si IX target states.

  2. Electron impact collision strengths in Ne VII

    SciTech Connect

    Di, L.; Shi, J.R.; Zhao, G.

    2012-07-15

    The lines of Ne VII have been observed in many astronomical objects, and some transitions from high energy levels were observed both in Seyfert galaxies and stellar coronae. Thus, the atomic data for these transitions are important for modeling. Using the code FAC we calculated the collision strengths based on the distorted-wave method with large configuration interactions included. The Maxwellian averaged effective collision strengths covering the typical temperature range of astronomical and laboratory hot plasmas are presented. We extend the calculation of the energy levels to n=4 and 5. The energy levels, wavelengths, spontaneous transition rates, weighted oscillator strengths, and effective collision strengths were reported. Compared with the results from experiment or previous theoretical calculations a general agreement is found. It is found that the resonance effects are important in calculating the effective collision strengths.

  3. Electron impact collision strengths for excitation of highly charged ions

    SciTech Connect

    Sampson, D.H. . Dept. of Astronomy and Astrophysics)

    1990-08-20

    The principle task given us by the Lawrence Livermore National Laboratory (LLNL) to perform under Subcontract 6181405 was to develop a method and corresponding computer programs to make very rapid, yet accurate, fully relativistic and quasirelativistic calculations of cross sections or collision strengths for electron impact excitation of highly charged ions with any value for the nuclear charge number Z. Also while this major code development was being done we were asked to calculate cross sections of interest using our previous rapid, more approximate codes, which used hydrogenic basis functions and screening constants with both the electron-electron Coulomb interaction and relativistic interactions included by perturbation theory. We were also asked to determine the branching ratio for ionization to various final states in complex cases, where two or more states corresponding to the final configuration of the ion were possible.

  4. Electron impact excitation collision strengths for extreme ultraviolet lines of Fe VII

    SciTech Connect

    Tayal, S. S.; Zatsarinny, O. E-mail: oleg.zatsarinny@drake.edu

    2014-06-10

    Extensive calculations have been performed for electron impact excitation collision strengths and oscillator strengths for the Fe VII extreme ultraviolet lines of astrophysical importance. The collision strengths for fine-structure transitions are calculated in the B-spline Breit-Pauli R-matrix approach. The target wavefunctions have been calculated in the multiconfiguration Hartree-Fock method with term-dependent non-orthogonal orbitals. The close-coupling expansion includes 189 fine-structure levels of Fe VII belonging to terms of the ground 3p {sup 6}3d {sup 2} and excited 3p {sup 5}3d {sup 3}, 3p {sup 6}3d4l, 3p {sup 6}3d5s, and 3p {sup 6}3d5p configurations. The effective collision strengths are determined from the electron excitation collision strengths by integration over a Maxwellian distribution of electron velocities. The effective collision strengths are provided for 17766 fine-structure transitions at electron temperatures from 10{sup 4} to 10{sup 7} K. Our results normally agree with the previous R-matrix frame-transformation calculations by Witthoeft and Badnell. However, there are important differences for some transitions with the previous calculations. The corrections to the previous results are mainly due to more extensive expansions for the Fe VII target states.

  5. Electron impact collision strengths in Si IX, Si X, and Si XI

    SciTech Connect

    Liang Guiyun; Zhao Gang . E-mail: gzhao@bao.ac.cn; Zeng Jiaolong

    2007-05-15

    Electron impact collision strengths among 560 levels of Si IX, 320 levels of Si X, and 350 levels of Si XI have been calculated using the Flexible Atomic Code of Gu [M.F. Gu, Astrophys. J. 582 (2003) 1241]. Collision strengths {omega} at 10 scattered electron energies, namely 10, 50, 100, 200, 400, 600, 800, 1000, 1500, and 2000 eV, are reported. Assuming a Maxwellian energy distribution, effective collision strengths Y are obtained on a finer electron temperature grid of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 MK, which covers the typical temperature range of astrophysical hot plasmas. Additionally, radiative rates A and weighted oscillator strengths gf are given for the more probable transitions among these levels. Comparisons of our results with available predictions reported in earlier literature are made and the accuracy of the data is assessed. Most transitions exhibit a good agreement, but large differences in gf appear for a few cases, which are due to the different configuration interactions included in different theoretical calculations. For excitations among levels of the ground and lower excited configurations, large discrepancies of Y may have resulted from the consideration of resonance effects in earlier works.

  6. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    SciTech Connect

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  7. Effective collision strengths for electron impact excitations in S II. [Plasma torus of Io

    SciTech Connect

    Tayal, S.S.; Henry, R.J.W.; Nakazaki, S.

    1987-02-01

    Electron impact collision strengths for forbidden, semiforbidden, and allowed transitions in S II calculated using the R-matrix method are presented. Configuration interaction wave functions are used to represent the six target states included in the calculation. At low impact energies the collision strengths are dominated by resonances for several transitions. The contribution from higher partial waves is obtained in the close-coupling approximation with exchange terms omitted. Results are presented for the effective collision strengths over a wide temperature range (5000-150,000 K) of astrophysical interest. The present results for the 4S(0) yields 2P(0) transition are 20-30 percent lower than previous calculations, while for the 4S(0) yields 2D(0) transition they are in good agreement. The results are approximately 30 percent higher than those of Ho and Henry (1983) for the 4S(0) yields 2P(0) transition at 80,000 K, and the difference between the two results increases with decreasing temperatures (under 80,000 K). 38 references.

  8. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  9. Electron-atom /molecule/ collision processes

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1980-01-01

    Electron-atom (molecule) collision processes at low and intermediate energies, from near threshold to a few hundred electron volts, are discussed. Attention is given to experimental techniques and procedures, electron impact cross sections, impact excitation and electron-atom scattering in laser fields. Specific examples are presented that illustrate various experimental techniques and interpretations of observations.

  10. Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Fainstein, Pablo D.; Lima, Marco Aurelio P.; Miraglia, Jorge E.; Montenegro, Eduardo C.; Rivarola, Roberto D.

    2006-11-01

    ionization of fixed in space deuterium molecules / T. Weber ... [et al.]. Coherence and intramolecular scattering in molecular photoionization / U. Becker. Experimental observation of interatomic coulombic decay in neon dimers / T. Jahnke ... [et al.]. Ionization by short UV laser pulses: secondary ATI peaks of the electron spectrum / V. D. Rodríguez, E. Cormier and R. Gayet. Molecular frame photoemission in photoionization of H[symbol] and D[symbol]: the role of dissociation on autoionization of the Q[symbol] and Q[symbol] doubly excited states / D. Dowek, M. Lebech and J. C. Houver. 3p photoemission of 3d transition metals - atoms, molecules and clusters / M. Martins -- Collisions involving electrons. Spin-resolved collisions of electrons with atoms and molecules / G. F. Hanne. Calculation of ionization and excitation processes using the convergent close-coupling method / D. V. Fursa, I. Bray and A. T. Stelbovics. The B-spline R-matrix method for electron and photon collisions with atoms and ions / O. Zatsarinny and K. Bartschat. Absolute angle-differential cross sections for excitation of neon atoms electrons of energy 16.6-19.2 eV / M. Allan ... [et al.]. Studies of QED and nuclear size effects with highly charged ions in an EBIT / J. R. Crespo López-Urrutia ... [et al.]. Recombination of astrophysically relevant ions: Be-like C, N, and O / M. Fogle ... [et al.]. Dissociation and excitation of molecules and molecular ions by electron impact / A. E. Orel and J. Royal state-selective X-ray study of the radiative recombination of U[symbol] ions with cooling electrons / M. Pajek ... [et al.]. Electron collisions with trapped, metastable helium / L. J. Uhlmann ... [et al.]. Non-dipole effects in electron and photon impact ionization / N. L. S. Martin. Electron driven processes in atmospheric behaviour / L. Campbell, M. J. Brunger and P. J. 0. Teubner. Calculation of excitation and ionization for electron-molecule collisions at intermediate energies / J. D. Gorfinkiel

  11. Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Fainstein, Pablo D.; Lima, Marco Aurelio P.; Miraglia, Jorge E.; Montenegro, Eduardo C.; Rivarola, Roberto D.

    2006-11-01

    ionization of fixed in space deuterium molecules / T. Weber ... [et al.]. Coherence and intramolecular scattering in molecular photoionization / U. Becker. Experimental observation of interatomic coulombic decay in neon dimers / T. Jahnke ... [et al.]. Ionization by short UV laser pulses: secondary ATI peaks of the electron spectrum / V. D. Rodríguez, E. Cormier and R. Gayet. Molecular frame photoemission in photoionization of H[symbol] and D[symbol]: the role of dissociation on autoionization of the Q[symbol] and Q[symbol] doubly excited states / D. Dowek, M. Lebech and J. C. Houver. 3p photoemission of 3d transition metals - atoms, molecules and clusters / M. Martins -- Collisions involving electrons. Spin-resolved collisions of electrons with atoms and molecules / G. F. Hanne. Calculation of ionization and excitation processes using the convergent close-coupling method / D. V. Fursa, I. Bray and A. T. Stelbovics. The B-spline R-matrix method for electron and photon collisions with atoms and ions / O. Zatsarinny and K. Bartschat. Absolute angle-differential cross sections for excitation of neon atoms electrons of energy 16.6-19.2 eV / M. Allan ... [et al.]. Studies of QED and nuclear size effects with highly charged ions in an EBIT / J. R. Crespo López-Urrutia ... [et al.]. Recombination of astrophysically relevant ions: Be-like C, N, and O / M. Fogle ... [et al.]. Dissociation and excitation of molecules and molecular ions by electron impact / A. E. Orel and J. Royal state-selective X-ray study of the radiative recombination of U[symbol] ions with cooling electrons / M. Pajek ... [et al.]. Electron collisions with trapped, metastable helium / L. J. Uhlmann ... [et al.]. Non-dipole effects in electron and photon impact ionization / N. L. S. Martin. Electron driven processes in atmospheric behaviour / L. Campbell, M. J. Brunger and P. J. 0. Teubner. Calculation of excitation and ionization for electron-molecule collisions at intermediate energies / J. D. Gorfinkiel

  12. Electron-electron collisions at TESLA

    NASA Astrophysics Data System (ADS)

    Schreiber, Siegfried; Reyzl, Ingrid

    2001-07-01

    Electron-electron collisions at the future TESLA linear collider is a promising complement to e+e- collisions. A critical issue for the physics potential of this option is the achievable luminosity. For e+e- collisions, the pinch effect enhances the luminosity, while due to the repelling forces for e-e- collisions, the luminosity is significantly reduced and is more sensitive to beam separations. This report discusses the e-e- option for TESLA and the expected luminosity.

  13. Cross sections of electron capture and electron capture ionization versus the impact parameter in collisions of a proton with multielectron atoms

    NASA Astrophysics Data System (ADS)

    Afrosimov, V. V.; Basalaev, A. A.; Ogurtsov, G. N.; Panov, M. N.

    2014-05-01

    The absolute differential cross sections of scattering of hydrogen atoms resulting from an electron capture and an electron capture ionization are measured for collisions of 4.5- and 11-keV protons with argon and xenon atoms. The range of scattering angles is 0°-2°. From the scattering differential cross section found experimentally, the probabilities of single-electron capture and electron capture ionization as a function of the impact parameter are calculated. The dependences of the incident particle scattering angle on the impact parameter (deviation function) for interactions with Ar and Xe atoms are calculated in terms of classical mechanics using the Moliére—Yukawa potential to describe the interaction of atomic particles. Analysis is given to the probabilities of electron capture and electron capture ionization versus the impact parameter and to the distribution of the electron density on different electron shells in a target atom versus a distance to the core. It is concluded that only electrons from the outer shell of the target atom are involved in the process of electron capture ionization. The cross section of electron capture ionization is calculated in the proton energy range 5-20 keV.

  14. Effective Collision Strengths for Electron Impact Excitation of Inelastic Transitions in S III

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1997-01-01

    We have calculated electron collisional excitation strengths for all electric dipole forbidden, semi-forbidden, and allowed transitions among the lowest 17 LS states 3s(exp 2)3p(exp 2) P-3, D-1, S-1, 3s3p(exp 3)S-5(exp 0), D-3(exp 0), P-3(exp 0), P-1(exp 0), S-3(exp 0), D-1(exp 0), 3S(exp 2)3p3d D-1(exp 0), F-3(exp 0), P-3(exp 0), D-3(exp 0), F-3(exp 0), P-1(exp 0), and 3S(exp 2)3p4S P-3(exp 0), P-l(exp 0) of S III using the R-matrix method. These S m states are represented by fairly extensive configuration-interaction wave functions that yield excited state energies in close agreement with recent laboratory measurements. Rydberg series of resonances converging to the excited state thresholds are explicitly included in the scattering calculation. The effective collision strengths are determined assuming Maxwellian distribution of electron energies. These are listed over a wide temperature range ([0.5-10] x 10(exp 4) K) and compared, where possible, with other available calculations. Subject headings: atomic data - atomic processes

  15. Electron-electron interactions in fast neutral-neutral collisions

    SciTech Connect

    DuBois, R.D. ); Manson, S.T. . Dept. of Physics and Astronomy)

    1992-11-01

    Differential electron emission is studied for 50--500 keV H[sup +] and H atom impact on helium. Using the first Born formulation, it is shown that projectile electron-target electron interactions are expected to dominate the differential cross sections for low energy target electron emission induced by fast neutral projectile impact on any target. Measurements of the 15[degrees] electron emission were made in order to investigate this prediction. For low impact energies, a constant ratio between the hydrogen atom and proton impact cross sections was found for emitted electron velocities less than half the projectile velocity, V[sub p] But as the collision energy increased, for electron velocities less than 0.25 V[sub p], the cross section ratio increased as the emitted electron velocity decreased. This is interpreted as a signature of projectile electron-target electron interactions becoming dominant for distant collisions between neutral particles.

  16. Electron-electron interactions in fast neutral-neutral collisions

    SciTech Connect

    DuBois, R.D.; Manson, S.T.

    1992-11-01

    Differential electron emission is studied for 50--500 keV H{sup +} and H atom impact on helium. Using the first Born formulation, it is shown that projectile electron-target electron interactions are expected to dominate the differential cross sections for low energy target electron emission induced by fast neutral projectile impact on any target. Measurements of the 15{degrees} electron emission were made in order to investigate this prediction. For low impact energies, a constant ratio between the hydrogen atom and proton impact cross sections was found for emitted electron velocities less than half the projectile velocity, V{sub p} But as the collision energy increased, for electron velocities less than 0.25 V{sub p}, the cross section ratio increased as the emitted electron velocity decreased. This is interpreted as a signature of projectile electron-target electron interactions becoming dominant for distant collisions between neutral particles.

  17. ELECTRON-IMPACT EXCITATION OF Cr II: A THEORETICAL CALCULATION OF EFFECTIVE COLLISION STRENGTHS FOR OPTICALLY ALLOWED TRANSITIONS

    SciTech Connect

    Wasson, I. R.; Ramsbottom, C. A.; Scott, M. P.

    2011-10-01

    In this paper, we present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for the complicated iron-peak ion Cr II. We consider specifically the allowed lines for transitions from the 3d {sup 5} and 3d {sup 4}4s even parity configuration states to the 3d {sup 4}4p odd parity configuration levels. The parallel suite of R-Matrix packages, RMATRX II, which have recently been extended to allow for the inclusion of relativistic effects, were used to compute the collision cross sections. A total of 108 LS{pi}/280 J{pi} levels from the basis configurations 3d {sup 5}, 3d {sup 4}4s, and 3d {sup 4}4p were included in the wavefunction representation of the target including all doublet, quartet, and sextet terms. Configuration interaction and correlation effects were carefully considered by the inclusion of seven more configurations and a pseudo-corrector 4d-bar type orbital. The 10 configurations incorporated into the Cr II model thus listed are 3d {sup 5}, 3d {sup 4}4s, 3d {sup 4}4p, 3d {sup 3}4s {sup 2}, 3d {sup 3}4p {sup 2}, 3d {sup 3}4s4p, 3d{sup 4}4d-bar, 3d{sup 3}4s4d-bar, 3d{sup 3}4p4d-bar, and 3d{sup 3}4d-bar{sup 2}, constituting the largest Cr II target model considered to date in a scattering calculation. The Maxwellian averaged effective collision strengths are computed for a wide range of electron temperatures 2000-100,000 K which are astrophysically significant. Care has been taken to ensure that the partial wave contributions to the collision strengths for these allowed lines have converged with 'top-up' from the Burgess-Tully sum rule incorporated. Comparisons are made with the results of Bautista et al. and significant differences are found for some of the optically allowed lines considered.

  18. Interpreting the Hydrogen IR Lines Impact of Improved Electron Collision Data

    NASA Astrophysics Data System (ADS)

    Przybilla, Norbert; Butler, Keith

    We evaluate the effect of variations in the electron-impact excitation cross sections on the non-LTE line formation for hydrogen in early-type stars. While the Balmer lines are basically unaffected by the choice of atomic data, the Brackett and Pfund series members allow us to discriminate between the different models. Non-LTE calculations based on the widely-used approximations of Mihalas, Heasley & Auer and of Johnson fail to simultaneously reproduce the observed optical and IR spectra over the entire parameter range. Instead, we recommend a reference model using data from ab-initio calculations up to principal quantum number n≤7 for quantitative work. This model is of general interest due to the ubiquity of the hydrogen spectrum.

  19. Electron Collisions with Large Molecules

    NASA Astrophysics Data System (ADS)

    McKoy, Vincent

    2006-10-01

    In recent years, interest in electron-molecule collisions has increasingly shifted to large molecules. Applications within the semiconductor industry, for example, require electron collision data for molecules such as perfluorocyclobutane, while almost all biological applications involve macromolecules such as DNA. A significant development in recent years has been the realization that slow electrons can directly damage DNA. This discovery has spurred studies of low-energy collisions with the constituents of DNA, including the bases, deoxyribose, the phosphate, and larger moieties assembled from them. In semiconductor applications, a key goal is development of electron cross section sets for plasma chemistry modeling, while biological studies are largely focused on understanding the role of localized resonances in inducing DNA strand breaks. Accurate calculations of low-energy electron collisions with polyatomic molecules are computationally demanding because of the low symmetry and inherent many-electron nature of the problem; moreover, the computational requirements scale rapidly with the size of the molecule. To pursue such studies, we have adapted our computational procedure, known as the Schwinger multichannel method, to run efficiently on highly parallel computers. In this talk, we will present some of our recent results for fluorocarbon etchants used in the semiconductor industry and for constituents of DNA and RNA. In collaboration with Carl Winstead, California Institute of Technology.

  20. Newly appreciated roles for electrons in ion-atom collisions

    SciTech Connect

    Sellin, I.A. . Dept. of Physics and Astronomy Oak Ridge National Lab., TN )

    1990-01-01

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies.

  1. Electron collisions with coherently prepared atomic targets

    SciTech Connect

    Trajmar, S.; Kanik, I.; LeClair, L.R.; Khakoo, M.S.; Bray, I.; Fursa, D.; Csanak, G.

    1998-02-01

    The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can be expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.

  2. Electron impact excitation of Mg VIII . Collision strengths, transition probabilities and theoretical EUV and soft X-ray line intensities for Mg VIII

    NASA Astrophysics Data System (ADS)

    Grieve, M. F. R.; Ramsbottom, C. A.; Keenan, F. P.

    2013-08-01

    Context. Mg viii emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg viii emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics. Aims: Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg viii ion. The 125 levels arise from the 2s22p, 2s2p2, 2p3, 2s23s, 2s23p, 2s23d, 2s2p3s, 2s2p3p, 2s2p3d, 2p23s, 2p23p and 2p23d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg viii models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 Å, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 Å) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data. Methods: The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg viii models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas. Results: The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the

  3. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  4. Multielectron transitions resulting from interactions between target and projectile electrons in ionizing collisions

    SciTech Connect

    Manson, S.T. ); DuBois, R.D. )

    1992-12-01

    Interactions between target and projectile electrons leading to ionization of one of the collision partners and simultaneous excitation of the other are investigated for fast clothed-particle--clothed-particle collisions. For H-atom impact, the first Born approximation is used to demonstrate that the low-energy-electron emission is dominated by electron-electron rather than by electron-nucleus interaction processes. For a broad class of structured particle collision systems, the electron-electron interaction is shown to play an important, non-neglibible, role. Doubly differential cross sections for energetic H-He collisions illustrate this point.

  5. Electron-exchange collisions with molecular open-shell targets

    NASA Astrophysics Data System (ADS)

    Holtkötter, I.; Hanne, G. F.

    2009-08-01

    Low-energy electron-exchange collisions with the simple open-shell molecules O2 , NO, and NO2 have been investigated by measuring the change in electron-spin polarization after scattering polarized electrons from unpolarized molecules with energies between 8 and 20 eV and scattering angles up to 130° . Results for elastic collisions with O2 and NO are compared with existing theories where the agreement is fair. Direct observation of spin-exchange collisions is obtained for elastic scattering from NO2 and for electron-impact excitation of O2 (6.1 eV energy loss). It is also shown that the results may be influenced by spin-orbit interaction, which was assumed to be negligible in previous studies.

  6. Electron-Atom Collisions in Gases

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  7. Electron-Nitrogen Collision Processes Relevant to Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Johnson, Paul

    2011-06-01

    Electron-N2 collisions play an important role in the nitrogen-rich upper atmospheres of Titan, Triton, and Earth. Modeling these processes requires accurate laboratory data. Despite the recognized importance of such data, there remained an unsatisfactory degree of consensus among much of the available laboratory collision cross section data. To address this situation, our group has devoted considerable effort over the past decade to improve the status of low energy electron collision data. In doing so, we have measured direct excitation cross sections for at least 17 electronic states of neutral N2 and a variety of key UV emission cross sections. Here we review the result of this effort, highlighting how the picture of electron collision processes has evolved, where consensus has been reached and where discrepancies still exist. New electron energy-loss measurements will be presented for excitation of the valence states, with finely spaced (<1eV) impact energy increments in the threshold-to-peak region where excitation is not in proportion to the Franck-Condon factors. These data are novel in that they include measurements at fixed electron scattering angles, differential in impact energy over a range of scattering angle. Also, new near-threshold integral cross sections are provided and compared to existing data.

  8. Molecular Dissociation Induced by Electron Collisions

    NASA Astrophysics Data System (ADS)

    Wolf, Andreas

    2009-05-01

    Free electrons can efficiently break molecules or molecular ions in low-energy collisions by the processes of dissociative recombination or attachment. These processes make slow electrons efficient chemical agents in many environments. For dissociative recombination, in particular, studies of the underlying reaction paths and mechanisms have become possible on a uniquely elementary level in recent years both for theory and experiment. On the experimental side, collisions can be prepared at resolved collision energies down to the meV (10 Kelvin) level, increasingly gaining control also over the initial molecular quantum level, and individual events are detected and kinematically analyzed by fast-beam coincidence fragment imaging. Experiments are reported from the ion cooler ring TSR in Heidelberg. Stored beams of molecular ions cooled in their external and internal degrees of freedom are collinearly merged with intense and cold electron beams from cryogenic GaAs photocathodes, recently shown to yield fast cooling of the center-of-mass motion also for heavy and correspondingly slow molecular ion beams. To reconstruct the molecular fragmentation events multiparticle imaging can now be used systematically with collision energies set a wide range, especially aiming at specific electron capture resonances. Thus, for CF^+ it is found that the electronic state of the C fragment (^3P or ^1D) switches resonantly when the collision energy is changed by only a small fraction. As a new powerful tool, an energy-sensitive multi-strip surface-barrier detector (EMU) has been set up to measure with near-unity efficiency the masses of all fragments together with their hit positions in high-multiplicity events. Among many uses, this device allows internal molecular excitations to be derived for individual chemical channels in polyatomic fragmentation. New results will be presented in particular on the breakup of the hydronium ion (D3O^+).

  9. Dynamics of electronically inelastic collisions from 3D Doppler measurements

    SciTech Connect

    Suits, A.G.; de Pujo, P.; Sublemontier, O.; Visticot, J.; Berlande, J.; Cuvellier, J.; Gustavsson, T.; Mestdagh, J.; Meynadier, P. ); Lee, Y.T. )

    1991-11-25

    Flux-velocity contour maps were obtained for the inelastic collision process Ba({sup 1}{ital P}{sub 1})+O{sub 2}N{sub 2}{r arrow}Ba({sup 3}{ital P}{sub 2})+O{sub 2}N{sub 2} from Doppler scans of scattered Ba({sup 3}{ital P}{sub 2}) taken over a range of probe laser directions in a crossed-beam experiment. Collision with O{sub 2} resulted in sharply forward scattered Ba({sup 3}{ital P}{sub 2}), with efficient conversion of inital electronic energy into O{sub 2} internal energy and little momentum transfer. Collision with N{sub 2} was dominated by wide-angle scattering with most of the available electronic energy appearing in product translation. The results suggest the importance of large-impact-parameter collisions and a near-resonant energy transfer in the case of O{sub 2}, while for N{sub 2} close collisions dominate despite the presence of an analogous near-resonant channel. The results represent the first direct experimental demonstration of a near-resonant quenching process.

  10. Progress in Computational Electron-Molecule Collisions

    NASA Astrophysics Data System (ADS)

    Rescigno, Tn

    1997-10-01

    The past few years have witnessed tremendous progress in the development of sophisticated ab initio methods for treating collisions of slow electrons with isolated small molecules. Researchers in this area have benefited greatly from advances in computer technology; indeed, the advent of parallel computers has made it possible to carry out calculations at a level of sophistication inconceivable a decade ago. But bigger and faster computers are only part of the picture. Even with today's computers, the practical need to study electron collisions with the kinds of complex molecules and fragments encountered in real-world plasma processing environments is taxing present methods beyond their current capabilities. Since extrapolation of existing methods to handle increasingly larger targets will ultimately fail as it would require computational resources beyond any imagined, continued progress must also be linked to new theoretical developments. Some of the techniques recently introduced to address these problems will be discussed and illustrated with examples of electron-molecule collision calculations we have carried out on some fairly complex target gases encountered in processing plasmas. Electron-molecule scattering continues to pose many formidable theoretical and computational challenges. I will touch on some of the outstanding open questions.

  11. Theory of Electron-Ion Collisions

    SciTech Connect

    Griffin, Donald C

    2009-10-02

    Collisions of electrons with atoms and ions play a crucial role in the modeling and diagnostics of fusion plasmas. In the edge and divertor regions of magnetically confined plasmas, data for the collisions of electrons with neutral atoms and low charge-state ions are of particular importance, while in the inner region, data on highly ionized species are needed. Since experimental measurements for these collisional processes remain very limited, data for such processes depend primarily on the results of theoretical calculations. Over the period of the present grant (January 2006 - August 2009), we have made additional improvements in our parallel scattering programs, generated data of direct fusion interest and made these data available on The Controlled Fusion Atomic Data Center Web site at Oak Ridge National Laboratory. In addition, we have employed these data to do collsional-radiative modeling studies in support of a variety of experiments with magnetically confined fusion plasmas.

  12. Cross Sections for Electron Collisions with Methane

    SciTech Connect

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  13. Pair production and electron capture in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Lee, R. J.; Mullan, J. V.; McCann, J. F.; Crothers, D. S.

    2001-06-01

    Results are presented for simulations of electron-positron pair production in relativistic heavy-ion collisions leading to electron capture and positron ejection. We apply a two-center relativistic continuum distorted-wave model to represent the electron or positron dynamics during the collision process. The results are compared with experimental cross-section data for La57+ and Au79+ impact on gold, silver, and copper targets. The theory is in good agreement with experiment for La57+ impact, verifying the result that the process increases in importance with both collision energy and target atomic number, and improves upon previous simulations of this process.

  14. Laser-Phase Dependence for Electron Capture in Laser-Assisted Proton -- Hydrogen Collisions

    NASA Astrophysics Data System (ADS)

    Niederhausen, Thomas; Thumm, Uwe

    2006-05-01

    We calculate electron capture probabilities for ion--atom collisions in a strong laser field (5x10^13 W/cm^2) by numerically solving the 3-dimensional time--dependent Schr"odinger equation. For circularly polarized laser fields and an impact energy of 1.2 keV, we find a substantial modification of the electronic dynamics in the p--H collision system as compared to field-free collisions. In particular, we observe a strong dependence on the laser phase and the impact parameter for electron capture, which can be explained using semi-classical arguments.

  15. Electron-ion collision operator in strong electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Fraiman, Gennadiy; Balakin, Alexey

    2012-10-01

    The pair electron-ion collision operator is found for the kinetic equation describing the one-particle drift distribution in strong electromagnetic fields [1]. The pair collisions are studied under the conditions when the oscillation velocity of an electron driven by an external electromagnetic wave is much larger than the electron drift velocity. The operator is presented in the Boltzmann form and describes collisions with both small and large changes of the particle momentum. In contrast with the Landau collision operator, which describes diffusion in the momentum space, the collision operator that we propose describes a new and very important effect, namely, Coulomb attraction of a wave-driven oscillating electron to an ion due to multiple returns of the electron to the same ion. This effect leads to a large increase of the collision cross-section of electron-ion collisions in strong laser fields, to increased efficiency of the Joule heating in plasma, to the generation of fast electrons through e-i collisions, etc. [4pt] [1] A. A. Balakin and G. M. Fraiman, Electron-ion collision operator in strong electromagnetic fields, EPL 93, 35001 (2011).

  16. Single electron capture in fast ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Milojević, Nenad

    2014-12-01

    Single-electron capture cross sections in collisions between fast bare projectiles and heliumlike atomic systems are investigated by means of the four-body boundary-corrected first Born (CB1-4B) approximation. The prior and post transition amplitudes for single charge exchange encompassing symmetric and asymmetric collisions are derived in terms of twodimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The dielectronic interaction V12 = 1/r12 = 1/|r1 - r2| explicitly appears in the complete perturbation potential Vf of the post transition probability amplitude T+if. An illustrative computation is performed involving state-selective and total single capture cross sections for the p - He (prior and post form) and He2+, Li3+Be4+B5+C6+ - He (prior form) collisions at intermediate and high impact energies. We have also studied differential cross sections in prior and post form for single electron transfer from helium by protons. The role of dynamic correlations is examined as a function of increased projectile energy. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.

  17. Entanglement creation in electron-electron collisions at solid surfaces

    NASA Astrophysics Data System (ADS)

    Feder, R.; Giebels, F.; Gollisch, H.

    2015-08-01

    For spin-polarized low-energy electrons impinging on a crystalline surface, an important reaction channel is the collision with a bound valence electron of opposite spin, followed by the emission of a correlated electron pair with antiparallel spins. While primary and valence electrons are not entangled, the screened Coulomb interaction generates spin entanglement between the two outgoing electrons. As a quantitative measure of this entanglement, we calculated a modified von Neumann entropy in terms of direct and exchange transition matrix elements. For coplanar symmetric setups with equal energies of antiparallel-spin electrons, maximal entanglement is analytically shown to occur quite universally, irrespective of the choice of the primary electron energy, the outgoing electron energy, and polar emission angle, and even of the choice of the surface system. Numerical results for Fe(110) and Cu(111) demonstrate first that strong entanglement can persist for unequal energies and second that an overall entanglement reduction due to nonentangled parallel-spin electrons can be avoided for ferromagnetic and even for nonmagnetic surfaces.

  18. Cross Sections for Electron Collisions with Carbon Monoxide

    SciTech Connect

    Itikawa, Yukikazu

    2015-03-15

    Cross section data are collected and reviewed for electron collisions with carbon monoxide. Collision processes included are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational and electronic states, ionization, and dissociation. For each process, recommended values of the cross sections are presented, when possible. The literature has been surveyed through to the end of 2013.

  19. Vibrational and Electronic Energy Transfer and Dissociation of Diatomic Molecules by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also

  20. Low-energy electron collisions with biomolecules

    NASA Astrophysics Data System (ADS)

    Winstead, Carl; McKoy, Vincent

    2012-11-01

    We report recent progress in applying the Schwinger multichannel computational method to the interactions of slow electrons with biomolecules. Calculations on constituents of DNA, including nucleobases, phosphate esters, and models of the backbone sugar, have provided insight into the nature of the low-energy shape resonances, and thereby into possible sites and mechanisms for electron attachment that may lead to strand-breaking. At the same time, more approximate calculations on larger assemblies such as nucleosides and deoxyadenosine monophosphate indicate how the resonance properties of the subunits will or will not persist in DNA itself. We are pursuing a similar strategy for another major class of biomolecules, the proteins, by beginning with fixed-nuclei studies of the constituent amino acids; here we present preliminary results for the simplest amino acid, glycine. We also describe efforts directed at an improved understanding electron collisions with alcohols, which, in addition to basic scientific interest, may prove useful in the modeling of ignition and combustion within biofuel-powered engines.

  1. Collision and impact simulations including porosity

    NASA Astrophysics Data System (ADS)

    Benz, Willy; Jutzi, Martin

    2007-05-01

    We present a numerical tool based on the Smooth Particle Hydrodynamic (SPH) method which can be used to model impacts and collisions involving small solid bodies in a strength-dominated regime. This method was already successfully tested at different scales. At small scales, the method was validated by simulating laboratory impacts. Our model predicts shapes, locations and velocities of the largest fragment with hight accuracy (Benz and Asphaug, 1994). A natural laboratory for studying collision physics at larger scales is provided by the twenty or more asteroid families identified in the asteroid belt. By simulating classes of collisions, our model was able to reproduce the main characteristics of such families (e.g. Michel et al. 2003). Spacecraft missions and ground-based observations are providing increasing evidence that many or even most asteroids are porous (Housenand Holsapple 2003). Porosity may also play an important role in the formation of planets as the dissipative properties of porous media will enhance the collisional sticking mechanism required to build planetesimals. We have developed a numerical model suitable for the calculation of shock dynamics and fracture In porous media. It is based on the so called P-alpha model (Herrmann 1969) which was adapted for implementation in our SPH impact code (Jutzi 2004). We are now capable of performing SPH simulations including fracture AND porosity and can report some very encouraging results. References: Benz and Asphaug (1994), Icarus 107, 98-116 Herrmann W. (1969), J. Appl. Phys. 40, 2490-2499 Michel P., Benz W, Richardson D.C. (2003), Nature 421, 608-611 Housen K.R. and Holsapple K.A., (2003) Icarus 163, 102- 119 Jutzi M. (2004), Diploma thesis, University of Bern.

  2. Determination of electron-nucleus collisions geometry with forward neutrons

    SciTech Connect

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  3. Will Allis Prize Talk: Electron Collisions - Experiment, Theory and Applications

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2016-05-01

    Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. In this talk, I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.

  4. Electron-impact spectroscopy

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1990-01-01

    The methods of electron impact spectroscopy and cross section measurements are discussed and compared to optical spectroscopy. A brief summary of the status of this field and the available data is given.

  5. Electron collisions with hydrogen-bonded complexes

    SciTech Connect

    Freitas, T. C.; Sanchez, S. d'A.; Bettega, M. H. F.; Varella, M. T. do N.

    2011-12-15

    We investigated elastic collisions of low-energy electrons with the hydrogen-bonded formic-acid dimer, formamide dimer, and formic-acid-formamide complex. We focused on how the {pi}{sup *} shape resonances of the isolated monomers are affected when bonded to another molecule. The scattering cross sections were computed with the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange-plus-polarization approximations, for energies ranging from 1 to 6 eV. The present results support the existence of two low-lying {pi}{sup *} shape resonances for the formic-acid dimer, as suggested in previous theoretical and experimental studies. We also found low-lying {pi}{sup *} shape resonances for the formamide dimer and for the formic-acid-formamide complex. For the dimers, the presence of a center of inversion is key to understanding how these resonances arise from linear combinations of the {pi}{sup *} anion states of the respective monomers. For the formic-acid-formamide complex, the resonances are more localized on each unit, lying at lower energies with respect to the isolated monomers. The present results suggest that if there is no delocalization of the {pi}{sup *} resonances over the pair for hydrogen-bonded molecules, then their positions would lie below those of the units.

  6. Low-energy electron collisions with thiophene

    NASA Astrophysics Data System (ADS)

    da Costa, R. F.; Varella, M. T. do N.; Lima, M. A. P.; Bettega, M. H. F.

    2013-05-01

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π* anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ* shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π* resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004), 10.1021/jp048759a]. The existence of the σ* shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998), 10.1088/0953-4075/31/11/004] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  7. Electron impact ionization of glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Ptasinska, Sylwia; Denifl, Stephan; Scheier, Paul; Märk, Tilmann D.

    2005-05-01

    Positive ion formation upon electron impact ionization of the monomeric and dimeric form of glycolaldehyde is studied with high electron energy resolution. In the effusive neutral beam of evaporated monomeric glycolaldehyde some ions with a mass larger than the monomer indicate the presence of weakly bound neutral dimers. The yield of all ions that originate from the electron impact ionization of these neutral dimers exhibit a strong temperature dependence that can be interpreted as being due to the formation of dimers via three body collisions and thermal decomposition of the dimeric form back into monomers at higher temperatures. Ion efficiency curves are measured and analyzed for the 10 most abundant product cations of monomeric glycolaldehyde. The appearance energies of the parent ion signals of the monomer and dimer of glycolaldehyde (10.2 and 9.51 eV, respectively) are lower than the appearance energy of the parent cation of the more complex sugar deoxyribose that was recently determined to be 10.51 eV.

  8. Mutual neutralization in H+ - H- collisions by electron capture

    NASA Astrophysics Data System (ADS)

    Mančev, Ivan; Milojević, Nenad; Belkić, Dževad

    2013-07-01

    State-selective and total cross-sections for single-electron capture from H- by H+ covering the incident energy range from 10 to 3000 keV are computed by means of the four-body boundary corrected first Born (CB1-4B) approximation. A crucial connection between the Coulomb-distorted asymptotic state in the entrance channel and the pertinent perturbation, which causes the transition in the H+ - H- collisions, is consistently used in our computations of the “prior” version of cross-sections. The obtained results from the CB1-4B method clearly outperform the earlier findings by the close-coupling methods for the same problem. Comparisons with the available measurements are carried out and excellent agreement with the CB1 method is recorded down to impact energies as low as 10 keV.

  9. Coincidence measurements of electron capture and loss in ion-atom collisions

    SciTech Connect

    DuBois, R.D.

    1990-09-01

    Collisions between fast, fully stripped projectiles and atomic targets predominantly result in target electrons being ejected to the continuum. For fast partially stripped projectiles which bring weakly bound electrons into the collision, projectile ionization can also contribute to the observed electron spectra. At lower impact velocities, electron capture by the projectile ion becomes important and higher order processes, often referred to as transfer ionization, can be a significant source of free electrons. In recent years, coincidence techniques have been used to evaluate the relative importance of electron capture and loss in free electron production, to separate the capture and loss contributions from those resulting from target ionization alone, and to provide more detailed information about electron capture and loss mechanisms than is available from total cross section measurements. A brief survey of these experiments will be presented. 23 refs., 9 figs.

  10. Multiple-electron processes in fast ion-atom collisions

    SciTech Connect

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs.

  11. The role of prompt electrons in the post-collision effect in fast ion - atom collisions

    NASA Astrophysics Data System (ADS)

    Víkor, Gy; Ricz, S.; Kövér, Á.; Gulyás, L.; Pelicon, P.; Sulik, B.

    1997-10-01

    The influence of the post-collision Coulomb effect of direct-electrons on the Auger-line energy shift has been studied in fast proton - atom collisions. KLL and LMM Auger spectra of neon and krypton target have been measured and analysed with high precision. The semiclassical theory of the post-collision interaction (PCI) has been extended to include the effect of both the receeding projectile ion and the ejected prompt electron. Experimental and theoretical line-energy shifts exhibit a reasonable agreement in the entire angular range of the Auger emission. In a narrow cone around 0953-4075/30/19/020/img9, the line-energy shift is influenced mainly by the PCI with the projectile ion, while at backward angles, it is predominantly governed by the ejected electron - Auger - electron interaction.

  12. Dynamical resonant electron capture in atom surface collisions: H- formation in H-Al(111) collisions

    NASA Astrophysics Data System (ADS)

    Borisov, A. G.; Teillet-Billy, D.; Gauyacq, J. P.

    1992-05-01

    The formation of H- ion by grazing-angle collisions of hydrogen on an Al(111) surface is investigated with the newly developed coupled angular mode method. The capture process involves a dynamical resonant process induced by the collision velocity. All the resonance properties of the H- level in front of an Al(111) surface are determined: position, width, and angular distribution of ejected electrons. The results are shown to account for the recent observations on H- formation by Wyputta, Zimny, and Winter.

  13. On the quantum Landau collision operator and electron collisions in dense plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  14. Electron-impact excitation of holmium atoms

    SciTech Connect

    Smirnov, Yu M

    2000-06-30

    The electron-impact excitation of holmium atoms was studied by the method of extended crossing beams. The cross sections and the optical excitation functions were obtained for odd levels of Ho I, including the 22014 cm{sup -1} laser level. Over 99% of the atoms were shown to reside in the ground level prior to collisions with electrons. Also measured were the excitation cross sections for six even levels, which presumably participate in the formation of inversion population in a gas-discharge holmium vapour laser. (laser applications and other topics in quantum electronics)

  15. Three-body-fragmentation dynamics of CO24 + investigated by electron collisions at an impact energy of 500 eV

    NASA Astrophysics Data System (ADS)

    Wang, Enliang; Shan, Xu; Shen, Zhenjie; Li, Xingyu; Gong, Maomao; Tang, Yaguo; Chen, Xiangjun

    2015-12-01

    Fragmentation of CO24 + induced by electron impact at the energy of 500 eV is studied using a momentum imaging spectrometer. It is found that CO24 + decays mainly through two three-body-fragmentation channels: CO24 +→O++C2 ++O+ (121) and CO24 +→O2 ++C++O+ (211). The fragmentation dynamics of these two channels are analyzed using Dalitz plots and Newton diagrams. In channel (121) CO24 + dissociates mainly through linear and molecular bending fragmentation, while the asynchronous breakup mechanism dominates channel (211). The distributions of momentum correlation angles between ionic fragments and the kinetic energy releases are obtained. Based on the Coulomb explosion model, the bond angle and the bond length of CO24 + before fragmentation are reconstructed. The experimental most probable values of the O-C-O bond angle are 172∘ and 171∘ for channel (121) and (211), which agree quite well with that of the neutral CO2 molecule (172 .5∘) . The reconstructed values of C-O bond length, 1.20 Å and 1.13 Å from channel (121) and channel (211), are also inconsistent with the equilibrium value of the neutral CO2 molecule (1.16 Å).

  16. Experimental apparatus for measurements of electron impact excitation

    NASA Technical Reports Server (NTRS)

    Lafyatis, G. P.; Kohl, J. L.; Gardner, L. D.

    1987-01-01

    An ion beam apparatus for the absolute measurement of collision cross sections in singly and multiply charged ions is described. An inclined electron and ion beams arrangement is used. Emitted photons from the decay of collision produced excited states are collected by a mirror and imaged onto a photomultiplier. Absolute measurements of the electron impact excitation of the 2s-2p transition in C(3+) were used to demonstrate the reliability of the apparatus.

  17. Collisions of low-energy electrons with cyclohexane

    SciTech Connect

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2014-12-28

    We report calculated cross sections for elastic scattering of low-energy electrons by cyclohexane (c-C{sub 6}H{sub 12}). We employed the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for impact energies up to 30 eV. We compare our calculated integral cross section with experimental total cross sections available in the literature. We also compare our calculated differential cross sections (DCSs) with experimental results for benzene and experimental and theoretical results for 1,4-dioxane, in order to investigate the similarities between those molecules under electron collisions. Although benzene is a cyclic six-carbon molecule, as cyclohexane, we found that the differential cross sections of the latter are more similar to those of 1,4-dioxane than those of benzene. These similarities suggest that the geometry may play an important role in the behavior of the DCSs of these molecules. Our integral cross section displays a broad structure at around 8.5 eV, in agreement with the total cross section experimental data of 8 eV and vibrational excitation data of 7.5 eV. The present integral cross section also shows the presence of a Ramsauer-Townsend minimum at around 0.12 eV. In general, our integral cross section shows a qualitative agreement with the experimental total cross section.

  18. Database for inelastic collisions of sodium atoms with electrons, protons, and multiply charged ions

    SciTech Connect

    Igenbergs, K.; Schweinzer, J.; Bray, I.; Bridi, D.; Aumayr, F.

    2008-11-15

    The available experimental and theoretical cross section data for inelastic collision processes of ground (3s) and excited (3p, 4s, 3d, 4p, 5s, 4d, and 4f) state Na atoms with electrons, protons, and multiply charged ions have been collected and critically assessed. In addition to existing data, electron-impact cross sections, for both excitation and ionization, have been calculated using the convergent close-coupling approach. In the case of proton-impact cross section, the database was enlarged by new atomic-orbital close-coupling calculations. Both electron-impact and proton-impact processes include excitation from the ground state and between excited states (n = 3-5). For electron-impact, ionization from all states is also considered. In the case of proton-impact electron loss, cross sections (the sum of ionization and single-electron charge transfer) are given. Well-established analytical formulae used to fit cross sections, published by Wutte et al. and Schweinzer et al. for collisions with lithium atoms, were adapted to sodium. The 'recommended cross sections' for the processes considered have been critically evaluated and fitted using the adapted analytical formulae. For each inelastic process the fit parameters determined are tabulated. We also present the assessed data in graphical form. The criteria for comprehensively evaluating the accuracy of the experimental data, theoretical calculations, and procedures used in determining the recommended cross sections are discussed.

  19. Determination of Electron Collision Cross Sections Set for Tetramethysilane

    NASA Astrophysics Data System (ADS)

    Bordage, Marie-Claude

    2007-12-01

    A swarm analysis technique based on the solution of the Boltzmann equation is used to derive low energy electron collision cross sections for tetramethylsilane (TMS). The calculated swarm parameters with this first available cross sections set is consistent with measured values of the swarm parameters. Calculations of transport parameters in mixtures of TMS with argon are also presented.

  20. Electron Collision Cross Sections for the Cl2 Molecule from Electron Transport Coefficients

    NASA Astrophysics Data System (ADS)

    Tuan, Do Anh; Jeon, Byung-Hoon

    2011-08-01

    The measured electron transport coefficients (electron drift velocity, Townsend first ionization coefficient, electron attachment coefficient, and density-normalized effective ionization coefficient) in pure Cl2 have been analyzed to derive the currently best available electron collision cross section set of the elastic and inelastic electron collision cross sections for the Cl2 molecule using an electron swarm study and a two-term approximation of the Boltzmann equation for energy. The electron transport coefficients calculated using the derived cross sections are consistent with the experimental data over a wide range of E/N values (ratio of the electric field E to the neutral number density N). The present electron collision cross section set for the Cl2 molecule is the best available so far for quantitative numerical modeling plasma discharges for processing procedures with materials containing Cl2 molecules.

  1. Inelastic collisions of positrons with one-valence-electron targets

    NASA Technical Reports Server (NTRS)

    Abdel-Raouf, Mohamed Assad

    1990-01-01

    The total elastic and positronium formation cross sections of the inelastic collisions between positrons and various one-valence-electron atoms, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron ions, (namely hydrogen-like, lithium-like and alkaline-earth positive ions) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.

  2. Factors Influencing Pediatric Injury in Side Impact Collisions

    PubMed Central

    Arbogast, Kristy B.; Moll, Elisa K.; Morris, Shannon D.; Anderko, Rebecca L.; Durbin, Dennis R.; Winston, Flaura K.

    2000-01-01

    Side impacts collisions pose a great risk to children in crashes but information about the injury mechanisms is limited. The heights and weights of children vary widely and as a result, the injury patterns may vary across the pediatric age range. This study involves a case series of children in side impact collisions who were identified through Partners for Child Passenger Safety, a large child-focused crash surveillance system. The aim of the current study was to use in-depth crash investigations to identify injury mechanisms to children in side impact collisions. 93 children in 55 side impact crashes were studied. 23% (n=22) of the children received an AIS ≥2 (clinically significant) injury. In these 22 children, head (39%), extremity (22%), and abdominal injuries (17%) were the most common significant injuries. The cases revealed that serious injuries occur even in minor crashes. Cases that illustrate body region-specific injury mechanisms are discussed. PMID:11558098

  3. Mutual electron detachment in collisions between negative ions

    NASA Astrophysics Data System (ADS)

    Schulze, R.; Melchert, F.; Krüdener, S.; Meuser, S.; Petri, S.; Benner, M.; Salzborn, E.

    1992-10-01

    Employing the crossed-beams technique, we have measured absolute cross sections for mutual electron detachment in collisions between two negative ions H-+X-→H0+X0+2e-(X-:B-, H-,Cu-,O-,Au-,F-) in the CM-energy range between a few keV and about 100 keV. The results obtained appear not to obey a simple scaling with negative ion binding energies. For H-+H--collisions also the single detachment reaction H-+H-→H0+... has been investigated.

  4. Role of electron-electron collisions in high field conduction in Nitrides

    NASA Astrophysics Data System (ADS)

    Paranjape, V. V.

    2015-06-01

    Role of electron-electron collisions in semiconductors is to exchange energy and momentum among the conduction electrons and to express the electron distribution in terms of electron temperature and electron drift velocity. This role takes particular importance when the external electric field produces large disparities in the energy distribution of electrons. Such disparities are introduced in polar semiconductors such as Nitrides. Electron-electron collisions give rise to heating or cooling of the electron gas. Heating is widely accepted but cooling in steady state and transient currents is new as is shown in this paper. It is also shown that the overshooting of electron velocity in transient currents in Nitrides is related to the electron cooling.

  5. Semiclassical theory of electronically nonadiabatic transitions in molecular collision processes

    NASA Technical Reports Server (NTRS)

    Lam, K. S.; George, T. F.

    1979-01-01

    An introductory account of the semiclassical theory of the S-matrix for molecular collision processes is presented, with special emphasis on electronically nonadiabatic transitions. This theory is based on the incorporation of classical mechanics with quantum superposition, and in practice makes use of the analytic continuation of classical mechanics into the complex space of time domain. The relevant concepts of molecular scattering theory and related dynamical models are described and the formalism is developed and illustrated with simple examples - collinear collision of the A+BC type. The theory is then extended to include the effects of laser-induced nonadiabatic transitions. Two bound continuum processes collisional ionization and collision-induced emission also amenable to the same general semiclassical treatment are discussed.

  6. Spectroscopic diagnostics of electron-atom collisions

    SciTech Connect

    Gallagher, A.

    1991-01-01

    Progress from May 1, 1987 to April 30, 1991 is summarized in two Progress Reports that are reproduced in Appendix A, and in attached publications. Since then, we have completed manuscript preparations and publications of earlier observations, while carrying out a high energy-resolution measurement of electron collisional excitations in sodium. The results of the latter experiment have not been prepared for publication, and the manuscript is included as Appendix B. An additional manuscript, describing the unique high-current electron monochromator developed for this experiment, is in preparation and not enclosed. All additional results and conclusions of our work under the contract are now available in four publications that are attached at the back of this report. Consequently, we will elaborate on those only to note that we have achieved our proposed goals, with the full detail proposed but at a slightly slower pace than we had hoped.

  7. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1993-12-01

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 keV. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data are available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two dimensional grid as a function of mean kinetic energy and thermal energy.

  8. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1992-12-16

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy.

  9. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the

  10. Influence of electron-ion collisions on Buneman instability

    NASA Astrophysics Data System (ADS)

    Rostomyan, Eduard

    2016-07-01

    Buneman instability (BI) [1] has been found to play a role in many scenarios in space physics and geophysics. It has also been invoked to explain many phenomena in the earth ionosphere [2] and in the solar chromosphere [3]. In double-layer and collisionless shock physics the same instability has been found responsible in formation of nonlinear structures [4]. In situations where an electron beam enters plasma, like in the fast ignition scenario for inertial fusion [5], Buneman modes are excited and play essential role [6]. BI is caused by motion of plasma electrons against ions. However, up to now investigations on BI did not take into account influence collisions in plasma (for quantum case a paper has recently appeared [7]). Influence of collisions may be very important especially in dense fully ionized plasma with long distance character of interaction. Particularly collisions lead to energy dissipation with an array of ensuing effects e.g. change of the instability physical nature to that of dissipative type [8]. Due to role of BI in various processes in space (and laboratory) plasma necessity of the consideration is long overdue. Absence of investigations on a problem along with its importance may be explained by its complexity only. For given case correct consideration should be based on solution of transport equation with collisional term. In fully ionized plasma correct description of collisions is given by Landau collision integral (LCI) [9]. This is very complex formation. It greatly complicates transport equation and actually makes it intractable. Since its formulation in 1936, there is very little literature on solution of the transport equation with LCI. Almost all successful attempts to accommodate influence of collisions on various processes in plasma are based on BGK model [10]. This model is much simpler. However in fully ionized plasma usage LCI is more appropriate as it is designed for system with long distance character of particle interaction

  11. Electron Collisions in a Magneto-Optical Trap

    NASA Astrophysics Data System (ADS)

    Dech, Jeffery Michael

    Measurements of the multiple ionization cross section ratios of Cesium were performed with ion time-of-flight (TOF) spectroscopy with a magneto-optical trap (MOT) apparatus, updating the previous measurement which dates back almost a century. Results are presented for collisions at energies of 50 eV to 120 eV. With a MOT, experiments can be performed with trapped, cold atomic targets which allow for unparalleled accuracy and experiments with signicant excited state target fractions above those achievable in most atomic beam experiments. A basic overview of optical cooling trapping, electron collision and atomic phenomena are presented. Experimental studies of electrons with Argon and Cesium targets were performed, measuring the multiple ionization ratios with ion TOF spectroscopy. The experimental apparatus and analysis methods are described in detail. Results are compared with previous measurements of multiple ionization ratios for both targets. Agreement within experimental error is found with the results of Tate and Smith across the energy range.

  12. Electron capture processes in Li2+ + H collisions

    NASA Astrophysics Data System (ADS)

    Yan, Ling Ling; Liu, Ling; Wang, Jian Guo; Janev, Ratko K.; Buenker, Robert J.

    2015-01-01

    The electron capture processes in Li2 + + H collisions have been investigated by using the quantum-mechanical molecular-orbital close-coupling method and the two-center atomic-orbital close-coupling method in the energy ranges of 10-8-10 keV/u and 0.1-300 keV/u, respectively. The capture to singlet and triplet systems of states of Li+(1 s,n l 2S + 1L) is considered separately. Total, n,S-resolved and n,l,S-resolved electron capture cross sections are calculated and compared with the results of available experimental and theoretical studies. The present calculations show that the n = 2 shell of Li+ is the main capture channel for all energies considered in both the singlet and triplet case. While for collision energies E> 5 keV/u, the cross sections for capture to the n = 2 manifold are of the same order of magnitude for both the singlet and triplet states (with the 2 p capture cross section being dominant), for energies below ~5 keV/u the cross sections for capture to the n = 2 triplet manifold is significantly (more than three orders of magnitude at 0.1 keV/u) larger than that for capture to the n = 2 singlet manifold of states (with the 2 s capture cross section being dominant). The capture dynamics at low collision energies is discussed in considerable detail, revealing the important role of rotational couplings in population of l> 0 capture states. The elastic scattering processes have been studied as well in the energy range of 10-8-1 keV/u. The calculated elastic scattering cross section is much larger than the electron capture cross section in both the singlet and triplet case. However, as the collision energy increases, the difference between the elastic and electron capture cross sections decreases rapidly.

  13. Collisions of Electrons with Atomic Oxygen: Current Status

    NASA Technical Reports Server (NTRS)

    Johnson, P. V.; Kanik, I.; Tayal, S. S.

    2005-01-01

    In 1990, two significant reviews of electron-atomic-oxygen collision processes were published. Since that time, a large volume of both experimental and theoretical research into these processes has occurred. These data are reviewed and recommendations regarding existing data sets and future research in this area are made. Attention is given to the challenges associated with handling atomic oxygen in terms of both experiment and theory.

  14. Dependence of elastic hadron collisions on impact parameter

    NASA Astrophysics Data System (ADS)

    Procházka, Jiří; Lokajíček, Miloš V.; Kundrát, Vojtěch

    2016-05-01

    Elastic proton-proton collisions represent probably the greatest ensemble of available measured data, the analysis of which may provide a large amount of new physical results concerning fundamental particles. It is, however, necessary to analyze first some conclusions concerning pp collisions and their interpretations differing fundamentally from our common macroscopic experience. It has been argued, e.g., that elastic hadron collisions have been more central than inelastic ones, even if any explanation of the existence of so different processes, i.e., elastic and inelastic (with hundreds of secondary particles) collisions, under the same conditions has not been given until now. The given conclusion has been based on a greater number of simplifying mathematical assumptions (already done in earlier calculations), without their influence on physical interpretation being analyzed and entitled; the corresponding influence has started to be studied in the approach based on the eikonal model. The possibility of a peripheral interpretation of elastic collisions will be demonstrated and the corresponding results summarized. The arguments will be given on why no preference may be given to the mentioned centrality against the standard peripheral behaviour. The corresponding discussion on the contemporary description of elastic hadronic collision in dependence on the impact parameter will be summarized and the justification of some important assumptions will be considered.

  15. Bare- and Dressed-Ion Impact Collisions from Neon Atoms Studied Within a Nonperturbative Mean-Field Approach

    NASA Astrophysics Data System (ADS)

    Schenk, Gerald; Kirchner, Tom

    We study electron removal processes in collisions of bare and dressed doubly charged ions with neon atoms in the 20 keV/u to 1 MeV/u impact energy regime. The many-electron problem is represented by a single mean field, which in the case of dressed-ion impact includes the projectile electrons. Moreover, the same basis is used to propagate all active orbitals thereby ensuring orthogonality at all times and allowing for a final-state analysis in terms of standard Slater determinantal wave functions. The same approach was used in a recent work for B2+ -Ne collisions [Phys. Rev. A 88 012712], in which we examined the role of the projectile electrons for target-recoil-charge-state production. The present study expands on that work by considering additional collision channels and comparing results of equicharged dressed and bare ions in order to shed more light on the role of the projectile electrons.

  16. Convergent Close-Coupling Approach to Electron-Atom Collisions

    NASA Technical Reports Server (NTRS)

    Bray, Igor; Stelbovics, Andris

    2007-01-01

    It was with great pleasure and honour to accept the invitation to make a presentation at the symposium celebrating the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on our own during the development of the CCC method for electron-atom collisions. There are a number of key problems that need to be dealt with when developing a general computational approach to such collisions. Traditionally, the electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate results. At high energies an infinite number of discrete channels and the target continuum are open, but perturbative techniques are able to yield accurate results. However, at the intermediate energies perturbative techniques fail and computational approaches need to be found for treating the infinite number of open channels. In addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing the boundary conditions for ionization processes. The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the complexity associated with the above-mentioned problems. The unique nature of the problem allowed for accurate solution leading to benchmark results which could then be used to test the much more general approaches to electron-atom collision problems. The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin and Poet have been collectively cited around 250 times to date and are still being cited in present times. Many of the citations came from our own work during the course of the development of the CCC method, which we now describe.

  17. Electron capture and fragmentation in Ar11+ + CO collisions

    NASA Astrophysics Data System (ADS)

    Ben-Itzhak, I.; Wells, E.; Stöckli, M. P.; Tawara, H.; Carnes, K. D.

    1997-01-01

    Collisions between 32.2, 130.5 and 570.5 keV Ar11+ ions and CO molecules have been studied using the Macdonald Laboratory CRYEBIS. Coincidence time of flight was used to detect all recoil ions originating from each molecule and a position sensitive detector was used to determine final projectile charge states. Single-and double-electron capture cross-sections are much larger than those for ionization at these collision energies. The dominant recoil channel associated with the Ar10+ final charge state is the CO+ molecular ion. The main ion-pair channel is the C+ + O+ dissociation of CO2+ while the relative yields of higher charge states of the transient COq+ fall off rapidly. The dissociated ions corresponding to charge states up to CO4+ were detected in coincidence with Ar10+ (and Ar9+), indicating that multielectron capture followed by autoionization occurs.

  18. Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Hagelaar, G. J. M.

    2016-02-01

    This paper investigates the effects of electron-electron and electron-ion Coulomb collisions on the electron distribution function and transport coefficients obtained from the Boltzmann equation for simple dc gas discharge conditions. Expressions are provided for the full Coulomb collision terms acting on both the isotropic and anisotropic parts of the electron distribution function, which are then incorporated in the freeware Boltzmann equation solver BOLSIG+. Different Coulomb collision effects are demonstrated and discussed on the basis of BOLSIG+  results for argon gas. It is shown that the anisotropic part of the electron-electron collision term, neglected in previous work, can in certain cases have a large effect on the electron mobility and is essential when describing the transition towards the Coulomb-collision dominated regime characterized by Spitzer transport coefficients. Finally, a brief overview is presented of the discharge conditions for which different Coulomb collision effects occur in different gases.

  19. Electron Impact Excitation Of Ti XIX

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, F. P.

    2012-05-01

    Emission lines of Ti XIX are important for the modeling and diagnostics of lasing, fusion and astrophysical plasmas, for which atomic data are required for a variety of parameters, such as energy levels, radiative rates (A- values), and excitation rates or equivalently the effective collision strengths (Υ), which are obtained from the electron impact collision strengths (Ω). Experimentally, energy levels are available for Ti XIX on the NIST website, but there is paucity for accurate collisional atomic data. Therefore, here we report a complete set of results (namely energy levels, radiative rates, and effective collision strengths) for all transitions among the lowest 98 levels of Ti XIX. These levels belong to the (1s2) 2s2, 2s2p, 2p2, 2s3l, 2p3l, 2s4l, and 2p4l configurations. Finally, we also report the A- values for four types of transitions, namely electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2), because these are also required for plasma modeling. For our calculations of wavefunctions, we have adopted the fully relativistic GRASP code, and for the calculations of Ω, the Dirac atomic R-matrix code (DARC) of PH Norrington and IP Grant. Additionally, parallel calculations have also been performed with the Flexible Atomic Code (FAC) of Gu, so that all atomic parameters can be rigorously assessed for accuracy.

  20. Electron impact exctation of Al X

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti; Keenan, Francis

    2013-05-01

    Emission lines of Al ions, including Al X, are important for the modeling and diagnostics of lasing, fusion and astrophysical plasmas, for which atomic data are required for a variety of parameters, such as energy levels, radiative rates (A- values), and excitation rates or equivalently the effective collision strengths (Υ), which are obtained from the electron impact collision strengths (Ω). Experimentally, energy levels are available for Al X on the NIST website, but there is paucity for accurate collisional atomic data. Therefore, here we report a complete set of results (namely energy levels, radiative rates, and effective collision strengths) for all transitions among the lowest 98 levels of Al X. These levels belong to the (1s2) 2s2, 2s2p, 2p2, 2s3 l, 2p3 l, 2s4 l, and 2p4 l configurations. Finally, we also report the A- values for four types of transitions, namely electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2), because these are also required for plasma modeling. For our calculations of wavefunctions, we have adopted the fully relativistic GRASP code, and for the calculations of Ω, the Dirac atomic R-matrix code (DARC) of PH Norrington and IP Grant. Additionally, parallel ca

  1. Electron Impact Exciation of Fe IX

    NASA Astrophysics Data System (ADS)

    Tayal, Swaraj; Zatsarinny, Oleg

    2015-05-01

    Transition probabilities and electron impact excitation collision strengths and rates for astrophysically important extreme ultraviolet lines of Fe IX are calculated. The 322 fine-structure levels of the 3s2 3p6 , 3s2 3p5 3 d , 3 s 3p6 3 d , 3s2 3p5 4 s , and 3s2 3p4 3d2 configurations are included in our calculations. The collision strengths have been calculated using the B-spline Breit-Pauli R-matrix method for all fine-structure transitions among the 322 levels. The mass, Darwin, and spin-orbit relativistic effects are included in the Breit-Pauli Hamiltonian in the scattering calculation. The one-body and two-body relativistic operators are included in the multi-configuration Hartree-Fock calculations of transition probabilities. Several sets of non-orthogonal spectroscopic and correlation radial orbitals are used to obtain accurate description of Fe IX levels and to represent the scattering functions. The calculated excitation energies are in very good agreement with experiment and represents an improvement over the previous calculations. The present collision strengths show reasonable agreement with the previously available R-matrix and distorted-wave calculations. This research is supported by NASA grant from the Solar and Heliophysics Program.

  2. Electron excitation collision strengths for positive atomic ions: a collection of theoretical data

    SciTech Connect

    Merts, A.L.; Mann, J.B.; Robb, W.D.; Magee, N.H. Jr.

    1980-03-01

    This report contains data on theoretical and experimental cross sections for electron impact excitation of positive atomic ions. It is an updated and corrected version of a preliminary manuscript which was used during an Atomic Data Workshop on Electron Excitation of Ions held at Los Alamos in November 1978. The current status of quantitative knowledge of collisional excitation collision strengths is shown for highly stripped ions where configuration mixing, relativistic and resonance effects may be important. The results show a reasonably satisfactory state for first-row isoelectronic ions and indicate that a considerable amount of work remains to be done for second-row and heavier ions.

  3. Synergy of Electronic Excitations and Elastic Collision Spikes in Sputtering of Heavy Metal Oxides

    SciTech Connect

    Schenkel, T.; Barnes, A.V.; Hamza, A.V.; Schneider, D.H.; Banks, J.C.; Doyle, B.L.

    1998-05-01

    The emission of secondary ions and neutrals from uranium oxide has been measured for impact of highly charged, heavy ions. Total ablation rates and secondary ion yields increase strongly with projectile charge. The dependencies on projectile charge (16{lt}q{lt}70) , impact energy (10 keV{lt}E{sub kin }{lt}1 MeV) , and projectile mass of secondary ion yields demonstrate the presence of an interaction regime where electronic excitation by charge neutralization and elastic collision spikes combine synergistically. {copyright} {ital 1998} {ital The American Physical Society}

  4. Electronic excitation of CO by positron impact

    SciTech Connect

    Silva, Euclimar P. da; Varella, Marcio T. do N; Lima, Marco A. P.

    2005-12-15

    We report calculated cross sections for the electronic excitation of carbon monoxide by positron impact. The calculations were carried out with the Schwinger multichannel method and included six collision channels, namely the ground (X {sup 1}{sigma}{sup +}) and five electronically excited (A {sup 1}{pi}, I {sup 1}{sigma}{sup -} and D {sup 1}{delta}) states. Present calculated excitation cross sections to the A {sup 1}{pi} state did not present any resonant features, being in this sense consistent with previous calculations for the isoelectronic nitrogen molecule. The experimental a {sup 1}{pi}{sub g} excitation cross section of N{sub 2} presented a resonantlike structure which would also be expected in the A {sup 1}{pi} excitation of CO. We discuss possible reasons for the disagreement between experiment and theory.

  5. Single electrons from heavy-flavor decays in collisions at.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2006-01-27

    The invariant differential cross section for inclusive electron production in p+p collisions at [FORMULA: SEE TEXT] has been measured by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider over the transverse momentum range 0.4electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e., charm quarks or, at high , bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy-flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined to be [FORMULA: SEE TEXT]. PMID:16486684

  6. Nonlinear regime of electrostatic waves propagation in presence of electron-electron collisions

    SciTech Connect

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2015-04-15

    The effects are presented of including electron-electron collisions in self-consistent Eulerian simulations of electrostatic wave propagation in nonlinear regime. The electron-electron collisions are approximately modeled through the full three-dimensional Dougherty collisional operator [J. P. Dougherty, Phys. Fluids 7, 1788 (1964)]; this allows the elimination of unphysical byproducts due to reduced dimensionality in velocity space. The effects of non-zero collisionality are discussed in the nonlinear regime of the symmetric bump-on-tail instability and in the propagation of the so-called kinetic electrostatic electron nonlinear (KEEN) waves [T. W. Johnston et al., Phys. Plasmas 16, 042105 (2009)]. For both cases, it is shown how collisions work to destroy the phase-space structures created by particle trapping effects and to damp the wave amplitude, as the system returns to the thermal equilibrium. In particular, for the case of the KEEN waves, once collisions have smoothed out the trapped particle population which sustains the KEEN fluctuations, additional oscillations at the Langmuir frequency are observed on the fundamental electric field spectral component, whose amplitude decays in time at the usual collisionless linear Landau damping rate.

  7. ZERO IMPACT PARAMETER WHITE DWARF COLLISIONS IN FLASH

    SciTech Connect

    Hawley, W. P.; Athanassiadou, T.; Timmes, F. X.

    2012-11-01

    We systematically explore zero impact parameter collisions of white dwarfs (WDs) with the Eulerian adaptive grid code FLASH for 0.64 + 0.64 M {sub Sun} and 0.81 + 0.81 M {sub Sun} mass pairings. Our models span a range of effective linear spatial resolutions from 5.2 Multiplication-Sign 10{sup 7} to 1.2 Multiplication-Sign 10{sup 7} cm. However, even the highest resolution models do not quite achieve strict numerical convergence, due to the challenge of properly resolving small-scale burning and energy transport. The lack of strict numerical convergence from these idealized configurations suggests that quantitative predictions of the ejected elemental abundances that are generated by binary WD collision and merger simulations should be viewed with caution. Nevertheless, the convergence trends do allow some patterns to be discerned. We find that the 0.64 + 0.64 M {sub Sun} head-on collision model produces 0.32 M {sub Sun} of {sup 56}Ni and 0.38 M {sub Sun} of {sup 28}Si, while the 0.81 + 0.81 M {sub Sun} head-on collision model produces 0.39 M {sub Sun} of {sup 56}Ni and 0.55 M {sub Sun} of {sup 28}Si at the highest spatial resolutions. Both mass pairings produce {approx}0.2 M {sub Sun} of unburned {sup 12}C+{sup 16}O. We also find the 0.64 + 0.64 M {sub Sun} head-on collision begins carbon burning in the central region of the stalled shock between the two WDs, while the more energetic 0.81 + 0.81 M {sub Sun} head-on collision raises the initial post-shock temperature enough to burn the entire stalled shock region to nuclear statistical equilibrium.

  8. Rotational And Rovibrational Energy Transfer In Electron Collisions With Molecules

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Air flows around a hypervelocity reentry vehicle undergo dissociation, rovibrational excitation and ionization. More specifically the air, initially 80% N2 and 20% O2, in the shock layer consists of species such as N, O, N2, O2, NO, N+, O+, N+, O+, NO+ and 2 free electrons. It was pointed out in multi temperature models'' that the temperature of the rotational energy modes and the gas-kinetic translational temperature are quickly equilibrated by a few collisions and rise rapidly to high temperatures as 50000K before falling off to equilibrium value of 10000K. Contrary, the electronic and vibrational temperatures state energy distributions remain low (less than 15000K) because of the slow equilibration. Electron vibrational energy transfer is thought to play a crucial role in such a ionizing flow regime since chemical reaction rates and dissociation depend strongly on the vibrational temperatures. Modeling of these flowfields in principle require the rovibrational excitation and de-excitation cross section data for average electron energies from threshold up to several eV (leV=11605.4 K). In this lecture we focus on theoretical description of rotational effects i.e. energy transfer of electrons to molecules such that the molecular rotational (vojo goes to voj) or vibrational and rotational (v(sub 0)j(sub 0) goes to vj) states are changed. Excitation and de-excitation of electronic states was discussed in a previous talk at this conference.

  9. Electronic spin-flipping collisions of hydrogen atoms

    SciTech Connect

    Zygelman, B.

    2010-03-15

    We present a unified multichannel approach to calculate electron spin-exchange and spin-flipping transition cross sections for collisions of H with H, H with T, and T with T. We use the theory to calculate the hyperfine quenching cross sections for collision energies that range from 1 mK to thermal temperatures. We show that spin-flipping transitions are induced by the splitting of the b {sup 3{Sigma}}{sub u} Born-Oppenheimer potential via the long-range magnetic interactions among electrons. We find that the spin-flipping cross sections in the tritium dimer are about a magnitude larger than that predicted by mass scaling the H-H cross sections. For the former, we show that the spin-exchange cross sections are several magnitudes larger, at cold temperatures, than that of the hydrogen system. We compare the results of the multichannel approach with those obtained using approximate methods such as the degenerate internal-state, the elastic, and Born approximations and discuss their respective range of validity.

  10. Absorption effects in electron-sulfur-dioxide collisions

    SciTech Connect

    Machado, L. E.; Sugohara, R. T.; Santos, A. S. dos; Lee, M.-T.; Iga, I.; Souza, G. L. C. de; Homem, M. G. P.; Michelin, S. E.; Brescansin, L. M.

    2011-09-15

    A joint experimental-theoretical study on electron-SO{sub 2} collisions in the low and intermediate energy range is reported. More specifically, experimental elastic differential, integral, and momentum transfer cross sections in absolute scale are measured in the 100-1000 eV energy range using the relative-flow technique. Calculated elastic differential, integral, and momentum transfer cross sections as well as grand-total and total absorption cross sections are also presented in the 1-1000 eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics, whereas the Schwinger variational iterative method combined with the distorted-wave approximation is used to solve the scattering equations. Comparison of the present results is made with the theoretical and experimental results available in the literature.

  11. Vlasov simulations of electron-ion collision effects on damping of electron plasma waves

    NASA Astrophysics Data System (ADS)

    Banks, J. W.; Brunner, S.; Berger, R. L.; Tran, T. M.

    2016-03-01

    Collisional effects can play an essential role in the dynamics of plasma waves by setting a minimum damping rate and by interfering with wave-particle resonances. Kinetic simulations of the effects of electron-ion pitch angle scattering on Electron Plasma Waves (EPWs) are presented here. In particular, the effects of such collisions on the frequency and damping of small-amplitude EPWs for a range of collision rates and wave phase velocities are computed and compared with theory. Both the Vlasov simulations and linear kinetic theory find the direct contribution of electron-ion collisions to wave damping significantly reduced from that obtained through linearized fluid theory. To our knowledge, this simple result has not been published before. Simulations have been carried out using a grid-based (Vlasov) approach, based on a high-order conservative finite difference method for discretizing the Fokker-Planck equation describing the evolution of the electron distribution function. Details of the implementation of the collision operator within this framework are presented. Such a grid-based approach, which is not subject to numerical noise, is of particular interest for the accurate measurements of the wave damping rates.

  12. Fluorine Auger-electron production in collisions of H+ and Li2+ with fluorocarbon targets

    NASA Astrophysics Data System (ADS)

    Shinpaugh, J. L.; Toburen, L. H.; Justiniano, E. L. B.

    1999-12-01

    Relative and absolute cross sections are presented for fluorine KLL Auger-electron production in collisions of 2.0-MeV H+ and 0.5-MeV/amu Li2+ with various fluorocarbon targets. Auger yields were measured for molecular targets of CH3F, CH2F2, C2H2F2, CHF3, CF4, C2F6, and C4F8. The fluorine Auger cross sections for these collision systems were found to be independent of the chemical environment, i.e., the atomic cross sections were found to obey additivity for these molecules. This is in contrast to recently reported fluorine K-shell ionization cross sections found for He+ impact on fluorocarbon targets, where the atomic cross sections were found to differ by up to a factor of 3.

  13. Target electron ionization in Li2+-Li collisions: A multi-electron perspective

    NASA Astrophysics Data System (ADS)

    Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.

    2015-05-01

    The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.

  14. Single electron capture measurements in collisions of K+ on N2

    NASA Astrophysics Data System (ADS)

    Alarcón, F. B.; Fuentes, B. E.; Martínez, H.; Yousif, F. B.

    2014-08-01

    Absolute total charge transfer cross sections have been measured for K+-N2 collisions, at impact energies between 1.0 and 3.5 keV. The charge transfer cross sections show a monotonic increasing behaviour as a function of the incident energy. Agreement with other groups is observed as the present measurements extend to lower energies. A semi-empirical calculation shows a similar behaviour to the present data with respect to the electron capture cross sections as a function of energy.

  15. Study on optimal impact damper using collision of vibrators

    NASA Astrophysics Data System (ADS)

    Iwata, Yoshio; Komatsuzaki, Toshihiko; Kitayama, Satoshi; Takasaki, Tatsuya

    2016-01-01

    In this paper, we propose an impact damper which consists of multiple vibrators installed on a main structure and dissipates the vibrational energy by collisions between the vibrators. Transient vibration of the main system subject to an impact rapidly converges to zero by the impact damper. DE (Differential Evolution) method which is one of the optimization methods is employed to determine mass and spring constant of the every vibrators to maximize damping effect. We discuss the effect of a coefficient of restitution of vibrators, a ratio of total mass of the vibrators to the main structure mass and the number of the vibrators on the damping performance. The damping effect of the impact damper with three vibrators is demonstrated experimentally.

  16. Single ionization of helium by electron impact

    SciTech Connect

    Bray, I.; Fursa, D. V.; Kadyrov, A. S.; Stelbovics, A. T.

    2010-06-15

    We suggest that the problem of single ionization of helium by electron impact, leaving the ion in the ground state, has been solved theoretically for the full range of kinematics and collision geometries of practical interest. Following the emphasis on the study of out-of-plane geometries where the cross sections are very small [Schulz et al., Nature 422, 48 (2003)], we find that the convergent close-coupling calculations, in either a frozen- or a multicore treatment of the target, are in excellent agreement with the available measurements. Curiously, some systematic discrepancies are identified for some in-plane cases where the cross sections are an order of magnitude larger. Further measurements are required to resolve these discrepancies. If subsequent measurements confirm the present calculations, then we would have a strong case that the problem has been solved.

  17. Collision-Based Computing Using Single-Electron Circuits

    NASA Astrophysics Data System (ADS)

    Hayashi, Shunsuke; Oya, Takahide

    2012-06-01

    A single-electron (SE) device based on “collision-based computing (CBC)” is proposed for information processing. CBC is an analog computing in which input signals behave like billiard balls, and the goals of moving balls are regarded as output positions. The proposed SE device consists of arrayed SE oscillators with coupling capacitor between each pair. An SE oscillator is a threshold decision device which can be used as a reaction-diffusion (RD) model, a kind of the analog computation model. The RD model can express the various behaviors of an excited wave, e.g., “moving at a constant velocity” and “disappearing due to collision”. These behaviors are also important for CBC. We designed basic SE-CBC circuits and a full adder as an application, and evaluated their operation by Monte-Carlo computer simulation. The results indicate that this circuit is useful for configuring various types of logical circuits.

  18. The Screening Effect in Electromagnetic Production of Electron Positron Pairs in Relativistic Nucleus-Atom Collisions

    NASA Technical Reports Server (NTRS)

    Wu, Jianshi; Derrickson, J. H.; Parnell, T. A.; Strayer, M. R.

    1999-01-01

    We study the screening effects of the atomic electrons in the electromagnetic production of electron-positron pairs in relativistic nucleus-atom collisions for fixed target experiments. Our results are contrasted with those obtained in bare collisions, with particular attention given to its dependence on the beam energy and the target atom.

  19. Quasiclassical Methods for Ion Collisions with Two-Electron Atoms

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    1996-05-01

    Results of two generalizations of the classical-trajectory Monte Carlo (CTMC) method will be reported. The first is the model, termed CTMC-KW, originally proposed by Kirschbaum and Wilets(C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21), 834 (1980). that achieves quasiclassical stability of multi-electron atoms via effective potentials motivated by the Heisenberg and Pauli principles. It was recently shown that this model gives fairly accurate binding energies for all atoms.(J. S. Cohen, Phys. Rev. A 51), 266 (1995) The second is a new model, termed CTMC-eb, that achieves stability via constraining potentials imposing lower bounds on the one-electron energies. The latter model is closer in spirit to the original CTMC method. Applications are made to single and double electron transfer and ionization cross sections for collisions of H^+, He^2+, and Li^3+ ions with the helium atom. All possible rearrangement processes are treated simultaneously and consistently. The cross sections will be compared with accurate experimental values.

  20. Shape resonances in low-energy-electron collisions with halopyrimidines

    SciTech Connect

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2013-12-07

    We report calculated cross sections for elastic collisions of low-energy electrons with halopyrimidines, namely, 2-chloro, 2-bromo, and 5-bromopyrimidine. We employed the Schwinger multichannel method with pseudopotentials to compute the cross sections in the static-exchange and static-exchange plus polarization levels of approximation for energies up to 10 eV. We found four shape resonances for each molecule: three of π* nature localized on the ring and one of σ* nature localized along the carbon–halogen bond. We compared the calculated positions of the resonances with the electron transmission spectroscopy data measured by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)]. In general the agreement between theory and experiment is good. In particular, our results show the existence of a π* temporary anion state of A{sub 2} symmetry for all three halopyrimidines, in agreement with the dissociative electron attachment spectra also reported by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)].

  1. Employment Impact of Electronic Business.

    ERIC Educational Resources Information Center

    Hecker, Daniel E.

    2001-01-01

    Electronic business is stimulating employment in some sectors across industries, such as computer-related and customer service occupations, and diminishing employment in others, such as administrative support and marketing/sales. Similarly, employment impacts will vary by industry. (Contains 56 notes and references.) (SK)

  2. Collision lifetimes and impact statistics of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Bottke, W. F., Jr.; Nolan, M. C.; Greenberg, R.

    1993-01-01

    We have examined the lifetimes of Near-Earth asteroids (NEA's) by directly computing the collision probabilities with other asteroids and with the terrestrial planets. We compare these to the dynamical lifetimes, and to collisional lifetimes assumed by other workers. We discuss the implications of the differences. The lifetimes of NEA's are important because, along with the statistics of craters on the Earth and Moon, they help us to compute the number of NEA's and the rate at which new NEA's are brought to the vicinity of the Earth. Assuming that the NEA population is in steady-state, the lifetimes determine the flux of new bodies needed to replenish the population. Earlier estimates of the lifetimes ignored (or incompletely accounted for) the differences in the velocities of asteroids as they move in their orbits, so our results differ from (for example) Greenberg and Chapman (1983, Icarus 55, 455) and Wetherill (1988, Icarus 76, 1) by factors of 2 to 10. We have computed the collision rates and relative velocities of NEA's with each other, the main-belt asteroids, and the terrestrial planets, using the corrected method described by Bottke et. al. (1992, GRL, in press). We find that NEA's typically have shorter collisional lifetimes than do main-belt asteroids of the same size, due to their high eccentricities, which typically give them aphelia in the main belt. Consequently, they spend a great deal of time in the main belt, and are moving much slower than the bodies around them, making them 'sitting ducks' for impacts with other asteroids. They cross the paths of many objects, and their typical collision velocities are much higher (10-15 km/s) than the collision velocities (5 km/s) among objects within the main belt. These factors combine to give them substantially shorter lifetimes than had been previously estimated.

  3. Modeling Charge Transfer in Fullerene Collisions via Real-Time Electron Dynamics.

    PubMed

    Jakowski, Jacek; Irle, Stephan; Sumpter, Bobby G; Morokuma, Keiji

    2012-06-01

    An approach for performing real-time dynamics of electron transfer in a prototype redox reaction that occurs in reactive collisions between neutral and ionic fullerenes is discussed. The quantum dynamical simulations show that the electron transfer occurs within 60 fs directly preceding the collision of the fullerenes, followed by structural changes and relaxation of electron charge. The consequences of real-time electron dynamics are fully elucidated for the far from equilibrium processes of collisions between neutral and multiply charged fullerenes. PMID:26285634

  4. Collisions of low-energy electrons with isopropanol

    SciTech Connect

    Bettega, M. H. F.; Winstead, C.; McKoy, V.; Jo, A.; Gauf, A.; Tanner, J.; Hargreaves, L. R.; Khakoo, M. A.

    2011-10-15

    We report measured and calculated cross sections for elastic scattering of low-energy electrons by isopropanol (propan-2-ol). The experimental data were obtained using the relative flow technique with helium as the standard gas and a thin aperture as the collimating target gas source, which permits use of this method without the restrictions imposed by the relative flow pressure conditions on helium and the unknown gas. The differential cross sections were measured at energies of 1.5, 2, 3, 5, 6, 8, 10, 15, 20, and 30 eV and for scattering angles from 10 deg. to 130 deg. The cross sections were computed over the same energy range employing the Schwinger multichannel method in the static-exchange plus polarization approximation. Agreement between theory and experiment is very good. The present data are compared with previously calculated and measured results for n-propanol, the other isomer of C{sub 3}H{sub 7}OH. Although the integral and momentum transfer cross sections for the isomers are very similar, the differential cross sections show a strong isomeric effect: In contrast to the f-wave behavior seen in scattering by n-propanol, d-wave behavior is observed in the cross sections of isopropanol. These results corroborate our previous observations in electron collisions with isomers of C{sub 4}H{sub 9}OH.

  5. Theoretical and experimental investigation of electron collisions with acetone

    NASA Astrophysics Data System (ADS)

    Homem, M. G. P.; Iga, I.; da Silva, L. A.; Ferraz, J. R.; Machado, L. E.; de Souza, G. L. C.; da Mata, V. A. S.; Brescansin, L. M.; Lucchese, R. R.; Lee, M.-T.

    2015-09-01

    We report a joint theoretical-experimental investigation on elastic electron scattering by acetone in the low- and intermediate-energy regions. More specifically, experimental differential, integral, and momentum-transfer cross sections are given in the 30-800 eV and 10∘-120∘ ranges. Theoretical cross sections are reported in the 1-500 eV interval. The experimental differential cross sections were determined using a crossed electron-beam-molecular-beam geometry, whereas the absolute values of the cross sections were obtained using the relative-flow technique. Theoretically, a complex optical potential derived from a Hartree-Fock molecular wave function was used to represent the collision dynamics, and a single-center expansion method combined with the Padé approximant technique was used to solve the scattering equations. Our experimental cross-section data are in generally good agreement with the present calculated data. Also, our calculated grand-total and total absorption cross sections are in good agreement with the experimental results reported in the literature. Nevertheless, our calculations have revealed a strong shape resonance in the 2B2 scattering channel not clearly seen in the experimental results. Possible reasons for this fact are also discussed.

  6. Accurate measurements of the collision stopping powers for 5 to 30 MeV electrons

    NASA Astrophysics Data System (ADS)

    MacPherson, Miller Shawn

    Accurate knowledge of electron stopping powers is crucial for accurate radiation dosimetry and radiation transport calculations. Current values for stopping powers are based on a theoretical model, with estimated uncertainties of 0.5-1% (1σ) for electron energies greater than 100 keV. This work presents the first measurements of electron collision stopping powers capable of testing the theoretical values within these stated uncertainties. A large NaI spectrometer was used to measure the change in electron energy when an absorbing disk of known thickness was placed in an electron beam. Monte Carlo simulations of the experiment were performed to account for the effects of surrounding materials. Energy differences between the calculated and measured spectra were used to determine corrections to the soft collision component of the theoretical stopping powers employed by the Monte Carlo simulations. Four different elemental materials were studied: Be, Al, Cu, and Ta. This provided a wide range of atomic numbers and densities over which to test the theory. In addition, stopping powers were measured for graphite (both standard and pyrolytic), A-150 tissue equivalent plastic, C-552 air equivalent plastic, and water. The incident electron energies ranged from 5 to 30 MeV. Generally, the measured stopping powers agree with the theoretical values within the experimental uncertainties, which range from 0.4% to 0.7% (1σ). Aluminum, however, exhibits a 0.7% discrepancy at higher electron energies. Furthermore, these measurements have established that the grain density stopping power is appropriate for graphite, contrary to the recommendations of ICRU Report 37. This removes a 0.2% uncertainty in air kerma calibrations, and impacts on dosimetric quantities determined via graphite calorimetry, such as ɛG for Fricke dosimetry and (W/ e)air for ion chamber measurements.

  7. Relativistic electronic dressing in laser-assisted electron-hydrogen elastic collisions

    SciTech Connect

    Attaourti, Y.; Manaut, B.; Makhoute, A.

    2004-06-01

    We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the unpolarized differential cross section without laser and the unpolarized differential cross section in the presence of a laser field.

  8. PREFACE: XXVIth International Conference on Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Orel, Ann; Starace, Anthony F.; Nikolić, Dragan; Berrah, Nora; Gorczyca, Thomas W.; Kamber, Emanuel Y.; Tanis, John A.

    2009-12-01

    The XXVIth International Conference on Photonic, Electronic and Atomic Collisions was held on the campus of Western Michigan University (WMU) in Kalamazoo during 22-28 July 2009. Kalamazoo, the home of a major state university amid pleasant surroundings, was a delightful place for the conference. The 473 scientific participants, 111 of whom were students, had many fruitful discussions and exchanges that contributed to the success of the conference. Participants from 43 countries made the conference truly international in scope. The 590 abstracts that were presented on the first four days formed the heart of the conference and provided ample opportunity for discussion. This change, allowing the conference to end with invited talks, was a departure from the format used at previous ICPEAC gatherings in which the conferences ended with a poster session. The abstracts were split almost equally between the three main conference areas, i.e., photonic, electronic, and atomic collisions, and the posters were distributed across the days of the conference so that approximately equal numbers of abstracts in the different areas were scheduled for each day. Of the total number of presented abstracts, 517 of these are included in this proceedings volume, the first time that abstracts have been published by ICPEAC. There were 5 plenary lectures covering the different areas of the conference: Paul Corkum (University of Ottawa) talked on attosecond physics with atoms and molecules, Serge Haroche (Collège de France) on non-destructive photon counting, Toshiyuki Azuma (Tokyo Metropolitan University) on resonant coherent excitation of highly-charged ions in crystals, Eva Lindroth (Stockholm University) on atomic structure effects, and Alfred Müller (Justus Liebig University) on resonance phenomena in electron- and photon-ion collisions. Two speakers gave very illuminating public lectures that drew many people from the local area, as well as conference participants: Patricia Dehmer

  9. Improved atomic data for electron-transport predictions by the codes TIGER and TIGERP. I. Inner-shell ionization by electron collision

    SciTech Connect

    Peek, J.M.; Halbleib, J.A.

    1983-01-01

    The inner-shell ionization data for electron-target collisions now in use in the TIGER and TIGERP electron-transport codes are extracted and compared with other data for these processes. The TIGER cross sections for K-shell ionization by electron collisions are found to be seriously in error for large-Z targets and incident electron energies greater than 1 MeV. A series of TIGER and TIGERP runs were carried out with and without improved K-shell electron ionization cross section data replacing that now in use. The relative importance of electron-impact and photon ionization of the various subshells was also extracted from these runs. In general, photon ionization dominated in the examples studied so the sensitivity of many predicted properties to errors in the electron-impact subshell ionization data was not large. However, some differences were found and, as all possible applications were not covered in this study, it is recommended that these electron-impact data now in TIGER and TIGERP be replaced. Cross section data for the processes under study are reviewed and those that are most suitable for this application are identified. 19 references, 9 figures, 2 tables.

  10. Femtosecond laser field induced modifications of electron-transfer processes in Ne{sup +}-He collisions

    SciTech Connect

    Lu Zhenzhong; Chen Deying; Fan Rongwei; Xia Yuanqin

    2012-01-02

    We demonstrate the presence of femtosecond laser induced charge transfer in Ne{sup +}-He collisions. Electron transfer in ion-atom collisions is considerably modified when the collision is embedded in a strong laser field with the laser intensity of {approx}10{sup 15} W/cm{sup 2}. The observed anisotropy of the He{sup +} angular distribution confirms the prediction of early work that the capture probability varies significantly with the laser polarization angle.

  11. Electron Capture Processes Following Collisions of He^2+ Ions with Molecular Targets

    NASA Astrophysics Data System (ADS)

    Abu-Haija, O.

    2005-05-01

    Energy-gain spectra, absolute state-selective and total cross sections have been measured for single-electron capture processes in collisions of He^2+ ions with O2, H2O, CO2, N2, and NH3 at impact energies between 100 eV and 1600 eV and scattering angles between 0^o and 6^o using the translational energy-gain spectroscopy (TES) technique. As apparent from the translational energy-gain measurements, single-electron capture (SEC) from O2 and H2O proceeds by both dissociative and non-dissociative channels, whereas for N2 and CO2 only dissociative SEC has been observed. However, for NH3 the non-dissociative SEC channel is found to be predominantly populated. Total cross sections have also been compared with available measurements and theoretical calculations based on Landua-Zener model and Demkov model.

  12. Single-electron exchange in H–H and He+–H collisions

    NASA Astrophysics Data System (ADS)

    Azizan, Sh; Shojaei, F.; Fathi, R.

    2016-07-01

    The prior version of the four-body Born distorted wave (BDW-4B) approximation is formulated and used to study single-electron capture in H–H and He+–H collisions. The total cross sections are obtained in terms of six-dimensional numerical quadratures at intermediate and high impact energies. The role of dynamic dielectronic correlation is investigated as a function of impact energy. The results of the total cross sections for the post version of the BDW-4B method are also reported and the post–prior discrepancy is estimated. Comparisons of the present results with the available experimental data are made and good agreement is obtained.

  13. Autoionization in electron - helium collisions: an (e, 2e) investigation

    NASA Astrophysics Data System (ADS)

    Samardzic, O.; Campbell, L.; Brunger, M. J.; Kheifets, A. S.; Weigold, E.

    1997-10-01

    In this (e, 2e) study into the n = 2 autoionization resonances of helium we present results for the triple differential cross sections (TDCS) at an incident energy of 80 eV. The scattered-electron angle is 0953-4075/30/19/024/img8 and the range of ejected-electron scattering angles are between 0953-4075/30/19/024/img9 and 0953-4075/30/19/024/img10. The measured coincidence ejected-electron spectra are analysed in terms of the Shore - Balashov parametrization to obtain the direct TDCS 0953-4075/30/19/024/img11 and the resonance parameters 0953-4075/30/19/024/img12 and 0953-4075/30/19/024/img13 for the 0953-4075/30/19/024/img14 and 0953-4075/30/19/024/img15 resonances as a function of the ejected-electron momentum. As in our previous studies (1995 J. Phys. B: At. Mol. Phys. 28 728, 1997 J. Phys. B: At. Mol. Phys. 30 3267) these derived parameters are compared with the results of a calculation based within the distorted-wave Born approximation (DWBA) framework. The post-collision-interaction (PCI) related energy shift 0953-4075/30/19/024/img16 was also determined in the present experiments. Given the somewhat lower beam energy of this work compared to our earlier investigations (94.6 - 99.6 eV), we had anticipated that we would see larger PCI effects and that our DWBA calculation would prove to be too simplistic to provide a realistic description of the reaction mechanism. In fact, the calculated parameters 0953-4075/30/19/024/img17 agree quite well with the experimental results, both indicating strong correlations between the resonance amplitudes and the direct ionization amplitudes. Furthermore, 0953-4075/30/19/024/img16 was, to within the uncertainties in the data, found to be zero across the entire range of ejected-electron momenta studied.

  14. Target electron ionization in Li2+-Li collisions: A multi-electron perspective

    NASA Astrophysics Data System (ADS)

    Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Goullon, J.; Ferreira, N.; Hubele, R.; de Jesus, V. L. B.; Lindenblatt, H.; Schneider, K.; Schulz, M.; Schuricke, M.; Song, Z.; Zhang, S.; Fischer, D.; Kirchner, T.

    2015-04-01

    Target electron removal in Li2+-Li collisions at 2290 keV/amu is studied experimentally and theoretically for ground and excited lithium target configurations. It is shown that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. According to our calculations, the process is shown to be strongly single-particle like. On one hand, a high resemblance between theoretical single-particle ionization and exclusive inner-shell ionization is demonstrated, and contributions from multi-electron processes are found to be weak. On the other hand, it is indicated by the discrepancy between experimental and single-particle theoretical results that multi-electron processes involving ionization from the outer-shell may play a crucial role.

  15. Shifts in electron capture to the continuum at low collision energies: Enhanced role of target postcollision interactions

    SciTech Connect

    Shah, M. B.; McGrath, C.; Luna, H.; Crothers, D.S.F.; O'Rourke, S.F.C.; Gilbody, H.B.; Illescas, Clara; Riera, A.; Pons, B.

    2003-01-01

    Measurements of electron velocity distributions emitted at 0 deg. for collisions of 10- and 20-keV H{sup +} incident ions on H{sub 2} and He show that the electron capture to the continuum cusp formation, which is still possible at these low impact energies, is shifted to lower momenta than its standard position (centered on the projectile velocity), as recently predicted. Classical trajectory Monte Carlo calculations reproduce the observations remarkably well, and indicate that a long-range residual interaction of the electron with the target ion after ionization is responsible for the shifts, which is a general effect that is enhanced at low nuclear velocities.

  16. Differential electron-Cu5+ elastic scattering cross sections extracted from electron emission in ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Liao, C.; Hagmann, S.; Bhalla, C. P.; Grabbe, S. R.; Cocke, C. L.; Richard, P.

    1999-04-01

    We present a method of deriving energy and angle-dependent electron-ion elastic scattering cross sections from doubly differential cross sections for electron emission in ion-atom collisions. By analyzing the laboratory frame binary encounter electron production cross sections in energetic ion-atom collisions, we derive projectile frame differential cross sections for electrons elastically scattered from highly charged projectile ions in the range between 60° and 180°. The elastic scattering cross sections are observed to deviate strongly from the Rutherford cross sections for electron scattering from bare nuclei. They exhibit strong Ramsauer-Townsend electron diffraction in the angular distribution of elastically scattered electrons, providing evidence for the strong role of screening played in the collision. Experimental data are compared with partial-wave calculations using the Hartree-Fock model.

  17. Ringing After a High-Energy Collision: Ambipolar Oscillations During Impact Plasma Expansion

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.

    2012-01-01

    High-velocity impacts on the Moon and other airless bodies deliver energy and material to the lunar surface and exosphere. The target and i mpactor material may become vaporized and ionized to form a collision al plasma that expands outward and eventually becomes collisionless. In the present work, kinetic simulations of the later collision less stage of impact plasma expansion are performed. Attention is paid to characterizing "ambipolar oscillations" in which thermodynamic distur bances propagate outward to generate "ringing" within the expanding e lectron cloud, which could radiate an electromagnetic signature of lo cal plasma conditions. The process is not unlike a beam-plasma intera ction, with the perturbing electron population in the present case ac ting as a highly thermal "beam" that resonates along the expanding de nsity gradient. Understanding the electromagnetic aspects of impact p lasma expansion could provide insight into the lasting effects of nat ural, impact-generated currents on airless surfaces and charging haza rds to human exploration infrastructure and instrumentation.

  18. Electron transfer, ionization, and excitation in atomic collisions. Progress report, June 15, 1992--June 14, 1995

    SciTech Connect

    Winter, T.G.; Alston, S.G.

    1995-08-01

    The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during the collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.

  19. The effect of electron collisions on rotational excitation of cometary water

    NASA Technical Reports Server (NTRS)

    Xie, Xingfa; Mumma, Michael J.

    1991-01-01

    The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in Comet Halley. The e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus, in the case of the O sub 00 yields 1 sub 11 transition. The estimates are based on theoretical and experimental studies of e-H2O collisions, on ion and electron parameters acquired in-situ by instruments on the Giotto and Vega spacecraft, and on results obtained from models of the cometary ionosphere. The contribution of electron collisions may explain the need for large water-water cross-sections in models which neglect the effect of electrons. The importance of electron collisions is enhanced for populations of water molecules in regions where their rotational lines are optically thick.

  20. Recent measurements concerning uranium hexafluoride-electron collision processes

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Chutjian, A.; Srivastava, S.; Williams, W.; Cartwright, D. C.

    1976-01-01

    Scattering of electrons by UF6 molecules was studied at impact energies ranging from 5 to 100 eV and momentum transfer, elastic and inelastic scattering cross sections were determined. The measurements also yielded spectroscopic information which made possible to extend the optical absorption cross sections from 2000 angstroms to 435 angstroms. It was found that UF6 is a very strong absorber in the vacuum UV region. No transitions were found to lie below the onset of the optically detected 3.0 eV feature.

  1. Electron collisions with the CH{sub 2}O-H{sub 2}O complex

    SciTech Connect

    Freitas, T. C.; Lima, M. A. P.; Canuto, S.; Bettega, M. H. F.

    2009-12-15

    We report cross sections for elastic collisions of low-energy electrons with the CH{sub 2}O-H{sub 2}O complex. We employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations for energies from 0.1 to 20 eV. We considered four different hydrogen-bonded structures for the complex that were generated by classical Monte Carlo simulations. Our aim is to investigate the effect of the water molecule on the pi* shape resonance of formaldehyde. Previous studies reported a pi* shape resonance for CH{sub 2}O at around 1 eV. The resonance positions of the complexes appear at lower energies in all cases due to the mutual polarization between the two molecules. This indicates that the presence of water may favor dissociation by electron impact and may lead to an important effect on strand breaking in wet DNA by electron impact.

  2. Impact fracture experiments simulating interstellar grain-grain collisions

    NASA Astrophysics Data System (ADS)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-04-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  3. Impact fracture experiments simulating interstellar grain-grain collisions

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-01-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  4. Electron impact excitation of helium atom

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Ying; Zeng, De-Ling; Gao, Xiang; Li, Jia-Ming

    2015-08-01

    A method to deal with the electron impact excitation cross sections of an atom from low to high incident energies are presented. This method combines the partial wave method and the first Born approximation (FBA), i.e., replacing the several lowest partial wave cross sections of the total cross sections within FBA by the corresponding exact partial wave cross sections. A new set of codes are developed to calculate the FBA partial wave cross sections. Using this method, the convergent e-He collision cross sections of optical-forbidden and optical-allowed transitions at low to high incident energies are obtained. The calculation results demonstrate the validity and efficiency of the method. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921501 and 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11274035, 11275029, 11328401, 11371218, 11474031, 11474032, and 11474034), and the Foundation of Development of Science and Technology of Chinese Academy of Engineering Physics (Grant Nos. 2013A0102005 and 2014A0102005).

  5. Two-dimensional model of resonant electron collisions with diatomic molecules and molecular cations

    NASA Astrophysics Data System (ADS)

    Vana, Martin; Hvizdos, David; Houfek, Karel; Curik, Roman; Greene, Chris H.; Rescigno, Thomas N.; McCurdy, C. William

    2016-05-01

    A simple model for resonant collisions of electrons with diatomic molecules with one electronic and one nuclear degree of freedom (2D model) which was solved numerically exactly within the time-independent approach was used to probe the local complex potential approximation and nonlocal approximation to nuclear dynamics of these collisions. This model was reformulated in the time-dependent picture and extended to model also electron collisions with molecular cations, especially with H2+.This model enables an assessment of approximate methods, such as the boomerang model or the frame transformation theory. We will present both time-dependent and time-independent results and show how we can use the model to extract deeper insight into the dynamics of the resonant collisions.

  6. R-matrix calculations of differential and integral cross sections for low-energy electron collisions with ethanol

    NASA Astrophysics Data System (ADS)

    Fujimoto, M. M.; Brigg, W. J.; Tennyson, J.

    2012-08-01

    Electron collisions with C2H5OH are studied up to impact energies of 10 eV using several theoretical models. Calculated differential cross sections suggest that the extrapolation to low angles used to extend experimental data and hence give integral cross sections significantly underestimates the large, dipole-driven forward scattering cross section. An improved set of values for the rotationally-unresolved elastic cross section is proposed; the corresponding rotationally resolved cross sections are also presented. Static exchange plus polarisation calculations find a very broad shape resonance in each of the 2A' and 2A'' symmetries in the 7 eV collision region however no resonance at lower energies, in qualitative agreement with the interpretation of some but not all dissociative electron attachment measurements.

  7. Pathways for nonsequential and sequential fragmentation of CO2 3 + investigated by electron collision

    NASA Astrophysics Data System (ADS)

    Wang, Enliang; Shan, Xu; Shen, Zhenjie; Gong, Maomao; Tang, Yaguo; Pan, Yi; Lau, Kai-Chung; Chen, Xiangjun

    2015-05-01

    We report nonsequential and sequential fragmentation dynamics of CO2 3 + investigated by electron collision at an impact energy of 500 eV. The dissociation mechanisms are clearly distinguished by combined use of the Dalitz plot together with momentum correlation spectra. The angular distributions and kinetic-energy releases (KERs) of different fragmentation processes are obtained. The dissociation channels of higher excited states of the CO2 3 + molecular ion are opened, which are quite different from the previous studies of heavy-ion collision [N. Neumann, D. Hant, L. Ph. H. Schmidt, J. Titze, T. Jahnke, A. Czasch, M. S. Schöffler, K. Kreidi, O. Jagutzki, H. Schmidt-Böcking, and R. Dörner, Phys. Rev. Lett. 104, 103201 (2010), 10.1103/PhysRevLett.104.103201] and intense laser field [C. Wu, C. Wu, D. Song, H. Su, Y. Yang, Z. Wu, X. Liu, H. Liu, M. Li, Y. Deng, Y. Liu, L.-Y. Peng, H. Jiang, and Q. Gong, Phys. Rev. Lett. 110, 103601 (2013), 10.1103/PhysRevLett.110.103601]. By analyzing KERs together with the help of potential-energy curves exploration at the multireference configuration interaction level, we conclude that the sequential fragmentation occurs in the 2Π ,4Π , and 2Σ+ states of the CO2 3 + ion. The bond length and bond angle are also determined based on the linear fragmentation, indicating that electron impact fragmentation is a potential method to precisely reconstruct the geometry of neutral molecules.

  8. Multiple electron processes of He and Ne by proton impact

    NASA Astrophysics Data System (ADS)

    Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto

    2016-05-01

    A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.

  9. PREFACE: XXVII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2011)

    NASA Astrophysics Data System (ADS)

    Williams, I. D.; van der Hart, H. W.; McCann, J. F.; Crothers, D. S. F.

    2012-11-01

    The XXVII International Conference on Photonic, Electronic and Atomic Collisions was held at Queen's University Belfast, Northern Ireland, 27 July - 2 August 2011. Members of the Local Organising Committee were drawn from the School of Mathematics and Physics of Queen's University Belfast, the School of Physical Sciences at Dublin City University, the School of Physics at University College Dublin and the Department of Experimental Physics at the National University of Ireland, Maynooth. The Conference was attended by 566 participants with contributions from 54 countries. The meeting attracted 786 contributed papers for presentation in the poster sessions. The conference included 20 Special Reports selected from the contributed papers, and these are included in part 1 of this volume. During the meeting a total of 65 Progress Reports were also presented, and the authors invited to submit written versions of their talks (see Part 1). Of the total number of contributed papers, 663 are included as refereed abstracts in parts 2 to 15 of this volume of Journal of Physics: Conference Series. Part 1 of this volume includes detailed write-ups of the majority of plenary lectures, progress reports and special reports, constituting a comprehensive tangible record of the meeting, and is additionally published in hard-copy as the Conference Proceedings. There were 5 plenary lectures given by Margaret Murnane on Ultrafast processes in atomic dynamics; Chris Greene on Few-body highly-correlated dynamics; Michael Allan on Electron-molecule collisions; Yasunori Yamazaki on Antiproton and positron collisions and Thomas Stöhlker on Relativistic ion collisions. Ian Spielman, winner of the IUPAP Young Scientist Prize for 2011, gave a special lecture entitled Modifying interatomic interactions using Raman coupling: a tale of slowly colliding Bose-Einstein condensates. In addition an evening public lecture by Mike Baillie on How precise tree-ring dating raises issues concerning the

  10. Close-coupling calculations of fine-structure excitation of Ne II due to H and electron collisions

    NASA Astrophysics Data System (ADS)

    Stancil, Phillip C.; Cumbee, Renata; Wang, Qianxia; Loch, Stuart; Pindzola, Michael; Schultz, David R.; Buenker, Robert; McLaughlin, Brendan; Ballance, Connor

    2016-06-01

    Fine-structure transitions within the ground term of ions and neutral atoms dominate the cooling in a variety of molecular regions and also provide important density and temperature diagnostics. While fine-structure rates due to electron collisions have been studied for many systems, data are generally sparse for elements larger than oxygen, at low temperatures, and for collisions due to heavy particles. We provide rate coefficients for H collisions for the first time. The calculations were performed using the quantum molecular-orbital close-coupling approach and the elastic approximation. The heavy-particle collisions use new potential energies for the lowest-lying NeH+ states computed with the MRDCI method. The focus of the electron-impact calculations is to provide fine-structure excitation rate coefficients down to 10 K. We compare with previous calculations at higher temperatures (Griffin et al. 2001), and use a range of calculations to provide an estimate of the uncertainty on our recommended rate coefficients. A brief discussion of astrophysical applications is also provided.Griffin, D.C., et al., 2001, J. Phys. B, 34, 4401This work partially supported by NASA grant No. NNX15AE47G.

  11. Influence of electron collisions with N_2(A ^3Σ_u^+) metastables in the nitrogen afterglow

    NASA Astrophysics Data System (ADS)

    Guerra, Vasco; Sá, Paulo A.; Loureiro, Jorge

    2003-10-01

    In this work we present a study of the influence of electron collisions with metastable molecules N_2(A ^3Σ_u^+) during the afterglow of a nitrogen microwave discharge operating at ω/2π=433 MHz and p=3.3 Torr, in a tube with radius R=1.9 cm. In particular, we discuss i) the effect of superelastic collisions e+N_2(A)arrow e+N_2(X) in the electron energy distribution function (EEDF) and consequently in the electron impact excitation rate coefficients; and ii) the importance of the stepwise excitation processes e+N_2(A)arrow e+N_2(B,C) in the heavy-particle kinetics. This is an important issue since the concentrations of both N_2(A) metastables and electrons initially decrease in the afterglow, but then raise and pass through pronounced maxima, whose origin is in collisions involving very high vibration levels of ground-state molecules (v≥ 38) and N(^4S) atoms. [1] V. Guerra, P. A. Sá and J. Loureiro, accepted for publication in Plasma Sources Sci. and Technol.

  12. Impact characteristics of a vehicle population in low speed front to rear collisions.

    PubMed

    Nishimura, Naoya; Simms, Ciaran K; Wood, Denis P

    2015-06-01

    Rear impact collisions are mostly low severity, but carry a very high societal cost due to reported symptoms of whiplash and related soft tissue injuries. Given the difficulty in physiological measurement of damage in whiplash patients, there is a significant need to assess rear impact severity on the basis of vehicle damage. This paper presents fundamental impact equations on the basis of an equivalent single vehicle to rigid barrier collision in order to predict relationships between impact speed, maximum dynamic crush, mean and peak acceleration, time to common velocity and vehicle stiffness. These are then applied in regression analysis of published staged low speed rear impact tests. The equivalent mean and peak accelerations are linear functions of the collision closing speed, while the time to common velocity is independent of the collision closing speed. Furthermore, the time to common velocity can be used as a surrogate measure of the normalized vehicle stiffness, which provides opportunity for future accident reconstruction. PMID:25795922

  13. Pumice-pumice collisions and the effect of the impact angle

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Manga, M.

    2003-06-01

    Using a high-speed video camera, we studied oblique collisions of lapilli-size pumice cylinders (with no rotation before impact) on flat pumice targets. Our results show that the rebound angle, the ratios of the components of velocities and the energy loss vary with the impact angle. In particular, in collisions with an average yaw angle approximately equal to zero, we observed relatively larger rebound angles at small and large impact angles and smaller values in between (the angles are measured from the horizontal surfaces of the targets). We observed also that the ratio of the normal components of velocities decreases and the ratio of the horizontal components increases when the impact angle increases. Furthermore, the ratio of the kinetic energy after to that before collisions, in general, decreases when the impact angle increases. Thus, our experiments reveal features that could be useful in modelling pumice-pumice collisions in geophysical flows.

  14. B -spline R -matrix-with-pseudostates calculations for electron collisions with aluminum

    NASA Astrophysics Data System (ADS)

    Gedeon, Viktor; Gedeon, Sergej; Lazur, Vladimir; Nagy, Elizabeth; Zatsarinny, Oleg; Bartschat, Klaus

    2015-11-01

    A systematic study of angle-integrated cross sections for electron scattering from neutral aluminum is presented. The calculations cover elastic scattering, excitation of the 14 states (3 s2n p ) P2o (n =3 ,4 ,5 ,6 ) , (3 s2n s ) 2S (n =4 ,5 ,6 ) , (3 s2n d ) 2D (n =3 ,4 ) , (3 s 3 p2)P,24,2D,2S , and (3 s24 f ) F2o , as well as electron impact ionization. The sensitivity of the results to changes in the theoretical model is checked by comparing predictions from a variety of approximations, including a large-scale model with over 500 continuum pseudostates. The current results are believed to be accurate at the few-percent level and should represent a sufficiently extensive set of electron collision data for most modeling applications involving neutral aluminum.

  15. Few electron transitions in atomic collisions. Final report, September 1, 1992--December 31, 1995

    SciTech Connect

    McGuire, J.

    1997-04-01

    During the past three years we have evaluated probabilities and cross sections for few and multiple electron transitions in atomic collisions. Our studies included interactions of atoms and molecules with incident protons, bare ions, electrons, positrons, anti-protons, ions carrying electrons and photons. We also: studied the inter-relation between collisions with charged particles and collisions involving various processes with photons. This work has complemented various studies of collisions of atoms with charged particles and with photons as well as more general efforts to understand the nature of multi-electron systems. Our aim has been to begin with relatively simple two electron systems and to focus on fast processes in which there is too little time for complicated processes to occur. We have used a variety of computational techniques, but we emphasize those appropriate for fast collisions in which we hope to obtain insight into the physical nature of the process itself. We generally considered systems in which experimental data was available.

  16. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    SciTech Connect

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  17. Head on collision of multi-solitons in an electron-positron-ion plasma having superthermal electrons

    SciTech Connect

    Roy, Kaushik; Chatterjee, Prasanta Roychoudhury, Rajkumar

    2014-10-15

    The head-on collision and overtaking collision of four solitons in a plasma comprising superthermal electrons, cold ions, and Boltzmann distributed positrons are investigated using the extended Poincare-Lighthill-Kuo (PLK) together with Hirota's method. PLK method yields two separate Korteweg-de Vries (KdV) equations where solitons obtained from any KdV equation move along a direction opposite to that of solitons obtained from the other KdV equation, While Hirota's method gives multi-soliton solution for each KdV equation all of which move along the same direction where the fastest moving soliton eventually overtakes the other ones. We have considered here two soliton solutions obtained from Hirota's method. Phase shifts acquired by each soliton due to both head-on collision and overtaking collision are calculated analytically.

  18. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    SciTech Connect

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.

  19. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    DOE PAGESBeta

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore » swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less

  20. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. It is shown that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.

  1. Standard line broadening impact theory for hydrogen including penetrating collisions.

    PubMed

    Alexiou, S; Poquérusse, A

    2005-10-01

    In recent years there has been significant interest in the emission spectra from high-density plasmas, as manifested by a number of experiments. At these high densities short range (small impact parameter) interactions become important and these cannot be adequately handled by the standard theory, whose predictions depend on some cutoffs, necessary to preserve unitarity, the long range approximation, and to ensure the validity of a semiclassical picture. Very recently, as a result of a debate concerning the broadening of isolated ion lines, the importance of penetration of bound electron wave functions by plasma electrons has been realized. By softening the interaction, penetration makes perturbative treatments more valid. The penetration effect has now been included analytically into the standard theory. It turns out that the integrations may be done in closed form in terms of the modified Bessel functions K0 and K1. This work develops the new theory and applies it to experimental measurements. PMID:16383542

  2. Evaluation of screening length corrections for interaction potentials in impact-collision ion scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Takeuchi, Wataru

    2013-10-01

    Since in impact-collision ion scattering spectroscopy (ICISS) data analysis the interaction potential represented by the screening length as the screening effect is not satisfactorily established up to the present, we introduce commonly the correction factor in the screening length. Previously, Yamamura, Takeuchi and Kawamura (YTK) have suggested the theory taking the shell effect of electron distributions into account for the correction factor to Firsov screening length in the Moliere potential. The application of YTK theory to the evaluation of screening length corrections for the interaction potentials in ICISS manifested that the screening length corrections calculated by the YTK theory agree almost with those determined by simulations or numerical calculations in ICISS and its variants data analyses, being superior to the evaluation of screening length corrections with the O'Connor and Biersack (OB) formula.

  3. Electron impact excitation of Kr XXVIII

    SciTech Connect

    Aggarwal, K.M.; Keenan, F.P.; Lawson, K.D.

    2011-05-15

    Collision strengths ({Omega}) are calculated for all 6328 transitions among the lowest 113 levels belonging to the 2s{sup 2}2p{sup 5},2s2p{sup 6},2s{sup 2}2p{sup 4}3l,2s2p{sup 5}3l, and 2p{sup 6}3l configurations of fluorine-like krypton, Kr XXVIII, using the Dirac Atomic R-matrix Code. All partial waves with angular momentum J{<=}40 are included, sufficient for the convergence of {Omega} for forbidden transitions. For allowed transitions a top-up is employed to obtain converged values of {Omega} up to an energy of 400 Ryd. Resonances in the thresholds region are resolved on a narrow energy mesh, and results for effective collision strengths (Y) are obtained after averaging the values of {Omega} over a Maxwellian distribution of electron velocities. Values of Y are reported over a wide temperature range below 10{sup 7.1}K, and the accuracy of the results is assessed. In addition, effective collision strengths are listed for the temperature range 7.0{<=}logT{sub e}(K){<=}9.0, obtained from non-resonant collision strengths generated with the FAC code.

  4. Electron impact induced light emission from zinc atoms

    NASA Astrophysics Data System (ADS)

    Cvejanovic, Danica

    2009-10-01

    Experimental studies of electron impact excitation of zinc atom are rare, primarily due to experimental difficulties. However, zinc is an interesting target because of possible applications in light sources. Also, due to its position in periodic table, zinc is an interesting case for the fundamental understanding of momentum couplings and the role of electron correlations in complex metal atoms. Recent experimental investigations have indicated the existence of highly correlated scattering mechanisms via formation of negative ion resonances and Post Collision Interaction (PCI) in the decay of autoionizing states. These can significantly modify energy dependence of the emission cross sections at low impact energies and the studies of photon emission offer a sensitive way to investigate electron correlations. Specifically, in the lowest autoionizing region of zinc, i.e. between 10 and 15 eV, both the cross sections and polarization of emitted light are affected by the formation of short lived negative ions and PCI effects. These are associated with excitation of one of the sub-valence 3d electrons and complex correlations between inner 3d and outer excited electrons in the target and also with the slow electron released into continuum, need to be included in modeling. Also the scattering of the spin polarized electrons has shown significant spin effects when excitation proceeds via negative ion resonances. Emission cross sections and comparison with theory would be discussed at the conference.

  5. On The Effect of Electron Collisions in the Excitation of Cometary HCN

    NASA Technical Reports Server (NTRS)

    Lovell, Amy J.; Kallivayalil, Nitya; Schloerb, F. Peter; Combi, Michael R.; Hansen, Kenneth C.; Gombosi, T. I.

    2004-01-01

    The electron-HCN collision rate for the excitation of rotational transitions of the HCN molecule is evaluated in comets C/1995 01 (Hale-Bopp) and C/1996 B2 (Hyakutake). Based on theoretical models of the cometary atmosphere, we show that collisions with electrons can provide a significant excitation mechanism for rotational transitions in the HCN molecule. Computed values of the cross section sigma(sub e-HCN) can be as high as 1.3 x cm2, more than 2 orders of magnitude greater than the commonly assumed HCN-H2O cross section. For the ground rotational transitions of HCN, the electron-HCN collision rate is found to exceed the HCN-H2O collision rate at distances greater than 3000 km from the cometary nucleus of Hale-Bopp and 1000 km from that of Hyakutake. Collisional excitation processes dominate over radiative excitation processes up to a distance of 160,000 km from the cometary nucleus of Hale-Bopp and 50,000 km from that of Hyakutake. Excitation models that neglect electron collisions can underestimate the HCN gas production rates by as much as a factor of 2.

  6. A New Apparatus for Studies of Low Energy Electron Collisions with Nucleotide Molecules

    NASA Astrophysics Data System (ADS)

    Duron, Jessica; Hargreaves, Leigh

    Low-energy electrons, the most copiously produced by-product of radiation cancer therapy, have been shown to be a strong driver of DNA damage in living cells [1]. Quantitative data describing these collisions are presently rare due to technological challenges in performing electron scattering measurements from the nucleobases, e.g. uracil, thymine, guanine, etc. These challenges include the low-vapor pressure of commercial samples (which are powders at room temperature), and the difficulty in making accurate flow measurements from heated gas sources, required to establish the absolute scale of the measured data. Based on techniques pioneered in positron collision physics [2], a new apparatus is presently undergoing commissioning at the California State University Fullerton, which aims to address these issues. We will make the first cross-section measurements for slow (E0 < 30eV) electron collisions with nucleotides. We will report design parameters and ongoing progress in the commissioning of this new experiment.

  7. Exact analytical solutions of continuity equation for electron beams precipitating in Coulomb collisions

    SciTech Connect

    Dobranskis, R. R.; Zharkova, V. V.

    2014-06-10

    The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained by using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.

  8. Backscattering of fast electrons from solids within a multiple collision model

    NASA Astrophysics Data System (ADS)

    Vukanic, J.; Davidovic, D. M.

    2008-07-01

    Reflection of electrons from solids is treated by the approximate analytic solution of the linearized transport equation. Scattering of electrons on target atoms is determined by the screened Coulomb interaction and the energy loss due to interaction with target electrons is defined by Bethe- Bloch formula. The anisotropic P_3 approximation of the collision integral is utilized and the Bolzmann transport equation is Laplace transformed in relative path length and solved by applying the DP0 technique. The approach is applicable in a wide range of electron energy --from several tens of keV to several MeV- and for materials where the mean number of collisions of an electron with target atoms during slowing down is large. Analytic expressions for energy distribution of backscattered electrons as well as for the particle and energy reflection coefficients were derived. Comparison of our results with data of the computational bipartition model is presented.

  9. Metastable Oxygen Production by Electron-Impact of Oxygen

    NASA Astrophysics Data System (ADS)

    Hein, J. D.; Malone, C. P.; Johnson, P. V.; Kanik, I.

    2014-12-01

    Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of oxygen-containing molecules plays a significant role in the dynamics of planetary atmospheres (Earth, Mars, Europa, Io, Enceladus) and cometary bodies (Hale-Bopp). The electron-impact excitation channels to O(1S) and O(1D) are important for determining energy partitioning and dynamics. To reliably model natural phenomena and interpret observational data, the accurate determination of underlying collision processes (cross sections, dissociation dynamics) through fundamental experimental studies is essential. The detection of metastable species in laboratory experiments requires a novel approach. Typical radiative de-excitation detection techniques cannot be performed due to the long-lived nature of excited species, and conventional particle detectors are insensitive to the low internal energies O(1S) and O(1D). We have recently constructed an apparatus to detect and characterize metastable oxygen production by electron impact using the "rare gas conversion technique." Recent results will be presented, including absolute excitation functions for target gases O2, CO, CO2, and N2O. This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Financial support through NASA's OPR, PATM, and MFRP programs, as well as the NASA Postdoctoral Program (NPP) are gratefully acknowledged.

  10. Absolute cross sections for electron loss, electron capture, and multiple ionization in collisions of Li2+ with argon

    NASA Astrophysics Data System (ADS)

    Losqui, A. L. C.; Zappa, F.; Sigaud, G. M.; Wolff, W.; Sant'Anna, M. M.; Santos, A. C. F.; Luna, H.; Melo, W. S.

    2014-02-01

    Exclusive absolute cross sections for the electron loss and capture processes, accompanied by target multiple ionization and pure target multiple ionization, as well as total electron loss and capture cross sections, in collisions of Li2+ with Ar have been measured in the 0.5-3.5 MeV energy range. The experimental data of the total electron loss cross section are compared with theoretical results based on the plane-wave Born approximation and the free-collision model, and with the available experimental data. Some discrepancies are observed when comparing the experimental data with the theoretical models, which can be attributed to the competitive mechanisms that lead to electron loss. The dependences of the single-capture and transfer-ionization processes on the projectile charge state are similar to those observed for collisions between other low-charged light ions and noble-gas targets. The same behaviour is observed when one compares the present data for the single- and double-ionization cross sections with those for He2+ projectiles on Ar. These facts indicate that the dynamics of the collision does not seem to depend on the projectile species, so that few-electron projectiles may act as structureless point charges in the intermediate- to high-velocity regime.

  11. Solid state effects in electron emission from atomic collisions near surfaces

    SciTech Connect

    Reinhold, C.O.; Burgdoerfer, J.; Minniti, R.; Elston, S.B.

    1996-10-01

    We present a brief progress report of recent studies of the ejected electron spectra arising from glancing-angle ion-surface scattering involving collision energies of hundreds of keV/u. A broad range of electron energies and emission angles is analyzed containing prominent structures such as the convoy electron peak and the binary ridge. Particular emphasis is placed on the search for signatures of dynamic image interactions and multiple scattering near surfaces. 30 refs., 8 figs.

  12. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology.

    PubMed

    Bartschat, Klaus; Kushner, Mark J

    2016-06-28

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society. PMID:27317740

  13. Accurate calculation of phase shifts for electron collisions with positive ions

    NASA Astrophysics Data System (ADS)

    Gien, T. T.

    2003-06-01

    The Harris-Nesbet variational method was considered for the calculation of phase shifts of electron collisions with hydrogen-like ions (Li2+, Be3+, and B4+). Calculations were carried out for both singlet and triplet scattering. Very accurate results of phase shift of electron collisions with these ionic targets were obtained for the first time for partial waves of L up to six. The phase shifts that we obtained for low partial wave (S, P, and D) scattering were compared with those available in the literature by a few other research groups employing different numerical methods.

  14. Secondary Collisions Following a Traffic Barrier Impact: Frequency, Factors, and Occupant Risk

    PubMed Central

    Gabauer, Douglas J.

    2010-01-01

    This study has investigated secondary collisions following an initial barrier impact in tow-away level crashes. The analysis included 2026 barrier impact cases that were selected from 12-years of in-depth crash data available through the National Automotive Sampling System (NASS) / Crashworthiness Data System (CDS). Secondary collisions were found to occur in approximately one-third of tow-away level crashes where a traffic barrier was the first object struck. Secondary crashes were found to primarily involve an impact to another vehicle, an impact to another barrier, or a rollover; tree and pole impacts were found to represent a much smaller proportion of secondary impacts. Through a detailed analysis of vehicle trajectory, this study supports previous research suggesting secondary collision risk is substantial even for vehicles not ultimately involved in a secondary collision. Compared to a single barrier impact, the occurrence of a secondary collision was found to increase the risk of serious occupant injury by a factor of 3.5, equivalent to the serious injury risk difference found between a belted and unbelted occupant in a traffic barrier crash. PMID:21050605

  15. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Chang, H. Y.

    2016-03-01

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuit model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.

  16. Non-convoy electron emission in ion metal surface collisions at grazing incidence

    NASA Astrophysics Data System (ADS)

    Martiarena, M. L.

    2005-05-01

    In this work we calculate the electron emission due to the process of electron loss to the continuum by the projectile in fast grazing incidence ion-metal collisions. The combined effect of the projectile nucleus, its induced image charge and the surface potential on the emitted electron, is included starting from the calculated continuum wave function via the enhancement factor. We will call this model the Surface Continuum Distorted Wave (SCDW) Model. The electron emission predicted by the SCDW model, even when in this first calculation we only include the electron loss effect, describes the position of the peak and the relative intensities for higher observation angles.

  17. The contribution of electron collisions to rotational excitations of cometary water

    NASA Technical Reports Server (NTRS)

    Xie, Xingfa; Mumma, Michael J.

    1992-01-01

    The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in comet Halley during the Giotto spacecraft encounter. In the case of the O(sub 00) yields 1(sub 11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral collisions, and the rotational temperature retrieved from high resolution infrared spectra of water in comet Halley may reflect electron temperatures rather than neutral gas temperature in the intermediate coma.

  18. Electron-Impact-Induced Emission Cross Sections of Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    Noren, C.; Kanik, I.; James, G. K.; Ajello, J. M.; Khakoo, M. A.

    1998-05-01

    One cannot overstate the importance of ultraviolet (UV) lines of neutral atomic oxygen. For example, the atomic oxygen resonance transition at 130.4 nm is a prominent emission feature in the vacuum ultraviolet (VUV) spectrum of the Earth's aurora and dayglow as well as the atmospheres of Venus and Mars. In this poster, we present our measurements of the electron-impact emission cross sections of the 130.4 nm atomic oxygen feature from threshold to 100 eV impact energy. A high-density atomic oxygen beam, created by a microwave discharge source, was intersected at a right angle by a magnetically focused electron beam. A 0.2m UV spectrometer system was used in the present measurements. It consists of an electron-impact collision chamber in tandem with an UV spectrometer equipped with a CsI coated channel electron multiplier detector. Emitted photons corresponding to radiative decay of collisionally excited state of the 130.4 nm atomic oxygen feature were detected.

  19. State-of-the-Art Experimental Techniques and Results for Low Energy Electron Collisions with Simple Molecules

    NASA Astrophysics Data System (ADS)

    Buckman, Stephen

    2012-10-01

    Electron collisions with simple molecular systems (diatomics and small polyatomics) play an important role in most discharge-based devices and environments. Even in cases where large precursor molecules are involved, say for example in a plasma processing environment, dissociation and dissociative attachment lead to the production of smaller molecules, perhaps radicals, whose interactions can then play an important part in the dynamics of the discharge. This paper will attempt to describe the current state of the art for measurements of processes such as elastic scattering, rotational, vibrational and electronic excitation, dissociative attachment, and ionization of small molecular species by electron impact. Examples of absolute cross sections that arise from such measurements will be provided and compared, where possible, with contemporary theoretical calculations. The collaboration between experiment and theory is of critical importance in the context of ``Plasma Data Exchange,'' as benchmarked theory will play an significant role in providing data for the many, perhaps majority, of processes that cannot be easily measured.

  20. CLASSICAL MODEL FOR ELECTRONICALLY NON-ADIABATIC COLLISION PROCESSES: RESONANCE EFFECTS IN ELECTRONIC-VIBRATIONAL ENERGY TRANSFER

    SciTech Connect

    Orel, Ann E.; Miller, William H.

    1980-11-01

    A recently developed classical model for electronically nonadiabatic collision processes is applied to electronic-vibrational energy transfer in a collinear atom~diatom system, A + BC(v=1) + A*+ BC(v=0), which closely resembles Br-H{sub 2}. This classical model, which treats electronic as well as heavy particle (i.e., translation, rotation, and vibration) degrees of freedom by classical mechanics, is found to describe the resonance features in this process reasonably well. The usefulness of the approach is that it allows one to extend standard Monte Carlo classical trajectory methodology to include electronically non-adiabatic processes in a dynamically consistent way,

  1. Measurement of doubly differential electron distributions induced by atomic collisions: Apparatus and related instrumental effects

    NASA Astrophysics Data System (ADS)

    Bernardi, G.; Suárez, S.; Fregenal, D.; Focke, P.; Meckbach, W.

    1996-05-01

    We describe the experimental setup at Centro Atómico Bariloche for the measurement of doubly differential electron distributions, in energy and angle of emission, induced by atomic collisions. We present detailed information about the performance of the equipment including a discussion of instrumental effects that could have affected the measured spectra.

  2. Finite-Element Z-Matrix Calculation of Electron-N2 Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    1999-01-01

    The finite element Z-matrix method has been applied in a multichannel study of e-N2 Collisions for electron energies from threshold to 30 eV. General agreement is obtained comparing with existing experimental and theoretical data. Some discrepancies are also found.

  3. Exclusive processes in electron-ion collisions in the dipole formalism

    SciTech Connect

    Cazaroto, E. R.; Navarra, F. S.; Carvalho, F.; Goncalves, V. P.

    2013-03-25

    We compare the predictions of two saturation models for production of vector mesons and of photons in electron-ion collisions. The models considered are the b-CGC and the rcBK. The calculations were made in the kinematical range of the LHeC and of the future eRHIC.

  4. Absolute angle-differential elastic cross sections for electron collisions with diacetylene

    SciTech Connect

    Allan, M.; Winstead, C.; McKoy, V.

    2011-06-15

    We report measured and calculated differential elastic cross sections for collisions of low-energy electrons with diacetylene (1,3-butadiyne). A generally satisfactory agreement between theory and experiment has been found. The calculated cross sections provide interesting insight into the underlying resonant structure.

  5. Electron impact excitation of Kr XXXII

    SciTech Connect

    Aggarwal, K.M. Keenan, F.P.; Lawson, K.D.

    2009-09-15

    Collision strengths ({omega}) have been calculated for all 7750 transitions among the lowest 125 levels belonging to the 2s{sup 2}2p,2s2p{sup 2},2p{sup 3},2s{sup 2}3l,2s2p3l, and 2p{sup 2}3l configurations of boron-like krypton, Kr XXXII, for which the Dirac Atomic R-matrix Code has been adopted. All partial waves with angular momentum J{<=}40 have been included, sufficient for the convergence of {omega} for forbidden transitions. For allowed transitions, a top-up has been included in order to obtain converged values of {omega} up to an energy of 500 Ryd. Resonances in the thresholds region have been resolved in a narrow energy mesh, and results for effective collision strengths (Y) have been obtained after averaging the values of {omega} over a Maxwellian distribution of electron velocities. Values of Y are reported over a wide temperature range below 10{sup 7.3}K, and the accuracy of the results is assessed. Values of Y are also listed in the temperature range 7.3{<=}logT{sub e}(K){<=}9.0, obtained from the nonresonant collision strengths from the Flexible Atomic Code.

  6. Studies of electron correlation effects in multicharged ion atom collisions involving double capture

    SciTech Connect

    Stolterfoht, N.; Sommer, K.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Meyer, F.W.

    1988-01-01

    We review measurements of L-Coster Kronig and Auger electron production in slow, multicharged collision systems to study electron correlation effects in the process of double electron capture. The n/sup /minus/3/ law was confirmed for the production of the Coster-Kronig configurations 1s/sup 2/2pn/ell/ (n greater than or equal to 6) in O/sup 6 +/ + He collisions. Enhancement of high angular momentum /ell/ in specific 1s/sup 2/2pn/ell/ configurations was observed by means of high-resolution measurements of the Coster-Kronig lines. The importance of electron correlation effects in couplings of potential energy curves leading to the 1s/sup 2/2pn/ell/ configurations is verified by means of Landau-Zener model calculations. 32 refs., 4 figs.

  7. Computational Study of Electron-Molecule Collisions Related to Low-Temperature Plasmas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Partridge, Harry (Technical Monitor)

    1997-01-01

    Computational study of electron-molecule collisions not only complements experimental measurements, but can also be used to investigate processes not readily accessible experimentally. A number of ab initio computational methods are available for these types of calculations. Here we describe a recently developed technique, the finite element Z-matrix method, Analogous to the R-matrix, method, it partitions the space into regions and employs real matrix elements. However, unlike the implementation of the R-matrix method commonly used in atomic and molecular physics, the Z-matrix method is fully variational. In the present implementation, a mixed basis of finite elements and Gaussians is used to represent the continuum electron, thus offering full flexibility without imposing fixed boundary conditions. Numerical examples include the electron-impact dissociation of N2 via the metastable A3Su+ state, a process which may be important in the lower thermosphere, and the dissociation of the CF radical, a process of interest to plasma etching. To understand the dissociation pathways, large scale quantum chemical calculations have been carried out for all target states which dissociate to the lowest five limits in the case of N2, and to the lowest two limits in the case of CF. For N2, the structural calculations clearly show the preference for predissociation if the initial state is the ground X1 Sg+ state, but direct dissociation appears to be preferable if the initial state is the A3Su+ state. Multi-configuration SCF target functions are used in the collisional calculation.

  8. The dynamics of electronic to vibrational, rotational, and translational energy transfer in collision of Ba( sup 1 P sub 1 ) with diatomic molecules

    SciTech Connect

    Suits, A.G.; de Pujo, P.; Sublemontier, O.; Visticot, J.; Berlande, J.; Cuvellier, J.; Gustavsson, T.; Mestdagh, J.; Meynadier, P. ); Lee, Y.T. )

    1992-09-15

    Doppler measurements taken over a range of probe-laser angles in a crossed-beam experiment were used, in conjunction with forward convolution analysis, to obtain flux--velocity contour maps for Ba({sup 3}{ital P}{sub 2}) produced in a collision of Ba({sup 1}{ital P}{sub 1}) with H{sub 2}, N{sub 2}, O{sub 2}, and NO. The contour maps suggest a general model for the dynamics of this process in which large impact parameter collisions result in a near-resonant transfer of initial electronic energy into final vibrational energy, while close collisions produce sideways scattering and effectively couple electronic energy to translation. The molecular collision partners fall into two categories: for one group, comprising O{sub 2} and NO, the existence of a well-defined molecular anion with favorable Franck--Condon factors linking excited vibrational levels to the ground vibrational state of the neutral results in greatly enhanced coupling for the near-resonant process. Molecules for which there exist no stable anions, such as N{sub 2} and H{sub 2}, represent a second category. The electronically inelastic collision for this group is instead dominated by the nonresonant process yielding the ground vibrational state and large translational energy release.

  9. Electron-ion collisions. [Basic physics of inelastic processes of excitation, ionization, and recombination

    SciTech Connect

    Crandall, D.H.

    1982-01-01

    This discussion concentrates on basic physics aspects of inelastic processes of excitation, ionization, and recombination that occur during electron-ion collisions. Except for cases of illustration along isoelectronic sequences, only multicharged (at least +2) ions will be specifically discussed with some emphasis of unique physics aspects associated with ionic charge. The material presented will be discussed from a primarily experimental viewpoint with most attention to electron-ion interacting beams experiments.

  10. Laser Assisted Free-Free Transition in Electron - Atom Collision

    NASA Technical Reports Server (NTRS)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  11. Effect of electron collisions on transport coefficients induced by the inverse bremsstrahlung absorption in plasmas

    SciTech Connect

    Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.

    2005-03-01

    The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.

  12. Electron collisions in the trapped gyro-Landau fluid transport model

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Kinsey, J. E.

    2010-12-01

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  13. Electron collisions in the trapped gyro-Landau fluid transport model

    SciTech Connect

    Staebler, G. M.; Kinsey, J. E.

    2010-12-15

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  14. Influence of the nonlinear dynamic plasma screening on the electron-dust collision in dusty plasmas

    SciTech Connect

    Ki, Dae-Han; Jung, Young-Dae

    2012-05-07

    The nonlinear dynamic plasma screening effects on the elastic electron-dust grain collision are investigated in dusty plasmas. The results show that the nonlinear dynamic screening effect significantly increases the magnitude of the eikonal phase shift. It is also found that the magnitude of the phase shift decreases with an increase of the thermal energy. In addition, it is found that the differential eikonal cross section shows the oscillatory behavior, and the oscillating peaks approach to the collision center with increasing thermal energy. It is also found that the total eikonal cross section decreases with an increase of the thermal energy.

  15. Signatures of the electron saddle swaps mechanism in the photon spectra following charge-exchange collisions

    NASA Astrophysics Data System (ADS)

    Otranto, Sebastian

    2014-10-01

    During the last few years, several experimental and theoretical studies have focused on state selective charge exchange processes between charged ions and alkali metals. These data are of particular importance for the tokamak nuclear fusion reactor program, since diagnostics on the plasma usually rely on charge-exchange spectroscopy. In this sense, alkali metals, have been proposed as potential alternatives to excited hydrogen/deuterium for which laboratory experiments are not feasible at present. In this talk, we present our recent work involving ion collisions with alkali metals. Oscillatory structures in the angular differential charge-exchange cross sections obtained using the MOTRIMS technique are correctly described by classical trajectory Monte Carlo simulations. These oscillations are found to originate from the number of swaps the electron undergoes around the projectile-target potential saddle before capture takes place and are very prominent at impact energies below 10 keV/amu. Moreover, cross sections of higher order of differentiability also indicate that the swaps leave distinctive signatures in the (n,l)-state selective cross sections and in the photon line emission cross sections. Oscillatory structures for the x-ray hardness ratio parameter are also predicted. In collaboration with Ronnie Hoekstra, Zernike Institute for Advanced Materials, University of Groningen and Ronald Olson, Department of Physics, Missouri University of Science and Technology.

  16. Effect of electron-nuclei interaction on internuclear motions in slow ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Tolstikhina, Inga Yu.; Tolstikhin, Oleg I.

    2015-10-01

    The electron-nuclei interaction affects the internuclear motion in slow ion-atom collisions, which in turn affects theoretical results for the cross sections of various collision processes. The results are especially sensitive to the details of the internuclear dynamics in the presence of a strong isotope effect on the cross sections, as is the case, e.g., for the charge transfer in low-energy collisions of He2+ with H, D, and T. By considering this system as an example, we show that internuclear trajectories defined by the Born-Oppenheimer (BO) potential in the entrance collision channel, which effectively accounts for the electron-nuclei interaction, are in much better agreement with trajectories obtained in the ab initio electron-nuclear dynamics approach [R. Cabrera-Trujillo et al., Phys. Rev. A 83, 012715 (2011), 10.1103/PhysRevA.83.012715] than the corresponding Coulomb trajectories. We also show that the use of the BO trajectory instead of the Coulomb trajectory in the calculations of the charge-transfer cross sections within the adiabatic approach improves the agreement of the results with ab initio calculations.

  17. Electron-impact double ionization of magnesium

    SciTech Connect

    Ford, M.J.; El-Marji, B.; Doering, J.P.; Moore, J.H.; Coplan, M.A.; Cooper, J.W.

    1998-01-01

    Electron-impact double-ionization cross sections differential in the angles of the two ejected electrons have been measured at impact energies of 422 and 1052 eV. The energies of the ejected electrons were fixed at 100 eV each. The cross sections are very different at the two incident energies. At 1052 eV the ejected electrons are preferentially found in the forward direction with respect to the incident beam. At 422 eV they are found in the forward and backward directions with approximately equal probability. The 422-eV cross sections are largest when the incident-electron and ejected-electron momentum vectors lie in a common plane. The observations are discussed in the context of several models for double ionization. {copyright} {ital 1998} {ital The American Physical Society}

  18. Distortion effects in electron excitation of hydrogen atoms by impact of heavy ions

    SciTech Connect

    Ramirez, C.A.; Rivarola, R.D.

    1995-12-01

    Electron excitation from the fundamental state of hydrogen atoms by impact of bare ions is studied at intermediate and high collision velocities. Total cross sections for final {ital np} states by impact of protons, alpha particles, and He{sup +} ions are calculated using the symmetric eikonal approximation and compared with experimental data. This comparison supports the existence of distortion effects recently predicted by Bugacov and co-workers [Phys. Rev. A {bold 47}, 1052 (1993)]. The validity of scaling laws is analyzed.

  19. Cross Sections for Electron Impact Excitation of Ions Relevant to Planetary Atmospheres Observation

    NASA Technical Reports Server (NTRS)

    Tayal, Swaraj S.

    1998-01-01

    The goal of this research grant was to calculate accurate oscillator strengths and electron collisional excitation strengths for inelastic transitions in atomic species of relevance to Planetary Atmospheres. Large scale configuration-interaction atomic structure calculations have been performed to obtain oscillator strengths and transition probabilities for transitions among the fine-structure levels and R-matrix method has been used in the calculations of electron-ion collision cross sections of C II, S I, S II, S III, and Ar II. A number of strong features due to ions of sulfur have been detected in the spectra of Jupiter satellite Io. The electron excitation cross sections for the C II and S II transitions are studied in collaboration with the experimental atomic physics group at the Jet Propulsion Laboratory. There is excellent agreement between experiment and theory which provide an accurate and broad-base test of the ability of theoretical methods used in the calculation of atomic processes. Specifically, research problems have been investigated for: electron impact excitation cross sections of C II: electron impact excitation cross sections of S III; energy levels and oscillator strengths for transitions in S III; collision strengths for electron collisional excitation of S II; electron impact excitation of inelastic transitions in Ar II; oscillator strengths of fine-structure transitions in neutral sulfur; cross sections for inelastic scattering of electrons from atomic nitrogen; and excitation of atomic ions by electron impact.

  20. Bound-free electron-positron pair production in relativistic heavy-ion collisions

    SciTech Connect

    Senguel, M. Y.; Gueclue, M. C.; Fritzsche, S.

    2009-10-15

    The bound-free electron-positron pair production is considered for relativistic heavy ion collisions. In particular, cross sections are calculated for the pair production with the simultaneous capture of the electron into the 1s ground state of one of the ions and for energies that are relevant for the relativistic heavy ion collider and the large hadron colliders. In the framework of perturbation theory, we applied Monte Carlo integration techniques to compute the lowest-order Feynman diagrams amplitudes by using Darwin wave functions for the bound states of the electrons and Sommerfeld-Maue wave functions for the continuum states of the positrons. Calculations were performed especially for the collision of Au+Au at 100 GeV/nucleon and Pb+Pb at 3400 GeV/nucleon.

  1. Energy levels, transition probabilities, and electron impact excitations for La XXX

    SciTech Connect

    Zhong, J.Y. . E-mail: jyzhong@aphy.iphy.ac.cn; Zhao, G.; Zhang, J.

    2006-09-15

    energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: T {sub e} (eV) = 10, 100, 300, 500, 800, 1000, and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.

  2. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  3. Compilation of Electron-Neutral Collision Data in Gases

    NASA Astrophysics Data System (ADS)

    Raju, Gorur Govinda

    2009-10-01

    Data on electron-neutral interaction are required and indispensable in several areas of research including Power systems, Plasma applications, material scientists, Chemistry, and even biological processes. The data are generally classified under cross sections for various elastic and inelastic processes, swarm properties including transport parameters and growth coefficients. A large number of reviews and compilations for a limited number of gases have been previously published in the literature by other researchers. In this presentation the author has compiled, over a period of twenty years or so, data for most of the molecules, if not for all, studied for the electron energy range (0-1000 eV) For each target particle about sixteen quantities have been classified to the extent that data are available, provided in tabular and graphical formats. The data are updated on a continuous basis till publication time.

  4. Electron impact excitation of SF6

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Chutjian, A.

    1977-01-01

    A study of the electron impact energy-loss spectrum of SF6 under both optical (low scattering angle, high impact energy) and non-optical conditions (high scattering angle, low impact energy) has revealed a number of electronic excitation processes. With the help of theoretical calculations, several of these transitions have been assigned and approximate cross sections associated with four features have been determined. In addition, a strong resonance at 12 eV has been observed in both elastic and vibrationally inelastic (delta E = 0.092 eV) channels.

  5. Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings.

    PubMed

    Shi, Liping; Li, Wenxue; Zhou, Hui; Ding, Liang'en; Zeng, Heping

    2013-02-15

    We demonstrate impact ionization and dissociative recombination of neon (Ne) atoms by means of seeded-electron heating and subsequent electron-atom collisions in an ultraviolet plasma grating, allowing for a substantial fraction of the neutral Ne atomic population to reside in high-lying excited states. A buffer gas with relatively low ionization potential (nitrogen or argon) was used to provide high-density seed electrons. A three-step excitation model is verified by the fluorescence emission from the impact excitation of Ne atoms. PMID:23455081

  6. Application of the Convergent Close-Coupling method to collisions of electrons, positrons, and protons with light atomic and molecular targets

    NASA Astrophysics Data System (ADS)

    Bray, Igor

    2015-09-01

    The Convergent Close-Coupling (CCC) method for electron-atom collisions has been applied successfully for around two decades for quasi one- and two-electron atomic targets. The underlying engine is the complete Laguerre basis for treating to convergence the target discrete and continuous spectra via a square-integrable approach, together with a formulation of the close-coupling equations in momentum space. The method has continued to be extended, and now incorporates collisions with positrons with allowance for positronium formation. This is a major advancement because it addresses the complexity associated with treating multi-center collision problems. These techniques have then been readily transferred to collisions with protons, where charge-exchange can be a substantial scattering outcome. The latter also required a move to solving the CCC equations using an impact parameter formalism. Most recently, in addition to the extension of the variety of projectiles, the collision targets have been generalized to molecules. Presently, just the H2+and the H2 molecules have been implemented. In the talk a broad range of applications of the CCC method will be discussed and future developments will be indicated. coauthors: A. S. Kadyrov, D.V. Fursa, I. Abdurakhmanov, M. Zammit.

  7. Vlasov Simulation of the Effects of Collisions on the Damping of Electron Plasma Waves

    NASA Astrophysics Data System (ADS)

    Banks, Jeff; Berger, Richard; Chapman, Thomas; Brunner, Stephan; Tran, T.

    2015-11-01

    Kinetic simulation of two dimensional plasma waves through direct discretization of the Vlasov equation may be particularly attractive for situations where minimal numerical fluctuation levels are desired, such as when measuring growth rates of plasma wave instabilities. In many cases collisional effects can be important to the evolution of plasma waves because they both set a minimum damping rate for plasma waves and can scatter particles out of resonance through pitch angle scattering. Here we present Vlasov simulations of evolving electron plasma waves (EPWs) in plasmas of varying collisionality. We consider first the effects of electron-ion pitch angle collisions on the frequency and damping, Landau and collisional, of small-amplitude EPWs for a range of collision rates. In addition, the wave phase velocities are extracted from the simulation results and compared with theory. For this study we use the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. We then discuss extensions of the collision operator to include thermalization. Discretization of these collision operators using 4th order accurate conservative finite-differencing will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD program at LLNL under project tracking code 15-ERD-038.

  8. Complete data acquisition and analysis system for low-energy electron-molecule collision studies

    NASA Astrophysics Data System (ADS)

    Nag, Pamir; Nandi, Dhananjay

    2015-09-01

    A complete data acquisition system has been developed that can work with any personal computer irrespective of the operating system installed on it. The software can be used in low and intermediate electron-energy collision studies with ground-state molecules in gas phase using a combination of RS-232, GPIB, and USB-interfaced devices. Various tabletop instruments and nuclear instrumentation module (NIM) -based electronics have been interfaced and have communicated with the software, which is based on LabVIEW. This is tested with dissociative electron attachment (DEA) and polar dissociation studies to oxygen molecule and successfully used in a DEA study of carbon monoxide and carbon dioxide.

  9. TlII excitation cross-sections in collisions of slow electrons with thallium atoms

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu M.

    2016-09-01

    Excitation of a singly-charged thallium ion in electron collisions with thallium atoms has been studied experimentally. Seventy excitation cross sections have been measured at an exciting electron energy of 30 eV. Ten optical excitation functions (OEFs) have been recorded in the incident electron energy range of 0–200 eV. For seven TlII spectral series, the dependence of excitation cross-sections on the principal quantum numbers of upper levels has been studied. A comparison of findings with data from preceding publications is presented.

  10. Grazing incidence collisions of fast protons with insulators: electron emission around the convoy peak

    NASA Astrophysics Data System (ADS)

    Aldazábal, I.; Ponce, V. H.; Arnau, A.

    2004-08-01

    A general model to calculate electron spectra in grazing incidence ion-surface collisions is presented. It is based on the use of atomic form factors for projectile ionization and incoherent scattering functions for the target. The model is applicable for arbitrary systems whose electrons can be described by localized atomic orbitals, like ionic crystals. For 100 keV protons on LiF surfaces we find that the projectile electron contribution to the convoy peak is larger than the contribution from target ionization.

  11. Electron collisions with 1-butene and 2-methylpropene molecules

    NASA Astrophysics Data System (ADS)

    Lopes, A. R.; Freitas, T. C.; Bettega, M. H. F.

    2015-07-01

    In this paper we report integral and differential cross sections for the elastic scattering of low-energy electrons by C4H8 isomers, namely 1-butene and 2-methylpropene. The scattering cross sections were obtained using the Schwinger multichannel method with pseudopotentials, in the static-exchange and in the static-exchange plus polarization approximations, for energies of the incident electron ranging from 0.5 eV to 15 eV. Our calculations indicate that the 1-butene molecule has a resonance in the A″ symmetry at around 2.1 eV, in agreement with the experimental data of 2.3 eV as reported by Mozejko et al (2012 J. Phys. B 45 145203). The 2-methylpropene molecule has a resonance in the B2 symmetry, located at around 2.8 eV and also in good agreement with the experimental results of Mozejko et al around 2.4 eV. We also report differential cross sections around the energy of the broad structure present in the integral cross sections of both molecules, and discuss their oscillatory behavior in terms of the type of the molecular chain.

  12. The linear algebraic method for electron-molecule collisions

    SciTech Connect

    Collins, L.A.; Schneider, B.I.

    1995-09-01

    In order to find numerical solutions to many problems in physics, chemistry and engineering it is necessary to place the equations of motion (classical or quantal) of the variables of dynamical interest on a discrete mesh. The formulation of scattering theory in quantum mechanics is no exception and leads to partial differential or integral equations which may only be solved on digital computers. Typical approaches introduce a numerical grid or basis set expansion of the scattering wavefunction in order to reduce `the problem to the solution of a set of algebraic equations. Often it is more convenient to deal with the scattering matrix or phase amplitude rather than the wavefunction but the essential features of the numerics are unchanged. In this section we will formulate the Linear Algebraic Method (LAM) for electron-atom/molecule scattering for a simple, one-dimensional radial potential. This will illustrate the basic approach and enable the uninitiated reader to follow the subsequent discussion of the general, multi-channel, electron-molecule formulation without undue difficulty. We begin by writing the Schroedinger equation for the s-wave scattering of a structureless particle by a short-range, local potential.

  13. A new semiclassical decoupling scheme for electronic transitions in molecular collisions - Application to vibrational-to-electronic energy transfer

    NASA Technical Reports Server (NTRS)

    Lee, H.-W.; Lam, K. S.; Devries, P. L.; George, T. F.

    1980-01-01

    A new semiclassical decoupling scheme (the trajectory-based decoupling scheme) is introduced in a computational study of vibrational-to-electronic energy transfer for a simple model system that simulates collinear atom-diatom collisions. The probability of energy transfer (P) is calculated quasiclassically using the new scheme as well as quantum mechanically as a function of the atomic electronic-energy separation (lambda), with overall good agreement between the two sets of results. Classical mechanics with the new decoupling scheme is found to be capable of predicting resonance behavior whereas an earlier decoupling scheme (the coordinate-based decoupling scheme) failed. Interference effects are not exhibited in P vs lambda results.

  14. Single electron impact ionization of the methane molecule

    NASA Astrophysics Data System (ADS)

    Bouamoud, Mammar; Sahlaoui, Mohammed; Benmansour, Nour El Houda; Atomic and Molecular Collisions Team

    2014-10-01

    Triply differential cross sections (TDCS) results of electron-impact ionization of the inner 2a1 molecular orbital of CH4 are presented in the framework of the Second Born Approximation and compared with the experimental data performed in coplanar asymmetric geometry. The cross sections are averaged on the random orientations of the molecular target for accurate comparison with experiments and are compared also with the theoretical calculations of the Three Coulomb wave (3CW) model. Our results are in good agreement with experiments and 3CW results in the binary peak. In contrast the Second Born Approximation yields a significant higher values compared to the 3CW results for the recoil peak and seems to describe suitably the recoil region where higher order effects can occur with the participation of the recoiling ion in the collision process.

  15. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    SciTech Connect

    Amusia, M.Y.

    1995-08-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published.

  16. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-01-01

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  17. Electron-ion collision spectroscopy: Lithium-like xenon ions

    NASA Astrophysics Data System (ADS)

    Bernhardt, D.; Brandau, C.; Harman, Z.; Kozhuharov, C.; Böhm, S.; Bosch, F.; Fritzsche, S.; Jacobi, J.; Kieslich, S.; Knopp, H.; Nolden, F.; Shi, W.; Stachura, Z.; Steck, M.; Stöhlker, Th.; Schippers, S.; Müller, A.

    2015-01-01

    The resonant process of dielectronic recombination (DR) has been applied as a spectroscopic tool to investigate intra-L -shell excitations 2 s -2 pj in Li-like 136Xe51+ . The experiments were carried out at the electron cooler of the Experimental Storage Ring of the GSI-Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. The observed center-of-mass energy range (0-505 eV) covers all resonances associated with the 2 s +e-→(2p1/2n lj) J and (2p3/2n lj) J DR processes. Energies and strengths of isolated 2 p1 /2n and 2 p3 /2n DR-resonance groups were obtained for principal quantum numbers n up to 43 and 36, respectively. The 2 s -2 p1 /2 and 2 s -2 p3 /2 excitation energies were deduced to be 119.816(42) eV and 492.174(52) eV. The excitation energies are compared with previous measurements of other groups and with recent QED calculations. In addition, the experimental spectra and extracted resonance strengths are compared with multiconfiguration Dirac-Fock calculations. Measurements and theory are found to be in good agreement with each other.

  18. Electron-ion collision rates in noble gas clusters irradiated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2012-05-01

    We report a theoretical analysis of electron-ion collision rates in xenon gas clusters irradiated by femtosecond laser pulses. The present analysis is based on the eikonal approximation (EA), the first Born approximation (FBA) and the classical (CL) methods. The calculations are performed using the plasma-screened Rogers potential introduced by Moll et al. [J. Phys. B. 43, 135103 (2010)] as well as the Debye potential for a wide range of experimental parameters. We find that the magnitudes of electron-ion collision frequency obtained in the EA do not fall as rapidly with the kinetic energy of electrons as in the FBA and CL methods for higher charge states of xenon ion (Xe8+ and Xe14+). Furthermore, EA shows that the effect of the inner structure of ion is most dominant for the lowest charge state of xenon ion (Xe1+). In the case of the present effective potential, FBA overestimates the CL results for all three different charge states of xenon, whereas for the Debye potential, both the FBA and CL methods predict collision frequencies which are nearly close to each other.

  19. Stationary electron velocity distribution function in crossed electric and magnetic fields with collisions

    SciTech Connect

    Shagayda, Andrey

    2012-08-15

    Analytical studies and numerical simulations show that the electron velocity distribution function in a Hall thruster discharge with crossed electric and magnetic fields is not Maxwellian. This is due to the fact that the mean free path between collisions is greater than both the Larmor radius and the characteristic dimensions of the discharge channel. However in numerical models of Hall thrusters, a hydrodynamic approach is often used to describe the electron dynamics, because discharge simulation in a fully kinetic approach requires large computing resources and is time consuming. A more accurate modeling of the electron flow in the hydrodynamic approximation requires taking into account the non-Maxwellian character of the distribution function and finding its moments, an approach that reflects the properties of electrons drifting in crossed electric and magnetic fields better than the commonly used Euler or Navier-Stokes approximations. In the present paper, an expression for the electron velocity distribution function in rarefied spatially homogeneous stationary plasma with crossed electric and magnetic fields and predominance of collisions with heavy particles is derived in the relaxation approximation. The main moments of the distribution function including longitudinal and transversal temperatures, the components of the viscous stress tensor, and of the heat flux vector are calculated. Distinctive features of the hydrodynamic description of electrons with a strongly non-equilibrium distribution function and the prospects for further development of the proposed approach for calculating the distribution function in spatially inhomogeneous plasma are discussed.

  20. Electron transfer and bond-forming reactions following collisions of I2+ with CO and CS2

    NASA Astrophysics Data System (ADS)

    Fletcher, James D.; Parkes, Michael A.; Price, Stephen D.

    2015-08-01

    Collisions between I2+ and CO have been investigated using time-of-flight mass spectrometry at a range of centre-of-mass collision energies between 0.5 and 3.0 eV. Following I2++CO collisions, we detect I++CO+ from a single-electron transfer reaction and IO++C+ from bond-forming reactivity. Reaction-window calculations, based on Landau-Zener theory, have been used to rationalise the electron transfer reactivity and computational chemistry has been used to explore the [I-CO]2+ potential energy surface to account for the observation of IO+. In addition, collisions between I2+ and CS2 have been investigated over a range of centre-of-mass collision energies between 0.8 and 6.0 eV. Both single- and double-electron transfer reactions are observed in the I2+/CS2 collision system, an observation again rationalised by reaction-window theory. The monocations IS+ and IC+ are also detected following collisions of I2+ with CS2, and these ions are clearly products from a bond-forming reaction. We present a simple model based on the structure of the [I-CS2]2+ collision complex to rationalise the significantly larger yield of IS+ than IC+ in this bond-forming process.

  1. Forward electron production in heavy ion-atom and ion-solid collisions

    SciTech Connect

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table.

  2. Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.

  3. Electron-Photon Polarization Correlation Study of Neon, Argon and Krypton Excitation by Electron Impact

    NASA Astrophysics Data System (ADS)

    Zheng, Shuanghai

    1993-01-01

    The electron impact excitation of the 3s ^' (1/2) ^0_1 state in neon, the 4s^' (1/2) ^0_1 state in argon and the 5s (3/2) ^0_1 state in krypton have been studied using the electron-photon polarization correlation technique. The two linear coherence parameters P_1 and P_2 have been measured and the alignment angle gamma and the linear polarization P ^+_{rm lin} of the angular part of the collisionally induced excited state charge cloud were extracted from the measured P _1 and P_2 parameters. We measured P_1 and P_2 in neon at an impact energy of 50 eV, in argon at impact energies of 50 eV, 40 eV, 30 eV and 25 eV, and in krypton at impact energies of 50 eV and 30 eV and electron scattering angles up to 55^circ in all cases. A comparison with theoretical predictions from first-order perturbative theories such as a Distorted Wave Born Approximation (DWBA) and a First Order Many Body Theory (FOMBT) was made. At 50 eV in neon and argon, the agreement between experiment and theory is generally good at small scattering angles up to 25^circ and somewhat poorer at larger scattering angles. At 50 eV in krypton, the agreement between experiment and theory is generally good at scattering angles up to 40 ^circ. The measurements in argon (40 eV, 30 eV, and 25 eV) generally follow the trend of the theoretical predictions, but it was found that the experimentally measured coherence parameters appear to be shifted towards larger scattering angles compared to the theoretical predictions as the impact energy is decreased. At 30 eV in krypton, very good agreement between experiment and theory was found over the entire range of electron scattering angles (up to 55^circ). The level of agreement between experiment and theory indicates that the DWBA and FOMBT appear to provide a better description of the collision process for a more complex target. We also found that the alignment angle gamma is the parameter which is perhaps least sensitive to the details of the collision.

  4. Measurements of single-electron detachment cross-sections for Cu- and Ag- in collision with He and N2

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Wu, Shimin; Li, Guangwu; Lu, Fuquan; Tang, Jiayong; Yang, Fujia

    2001-12-01

    Electron detachment of negative ions, in collision with a static gas target, is known to be one of the most fundamental processes occurring in negative-ion-atom collisions. The experimental results of cross-section data for transition element ions in collision with gases are of great interest not only for their potential application value, but also as a challenge to a theoretical study of complex negative ions in collision with atoms or molecules. In the present work, the single-electron detachment (SED) cross-sections for Cu- and Ag- in collision with He, N2 have been obtained in the energy region of 10-30 keV. By using a single-particle detector for both neutral atoms and ions, the experimental uncertainty of the results is improved in this work.

  5. CLASSICAL TRAJECTORY MODELS FOR ELECTRONICALLY NON-ADIABATIC COLLISION PROCESSES: A CLASSICAL VALENCE BOND MODEL FOR ELECTRONIC DEGREES OF FREEDOM

    SciTech Connect

    Miller, William H.; Orel, Ann E.

    1980-11-01

    A classical interpretation of the Dirac-Van Vleck spin version of valence bond theory is used to obtain a classical model for electronic degrees of freedom within the valence bond framework. The approach is illustrated by deriving the explicit forms of the classical Hamiltonians, involving electronic and heavy particle degrees of freedom, for the H-H{sub 2}, F-H{sub 2} , and O-H{sub 2} systems. It is also shown how the initial conditions for both electronic and heavy particle degrees of freedom are chosen to carry out a classical trajectory simulation of collision processes. The attractive feature of this model is that it is as eaaily applicable to electronically non-adiabatic processes as it is to adiabatic ones.

  6. Making a meaningful impact: modelling simultaneous frictional collisions in spatial multibody systems

    PubMed Central

    Uchida, Thomas K.; Sherman, Michael A.; Delp, Scott L.

    2015-01-01

    Impacts are instantaneous, computationally efficient approximations of collisions. Current impact models sacrifice important physical principles to achieve that efficiency, yielding qualitative and quantitative errors when applied to simultaneous impacts in spatial multibody systems. We present a new impact model that produces behaviour similar to that of a detailed compliant contact model, while retaining the efficiency of an instantaneous method. In our model, time and configuration are fixed, but the impact is resolved into distinct compression and expansion phases, themselves comprising sliding and rolling intervals. A constrained optimization problem is solved for each interval to compute incremental impulses while respecting physical laws and principles of contact mechanics. We present the mathematical model, algorithms for its practical implementation, and examples that demonstrate its effectiveness. In collisions involving materials of various stiffnesses, our model can be more than 20 times faster than integrating through the collision using a compliant contact model. This work extends the use of instantaneous impact models to scientific and engineering applications with strict accuracy requirements, where compliant contact models would otherwise be required. An open-source implementation is available in Simbody, a C++ multibody dynamics library widely used in biomechanical and robotic applications.

  7. Beauty production in pp collisions at √{ s} = 2.76 TeV measured via semi-electronic decays

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.

    2014-11-01

    The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity | y | < 0.8 and transverse momentum 1 collisions at √{ s} = 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, σb→e = 3.47 ± 0.40 (stat)-1.33+1.12 (sys) ± 0.07 (norm) μb, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) calculations to obtain the total b b bar production cross section, σbbbar = 130 ± 15.1 (stat)-49.8+42.1 (sys)-3.1+3.4 (extr) ± 2.5 (norm) ± 4.4 (BR) μb.

  8. Generation of quantum-electrodynamic cascades in oblique collisions of ultrarelativistic electrons with an intense laser field

    NASA Astrophysics Data System (ADS)

    Mironov, A. A.; Fedotov, A. M.; Narozhnyi, N. B.

    2016-04-01

    Quantum-electrodynamic cascade generation is numerically simulated for the case of the oblique collision of a beam of ultrarelativistic electrons with the field of two counterpropagating, focused, circularly polarised laser pulses. It is shown that although the 'collapse and revival' effect is observed at any value of the collision angle, the multiplicity of the cascade essentially depends on this angle and is maximal in the configuration, when the electron beam hits the focus perpendicularly to the optical axis of the laser pulses.

  9. Nonlinear dynamics of cold magnetized non-relativistic plasma in the presence of electron-ion collisions

    SciTech Connect

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2015-09-15

    A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.

  10. Will Allis Prize for the Study of Ionized Gases Lecture: Electron and Photon Collisions with Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Burke, Philip G.

    2012-06-01

    After a brief historical introduction this talk will review the broad range of collision processes involving electron and photon collisions with atoms and molecules that are now being considered. Their application in the analysis of astronomical spectra, atmospheric observations and laboratory plasmas will be considered. The talk will review the R-matrix computational method which has been widely used by international collaborations and by other scientists in the field to obtain accurate scattering amplitudes and cross sections of importance in these applications. Results of some recent calculations of electron and photon collisions with atoms and molecules will be presented. In conclusion some challenges for future research will be briefly discussed.

  11. The effect of q-distributed electrons on the head-on collision of ion acoustic solitary waves

    SciTech Connect

    Ghosh, Uday Narayan; Chatterjee, Prasanta; Roychoudhury, Rajkumar

    2012-01-15

    The head-on collision of ion acoustic solitary waves (IASWs) in two component plasma comprising nonextensive distributed electrons is investigated. Two opposite directional Kortewg-de-vries (KdV) equations are derived and the phase shift due to collision is obtained using the extended version of Poincare-Lighthill-Kuo method. Different ranges of nonextensive parameter q are considered and their effects on phase shifts are observed. It is found that the presence of nonextensive distributed electrons plays a significant role on the nature of collision of ion acoustic solitary waves.

  12. Electron-impact excitation of nitric oxide.

    NASA Technical Reports Server (NTRS)

    Stone, E. J.; Zipf, E. C.

    1972-01-01

    The absolute cross sections for the excitation of the nitrosyl cation Baer-Miescher bands, two nitric oxide bands, and several atomic nitrogen multiplets in the vacuum UV by electron impact on NO have been measured over an energy range extending from threshold to 300 eV. The variation of the dipole transition moment for the nitrosyl cation band system was also determined.

  13. Boltzmann equation analysis of electron-molecule collision cross sections in water vapor and ammonia

    SciTech Connect

    Yousfi, M.; Benabdessadok, M.D.

    1996-12-01

    Sets of electron-molecule collision cross sections for H{sub 2}O and NH{sub 3} have been determined from a classical technique of electron swarm parameter unfolding. This deconvolution method is based on a simplex algorithm using a powerful multiterm Boltzmann equation analysis established in the framework of the classical hydrodynamic approximation. It is well adapted for the simulation of the different classes of swarm experiments (i.e., time resolved, time of flight, and steady state experiments). The sets of collision cross sections that exist in the literature are reviewed and analyzed. Fitted sets of cross sections are determined for H{sub 2}O and NH{sub 3} which exhibit features characteristic of polar molecules such as high rotational excitation collision cross sections. The hydrodynamic swarm parameters (i.e., drift velocity, longitudinal and transverse diffusion coefficients, ionization and attachment coefficients) calculated from the fitted sets are in excellent agreement with the measured ones. These sets are finally used to calculate the transport and reaction coefficients needed for discharge modeling in two cases of typical gas mixtures for which experimental swarm data are very sparse or nonexistent (i.e., flue gas mixtures and gas mixtures for rf plasma surface treatment). {copyright} {ital 1996 American Institute of Physics.}

  14. Recent advances in vibro-impact dynamics and collision of ocean vessels

    NASA Astrophysics Data System (ADS)

    Ibrahim, Raouf A.

    2014-11-01

    The treatment of ship impacts and collisions takes different approaches depending on the emphasis of each discipline. For example, dynamicists, physicist, and mathematicians are dealing with developing analytical models and mappings of vibro-impact systems. On the other hand, naval architects and ship designers are interested in developing design codes and structural assessments due to slamming loads, liquid sloshing impact loads in liquefied natural gas tanks and ship grounding accidents. The purpose of this review is to highlight the main differences of the two disciplines. It begins with a brief account of the theory of vibro-impact dynamics based on modeling and mapping of systems experiencing discontinuous changes in their state of motion due to collision. The main techniques used in modeling include power-law phenomenological modeling, Hertzian modeling, and non-smooth coordinate transformations originally developed by Zhuravlev and Ivanov. In view of their effectiveness, both Zhuravlev and Ivanov non-smooth coordinate transformations will be described and assessed for the case of ship roll dynamics experiencing impact with rigid barriers. These transformations have the advantage of converting the vibro-impact oscillator into an oscillator without barriers such that the corresponding equation of motion does not contain any impact term. One of the recent results dealing with the coefficient of restitution is that its value monotonically decreases with the impact velocity and not unique but random in nature. Slamming loads and grounding events of ocean waves acting on the bottom of high speed vessels will be assessed with reference to the ship structural damage. It will be noticed that naval architects and marine engineers are treating these problems using different approaches from those used by dynamicists. The problem of sloshing impact in liquefied natural gas cargo and related problems will be assessed based on the numerical and experimental results. It is

  15. Electron impact study of potassium hydroxide

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1979-01-01

    An attempt is made to measure the sum of the elastic, rotational and vibrational scattering of electrons by KOH at low impact energies (5 to 20 eV) at angles from 10 to 120 deg. Energy loss spectra taken in the 0 to 18 eV range using an electron impact spectrometer are used to identify the species contributing to electric scattering. At temperatures between 300 and 500 C, only inelastic spectral features belonging to water are detected, while at temperatures from 500 to 800 C strong atomic K lines, indicative of molecular dissociation, and H2 energy loss features become prominent. No features attributable to KOH, the KOH dimer, O2 or potassium oxides were observed, due to the effects of the dissociation products, and it is concluded that another technique will have to be developed in order to measure electron scattering by KOH.

  16. On the relativistic and nonrelativistic electron descriptions in high-energy atomic collisions

    NASA Astrophysics Data System (ADS)

    Voitkiv, A. B.

    2007-07-01

    We consider the relativistic and nonrelativistic descriptions of an atomic electron in collisions with point-like charged projectiles moving at relativistic velocities. We discuss three different forms of the fully relativistic first-order transition amplitude. Using the Schrödinger-Pauli equation to describe the atomic electron we establish the correct form of the nonrelativistic first-order transition amplitude. We also show that the so-called semi-relativistic treatment, in which the Darwin states are used to describe the atomic electron, is in fact fully equivalent to the nonrelativistic consideration. The comparison of results obtained with the relativistic and nonrelativistic electron descriptions shows that the latter is accurate within 20-30% up to Za<~ 50-60, where Za is the atomic nuclear charge.

  17. Elastic and absorption cross sections for electron-nitrous oxide collisions

    NASA Astrophysics Data System (ADS)

    Lee, M.-T.; Iga, I.; Homem, M. G.; Machado, L. E.; Brescansin, L. M.

    2002-06-01

    In this work, we present a joint theoretical-experimental study on electron-N2O collisions in the intermediate energy range. More specifically, calculated and measured elastic differential, integral, and momentum-transfer cross sections, as well as calculated total and absorption cross sections are reported. The measurements were performed using a crossed electron-beam-molecular-beam geometry. The angular distribution of the scattered electrons was converted to absolute cross sections using the relative-flow technique. Theoretically, a complex optical potential is used to represent the electron-molecule interaction dynamics in the present calculation. The Schwinger variational iterative method combined with the distorted-wave approximation is used to solve the scattering equations. The comparison of the present calculated results with the measured results as well as with the existing experimental and theoretical data shows good agreement.

  18. Studies of electron-polyatomic-molecule collisions Applications to e-CH4

    NASA Technical Reports Server (NTRS)

    Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.

    1985-01-01

    The first application of the Schwinger multichannel formulation to low-energy electron collisions with a nonlinear polyatomic target is reported. Integral and differential cross sections are obtained for e-CH4 collisions from 3 to 20 eV at the static-plus-exchange interaction level. In these studies, the exchange potential is directly evaluated and not approximated by local models. An interesting feature of the small-angle differential cross section is ascribed to polarization effects and not reproduced at the static-plus-exchange level. These differential cross sections are found to be in reasonable agreement with existing measurements at 7.5 eV and higher energies.

  19. New Accurate Oscillator Strengths and Electron Excitation Collision Strengths for N1

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2006-01-01

    The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N(I) lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strength over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s(sup 2)p(sup 3) (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0), 2s2p(sup 4) (sup 4)P, 2s(sup 2)2p(sup 2)3s (sup 4)P, and (sup 2)P terms and from these levels to the levels of the 2s(sup 2)2p(sup 2)3p (sup 2)S(sup 0), (sup 4)D(sup 0), (sup 4)P(sup 0), (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0),2s(sup 2)2p(sup 2)3s(sup 2)D, 2s(sup 2)2p(sup 2)4s(sup 4)P, (sup 2)P, 2s(sup 2)2p(sup 2)3d(sup 2)P, (sup 4)F,(sup 2)F,(sup 4)P, (sup 4)D, and (sup 2)D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.

  20. Dust productivity and impact collision of the asteroid (596) Scheila

    NASA Astrophysics Data System (ADS)

    Neslusan, L.; Ivanova, O.; Husarik, M.; Svoren, J.; Krisandova, Z. Seman

    2016-06-01

    Photometric observations of asteroid (596) Scheila were obtained during and after its 2010 outburst. The estimated radius of the body (spherical approximation of the asteroidal body) was 51.2±3.0 km and 50.6±3.0 km for different methods. The ejected dust mass from the asteroid ranged from 2.5 ×107 to 3.4 ×107 kg for different methods. An impact mechanism for triggering Scheila's activity is discussed. A few days before the impact, Scheila passed through the corridors of two potential cometary streams.

  1. Comprehensive rate coefficients for electron-collision-induced transitions in hydrogen

    SciTech Connect

    Vrinceanu, D.; Onofrio, R.; Sadeghpour, H. R. E-mail: onofrior@gmail.com

    2014-01-01

    Energy-changing electron-hydrogen atom collisions are crucial to regulating the energy balance in astrophysical and laboratory plasmas and are relevant to the formation of stellar atmospheres, recombination in H II clouds, primordial recombination, three-body recombination, and heating in ultracold and fusion plasmas. Computational modeling of electron-hydrogen collision has been attempted through quantum mechanical scattering state-to-state calculations of transitions involving low-lying energy levels in hydrogen (with principal quantum number n < 7) and at large principal quantum numbers using classical trajectory techniques. Analytical expressions are proposed that interpolate the current quantum mechanical and classical trajectory results for electron-hydrogen scattering in the entire range of energy levels for nearly the entire temperature range of interest in astrophysical environments. An asymptotic expression for the Born cross section is interpolated with a modified expression previously derived for electron-hydrogen scattering in the Rydberg regime using classical trajectory Monte Carlo simulations. The derived formula is compared to existing numerical data for transitions involving low principal quantum numbers, and the dependence of the deviations on temperature is discussed.

  2. Benchmark Calculations of Electron-Impact Differential Cross Sections

    SciTech Connect

    Bray, I.; Bostock, C. J.; Fursa, D. V.; Hines, C. W.; Kadyrov, A. S.; Stelbovics, A. T.

    2011-05-11

    The calculation of electron-atom excitation and ionization cross section is considered in both the non-relativistic and relativistic scattering theory. We consider electron collisions with H, He, Cs, and Hg. Differential cross sections for elastic scattering and ionization are presented.

  3. Collisions Between Small Bodies In A Planetary System: Disruption Regime At High Impact Velocities

    NASA Astrophysics Data System (ADS)

    Michel, P.; Benz, W.; Tanga, P.; Richardson, D. C.

    Collisions play a major role in the formation of planetary systems, since planetary growth occurs by collisional accretion of small bodies at low relative velocities. How- ever, once the masses of planetesimals are high enough, their relative velocities in- crease due to their mutual perturbations and eventually, collisions occur at high impact speed. In this regime, the planetary growth is prevented and a disruptive phase begins, like in the current asteroid belt of our Solar System, and probably in other systems. Here, we present new simulations of high speed collisions between small bodies which take into account the production of gravitationally reaccumulated bodies. We have de- velopped a procedure which divides the process into two phases. Using a 3D SPH hydrocode, the fragmentation of the solid target through crack propagation is first computed. Then the simulation of the gravitational evolution and possible reaccumu- lation of the resulting new fragments is performed using the parallel N-body code pkdgrav. Our first simulations succeeded in reproducing fundamental properties of some well-identified asteroid families, showing the reliability of our method. We have now made some improvements by including the possibility of fragments bouncing (in- stead of strictly merging) when collisions occur at high speed during the gravitational phase. We present thus new simulations in three different impact regimes, from highly catastrophic to barely disruptive, and compare them with previous ones in which col- lisions between fragments resulted always in their merger. This comparison shows for each regime that the fundamental outcome properties remain statistically unchanged. We also observe the natural production of satellite systems around some fragments. We plan to continue our investigations using this procedure, and to improve upon the modelling of fundamental physical effects during collisions. We will then also inves- tigate the efficiency of planetary accretion

  4. An experimental investigation of the dissociative ionization process of argon cluster ions induced by electron impact

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ma, X.; Yan, S.; Xu, S.; Zhang, S.; Zhu, X.; Li, B.; Feng, W.; Qian, D.; Zhang, R.; Guo, D.; Wen, W.; Zhang, D.; Yang, J.; Zhao, D.; Liu, H.

    2014-04-01

    Utilizing the Cold Target Recoil Ions Momentum Spectrometer (COLTRIMS), dissociative ionization of argon cluster was experimentally investigated by electron impact. The recoil ions produced both in the pure ionization process and the dissociative ionization channels are measured with collision energies from 100 and 1000 eV. The ratios of the dimer ions from pure ionization (Ar2P+) and the dimer ions from small cluster dissociation (Ar+2D) to the atomic argon ion (Ar+) in different stagnation pressures were obtained.

  5. Ionization of glycerin molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Zavilopulo, A. N.; Shpenik, O. B.; Markush, P. P.; Kontrosh, E. E.

    2015-07-01

    The methods and results of studying the yield of positive ions produced due to direct and dissociative electron impact ionization of the glycerin molecule are described. The experiment is carried out using two independent setups, namely, a setup with a monopole mass spectrometer employing the method of crossing electron and molecular beams and a setup with a hypocycloidal electron spectrometer with the gas-filled cell. The mass spectra of the glycerin molecule are studied in the range of mass numbers of 10-95 amu at various temperatures. The energy dependences of the effective cross sections of the glycerin molecular ions produced by a monoenergetic electron beam are obtained and analyzed; using these dependences, the appearance energies of fragment ions are determined. The dynamics of the glycerin molecule fragment ions formation is investigated in the temperature range of 300-340 K.

  6. Aligned breakup of heavy nuclear systems as a new type of deep inelastic collisions at small impact parameters

    SciTech Connect

    Wilczynski, J.; Swiderski, L.; Pagano, A.; Cardella, G.; De Filippo, E.; La Guidara, E.; Papa, M.; Pirrone, S.; Amorini, F.; Anzalone, A.; Cavallaro, S.; Colonna, M.; Di Toro, M.; Maiolino, C.; Porto, F.; Rizzo, F.; Russotto, P.; Auditore, L.

    2010-06-15

    An interesting process of violent reseparation of a heavy nuclear system into three or four fragments of comparable size was recently observed in {sup 197}Au+{sup 197}Au collisions at 15 MeV/nucleon. Combined analysis of the binary deep inelastic events and the ternary and quaternary breakup events demonstrates that the newly observed ternary and quaternary reactions belong to the same wide class of deep inelastic collisions as the conventional (binary) damped reactions. It is shown that the ternary and quaternary breakup reactions occur at extremely inelastic collisions corresponding to small impact parameters, while more peripheral collisions lead to well-known binary deep inelastic reactions.

  7. Signatures of quantum radiation reaction in laser-electron-beam collisions

    SciTech Connect

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2015-09-15

    Electron dynamics in the collision of an electron beam with a high-intensity focused ultrashort laser pulse are investigated using three-dimensional QED particle-in-cell (PIC) simulations, and the results are compared with those calculated by classical Landau and Lifshitz PIC simulations. Significant differences are observed from the angular dependence of the electron energy distribution patterns for the two different approaches, because photon emission is no longer well approximated by a continuous process in the quantum radiation-dominated regime. The stochastic nature of photon emission results in strong signatures of quantum radiation-reaction effects under certain conditions. We show that the laser spot size and duration greatly influence these signatures due to the competition of QED effects and the ponderomotive force, which is well described in the classical approximation. The clearest signatures of quantum radiation reaction are found in the limit of large laser spots and few cycle pulse durations.

  8. Elastic cross sections for electron-ketenylidene (C{sub 2}O) collisions

    SciTech Connect

    Fujimoto, M.M.; Lee, M.-T.; Michelin, S.E.

    2004-05-01

    In this work we report on a theoretical study on elastic electron collisions with ketenylidene radicals in the low and intermediate energy range. Calculated differential and momentum transfer cross sections for the e{sup -}-C{sub 2}O collision are reported in the (1-500)-eV range. A complex optical potential composed by static, exchange, correlation-polarization plus absorption contributions, derived from a fully molecular wave function, is used to describe the interaction dynamics. The Schwinger variational iterative method combined with the distorted-wave approximation is applied to calculate scattering amplitudes. Comparison made between our calculated cross sections with the theoretical and experimental results for elastic e{sup -}-N{sub 2}O collisions has revealed remarkable similarity for incident energies equal to 20 eV and above. Also, two shape resonances located at around 3 eV and 4.5 eV are observed and identified as due to the {sup 2}{pi} and the {sup 4}{pi} scattering channels, respectively.

  9. Proton emission following multiple electron capture in slow N{sup 7+}+HCl collisions

    SciTech Connect

    Fremont, F.; Martina, D.; Kamalou, O.; Sobocinski, P.; Chesnel, J.-Y.; McNab, I.R.; Bennett, F.R.

    2005-04-01

    Collisions between 98-keV N{sup 7+} ions and a HCl target have been investigated experimentally. The kinetic-energy distribution of fragment H{sup +} ions originating from multiple electron capture was detected at angles in the range 20 deg. -160 deg. with respect to the incident beam direction. Proton energies as large as 100 eV were observed, and calculations made in the simple Coulomb explosion model suggest that up to seven target electrons may be involved during the collision. Using the Landau-Zener model, we show that the N{sup 7+} projectile mainly captures outer-shell electrons from HCl. From the experimental data we derived multiple-capture cross sections which we compared with results from a model calculation made using the classical over-barrier model and also with a semiempirical scaling law. For the specific case of double capture, several structures appeared, which were assigned using ab initio calculations to states of HCl{sup 2+}.

  10. Calculations on Electron Capture in Low Energy Ion-Molecule Collisions

    SciTech Connect

    Stancil, P.C.; Zygelman, B.; Kirby, K.

    1997-12-31

    Recent progress on the application of a quantal, molecular-orbital, close-coupling approach to the calculation of electron capture in collisions of multiply charged ions with molecules is discussed. Preliminary results for single electron capture by N{sup 2+} with H{sub 2} are presented. Electron capture by multiply charged ions colliding with H{sub 2} is an important process in laboratory and astrophysical plasmas. It provides a recombination mechanism for multiply charged ions in x-ray ionized astronomical environments which may have sparse electron and atomic hydrogen abundances. In the divertor region of a tokamak fusion device, charge exchange of impurity ions with H{sub 2} plays a role in the ionization balance and the production of radiative energy loss leading to cooling, X-ray and ultraviolet auroral emission from Jupiter is believed to be due to charge exchange of O and S ions with H{sub 2} in the Jovian atmosphere. Solar wind ions interacting with cometary molecules may have produced the x-rays observed from Comet Hyakutake. In order to model and understand the behavior of these environments, it is necessary to obtain total, electronic state-selective (ESS), and vibrational (or rotational) state-selective (VSS) capture cross sections for collision energies as low as 10 meV/amu to as high as 100 keV/amu in some instances. Fortunately, charge transfer with molecular targets has received considerable experimental attention. Numerous measurements have been made with flow tubes, ion traps, and ion beams. Flow tube and ion trap studies generally provide information on rate coefficients for temperatures between 800 K and 20,000 K. In this article, we report on the progress of our group in implementing a quantum-mechanical Molecular Orbital Close Coupling (MOCC) approach to the study of electron capture by multiply charged ions in collisions with molecules. We illustrate this with a preliminary investigation of Single Electron Capture (SEC) by N{sup 2+} with H

  11. Electron-H2 Collisions Studied Using the Finite Element Z-Matrix Method

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Brown, David; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have applied the Z-matrix method, using a mixed basis of finite elements and Gaussians, to study e-H2 elastic and inelastic collisions. Special attention is paid to the quality of the basis set and the treatment of electron correlation. The calculated cross sections are invariant, to machine accuracy, with respect to the choice of parameters a, b, d, e as long as they satisfy Equation (3). However, the log derivative approach, i.e., the choice a = -e = 1, b = d = 0 appears to converge slightly faster than other choices. The cross sections agree well with previous theoretical results. Comparison will be made with available experimental data.

  12. Total single electron capture cross sections for collisions of multicharged ions with He atoms

    NASA Astrophysics Data System (ADS)

    Rahmanian, M.; Shojaei, F.; Fathi, R.

    2016-09-01

    The three-body boundary corrected Born distorted wave method is utilized to compute the total cross sections for single electron capture in the collisions of the fast ions ({{{H}}}1+, He{}2+, Li{}3+, {{{B}}}5+ and {{{C}}}6+) with helium targets in their ground states. Both post and prior forms of the transition amplitude are obtained in terms of two-dimensional integrals and the total cross sections are computed via three-dimensional numerical integrations. The present results show reasonable agreement with the measurements and three- and four-body theoretical computations, especially at higher incident energies.

  13. Interatomic Coulombic decay as a new source of low energy electrons in slow ion-dimer collisions.

    PubMed

    Iskandar, W; Matsumoto, J; Leredde, A; Fléchard, X; Gervais, B; Guillous, S; Hennecart, D; Méry, A; Rangama, J; Zhou, C L; Shiromaru, H; Cassimi, A

    2015-01-23

    We provide the experimental evidence that the single electron capture process in slow collisions between O^{3+} ions and neon dimer targets leads to an unexpected production of low-energy electrons. This production results from the interatomic Coulombic decay process, subsequent to inner-shell single electron capture from one site of the neon dimer. Although pure one-electron capture from the inner shell is expected to be negligible in the low collision energy regime investigated here, the electron production due to this process overtakes by 1 order of magnitude the emission of Auger electrons by the scattered projectiles after double-electron capture. This feature is specific to low charge states of the projectile: similar studies with Xe^{20+} and Ar^{9+} projectiles show no evidence of inner-shell single-electron capture. The dependence of the process on the projectile charge state is interpreted using simple calculations based on the classical over the barrier model. PMID:25658997

  14. Acceleration and deceleration of convoy electrons in grazing-ion surface collisions

    NASA Astrophysics Data System (ADS)

    Gravielle, M. S.; Miraglia, J. E.

    2003-04-01

    Convoy-electron emission produced by grazing-ion surface scattering is studied in the framework of the distorted-wave theory. We develop a model, here named field distorted-wave (FDW) approximation, to describe the effect of the surface interaction on the electronic transition. In the model, the action of the surface field on the ejected electron is seen as an additional momentum transfer that depends on the projectile position. We apply the FDW approximation to analyze electron distributions for 100 keV protons impinging on LiF(100) and Al(111) surfaces, which are insulator and metal materials, respectively. In the case of metals, the dynamic screening of the projectile is included in the Jost function corresponding to the final state. As experimentally observed, energy spectra of forward-ejected electrons display a prominent structure associated with the convoy-electron emission. We find that the maximum of the convoy-electron distribution is decelerated for LiF and accelerated for Al, with respect to its position in ion-atom collisions, in quantitative agreement with the experimental data.

  15. Collision integral in the kinetic equation for a rarefied electron gas with allowance for its spin polarization

    SciTech Connect

    Sasorov, P. V.; Fomin, I. V.

    2015-06-15

    The collision integral in the kinetic equation for a rarefied spin-polarized gas of fermions (electrons) is derived. The collisions between these fermions and the collisions with much heavier particles (ions) forming a randomly located stationary background (gas) are taken into account. An important new circumstance is that the particle-particle scattering amplitude is not assumed to be small, which could be obtained, for example, in the first Born approximation. The derived collision integral can be used in the kinetic equation, including that for a relatively cold rarefied spin-polarized plasma with a characteristic electron energy below α{sup 2}m{sub e}c{sup 2}, where α is the fine-structure constant.

  16. Radiative double electron capture in collisions of fully-stripped fluorine ions with thin carbon foils

    NASA Astrophysics Data System (ADS)

    Elkafrawy, Tamer Mohammad Samy

    Radiative double electron capture (RDEC) is a one-step process in ion-atom collisions occurring when two target electrons are captured to a bound state of the projectile simultaneously with the emission of a single photon. The emitted photon has approximately double the energy of the photon emitted due to radiative electron capture (REC), which occurs when a target electron is captured to a projectile bound state with simultaneous emission of a photon. REC and RDEC can be treated as time-reversed photoionization (PI) and double photoionization (DPI), respectively, if loosely-bound target electrons are captured. This concept can be formulated with the principle of detailed balance, in which the processes of our interest can be described in terms of their time-reversed ones. Fully-stripped ions were used as projectiles in the performed RDEC experiments, providing a recipient system free of electron-related Coulomb fields. This allows the target electrons to be transferred without interaction with any of the projectile electrons, enabling accurate investigation of the electron-electron interaction in the vicinity of electromagnetic field. In this dissertation, RDEC was investigated during the collision of fully-stripped fluorine ions with a thin carbon foil and the results are compared with the recent experimental and theoretical studies. In the current work, x rays associated with projectile charge-changing by single and double electron capture and no charge change by F9+ ions were observed and compared with recent work for O8+ ions and with theory. Both the F 9+ and O8+ ions had energies in the ˜MeV/u range. REC, in turn, was investigated as a means to compare with the theoretical predictions of the RDEC/REC cross section ratio. The most significant background processes including various mechanisms of x-ray emission that may interfere with the energy region of interest are addressed in detail. This enables isolation of the contributions of REC and RDEC from the

  17. Dynamic screening and wake effects on electronic excitation in ion-solid and ion-surface collisions

    SciTech Connect

    Burgdoerfer, J. . Dept. of Physics Oak Ridge National Lab., TN )

    1991-01-01

    The collective electronic response in a solid effectively alters ionic and atomic potentials giving rise to dynamic screening and to a wake'' of density fluctuations trailing ions as they propagate through the solid. The presence of dynamic screening modifies electronic excitation processes of projectiles in ion-solid collisions as compared to binary ion-atom collisions. We review recent theoretical and experimental studies directed at the search for and identification of signatures of dynamic screening and wake effects. Examples include the formation of excited projectile bound states under channeling conditions, radiative electron capture, the search for wake riding'' electrons in antiproton-solid collisions, and the neutralization of highly charged ions near surfaces. 42 refs., 7 figs.

  18. Collisions of carbon and oxygen ions with electrons, H, H/sub 2/ and He: Volume 5

    SciTech Connect

    Phaneuf, R.A.; Janev, R.K.; Pindzola, M.S.

    1987-02-01

    This report provides a handbook for fusion research of recommended cross-section and rate-coefficient data for collisions of carbon and oxygen ions with electrons, hydrogen atoms and molecules, and helium atoms. Published experimental and theoretical data have been collected and evaluated, and recommended data are presented in tabular, graphical, and parametrized form. Processes considered include exciation, ionization, and charge exchange at collision energies appropriate to applications in fusion-energy research.

  19. Observation of interatomic Coulombic decay and electron-transfer-mediated decay in high-energy electron-impact ionization of Ar2

    NASA Astrophysics Data System (ADS)

    Yan, S.; Zhang, P.; Ma, X.; Xu, S.; Li, B.; Zhu, X. L.; Feng, W. T.; Zhang, S. F.; Zhao, D. M.; Zhang, R. T.; Guo, D. L.; Liu, H. P.

    2013-10-01

    We measured the kinetic energy distributions of the fragment ions of doubly and quadruply ionized argon dimers using 3000 eV electron impact. For the dissociation of (Ar2)2+, the peak that indicates radiative charge transfer is observed, where the outer-shell ionization (dominant in highly charged ion collision) and the inner-shell ionization (preferential in x-ray experiments) have approximately equal contributions. For the dissociation of (Ar2)4+, the interatomic Coulombic decay and electron-transfer-mediated decay are first observed in the electron-impact process.

  20. Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening

    NASA Astrophysics Data System (ADS)

    Tomadin, Andrea; Brida, Daniele; Cerullo, Giulio; Ferrari, Andrea C.; Polini, Marco

    2013-07-01

    We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes—processes in which incoming and outgoing momenta of the scattering particles lie on the same line—including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them.

  1. Excited-state evolution probed by convoy-electron emission in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Takabayashi, Y.; Ito, T.; Azuma, T.; Komaki, K.; Yamazaki, Y.; Tawara, H.; Takada, E.; Murakami, T.; Seliger, M.; Tökési, K.; O. Reinhold, C.; Burgdörfer, J.

    2003-10-01

    We present a joint experimental and theoretical study of convoy-electron emission resulting from highly-charged-ion transport through carbon foils at moderately relativistic speeds. Energy spectra of electrons ejected at 0° have been measured for 390 MeV/u hydrogen-like Ar17+ ions and 460 MeV/u (β=v/c=0.74,γ=1.49) Fe25+ (1s), Fe24+ (1s2), and Fe23+ (1s22s) incident on carbon foils with thicknesses from 25 to 8700 μg/cm2. Due to this unprecedented wide range of thicknesses, the sequential excitation and ionization of initially deeply bound electrons to highly excited states and continuum states can be followed in considerable detail. The analysis of the spectra is aided by simulations based on the classical transport theory which has been extended to relativistic energies and to multielectron projectiles. The motion of the projectile electron inside the solid target is calculated taking into account the Coulomb potential of the projectile ion and the multiple stochastic collisions with target cores and target electrons. Different phases of the convoy-electron emissions can be disentangled: direct ejection to the continuum, the transient buildup of an excited-state wave packet followed by ionization, and postionization modification of the continuum spectrum. We find good agreement between experiment and simulation for the evolution of charge states and the emission spectrum.

  2. Scaling of cross sections in fast collisions between few electron system

    SciTech Connect

    DuBois, R.D.; Manson, S.T.

    1993-05-01

    Doubly differential cross sections for 0.5 MeV/u hydrogen and helium projectiles colliding with helium have been measured. In order to investigate how projectile electrons influence the ionization cross sections, 15{degrees} electron emission for isotachic H, H{sub 2}{sup +}, H{sub 3}{sup +}, He and He{sup +} impact are compared to results for proton impact. These data demonstrate the importance of two-center electron-electron interactions for very low energy electron emission. The role of screening by the projectile electrons emerges clearly at intermediate energies. In the binary encounter region, ionization by H{sub 2}{sup +} is twice the proton result; H{sub 3}{sup +} is three times the proton result. The data are discussed in terms of available theoretical models.

  3. Spin-resolved electron capture cross sections for C5+-H collisions

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Liu, L.; Wang, J. G.; Janev, R. K.

    2015-10-01

    The charge transfer process in C5+-H collisions has been theoretically studied using the two-center atomic orbital close-coupling method in the energy interval from 0.1 to 300 keV u-1. The interaction of active electron with the projectile ion is represented by model potentials different for the singlet and triplet systems of C4+(1snl) states. The results of the present calculations are compared with other theoretical results and experimental measurements and good agreement is obtained for the total spin-averaged cross sections in the overlapping energy range. For the spin-resolved cross sections, we found that the present total and n-shell electron capture cross sections are also in good agreement with the results of other theoretical studies in the overlapping energy range for both the singlet and triplet cases. Good overall agreement has been obtained with the results of other authors for the nl-state-selective cross sections, except for the capture to 3p and 4p singlet states at the low collision energies.

  4. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    SciTech Connect

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-07-15

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed.

  5. A scaling law for energy transfer by inelastic electron-molecule collisions in mixtures

    NASA Technical Reports Server (NTRS)

    Bienkowski, G. K.

    1976-01-01

    The equation governing the electron energy distribution in the presence of a spatially uniform electric field in a weakly ionized gas was reformulated into an integral equation for the logarithmic slope of the distribution function. For gas mixtures in which the dominant electron energy loss mechanism is by vibrational excitation of the molecules, this equation is suitable for approximate analysis and exact numerical solution by iteration. Superelastic collisions are easily included in this formulation, and do not seriously effect the convergence of the numerical scheme. The approximate analytical results are only qualitatively correct, but suggest appropriate parameters which correlate the exact numerical results very well. The distribution function as well as certain gross properties such as net energy transfer into vibration, mean energy, and drift velocity depend primarily on a single nondimensional parameter involving only E/N and the cross sections.

  6. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    SciTech Connect

    Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.

    2001-10-01

    We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  7. ON THE COMPETITION BETWEEN RADIAL EXPANSION AND COULOMB COLLISIONS IN SHAPING THE ELECTRON VELOCITY DISTRIBUTION FUNCTION: KINETIC SIMULATIONS

    SciTech Connect

    Landi, S.; Matteini, L.; Pantellini, F.

    2012-12-01

    We present numerical simulations of the solar wind using a fully kinetic model which takes into account the effects of particle's binary collisions in a quasi-neutral plasma in spherical expansion. Starting from an isotropic Maxwellian velocity distribution function for the electrons, we show that the combined effect of expansion and Coulomb collisions leads to the formation of two populations: a collision-dominated cold and dense population almost isotropic in velocity space and a weakly collisional, tenuous field-aligned and antisunward drifting population generated by mirror force focusing in the radially decreasing magnetic field. The relative weights and drift velocities for the two populations observed in our simulations are in excellent agreement with the relative weights and drift velocities for both core and strahl populations observed in the real solar wind. The radial evolution of the main moments of the electron velocity distribution function is in the range observed in the solar wind. The electron temperature anisotropy with respect to the magnetic field direction is found to be related to the ratio between the collisional time and the solar wind expansion time. Even though collisions are found to shape the electron velocity distributions and regulate the properties of the strahl, it is found that the heat flux is conveniently described by a collisionless model where a fraction of the electron thermal energy is advected at the solar wind speed. This reinforces the currently largely admitted fact that collisions in the solar wind are clearly insufficient to force the electron heat flux obey the classical Spitzer-Haerm expression where heat flux and temperature gradient are proportional to each other. The presented results show that the electron dynamics in the solar wind cannot be understood without considering the role of collisions.

  8. Theoretical investigation of electron transfer and detachment processes in low energy H- + Li and Li- + H collisions

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Lin, X. H.; Yan, B.; Wang, J. G.; Janev, R. K.

    2016-02-01

    The charge exchange and collisional detachment processes in H- + Li and Li- + H collisions have been studied by using the quantal molecular orbital close-coupling (QMOCC) method in the energy ranges of about 0.12-1000 eV u-1 and 0.1 meV-1000 eV, respectively, and the inelastic collision cross sections and rate coefficients have been computed and presented. It is found that the electron transfer process in the H- + Li and Li- + H collisions is due to the Demkov coupling between the 12Σ+ and 22Σ+ states at internuclear distances of about 15a0. The collisional electron detachment in the considered collision system is due to the excitation of the remaining six states, which are all unstable against autodetachment. These states are populated through a series of Landau-Zener couplings of the 22Σ+ state with upper 2Σ+ states and by the rotational 2Σ+-2Π couplings at small internuclear distances. The cross sections for electron transfer in H- + Li and Li- + H collisions in the energy range of 10-1000 eV u-1 attain values in the range of 10-16-10-15 cm2 (reaching their maximum values of about 5 × 10-15 cm2 at 500-600 eV u-1), while the values of the corresponding electron detachment cross sections in this energy range attain generally smaller values.

  9. Electron-impact ionization of helium: A comprehensive experiment benchmarks theory

    SciTech Connect

    Ren, X.; Pflueger, T.; Senftleben, A.; Xu, S.; Dorn, A.; Ullrich, J.; Bray, I.; Fursa, D.V.; Colgan, J.; Pindzola, M.S.

    2011-05-15

    Single ionization of helium by 70.6-eV electron impact is studied in a comprehensive experiment covering a major part of the entire collision kinematics and the full 4{pi} solid angle for the emitted electron. The absolutely normalized triple-differential experimental cross sections are compared with results from the convergent close-coupling (CCC) and the time-dependent close-coupling (TDCC) theories. Whereas excellent agreement with the TDCC prediction is only found for equal energy sharing, the CCC calculations are in excellent agreement with essentially all experimentally observed dynamical features, including the absolute magnitude of the cross sections.

  10. Electron emission in H sup 0 --atom collisions: A coincidence study of the angular dependence

    SciTech Connect

    Heil, O.; Maier, R.; Kuzel, M.; Groeneveld, K.O. . Inst. fuer Kernphysik); DuBois, R.D. )

    1990-10-01

    Differential electron emission occurring as the result of fast hydrogen atom impact on helium and argon targets has been studied using standard non-coincidence and emitted electron-ionized projectile coincidence techniques. Impact energies were 0.5 and 1 MeV; electron emission was measured between approximately 20 and 2000 eV for selected laboratory emission angles ranging from 0{degree} to 180{degree}. These data demonstrate the importance of simultaneous target-projectile ionization as was previously observed for energetic He{sup +} impact. The experimental data for the helium target, when compared to PWBA calculations using hydrogenic wave functions, indicate good agreement with theory for projectile ionization and, indirectly, reasonably good agreement for target ionization. Simultaneous target-projectile ionization events were not included in the model. The argon data are compared with more sophisticated calculations for electron loss. These comparisons indicate the importance of second order effects at large emission angles.